TW201639595A - Chemically-locked bispecific antibodies - Google Patents
Chemically-locked bispecific antibodies Download PDFInfo
- Publication number
- TW201639595A TW201639595A TW104114962A TW104114962A TW201639595A TW 201639595 A TW201639595 A TW 201639595A TW 104114962 A TW104114962 A TW 104114962A TW 104114962 A TW104114962 A TW 104114962A TW 201639595 A TW201639595 A TW 201639595A
- Authority
- TW
- Taiwan
- Prior art keywords
- antibody
- group
- bispecific
- linked
- fragment
- Prior art date
Links
Landscapes
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
本揭示內容提供以高特異性及高均質性形成化學鎖固之雙特異性或異源二聚體抗體、較佳地IgG種類之方法。更具體而言,本揭示內容提供具有以生物正交點擊化學連接至一起之鏈接區之化學鎖固之雙特異性IgG種類抗體。 The present disclosure provides methods for forming chemically-locked bispecific or heterodimeric antibodies, preferably IgG species, with high specificity and high homogeneity. More specifically, the present disclosure provides a chemically-locked bispecific IgG species antibody having a linkage region joined together by bioorthogonal click chemistry.
本專利申請案主張來自2014年5月10日提出申請之美國臨時專利申請案61/991,508之優先權。 This patent application claims priority from U.S. Provisional Patent Application Serial No. 61/991,508, filed on May 10, 2014.
人類免疫球蛋白G或IgG抗體存在4種子類,其各自具有不同結構及功能性質。IgG係由兩個重鏈-輕鏈對(半抗體)構成,該兩個重鏈-輕鏈對經由直接連接鉸鏈區中之Cys殘基(EU索引編號:半胱胺酸殘基226及229;Kabat編號:半胱胺酸殘基239及242)之重鏈間二硫鍵連結。人類IgG4分子存在不同之處在於不存在或存在重鏈間二硫鍵之各種分子形式。 Human immunoglobulin G or IgG antibodies exist in 4 seed classes, each having different structural and functional properties. The IgG line consists of two heavy chain-light chain pairs (half antibodies) which are directly linked to the Cys residues in the hinge region (EU index number: cysteine residues 226 and 229) Kabat number: heavy chain interchain disulfide linkage of cysteine residues 239 and 242). Human IgG4 molecules differ in the absence or presence of various molecular forms of inter-heavy chain disulfide bonds.
已研發各種重組抗體格式,舉例而言,藉由融合IgG抗體格式及單鏈結構域來獲得四價雙特異性抗體(Coloman等人,Nature Biotech 15(1997)159-163;WO 2001/077342;及Morrison,Nature Biotech 25(2007)1233-1234)。另一格式不再保留抗體核心結構(IgA、IgD、IgE、IgG或IgM),例如雙特異性抗體、三特異性抗體或四特異性抗 體、微抗體、若干單鏈格式(scFv、Bis-scFv)。但該等格式能夠結合兩種或更多種抗原(Holliger等人,Nature Biotech 23(2005)1126-1136;Fischer及Leger,Pathobiology 74(2007)3-14;Shen等人,J.Immunological Methods 318(2007)65-74;及Wu等人,Nature Biotech.25(2007)1290-1297)。 Various recombinant antibody formats have been developed, for example, by fusion of IgG antibody formats and single-stranded domains to obtain tetravalent bispecific antibodies (Coloman et al, Nature Biotech 15 (1997) 159-163; WO 2001/077342; And Morrison, Nature Biotech 25 (2007) 1233-1234). Another format no longer retains the antibody core structure (IgA, IgD, IgE, IgG or IgM), such as bispecific antibodies, trispecific antibodies or tetraspecific antibodies, minibodies, several single-stranded formats (scFv, Bis-scFv) ). However, such formats are capable of binding two or more antigens (Holliger et al, Nature Biotech 23 (2005) 1126-1136; Fischer and Leger, Pathobiology 74 (2007) 3-14; Shen et al, J. Immunological Methods 318 (2007) 65-74; and Wu et al, Nature Biotech. 25 (2007) 1290-1297).
使經由至少一種鏈間二硫鏈接連接之二聚體與並不經由至少一種鏈間二硫鏈接連接之二聚體自包括此兩種類型多肽二聚體之混合物分離或優先合成前一類二聚體的方法報導於US 2005/0163782中。 Separating or preferentially synthesizing the former dimerization from a mixture comprising the two types of polypeptide dimers via a dimer linked via at least one interchain disulfide linkage and a dimer not linked via at least one interchain disulfide linkage The method of the body is reported in US 2005/0163782.
雙特異性抗體難以使用傳統雜交-雜交瘤及化學偶聯方法產生足夠量及品質之材料。另外,WO2005/062916及美國專利申請案2010/0105874闡述如何藉由還原抗體「AA」及抗體「BB」以將二硫鍵分離成具有單一結合區之單一重鏈-輕鏈單元(A或B)(其中A及B結合至不同靶)來形成雙特異性抗體。然後,該等抗體容許二硫鍵發生異構化,從而抗體AB、BA、AA及BB各自以約25%之概率重新形成。然而,AB及BA係相同雙特異性抗體且由此代表至多約50%之產率。因此,此需要額外步驟來分離所形成之期望雙特異性抗體與原始重構抗體。然而,美國專利申請案2010/0105874涉及在IgG4中具有CPSC序列之鉸鏈區且陳述:「CPSC序列得到更具撓性之核心鉸鏈且可形成鏈內二硫鍵。據信,具有IgG4樣核心鉸鏈序列之抗體可具有重排二硫鍵之固有活性,此藉由本發明方法中所使用之條件所模擬。」(第0013段)。此外,使用藉由改變抗體A及B之重鏈序列製得之「凸起及孔洞」結構來製備其他形式之雙特異性抗體。 Bispecific antibodies are difficult to produce in sufficient amounts and qualities of materials using conventional hybrid-hybridoma and chemical coupling methods. In addition, WO2005/062916 and US Patent Application No. 2010/0105874 describe how to separate a disulfide bond into a single heavy chain-light chain unit (A or B) having a single binding region by reducing antibody "AA" and antibody "BB". ) (wherein A and B bind to different targets) to form a bispecific antibody. These antibodies then allow for the isomerization of the disulfide bonds such that the antibodies AB, BA, AA and BB are each reformed with a probability of about 25%. However, AB and BA are the same bispecific antibodies and thus represent a yield of up to about 50%. Therefore, this requires an additional step to isolate the desired bispecific antibody formed from the original reconstituted antibody. However, U.S. Patent Application No. 2010/0105874 relates to a hinge region having a CPSC sequence in IgG4 and states: "The CPSC sequence results in a more flexible core hinge and can form an intrachain disulfide bond. It is believed to have an IgG4-like core hinge. The antibody of the sequence may have the inherent activity of rearranging disulfide bonds, as simulated by the conditions used in the methods of the invention ("paragraph 0013). In addition, other forms of bispecific antibodies were prepared using "bulge and pore" structures made by altering the heavy chain sequences of antibodies A and B.
因此,本揭示內容提供產生化學鎖固之雙特異性IgG抗體之製程,該等抗體解決了業內對於較改變固定抗體區中之胺基酸序列之凸起及孔洞方法具有極高雙特異性抗體產率及較佳穩定性之需要。 Accordingly, the present disclosure provides a process for the production of chemically-locked bispecific IgG antibodies that address the industry's extremely high bispecific antibodies for bulging and pore methods that alter the amino acid sequence in the immobilized antibody region. The need for yield and better stability.
本揭示內容提供自IgG 1、IgG2或IgG4種類抗體或其Fab2片段「A」及IgG1、IgG2或IgG4種類抗體或其Fab2片段「B」生成化學鎖固之雙特異性抗體「AB」或「BA」之製程。該製程包括:(a)使第一抗體「A」與還原劑在足以裂解鉸鏈區中之重鏈之間之實質上所有二硫鏈接的條件下接觸以得到一對第一抗體片段A',其各自包括附接至單一重鏈之單一輕鏈,重鏈具有一或多個自該等二硫鏈接之還原形成之反應性硫醇基團;(b)使第一異雙官能連接體附接至第一抗體片段A',其中第一異雙官能連接體包括(i)第一硫醇反應性官能基,其用於共價附接至第一抗體片段A'之重鏈之反應性硫醇基團,及(ii)疊氮化物,從而形成疊氮化物官能化第一抗體片段;(c)使第二抗體「B」與還原劑在足以裂解鉸鏈區中之重鏈之間之實質上所有二硫鏈接的條件下接觸以得到一對第二抗體片段B',其各自包括附接至單一重鏈之單一輕鏈,重鏈具有一或多個自該等二硫鏈接之還原形成之反應性硫醇基團;(d)使第二異雙官能連接體附接至該第二抗體片段B',該第二異雙官能連接體包括:(i)第二硫醇反應性官能基,其用於共價附接至該第二抗體片段之該重鏈之反應性硫醇基團;及(ii)炔;從而形成炔官能化第二抗體片段;(e)使該疊氮化物官能化第一抗體片段與該炔官能化第二抗體片段進行反應以經由該疊氮化物至該炔之1,3-偶極環加成使該第一抗體片段共價附接至該第二抗體片段以形成化學鎖固之雙特異性抗體「AB」或「BA」。 The present disclosure provides a chemically-locked bispecific antibody "AB" or "BA" from an IgG 1, IgG2 or IgG4 antibody or its Fab2 fragment "A" and an IgG1, IgG2 or IgG4 antibody or its Fab2 fragment "B" Process. The process comprises: (a) contacting the first antibody "A" with a reducing agent under substantially all disulfide linkages between the heavy chains in the hinge region to obtain a pair of first antibody fragments A ' , Each of which comprises a single light chain attached to a single heavy chain, the heavy chain having one or more reactive thiol groups formed by the reduction of the disulfide linkages; (b) the first heterobifunctional linker attached Linked to the first antibody fragment A ' , wherein the first heterobifunctional linker comprises (i) a first thiol reactive functional group for reactivity of the heavy chain covalently attached to the first antibody fragment A ' a thiol group, and (ii) an azide to form an azide functionalized first antibody fragment; (c) a second antibody "B" and a reducing agent between the heavy chains sufficient to cleave the hinge region Substantially contacting under conditions of all disulfide linkages to obtain a pair of second antibody fragments B ' , each comprising a single light chain attached to a single heavy chain, the heavy chain having one or more reductions from the disulfide linkages Forming a reactive thiol group; (d) attaching a second heterobifunctional linker to the second antibody fragment B ' The second heterobifunctional linker comprises: (i) a second thiol reactive functional group for covalent attachment to a reactive thiol group of the heavy chain of the second antibody fragment; Ii) an alkyne; thereby forming an alkyne-functionalized second antibody fragment; (e) reacting the azide-functionalized first antibody fragment with the alkyne-functionalized second antibody fragment to pass the azide to the alkyne The 3-dipolar cycloaddition covalently attaches the first antibody fragment to the second antibody fragment to form a chemically-locked bispecific antibody "AB" or "BA".
還原鉸鏈區中之二硫鏈接之步驟較佳地在並不實質上還原重鏈與輕鏈之間的二硫鏈接下實施,此意味著,在一些實施例中,至少約90%或至少約95%或至少約99%之重鏈與輕鏈之間之該等二硫鏈接在 裂解鉸鏈區中的二硫鍵後保持完整。 The step of reducing the disulfide linkage in the hinge region is preferably carried out without substantially reducing the disulfide linkage between the heavy chain and the light chain, which means, in some embodiments, at least about 90% or at least about 95% or at least about 99% of the disulfide linkages between the heavy and light chains are The disulfide bond in the hinge region remains intact after cleavage.
較佳地,第一異雙官能連接體具有形式Q-L-N3,其中Q係硫醇反應性官能基,L係烴連接體,且N3係疊氮化物。較佳地,硫醇反應性官能基Q係烷基鹵化物(例如烷基氯化物、溴化物、或碘化物)、苄基鹵化物、馬來醯亞胺、鹵基-馬來醯亞胺(溴馬來醯亞胺)或二鹵基-馬來醯亞胺(二溴馬來醯亞胺)。較佳地,L係在Q與N3之間之直接鏈中具有3-60個原子(例如更通常而言6-50個)之烴連接體。更佳地,L係聚環氧烷(PEF)基團或L係聚合物,其中每一聚體單元係-(CH2CH2-O) n -或-(O-CH2CH2) n -(其中「n」獨立地係1-20、更通常而言1-8之整數)。 Preferably, the first heterobifunctional linker has the form QLN 3 wherein Q is a thiol reactive functional group, an L-based hydrocarbon linker, and an N 3 -based azide. Preferably, the thiol reactive functional group Q is an alkyl halide (e.g., alkyl chloride, bromide, or iodide), benzyl halide, maleimide, halo-maleimide (bromomaleimide) or dihalo-maleimide (dibromomaleimide). Preferably, L system having 3 to 60 atoms (e.g., more generally 6 to 50) in said hydrocarbon linker between the direct link and N is 3 Q. More preferably, an L-based polyalkylene oxide (PEF) group or an L-based polymer, wherein each polymer unit is -(CH 2 CH 2 -O) n - or -(O-CH 2 CH 2 ) n - (where "n" is independently an integer from 1-20, more usually 1-8).
較佳地,第一異雙官能連接體(附接至第一抗體片段)係
其中Q可為任一適於使連接體連接至抗體片段之基團,但較佳地能夠與來自重鏈之鉸鏈區中之半胱胺酸殘基之硫醇共價鍵結。實例性基團Q係:
其中Z獨立地選自由以下組成之群:H、Br、I及SPh。較佳地,Z在至少一次出現時並非H,但在馬來醯亞胺情形下,Z可在每次出現時皆為氫。M獨立地係CR*或N。 Wherein Z is independently selected from the group consisting of H, Br, I and SPh. Preferably, Z is not H at least once, but in the case of maleimide, Z can be hydrogen at each occurrence. M is independently CR* or N.
