TW201543798A - Hybrid mode active clamping power transformer - Google Patents
Hybrid mode active clamping power transformer Download PDFInfo
- Publication number
- TW201543798A TW201543798A TW103116281A TW103116281A TW201543798A TW 201543798 A TW201543798 A TW 201543798A TW 103116281 A TW103116281 A TW 103116281A TW 103116281 A TW103116281 A TW 103116281A TW 201543798 A TW201543798 A TW 201543798A
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- power converter
- input
- hybrid mode
- bridge switch
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明乃是關於一種電源轉換器,特別是指一種混合模式主動箝位電源轉換器。 The present invention relates to a power converter, and more particularly to a hybrid mode active clamp power converter.
隨著現代科技的進步與可攜式電子產品的蓬勃發展,切換式轉換器的效能及各項應用亦越來越受到重視。近年來,由於電力電子技術的大幅進步及奈米科技的發展,電子器材日益趨向輕薄短小化,省能源,及降低成本的方向發展,其內部的電源轉換器亦需朝向輕薄短小,省能,提高功率及降低製作成本的趨勢設計。電源供應器為大多電子產品所必備的一種電子裝置,用來將電池或是市電的輸入電源,轉換成電子產品所需要的特別規格之輸出電源。而隨著科技技術的演進,電源供應器的轉換效率也不斷的被要求到更好的境界。轉換效率定義為輸出電源之輸出功率對輸入電源之輸入功率的比值。 With the advancement of modern technology and the booming of portable electronic products, the performance and applications of switching converters have received increasing attention. In recent years, due to the great advancement of power electronics technology and the development of nanotechnology, electronic equipment has become increasingly thin and light, energy-saving, and cost-reducing. The internal power converters also need to be light, short, and energy-saving. Trend design for increasing power and reducing production costs. The power supply is an electronic device necessary for most electronic products to convert the battery or mains input power into a special specification output power required for electronic products. With the evolution of technology, the conversion efficiency of power supplies is constantly being asked to a better level. Conversion efficiency is defined as the ratio of the output power of the output power supply to the input power of the input power supply.
一功率轉換系統接收一輸入直流(DC)或交流(AC)功率及將它轉換至一DC或AC輸出功率,其通常呈現一不同於該輸入功率之電壓。該輸出功率之控制可能回應該輸出電壓或該輸出電流。一升壓式轉換器(boost converter,亦稱為step-up converter)係一具有大於其輸入電壓之輸出電壓的功率轉換器。它是一種包含至少一第一電控開關(例如,電晶體)、至少一第一能量儲存元件(例如,一電線圈)及一附加元件(例如,一二極體或一第二電控開關)之切換 模式電源。通常,該等電控開關及二極體係配置在該電線圈與該輸出間,其中電流被交替地汲取來使該電線圈充能,以回應該被關閉之第一電控開關,以及被傳送至一負載,以回應該被打開之第一電控開關。當該電流被傳送至該負載時,該電流經過該二極體或該第二電控開關。一降壓式轉換器(buck converter,亦稱為step-down converter)係一具有小於其輸入電壓之輸出電壓的功率轉換器。它是一種包含至少一第三電控開關(例如,一電晶體)、至少一第二能量儲存元件(例如,一電線圈)及一附加元件(例如,一二極體或一第四電控開關)之切換模式電源。通常,該等電控開關及二極體係配置在該輸入電源與該電線圈間,其中電流被交替地汲取來經由一負載使該電線圈充能,以回應該被關閉之第三電控開關,以及持續使該電線圈朝該負載放能,以回應該被打開之第三電控開關。當使該電線圈朝該負載放能時,該二極體或第四電控開關係與該電線圈串聯。一返馳式轉換器(flyback converter)係一具有可大於或小於其輸入電壓之輸出電壓的轉換器。它是一種切換模式電源,其包含:至少一電控開關;一能量儲存元件,其包括至少一電線圈(特別是一變壓器),藉此在具有隔離之附加優點下使電壓比增加;以及至少一附加元件(例如,一二極體及/或附加電控開關)。通常,該變壓器之一次電線圈係連接於該電控開關與該輸入電壓間及該變壓器之二次電線圈係連接於該附加元件與該輸出間。上面所列之功率轉換器表示一些拓撲之說明,但是絕不表示限定用。 A power conversion system receives an input direct current (DC) or alternating current (AC) power and converts it to a DC or AC output power, which typically exhibits a voltage different from the input power. The control of the output power may correspond to the output voltage or the output current. A boost converter (also known as a step-up converter) is a power converter having an output voltage greater than its input voltage. It is an at least one first electronically controlled switch (eg, a transistor), at least a first energy storage component (eg, an electrical coil), and an additional component (eg, a diode or a second electronically controlled switch) Switching Mode power supply. Typically, the electronically controlled switches and the two-pole system are disposed between the electrical coil and the output, wherein current is alternately drawn to charge the electrical coil to return to the first electronically controlled switch that should