TW201701516A - Multiphysics design for solid state energy devices with high energy density - Google Patents
Multiphysics design for solid state energy devices with high energy density Download PDFInfo
- Publication number
- TW201701516A TW201701516A TW104142203A TW104142203A TW201701516A TW 201701516 A TW201701516 A TW 201701516A TW 104142203 A TW104142203 A TW 104142203A TW 104142203 A TW104142203 A TW 104142203A TW 201701516 A TW201701516 A TW 201701516A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- features
- solid state
- limited
- characteristics include
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims abstract description 77
- 238000013461 design Methods 0.000 title claims description 68
- 238000000034 method Methods 0.000 claims abstract description 152
- 239000000463 material Substances 0.000 claims abstract description 125
- 239000003792 electrolyte Substances 0.000 claims abstract description 32
- 238000009826 distribution Methods 0.000 claims description 22
- 230000007547 defect Effects 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 14
- 238000009830 intercalation Methods 0.000 claims description 13
- 230000002687 intercalation Effects 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 claims description 13
- 238000004088 simulation Methods 0.000 claims description 13
- 230000035699 permeability Effects 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 10
- 230000001788 irregular Effects 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 230000015654 memory Effects 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 230000006870 function Effects 0.000 claims description 4
- 230000002950 deficient Effects 0.000 claims 3
- 230000000737 periodic effect Effects 0.000 claims 2
- 239000000835 fiber Substances 0.000 claims 1
- 238000000059 patterning Methods 0.000 claims 1
- 239000008188 pellet Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 27
- 230000004888 barrier function Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 49
- 238000000151 deposition Methods 0.000 description 19
- 229910052744 lithium Inorganic materials 0.000 description 17
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 16
- 230000008021 deposition Effects 0.000 description 15
- 238000004422 calculation algorithm Methods 0.000 description 13
- 238000011960 computer-aided design Methods 0.000 description 11
- 238000004804 winding Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000010406 cathode material Substances 0.000 description 7
- 238000012805 post-processing Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000006399 behavior Effects 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000013500 data storage Methods 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- 238000012938 design process Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000005555 metalworking Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000005381 potential energy Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 230000009897 systematic effect Effects 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/392—Floor-planning or layout, e.g. partitioning or placement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2115/00—Details relating to the type of the circuit
- G06F2115/02—System on chip [SoC] design
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Architecture (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
本揭示內容有關電化學電池之製造。更特別地是,本揭示內容提供技術,包括用於固態電池組裝置的方法及裝置。 This disclosure relates to the manufacture of electrochemical cells. More particularly, the present disclosure provides techniques, including methods and apparatus for solid state battery pack devices.
本揭示內容有關電化學電池之製造。更特別地是,本揭示內容提供技術,包括用於固態電池組裝置的方法及裝置。只當作範例,本發明已被設有基於鋰之電池組電池的使用,但其將被認知其他由諸如鋅、銀及鉛、鎳之材料所製成的電池組電池可被以相同或相像方式操作。另外,此等電池組能被使用於各種應用、諸如手提式電子設備(行動電話、個人數位助理器、無線電播放器、音樂播放器、視訊相機、與類似者等)、平板及膝上型電腦、用於軍事使用(通訊、照明、成像、衛星、與類似者等)的電源供應器、用於航空應用(飛機、衛星、及微型飛行器)之電源供應器、用於車輛應用(混合動力電動車、插電式混合動力電動車、全電動車、電動踏板車、水下載具、小船、大船、電動手扶拖拉機、及庭園裝置上之電動機車)的電源供應器、用於遙控裝置(無人靶機、無人飛機、RC汽車) 之電源供應器、用於機械人器具(機械人玩具、機械人真空吸塵器、機械人園用工具、機械人建築公用設施)的電源供應器、用於電動工具(電鑽、電動割草機、電動真空吸塵器、電動金屬工作磨床、電熱槍、電動下壓擴展工具、電鋸及切斷器、電動噴砂器及拋光機、電動剪切機及切片機、和起槽機)之電源供應器、用於個人衛生裝置(電動牙刷、烘手機及電吹風機)的電源供應器、加熱器、冷卻器、冷凍器、風扇、增濕器、用於其他應用(全球定位系統(GPS)裝置、雷射測距器、閃光燈、電氣街照明、備用電源供應器、不斷電供應系統、及其他手提式及固定不動的電子裝置)之電源供應器。用於此等電池組的操作之方法及系統係亦適用於諸案例,其中該電池組不只是該系統中之電源供應器,且額外的電力係藉由燃料電池、其他電池組、IC引擎或其他燃燒裝置、電容器、太陽能電池、其組合、與其他者所提供。 This disclosure relates to the manufacture of electrochemical cells. More particularly, the present disclosure provides techniques, including methods and apparatus for solid state battery pack devices. By way of example only, the present invention has been provided with the use of lithium-based battery cells, but it will be recognized that other battery cells made of materials such as zinc, silver, lead, and nickel may be identical or similar. Mode operation. In addition, these battery packs can be used in a variety of applications, such as portable electronic devices (mobile phones, personal digital assistants, radio players, music players, video cameras, and the like), tablets and laptops. Power supplies for military use (communication, lighting, imaging, satellite, and the like), power supplies for aerospace applications (aircraft, satellite, and micro-aircraft), for vehicle applications (hybrid electric Power supply for vehicles, plug-in hybrid electric vehicles, all-electric vehicles, electric scooters, water downloaders, boats, large ships, electric walking tractors, and electric motor vehicles on garden devices, for remote control devices Target machine, unmanned aircraft, RC car) Power supply, power supply for robots (mechanical toys, robot vacuum cleaners, robotic tools, robotic building utilities), power tools (electric drills, electric lawn mowers, electrics) Power supply for vacuum cleaners, electric metal working grinders, electric heat guns, electric push-down expansion tools, chainsaws and cutters, electric sandblasters and polishers, electric shears and slicers, and grooving machines Power supply for personal hygiene devices (electric toothbrushes, hand dryers and hair dryers), heaters, coolers, freezers, fans, humidifiers, for other applications (Global Positioning System (GPS) devices, laser surveys) Power supplies for distances, flashlights, electrical street lighting, backup power supplies, uninterruptible power supply systems, and other portable and stationary electronic devices. Methods and systems for the operation of such battery packs are also applicable to the case where the battery pack is not only a power supply in the system, but additional power is supplied by a fuel cell, other battery pack, IC engine or Other combustion devices, capacitors, solar cells, combinations thereof, and others.
普通之電化學電池通常使用液體電解質。此等電池典型被使用於很多傳統應用中。用於製造電化學電池的另一選擇技術包括固態電池。此等固態電池大致上係於該實驗狀態中、難以製成、且尚未被在順利地大規模生產。雖然有希望,由於電池結構及製造技術中之限制,固態電池尚未被達成。這些及其他限制已遍及本說明書及更特別地是在下面被敘述。 Conventional electrochemical cells typically use a liquid electrolyte. These batteries are typically used in many conventional applications. Another option for fabricating electrochemical cells includes solid state batteries. These solid state batteries are generally in this experimental state, are difficult to manufacture, and have not been successfully mass produced. Although promising, solid state batteries have not been achieved due to limitations in battery construction and manufacturing techniques. These and other limitations have been described throughout the specification and more particularly below.
用於電極的傳統製造製程涉及多數個製造製程。亦即,電極之傳統製造包括將活性材料、導電劑、黏結劑、及溶劑的混合物之糊漿鑄造至金屬基材上,以形成一電極。其次,組成該電極的混合物之糊漿係在高溫爐或在室溫被乾燥。該電極被層疊至充分低的厚度,以在該等構成微粒之中確保良好的接觸。用於電化學 電池之性能目標包括適當的特定能量/功率及能量/功率密度、電池及模組堅固性、安全性、老化特徵、壽命、熱行為、及材料/擱置壽命。不幸地是,限制存在於設計及製造該等電化學電池中。達成該等性能目標係經過嘗試錯誤來完成,這是冗長及耗時的。很多時候,電池容量及化學性質被選擇。為該電極選擇用於該化學性質之材料的數量。該材料被提供於該等三組構之其中一中。該結果的電池組被測試,以決定該等性能目標是否已被滿足,其甚至在重複嘗試錯誤之後大致上不是被滿足的情況。在該電池組內之單一尺寸模擬被施行。被使用於該等電極中的活性材料之數量基於目標容量被計算及重新計算。包括電極厚度、電解質成份、及添加劑的型式及濃度之其他參數典型被調整,直至週期壽命及安全目標被滿足。清楚地是,為耗時、無效率、及冗長的製程。 Conventional manufacturing processes for electrodes involve a number of manufacturing processes. That is, the conventional fabrication of the electrode includes casting a paste of a mixture of an active material, a conductive agent, a binder, and a solvent onto a metal substrate to form an electrode. Next, the syrup of the mixture constituting the electrode is dried in a high temperature furnace or at room temperature. The electrodes are laminated to a sufficiently low thickness to ensure good contact among the constituent particles. For electrochemistry Battery performance goals include appropriate specific energy/power and energy/power density, battery and module robustness, safety, aging characteristics, longevity, thermal behavior, and material/shelf life. Unfortunately, limitations exist in the design and manufacture of such electrochemical cells. Achieving these performance goals is done with trial and error, which is lengthy and time consuming. Many times, battery capacity and chemistry are chosen. The amount of material used for the chemistry is selected for the electrode. The material is provided in one of the three configurations. The resulting battery pack is tested to determine if the performance targets have been met, which is generally not a satisfactory condition after repeated trial errors. A single size simulation within the battery pack is performed. The amount of active material used in the electrodes is calculated and recalculated based on the target capacity. Other parameters including electrode thickness, electrolyte composition, and type and concentration of additives are typically adjusted until cycle life and safety objectives are met. Clearly, it is a time consuming, inefficient, and lengthy process.
數個被發表之文獻報告企圖提供有系統及數值方法以分析傳統電池組。這些報告有關活性材料、導電劑、黏結劑的數量、及該電極之多孔性、及壓縮的程度。一創新方式被敘述於“C-W.王、及A.M.塞斯崔、鋰離子聚合物電池組之中尺度數值模擬、電化學學會雜誌”154[1]A1035-A1047(2007年),及Y.-H.陳、C-W.王、G.劉、X.-Y.宋、V.S.巴塔利亞、及A.M.塞斯崔、鋰離子電池組陰極中的導電劑之選擇:“數值研究、該電化學學會雜誌、154[2]A978-A986(2007年)”。雖然很成功,此等方式被限制。由上面,其被看出用於改良固態電池的製造之技術係很想要的。因此,為發現改良及設計電化學電池之方法,其整體地說明主要的製造及性能參數。 Several published literature reports attempt to provide systematic and numerical methods for analyzing traditional battery packs. These reports relate to the amount of active material, conductive agent, binder, and the porosity of the electrode, as well as the degree of compression. An innovative approach is described in "CW. Wang, and AM Sestri, Lithium Ion Polymer Battery Group Mesoscale Numerical Simulation, Journal of Electrochemical Society" 154 [1] A1035-A1047 (2007), and Y.- H. Chen, CW. Wang, G. Liu, X.-Y. Song, VS Batalha, and AM Sestri, the choice of conductive agent in the cathode of lithium-ion battery: "Numerical study, the electrochemical Journal of the Society, 154 [2] A978-A986 (2007). Although very successful, these methods are limited. From the above, it is seen that the technique for improving the manufacture of solid state batteries is highly desirable. Therefore, in order to find ways to improve and design electrochemical cells, the overall manufacturing and performance parameters are generally illustrated.