X1、X2、X3、X2、X4及X5獨立地選自由以下組成之群:鍵(亦即其不存在)、-O-、-NRN-、-N=C-、-C=N-、-N=N-、-CR*=CR*-(順式或反式)、-C≡C-、-(C=O)-、-(C=O)-O-、-(C=O)-NRN-、-(C=O)-(CH2) n -、-(C=O)-O-(CH2) n -、-(C=O)-NRN-(CH2) n -及-(C=O)-NRN- (CH2CH2-O) n -,其中「n」係零或1-10之整數; Ra、Rb、Rc及Rd獨立地選自由以下組成之群:-O-、-NRN-、-CH2-、-(CH2) n -、-(CR*2) n -、-(CH2CH2-O) n -、-(CR*2CR*2-O) n -、-(O-CH2CH2) n -、-(O-CR*2CR*2) n -、-CR*=CR*-(順式或反式)、-N=C-、-C=N-、-N=N-、-C≡C-、-(C=O)-、-(CH2) n -(C=O)-、-(C=O)-(CH2) n -、-(CH2) n -(C=O)-(CH2) n -、-O-(C=O)-、-(C=O)-O-、-O-(C=O)-O-、-(CH2) n -(C=O)-O-、-O-(C=O)-(CH2) n 、-(C=O)-O-(CH2) n -、-(CH2) n -O-(C=O)-、-(CH2) n -(C=O)-O-(CH2) n -、-(CH2) n -O-(C=O)-(CH2) n -、-NRN-(C=O)-、-(C=O)-NRN-、-NRN-(C=O)-O-、-O-(C=O)-NRN-、-NRN-(C=O)-NRN-、-(CH2) n -(C=O)-NRN-、-NRN-(C=O)-(CH2) n 、-(C=O)-NRN-(CH2) n -、-(CH2) n -NRN-(C=O)-、-(CH2) n -(C=O)-NRN-(CH2) n -、-(CH2) n -NRN-(C=O)-(CH2) n -、-(C=O)-NRN-(CH2CH2-O) n -、-(CH2CH2-O) n -(C=O)-NRN-、-(CH2) n -(C=O)-NRN-(CH2CH2-O) n -、-(CH2CH2-O) n -(C=O)-NRN-(CH2) n -及2-8員環狀烴、雜環、芳基或雜芳基環;其中「n」獨立地係零或1-10之整數;且其中「l」、「p」、「q」及「r」獨立地係零或1-10之整數; Ω係鍵(亦即,其不存在)或C3-26烴環或稠合環系統,其視情況包括至多4個稠合環,每一環具有3-8個成員且視情況在每一環中包括1-4個選自O、S及N之雜原子。較佳地,Ω係稠合至環辛烷環或稠合至8員雜環或環系統之1,2,3-三唑環; R*及RN在每次出現時獨立地係H或C1-12烴,其視情況經1-6個選自鹵素、O、S及N之雜原子取代;且其中任兩個基團R*及/或RN可一起形成3-8員環。 X 1 , X 2 , X 3 , X 2 , X 4 and X 5 are independently selected from the group consisting of: a bond (ie, it is absent), -O-, -NR N -, -N=C-, -C=N-, -N=N-, -CR*=CR*-(cis or trans), -C≡C-, -(C=O)-, -(C=O)-O- , -(C=O)-NR N -, -(C=O)-(CH 2 ) n -, -(C=O)-O-(CH 2 ) n -, -(C=O)-NR N -(CH 2 ) n - and -(C=O)-NR N - (CH 2 CH 2 -O) n -, wherein " n " is zero or an integer from 1 to 10; R a , R b , R c and R d are independently selected from the group consisting of -O-, -NR N -, -CH 2 -, -(CH 2 ) n -, -(CR* 2 ) n -, -(CH 2 CH 2 -O) n -, -(CR* 2 CR* 2 -O) n -, -(O-CH 2 CH 2 ) n -, -(O-CR* 2 CR* 2 ) n -, -CR*= CR*-(cis or trans), -N=C-, -C=N-, -N=N-, -C≡C-, -(C=O)-, -(CH 2 ) n - (C=O)-, -(C=O)-(CH 2 ) n -, -(CH 2 ) n -(C=O)-(CH 2 ) n -, -O-(C=O)- , -(C=O)-O-, -O-(C=O)-O-, -(CH 2 ) n -(C=O)-O-, -O-(C=O)-(CH 2 ) n , -(C=O)-O-(CH 2 ) n -, -(CH 2 ) n -O-(C=O)-, -(CH 2 ) n -(C=O)-O -(CH 2 ) n -, -(CH 2 ) n -O-(C=O)-(CH 2 ) n -, -NR N -(C=O)-, -(C=O)-NR N -, -NR N -(C=O)-O-, -O-(C=O)-NR N -, -NR N -(C=O )-NR N -, -(CH 2 ) n -(C=O)-NR N -, -NR N -(C=O)-(CH 2 ) n , -(C=O)-NR N -( CH 2 ) n -, -(CH 2 ) n -NR N -(C=O)-, -(CH 2 ) n -(C=O)-NR N -(CH 2 ) n -, -(CH 2 n -NR N -(C=O)-(CH 2 ) n -, -(C=O)-NR N -(CH 2 CH 2 -O) n -, -(CH 2 CH 2 -O) n -(C=O)-NR N -, -(CH 2 ) n -(C=O)-NR N -(CH 2 CH 2 -O) n -, -(CH 2 CH 2 -O) n -( C=O)-NR N -(CH 2 ) n - and a 2-8 membered cyclic hydrocarbon, heterocyclic ring, aryl or heteroaryl ring; wherein " n " is independently zero or an integer from 1 to 10; Wherein " l ", " p ", " q " and " r " are independently zero or an integer from 1 to 10; an Ω key (ie, not present) or a C3-26 hydrocarbon ring or fused ring system It optionally includes up to 4 fused rings, each ring having 3-8 members and optionally 1-4 heteroatoms selected from O, S and N in each ring. Preferably, the Ω is fused to a cyclooctane ring or a 1,2,3-triazole ring fused to an 8-membered heterocyclic ring or ring system; R* and R N are independently H in each occurrence or a C 1-12 hydrocarbon, optionally substituted with from 1 to 6 heteroatoms selected from the group consisting of halogen, O, S and N; and any two of the groups R* and/or R N may together form a 3-8 membered ring .
第二異雙官能連接體具有形式Q-L-G,其中Q係硫醇反應性官能基,L係烴連接體,且G係含炔基團。硫醇反應性官能基Q係選自由以下組成之群:烷基鹵化物(例如烷基氯化物、溴化物、或碘化物)、苄 基鹵化物、馬來醯亞胺、鹵基-馬來醯亞胺(例如溴馬來醯亞胺)及二鹵基-馬來醯亞胺(例如二溴馬來醯亞胺)。L係在Q與G之間之直接鏈中具有3-60個原子(例如較佳地6-50個)之烴連接體。較佳地,L係聚環氧烷基團(PEG),較佳地,L係單元-(CH2CH2-O) n -或-(O-CH2CH2) n -之聚合物(其中「n」獨立地係1-20、更通常而言1-8之整數)。 The second heterobifunctional linker has the form QLG wherein Q is a thiol reactive functional group, an L series hydrocarbon linker, and the G system contains an alkyne group. The thiol-reactive functional group Q is selected from the group consisting of alkyl halides (e.g., alkyl chlorides, bromides, or iodides), benzyl halides, maleimides, halo-malays. An imine (for example, bromide) and a dihalo-maleimide (for example, dibromomaleimide). L is a hydrocarbon linker having from 3 to 60 atoms (e.g., preferably from 6 to 50) in the direct chain between Q and G. Preferably, the L-based polyalkylene oxide group (PEG), preferably the polymer of the L-based unit -(CH 2 CH 2 -O) n - or -(O-CH 2 CH 2 ) n - Wherein "n" is independently 1-20, more usually an integer from 1-8).
G係任一能夠與疊氮化物發生環加成之含炔基團。在一些實施例中,G包括末端炔,例如-C≡CH。在其他實施例中,G包括在環中具有-C≡C-鍵之環或環系統。在一實施例中,G包括具有-C≡C-鍵之C8環。在一實施例中,含-C≡C-環經應變。 G is an alkyne-containing group capable of undergoing cycloaddition with an azide. In some embodiments, G includes a terminal alkyne, such as -C≡CH. In other embodiments, G includes a ring or ring system having a -C≡C- bond in the ring. In an embodiment, G comprises a C8 ring having a -C≡C- bond. In one embodiment, the -C≡C-ring is strained.
第二異雙官能連接體具有以下形式:
Q與第一異雙官能連接體相同或不同。Q通常係以下形式之硫醇反應性基團:
其中Z在每次出現時獨立地選自H、Br、I及SPh。在一些實施例中,Z在至少一次出現時並非H,但在馬來醯亞胺情形下,Z可在每次出現時皆為氫。M在每次出現時獨立地係CR*或N。 Wherein Z is independently selected from H, Br, I and SPh at each occurrence. In some embodiments, Z is not H at least once, but in the case of maleinide, Z can be hydrogen at each occurrence. M is independently CR* or N at each occurrence.
G通常係包括能夠與疊氮化物發生1,3偶極環加成反應之-C≡C-鍵之C8-20烴基團。在一些實施例中,G具有形式-C≡C-H。在其他實施例中,G包括具有-C≡C-鍵之環。特定而言,G可包括具有三鍵(例如環辛炔)之8員環。該環可視情況稠合至一個、兩個或更多個其他環,該等其他環通常係C3-6環狀烴環,包含芳基、雜芳基及雜環。含有三鍵
之8員環可在環中包含一或多個(例如1-4個)雜原子,例如氮及氧。在一實施例中,8員環在環中含有氮原子,其提供至L之附接點,如在下文所展示之實例性結構中:
較佳地,G具有以下形式:
X1、X2、X3、X2、X4及X5在每次出現時獨立地選自由以下組成之群:鍵(亦即,其不存在)、-O-、-NRN-、-N=C-、-C=N-、-N=N-、-CR*=CR*-(順式或反式)、-C≡C-、-(C=O)-、-(C=O)-O-、-(C=O)-NRN-、-NRN-(C=O)-、-NRN-(C=O)-O-、-(C=O)-(CH2) n -、-(C=O)-O-(CH2) n -、-(C=O)-NRN-(CH2) n -及-(C=O)-NRN-(CH2CH2-O) n -,其中「n」係零或1-10之整數;Ra、Rb、Rc及Rd在每次出現時獨立地選自-O-、-NRN-、-CH2-、-(CH2) n -、-(CR*2) n -、-(CH2CH2-O) n -、-(CR*2CR*2-O) n -、-(O-CH2CH2) n -、-(O-CR*2CR*2) n -、-CR*=CR*-(順式或反式)、-N=C-、-C=N-、-N=N-、-C≡C-、-(C=O)-、-(CH2) n -(C=O)-、-(C=O)-(CH2) n -、-(CH2) n -(C=O)-(CH2) n -、-O-(C=O)-、-(C=O)-O-、-O-(C=O)-O-、-(CH2)n-(C=O)-O-、-O-(C=O)-(CH2) n 、-(C=O)-O-(CH2) n -、-(CH2) n -O-(C=O)-、-(CH2) n -(C=O)-O-(CH2) n -、-(CH2) n -O-(C=O)-(CH2) n -、-NRN-(C=O)-、-(C=O)-NRN-、-NRN-(C=O)-O-、-O-(C=O)-NRN-、-NRN-(C=O)-NRN-、-(CH2) n -(C=O)-NRN-、-NRN-(C=O)-(CH2) n 、-(C=O)- NRN-(CH2) n -、-(CH2) n -NRN-(C=O)-、-(CH2) n -(C=O)-NRN-(CH2) n -、-(CH2) n -NRN-(C=O)-(CH2) n -、-(C=O)-NRN-(CH2CH2-O) n -、-(CH2CH2-O) n -(C=O)-NRN-、-(CH2) n -(C=O)-NRN-(CH2CH2-O) n -、-(CH2CH2-O) n -(C=O)-NRN-(CH2) n -或2-8員環狀烴、雜環、芳基或雜芳基環;其中「n」在每次出現時獨立地係零或1-10之整數;且其中「l」、「p」、「q」及「r」獨立地係零或1-10之整數; Ω係鍵(亦即,其不存在)或C3-26烴環或稠合環系統,其視情況包括至多4個稠合環,每一環具有3-8個成員且視情況在每一環中包括1-4個選自O、S及N之雜原子。在一實施例中,Ω包括稠合至環辛烷環或稠合至8員雜環或環系統之1,2,3-三唑環。 X 1 , X 2 , X 3 , X 2 , X 4 and X 5 are each independently selected from the group consisting of: a bond (ie, it is absent), -O-, -NR N -, -N=C-, -C=N-, -N=N-, -CR*=CR*-(cis or trans), -C≡C-, -(C=O)-, -(C =O)-O-, -(C=O)-NR N -, -NR N -(C=O)-, -NR N -(C=O)-O-, -(C=O)-( CH 2 ) n -, -(C=O)-O-(CH 2 ) n -, -(C=O)-NR N -(CH 2 ) n - and -(C=O)-NR N -( CH 2 CH 2 -O) n -, wherein " n " is zero or an integer from 1 to 10; R a , R b , R c and R d are independently selected from -O-, -NR N at each occurrence -, -CH 2 -, -(CH 2 ) n -, -(CR* 2 ) n -, -(CH 2 CH 2 -O) n -, -(CR* 2 CR* 2 -O) n -, -(O-CH 2 CH 2 ) n -, -(O-CR* 2 CR* 2 ) n -, -CR*=CR*-(cis or trans), -N=C-, -C= N-, -N=N-, -C≡C-, -(C=O)-, -(CH 2 ) n -(C=O)-, -(C=O)-(CH 2 ) n - , -(CH 2 ) n -(C=O)-(CH 2 ) n -, -O-(C=O)-, -(C=O)-O-, -O-(C=O)- O-, -(CH 2 ) n -(C=O)-O-, -O-(C=O)-(CH 2 ) n , -(C=O)-O-(CH 2 ) n -, -(CH 2 ) n -O-(C=O)-, -(CH 2 ) n -(C=O)-O-(CH 2 ) n -, -(CH 2 ) n -O-(C= O)-(CH 2 ) n -, -NR N -(C=O)-, -(C=O)-NR N -, -NR N -(C=O)-O-, -O-(C=O)-NR N -, -NR N -(C=O)-NR N -, -(CH 2 ) n -(C= O)-NR N -, -NR N -(C=O)-(CH 2 ) n , -(C=O)- NR N -(CH 2 ) n -, -(CH 2 ) n -NR N - (C=O)-, -(CH 2 ) n -(C=O)-NR N -(CH 2 ) n -, -(CH 2 ) n -NR N -(C=O)-(CH 2 ) n -, -(C=O)-NR N -(CH 2 CH 2 -O) n -, -(CH 2 CH 2 -O) n -(C=O)-NR N -, -(CH 2 ) n -(C=O)-NR N -(CH 2 CH 2 -O) n -, -(CH 2 CH 2 -O) n -(C=O)-NR N -(CH 2 ) n - or 2 -8 membered cyclic hydrocarbon, heterocyclic, aryl or heteroaryl ring; wherein " n " is independently zero or an integer from 1 to 10 at each occurrence; and wherein " l ", " p ", " q " And " r " are independently zero or an integer from 1 to 10; an Ω linkage (ie, absent) or a C3-26 hydrocarbon or fused ring system, optionally including up to 4 fused rings. Each ring has 3-8 members and optionally includes 1-4 heteroatoms selected from O, S and N in each ring. In one embodiment, Ω comprises a 1,2,3-triazole ring fused to a cyclooctane ring or fused to an 8-membered heterocyclic ring or ring system.