be turned off, and to be transmitted To a load, to return to the first electronically controlled switch that should be turned on. When the current is delivered to the load, the current passes through the diode or the second electronically controlled switch. A buck converter (also known as a step-down converter) is a power converter having an output voltage that is less than its input voltage. It is a type comprising at least a third electronically controlled switch (eg, a transistor), at least a second energy storage component (eg, an electrical coil), and an additional component (eg, a diode or a fourth electronic control) Switch mode power supply for switch). Generally, the electronically controlled switch and the two-pole system are disposed between the input power source and the electric coil, wherein current is alternately drawn to charge the electric coil via a load to return to the third electronically controlled switch that should be turned off. And continuously energizing the electrical coil toward the load to return to the third electronically controlled switch that should be opened. The diode or fourth electrically controlled open relationship is in series with the electrical coil when the electrical coil is energized toward the load. A flyback converter is a converter having an output voltage that can be greater or less than its input voltage. It is a switched mode power supply comprising: at least one electronically controlled switch; an energy storage component comprising at least one electrical coil (particularly a transformer) whereby the voltage ratio is increased with the added advantage of isolation; and at least An additional component (eg, a diode and/or an additional electronically controlled switch). Typically, a primary electrical coil of the transformer is coupled between the electronically controlled switch and the input voltage and a secondary electrical coil of the transformer is coupled between the additional component and the output. The power converters listed above represent some description of the topology, but are not meant to be limiting.
在小功率的應用上,返馳式(Flyback)轉換器是目前廣泛應用的電源電路,但返馳式轉換器會有輸入電流脈衝遭受電磁干擾的問題以及漏感所導致的電壓突波。再者,傳統主動式箝位SEPIC在全負載範圍較難達到零電壓切換,使得在效率上無法得到較大的提升。 In low-power applications, flyback converters are currently widely used power circuits, but flyback converters suffer from electromagnetic interference from input current pulses and voltage surges caused by leakage inductance. Furthermore, the conventional active clamp SEPIC is difficult to achieve zero voltage switching in the full load range, so that the efficiency cannot be greatly improved.
本發明實施例提供一種混合模式主動箝位電源轉換器,混合模式主動箝位電源轉換器包括輸入電感、下橋開關、上橋開關、第一儲能電容、箝位電容、諧振電感、激磁電感、變壓器、輸出二極體與輸出電容。輸入電感之第一端連接輸入電壓源之正端其中輸入電壓源操作於第一電壓與第二電壓之間。下橋開關之控制端接收第一控制訊號,下橋開關之第一端連接輸入電壓源之負端。上橋開關之控制端接收第二控制訊號,上橋開關之第一端連接下橋開關之第二端。第一儲能電容之第一端連接下橋開關之第一端。箝位電容之第一端連接上橋開關之第二端,箝位電容之第二端連接第一儲能電容之第二端。諧振電感之第一端連接下橋開關之第二端。激磁電感之第一端連接諧振電感,激磁電感之第二端連接箝位電容之第二端。變壓器具有一次側電感與二次側電感,所述一次側電感並聯連接激磁電感,其中一次側電感與二次側電感具有互感效應。輸出二極體之陽極連接二次側電感之第一端。輸出電容之第一端連接輸出二極體之陰極,輸出電容之第二端連接二次側電感之第二端。輸入電感具有邊界電感值並且邊界電感值為根據第一電壓與重載來進行設定以作為混合模式主動箝位電源轉換器之初始條件,以使得當下橋開關導通時,輸入電感電流會對輸入電感進行充電,並且流經下橋開關之第一開關電流會等於輸入電感電流與激磁電感電流之總和,以便實現零電壓切換。當輸入電壓源操作在第一電壓時,輸入電感操作於邊界導通模式且使得混合模式主動箝位電源轉換器實現零電壓切換。 