本發明有關多層式固態電池組裝置之製造。更特別地是,本發明提供用於提供一設計及使用該設計供製造立體電化學電池用的立體元件之方法及系統。只當作範例,本發明已以基於鋰的固態電池之使用而被提供,但其將被認知諸如鋅、銀、鎂、銅及鎳的其他材料可被以相同或相像之方式來設計。另外,此等電池組能被使用於各種應用、諸如手提式電子設備(行動電話、個人數位助理器、無線電播放器、音樂播放器、視訊相機、與類似者等)、平板及膝上型式電腦、用於軍事使用(通訊、照明、成像、衛星、與類似者等)的電源供應器、用於航空應用(飛機、衛星、及微型飛行器)之電源供應器、用於車輛應用(混合動力電動車、插電式混合動力電動車、全電動車、電動踏板車、水下載具、小船、大船、電動手扶拖拉機、及庭園裝置上之電動機車)的電源供應器、用於遙控裝置(無人靶機、無人飛機、RC汽車)之電源供應器、用於機械人器具(機械人玩具、機械人真空吸塵器、機械人園用工具、機械人建築公用設施)的電源供應器、用於電動工具(電鑽、電動割草機、電動真空吸塵器、電動金屬工作磨床、電熱槍、電動下壓擴展工具、電鋸及切斷器、電動噴砂器及拋光機、電動剪切機及切片機、和起槽機)之電源供應器、用於個人衛生裝置(電動牙刷、烘手機及電吹風機)的電源供應器、加熱器、冷卻器、冷凍器、風扇、增濕器、用於其他應用(全球定位系統(GPS)裝置、雷射測距器、閃光燈、電氣街照明、備用電源供應器、不斷電供應系統、及其他手提式及固定不動的電子裝置)之電源供應器。用於此等電池組的操作之方法及系統係亦適用於諸案例,其中該電池組不只是該系統中之電源供應器,且額外 的電力係藉由燃料電池、其他電池組、IC引擎或其他燃燒裝置、電容器、太陽能電池、其組合、與其他者所提供。此等電池組之設計係亦適用於諸案例,其中該電池組不是該系統中的唯一電源供應器,且額外之電力係藉由燃料電池、其他電池組、IC引擎或其他燃燒裝置、電容器、太陽能電池等所提供。只當作範例,本發明已使用有限元素分析法或其他合適的技術、多重物理量問題之數值分析方法被提供,其中局部或整個微分方程式被同時地解決。此外,當作一局部的清單,這些關係包括經由平衡或動態負載因素所獲得之機械性質及反應、經由熱傳方法所獲得的熱性質及溫度分佈、經由動力學關係及/或流體流動數值模擬所獲得之種類及其運送性質的電池電位及濃度。包括有限差分法、邊界元素分析法、無元素葛勒金法(EFG)、或光滑質點流體動力學(SPH)方法之方法亦可被使用。這些方法的一些、但並非全部採用網格、或經由寬廣範圍之方法論產生的表面及體積之表示法亦可被使用。多重物理量問題的解決方法中所產生之資料的後處理大致上使用掘挖及呈現資料之任何標準方法被敘述,但能當作一分開的步驟被完成。 The invention relates to the manufacture of a multilayer solid state battery pack device. More particularly, the present invention provides methods and systems for providing a design and use of the design for the fabrication of a three-dimensional element for a three-dimensional electrochemical cell. By way of example only, the invention has been provided for use with lithium-based solid state batteries, but it will be appreciated that other materials such as zinc, silver, magnesium, copper and nickel can be designed in the same or similar manner. In addition, these battery packs can be used in a variety of applications, such as portable electronic devices (mobile phones, personal digital assistants, radio players, music players, video cameras, and the like), tablets and laptops. Power supplies for military use (communication, lighting, imaging, satellite, and the like), power supplies for aerospace applications (aircraft, satellite, and micro-aircraft), for vehicle applications (hybrid electric Power supply for vehicles, plug-in hybrid electric vehicles, all-electric vehicles, electric scooters, water downloaders, boats, large ships, electric walking tractors, and electric motor vehicles on garden devices, for remote control devices Power supply for drones, unmanned aircraft, RC cars, power supplies for robots (mechanical toys, robotic vacuum cleaners, robotic tools, robotic building utilities), for power tools (Electric drill, electric lawn mower, electric vacuum cleaner, electric metal working grinder, electric heat gun, electric pressure expansion tool, electric saw and cutter, electric spray Power supply for appliances and polishers, electric shears and slicers, and grooving machines, power supplies for personal hygiene devices (electric toothbrushes, hand dryers and hair dryers), heaters, coolers, freezers , fans, humidifiers, for other applications (Global Positioning System (GPS) devices, laser range finder, flashlights, electrical street lighting, backup power supplies, uninterruptible power supply systems, and other portable and fixed Power supply for stationary electronic devices). The methods and systems for the operation of such battery packs are also applicable to the case where the battery pack is not only a power supply in the system, but The power is supplied by fuel cells, other battery packs, IC engines or other combustion devices, capacitors, solar cells, combinations thereof, and others. The design of these battery packs is also applicable to cases where the battery pack is not the only power supply in the system, and the additional power is through fuel cells, other battery packs, IC engines or other combustion devices, capacitors, Provided by solar cells, etc. By way of example only, the present invention has been provided using finite element analysis or other suitable techniques, numerical analysis methods for multiple physical quantity problems, in which local or entire differential equations are solved simultaneously. In addition, as a partial list, these relationships include mechanical properties and reactions obtained via equilibrium or dynamic loading factors, thermal properties and temperature profiles obtained via heat transfer methods, numerical simulation via dynamic relationships and/or fluid flow. The battery potential and concentration of the type obtained and its transport properties. Methods including finite difference method, boundary element analysis, elemental Golkin method (EFG), or smooth particle hydrodynamics (SPH) methods can also be used. Some, but not all, representations of the surface and volume produced by a grid, or via a wide range of methodologies, may also be used. The post-processing of the data generated in the solution to the multiple physical quantity problem is generally described using any standard method of excavation and presentation of data, but can be done as a separate step.
於特定之實施例中,電化學電池能基於本發明的製程被製成。本發明之一或更多實施例提供有系統的製程,以藉由選擇該等立體電化學電池之材料的特徵來製造立體電化學電池,以致其性能參數之一或多個將滿足該設計基準。該等材料特徵包含物理、電、熱、機械、光學、或化學的特徵。該等物理特徵包括質量密度、晶體結構、化學計量法、離子導電率、擴散率、及包括濕氣滲透率(MVTR)、水蒸氣滲透率(WVTR)、及氧氣透過率(OTR)之阻透性。該等機械特徵包括模數、硬度、熱膨脹係數、及濃度膨脹係數。該 等電特徵包括電子導電率、介電常數、薄片電阻、及接觸電阻。該等熱特徵包括導熱率、比熱、熔化溫度、蒸發溫度。該等光學特徵包括反射率。該等化學特徵包括反應常數、開路電位。該等電化學電池的固有特徵包括層厚度、層寬度、層長度、層間距、連接層之界面相互作用、每一層的形狀、缺陷尺寸、缺陷分佈、缺陷材料、層材料之型式。且電化學平衡或動態負載因素的選擇亦影響該等電池性能參數。該等性能參數包含壽命、安全性/物理/機械/化學/熱/離子濃度、電壓大小分佈、充電狀態、插層的程度、在各種放電率或放電大小分佈之下的可達成之電容量的程度、插層導致之應力、或體積改變。於又另一選擇的特定實施例中,本發明提供用於製造多層式固態電池組裝置之方法,該方法包含:產生每一層幾何形狀的空間資訊。該方法亦包括將包括每一層幾何形狀之空間資訊儲存進入資料庫結構。於特定實施例中,該方法包括由複數個材料選擇一或多個材料性質及於模擬程式中使用具有該空間資訊的一或多個材料性質。於特定實施例中,該方法亦包括由該模擬程式輸出一或多個性能參數。多層式固態電池組裝置包含由1編號至N之複數個固態電池組電池,該等固態電池組電池的每一個包含重疊該基材構件之第一集電器、重疊該第一集電器的陰極裝置、重疊該第一集電器之電解質裝置、重疊該電解質裝置的陽極裝置、及重疊該陽極裝置之第二集電器,該複數個固態電池組電池的每一個係可在充電狀態下操作。 In a particular embodiment, an electrochemical cell can be fabricated based on the process of the present invention. One or more embodiments of the present invention provide a systematic process for fabricating a stereoelectrochemical cell by selecting features of the materials of the stereoelectrochemical cells such that one or more of its performance parameters will satisfy the design basis . Such material features include physical, electrical, thermal, mechanical, optical, or chemical characteristics. Such physical characteristics include mass density, crystal structure, stoichiometry, ionic conductivity, diffusivity, and barrier to moisture including moisture permeability (MVTR), water vapor permeability (WVTR), and oxygen transmission rate (OTR). Sex. These mechanical features include modulus, hardness, coefficient of thermal expansion, and concentration expansion coefficient. The Isoelectric characteristics include electronic conductivity, dielectric constant, sheet resistance, and contact resistance. These thermal characteristics include thermal conductivity, specific heat, melting temperature, and evaporation temperature. These optical features include reflectivity. These chemical characteristics include reaction constants, open circuit potentials. Intrinsic features of such electrochemical cells include layer thickness, layer width, layer length, layer spacing, interfacial interaction of the tie layers, shape of each layer, defect size, defect distribution, defect material, layer material type. The choice of electrochemical equilibrium or dynamic load factors also affects these battery performance parameters. These performance parameters include lifetime, safety/physical/mechanical/chemical/thermal/ion concentration, voltage size distribution, state of charge, degree of intercalation, achievable capacitance under various discharge rates or discharge size distributions. Degree, stress caused by intercalation, or volume change. In yet another alternative embodiment, the present invention provides a method for fabricating a multi-layer solid state battery pack apparatus, the method comprising: generating spatial information for each layer of geometry. The method also includes storing spatial information including the geometry of each layer into the database structure. In a particular embodiment, the method includes selecting one or more material properties from the plurality of materials and using one or more material properties having the spatial information in the simulation program. In a particular embodiment, the method also includes outputting one or more performance parameters by the simulation program. The multi-layer solid-state battery device includes a plurality of solid-state battery cells numbered from 1 to N, each of the solid-state battery cells including a first current collector overlapping the substrate member, and a cathode device overlapping the first current collector And an electrolyte device overlapping the first current collector, an anode device overlapping the electrolyte device, and a second current collector overlapping the anode device, each of the plurality of solid state battery cells being operable in a charged state.
又再者,本發明提供用於處理有關多層式固態電池組裝置之資訊的電腦輔助系統,該系統包括:一或多個電腦可讀記憶體,該一或多個電腦可讀記憶體包含:一或多個電腦碼,用於輸出 對照用於所選擇的材料組之一或多個第二特徵所參考的一或多個第一特徵間之電腦產生的關係,該第二特徵用於立體電化學電池中之立體空間元件的設計。一或多個碼係針對選擇用於所選擇之材料組的第一特徵或第二特徵之一或多個。一或多個碼係針對處理該一或多個所選擇的第一或第二特徵,以決定該一或多個第一或第二特徵是否在一或多個預定性能參數內。一或多個碼係針對執行用於處理該一或多個第一特徵或第二特徵之程式,以提供該立體電化學電池。 Still further, the present invention provides a computer-aided system for processing information about a multi-layer solid state battery pack apparatus, the system comprising: one or more computer readable memories, the one or more computer readable memories comprising: One or more computer codes for output Comparing a computer generated relationship between one or more first features referenced by one or more second features of the selected set of materials for use in the design of a stereoscopic spatial component in a stereoelectrochemical cell . One or more code systems are for one or more of the first feature or the second feature selected for the selected set of materials. One or more code systems are for processing the one or more selected first or second features to determine whether the one or more first or second features are within one or more predetermined performance parameters. One or more code systems are directed to executing a program for processing the one or more first features or second features to provide the stereoscopic electrochemical cell.
勝過傳統技術之利益被達成。於一或多個實施例中,本方法及系統採取非傳統的方式,以設計用於所選擇之電池組架構的電化學或其他材料之使用,其傳統上係用於一設計過程的終點及不是起點。於特定實施例中,本方法及系統設計一架構,且接著決定電化學及其他參數。據此,我們已能夠系統地生產具成本效益之設計及製造製程,以滿足性能目標、諸如性能、可靠性、安全性、生命周期、回收及再使用、成本、及其他因素。根據本發明,用於所選擇之設計架構,傳統電腦軟體及硬體能被使用於選擇一或多個電化學(陽極/陰極與電解質)的電腦輔助設計。 The benefits of winning over traditional technology are achieved. In one or more embodiments, the method and system take a non-traditional approach to designing the use of electrochemical or other materials for a selected battery stack architecture, which is traditionally used at the end of a design process and Not a starting point. In a particular embodiment, the method and system design an architecture and then determine electrochemical and other parameters. Accordingly, we have been able to systematically produce cost-effective design and manufacturing processes to meet performance objectives such as performance, reliability, safety, life cycle, recycling and reuse, cost, and other factors. In accordance with the present invention, conventional computer software and hardware can be used to select one or more electrochemical (anode/cathode and electrolyte) computer-aided designs for the selected design architecture.