R*及RN在每次出現時獨立地係H或C1-12烴,其視情況經1-6個選自鹵素、O、S及N之雜原子取代;且其中兩個基團R*及/或RN可一起形成3-8員環。 N R and R * are independently H or C 1-12 hydrocarbon-based, at each occurrence, which is optionally substituted with 1-6 groups selected from halogen, O, N, and S substituted with the hetero atom; and wherein the two groups R * and / or R N can form a 3-8 member ring together.
疊氮化物與炔之間之環加成反應可經由1,3偶極環加成反應進行。該反應可由銅離子催化。在一些實施例中,環加成反應係在中性或生理學pH下發生。 The cycloaddition reaction between the azide and the alkyne can be carried out via a 1,3 dipolar cycloaddition reaction. This reaction can be catalyzed by copper ions. In some embodiments, the cycloaddition reaction occurs at a neutral or physiological pH.
本揭示內容另外提供還原具有鉸鏈殘基序列(EU索引編號:殘基226-229;Kabat編號:殘基239-242)CPPC或CPSC或SPPC或SPSC之抗體「A」及具有鉸鏈殘基序列(殘基226-229)CPPC或CPSC或SPPC或SPSC之第二抗體「B」以形成半抗體A及半抗體B之方法,其包括:(a)還原每一抗體A及抗體B,其中還原條件破裂具有鉸鏈殘基序列(EU索引編號:殘基226-229;Kabat編號:殘基239-242)CPPC或CPSC或SPPC或SPSC之每一抗體之鉸鏈區中之任一鏈間或鏈內二硫鍵;(b)使選自由下列組成之群之化合物連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
其中N3係-N=N=N;至半抗體A之鉸鏈核心序列之一或兩個Cys殘基(EU索引編號:殘基226及229;Kabat編號:殘基239及242)以形成經連接半抗體A;(c)使選自由下列組成之群之化合物連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
至抗體B之鉸鏈核心序列之一或兩個Cys殘基226及229(EU索引編號:殘基226及229;Kabat編號:殘基239及242)以形成經連接抗體B;及(d)在中性條件下一起培育大約等莫耳量之經連接抗體A與經連接抗體B以形成經連接雙特異性抗體AB。 To one of the hinge core sequences of antibody B or two Cys residues 226 and 229 (EU index number: residues 226 and 229; Kabat number: residues 239 and 242) to form linked antibody B; and (d) Approximately one molar amount of linked antibody A and linked antibody B are incubated together under neutral conditions to form a linked bispecific antibody AB.
較佳地,在還原劑中還原抗體A以形成半抗體A且還原抗體B以形成半抗體B,其中還原劑係選自由以下組成之群:L-半胱胺酸、二硫蘇糖醇、β-巰基乙醇、半胱胺、TCEP(叁(2-羧基乙基)膦)、2-MEA
(2-巰基乙基胺)及其組合。較佳地,使抗體A中具有一或兩個Cys殘基之鉸鏈區與具有選自由以下組成之群之結構的部分A連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
其中N3係-N=N=N。較佳地,使抗體B中具有一或兩個Cys殘基之鉸鏈區與具有選自由以下組成之群之結構的部分B連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
以形成經連接半抗體B。 To form a linked half antibody B.
本揭示內容另外提供化學鎖固之雙特異性抗體AB,其中經連接半抗體A
其中N3係-N=N=N;與經連接抗體B連接
以形成具有圖10中所展示結構之雙特異性抗體AB。 To form the bispecific antibody AB having the structure shown in Figure 10.
本揭示內容提供來自IgG種類抗體「A」或其片段及IgG種類抗體「B」之化學鎖固之雙特異性抗體「AB」或「BA」,其包括具有選自由以下組成之群之結構之半抗體A:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
其中N3係-N=N=N,且其中Z係離去基團;
及具有選自由以下組成之群之結構之半抗體B:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
本揭示內容另外提供一種雙特異性抗體,其包括:(a)第一抗體片段A',其包括來自抗體A之單一重鏈及輕鏈,重鏈具有一或多個反應性硫醇基團;(b)第二抗體片段B',其包括單一重鏈及輕鏈,重鏈具有一或多個反應性硫醇基團;其中該等第一及第二抗體片段經由1,2,3-三唑共價連接,該1,2,3- 三唑係藉由疊氮化物(經由連接體附接至該第一抗體片段上之反應性硫醇)及炔(經由連接體附接至該第二抗體片段上之反應性硫醇)之環加成反應形成。連接體闡述於上文中。抗體片段A'及B'係衍生自其Fab2片段之IgG1、IgG2或IgG4免疫球蛋白。 The disclosure further provides a bispecific antibody comprising: (a) a first antibody fragment A ' comprising a single heavy chain and a light chain from antibody A, the heavy chain having one or more reactive thiol groups (b) a second antibody fragment B ' comprising a single heavy chain and a light chain, the heavy chain having one or more reactive thiol groups; wherein the first and second antibody fragments are passed through 1, 2, 3 - a triazole covalently linked, the 1,2,3-triazole being attached via an azide (a reactive thiol attached to the first antibody fragment via a linker) and an alkyne (via a linker) A cycloaddition reaction of a reactive thiol on the second antibody fragment is formed. Linkers are set forth above. Antibody fragments A ' and B ' are IgGl, IgG2 or IgG4 immunoglobulins derived from their Fab2 fragments.
本揭示內容另外提供共價鍵結至連接體之抗體片段,其中該連接體包括具有能夠與疊氮化物發生環加成反應之-C≡C-鍵之C8環。本揭示內容另外提供共價鍵結至連接體之抗體片段,其中該連接體包括能夠與-C≡C-鍵發生環加成反應之疊氮化物。 The present disclosure further provides an antibody covalently bonded to the linker fragment, wherein the connecting member comprises a ring having a C 8 -C≡C- bond capable of cycloaddition reaction of the azide. The disclosure further provides an antibody fragment covalently bonded to a linker, wherein the linker comprises an azide capable of undergoing a cycloaddition reaction with a -C≡C- bond.
較佳地,在還原劑中還原抗體A以形成半抗體A且還原抗體B以形成半抗體B,其中還原劑係選自由以下組成之群:L-半胱胺酸、二硫蘇糖醇、β-巰基乙醇、半胱胺、TCEP(叁(2-羧基乙基)膦)、2-MEA(2-巰基乙基胺)及其組合。較佳地,使抗體A中具有一或兩個Cys殘基之鉸鏈區與具有選自由以下組成之群之結構的部分A連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
其中N3係-N=N=N;至半抗體A之鉸鏈核心序列之一或兩個Cys殘基(EU索引編號:殘基226及229;Kabat編號:殘基239及242)以形成經連接半抗體A;(c)使選自由下列組成之群之化合物連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
至抗體B之鉸鏈核心序列之一或兩個Cys殘基226及229(EU索引 編號:殘基226及229;Kabat編號:殘基239及242)以形成經連接抗體B;及 (d)在中性條件下一起培育大約等莫耳量之經連接抗體A與經連接抗體B以形成經連接雙特異性抗體AB。 One of the hinge core sequences to antibody B or two Cys residues 226 and 229 (EU index) Number: residues 226 and 229; Kabat number: residues 239 and 242) to form linked antibody B; (d) Approximately equimolar amount of ligated antibody A and ligated antibody B are incubated together under neutral conditions to form a linked bispecific antibody AB.
較佳地,在還原劑中還原抗體A以形成半抗體A且還原抗體B以形成半抗體B,其中還原劑係選自由以下組成之群:L-半胱胺酸、二硫蘇糖醇、β-巰基乙醇、半胱胺、TCEP(叁(2-羧基乙基)膦)、2-MEA(2-巰基乙基胺)及其組合。較佳地,使抗體A中具有一或兩個Cys殘基之鉸鏈區與具有選自由以下組成之群之結構的部分A連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
其中N3係-N=N=N。較佳地,使抗體B中具有一或兩個Cys殘基之
鉸鏈區與具有選自由以下組成之群之結構的部分B連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
以形成經連接半抗體B。 To form a linked half antibody B.
本揭示內容另外提供化學鎖固之雙特異性抗體AB,其中經連接半抗體A
其中N3係-N=N=N;與經連接抗體B連接
以形成具有圖10中所展示結構之雙特異性抗體AB。 To form the bispecific antibody AB having the structure shown in Figure 10.
本揭示內容提供來自IgG種類抗體「A」及IgG種類抗體「B」之化學鎖固之雙特異性抗體「AB」或「BA」,其包括具有選自由以下組成之群之結構之半抗體A:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
其中N3係-N=N=N,且其中Z係發生結合之離去基團;及具有選自由以下組成之群之結構之半抗體B:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
圖1展示建立經由化學偶聯至IgG種類抗體之鉸鏈區中之單一Cys殘基來生成雙特異性mAb之示意圖。 Figure 1 shows a schematic representation of the creation of a bispecific mAb by chemical coupling to a single Cys residue in the hinge region of an IgG class of antibodies.
圖2展示根據本文揭示內容經由化學偶聯至IgG種類抗體之鉸鏈區中之單一Cys殘基進行鏈間交聯之示意圖。 2 shows a schematic representation of interchain cross-linking via a single Cys residue chemically coupled to the hinge region of an IgG class antibody, according to the disclosure herein.
圖3展示鏈內交聯至IgG種類抗體之鉸鏈區內之兩個Cys殘基之示意圖。 Figure 3 shows a schematic representation of intracellular cross-linking to two Cys residues within the hinge region of an IgG class of antibodies.
圖4展示(上圖及下圖)經由鏈間交聯至IgG種類抗體之鉸鏈區內之兩個Cys殘基生成雙特異性mAb之示意圖。 Figure 4 shows (top and bottom panels) a schematic representation of the generation of bispecific mAbs by cross-linking between two Cys residues in the hinge region of an IgG class of antibodies.
圖5展示化學鎖固之半mAb片段之SDS PAGE分析。 Figure 5 shows SDS PAGE analysis of a chemically locked half mAb fragment.
圖6展示來自裸mAb(上圖)、疊氮化物偶聯mAb片段(中圖)及炔偶聯mAb片段(下圖)之HC Fab之MS分析。 Figure 6 shows MS analysis of HC Fab from naked mAb (top panel), azide coupled mAb fragment (middle panel) and alkyne coupled mAb fragment (bottom panel).
圖7展示來自疊氮化物附接半mAb及炔附接半mAb片段之交聯產物之SDS PAGE。 Figure 7 shows SDS PAGE of crosslinked products from azide attached half mAb and alkyne attached half mAb fragments.
圖8展示來自起始mAb(上圖)及交聯產物(下圖)之(Fab)2之MS分析。 Figure 8 shows MS analysis of (Fab) 2 from the starting mAb (upper panel) and the crosslinked product (bottom panel).
圖9展示本文實例4中所產生之化學改質半抗體片段(泳道2及3)之非還原SDS PAGE。 Figure 9 shows non-reducing SDS PAGE of the chemically modified half antibody fragments (lanes 2 and 3) produced in Example 4 herein.
圖10展示經由兩個半抗體片段之間之點擊偶聯來生成雙特異性抗體。 Figure 10 shows the generation of bispecific antibodies via click coupling between two half antibody fragments.
圖11展示半抗體片段(a)及點擊產物(b)之非還原SDS PAGE。半抗體-疊氮化物位於凝膠(a)中之泳道2中且半抗體-DBCO位於凝膠(a)中之泳道3中。點擊產物位於凝膠(b)中之泳道2中。 Figure 11 shows non-reducing SDS PAGE of half antibody fragment (a) and click product (b). The half antibody-azide is located in lane 2 of gel (a) and the half antibody-DBCO is located in lane 3 of gel (a). Click on the product located in lane 2 of gel (b).
圖12展示IdeS消化點擊產物之質譜,其展示雙特異性抗體CBA-0710之質量。 Figure 12 shows a mass spectrum of the IdeS digestion click product showing the mass of the bispecific antibody CBA-0710.
圖13展示雙特異性抗體CBA-0710之SEC尺寸排除層析。 Figure 13 shows SEC size exclusion chromatography of the bispecific antibody CBA-0710.
圖14展示BIAcore上之雙特異性抗體CBA-0710之結合。更具體而言,圖14展示BIAcore上雙特異性抗體CBA-0710與兩種抗原之同時結合。 Figure 14 shows the binding of the bispecific antibody CBA-0710 on BIAcore. More specifically, Figure 14 shows the simultaneous binding of the bispecific antibody CBA-0710 on BIAcore to both antigens.
圖15展示結合至三陰性乳癌細胞MDA-MB-231之雙特異性抗體CBA-0710。該等細胞表現抗原-1及抗原-2。STI-A0607係抗抗原-1單株抗體且STI-A1010係抗抗原-2單株抗體。 Figure 15 shows the bispecific antibody CBA-0710 bound to triple negative breast cancer cell line MDA-MB-231. These cells express antigen-1 and antigen-2. STI-A0607 is an anti-antigen-1 monoclonal antibody and STI-A1010 is an anti-antigen-2 monoclonal antibody.
圖16展示雙特異性抗體CBA-0710在三陰性乳癌細胞中之拮抗活 性。STI-A0607係抗抗原-1單株抗體且STI-A1010係抗抗原2單株抗體。HGF係抗原-1之天然配體。 Figure 16 shows the antagonistic activity of the bispecific antibody CBA-0710 in triple negative breast cancer cells. Sex. STI-A0607 is an anti-antigen-1 monoclonal antibody and STI-A1010 is an anti-antigen 2 monoclonal antibody. HGF is a natural ligand for antigen-1.
圖17展示因應於雙特異性抗體CBA-0710之增加之IFN-γ釋放。STI-A1010係抗抗原-2(免疫檢查點)單株抗體。競爭劑mAb係人類化抗抗原-2(免疫檢查點)單株抗體。 Figure 17 shows IFN-[gamma] release in response to an increase in the bispecific antibody CBA-0710. STI-A1010 is an anti-antigen-2 (immunoassay) monoclonal antibody. The competitor mAb is a humanized anti-antigen-2 (immunoassay) monoclonal antibody.