Embodiments of the present invention provide a hybrid mode active clamp power converter, the hybrid mode active clamp power converter includes an input inductor, a lower bridge switch, an upper bridge switch, a first storage capacitor, a clamp capacitor, a resonant inductor, and a magnetizing inductor. , transformer, output diode and output capacitor. The first end of the input inductor is coupled to the positive terminal of the input voltage source, wherein the input voltage source operates between the first voltage and the second voltage. The control terminal of the lower bridge switch receives the first control signal, and the first end of the lower bridge switch is connected to the negative terminal of the input voltage source. The control end of the upper bridge switch receives the second control signal, and the first end of the upper bridge switch is connected to the second end of the lower bridge switch. The first end of the first storage capacitor is connected to the first end of the lower bridge switch. The first end of the clamp capacitor is connected to the second end of the upper bridge switch, and the second end of the clamp capacitor is connected to the second end of the first storage capacitor. The first end of the resonant inductor is coupled to the second end of the lower bridge switch. The first end of the magnetizing inductance is connected to the resonant inductor, and the second end of the exciting inductor is connected to the second end of the clamping capacitor. The transformer has a primary side inductance and a secondary side inductance, and the primary side inductance is connected in parallel with the excitation inductance, wherein the primary side inductance and the secondary side inductance have a mutual inductance effect. The anode of the output diode is connected to the first end of the secondary side inductor. The first end of the output capacitor is connected to the cathode of the output diode, and the second end of the output capacitor is connected to the second end of the secondary side inductor. The input inductor has a boundary inductance value and the boundary inductance value is set according to the first voltage and the heavy load as an initial condition of the hybrid mode active clamp power converter, so that when the lower bridge switch is turned on, the input inductor current will input the inductor Charging is performed, and the first switching current flowing through the lower bridge switch is equal to the sum of the input inductor current and the exciting inductor current to achieve zero voltage switching. When the input voltage source operates at the first voltage, the input inductor operates in the boundary conduction mode and causes the hybrid mode active clamp power converter to achieve zero voltage switching.
在本發明其中一個實施例中,當輸入電壓源操作在大於第一電壓時,輸入電感電流操作於不連續導通模式且產生負電流之現象,以使得下橋開關之本體二極體易於導通且使得混合模式主動箝位電源轉換器以便實現零電壓切換。 In one embodiment of the present invention, when the input voltage source operates at a greater than the first voltage, the input inductor current operates in a discontinuous conduction mode and generates a negative current such that the body diode of the lower bridge switch is easily turned on and The hybrid mode is actively clamped to the power converter for zero voltage switching.
在本發明其中一個實施例中,混合模式主動箝位電源轉換器藉由將輸入電感電流操作於邊界導通模式或不連續導通模式,來實現零電壓切換以提高電源轉換效率。 In one of the embodiments of the present invention, the hybrid mode active clamp power converter achieves zero voltage switching to improve power conversion efficiency by operating the input inductor current in a boundary conduction mode or a discontinuous conduction mode.
在本發明其中一個實施例中,當上橋開關不導通且輸入電感電流為零時,所述激磁電感電流對下橋開關之寄生電容進行充電。 In one embodiment of the invention, the magnetizing inductor current charges the parasitic capacitance of the lower bridge switch when the upper bridge switch is non-conducting and the input inductor current is zero.
在本發明其中一個實施例中,當下橋電晶體之第一端與第二端之間的跨壓為零時,所述激磁電感電流流經下橋開關的本體二極體,進而使得第一儲能電容之電容電壓隨著激磁電感電流之上升而線性增加。 In one embodiment of the present invention, when the voltage across the first end and the second end of the lower bridge transistor is zero, the magnetizing inductor current flows through the body diode of the lower bridge switch, thereby making the first The capacitance voltage of the storage capacitor increases linearly as the magnetizing inductor current increases.