於較佳實施例中,本方法及系統能模擬設計及處理、諸如在三度空間中之包裝,並使用電腦輔助硬體及分析技術、諸如具有不規則幾何形狀之物體的網格產生,而設有32個十億位元組及較大之記憶體大小、及3千兆赫及較大的處理速率。如此,除了別的以外,不規則形物體包括正弦曲線狀及橢圓體。其他利益包括其於理性設計及多數個材料之組合中所給予的能力,以於想要之配置中生產電化學電池。這些設計依序對所設計的電池組給予優越之性質,並消除原型電池的結構中之昂貴的反復試驗。視該特定實施例 而定,這些利益之一或多個可被達成。 In a preferred embodiment, the method and system can simulate design and processing, such as packaging in a three-dimensional space, and use computer-aided hardware and analysis techniques, such as mesh generation of objects having irregular geometries, while It has 32 gigabytes and a large memory size, and 3 GHz and a large processing rate. Thus, the irregular shaped object includes, among other things, a sinusoidal shape and an ellipsoidal shape. Other benefits include its ability to be rationally designed and combined with a combination of materials to produce an electrochemical cell in the desired configuration. These designs sequentially give superior performance to the designed battery pack and eliminate costly trial and error in the structure of the prototype battery. Depending on the particular embodiment However, one or more of these benefits can be achieved.
就習知製程技術的情況而言,本發明達成這些利益及其他者。然而,本發明之本質及優點的進一步理解可藉由參考該說明書與附圖之後面部份而被實現。 In the case of conventional process technology, the present invention achieves these benefits and others. However, a further understanding of the nature and advantages of the present invention can be realized by referring
1‧‧‧電腦 1‧‧‧ computer
2‧‧‧鍵盤 2‧‧‧ keyboard
3‧‧‧滑鼠 3‧‧‧ Mouse
4‧‧‧顯示裝置 4‧‧‧ display device
5‧‧‧儲存裝置 5‧‧‧Storage device
6‧‧‧電橋單元 6‧‧‧Bridge unit
7‧‧‧記憶體單元 7‧‧‧ memory unit
8‧‧‧裝置 8‧‧‧ device
12‧‧‧工具 12‧‧‧ Tools
13‧‧‧固有性質 13‧‧‧ inherent properties
14‧‧‧材料性質 14‧‧‧Material properties
15‧‧‧邏輯 15‧‧‧Logic
16‧‧‧資料庫結構 16‧‧‧Database structure
17‧‧‧電化學負載 17‧‧‧Electrostatic load
18‧‧‧製造參數 18‧‧‧ Manufacturing parameters
19‧‧‧材料性質 19‧‧‧Material properties
20‧‧‧控制方程式 20‧‧‧Control equation
21‧‧‧邊界方程式 21‧‧‧Boundary equation
22‧‧‧網格演算法 22‧‧‧Grid algorithm
23‧‧‧解算器演算法 23‧‧‧Solver Algorithm
24‧‧‧後處理演算法 24‧‧‧ Post-Processing Algorithm
25‧‧‧模擬程式 25‧‧‧simulation program
26‧‧‧幾何形狀資訊 26‧‧‧Geometry information
27‧‧‧電化學負載 27‧‧‧Electrostatic load
33‧‧‧陽極集電器 33‧‧‧Anode collector
34‧‧‧陽極 34‧‧‧Anode
35‧‧‧電解質 35‧‧‧ Electrolytes
36‧‧‧陰極 36‧‧‧ cathode
37‧‧‧陰極集電器 37‧‧‧Cathode current collector
38‧‧‧陽極集電器 38‧‧‧Anode collector
39‧‧‧電解質 39‧‧‧ Electrolytes
40‧‧‧陽極 40‧‧‧Anode
41‧‧‧陰極 41‧‧‧ cathode
42‧‧‧陰極集電器 42‧‧‧Cathode Collector
43‧‧‧陽極集電器 43‧‧‧Anode collector
44‧‧‧電解質 44‧‧‧ Electrolytes
45‧‧‧陽極 45‧‧‧Anode
46‧‧‧陰極 46‧‧‧ cathode
47‧‧‧陰極集電器 47‧‧‧Cathode Collector
1701‧‧‧心軸 1701‧‧‧ mandrel
1703‧‧‧電池組電池 1703‧‧‧Battery battery
1704‧‧‧滾筒 1704‧‧‧Roller
1705‧‧‧滾筒 1705‧‧‧Roller
1706‧‧‧滾筒 1706‧‧‧Roller
1801‧‧‧鼓輪 1801‧‧‧Drums
1802‧‧‧電池組電池 1802‧‧‧Battery battery
1803‧‧‧心軸 1803‧‧‧ mandrel
1804‧‧‧滾筒 1804‧‧‧Roller
1805‧‧‧滾筒 1805‧‧‧Roller
1806‧‧‧滾筒 1806‧‧‧Roller
2201‧‧‧鼓風機 2201‧‧‧Blowers
2202‧‧‧外殼 2202‧‧‧ Shell
2204‧‧‧風扇頭 2204‧‧‧Fan head
2205‧‧‧堆疊電池組 2205‧‧‧Stacked battery pack
以下圖面只是範例,其在此中將不過度地限制該等申請專利的範圍。普通熟習該技術領域者將認知許多其他變動、修改、及另外選擇。其亦被了解在此中所敘述之範例及實施例係只用於說明的目的,且按照其各種修改或變化將對熟諳此技術領域者作建議且將被包括在該此製程之精神與權限及所附申請專利的範圍內。 The following figures are only examples, which are not intended to unduly limit the scope of such patents. Those skilled in the art will recognize many other variations, modifications, and alternatives. It is also to be understood that the examples and embodiments described herein are for illustrative purposes only, and that various modifications and changes will be made to those skilled in the art and will be included in the spirit and scope of the process. And within the scope of the attached patent application.
圖1係用於設計根據本發明之實施例的立體電化學電池之電腦輔助系統的簡化圖;圖2係用於設計根據本發明之實施例的立體電化學電池之電腦輔助系統用的電腦模組之簡化圖;圖3係根據本發明之實施例的立體處理模組之簡化圖;圖4係用於設計根據本發明之實施例的電化學電池之方法的簡化流程圖;圖5A係用於修改根據本發明之一或更多實施例的現存電化學電池設計之方法的簡化流程圖;圖5B係用於修改根據本發明之一或更多實施例的現存電化學電池製造參數之方法的簡化流程圖;圖6A說明具有根據本發明之實施例的薄膜設計的陰 極;圖6B說明具有根據本發明之實施例的柱狀設計的陰極;圖6C說明具有根據本發明之實施例的正弦曲線狀設計的陰極;圖7A說明根據本發明之實施例的電腦輔助設計製程之界面;圖7B說明根據本發明之實施例的電化學電池幾何形狀;圖7C說明根據本發明之實施例的電化學電池之網格;圖7D說明在根據本發明之實施例的電化學電池之11548秒的時刻之鋰濃度的輪廓;圖8係藉由捲繞根據本揭示內容之範例的多數個堆疊固態電池組之概要說明圖;圖9係在根據本揭示內容之範例的捲繞之後藉由切割來製造多數個堆疊固態電池組的程序之概要說明圖;圖10係藉由Z字形折疊根據本揭示內容之範例的多數個堆疊固態電池組之概要說明圖;圖11係在根據本揭示內容之範例的Z字形折疊之後藉由切割來製造多數個堆疊固態電池組的程序之概要說明圖;圖12係藉由切割及堆疊來製造根據本揭示內容之範例的多數個堆疊固態電池組之程序的概要說明圖;圖13係根據本揭示內容之範例藉由連續沈積製程的堆疊固態電池組之概要說明圖; 圖14係等值線圖表之簡化說明圖,顯示當在C/10以不同的低及高截止電壓放電時,根據本揭示內容之範例的電池組設計之放電體積能量密度(以Wh/l為單位);圖15係等值線圖表之簡化說明圖,以不同的低及高截止電壓顯示用於高功率應用所設計的根據本揭示內容之範例的電池之操作時間(以分(min)為單位);圖16係等值線圖表之簡化說明圖,以不同的低及高截止電壓顯示用於高功率應用所設計的根據本揭示內容之範例的電池之操作時間(以分(min)為單位),具有藉由調整處理條件而改良的材料性質;圖17係等值線圖表之簡化說明圖,以不同的低及高截止電壓顯示用於穿戴式裝置應用所設計之根據本揭示內容的範例之電池的放電體積能量密度(以Wh/l為單位);圖18係等值線圖表之簡化說明圖,以不同的低及高截止電壓顯示用於穿戴式裝置應用所設計之根據本揭示內容的範例之電池的放電體積能量密度(以Wh/l為單位),具有藉由調整處理條件而改良的材料性質;圖19係陰極擴散率之說明圖,作為藉由來自陰極集電器(CC)及陰極(CA)界面的陰極厚度之正規化距離的函數;圖20係隨著週期於陰極中所捕獲之鋰的模擬結果之說明圖;圖21係根據本揭示內容之範例的功能梯度材料之概要表示圖;圖22A係擴散率之表示圖,作為根據本揭示內容之範 例的功能梯度材料中之CC/CA界面距離的函數;圖22B顯示在不同放電率的陰極中之鋰離子濃度分佈圖;圖23係開路電位隨著時間之有效電解質電子導電率的說明圖;圖24係於沈積期間當捲繞時在任意形狀的心軸上之根據本揭示內容的範例之多數個堆疊式固態電池組電池的製造之概要表示圖;圖25係捲繞來自沈積鼓輪而在任意形狀的心軸上之根據本揭示內容的範例之多數個堆疊式固態電池組電池的概要表示圖;圖26A係被整合成手提式風扇之環形機架的多數個堆疊式固態電池組之概要表示圖;圖26B係根據本揭示內容之範例的多數個堆疊式固態電池組電池之任意組構的簡化說明圖之清單。 1 is a simplified diagram of a computer-aided system for designing a stereoelectrochemical cell according to an embodiment of the present invention; and FIG. 2 is a computer model for designing a computer-aided system for a stereoelectrochemical cell according to an embodiment of the present invention. Figure 3 is a simplified diagram of a stereo processing module in accordance with an embodiment of the present invention; Figure 4 is a simplified flow diagram of a method for designing an electrochemical cell in accordance with an embodiment of the present invention; Figure 5A is used A simplified flow diagram of a method of modifying an existing electrochemical cell design in accordance with one or more embodiments of the present invention; FIG. 5B is a method for modifying existing electrochemical cell fabrication parameters in accordance with one or more embodiments of the present invention Simplified flow chart; Figure 6A illustrates a negative design with a thin film design in accordance with an embodiment of the present invention Figure 6B illustrates a cathode having a cylindrical design in accordance with an embodiment of the present invention; Figure 6C illustrates a cathode having a sinusoidal design in accordance with an embodiment of the present invention; and Figure 7A illustrates a computer-aided design in accordance with an embodiment of the present invention Figure 7B illustrates an electrochemical cell geometry in accordance with an embodiment of the present invention; Figure 7C illustrates a grid of electrochemical cells in accordance with an embodiment of the present invention; Figure 7D illustrates an electrochemical process in accordance with an embodiment of the present invention Outline of Lithium Concentration at 11548 Seconds of Battery; FIG. 8 is a schematic illustration of a plurality of stacked solid state battery packs according to an example of the present disclosure; FIG. 9 is a winding in accordance with an example of the present disclosure A schematic diagram of a process for manufacturing a plurality of stacked solid-state battery packs by cutting; FIG. 10 is a schematic illustration of a plurality of stacked solid-state battery packs according to an example of the present disclosure by zigzag folding; FIG. 11 is based on A schematic illustration of a procedure for fabricating a plurality of stacked solid state battery packs by dicing after zigzag folding of an example of the present disclosure; FIG. 12 is by cutting and stacking The schematic explanatory view of manufacturing a plurality of stacked procedure of the example of the solid-state battery of the present disclosure; FIG. 13 by a schematic line stacked continuous solid state battery packs deposition process according to an exemplary explanatory view of the present disclosure; Figure 14 is a simplified illustration of a contour plot showing discharge volume energy density (in Wh/l for a battery pack design according to an example of the present disclosure) when C/10 is discharged at different low and high cutoff voltages Figure 15 is a simplified illustration of a contour plot showing the operating time of the battery according to an example of the present disclosure designed for high power applications with different low and high cutoff voltages (in minutes (min) Figure 16 is a simplified illustration of a contour plot showing the operating time of the battery according to an example of the present disclosure designed for high power applications with different low and high cutoff voltages (in minutes (min) Unit) having improved material properties by adjusting processing conditions; Figure 17 is a simplified illustration of a contour plot showing different low and high cutoff voltages for use in a wearable device application in accordance with the present disclosure Example discharge cell energy density (in Wh/l); Figure 18 is a simplified illustration of a contour plot showing different low and high cutoff voltages for use in a wearable device application. content The discharge volume energy density (in Wh/l) of the battery of the example has improved material properties by adjusting the processing conditions; FIG. 19 is an explanatory diagram of the cathode diffusivity as a result from the cathode current collector (CC) And a normalized distance of the cathode thickness of the cathode (CA) interface; FIG. 20 is an explanatory diagram of a simulation result of lithium captured in a cathode; FIG. 21 is a functionally graded material according to an example of the present disclosure. FIG. 22A is a representation of a diffusivity as a model according to the present disclosure. Figure 25B shows the lithium ion concentration profile in the cathode of different discharge rates; Figure 23 is an explanatory diagram of the effective electrolyte electron conductivity over time; Figure 24 is a schematic representation of the manufacture of a plurality of stacked solid state battery cells according to an example of the present disclosure on a mandrel of any shape when wound up during deposition; Figure 25 is a winding from a deposition drum A schematic representation of a plurality of stacked solid state battery cells according to an example of the present disclosure on an arbitrary shaped mandrel; FIG. 26A is a plurality of stacked solid state battery packs integrated into a ring frame of a portable fan BRIEF DESCRIPTION OF THE DRAWINGS Figure 26B is a listing of a simplified illustration of any of a number of stacked solid state battery cells in accordance with an example of the present disclosure.