圖18展示因應於雙特異性抗體CBA-0710之增加之IL-2釋放。STI-A1010係抗抗原-2(免疫檢查點)單株抗體。競爭劑mAb係人類化抗抗原-2(免疫檢查點)單株抗體。 Figure 18 shows IL-2 release in response to an increase in the bispecific antibody CBA-0710. STI-A1010 is an anti-antigen-2 (immunoassay) monoclonal antibody. The competitor mAb is a humanized anti-antigen-2 (immunoassay) monoclonal antibody.
圖19展示由A抗c-Met抗體及B抗PD-L1抗體構成之化學鎖固之雙特異性抗體與規則抗c-Met IgG1及抗PD-L1 IgG1抗體相比之改良效能。 Figure 19 shows the improved efficacy of a chemically immobilized bispecific antibody composed of an A anti-c-Met antibody and a B anti-PD-L1 antibody compared to a regular anti-c-Met IgG1 and anti-PD-L1 IgG1 antibody.
圖20展示經由化學偶聯生成雙特異性F(ab)’2之示意圖。 (Ab) a schematic diagram 'of FIG. 2 shows bispecific F 20 via chemical coupling.
圖21展示F(ab)’2及F(ab)’之SDS_PAGE凝膠分析。柱1係使用IdeS消化之抗體A。柱2係使用IdeS消化之抗體B。柱3係經消化且去除FC之抗體A。柱4係經消化且去除FC之抗體B。柱5係經消化且去除FC、使用2MEA及TCEP還原且與DBCO(二苄基環辛基)-馬來醯亞胺偶聯之抗體A。柱6係經消化且去除FC、使用2MEA及TCEP還原、與疊氮化物-馬來醯亞胺偶聯之抗體B。 Figure 21 shows an SDS_PAGE gel analysis of F(ab)'2 and F(ab)'. Column 1 was an antibody A digested with IdeS. Column 2 is an antibody B digested with IdeS. Column 3 was digested and antibody A of FC was removed. Column 4 is digested and FC antibody B is removed. Column 5 was subjected to digestion and removal of FC, antibody A reduced with 2MEA and TCEP and coupled with DBCO (dibenzylcyclooctyl)-maleimide. Column 6 was subjected to digestion and removal of FC, antibody 2 reduced with 2MEA and TCEP, coupled with azide-maleimide.
圖22展示經由兩個F(ab)’片段之間之點擊偶聯生成F(ab)’2化學鎖固之雙特異性抗體的示意圖。 Figure 22 shows a schematic representation of the generation of F(ab)' 2 chemically locked bispecific antibodies via click coupling between two F(ab)' fragments.
圖23展示來自本文實例7之點擊F(ab)’2之SEC。 Figure 23 shows the SEC from the click F(ab)' 2 of Example 7 herein.
圖24展示點擊雙特異性F(ab)’2片段分析SDS PAGE。柱1係經消化且去除FC並使用2MEA及TCEP還原、與DBCO(二苄基環辛基)-馬來醯亞胺偶聯之抗體A。柱2係經消化且去除FC並使用2MEA及TCEP還原、與疊氮化物-馬來醯亞胺偶聯之抗體B。柱3係點擊_雙特異性F(ab)’2。 Figure 24 shows the click-specific bispecific F(ab)' 2 fragment analysis SDS PAGE. Column 1 was antibody A which was digested and removed with FC and reduced with DBA (dibenzylcyclooctyl)-maleimide using 2MEA and TCEP reduction. Column 2 was digested and FC was removed and antibody B coupled to azide-maleimide was reduced using 2MEA and TCEP. Column 3 is clicked on _bispecific F(ab)' 2 .
圖25展示點擊產物之質譜,其展示雙特異性F(ab)’2之質量。 Figure 25 shows a mass spectrum of a click product showing the mass of the bispecific F(ab)' 2 .
圖26展示點擊F(ab)’2之SEC。 Figure 26 shows the SEC clicking F(ab)'2.
圖27展示Octet Red上雙特異性F(ab)’2與兩個抗原之同時結合。 Figure 27 shows the simultaneous binding of bispecific F(ab)' 2 to two antigens on Octet Red.
圖28展示經由化學偶聯生成雙特異性IgG2之示意圖。 Figure 28 shows a schematic representation of the production of bispecific IgG2 via chemical coupling.
圖29展示IgG2片段分析SDS PAGE。柱1係抗體A。柱2係使用TCEP還原且與疊氮化物-馬來醯亞胺偶聯之抗體A。柱3係抗體B。柱4係使用TCEP還原且與疊氮化物-馬來醯亞胺偶聯之抗體B。 Figure 29 shows IgG2 fragment analysis SDS PAGE. Column 1 is antibody A. Column 2 is an antibody A reduced with TCEP and coupled to azide-maleimide. Column 3 is antibody B. Column 4 is an antibody B reduced with TCEP and coupled to azide-maleimide.
圖30A-C展示質譜,其展示(圖30A)與連接體偶聯之IgG2_A、(圖30B)與連接體偶聯之IgG2_B及(圖30C)形成於IgG2_A與B之間之雙特異性-IgG2的質量。 Figures 30A-C show mass spectra showing (Figure 30A) IgG2_A coupled to the linker, (Figure 30B) IgG2_B coupled to the linker and (Figure 30C) bispecific-IgG2 formed between IgG2_A and B the quality of.
圖31展示IgG2_A、IgG2_B及點擊產物之SEC。 Figure 31 shows SEC of IgG2_A, IgG2_B and click products.
雙特異性抗體(BsAb)係由兩個在鉸鏈區處以化學方式連接之半抗體片段構成(圖1)。起始抗體係IgG1或IgG4同種型。起始抗體可含有改質鉸鏈區,其中Cys殘基首先突變至Ser,從而在鉸鏈處僅留下一種二硫化物。雙特異性抗體之生成涉及三個主要步驟。第一步驟係選擇性還原兩種抗體A及B以形成半抗體片段。第二步驟係經由基於半胱胺酸之偶聯將功能部分X或Y引入每一抗體半片段之鉸鏈區中,從而分別得到化學改質之抗體半片段A’及B’。在最後步驟中,使兩個抗體半片段經由X與Y部分之間之化學連接連接至一起以形成雙特異性抗體。 The bispecific antibody (BsAb) is composed of two semi-antibody fragments chemically linked at the hinge region (Fig. 1). The anti-system IgGl or IgG4 isotype is initiated. The starting antibody may contain a modified hinge region in which the Cys residue is first mutated to Ser, leaving only one disulfide at the hinge. The production of bispecific antibodies involves three major steps. The first step is the selective reduction of both antibodies A and B to form a half antibody fragment. The second step is to introduce functional moiety X or Y into the hinge region of each antibody half fragment via cysteine-based coupling to obtain chemically modified antibody half fragments A' and B', respectively. In the final step, two antibody half fragments are ligated together via a chemical linkage between the X and Y moieties to form a bispecific antibody.
本揭示內容提供自IgG種類抗體「A」及IgG種類抗體「B」生成化學鎖固之雙特異性抗體「AB」或「BA」之製程,其包括:(a)還原具有鉸鏈殘基序列(EU索引編號:殘基226-229;Kabat編號:殘基239-242)CPPC或CPSC或SPPC或SPSC之第一抗體「A」及具有鉸鏈殘基序列(EU索引編號:殘基226-229;Kabat編號:殘基239-
242)CPPC或CPSC或SPPC或SPSC之第二抗體「B」以形成半抗體A及半抗體-B,其中抗體A結合至第一靶且抗體B結合至第二靶,其中還原條件破裂具有鉸鏈殘基序列(殘基226-229)CPPC或CPSC或SPPC或SPSC之抗體種類之鉸鏈區中之任一鏈間或鏈內二硫鍵;
(b)使式I化合物與半抗體A之鉸鏈核心序列之一或兩個Cys殘基(EU索引編號:殘基226及229;Kabat編號:殘基239及242)連接以形成具有選自由以下組成之群之結構的經連接半抗體A:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
其中N3係-N=N=N;(c)使式II化合物與抗體B之鉸鏈核心序列之一或兩個Cys殘基(EU索引編號:殘基226及229;Kabat編號:殘基239及242)連接以形成具
有選自由以下組成之群之結構的經連接抗體B:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
;及(d)在中性條件下一起培育大約等莫耳量之經連接抗體A與經連接抗體B以形成經連接雙特異性抗體AB。 And (d) cultivating approximately one molar amount of linked antibody A and linked antibody B under neutral conditions to form a linked bispecific antibody AB.
較佳地,在還原劑(例如L-半胱胺酸、二硫蘇糖醇、β-巰基乙醇、半胱胺、TCEP(叁(2-羧基乙基)膦)、2-MEA(2-巰基乙基胺)及其組合)中還原抗體A以形成半抗體A且還原抗體B以形成半抗體B。較佳地,使抗體A中具有兩個Cys殘基之鉸鏈區與具有選自由以下組成之
群之結構的部分A連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
其中N3係-N=N=N。較佳地,使抗體B中具有兩個Cys殘基之鉸鏈區與具有選自由以下組成之群之結構的部分B連接:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
本揭示內容另外提供化學鎖固之雙特異性抗體AB,其中經連接半抗體A
其中N3係-N=N=N;
與經連接抗體B連接
以形成具有圖10中所展示結構之雙特異性抗體AB。 To form the bispecific antibody AB having the structure shown in Figure 10.
本揭示內容提供來自IgG種類抗體「A」及IgG種類抗體「B」之化學鎖固之雙特異性抗體「AB」或「BA」,其包括具有選自由以下組成之群之結構之半抗體A:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
其中N3係-N=N=N;及具有選自由以下組成之群之結構之半抗體B:
M=N、C M=N, C
M’=N、C M’=N, C
Z=I、Br、SPh Z=I, Br, SPh
較佳地,在還原劑(例如L-半胱胺酸、二硫蘇糖醇、β-巰基乙醇、半胱胺、TCEP(叁(2-羧基乙基)膦)、2-MEA(2-巰基乙基胺)及其組合)中還原抗體A以形成半抗體A且還原抗體B以形成半抗體B。 Preferably, in a reducing agent (for example, L-cysteine, dithiothreitol, β-mercaptoethanol, cysteamine, TCEP (叁-(2-carboxyethyl)phosphine), 2-MEA (2- Antibody A is reduced in decylethylamine and combinations thereof to form half antibody A and reduce antibody B to form half antibody B.
較佳地,抗體A及B係單株抗體。可藉由雜交瘤方法或藉由重組DNA及蛋白質表現方法產生單株抗體。另外,抗體A及B係全長抗體或抗體片段。 Preferably, antibodies A and B are monoclonal antibodies. Monoclonal antibodies can be produced by hybridoma methods or by recombinant DNA and protein expression methods. Further, antibodies A and B are full-length antibodies or antibody fragments.
抗體A及B具有CPPC核心鉸鏈區序列或CPSC核心鉸鏈區序列或SPPC核心鉸鏈區序列或SPSC核心鉸鏈區序列(EU索引編號:殘基226- 229;Kabat編號:殘基239-242)。另外,步驟(d)培育進一步包括添加還原劑之步驟,其中還原劑係選自由以下組成之群:L-半胱胺酸、二硫蘇糖醇、β-巰基乙醇、半胱胺、TCEP(叁(2-羧基乙基)膦)、2-MEA(2-巰基乙基胺)及其組合。 Antibodies A and B have a CPPC core hinge region sequence or a CPSC core hinge region sequence or a SPPC core hinge region sequence or a SPSC core hinge region sequence (EU index number: residue 226- 229; Kabat number: residues 239-242). Further, the step (d) cultivating further comprises the step of adding a reducing agent, wherein the reducing agent is selected from the group consisting of L-cysteine, dithiothreitol, β-mercaptoethanol, cysteamine, TCEP ( Bis(2-carboxyethyl)phosphine), 2-MEA (2-mercaptoethylamine), and combinations thereof.
可使用常規生物化學技術(例如吸光度量測、HP-SEC、SDS-PAGE、原始PAGE及RP-HPLC)分析所得雙特異性抗體之品質及純度。應注意,所揭示方法通常因式I連接體對式II連接體之親和力特異性而避免任何純化步驟。然而,存在各種提供US2010/0105874於中之純化步驟,其揭示內容以引用方式併入本文中。 The quality and purity of the resulting bispecific antibodies can be analyzed using conventional biochemical techniques (eg, absorbance spectroscopy, HP-SEC, SDS-PAGE, original PAGE, and RP-HPLC). It should be noted that the disclosed methods generally avoid any purification step due to the affinity specificity of the linker of formula I for the linker of formula II. However, there are various purification steps that are provided in US 2010/0105874, the disclosure of which is incorporated herein by reference.
所揭示製程進一步包括調配雙特異性抗體以用於治療應用之步驟。此係藉由在適於人類應用、尤其適於非經腸或靜脈內投與之水溶液中調配有效量之雙特異性抗體來達成。 The disclosed process further includes the step of formulating a bispecific antibody for therapeutic use. This is achieved by formulating an effective amount of a bispecific antibody in an aqueous solution suitable for human use, particularly for parenteral or intravenous administration.
圖2展示經由化學偶聯生成雙特異性單株抗體(mAb)之反應圖。本文所闡述之雙特異性mAb係由兩個在鉸鏈區處以化學方式連接之半抗體片段構成。雙特異性mAb生成之製程涉及三個主要步驟(圖2)。第一步驟係分別選擇性還原兩種不同mAb A及B中之鉸鏈二硫化物。第二步驟係經由連接體X或Y在每一mAb中同一重鏈上之兩個半胱胺酸之間引入鏈內連接。鏈內連接製程產生兩個化學鎖固之mAb片段A’及B’。在最後步驟中,使兩個mAb片段經由X與Y之間之化學連接連接至一起以形成雙特異性抗體AB。 Figure 2 shows a reaction diagram for the generation of bispecific monoclonal antibodies (mAbs) via chemical coupling. The bispecific mAbs described herein are composed of two semi-antibody fragments chemically linked at the hinge region. The process of bispecific mAb generation involves three main steps (Figure 2). The first step is to selectively reduce the hinge disulfide in two different mAbs A and B, respectively. The second step introduces an intrachain linkage between the two cysteines on the same heavy chain in each mAb via linker X or Y. The in-chain linkage process produces two chemically-locked mAb fragments A' and B'. In the final step, two mAb fragments are ligated together via a chemical linkage between X and Y to form a bispecific antibody AB.