在本發明其中一個實施例中,當下橋開關不導通時,輸入電感電流與激磁電感電流對下橋開關之寄生電容進行充電。 In one embodiment of the invention, the input inductor current and the magnetizing inductor current charge the parasitic capacitance of the lower bridge switch when the lower bridge switch is non-conducting.
在本發明其中一個實施例中,當上橋開關之本體二極體開始導通時,導通電流對箝位電容進行充電,其中導通電流為輸入電感電流與激磁電感電流。 In one embodiment of the present invention, when the body diode of the upper bridge switch begins to conduct, the on current charges the clamp capacitor, wherein the on current is the input inductor current and the magnetizing inductor current.
在本發明其中一個實施例中,當上橋開關導通時,第一開關電流會緩慢地下降為零,以便實現零電壓切換。 In one of the embodiments of the present invention, when the upper bridge switch is turned on, the first switch current will slowly drop to zero to achieve zero voltage switching.
在本發明其中一個實施例中,箝位電容的電容電壓使得讓混合模式主動箝位電源轉換器之二次側之輸出二極體順向導通,然而二次側之輸出電壓會因變壓器映射回一次側。 In one embodiment of the present invention, the capacitance voltage of the clamp capacitor is such that the output diode of the secondary side of the hybrid mode active clamp power converter is forward-conducting, but the output voltage of the secondary side is mapped back by the transformer. Primary side.
在本發明其中一個實施例中,該第一電壓之電壓值為90伏特,並且該第二電壓之電壓值為264伏特。 In one embodiment of the invention, the voltage value of the first voltage is 90 volts and the voltage value of the second voltage is 264 volts.
綜上所述,本發明實施例所提出之混合模式主動箝位電源轉換器,透過根據邊界條件來設定輸入電感之邊界電感值,以將輸入電感操作在混合模式下以使得混合模式主動箝位電源轉換器在全負載範圍內實現零電壓切換,進而提高混合模式主動箝位電源轉換器之電源轉換效率。 In summary, the hybrid mode active clamp power converter proposed in the embodiment of the present invention sets the boundary inductance value of the input inductor according to the boundary condition to operate the input inductor in the hybrid mode to make the hybrid mode active clamp. The power converter achieves zero voltage switching over the full load range, which in turn increases the power conversion efficiency of the hybrid mode active clamp power converter.
為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。 The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.
100‧‧‧混合模式主動箝位電源轉換器 100‧‧‧ Mixed mode active clamp power converter
Cb‧‧‧第一儲能電容 C b ‧‧‧first storage capacitor
Cc‧‧‧箝位電容 C c ‧‧‧Clamp Capacitor
Ce‧‧‧寄生電容 C e ‧‧‧Parasitic capacitance
Co‧‧‧輸出電容 C o ‧‧‧output capacitor
CS1‧‧‧第一控制訊號 CS1‧‧‧First control signal
CS2‧‧‧第二控制訊號 CS2‧‧‧second control signal
Do‧‧‧輸出二極體 D o ‧‧‧ output diode
iin‧‧‧輸入電感電流 i in ‧‧‧Input inductor current
iS1‧‧‧第一開關電流 i S1 ‧‧‧first switch current
iS2‧‧‧第二開關電流 i S2 ‧‧‧Second switch current
iLr‧‧‧諧振電感電流 i Lr ‧‧‧Resonant inductor current
iLm‧‧‧激磁電感電流 i Lm ‧‧‧Magnetic inductor current
L11‧‧‧一次側電感 L11‧‧‧ primary side inductance
L12‧‧‧二次側電感 L12‧‧‧secondary inductance
Lin‧‧‧輸入電感 L in ‧‧‧Input inductance
Llk‧‧‧諧振電感 L lk ‧‧‧Resonant Inductance
Lm‧‧‧激磁電感 L m ‧‧‧Magnetic inductance
S1‧‧‧下橋開關 S1‧‧‧Bridge switch
S2‧‧‧上橋開關 S2‧‧‧Upper Bridge Switch
t0~t8‧‧‧時間 T0~t8‧‧‧Time
Ro‧‧‧負載 R o ‧‧‧load
Vo‧‧‧輸出電壓 V o ‧‧‧output voltage
VCb、VCc‧‧‧電容電壓 V Cb , V Cc ‧‧‧ capacitor voltage
VDS1‧‧‧跨壓 V DS1 ‧‧‧cross pressure
Vg‧‧‧輸入電壓源 Input voltage source V g ‧‧‧
ip、iDo、iim、ip‧‧‧電流 i p , i Do , i im , i p ‧ ‧ current
HT‧‧‧變壓器 HT‧‧‧Transformer
Vg、Vgs1、Vgs2、VDo‧‧‧電壓 V g , V gs1 , V gs2 , V Do ‧‧‧ voltage
圖1為根據本發明例示性實施例所繪示之混合模式主動箝位電源轉換器之細部電路示意圖。 1 is a detailed circuit diagram of a hybrid mode active clamp power converter according to an exemplary embodiment of the invention.