根據本發明,有關製造電化學電池的技術被提供。更特別地是,本發明提供一方法及系統,用於提供一設計及使用該設計來製造立體電化學電池用之立體元件。只當作範例,本發明已被設有基於鋰的電池之使用,但其將被認知其他材料、諸如鋅、銀、鎂、銅及鎳可被以相同或相像的方式來設計。 In accordance with the present invention, techniques for fabricating electrochemical cells are provided. More particularly, the present invention provides a method and system for providing a design and use of the design to fabricate a three-dimensional element for a three-dimensional electrochemical cell. By way of example only, the present invention has been provided with the use of lithium-based batteries, but it will be appreciated that other materials, such as zinc, silver, magnesium, copper, and nickel, can be designed in the same or similar manner.
另外,此等電池組能被使用於各種應用、諸如手提式電子設備(行動電話、個人數位助理器、無線電播放器、音樂播放器、 視訊相機、與類似者等)、平板及膝上型電腦、用於軍事使用(通訊、照明、成像、衛星、與類似者等)的電源供應器、用於航空應用(飛機、衛星、及微型飛行器)之電源供應器、用於車輛應用(混合動力電動車、插電式混合動力電動車、全電動車、電動踏板車、水下載具、小船、大船、電動手扶拖拉機、及庭園裝置上之電動機車)的電源供應器、用於遙控裝置(無人靶機、無人飛機、RC汽車)之電源供應器、用於機械人器具(機械人玩具、機械人真空吸塵器、機械人園用工具、機械人建築公用設施)的電源供應器、用於電動工具(電鑽、電動割草機、電動真空吸塵器、電動金屬工作磨床、電熱槍、電動下壓擴展工具、電鋸及切斷器、電動噴砂器及拋光機、電動剪切機及切片機、和起槽機)之電源供應器、用於個人衛生裝置(電動牙刷、烘手機及電吹風機)的電源供應器、加熱器、冷卻器、冷凍器、風扇、增濕器、用於其他應用(全球定位系統(GPS)裝置、雷射測距器、閃光燈、電氣街照明、備用電源供應器、不斷電供應系統、及其他手提式及固定不動的電子裝置)之電源供應器。用於此等電池組的操作之方法及系統係亦適用於諸案例,其中該電池組不只是該系統中之電源供應器,且額外的電力係藉由燃料電池、其他電池組、IC引擎或其他燃燒裝置、電容器、太陽能電池、其組合、與其他者所提供。 In addition, these battery packs can be used in a variety of applications, such as portable electronic devices (mobile phones, personal digital assistants, radio players, music players, Video cameras, similar, etc.), tablets and laptops, power supplies for military use (communication, lighting, imaging, satellite, and the like), for aerospace applications (aircraft, satellite, and mini Power supply for aircraft), for vehicle applications (hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, electric scooters, water downloaders, boats, large ships, electric walking tractors, and garden devices) Power supply for electric motor vehicles, power supply for remote control devices (unmanned drones, unmanned aircraft, RC cars), for robots (mechanical toys, robot vacuum cleaners, tools for robots, Power supply for robotic building utilities, for power tools (electric drills, electric lawn mowers, electric vacuum cleaners, electric metal working grinders, electric heat guns, electric pressure expansion tools, chainsaws and cutters, electric sandblasting) Power supply for appliances and polishers, electric shears and slicers, and grooving machines, power supply for personal hygiene devices (electric toothbrushes, hand dryers and hair dryers) , heaters, coolers, chillers, fans, humidifiers, for other applications (Global Positioning System (GPS) devices, laser range finder, flashlights, electrical street lighting, backup power supplies, uninterrupted power Power supply for supply systems, and other portable and stationary electronic devices. Methods and systems for the operation of such battery packs are also applicable to the case where the battery pack is not only a power supply in the system, but additional power is supplied by a fuel cell, other battery pack, IC engine or Other combustion devices, capacitors, solar cells, combinations thereof, and others.
只當作範例,本發明已使用多重物理量問題之數值分析方法被提供,其中局部或整個微分方程被同時地解決。這些關係包括材料特徵、固有特徵、電化學平衡或動態負載因素、及性能參數。該等材料特徵包含物理、電、熱、機械、光學、或化學特徵。該等物理特徵包括質量密度、晶體結構、化學計量法、離子導電率、擴散率、及包括濕氣滲透率(MVTR)、水蒸氣滲透率(WVTR)、及氧 氣透過率(OTR)之阻透性。該等機械特徵包括模數、硬度、熱膨脹係數、及濃度膨脹係數。該等電特徵包括電子導電率、介電常數、薄片電阻、及接觸電阻。該等熱特徵包括導熱率、比熱、熔化溫度、蒸發溫度。該等光學特徵包括反射率。該等化學特徵包括反應常數、開路電位。該等電化學電池的固有特徵包括層厚度、層寬度、層長度、層間距、連接層之界面相互作用、每一層的形狀、缺陷尺寸、缺陷分佈、缺陷材料、層材料之型式。每一層的形狀包含平坦的、週期性圖案化、或不規則形狀、或這些之組合,且每一層的形狀係與其他層無關。且立體電化學電池之諸層係選自均質材料、非均質材料或梯度材料、或這些材料的任何組合。且該等梯度材料包含成份及材料結構隨著該層之體積的變動。且材料結構包含晶體結構、或非晶質結構、或這些之任何組合。該等性能參數包含壽命、安全性/物理/機械/化學/熱/離子濃度、電壓大小分佈、充電狀態、插層的程度、在各種放電率或放電大小分佈之下的可達成之電容量的程度、插層導致之應力、或體積改變。該數值方法係選自有限元素法、有限元素法(FEM)、有限差分法(FDM)、邊界元素分析法、無元素葛勒金法(EFG)、或光滑質點流體動力學(SPH)方法,且該數值方法採用網格或表面及體積之表示法。一些但並非所有這些方法採用網格,或經由寬廣範圍之方法論產生的表面及體積之表示法亦可被使用。多重物理量問題的解決方法中所產生之資料的後處理大致上使用掘挖及呈現資料之任何標準方法被敘述,但能當作一分開的步驟被完成。此等電池組的設計係亦適用於諸案例,其中該電池組不是該系統中之唯一電源供應器,且額外的電力係藉由燃料電池、其他電池組、IC引擎或其他燃燒裝置、電容器、太陽能電池等所提 供。 As an example only, the present invention has been provided using a numerical analysis method of multiple physical quantity problems in which local or entire differential equations are simultaneously solved. These relationships include material characteristics, inherent characteristics, electrochemical equilibrium or dynamic load factors, and performance parameters. These material features include physical, electrical, thermal, mechanical, optical, or chemical characteristics. Such physical characteristics include mass density, crystal structure, stoichiometry, ionic conductivity, diffusivity, and moisture vapor permeability (MVTR), water vapor permeability (WVTR), and oxygen. Gas barrier (OTR) barrier. These mechanical features include modulus, hardness, coefficient of thermal expansion, and concentration expansion coefficient. The electrical characteristics include electronic conductivity, dielectric constant, sheet resistance, and contact resistance. These thermal characteristics include thermal conductivity, specific heat, melting temperature, and evaporation temperature. These optical features include reflectivity. These chemical characteristics include reaction constants, open circuit potentials. Intrinsic features of such electrochemical cells include layer thickness, layer width, layer length, layer spacing, interfacial interaction of the tie layers, shape of each layer, defect size, defect distribution, defect material, layer material type. The shape of each layer comprises a flat, periodically patterned, or irregular shape, or a combination of these, and the shape of each layer is independent of the other layers. And the layers of the stereoelectrochemical cell are selected from the group consisting of homogeneous materials, heterogeneous materials or gradient materials, or any combination of these materials. And the gradient materials comprise components and material structures that vary with the volume of the layer. And the material structure comprises a crystal structure, or an amorphous structure, or any combination of these. These performance parameters include lifetime, safety/physical/mechanical/chemical/thermal/ion concentration, voltage size distribution, state of charge, degree of intercalation, achievable capacitance under various discharge rates or discharge size distributions. Degree, stress caused by intercalation, or volume change. The numerical method is selected from the group consisting of a finite element method, a finite element method (FEM), a finite difference method (FDM), a boundary element analysis method, an element-free Geely gold method (EFG), or a smooth particle fluid dynamics (SPH) method. And the numerical method uses a grid or surface and volume representation. Some, but not all, of these methods may be used with grids or representations of surface and volume produced by a wide range of methodologies. The post-processing of the data generated in the solution to the multiple physical quantity problem is generally described using any standard method of excavation and presentation of data, but can be done as a separate step. The design of these battery packs is also applicable to cases where the battery pack is not the only power supply in the system, and the additional power is through fuel cells, other battery packs, IC engines or other combustion devices, capacitors, Solar battery, etc. for.
圖1說明用於電化學電池之電腦輔助設計的電腦系統,其中電腦1回應於來自鍵盤2及/或其他數位化輸入裝置、諸如光筆、或滑鼠3之輸入,並將該立體電化學電池的設計顯示在該圖解顯示裝置4上。此示意圖僅只係一說明圖,且將不會不適當地限制在此中之申請專利的範圍。普通熟習該技術領域者將認知很多變動、修改、及另外選擇。市售、或內部開發之模擬程式及資料庫被儲存於該電子儲存裝置5中,其可為磁片或另一型式的數位化資料儲存裝置。如遍及本說明書所敘述,資料庫被提供及使用,以收集電化學電池資訊及將該電化學電池資訊耦接至立體模擬程式。於電腦繪圖輔助設計中,形態資訊被顯示在該圖解顯示裝置4上。當作一簡單之範例,該立體電化學電池被顯示,其中陽極、陰極、電解質、及二集極被顯示。典型地,以整體而言,模擬程式由該儲存裝置5、經過該電橋單元6被載入該記憶體單元7。然後,該立體電化學電池之數位化繪製係由該資料儲存裝置5、或輸入設備2及3載入。資料包括幾何形狀的資訊及材料性質。於特定實施例中,該方法獲得一電池組,且逆向引導之,以決定該資訊、諸如材料、組構、幾何形狀、及任何與所有其他可測量的參數。另一選擇係,本方法根據特定實施例選擇一或多個材料及決定其性質,包括非固有及固有性質。多數個程式被由該大量儲存裝置5加至該基本結構,且接著使用裝置8被處理。這些被加入之程式包括網格演算法、解算器演算法、後處理演算法、與類似者等。該後處理資料接著被送回至該資料庫結構,導致資料庫中的改變。最後,該整個資料結構及模擬程式被連成一個整體、及儲存於該資料儲存裝置5中。被儲存於該資料儲存裝置5中 之資料庫包括材料特徵、固有特徵、電化學平衡或動態負載因素、及性能參數。用於薄膜沈積的製造參數亦被儲存於該儲存裝置中,故吾人能在製造參數及材料特徵、固有特徵、電化學平衡或動態負載因素、及性能參數之中建立該等關係。 1 illustrates a computer system for computer-aided design of an electrochemical cell, wherein the computer 1 responds to input from a keyboard 2 and/or other digital input device, such as a light pen, or mouse 3, and the stereoscopic electrochemical cell The design is shown on the graphical display device 4. This illustration is for illustrative purposes only and will not unduly limit the scope of the patent application herein. Those skilled in the art will recognize many variations, modifications, and alternatives. A commercially available, or internally developed, simulation program and database is stored in the electronic storage device 5, which may be a magnetic disk or another type of digital data storage device. As described throughout this specification, a database is provided and used to collect electrochemical battery information and to couple the electrochemical battery information to a stereo simulation program. In the computer graphics assisted design, form information is displayed on the graphic display device 4. As a simple example, the stereoelectrochemical cell is shown with the anode, cathode, electrolyte, and two collectors shown. Typically, the simulation program is loaded into the memory unit 7 by the storage device 5, via the bridge unit 6, as a whole. The digitized rendering of the stereoelectrochemical cell is then loaded by the data storage device 5, or input devices 2 and 3. The information includes information on the geometry and the nature of the material. In a particular embodiment, the method obtains a battery pack and is reversed to determine the information, such as material, fabric, geometry, and any and all other measurable parameters. Alternatively, the method selects one or more materials and determines their properties, including extrinsic and intrinsic properties, in accordance with a particular embodiment. A majority of the programs are added to the basic structure by the mass storage device 5 and then processed using the device 8. These added programs include grid algorithms, solver algorithms, post-processing algorithms, and the like. The post-processing data is then sent back to the database structure, resulting in changes in the database. Finally, the entire data structure and simulation program are integrated into one and stored in the data storage device 5. Stored in the data storage device 5 The database includes material characteristics, inherent characteristics, electrochemical equilibrium or dynamic load factors, and performance parameters. Manufacturing parameters for film deposition are also stored in the storage device, so we can establish these relationships among manufacturing parameters and material characteristics, inherent characteristics, electrochemical equilibrium or dynamic load factors, and performance parameters.