在此研究中使用具有鉸鏈突變(CPSC)之IgG1、wt IgG4及具有鉸鏈突變(SPSC)之IgG4。 IgG1, wt IgG4 with hinge mutation (CPSC) and IgG4 with hinge mutation (SPSC) were used in this study.
第一步驟係還原抗體A及抗體B中之每一者。在一實施例中,使用10莫耳當量之2-巰基乙基-胺(2-MEA)將抗體(10mg)在37℃下於0.1M pH 7.4 PBS、1.0mM二乙烯三胺五乙酸(DTPA)中處理2h。使用50kDa過濾離心管利用在3,000RPM下實施20分鐘之離心自部分還原 之mAb純化掉過量2-MEA。使用0.1M PBS實施總共三次洗滌。使用在280nm下針對1.0mg/mL溶液之1.58之吸光度值來量化蛋白質濃度,且使用150,000g/mol之分子量測定莫耳濃度。 The first step is the reduction of each of antibody A and antibody B. In one embodiment, the antibody (10 mg) is administered at 10 ° C in 0.1 M pH 7.4 PBS, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) using 10 molar equivalents of 2 -mercaptoethyl-amine (2-MEA). In the process of 2h. Excess 2-MEA was purified using a 50 kDa filter centrifuge tube using a centrifugation from partial reduction of mAb at 3,000 RPM for 20 minutes. A total of three washes were performed using 0.1 M PBS. The protein concentration was quantified using an absorbance value of 1.58 for a 1.0 mg/mL solution at 280 nm, and the molar concentration was determined using a molecular weight of 150,000 g/mol.
在還原步驟之另一實施例中,使用3.0莫耳當量之二硫蘇糖醇(DTT)將抗體(10mg)在24℃下於0.1M pH 7.4 PBS、1.0mM二乙烯三胺五乙酸(DTPA)中處理2h。使用50kDa過濾離心管利用在3,000RPM下實施20分鐘之離心自部分還原之mAb純化掉過量DTT。使用0.1M PBS實施總共3次洗滌。 In another embodiment of the reduction step, the antibody (10 mg) is subjected to 0.1 M pH 7.4 PBS, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) at 24 ° C using 3.0 molar equivalents of dithiothreitol (DTT). In the process of 2h. Excess DTT was purified using a 50 kDa filter centrifuge tube using a 20 min centrifugation from the partially reduced mAb at 3,000 RPM. A total of 3 washes were performed using 0.1 M PBS.
在還原步驟之另一實施例中,使用2.0莫耳當量之叁(2-羧基乙基)-膦(TCEP)將mAb(10mg)在24℃下於0.1M pH 8.0 PBS、1.0mM二乙烯三胺五乙酸(DTPA)中處理2h。mAb濃度為8.0mM。部分還原之mAb未經純化即直接用於偶聯步驟中。 In another embodiment of the reduction step, mAb (10 mg) is used at 0.1 ° C pH 8.0 PBS, 1.0 mM diethylene three at 24 ° C using 2.0 molar equivalents of ruthenium (2-carboxyethyl)-phosphine (TCEP). Treatment in amine pentaacetic acid (DTPA) for 2 h. The mAb concentration was 8.0 mM. The partially reduced mAb was used directly in the coupling step without purification.
第二步驟係偶聯步驟。將來自還原步驟之存於0.1M PBS中之部分還原之mAb「抗體A」添加至2.5莫耳當量的交聯劑Z-X-Z中(圖2及圖3)。交聯劑係自存於DMSO中之預製備儲備溶液(1mg/mL)所獲取。 在反應混合物中,部分還原之抗體之濃度為8.0mg/mL且DMSO含量為5%(v/v)。在24℃下實施偶聯2hr。使用半胱胺酸(1mM最終)淬滅任一未反應、過量交聯劑。使用經磷酸鹽緩衝鹽水平衡之PD-10管柱純化偶聯mAb。偶聯mAb結構圖解說明於圖4中。在相同條件下,使第二mAb(抗體B)與交聯劑Z-Y-Z偶聯(圖5及圖6)且純化。偶聯mAb結構圖解說明於圖7及圖8中。 The second step is the coupling step. The partially reduced mAb "antibody A" from the reduction step in 0.1 M PBS was added to 2.5 molar equivalents of crosslinker Z-X-Z (Figures 2 and 3). The crosslinker was obtained from a pre-prepared stock solution (1 mg/mL) stored in DMSO. The partially reduced antibody was at a concentration of 8.0 mg/mL and a DMSO content of 5% (v/v) in the reaction mixture. Coupling was carried out at 24 ° C for 2 hr. Any unreacted, excess crosslinker was quenched using cysteine (1 mM final). The coupled mAbs were purified using a PD-10 column equilibrated with phosphate buffered saline. The coupled mAb structure is illustrated in Figure 4. Under the same conditions, the second mAb (antibody B) was coupled to the cross-linking agent Z-Y-Z (Fig. 5 and Fig. 6) and purified. The structure of the coupled mAb is illustrated in Figures 7 and 8.
第三步驟係鏈間偶聯步驟。用於鏈間交聯之點擊偶聯圖解說明於圖9中。簡言之,向存於0.5mL PBS(0.1M,pH 7.4)中之疊氮化物裝飾抗體片段(3.0mg)中添加存於0.5mL PBS(0.1M,pH 7.4)中之3.0mg炔裝飾抗體片段。向此混合物中添加50μL乙腈且乙腈之最終含量為5%(v/v)。在室溫下反應3hr之後,使用100kDa過濾離心管利用在 3,000RPM下實施20分鐘之離心來純化混合物。使用PBS將混合物洗滌3次且對所得產物實施活體外表徵。 The third step is an interchain coupling step. A click coupling diagram for interchain crosslinking is illustrated in Figure 9. Briefly, 3.0 mg of acetylene decorative antibody in 0.5 mL PBS (0.1 M, pH 7.4) was added to the azide decorative antibody fragment (3.0 mg) in 0.5 mL PBS (0.1 M, pH 7.4). Fragment. To this mixture was added 50 μL of acetonitrile and the final content of acetonitrile was 5% (v/v). After reacting for 3 hr at room temperature, use a 100 kDa filter centrifuge tube for use in The mixture was purified by centrifugation at 3,000 RPM for 20 minutes. The mixture was washed 3 times with PBS and the resulting product was subjected to in vitro characterization.
此實例展示根據所揭示製程來合成雙特異性抗體。圖4展示藉由化學偶聯至IgG種類抗體之鉸鏈區中之兩個Cys殘基來生成雙特異性單株抗體(mAb)之反應圖。所揭示雙特異性mAb係由在其各別鉸鏈區處以化學方式連接之兩個半抗體片段構成。合成雙特異性mAb之製程涉及圖5中所展示之三個主要步驟。第一步驟係分別選擇性還原兩種不同mAb A及B中之鉸鏈二硫化物。第二步驟係經由連接體X或Y在每一mAb中同一重鏈上之兩個半胱胺酸之間引入鏈內連接。鏈內連接製程產生兩個化學鎖固之mAb片段A’及B’。在最後步驟中,使兩個mAb片段經由X與Y之間之化學連接連接至一起以形成雙特異性抗體AB。 This example demonstrates the synthesis of bispecific antibodies according to the disclosed processes. Figure 4 shows a reaction diagram for the production of bispecific monoclonal antibodies (mAbs) by chemical coupling to two Cys residues in the hinge region of an IgG class of antibodies. The disclosed bispecific mAbs are composed of two half-antibody fragments chemically linked at their respective hinge regions. The process of synthesizing bispecific mAbs involves the three main steps shown in Figure 5. The first step is to selectively reduce the hinge disulfide in two different mAbs A and B, respectively. The second step introduces an intrachain linkage between the two cysteines on the same heavy chain in each mAb via linker X or Y. The in-chain linkage process produces two chemically-locked mAb fragments A' and B'. In the final step, two mAb fragments are ligated together via a chemical linkage between X and Y to form a bispecific antibody AB.
更具體而言,獲得具有鉸鏈突變(CPSC)之抗體「A」IgG1及抗體「B」野生型IgG4。第一步驟係抗體還原。條件1:使用10莫耳當量之2-巰基乙基-胺(2-MEA)將抗體(10mg)在37℃下於0.1M pH 7.4 PBS、1.0mM二乙烯三胺五乙酸(DTPA)中單獨處理2h。使用50kDa過濾離心管利用在3,000RPM下實施20分鐘之離心自部分還原之mAb純化掉過量2-MEA。使用0.1M PBS實施總共三次洗滌。使用在280nm下針對1.0mg/mL溶液之1.58之吸光度值來量化蛋白質濃度,且使用150,000g/mol之分子量測定莫耳濃度。 More specifically, antibody "A" IgG1 and antibody "B" wild type IgG4 having a hinge mutation (CP S C) were obtained. The first step is antibody reduction. Condition 1: Antibody (10 mg) was separately used in 0.1 M pH 7.4 PBS, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) at 10 ° C using 10 molar equivalents of 2- mercaptoethyl-amine (2-MEA). Processed for 2h. Excess 2-MEA was purified using a 50 kDa filter centrifuge tube using a centrifugation from partial reduction of mAb at 3,000 RPM for 20 minutes. A total of three washes were performed using 0.1 M PBS. The protein concentration was quantified using an absorbance value of 1.58 for a 1.0 mg/mL solution at 280 nm, and the molar concentration was determined using a molecular weight of 150,000 g/mol.
條件2:使用3.0莫耳當量之二硫蘇糖醇(DTT)將抗體(10mg)在24℃下於0.1M pH 7.4PBS、1.0mM二乙烯三胺五乙酸(DTPA)中處理2h。使用50kDa過濾離心管利用在3,000RPM下實施20分鐘之離心自部分還原之mAb純化掉過量DTT。使用0.1M PBS實施總共3次洗滌。 Condition 2: The antibody (10 mg) was treated with 3.0 molar equivalents of dithiothreitol (DTT) in 0.1 M pH 7.4 PBS, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 24 °C. Excess DTT was purified using a 50 kDa filter centrifuge tube using a 20 min centrifugation from the partially reduced mAb at 3,000 RPM. A total of 3 washes were performed using 0.1 M PBS.
條件3:使用2.0莫耳當量之叁(2-羧基乙基)-膦(TCEP)將mAb(10mg)在24℃下於0.1M pH 8.0 PBS、1.0mM二乙烯三胺五乙酸(DTPA)中 處理2h。mAb濃度為8.0mM。部分還原之mAb未經純化即直接用於偶聯中。 Condition 3: mAb (10 mg) in 2.0 M pH 8.0 PBS, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) at 24 ° C using 2.0 molar equivalents of hydrazine (2-carboxyethyl)-phosphine (TCEP) Processed for 2h. The mAb concentration was 8.0 mM. The partially reduced mAb was used directly in the coupling without purification.
此實例展示,在實例1中製得之雙特異性抗體保留兩種其原始半Mab結合特性。 This example demonstrates that the bispecific antibody produced in Example 1 retains two of its original semi-Mab binding properties.
向存於60mL THF中之2.5g 3,4-二溴-1H-吡咯-2,5-二酮(10mmol)及1g NMM中逐滴添加MeOCOCl(10mmol,940mg,存於10ml DCM中),攪拌20min,然後使用60mL DCM稀釋反應溶液,藉由水洗滌3次,藉由無水硫酸鈉攪拌有機相,濃縮,獲得2.65g 3,4-二溴-2,5-二側氧基-2H-吡咯-1(5H)-甲酸甲酯。向311mg、1mmol此化合物中添加2-(2-疊氮基乙氧基)乙胺(130mg,1mmol)及5mL DCM,TLC展示反應在20min內完成,然後藉由DCM及鹽水萃取,藉由NH4Cl溶液洗滌,在無水硫酸鈉上乾燥,且然後濃縮以用於管柱純化,藉由2:1己烷及乙酸乙酯實施急驟分析,獲得230mg 1-(2-(2-疊氮基乙氧基)乙基)-3,4-二溴-1H-吡咯-2,5-二酮。1HNMR:3.32ppm(t,J=5.0Hz,1H),3.40ppm(t,J=5.0Hz,1H),3.50ppm(q,J=5.0Hz,1H),3.62ppm(t,J=5.0Hz,1H),3.63-3.69ppm(m,3H),3.84ppm(t,J=5hz,1H)。Fw:365.9,C8H8Br2N4O3;質量峰(1:2:1):366.9,368.9,370.9。 To 2.5 g of 3,4-dibromo-1H-pyrrole-2,5-dione (10 mmol) and 1 g of NMM in 60 mL of THF, MeOCOCl (10 mmol, 940 mg, stored in 10 ml of DCM) was added dropwise and stirred. After 20 min, the reaction solution was diluted with 60 mL of DCM, washed with water three times, and the organic phase was stirred with anhydrous sodium sulfate and concentrated to give 2.65 g of 3,4-dibromo-2,5-di- oxy-2H-pyrrole. -1 (5H)-methyl formate. To 311 mg, 1 mmol of this compound was added 2-(2-azidoethoxy)ethylamine (130 mg, 1 mmol) and 5 mL of DCM, and TLC showed that the reaction was completed in 20 min, then extracted with DCM and brine, with NH 4 Cl solution was washed, dried over anhydrous sodium sulfate, and then concentrated for column purification, and subjected to flash analysis by 2:1 hexane and ethyl acetate to obtain 230 mg of 1-(2-(2-azido) Ethoxy)ethyl)-3,4-dibromo-1H-pyrrole-2,5-dione. 1 H NMR: 3.32 ppm (t, J = 5.0 Hz, 1H), 3.40 ppm (t, J = 5.0 Hz, 1H), 3.50 ppm (q, J = 5.0 Hz, 1H), 3.62 ppm (t, J = 5.0) Hz, 1H), 3.63 - 3.69 ppm (m, 3H), 3.84 ppm (t, J = 5hz, 1H). Fw: 365.9, C 8 H 8 Br 2 N 4 O 3 ; mass peak (1:2:1): 366.9, 368.9, 370.9.