圖2描述本發明關於立體電化學電池的電腦輔助設計之工具12,其中用於產生該幾何形狀布局、該邏輯、及解決所需方程式的所有該等程式被整合。此示意圖僅只係一說明圖,且將不會不適當地限制在此中之申請專利的範圍。普通熟習該技術領域者將認知很多變動、修改、及另外選擇。該固有性質13包括層厚度、層寬度、層長度、層間距、連接層之界面相互作用、每一層的形狀、缺陷尺寸、缺陷分佈、缺陷材料、層材料之型式。該等材料性質14包括物理、電、熱、機械、光學、或化學特徵,且它們被輸入當作該資料庫結構的一部份。該等材料性質、M(xi,yi,zi)被包括在該資料庫結構中。M係該材料性質指數,且i係該層指數。該等材料性質包括均質材料、非均質材料或梯度材料、或這些之任何組合。且該等梯度材料包含成份及材料結構中隨著該層之體積的變動。於一範例中,功能梯度性質亦可包括導電率σ(x,y,z)、介電常數ε(x,y,z)、質量密度ρ(x,y,z)、模數E(x,y,z)、導熱率κ(x,y,z)、熱膨脹係數α(x,y,z)、比熱容Xπ(x,y,z)、濃度膨脹αχ(x,y,z)、反應常數κ0(x,y,z)、及電位能E(x,y,z)。該邏輯15作為該材料之行為的依據。該電化學負載17作為包括電池電荷、放電電流、電壓、及時間分佈圖之電化學平衡或動態負載因素的依據。該等製造參數18作為該等製造製程參數之依據,以製成多層式固態電池組裝置。然後,該立體電化學電池的操作係基於藉由該電腦輔助設計工具所收集之資訊被模擬,且被輸出 至該資料庫結構16。 2 depicts a computer-aided design tool 12 of the present invention for a stereoelectrochemical cell in which all of the programs for generating the geometric layout, the logic, and solving the required equations are integrated. This illustration is for illustrative purposes only and will not unduly limit the scope of the patent application herein. Those skilled in the art will recognize many variations, modifications, and alternatives. The intrinsic properties 13 include layer thickness, layer width, layer length, layer spacing, interfacial interaction of the tie layers, shape of each layer, defect size, defect distribution, defect material, and pattern of layer material. These material properties 14 include physical, electrical, thermal, mechanical, optical, or chemical features and they are input as part of the database structure. The material properties, M(x i , y i , z i ) are included in the database structure. M is the material property index, and i is the layer index. Such material properties include homogeneous materials, heterogeneous materials or gradient materials, or any combination of these. And the gradient materials comprise variations in composition and material structure with the volume of the layer. In an example, the functional gradient properties may also include conductivity σ(x, y, z), dielectric constant ε(x, y, z), mass density ρ(x, y, z), modulus E (x) , y, z), thermal conductivity κ (x, y, z), thermal expansion coefficient α (x, y, z), specific heat capacity Xπ (x, y, z), concentration expansion α χ (x, y, z), reaction The constant κ0 (x, y, z), and the potential energy E (x, y, z). This logic 15 serves as the basis for the behavior of the material. The electrochemical load 17 serves as a basis for electrochemical equilibrium or dynamic loading factors including battery charge, discharge current, voltage, and time profile. These manufacturing parameters 18 are used as a basis for such manufacturing process parameters to form a multi-layer solid state battery pack device. The operation of the stereoelectrochemical cell is then simulated based on information collected by the computer aided design tool and output to the library structure 16.
圖3說明被用作本發明的引擎之模擬程式25。此示意圖僅只係一說明圖,且將不會不適當地限制在此中之申請專利的範圍。普通熟習該技術領域者將認知很多變動、修改、及另外選擇。該程式將該輸入資料、該邏輯、及網格演算法、解決演算法、及該後處理演算法整合在一起。此模擬程式可在商業上被獲得或內部地建立。該輸入資料包括該幾何形狀資訊26及該等材料性質19。該控制方程式20及邊界方程式21係基於該等材料行為的下列邏輯被選擇。該網格演算法22選擇該控制及邊界方程式之順序,且提供至該真實的材料行為之近似的程度。該解算器演算法23提供該等最終結果之效率及準確性。該後處理演算法24提供顯示該計算結果、及按照圖解、圖表、或表格的型式顯示結果。該電化學負載27作為包括電池電荷、放電電流、電壓、及時間分佈圖之電化學平衡或動態負載因素的依據。於本發明之特定應用中,用於製造新的電化學電池之有系統的製程係可能被製成,如在圖4中所描述。 Figure 3 illustrates a simulation program 25 that is used as the engine of the present invention. This illustration is for illustrative purposes only and will not unduly limit the scope of the patent application herein. Those skilled in the art will recognize many variations, modifications, and alternatives. The program integrates the input data, the logic, and the grid algorithm, the solution algorithm, and the post-processing algorithm. This simulation program can be obtained commercially or internally. The input data includes the geometry information 26 and the material properties 19 of the material. The governing equation 20 and the boundary equation 21 are selected based on the following logic of the behavior of the materials. The grid algorithm 22 selects the order of the control and boundary equations and provides an approximation to the actual material behavior. The solver algorithm 23 provides the efficiency and accuracy of such final results. The post-processing algorithm 24 provides a display of the results of the calculations and displays the results in a graphical, graphical, or tabular format. The electrochemical load 27 serves as a basis for electrochemical equilibrium or dynamic loading factors including battery charge, discharge current, voltage, and time profile. In a particular application of the invention, a systematic process for making a new electrochemical cell may be made, as described in FIG.
(1)該設計家產生多層式固態電池組之需要的幾何形狀資訊。在本發明中,該電極形態不被限制於薄膜形狀,而且包括任何立體幾何形狀或包括平坦、佈圖、或不規則形狀之立體幾何形狀的組合。該設計家亦選擇電化學負載。 (1) The designer produces the required geometry information for a multi-layer solid state battery pack. In the present invention, the electrode morphology is not limited to the film shape, but includes any combination of solid geometry or solid geometry including flat, patterned, or irregular shapes. The designer also chose an electrochemical load.
(2)該資料庫然後被載入該有限元素法模擬程式。 (2) The database is then loaded into the finite element method simulation program.
(3)該設計家將該材料性質輸入該資料庫結構。 (3) The designer enters the material properties into the database structure.
(4)該設計家選擇該等適當之控制方程式及邊界方程式,以解譯所涉及的材料之行為、諸如該陽極、陰極、電解質、電解液、障壁、及集電器。 (4) The designer selects the appropriate governing equations and boundary equations to interpret the behavior of the materials involved, such as the anode, cathode, electrolyte, electrolyte, barrier, and current collector.
(5)該有限元素法模擬程式收集關於該幾何形狀及材料資訊、控制及邊界方程式及解算器演算法的結構資料庫,以獲得該等操作性能參數。 (5) The finite element method simulation program collects a structural database of the geometry and material information, control and boundary equations and solver algorithms to obtain such operational performance parameters.
(6)該設計家接著比較該等模擬結果與該等想要之性能參數。如果模擬結果及想要性能參數間之誤差係在可接受的容差內,則該立體電化學電池之模擬設置被接受。如果該等誤差係不在該可接受的容差內,則該立體電化學電池之設計被系統地改變,且該設計製程(1)至(6)被重複,直至誤差係在該可接受的容差內。 (6) The designer then compares the simulation results with the desired performance parameters. If the error between the simulation results and the desired performance parameters is within acceptable tolerances, the simulated setup of the stereo electrochemical cell is accepted. If the errors are not within the acceptable tolerance, then the design of the stereoelectrochemical cell is systematically changed and the design processes (1) through (6) are repeated until the error is within the acceptable tolerance Poor.
於具有本發明之另一應用中,現存的電化學電池設計被修改,如在圖5A中所描述。 In another application having the present invention, existing electrochemical cell designs are modified as described in Figure 5A.
1)用於該現存的電化學電池設計,該設計家產生用於該多層式固態電池組之幾何形狀及材料性質資訊供輸入該資料庫結構。 1) For the existing electrochemical cell design, the designer generates information on the geometry and material properties of the multi-layer solid state battery pack for input into the library structure.
2)該資料庫接著被載入圖2中所描述的電腦輔助設計工具,以模擬用於該現存設計之電化學電池性能。 2) The database is then loaded into the computer aided design tool described in Figure 2 to simulate the performance of the electrochemical cell used in the existing design.
3)同時,該設計家產生該幾何形狀、材料性質、電化學負載資訊,當作用於該被修改的電化學電池設計之資料庫結構。 3) At the same time, the designer generated the geometry, material properties, and electrochemical load information as a database structure for the modified electrochemical cell design.
4)該資料庫接著被載入圖2中所描述的電腦輔助設計工具,以模擬用於該被修改的設計之電化學電池性能。 4) The database is then loaded into the computer aided design tool described in Figure 2 to simulate the electrochemical cell performance for the modified design.
5)然後,該設計家比較由製程2)及4)所獲得的二電池性能,以決定該被修改之設計是否可接受。 5) The designer then compares the performance of the two batteries obtained by Processes 2) and 4) to determine if the modified design is acceptable.
6)如果該被修改的設計之性能係可接受的,該最終產品係基於該被修改的設計來製成。 6) If the performance of the modified design is acceptable, the final product is made based on the modified design.
7)如果該被修改之設計的性能係不可接受的,該設計 家系統地重複製程3)至7),直至該電池性能係可接受的。 7) If the performance of the modified design is unacceptable, the design The system systematically reproduces steps 3) through 7) until the battery performance is acceptable.
於具有本發明之另一應用中,現存的電化學電池設計被修改,如在圖5B中所描述。 In another application having the present invention, existing electrochemical cell designs are modified as described in Figure 5B.
1)用於該現存的電化學電池設計,該設計家產生用於該多層式固態電池組之幾何形狀及材料性質資訊供輸入該資料庫結構。 1) For the existing electrochemical cell design, the designer generates information on the geometry and material properties of the multi-layer solid state battery pack for input into the library structure.
2)該資料庫接著被載入圖2中所描述的電腦輔助設計工具,以模擬用於該現存設計之電化學電池性能。 2) The database is then loaded into the computer aided design tool described in Figure 2 to simulate the performance of the electrochemical cell used in the existing design.
3)同時,該設計家產生該幾何形狀、材料性質、電化學負載資訊,當作用於該被修改的電化學電池設計之資料庫結構。 3) At the same time, the designer generated the geometry, material properties, and electrochemical load information as a database structure for the modified electrochemical cell design.
4)該資料庫接著被載入圖2中所描述的電腦輔助設計工具,以模擬用於該被修改的製造參數之電化學電池性能。 4) The database is then loaded into the computer aided design tool described in Figure 2 to simulate the electrochemical cell performance for the modified manufacturing parameters.
5)然後,該設計家比較由製程2)及4)所獲得的二電池性能,以決定該被修改之製造參數是否可接受。 5) The designer then compares the performance of the two cells obtained by Processes 2) and 4) to determine if the modified manufacturing parameters are acceptable.
6)如果該被修改的製造參數之性能係可接受的,該最終產品係基於該被修改的設計來製成。 6) If the performance of the modified manufacturing parameters is acceptable, the final product is made based on the modified design.
7)如果該被修改之設計的性能係不可接受的,該設計家系統地重複製程3)至7),直至該電池性能係可接受的。 7) If the performance of the modified design is unacceptable, the designer systematically reproduces steps 3) through 7) until the battery performance is acceptable.