此實例闡釋使用位於IgG種類抗體之鉸鏈區中之單一Cys殘基來化學生成雙特異性抗體。本文所闡述之起始mAb含有改造鉸鏈區,其 中每一鏈上同一位置之一個Cys突變至Ser,由此得到僅留下單一二硫化物之鉸鏈。雙特異性mAb生成之製程涉及三個主要步驟(圖1)。第一步驟係分別選擇性還原兩種不同mAb A及B中之鉸鏈二硫化物。第二步驟係經由基於半胱胺酸之偶聯引入功能部分X或Y。Cys-連接步驟產生兩個化學鎖固之mAb片段A’及B’。在最後步驟中,使兩個mAb片段經由X與Y之間之化學連接連接至一起以形成雙特異性抗體AB。 在此研究中使用具有鉸鏈區突變(SPPC)之IgG1單株抗體。 This example illustrates the chemical production of bispecific antibodies using a single Cys residue located in the hinge region of an IgG class of antibodies. The starting mAbs described herein contain engineered hinge regions in which one Cys at the same position on each chain is mutated to Ser, thereby obtaining a hinge that leaves only a single disulfide. The process of bispecific mAb generation involves three main steps (Figure 1). The first step is to selectively reduce the hinge disulfide in two different mAbs A and B, respectively. The second step introduces functional moiety X or Y via cysteine-based coupling. The Cys-ligation step produces two chemically locked mAb fragments A' and B'. In the final step, two mAb fragments are ligated together via a chemical linkage between X and Y to form a bispecific antibody AB. And IgG1 monoclonal antibody having a hinge region mutation (S PPC) of this study.
條件1:使用10莫耳當量之2-巰基乙基-胺(2-MEA)將抗體(10mg)在37℃下於0.1M pH 7.4 PBS、1.0mM二乙烯三胺五乙酸(DTPA)中處理2h。使用50kDa過濾離心管利用在3,000RPM下實施20分鐘之離心自部分還原之mAb純化掉過量2-MEA。使用0.1M PBS實施總共三次洗滌。使用在280nm下針對1.0mg/mL溶液之1.58之吸光度值來量化蛋白質濃度,且使用150,000g/mol之分子量測定莫耳濃度。 Condition 1: Antibody (10 mg) was treated with 10 molar equivalents of 2- mercaptoethyl-amine (2-MEA) in 0.1 M pH 7.4 PBS, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) at 37 °C. 2h. Excess 2-MEA was purified using a 50 kDa filter centrifuge tube using a centrifugation from partial reduction of mAb at 3,000 RPM for 20 minutes. A total of three washes were performed using 0.1 M PBS. The protein concentration was quantified using an absorbance value of 1.58 for a 1.0 mg/mL solution at 280 nm, and the molar concentration was determined using a molecular weight of 150,000 g/mol.
條件2:使用3.0莫耳當量之二硫蘇糖醇(DTT)將抗體(10mg)在24℃下於0.1M pH 7.4 PBS、1.0mM二乙烯三胺五乙酸(DTPA)中處理2h。使用50kDa過濾離心管利用在3,000RPM下實施20分鐘之離心自部分還原之mAb純化掉過量DTT。使用0.1M PBS實施總共3次洗滌。 Condition 2: The antibody (10 mg) was treated with 3.0 molar equivalents of dithiothreitol (DTT) in 0.1 M pH 7.4 PBS, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) for 2 h at 24 °C. Excess DTT was purified using a 50 kDa filter centrifuge tube using a 20 min centrifugation from the partially reduced mAb at 3,000 RPM. A total of 3 washes were performed using 0.1 M PBS.
條件3:使用2.0莫耳當量之叁(2-羧基乙基)-膦(TCEP)將mAb(10mg)在24℃下於0.1M pH 8.0 PBS、1.0mM二乙烯三胺五乙酸(DTPA)中處理2h。mAb濃度為8.0mM。部分還原之mAb未經純化即直接用於偶聯中。 Condition 3: mAb (10 mg) in 2.0 M pH 8.0 PBS, 1.0 mM diethylenetriaminepentaacetic acid (DTPA) at 24 ° C using 2.0 molar equivalents of hydrazine (2-carboxyethyl)-phosphine (TCEP) Processed for 2h. The mAb concentration was 8.0 mM. The partially reduced mAb was used directly in the coupling without purification.
此實例展示根據本文揭示製程製備具有使每一半抗體片段之鉸鏈區彼此連接之所揭示化學連接結構之雙特異性抗體之方法。抗體支架為:具有鉸鏈突變(SPSC)之IgG4。 This example demonstrates a method of preparing a bispecific antibody having the disclosed chemical linkage structure linking the hinge regions of each half antibody fragment to each other according to the processes disclosed herein. The antibody scaffold is: IgG4 with a hinge mutation ( S PSC).
首先經由化學改質來改質每一Ig抗體以生成半抗體。具體而言, 緩衝液交換反應將抗體(0.5-3mg)添加至15mL過濾離心管(Millipore,UFC903024)中且添加適當體積之pH 8.0 PBS、1mM DTPA(二乙烯三胺五乙酸)緩衝液至管上之50mL標記處。將管在3,000RPM及5℃下離心20分鐘。將抗體轉移至1.5mL塑膠小瓶中且使用Nanodrop(Fisher,ND-2000 UV-Vis分光光度計)檢查濃度。最終抗體濃度介於5-8mg/mL之間。 Each Ig antibody is first modified by chemical modification to generate a half antibody. in particular, Buffer exchange reaction Add the antibody (0.5-3 mg) to a 15 mL filter centrifuge tube (Millipore, UFC903024) and add an appropriate volume of pH 8.0 PBS, 1 mM DTPA (diethylenetriaminepentaacetic acid) buffer to the 50 mL mark on the tube. At the office. The tubes were centrifuged at 3,000 RPM and 5 °C for 20 minutes. The antibody was transferred to a 1.5 mL plastic vial and the concentration was checked using a Nanodrop (Fisher, ND-2000 UV-Vis spectrophotometer). The final antibody concentration is between 5-8 mg/mL.
製備存於pH 8.0 PBS(1.0mM DTPA)緩衝液中之1mg/mL TCEP((叁(2-羧基乙基)膦))(Sigma-Aldrich,C4706)之儲備溶液。使用下表計算需要添加至抗體中之TCEP溶液體積,此取決於在緩衝液交換之後所回收抗體之當量數及所得質量。 A stock solution of 1 mg/mL TCEP ((叁(2-carboxyethyl)phosphine)) (Sigma-Aldrich, C4706) in pH 8.0 PBS (1.0 mM DTPA) buffer was prepared. The volume of TCEP solution that needs to be added to the antibody is calculated using the table below, depending on the number of equivalents of antibody recovered after buffer exchange and the resulting mass.
將適當體積之TCEP溶液(藉由上表計算)添加至抗體溶液中,輕微渦旋且將小瓶置於旋轉盤上。在室溫下實施還原反應90分鐘。 An appropriate volume of TCEP solution (calculated by the above table) was added to the antibody solution, vortexed slightly and the vial was placed on a rotating disk. The reduction reaction was carried out at room temperature for 90 minutes.
基於來自上表之計算來製備存於DMSO(Sigma-Aldrich,472301)中之DBCO-馬來醯亞胺(Click Chemistry Tools,A108-100)之儲備溶液。將存於DMSO中之DBCO-馬來醯亞胺添加至抗體試樣(未純化TCEP)。抗體試樣中之DMSO之最終體積為約5%(v/v)。在室溫及混合下藉由旋轉盤實施偶聯反應1小時。將每一試樣置於單獨15mL過濾離心管(Millipore,UFC903024)中且添加適當體積之1X DPBS(Corning,21-031-CM,無鈣或鎂)緩衝液至管上之50mL標記處。將試樣在3,000RPM及5℃下離心20分鐘。再次重複洗滌步驟在洗滌之後,將試樣轉移至單獨1.5mL塑膠小瓶中且置於冰箱(5℃)中。 A stock solution of DBCO-maleimide (Click Chemistry Tools, A108-100) in DMSO (Sigma-Aldrich, 472301) was prepared based on calculations from the above table. DBCO-maleimide in DMSO was added to the antibody sample (unpurified TCEP). The final volume of DMSO in the antibody sample was about 5% (v/v). The coupling reaction was carried out by rotating the disk for 1 hour at room temperature and under mixing. Each sample was placed in a separate 15 mL filter centrifuge tube (Millipore, UFC903024) and an appropriate volume of 1X DPBS (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the 50 mL mark on the tube. The samples were centrifuged at 3,000 RPM and 5 ° C for 20 minutes. Repeat the washing step again After washing, the sample was transferred to a separate 1.5 mL plastic vial and placed in a refrigerator (5 ° C).
對於IgG4抗體而言,4.0當量之TCEP已提供大量半抗體。對於IgG1抗體而言,3.5當量之TCEP已提供大量半抗體。將5.0當量之DBCO用於兩種類型之抗體。 For IgG4 antibodies, 4.0 equivalents of TCEP have provided a large number of half antibodies. For IgG1 antibodies, 3.5 equivalents of TCEP have provided a large number of half antibodies. 5.0 equivalents of DBCO were used for both types of antibodies.
向存於DMSO(0.12mL)中之DBCO-馬來醯亞胺(1.0mg,1.0當量)之溶液中添加存於DMSO(0.6mL)中之疊氮基-PEG4-疊氮化物(2.5mg,5.0當量)。將混合物在室溫下攪拌2hr。反應已完成,如藉由LC/MS所指示。所得疊氮化物-馬來醯亞胺之分子量為627.65g/mol。 Add azide-PEG4-azide (2.5 mg, in DMSO (0.6 mL) to a solution of DBCO-maleimide (1.0 mg, 1.0 eq.) in DMSO (0.12 mL). 5.0 equivalents). The mixture was stirred at room temperature for 2 hr. The reaction has been completed as indicated by LC/MS. The molecular weight of the obtained azide-maleimide was 627.65 g/mol.
向抗體試樣中添加存於DMSO中之疊氮化物-馬來醯亞胺(5.0當量)。抗體試樣中之DMSO之最終體積為約5%(v/v)。在室溫及混合下藉由旋轉盤實施偶聯反應1小時。如先前所闡述洗滌試樣。 The azide-maleimide (5.0 equivalents) in DMSO was added to the antibody sample. The final volume of DMSO in the antibody sample was about 5% (v/v). The coupling reaction was carried out by rotating the disk for 1 hour at room temperature and under mixing. The sample was washed as previously described.
藉由疏水性相互作用管柱(HIC)純化每一半抗體片段。使用TOSOH丁基-NPR管柱在40℃管柱溫度及0.6mL/min流速下實施HIC分析。洗脫係使用於50mM磷酸鈉緩衝液(pH 7.0)中之30min梯度來達成,其中鹽濃度遞減(自1.5M至0M硫酸銨)且有機改質劑遞增(自0%至25%異丙醇)。藉由SDS PAGE分析半抗體片段。具體而言,對於擬分析之每一試樣而言,需要20μL且濃度為0.6mg/mL。遵循已確立用於運行SDS-PAGE凝膠(RTP AD001-01及AD002-01)之方案。圖9展示化學改質之半抗體片段(泳道2及3)之非還原SDS PAGE。 Each half antibody fragment was purified by a hydrophobic interaction column (HIC). HIC analysis was performed using a TOSOH butyl-NPR column at a column temperature of 40 ° C and a flow rate of 0.6 mL/min. The elution was achieved using a 30 min gradient in 50 mM sodium phosphate buffer (pH 7.0) with decreasing salt concentration (from 1.5 M to 0 M ammonium sulfate) and an increase in organic modifier (from 0% to 25% isopropanol) ). Semi-antibody fragments were analyzed by SDS PAGE. Specifically, 20 μL and a concentration of 0.6 mg/mL were required for each sample to be analyzed. Follow established protocols for running SDS-PAGE gels (RTP AD001-01 and AD002-01). Figure 9 shows non-reducing SDS PAGE of chemically modified half antibody fragments (lanes 2 and 3).
此實例闡釋經由點擊反應生成雙特異性抗體。圖10展示經由兩個半抗體片段之間之點擊偶聯來生成雙特異性抗體。兩個半抗體片段之間之點擊反應展示於圖10中。向存於PBS(5.0mg/mL)中之半抗體-疊氮化物片段(500μg)中添加存於PBS(5.0mg/mL)中之半抗體-DBCO片段(500μg)。在室溫及混合下藉由旋轉盤實施反應2小時。對混合物實施SDS PAGE分析(圖11)且藉由離子交換層析純化。 This example illustrates the generation of bispecific antibodies via a click reaction. Figure 10 shows the generation of bispecific antibodies via click coupling between two half antibody fragments. The click reaction between the two half antibody fragments is shown in Figure 10. The half antibody-DBCO fragment (500 μg) in PBS (5.0 mg/mL) was added to the half antibody-azide fragment (500 μg) in PBS (5.0 mg/mL). The reaction was carried out by rotating a disk for 2 hours at room temperature and under mixing. The mixture was subjected to SDS PAGE analysis (Fig. 11) and purified by ion exchange chromatography.
在Agilent 1200 HPLC上使用Thermo WCX-10管柱在0.6mL/min流速下純化雙特異性抗體。使用增加之鹽濃度(0mM至100mM NaCl)之30min梯度在pH 5.7下於10mM MES緩衝液中來達成洗脫。藉由IdeS蛋白酶消化雙特異性抗體STI CBA-0710且藉由Water Xevo G-2 QTOF質譜分析並證實(圖12)。 The bispecific antibody was purified on a Agilent 1200 HPLC using a Thermo WCX-10 column at a flow rate of 0.6 mL/min. Elution was achieved using a 30 min gradient of increasing salt concentration (0 mM to 100 mM NaCl) at pH 5.7 in 10 mM MES buffer. The bispecific antibody STI CBA-0710 was digested by IdeS protease and analyzed by Water Xevo G-2 QTOF mass spectrometry (Figure 12).
藉由雙特異性抗體之尺寸排除層析(SEC)測定雙特異性抗體STI CBA-0710之生物物理性質(圖13)。具體而言,在Agilent 1200 HPLC上使用TSK凝膠SuperSW3000管柱(4.6mm ID×30cm,4μm)分析雙特異性抗體。緩衝液係0.2M磷酸鉀、0.25M KCl(pH 6.2)。 The biophysical properties of the bispecific antibody STI CBA-0710 were determined by size exclusion chromatography (SEC) of bispecific antibodies (Fig. 13). Specifically, bispecific antibodies were analyzed on a Agilent 1200 HPLC using a TSK gel SuperSW3000 column (4.6 mm ID x 30 cm, 4 [mu]m). The buffer was 0.2 M potassium phosphate, 0.25 M KCl (pH 6.2).
圖14展示BIAcore上之雙特異性抗體CBA-0710之結合。使用標準NHS/EDC偶合方法將第一抗原固定於CM5感測器晶片上直至大約1500RU。運行用於基線之緩衝液。裝載雙特異性抗體且隨後裝載緩衝液,然後運行針對第二抗原之結合。 Figure 14 shows the binding of the bispecific antibody CBA-0710 on BIAcore. The first antigen was immobilized on a CM5 sensor wafer using standard NHS/EDC coupling methods up to approximately 1500 RU. Run the buffer for the baseline. The bispecific antibody is loaded and then the buffer is loaded and then the binding to the second antigen is run.