範例1:電化學電池之設計及方法Example 1: Design and method of electrochemical battery
此範例示範具有該電極的最佳形態上形狀之新電化學電池的製造製程。當作一範例,具有堆疊數目1之多層式固態電池組被設計及製成。當作被該設計家所遭遇的問題之一範例,立體電極的三種不同形態設計被提供:圖6A中之薄膜、圖6B中的柱狀形狀、及圖6C中之正弦曲線形狀。用於該等立體電化學電池的材料係 當作陽極集電器(圖6A中之33、圖6B中的38、圖6C中之43)的銅、當作陽極(圖6A中之34、圖6B中的40、圖6C中之45)的鋰金屬、當作陰極(圖6A中之36、圖6B中的41、圖6C中之46)的鋰錳氧化物、具有當作該電解質(圖6A中之35、圖6B中的39、圖6C中之44)的鋰鹽之聚合物、及當作陰極集電器(圖6A中之37、圖6B中的42、圖6C中之47)的鋁。該等材料性質、M(xi,yi,zi)被選自該資料庫結構。M係該材料性質指數,且i係該層指數。該等材料性質包括均質材料、非均質材料或梯度材料、或這些之任何組合。且該等梯度材料包含成份及材料結構中隨著該層之體積的變動。於一範例中,功能梯度性質亦可包括導電率σ(x,y,z)、介電常數ε(x,y,z)、質量密度ρ(x,y,z)、模數E(x,y,z)、導熱率κ(x,y,z)、熱膨脹係數α(x,y,z)、比熱容Xπ(x,y,z)、濃度膨脹αχ(x,y,z)、反應常數κ0(x,y,z)、及電位能E(x,y,z)。在此所使用的這些材料係用於說明之目的,但不被這些材料所限制。該三種不同設計電極之體積係限制條件。使用傳統系統的設計家通常將進入該實驗室及製成陰極之這些三種不同設計,將它們組裝成真實的電池,及測試它們達一時期,以獲得該等性能參數。設計家能藉由更有效率地使用本發明之一或更多實施例來獲得該等性能參數。 This example demonstrates a manufacturing process for a new electrochemical cell having the best morphological shape of the electrode. As an example, a multi-layer solid state battery pack having a stack number of 1 is designed and fabricated. As an example of a problem encountered by the designer, three different morphological designs of the stereoscopic electrodes are provided: the film of Figure 6A, the columnar shape of Figure 6B, and the sinusoidal shape of Figure 6C. The materials used for the three-dimensional electrochemical cells are used as anodes (33 in Fig. 6A, 38 in Fig. 6B, and 43 in Fig. 6C) as the anode (34 in Fig. 6A, Fig. 6B). The lithium metal in 40, 45) in Fig. 6C, and the lithium manganese oxide as the cathode (36 in Fig. 6A, 41 in Fig. 6B, and 46 in Fig. 6C) have the electrolyte (Fig. 6A). a polymer of a lithium salt of 35, 6 of FIG. 6B, 44 of FIG. 6C, and aluminum as a cathode current collector (37 in FIG. 6A, 42 in FIG. 6B, and 47 in FIG. 6C) . The material properties, M(x i , y i , z i ) are selected from the database structure. M is the material property index, and i is the layer index. Such material properties include homogeneous materials, heterogeneous materials or gradient materials, or any combination of these. And the gradient materials comprise variations in composition and material structure with the volume of the layer. In an example, the functional gradient properties may also include conductivity σ(x, y, z), dielectric constant ε(x, y, z), mass density ρ(x, y, z), modulus E (x) , y, z), thermal conductivity κ (x, y, z), thermal expansion coefficient α (x, y, z), specific heat capacity Xπ (x, y, z), concentration expansion α χ (x, y, z), reaction The constant κ0 (x, y, z), and the potential energy E (x, y, z). The materials used herein are for illustrative purposes, but are not limited by these materials. The volume of the three different design electrodes is a limiting condition. Designers using conventional systems will typically enter the lab and make these three different designs of cathodes, assemble them into real batteries, and test them for a period of time to obtain these performance parameters. Designers can obtain such performance parameters by using one or more embodiments of the present invention more efficiently.
然後,已被整合為圖7A中之(71)的本電腦'輔助設計製程(如於圖7A中之60-70)將模擬該資料庫結構及輸出該二設計的結果。該設計家將基於該影像分析技術或由該原始設計資料庫收集該微粒大小及體積分率,以藉由按在“電腦輔助設計(CAD)”按鈕(圖7A中之60)上如於圖7B中的(72)產生該電池之幾何形狀。然後,該設計家藉由按在“材料性質”按鈕(圖7A中的61)上而輸入該材料性質,並用於所意欲之電池行為藉由分別按在“控制方程式”及“邊界條件”按 鈕(圖7A中的62與63)上而輸入該等控制方程式及邊界條件。然後,該等網格將如所示藉由按在“網格”按鈕(圖7C中之84)上被產生。其次,該設計家將藉由按在“解算器”按鈕(圖7C中的90)上選擇該解算器,以解決該等結果。最後結果可如於圖7D中之96所示藉由觸在圖7C中的91上被以該表格或輪廓之觀點呈現。該設計家接著比較該二性能參數。如果該新設計的結果被以該目標性能特徵所滿足,該最後之電化學電池將藉由該較新的設計所製成。如果其不被滿足,該設計家能以新的概念反覆地用該相同製程修改該新設計,直至該等性能參數被滿足。再者,在此中之圖解的任一者只是說明,且將不會不適當地限制在此中之申請專利的範圍。普通熟習該技術領域者將認知很多變動、修改、及另外選擇。此範例結果示範其能認知將影響該電化學電池之比率性能、耐用性、及壽命的二重要因素。該第一因素係電極之柱狀形狀的尖銳角落。如於此範例中,柱狀形狀設計之最大插層導致應力係約四倍大於該薄膜設計。該另一因素係該陰極的表面-體積比。吾人相信該形角落將增強該應力,其將導致短壽命及低耐用性。在另一方面,該小表面-體積比將導致低充電/放電比能力。如於此範例中,在1C比率之下用於該薄膜設計的最大可達成之電容量係該柱狀形狀設計的大約73%,其調節該放電電流,以致該電池的整個電容量理想上將在一小時內被耗盡。因此,於此案例中,該正弦曲線狀設計係該最佳設計。 Then, the computer's auxiliary design process (as shown in Fig. 7A, 60-70), which has been integrated into (71) of Fig. 7A, will simulate the database structure and output the results of the two designs. The designer will collect the particle size and volume fraction based on the image analysis technique or from the original design database by pressing the "Computer Aided Design (CAD)" button (60 in Figure 7A) as shown in the figure. (72) in 7B produces the geometry of the battery. The designer then enters the material properties by pressing the "Material Properties" button (61 in Figure 7A) and uses the desired battery behavior by pressing the "Control Equation" and "Boundary Conditions" respectively. The control equations and boundary conditions are entered on the buttons (62 and 63 in Figure 7A). These grids will then be generated as shown by pressing on the "Grid" button (84 in Figure 7C). Second, the designer will solve the results by selecting the solver on the "Solver" button (90 in Figure 7C). The final result can be presented in the form of the table or outline by touching the 91 in Figure 7C as shown at 96 in Figure 7D. The designer then compares the two performance parameters. If the results of the new design are met with the target performance characteristics, the final electrochemical cell will be made with this newer design. If it is not met, the designer can rework the new design with the same process in a new concept until the performance parameters are met. In addition, any of the illustrations herein are merely illustrative and will not unduly limit the scope of the patent application herein. Those skilled in the art will recognize many variations, modifications, and alternatives. This example demonstrates that it recognizes two important factors that will affect the ratio performance, durability, and longevity of the electrochemical cell. This first factor is the sharp corner of the columnar shape of the electrode. As in this example, the maximum intercalation of the cylindrical shape design results in a stress system that is approximately four times greater than the film design. This other factor is the surface to volume ratio of the cathode. I believe that this corner will enhance this stress, which will result in short life and low durability. On the other hand, this small surface-to-volume ratio will result in a low charge/discharge ratio capability. As in this example, the maximum achievable capacitance for the film design below the 1C ratio is about 73% of the columnar shape design, which regulates the discharge current so that the overall capacitance of the battery would ideally It was exhausted in an hour. Therefore, in this case, the sinusoidal design is the best design.
範例2:藉由捲繞來建立多數個堆疊固態電池組Example 2: Establishing a large number of stacked solid-state battery packs by winding
此範例示範藉由捲繞來建立多數個堆疊固態電池組。當作一範例,本發明提供一使用撓性材料之方法,該撓性材料具有於0.1及100微米間之範圍中的厚度,而當作用於該固態電池組 之基材。該撓性材料可被選自諸如PET、PEN的聚合物薄膜、或諸如銅、鋁之金屬箔片。在該撓性基材上包含固態電池組的沈積層接著可被捲繞成圓柱形狀或被捲繞接著被壓縮成稜柱形狀。圖8顯示該捲繞式電池之影像當作本發明的範例。該等捲繞式電池可藉由切割該等圓形角落而被進一步處理,以如圖9所示最大化該能量密度。 This example demonstrates the creation of a plurality of stacked solid state battery packs by winding. As an example, the present invention provides a method of using a flexible material having a thickness in the range between 0.1 and 100 microns for use as the solid state battery The substrate. The flexible material may be selected from a polymer film such as PET, PEN, or a metal foil such as copper or aluminum. The deposited layer comprising the solid state battery on the flexible substrate can then be wound into a cylindrical shape or wound and then compressed into a prismatic shape. Fig. 8 shows an image of the wound battery as an example of the present invention. The wound cells can be further processed by cutting the rounded corners to maximize the energy density as shown in FIG.
範例3:藉由Z字形折疊來建立多數個堆疊固態電池組Example 3: Creating a Stacked Solid State Battery Pack by Zigzag Folding
此範例示範藉由Z字形折疊來建立多數個堆疊固態電池組。當作一範例,本發明提供一使用撓性基材之方法,該撓性基材可為固態電池組的一部份。如圖10中所示,固態電池組在該撓性基材上之沈積層能藉由Z字形折疊而被堆疊。該Z字形折疊電池可藉由切割電池的雙邊及端接它們而被進一步處理,以如圖11所示地最大化該等能量密度。藉由交替該等製程順序,多數個堆疊電池組之另一組構可藉由切割該等個別層且接著堆疊它們而被製成,如圖12中所說明。 This example demonstrates the creation of a plurality of stacked solid state battery packs by zigzag folding. As an example, the present invention provides a method of using a flexible substrate that can be part of a solid state battery. As shown in Figure 10, the deposited layers of the solid state battery on the flexible substrate can be stacked by zigzag folding. The zigzag folded cells can be further processed by cutting the sides of the cells and terminating them to maximize the energy density as shown in FIG. By alternating the process sequences, another configuration of the plurality of stacked battery packs can be made by cutting the individual layers and then stacking them, as illustrated in FIG.
範例4:藉由反覆的沈積製程來建立多複數個堆疊固態電池組Example 4: Establishing multiple stacked solid-state battery packs by a repeated deposition process
此範例示範藉由反覆之沈積製程來建立多數個堆疊固態電池組。當作一範例,本發明提供藉由運動一基材經過許多沈積製程來建立多數個堆疊固態電池組的方法。藉由重複製程之順序達N次,該固態電池組裝置具有N個數目之堆疊,如在圖13中的概要圖中所顯示。 This example demonstrates the creation of a plurality of stacked solid state battery packs by a repetitive deposition process. As an example, the present invention provides a method of creating a plurality of stacked solid state battery packs by moving a substrate through a number of deposition processes. The solid state battery pack has N number of stacks by reordering the sequence up to N times, as shown in the schematic diagram of FIG.
範例5:藉由控制SOC、等值線圖表所設計之能量密度Example 5: Energy density designed by controlling SOC and contour plots
因為固態電池組具有比傳統電池組遠較高的能量密 度,這些電池組甚至在有限之充電狀態、SOC(非完全SOC範圍)循環能夠輸送很高的能量密度。於該範例中,多重物理量有限元素模擬被使用於藉由控制SOC來設計能量密度。圖14顯示當在C/10下於不同之高低截止電壓放電時,一範例電池設計的放電體積能量密度(以Wh/l為單位)。有很寬廣範圍之選擇被顯示,並能輸送大於700Wh/l(或800Wh/l或900Wh/l或1000Wh/l)的能量密度。 Because the solid state battery pack has a much higher energy density than the conventional battery pack. To the extent that these battery packs can deliver very high energy densities even in limited state of charge, SOC (non-complete SOC range) cycles. In this example, multiple physical quantity finite element simulations are used to design the energy density by controlling the SOC. Figure 14 shows the discharge volume energy density (in Wh/l) of an example cell design when discharged at different high and low cutoff voltages at C/10. A wide range of options are shown and can deliver energy densities greater than 700 Wh/l (or 800 Wh/l or 900 Wh/l or 1000 Wh/l).