此實例展示本文所產生雙特異性抗體之各種分析結果。雙特異性抗體存在基於細胞之結合及功能。雙特異性抗體CBA-0710結合至MDA-MB-231(人類乳癌)細胞(圖15),如藉由流式細胞術所分析。測 定抗體之EC50值。使用無酶細胞解離緩衝液(GIBCO)收穫表現抗原-1及抗原-2之MDA-MB-231三陰性乳癌(TNBC)細胞且轉移至V形底96孔板(50,000個細胞/孔)中。將細胞與存於FACS緩衝液(PBS+ 2% FBS)+NaN3中之雙特異性抗體CBA-0710或親代單特異性抗抗原-1或抗抗原-2抗體之連續稀釋液在冰上一起培育45min。在FACS緩衝液中洗滌2次之後,添加藻紅素偶聯抗人類IgG(γ-鏈特異性)之1:1000稀釋液且培育30min。在最終洗滌後,在Intellicyt高通量流式細胞儀(HTFC)上量測螢光強度。使用Graphpad Prism軟體及非線性回歸擬合分析數據。數據點展示為陽性標記細胞之中值螢光強度(MFI)+/-標準誤差。EC50值報告為達成50%之最大細胞結合之抗體濃度。 This example shows the results of various analyses of the bispecific antibodies produced herein. Bispecific antibodies have cell-based binding and function. The bispecific antibody CBA-0710 binds to MDA-MB-231 (human breast cancer) cells (Fig. 15) as analyzed by flow cytometry. Determination of EC 50 values of the antibodies. MDA-MB-231 triple negative breast cancer (TNBC) cells expressing antigen-1 and antigen-2 were harvested using enzyme-free cell dissociation buffer (GIBCO) and transferred to V-bottom 96-well plates (50,000 cells/well). Serial dilutions of cells with bispecific antibody CBA-0710 or parental monospecific anti-antigen-1 or anti-antigen-2 antibody in FACS buffer (PBS + 2% FBS) + NaN 3 on ice Cultivate for 45 minutes. After washing twice in FACS buffer, a 1:1000 dilution of phycoerythrin-conjugated anti-human IgG (gamma-chain specific) was added and incubated for 30 min. After the final wash, the fluorescence intensity was measured on an Intellicyt high throughput flow cytometer (HTFC). Data were analyzed using Graphpad Prism software and nonlinear regression fitting. Data points are shown as positive marker cell median fluorescence intensity (MFI) +/- standard error. EC 50 values are reported as the antibody concentration reaching 50% of the maximum binding of the cells.
結果圖解說明於表3及圖15中,且展示,雙特異性抗體與MDA-MB-231細胞之結合與親代類型抗體相比有所改良,其中亞毫微莫耳EC50值類似於抗抗原-2抗體,且結合強度與抗抗原-1抗體一般高。 The results are graphically illustrated in Table 3 and Figure 15, and demonstrate that the binding of the bispecific antibody to MDA-MB-231 cells is improved compared to the parental type antibody, wherein the sub-millimeter EC50 value is similar to the anti-antigen -2 antibody, and the binding strength is generally higher than that of the anti-antigen-1 antibody.
雙特異性抗體CBA-0710展示拮抗活性。具體而言,遵循PathScan® Phospho-Met(panTyr)Sandwich ELISA套組第7333號方案運行雙特異性抗體CBA-0710對c-MET磷酸化之抑制。簡言之,將細胞裂解物添加至重構檢測抗體中且培育,隨後添加重構HRP-連接體二級抗體。在洗滌之後,添加TMB受質且培育。在添加終止溶液之後,讀取結果。圖16展示雙特異性抗體CBA-0710在三陰性乳癌細胞中之拮抗活性。STI-A0607係抗抗原-1單株抗體且STI-A1010係抗抗原2單 株抗體。HGF係抗原-1之天然配體。 The bispecific antibody CBA-0710 displays antagonistic activity. Specifically, inhibition of c-MET phosphorylation by the bispecific antibody CBA-0710 was performed following the PathScan ® Phospho-Met (panTyr) Sandwich ELISA kit No. 7333 protocol. Briefly, cell lysates are added to the reconstituted detection antibody and incubated, followed by the addition of a reconstituted HRP-linker secondary antibody. After washing, TMB was added and incubated. After the termination solution was added, the results were read. Figure 16 shows the antagonistic activity of the bispecific antibody CBA-0710 in triple negative breast cancer cells. STI-A0607 is an anti-antigen-1 monoclonal antibody and STI-A1010 is an anti-antigen 2 monoclonal antibody. HGF is a natural ligand for antigen-1.
雙特異性抗體CBA-0710具有免疫調節活性。為量測雙特異性抗體CBA-0710調變T細胞反應性之能力,將經純化CD4+細胞與異基因樹突狀細胞(藉由在GM-CSF及IL-4中培養單核球7天製得)一起培養。設置平行板以容許在第3天及第5天收集上清液,從而使用商業ELISA套組分別量測IL-2及IFNγ。自行產生競爭劑之人類化抗抗原-2(免疫檢查點)mAb且用作陽性對照IgG1並利用非相關STI人類mAb作為陰性對照IgG抗體。圖17展示因應於雙特異性抗體CBA-0710之增加之IFN-γ釋放。STI-A1010係抗抗原-2(免疫檢查點)單株抗體。競爭劑mAb係人類化抗抗原-2(免疫檢查點)單株抗體。 The bispecific antibody CBA-0710 has immunomodulatory activity. To measure the ability of the bispecific antibody CBA-0710 to modulate T cell reactivity, purified CD4+ cells and allogeneic dendritic cells (by culturing mononuclear spheres in GM-CSF and IL-4 for 7 days) Get) cultivate together. Parallel plates were set up to allow collection of supernatants on days 3 and 5 to measure IL-2 and IFNy, respectively, using commercial ELISA kits. A humanized anti-antigen-2 (immunoassay) mAb of the competitor was generated and used as a positive control IgG1 and a non-related STI human mAb was used as a negative control IgG antibody. Figure 17 shows IFN-[gamma] release in response to an increase in the bispecific antibody CBA-0710. STI-A1010 is an anti-antigen-2 (immunoassay) monoclonal antibody. The competitor mAb is a humanized anti-antigen-2 (immunoassay) monoclonal antibody.
此實例闡釋使用F(ab)’2抗體A’及B’合成所揭示雙特異性抗體之方案。本文所闡述之雙特異性F(ab)’2係由兩個在鉸鏈區處以化學方式連接之F(ab)’片段構成(圖20)。起始抗體係IgG1或IgG4同種型。起始抗體含有改質鉸鏈區,其中Cys殘基突變至Ser殘基,從而在鉸鏈區處僅留下一個二硫化物。雙特異性F(ab)’2化學鎖固之雙特異性抗體之生成涉及4個主要步驟。第一步驟係去除Fc片段。第二步驟係分別選擇性還原抗體A及B。第三步驟係經由基於半胱胺酸之偶聯將功能部分X或Y引入鉸鏈區中,從而分別得到化學改質之抗體片段A’及B’。在最後步驟中,經由X與Y之間之化學連接使兩個抗體片段連接至一起以形成雙特異性F(ab)’2。用於此合成之反應圖展示於圖21中。 This example illustrates the protocol for the synthesis of the disclosed bispecific antibodies using F(ab)' 2 antibodies A' and B'. The bispecific F(ab)' 2 set forth herein is composed of two F(ab)' fragments chemically linked at the hinge region (Figure 20). The anti-system IgGl or IgG4 isotype is initiated. The starting antibody contains a modified hinge region in which the Cys residue is mutated to the Ser residue, leaving only one disulfide at the hinge region. The production of bispecific F(ab)' 2 chemically locked bispecific antibodies involves four major steps. The first step is to remove the Fc fragment. The second step is the selective reduction of antibodies A and B, respectively. The third step is to introduce functional moiety X or Y into the hinge region via cysteine-based coupling to obtain chemically modified antibody fragments A' and B', respectively. In the final step, the two antibody fragments are ligated together via a chemical linkage between X and Y to form a bispecific F(ab)' 2 . The reaction scheme used for this synthesis is shown in Figure 21.
具體而言,實施用於合成含有IgG1 A抗體(具有鉸鏈突變(SPPC))及IgG4 B抗體(具有鉸鏈突變(SPSC))之F(ab)’2化學鎖固之雙特異性抗體之製程。使用酶IdeS(其係裂解僅在鉸鏈區下方之一個特定位點處之IgG之消化酶),將抗體(1.5mg)添加至IdeS(A0-FR1-008)之每一管中且在37℃下於頭對頭旋轉器中培育過夜。然後使用蛋白質A純化去 除Fc片段。 Specifically, a bispecific antibody for synthesizing F(ab)' 2 chemically locked antibody containing an IgG1 A antibody (having a hinge mutation ( S PPC)) and an IgG4 B antibody (having a hinge mutation ( S PSC)) was carried out. Process. The antibody (1.5 mg) was added to each tube of IdeS (A0-FR1-008) at 37 ° C using the enzyme IdeS, which cleaves the IgG digestive enzyme at only one specific site below the hinge region. Incubate overnight in a head to head rotator. The Fc fragment was then removed using Protein A purification.
將抗體(1-10mg)添加至15mL過濾離心管(Millipore,UFC903024)中且添加適當體積之50mM磷酸鈉、150mM NaCl、5mM EDTA之pH 7.7緩衝液至管上之50mL標記處。將管在3,000RPM及22℃下離心20分鐘。將抗體轉移至1.5mL塑膠小瓶中且使用Nanodrop(Fisher,ND-2000 UV-Vis分光光度計)檢查濃度。最終抗體濃度為最高至多10mg/mL。 The antibody (1-10 mg) was added to a 15 mL filter centrifuge tube (Millipore, UFC903024) and an appropriate volume of 50 mM sodium phosphate, 150 mM NaCl, 5 mM EDTA pH 7.7 buffer was added to the 50 mL mark on the tube. The tubes were centrifuged at 3,000 RPM and 22 °C for 20 minutes. The antibody was transferred to a 1.5 mL plastic vial and the concentration was checked using a Nanodrop (Fisher, ND-2000 UV-Vis spectrophotometer). The final antibody concentration is up to 10 mg/mL.
將1mL 50mM磷酸鈉、150mM NaCl、5mM EDTA之pH 7.7緩衝液添加至一個含有6mg 2-巰基乙基胺˙HCl之小瓶中(得到50mM 2-MEA)。將50mM 2-MEA添加至F(ab)’2中且最終濃度為15mM,充分混合。在37℃下培育15min。使用NAP-5(GE17-0853-02)去鹽管柱使2-MEA與經還原F(ab)’2分離。 1 mL of 50 mM sodium phosphate, 150 mM NaCl, 5 mM EDTA in pH 7.7 buffer was added to a vial containing 6 mg of 2-mercaptoethylamine HCl (to give 50 mM 2-MEA). 50 mM 2-MEA was added to F(ab)' 2 and the final concentration was 15 mM, and mixed well. Incubate for 15 min at 37 °C. The 2-MEA was separated from the reduced F(ab)' 2 using a NAP-5 (GE17-0853-02) demineralization column.
製備存於pH 8.0 PBS(1.0mM DTPA)緩衝液中之1mg/mL TCEP((叁(2-羧基乙基)膦))(Sigma-Aldrich,C4706)之儲備溶液。端視在蛋白質A純化之後所回收F(ab)’2之當量數及所得質量,將5當量TCEP添加至去鹽F(ab)’中,充分搖動並在室溫下培育5min。 A stock solution of 1 mg/mL TCEP ((叁(2-carboxyethyl)phosphine)) (Sigma-Aldrich, C4706) in pH 8.0 PBS (1.0 mM DTPA) buffer was prepared. The number of equivalents of F(ab)' 2 recovered after protein A purification and the resulting mass were evaluated, and 5 equivalents of TCEP were added to desalted F(ab)', shaken well and incubated for 5 min at room temperature.
對於DBCO(二苄基環辛基)-馬來醯亞胺及疊氮化物-馬來醯亞胺偶聯而言,製備存於DMSO(Sigma-Aldrich,472301)中之DBCO-馬來醯亞胺(Click Chemistry Tools,A108-100)之儲備溶液且將20當量存於DMSO中之DBCO-馬來醯亞胺添加至F(ab)’(A)試樣中(未純化TCEP)。抗體試樣中之DMSO之最終體積為約5%(v/v)。在室溫及混合下藉由旋轉盤實施偶聯反應2小時。將存於DMSO中之疊氮化物-馬來醯亞胺(20當量)添加至F(ab)’(B)試樣中。抗體試樣中之DMSO之最終體積為約5%(v/v)。在室溫及混合下藉由旋轉盤實施偶聯反應2小時。 For DBCO (dibenzylcyclooctyl)-maleimide and azide-maleimide coupling, DBCO-Malayia was prepared in DMSO (Sigma-Aldrich, 472301) A stock solution of amine (Click Chemistry Tools, A108-100) and 20 equivalents of DBCO-maleimide in DMSO were added to the F(ab)'(A) sample (unpurified TCEP). The final volume of DMSO in the antibody sample was about 5% (v/v). The coupling reaction was carried out by rotating the disk for 2 hours at room temperature with mixing. The azide-maleimide (20 equivalents) in DMSO was added to the F(ab)' (B) sample. The final volume of DMSO in the antibody sample was about 5% (v/v). The coupling reaction was carried out by rotating the disk for 2 hours at room temperature with mixing.
對於洗滌步驟而言,將每一試樣置於單獨15mL過濾離心管(Millipore,UFC903024)中且添加適當體積之1X DPBS(Corning,21- 031-CM,無鈣或鎂)緩衝液至管上之50mL標記處。將試樣在3,000RPM及22℃下離心20分鐘。再次重複洗滌步驟。在洗滌之後,將試樣轉移至單獨1.5mL塑膠小瓶中且置於冰箱(5℃)中或用於點擊步驟。對於F(ab)’片段分析而言,使用SDS PAGE程序。對於擬分析之每一試樣而言,需要20μL且濃度為0.6mg/mL。遵循已確立用於運行SDS-PAGE凝膠(RTP AD001-01及AD002-01)之方案(圖21)。 For the washing step, each sample was placed in a separate 15 mL filter centrifuge tube (Millipore, UFC903024) and an appropriate volume of 1X DPBS was added (Corning, 21- 031-CM, no calcium or magnesium) buffer to the 50 mL mark on the tube. The samples were centrifuged at 3,000 RPM and 22 ° C for 20 minutes. Repeat the washing step again. After washing, the samples were transferred to a separate 1.5 mL plastic vial and placed in a refrigerator (5 ° C) or used in a click step. For the F(ab)' fragment analysis, the SDS PAGE program was used. For each sample to be analyzed, 20 μL was required and the concentration was 0.6 mg/mL. Follow established protocols for running SDS-PAGE gels (RTP AD001-01 and AD002-01) (Figure 21).
兩個F(ab)’片段之間之點擊反應反應圖展示於圖23中。向存於PBS(5.0mg/mL)中之F(ab)’-疊氮化物片段(500μg)中添加存於PBS(5.0mg/mL)中之F(ab)’-DBCO片段(500μg)。在室溫及混合下藉由旋轉盤實施反應過夜。對混合物實施SEC分析(圖24)。 A click reaction reaction diagram between two F(ab)' fragments is shown in Figure 23. To the F(ab)'-azide fragment (500 μg) in PBS (5.0 mg/mL), F(ab)'-DBCO fragment (500 μg) in PBS (5.0 mg/mL) was added. The reaction was carried out overnight by rotating the disk at room temperature with mixing. The mixture was subjected to SEC analysis (Fig. 24).
使用尺寸排除層析(SEC)分析此實例中所製得雙特異性抗體之生物物理性質。使用尺寸排除層析(SEC)Agilent 1200 HPLC(使用TSK凝膠SuperSW3000管柱(4.6mm ID×30cm,4μm))分析F(ab)’_A、F(ab)’_B及雙特異性點擊_F(ab)’2(圖24)。緩衝液係0.2M磷酸鉀、0.25M KCl且pH為6.2。 The biophysical properties of the bispecific antibodies produced in this example were analyzed using size exclusion chromatography (SEC). Analysis of F(ab)'_A, F(ab)'_B and bispecific click_F using size exclusion chromatography (SEC) Agilent 1200 HPLC (using TSK gel SuperSW3000 column (4.6 mm ID x 30 cm, 4 μm)) (ab)' 2 (Figure 24). The buffer was 0.2 M potassium phosphate, 0.25 M KCl and the pH was 6.2.
藉由質譜證實雙特異性F(ab)’2。在Water Xevo G-2 QTOF9上分析雙特異性F(ab)’2(圖25)。使用尺寸排除層析(SEC)純化雙特異性F(ab)’2。使用尺寸排除層析(SEC)Agilent 1200 HPLC(使用TSK凝膠SuperSW3000管柱(4.6mm ID×30cm,4μm))純化雙特異性點擊_F(ab)’2(圖26)。緩衝液係0.2M磷酸鉀、0.25M KCl且pH為6.2。 The bispecific F(ab)' 2 was confirmed by mass spectrometry. Bispecific F(ab)' 2 was analyzed on a Water Xevo G-2 QTOF9 (Figure 25). The bispecific F(ab)' 2 was purified using size exclusion chromatography (SEC). The bispecific click _F(ab)' 2 (Figure 26) was purified using size exclusion chromatography (SEC) Agilent 1200 HPLC (using a TSK gel SuperSW3000 column (4.6 mm ID x 30 cm, 4 [mu]m)). The buffer was 0.2 M potassium phosphate, 0.25 M KCl and the pH was 6.2.
活體外親和力量測係使用Octet Red者(圖27)。使用感測器AR2G在Octet Red(ForteBio公司)上量測雙特異性F(ab)’2抗原相互作用。簡言之,量測方案如下:300秒基線、300秒載入10μg/ml雙特異性F(ab)’2、120秒基線、300秒抗原A、300秒解離、300秒抗原B及300秒解離(圖27)。在PBS中實施感測器水合及基線與解離量測。 The in vitro affinity force measurement system used Octet Red (Figure 27). The bispecific F(ab)' 2 antigen interaction was measured on Octet Red (ForteBio) using a sensor AR2G. Briefly, the measurement protocol was as follows: 300 second baseline, 300 seconds loading 10 μg/ml bispecific F(ab)' 2 , 120 second baseline, 300 second antigen A, 300 second dissociation, 300 second antigen B and 300 seconds Dissociation (Figure 27). Sensor hydration and baseline and dissociation measurements were performed in PBS.
此實例闡釋使用IgG2抗體A’及B’合成所揭示雙特異性抗體之方案。本文所闡述之雙特異性IgG2係由兩個在鉸鏈區處以化學方式連接之IgG2片段構成(圖29)。起始抗體係IgG2同種型。雙特異性IgG2之生成涉及三個主要步驟。第一步驟係還原IgG2抗體之鉸鏈區中之一或兩個(總共4個)二硫結合,同時仍維持同源二聚體結構。第二步驟係經由基於半胱胺酸之偶聯將功能部分X或Y引入鉸鏈中,從而分別得到化學改質之抗體片段A’及B’。在最後步驟中,使兩個抗體經由X與Y之間之化學連接連接至一起以形成雙特異性_IgG2。 This example illustrates the protocol for the synthesis of the disclosed bispecific antibodies using IgG2 antibodies A' and B'. The bispecific IgG2 line set forth herein consists of two IgG2 fragments chemically linked at the hinge region (Figure 29). The initial anti-system IgG2 isotype is initiated. The generation of bispecific IgG2 involves three major steps. The first step is to reduce one or two (total of 4) disulfide bindings in the hinge region of the IgG2 antibody while still maintaining the homodimeric structure. The second step introduces the functional moiety X or Y into the hinge via cysteine-based coupling to obtain chemically modified antibody fragments A' and B', respectively. In the final step, two antibodies are joined together via a chemical linkage between X and Y to form bispecific IgG2.
具體而言,實施合成IgG2化學鎖固之雙特異性抗體之製程。將抗體(1-10mg)添加至15mL過濾離心管(Millipore,UFC903024)中且添加適當體積之50mM磷酸鈉、150mM NaCl、5mM EDTA之pH 7.7緩衝液至管上之50mL標記處。將管在3,000RPM及22℃下離心20分鐘。將抗體轉移至1.5mL塑膠小瓶中且使用Nanodrop(Fisher,ND-2000 UV-Vis分光光度計)檢查濃度。最終抗體濃度為最高至多10mg/mL。 Specifically, a process for synthesizing an IgG2 chemically immobilized bispecific antibody is carried out. The antibody (1-10 mg) was added to a 15 mL filter centrifuge tube (Millipore, UFC903024) and an appropriate volume of 50 mM sodium phosphate, 150 mM NaCl, 5 mM EDTA pH 7.7 buffer was added to the 50 mL mark on the tube. The tubes were centrifuged at 3,000 RPM and 22 °C for 20 minutes. The antibody was transferred to a 1.5 mL plastic vial and the concentration was checked using a Nanodrop (Fisher, ND-2000 UV-Vis spectrophotometer). The final antibody concentration is up to 10 mg/mL.
製備存於pH 8.0 PBS(2.0mM DTPA)緩衝液中之1mg/mL TCEP((叁(2-羧基乙基)膦))(Sigma-Aldrich,C4706)之儲備溶液。端視IgG2之當量數及所得質量,將兩當量TCEP添加至IgG2溶液中,充分搖動且在室溫下培育90min。 A stock solution of 1 mg/mL TCEP ((叁(2-carboxyethyl)phosphine)) (Sigma-Aldrich, C4706) in pH 8.0 PBS (2.0 mM DTPA) buffer was prepared. The equivalents of IgG2 and the resulting mass were added. Two equivalents of TCEP were added to the IgG2 solution, shaken well and incubated for 90 min at room temperature.
對於偶聯而言,製備存於DMSO(Sigma-Aldrich,472301)中之DBCO-馬來醯亞胺(Click Chemistry Tools,A108-100)之儲備溶液且將5當量存於DMSO中之DBCO-馬來醯亞胺添加至IgG2_A試樣中(未純化TCEP)。抗體試樣中之DMSO之最終體積為約5%(v/v)。在室溫及混合下藉由旋轉盤實施偶聯反應1小時。將存於DMSO中之疊氮化物-馬來醯亞胺(5當量)添加至IgG2(B)試樣中。抗體試樣中之DMSO之最終體 積為約5%(v/v)。在室溫及混合下藉由旋轉盤實施偶聯反應1小時。 For coupling, a stock solution of DBCO-maleimine (Click Chemistry Tools, A108-100) in DMSO (Sigma-Aldrich, 472301) was prepared and 5 equivalents of DBCO-ma in DMSO were prepared. The imine was added to the IgG2_A sample (unpurified TCEP). The final volume of DMSO in the antibody sample was about 5% (v/v). The coupling reaction was carried out by rotating the disk for 1 hour at room temperature and under mixing. The azide-maleimide (5 equivalents) in DMSO was added to the IgG2 (B) sample. The final body of DMSO in the antibody sample The product is about 5% (v/v). The coupling reaction was carried out by rotating the disk for 1 hour at room temperature and under mixing.
對於洗滌步驟而言,將每一試樣置於單獨15mL過濾離心管(Millipore,UFC903024)中且添加適當體積之1X DPBS(Corning,21-031-CM,無鈣或鎂)緩衝液至管上之50mL標記處。將試樣在3,000RPM及22℃下離心20分鐘。再次重複洗滌步驟。在洗滌之後,將試樣轉移至單獨1.5mL塑膠小瓶中且置於冰箱(5℃)中或用於點擊步驟。 For the washing step, each sample was placed in a separate 15 mL filter centrifuge tube (Millipore, UFC903024) and an appropriate volume of 1X DPBS (Corning, 21-031-CM, no calcium or magnesium) buffer was added to the tube. 50mL mark. The samples were centrifuged at 3,000 RPM and 22 ° C for 20 minutes. Repeat the washing step again. After washing, the samples were transferred to a separate 1.5 mL plastic vial and placed in a refrigerator (5 ° C) or used in a click step.
對於擬分析之每一試樣而言,需要20μL且濃度為0.6mg/mL。遵循已確立用於運行SDS-PAGE凝膠(RTP AD001-01及AD002-01)之方案(圖29)。 For each sample to be analyzed, 20 μL was required and the concentration was 0.6 mg/mL. Follow established protocols for running SDS-PAGE gels (RTP AD001-01 and AD002-01) (Figure 29).
對於質譜而言,使用TCEP還原抗體A且與DBCO偶聯,在Water Xevo G-2 QTOF上進行分析。此數據表明2 DBCO(僅還原一個二硫結合)或4 DBCO(還原兩個二硫結合)偶聯至IgG2(圖30A-C)。 For mass spectrometry, antibody A was reduced using TCEP and coupled to DBCO for analysis on a Water Xevo G-2 QTOF. This data indicates that 2 DBCO (reducing only one disulfide bond) or 4 DBCO (reducing two disulfide bonds) is coupled to IgG2 (Figures 30A-C).
使用尺寸排除層析(SEC)分析此實例中所製得雙特異性抗體之生物物理性質。使用尺寸排除層析(SEC)Agilent 1200 HPLC(使用TSK凝膠SuperSW3000管柱(4.6mm ID×30cm,4μm))分析雙特異性IgG2(圖31)。緩衝液係0.2M磷酸鉀、0.25M KCl且pH為6.2。 The biophysical properties of the bispecific antibodies produced in this example were analyzed using size exclusion chromatography (SEC). Bispecific IgG2 was analyzed using size exclusion chromatography (SEC) Agilent 1200 HPLC (using a TSK gel SuperSW3000 column (4.6 mm ID x 30 cm, 4 [mu]m)) (Figure 31). The buffer was 0.2 M potassium phosphate, 0.25 M KCl and the pH was 6.2.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104114962A TWI687228B (en) | 2015-05-11 | 2015-05-11 | Chemically-locked bispecific antibodies |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104114962A TWI687228B (en) | 2015-05-11 | 2015-05-11 | Chemically-locked bispecific antibodies |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201639595A true TW201639595A (en) | 2016-11-16 |
TWI687228B TWI687228B (en) | 2020-03-11 |
Family
ID=57850506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104114962A TWI687228B (en) | 2015-05-11 | 2015-05-11 | Chemically-locked bispecific antibodies |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI687228B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5185433A (en) * | 1990-04-09 | 1993-02-09 | Centocor, Inc. | Cross-linking protein compositions having two or more identical binding sites |
CA2681974C (en) * | 2007-03-29 | 2019-12-31 | Genmab A/S | Bispecific antibodies and methods for production thereof |
AU2012275390A1 (en) * | 2011-06-28 | 2014-01-16 | Whitehead Institute For Biomedical Research | Using sortases to install click chemistry handles for protein ligation |
-
2015
- 2015-05-11 TW TW104114962A patent/TWI687228B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI687228B (en) | 2020-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6687247B2 (en) | Chemically immobilized bispecific antibody | |
US20240352127A1 (en) | Multivalent antibody | |
Spiess et al. | Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies | |
JP2023061969A (en) | Construct having sirp-alpha domain or variant thereof | |
JP2022535858A (en) | Anti-B7-H4 Antibody-Drug Conjugates and Pharmaceutical Uses Thereof | |
JP2022550832A (en) | Antibodies targeting CD3, bispecific antibodies and uses thereof | |
CN112153988A (en) | Immunoconjugates | |
JP2016538275A (en) | Production of T-cell retargeting heterodimeric immunoglobulins | |
WO2016026943A1 (en) | Asymmetric multispecific antibodies | |
JP2020522267A (en) | Heterodimeric multispecific antibody format targeting at least CD3 and HSA | |
JP2021500873A (en) | Cysteine-engineered antigen-binding molecule | |
WO2023161457A1 (en) | Bispecific antibodies against cd277 and a tumor-antigen | |
CN111655733A (en) | Covalent multispecific antibodies | |
Huang et al. | A novel efficient bispecific antibody format, combining a conventional antigen-binding fragment with a single domain antibody, avoids potential heavy-light chain mis-pairing | |
WO2022224997A1 (en) | Anti-cldn4/anti-cd137 bispecific antibody | |
US20160326266A1 (en) | Chemically-Locked Bispecific Antibodies | |
TWI687228B (en) | Chemically-locked bispecific antibodies | |
US20240010748A1 (en) | Bispecific antibody for claudin 18a2 and cd3 and application of bispecific antibody | |
WO2024120199A1 (en) | Bispecific/multi-specific antibodies and uses thereof | |
WO2024131731A1 (en) | "kappa/lambda" fab-fab series-connection multi-specific binding protein, preparation thereof, and use thereof |