範例6:用於高功率而藉由控制SOC對高功率應用所設計之操作時間Example 6: Operating time designed for high power applications by controlling SOC for high power applications
因為固態電池組具有比傳統電池組遠較高的能量密度,這些電池組甚至在有限之SOC(非完全SOC範圍)循環能夠輸送很高的能量密度。於該範例中,多重物理量有限元素模擬被使用於設計高功率應用之操作時間。用於使用此等電池組的特定高功率應用,該應用裝置能使用此等電池組操作較長時間。圖15顯示當在25W之很高功率下於不同的高低截止電壓放電時,一範例電池設計之操作時間(以分為單位)。 Because solid state batteries have much higher energy densities than conventional battery packs, these batteries can deliver very high energy densities even in limited SOC (non-complete SOC range) cycles. In this example, multiple physical quantities finite element simulations are used to design the operating time of high power applications. For specific high power applications that use such battery packs, the application can operate with these battery packs for extended periods of time. Figure 15 shows the operating time (in minutes) of an example battery design when discharged at different high and low cutoff voltages at very high power of 25W.
電池組材料性質亦可藉由調諧處理參數、諸如背景氣體型式、背景氣體分壓、及基材溫度而被調整。當作一範例,增加的氣體壓力將導致質量密度中之減少及擴散率中的增加。當作另一範例,藉由改變該氣體型式,吾人能改變該薄膜成份中之不同種類的濃度。在電池組材料性質係藉由調諧處理參數所調整之後,該電池組能滿足該目標能量密度應用。圖16顯示當在25W的很高功率下於不同之高低截止電壓放電時,具有改良的材料性質之範例電池設計的操作時間(以分為單位)。於此電池設計中,電池被沈積在薄撓性基材上。 Battery material properties can also be adjusted by tuning processing parameters such as background gas pattern, background gas partial pressure, and substrate temperature. As an example, increased gas pressure will result in a decrease in mass density and an increase in diffusivity. As another example, by changing the gas pattern, one can change the different kinds of concentrations in the composition of the film. After the battery material properties are adjusted by tuning processing parameters, the battery pack can meet the target energy density application. Figure 16 shows the operating time (in minutes) of an exemplary battery design with improved material properties when discharged at different high and low cutoff voltages at very high power of 25W. In this battery design, the battery is deposited on a thin flexible substrate.
範例7:用於電池導向目標之穿戴式裝置應用所設計的能量密度Example 7: Energy density designed for wearable device applications for battery-oriented targets
因為固態電池組具有比傳統電池組遠較高的能量密度,這些電池組甚至在有限之SOC(非完全SOC範圍)循環能夠輸送很高的能量密度。於該範例中,多重物理量有限元素模擬被使用於設計電池導向目標之穿戴式裝置應用的能量密度。用於使用此等電池組之特定穿戴式裝置應用,圖17顯示當在67mA於不同的高低截止電壓下放電時之範例電池設計的可輸送能量密度。 Because solid state batteries have much higher energy densities than conventional battery packs, these batteries can deliver very high energy densities even in limited SOC (non-complete SOC range) cycles. In this example, multiple physical quantity finite element simulations are used to design the energy density of a battery-oriented wearable device application. For a particular wearable device application using such battery packs, Figure 17 shows the deliverable energy density of an exemplary battery design when discharged at 67 mA at different high and low cutoff voltages.
電池組材料性質亦可藉由調諧處理參數而被調整,以滿足該目標能量密度應用。圖18顯示當在67mA於不同的高低截止電壓下放電時,具有改良材料性質之範例電池設計的可輸送能量密度。於此電池設計中,電池被沈積在薄撓性基材上。 The battery material properties can also be adjusted by tuning the processing parameters to meet the target energy density application. Figure 18 shows the transportable energy density of an exemplary cell design with improved material properties when discharged at 67 mA at different high and low cutoff voltages. In this battery design, the battery is deposited on a thin flexible substrate.
範例8:容量衰減及由於梯度陰極擴散率而在陰極中所捕獲之鋰Example 8: Capacity attenuation and lithium trapped in the cathode due to gradient cathode diffusivity
於該範例中,功能梯度陰極材料被製成,在此該頂部具有很高的鋰離子擴散率,且該底部具有很低之擴散率。於該範例中,多重物理量有限元素模擬被使用於陰極中的被捕獲鋰計算。圖19顯示該陰極擴散率為藉由來自陰極集電器(CC)及陰極(CA)界面之陰極厚度正規化距離的函數。靠近集電器側面具有很低之鋰擴散率及在另一邊具有很高的鋰擴散率之功能梯度材料被製成。該電池係在1C比率下放電,且恆定電流在1C比率下充電,隨後以2小時的占用時間用恆定電壓充電。由於陰極中之擴散率的變動,並非所有鋰能於循環期間及時運送。圖20顯示陰極中所捕獲之鋰於完成循環的結果。在16個循環之後,2%的鋰(2%之容量)被捕獲在該陰極中。 In this example, a functionally graded cathode material is fabricated where the top has a high lithium ion diffusivity and the bottom has a very low diffusivity. In this example, multiple physical quantity finite element simulations are calculated using the captured lithium in the cathode. Figure 19 shows the cathode diffusivity as a function of the normalized distance of the cathode thickness from the cathode current collector (CC) and cathode (CA) interfaces. A functionally graded material having a low lithium diffusivity near the collector side and a high lithium diffusivity on the other side is made. The battery was discharged at a 1 C ratio, and a constant current was charged at a 1 C ratio, followed by a constant voltage with a 2 hour occupation time. Due to variations in the diffusivity in the cathode, not all lithium can be transported in time during the cycle. Figure 20 shows the results of the lithium captured in the cathode in the completion of the cycle. After 16 cycles, 2% lithium (2% capacity) was trapped in the cathode.
範例9:功能梯度陰極材料及容量保持率Example 9: Functionally graded cathode material and capacity retention
於一範例中,本揭示內容敘述以功能梯度性質控制固態電池組陰極中的充電狀態之意外利益。功能梯度材料(FGM)能以成份及結構隨著體積而逐漸變動、導致該材料性質中的對應變化為其特徵。當作圖21中之範例,陰極被製成,使得當沈積進展時,質量密度藉由在沈積期間控制該製程壓力而減少。於此一電池組中,接近電解質的陰極之頂部上的較不密集材料具有較高之鋰離子擴散率,如此用於高功率應用工作較佳。在接近集電器的區域之較低擴散率防止鋰擴散經過該陰極直至該集電器。用於高功率性能及容量保持率兩者,靠近該電解質含有高擴散率區域及在該底部毗連該集電器含有低擴散率區域的此功能梯度陰極材料提供獨特之組合。於一範例中,該較低擴散率區域具有由1x10-19m2/s分佈至1x10-5m2/s的擴散率,且該較高擴散率具有由1x10-17m2/s分佈至1x10-5m2/s的擴散率值。於一範例中,功能梯度性質亦可包括導電率σ(x,y,z)、介電常數ε(x,y,z)、質量密度ρ(x,y,z)、模數E(x,y,z)、導熱率κ(x,y,z)、熱膨脹係數α(x,y,z)、比熱容Xπ(x,y,z)、濃度膨脹αχ(x,y,z)、反應常數κ0(x,y,z)、及電位能E(x,y,z)。於一範例中,FGM陰極擴散率只在一度空間(z方向)中變動,且於x及y方向中係恆定的。於另一範例中,陰極擴散率於x-z、y-z、及x-y平面中變動。本揭示內容提供藉由界定及控制該電壓範圍及放電之深度來利用陰極及固態電池組的這些優點之方法。 In one example, the present disclosure describes the unexpected benefit of controlling the state of charge in the cathode of a solid state battery with functional gradient properties. Functionally graded materials (FGM) can be characterized by changes in composition and structure with volume, resulting in corresponding changes in the properties of the material. As an example in Fig. 21, the cathode is formed such that as the deposition progresses, the mass density is reduced by controlling the process pressure during deposition. In this battery pack, the less dense material on top of the cathode near the electrolyte has a higher lithium ion diffusivity, which is preferred for high power applications. The lower diffusivity in the region close to the current collector prevents lithium from diffusing through the cathode up to the current collector. For both high power performance and capacity retention, this functionally graded cathode material provides a unique combination near the electrolyte containing regions of high diffusivity and adjacent to the collector containing low diffusivity regions. In one example, the lower diffusivity region has a diffusivity from 1x10 -19 m 2 /s to 1×10 −5 m 2 /s, and the higher diffusivity has a distribution from 1×10 -17 m 2 /s to Diffusion value of 1x10 -5 m 2 /s. In an example, the functional gradient properties may also include conductivity σ(x, y, z), dielectric constant ε(x, y, z), mass density ρ(x, y, z), modulus E (x) , y, z), thermal conductivity κ (x, y, z), thermal expansion coefficient α (x, y, z), specific heat capacity Xπ (x, y, z), concentration expansion α χ (x, y, z), reaction The constant κ0 (x, y, z), and the potential energy E (x, y, z). In one example, the FGM cathode diffusivity varies only in one degree of space (z direction) and is constant in the x and y directions. In another example, the cathode diffusivity varies in the xz, yz, and xy planes. The present disclosure provides a method of utilizing these advantages of cathode and solid state batteries by defining and controlling the voltage range and depth of discharge.
於一範例中,具有功能梯度擴散率及恆定擴散率的陰極材料被製成。具有陰極之線性擴散率分佈的功能梯度陰極、及該擴散率分佈被顯示在圖22A中,在此該頂部具有較高鋰離子擴散率 及該底部份具有較低擴散率。於該範例中,多重物理量有限元素模擬被使用於陰極中之鋰濃度計算。圖22B在不同的放電率下及於不同之陰極材料中顯示該陰極中的鋰離子濃度分佈圖。如果該目標係鋰之高利用率,C/10被推薦在用於梯度擴散率及恆定擴散率陰極材料兩者的應用中。如果在該CC/CA界面,該低鋰離子濃度被需要,以免鋰擴散經過CC,1C放電率及梯度陰極材料被推薦在該應用中。 In one example, a cathode material having a functional gradient diffusivity and a constant diffusivity is fabricated. A functionally graded cathode having a linear diffusivity distribution of the cathode, and the diffusivity distribution is shown in Figure 22A, where the top has a higher lithium ion diffusivity And the bottom portion has a lower diffusivity. In this example, multiple physical quantities of finite element simulations were used to calculate the lithium concentration in the cathode. Figure 22B shows the lithium ion concentration profile in the cathode at different discharge rates and in different cathode materials. If the target is a high utilization of lithium, C/10 is recommended for use in both gradient diffusivity and constant diffusivity cathode materials. If at the CC/CA interface, the low lithium ion concentration is required to avoid lithium diffusion through the CC, 1C discharge rate and gradient cathode materials are recommended for this application.
範例10:電解質中由於缺陷之自放電及電流洩漏Example 10: Self-discharge and current leakage due to defects in electrolytes
於一範例中,本揭示內容使用有限元素多重物理量模擬來敘述該電解質層中的缺陷之影響。針孔、裂縫、分裂、及碎物於藉由沈積技術所製成的電解質中係常見之缺陷。隨著該電解質中的缺陷大小及分佈之增加,該電子導電率增加,其導致開路電位中的下降。圖23顯示開路電位上之電解質電子導電率隨著時間的消逝之影響。隨著該電子導電率中的增加,該電池自放電及該電壓隨著時間之消逝而下降。缺陷需要被減少,以便保持該電解質中的低電子導電率,以維持低自放電率及長電池組壽命。 In one example, the present disclosure uses finite element multiple physical quantity simulations to account for the effects of defects in the electrolyte layer. Pinholes, cracks, splits, and debris are common defects in electrolytes made by deposition techniques. As the size and distribution of defects in the electrolyte increase, the electronic conductivity increases, which leads to a decrease in the open circuit potential. Figure 23 shows the effect of the electrolyte electronic conductivity on the open circuit potential with time. As the electron conductivity increases, the battery self-discharges and the voltage decreases as time elapses. Defects need to be reduced in order to maintain low electron conductivity in the electrolyte to maintain low self-discharge rates and long battery life.
範例11:在任意形狀之心軸上捲繞固態電池組電池Example 11: Winding a solid battery cell on a mandrel of any shape
圖17概要地顯示在心軸1701上捲繞固態電池組電池及沈積方法。這是具有任意形狀的心軸之多數個堆疊固態電池組電池的沈積之範例,但其不受限於在此所說明的形狀。於此範例中,8字形之截面'可為真空吸塵器握把部份。該真空吸塵器握把部份能被用作固態電池組電池用的基材。於本發明之一特定實施例中,該多數個堆疊固態電池組電池能藉由從第一集電器、陰極、電解質、陽極、第二集電器、及絕緣間層連續地沈積每一電池零組件而被達成。此沈積順序將被重複1至N次,直至想要的總容量被達成。因為該等 薄層特徵,比較於電池組電池之傳統液體或聚合物膠化體型式,該便攜式真空吸塵器之增加的體積將被最小化。於此範例中,有需要具有如1704、1705及1706之推動滾筒,以輔助該沈積電池組電池1703一致地黏在該心軸上。當該心軸轉動時,該等推動滾筒將需要沿著該表面運動,以致它們將不會位在該旋轉的路徑上。再者,當作一範例,該沈積來源係位於該心軸下方。然而,該沈積來源之位置可為環繞該心軸被位於任何位置中,以達成該多數個堆疊固態電池組電池的一致性。所需之沈積來源將被移入當它們被需要時之位置。該等沈積來源亦可基於該心軸的形狀被定位。譬如,由於寬廣之陰影屏蔽特徵,該二不同層沈積來源可被定位在該8字形心軸之相向側面上,以使該沈積時間減至最小。 Figure 17 schematically shows a method of winding a solid state battery cell and depositing on a mandrel 1701. This is an example of deposition of a plurality of stacked solid state battery cells having a mandrel of any shape, but is not limited to the shapes described herein. In this example, the cross section of the figure 8 can be part of the vacuum cleaner grip. The vacuum cleaner grip portion can be used as a substrate for a solid battery cell. In a particular embodiment of the invention, the plurality of stacked solid state battery cells are capable of continuously depositing each battery component from the first current collector, the cathode, the electrolyte, the anode, the second current collector, and the insulating interlayer. And was reached. This deposition sequence will be repeated 1 to N times until the desired total capacity is reached. Because of these Thin layer features, compared to conventional liquid or polymer gel cast versions of battery cells, the increased volume of the portable vacuum cleaner will be minimized. In this example, it is desirable to have push rollers such as 1704, 1705, and 1706 to assist in consistently adhering the deposited battery cell 1703 to the mandrel. As the mandrel rotates, the push rollers will need to move along the surface so that they will not be positioned on the path of rotation. Again, as an example, the source of deposition is located below the mandrel. However, the location of the deposition source can be located anywhere around the mandrel to achieve uniformity of the plurality of stacked solid state battery cells. The required sources of deposition will be moved into position when they are needed. The deposition sources can also be positioned based on the shape of the mandrel. For example, due to the broad shadow masking feature, the two different layer deposition sources can be positioned on opposite sides of the figure-eight mandrel to minimize deposition time.
範例12:捲繞在任意形狀的心軸上Example 12: Winding on a mandrel of any shape
圖18概要地顯示在心軸1803上之捲繞。這是具有任意形狀的心軸之多數個堆疊固態電池組電池的沈積之範例,但其不受限於在此所說明的形狀。於此範例中,8字形之截面'可為真空吸塵器握把部份。於本發明之一特定實施例中,該多數個堆疊固態電池組電池可藉由從第一集電器、陰極、電解質、陽極、第二集電器、及絕緣間層將每一電池零組件連續地沈積在另一鼓輪或心軸1801上而被達成。此沈積順序將被重複1至N次,直至想要的總容量被達成。一旦該想要之總容量被達成,滾製的固態電池組電池將被移至捲繞站。在該捲繞站上,該想要形狀之心軸將被使用於載入該固態電池組電池。經沈積的固態電池組電池將被由該圓柱形鼓輪卸載及被捲繞至該想要形狀之心軸,如於此範例中之8字形心軸。在被捲繞至該8字形心軸之後,該最後的包裝層將在該電池組之頂部上被分 層,以對環境提供絕緣。因為該等薄層特徵,比較於電池組電池之傳統液體或聚合物膠化體型式,該真空吸塵器握把之增加的體積將被最小化。於此範例中,有需要具有如1804、1805及1806之推動滾筒,以輔助該捲繞電池組電池1802一致地黏在該心軸表面上。當該心軸轉動時,該等推動滾筒將需要沿著該表面運動,以致它們將不會位在該旋轉的路徑上。 Figure 18 shows schematically the winding on the mandrel 1803. This is an example of deposition of a plurality of stacked solid state battery cells having a mandrel of any shape, but is not limited to the shapes described herein. In this example, the cross section of the figure 8 can be part of the vacuum cleaner grip. In a particular embodiment of the present invention, the plurality of stacked solid state battery cells are continuously connected to each of the battery components by the first current collector, the cathode, the electrolyte, the anode, the second current collector, and the insulating interlayer. It is achieved by depositing on another drum or mandrel 1801. This deposition sequence will be repeated 1 to N times until the desired total capacity is reached. Once the desired total capacity is reached, the rolled solid state battery cells will be moved to the winding station. At the winding station, the desired shaped mandrel will be used to load the solid state battery cell. The deposited solid state battery cell will be unloaded by the cylindrical drum and wound onto the mandrel of the desired shape, such as the figure eight mandrel in this example. After being wound onto the figure eight mandrel, the final packaging layer will be divided on top of the battery pack Layer to provide insulation to the environment. Because of these thin layer features, the increased volume of the vacuum cleaner grip will be minimized compared to conventional liquid or polymer gel cast versions of battery cells. In this example, it is desirable to have push rollers such as 1804, 1805, and 1806 to assist in consistently adhering the wound battery cell 1802 to the mandrel surface. As the mandrel rotates, the push rollers will need to move along the surface so that they will not be positioned on the path of rotation.
範例13:將該多數個堆疊固態電池組整合至應用裝置之結構及/或裝飾空間上Example 13: Integrating a plurality of stacked solid state battery packs into the structure and/or decorative space of the application device
當作一範例,本發明提供將固態電池組形成如於圖26A中所示的形狀之方法。在本發明中所揭示的撓性基材上之固態電池組能形成任何任意的形狀。多數個堆疊電池組裝置2205被捲繞在中空核心上,該中空核心被使用在無葉片風扇或空氣鼓風機2201的外殼2202內,如於圖26A中所示。被整合至該結構、譬如該風扇頭2204之邊緣的多數個堆疊電池組2205消除具有分開之儲存空間的需要,允許只需要用於該器具之功能而當具有可攜帶性的設計。圖26B示範該等撓性電池組可具有之一些範例形狀因數、諸如圓環面、盤管、圓形錐體、梯形錐體、及四面體。 As an example, the present invention provides a method of forming a solid state battery pack into the shape shown in Figure 26A. The solid state battery pack on the flexible substrate disclosed in the present invention can be formed into any arbitrary shape. A plurality of stacked battery pack devices 2205 are wound on a hollow core that is used in a housing 2202 of a bladeless fan or air blower 2201, as shown in Figure 26A. The plurality of stacked battery packs 2205 that are integrated into the structure, such as the edge of the fan head 2204, eliminate the need for separate storage spaces, allowing for only the functionality for the appliance to be portable. Figure 26B illustrates some of the example form factors that such flexible battery packs may have, such as toroids, coils, circular cones, trapezoidal cones, and tetrahedra.
Claims (72)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462094038P | 2014-12-18 | 2014-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201701516A true TW201701516A (en) | 2017-01-01 |
Family
ID=56127647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104142203A TW201701516A (en) | 2014-12-18 | 2015-12-16 | Multiphysics design for solid state energy devices with high energy density |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201701516A (en) |
WO (1) | WO2016100750A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109902372A (en) * | 2019-02-20 | 2019-06-18 | 重庆长安汽车股份有限公司 | A kind of battery roll core analogy method based on finite element analysis |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220011745A1 (en) * | 2018-11-23 | 2022-01-13 | Whoborn Inc. | 3d printing method, and device for performing same |
CN114491873B (en) * | 2022-04-02 | 2022-07-05 | 华中科技大学 | Laser welding transient temperature field and stress field numerical value calculation method and system |
CN118017114A (en) * | 2022-11-09 | 2024-05-10 | 南京泉峰科技有限公司 | Electric tool and battery pack for providing electric power for electric tool |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6524720B1 (en) * | 1992-09-18 | 2003-02-25 | Cryovac, Inc. | Moisture barrier film |
US5415700A (en) * | 1993-12-10 | 1995-05-16 | State Of Oregon, Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Concrete solar cell |
US6400123B1 (en) * | 2001-08-29 | 2002-06-04 | Hewlett-Packard Company | Battery fuel gauging using battery chemistry identification |
US9005420B2 (en) * | 2007-12-20 | 2015-04-14 | Integran Technologies Inc. | Variable property electrodepositing of metallic structures |
US7945344B2 (en) * | 2008-06-20 | 2011-05-17 | SAKT13, Inc. | Computational method for design and manufacture of electrochemical systems |
US9402678B2 (en) * | 2009-07-27 | 2016-08-02 | Novoxel Ltd. | Methods and devices for tissue ablation |
US10770745B2 (en) * | 2011-11-09 | 2020-09-08 | Sakti3, Inc. | Monolithically integrated thin-film solid state lithium battery device having multiple layers of lithium electrochemical cells |
WO2013043203A2 (en) * | 2011-09-25 | 2013-03-28 | Theranos, Inc. | Systems and methods for multi-purpose analysis |
US8301285B2 (en) * | 2011-10-31 | 2012-10-30 | Sakti3, Inc. | Computer aided solid state battery design method and manufacture of same using selected combinations of characteristics |
-
2015
- 2015-12-16 TW TW104142203A patent/TW201701516A/en unknown
- 2015-12-17 WO PCT/US2015/066524 patent/WO2016100750A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109902372A (en) * | 2019-02-20 | 2019-06-18 | 重庆长安汽车股份有限公司 | A kind of battery roll core analogy method based on finite element analysis |
Also Published As
Publication number | Publication date |
---|---|
WO2016100750A1 (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9666895B2 (en) | Computational method for design and manufacture of electrochemical systems | |
US8301285B2 (en) | Computer aided solid state battery design method and manufacture of same using selected combinations of characteristics | |
Mei et al. | The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical–thermal coupling model | |
Farhad et al. | Introducing the energy efficiency map of lithium‐ion batteries | |
Nazari et al. | Heat generation in lithium-ion batteries with different nominal capacities and chemistries | |
Itou et al. | Role of conductive carbon in porous Li-ion battery electrodes revealed by electrochemical impedance spectroscopy using a symmetric cell | |
TW201703333A (en) | Solid state energy storage device | |
KR101263174B1 (en) | deposition apparatus and method for a battery device | |
TW201701516A (en) | Multiphysics design for solid state energy devices with high energy density | |
US10539621B2 (en) | Method and apparatus for identifying a battery model | |
McCleary et al. | Three-dimensional modeling of electrochemical performance and heat generation of spirally and prismatically wound lithium-ion batteries | |
US8190383B2 (en) | Methods of inverse determination of material properties of an electrochemical system | |
US20070248887A1 (en) | Using metal foam to make high-performance, low-cost lithium batteries | |
Belous et al. | All solid-state battery based on ceramic oxide electrolytes with perovskite and NASICON structure | |
JP2020167069A (en) | Internal short circuit state estimation device and internal short circuit state estimation method for all-solid lithium ion secondary battery, and all-solid lithium ion secondary battery system and charger for all-solid lithium ion secondary battery | |
Shi et al. | Calculation model of effective thermal conductivity of a spiral-wound lithium ion battery | |
Geetha et al. | Influence of Electrode Parameters on the Performance Behavior of Lithium-Ion Battery | |
TW201640388A (en) | Methodology for design of a manufacturing facility for fabrication of solid state energy storage devices | |
Ma et al. | Comparative study of thermal characteristics of lithium-ion batteries for vehicle applications | |
Clausnitzer et al. | Influence of Electrode Structuring Techniques on the Performance of All‐Solid‐State Batteries | |
Ghasemi Yeklangi et al. | Advancing lithium-ion battery manufacturing: novel technologies and emerging trends | |
JP2010218985A (en) | Electrode for secondary battery, and secondary battery | |
Kim et al. | Metamodel-based optimization of a lithium-ion battery cell for maximization of energy density with evolutionary algorithm | |
Bajagain | Mathematical modeling and capacity fading study in porous current collector based lithium ion battery | |
Ding et al. | BatteryFOAM: A comprehensive electrochemical-electrical-thermal solver with OpenFOAM for computational battery dynamics |