圖2為根據本發明例示性實施例所繪示之混合模式主動箝位電源轉換器之訊號波形圖。 2 is a signal waveform diagram of a hybrid mode active clamp power converter according to an exemplary embodiment of the invention.
在下文將參看隨附圖式更充分地描述各種例示性實施例,在隨附圖式中展示一些例示性實施例。然而,本發明概念可能以許多不同形式來體現,且不應解釋為限於本文中所闡述之例示性實施例。確切而言,提供此等例示性實施例使得本發明將為詳盡且完整,且將向熟習此項技術者充分傳達本發明概念的範疇。在諸圖式中,可為了清楚而誇示層及區之大小及相對大小。類似數字始終指示類似元件。 Various illustrative embodiments are described more fully hereinafter with reference to the accompanying drawings. However, the inventive concept may be embodied in many different forms and should not be construed as being limited to the illustrative embodiments set forth herein. Rather, these exemplary embodiments are provided so that this invention will be in the In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Similar numbers always indicate similar components.
應理解,雖然本文中可能使用術語第一、第二、第三等來描述各種元件,但此等元件不應受此等術語限制。此等術語乃用以區分一元件與另一元件。因此,下文論述之第一元件可稱為第二元件而不偏離本發明概念之教示。如本文中所使用,術語「及/或」包括相關聯之列出項目中之任一者及一或多者之所有組合。 It will be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, such elements are not limited by the terms. These terms are used to distinguish one element from another. Thus, a first element discussed below could be termed a second element without departing from the teachings of the inventive concept. As used herein, the term "and/or" includes any of the associated listed items and all combinations of one or more.
以下將以多種實施例配合圖式來說明所述混合模式主動箝位電源轉換器,然而,下述實施例並非用以限制本發明。 The hybrid mode active clamp power converter will be described below in conjunction with various embodiments, however, the following embodiments are not intended to limit the invention.
本揭露內容提供一種輸入電感可操作於連續導通模式(Continuous Conduction Mode,CCM)與邊界導通模式(Boundary Conduction Mode)之混合模式主動箝位電源轉換器,亦即單端初級電感轉換器(Single-ended Primary Industry Converter,SPEIC),進而使得混合模式主動箝位電源轉換器之一次側開關能夠具有零電壓切換之效應,以提高行動裝置(如筆記型電腦)之電源效率且透過高頻化之操作來大幅縮小體積,其中零電壓切換(ZVS)被界定為:當橫跨該開關之電壓為零或接近零時,將該開關之狀態從截止狀態改變至導通狀態。請參照圖1,圖1為根據本發明例示性實施例所繪示之混合模式主動箝位電源轉換器之細部電路示意圖。如圖1所示,混合模式主動箝位電源轉換器100藉由將輸入電感電流iin操作於邊界導通模式(BCM)或不連續導通模式(DCM),以使得混合模式主動箝位電源轉換器在全負載範圍內實現零電壓切換,進而提高混合模式主動箝位電源轉換器之電源轉換效率。 The present disclosure provides a hybrid mode active clamp power converter with an input inductor operable in a continuous conduction mode (CCM) and a Boundary Conduction Mode, that is, a single-ended primary inductor converter (Single- Ended Primary Industry Converter (SPEIC), which enables the primary-side switch of the hybrid mode active clamp power converter to have zero voltage switching effect to improve the power efficiency of mobile devices (such as notebook computers) and to operate at high frequencies. To significantly reduce the volume, where zero voltage switching (ZVS) is defined as changing the state of the switch from an off state to an on state when the voltage across the switch is zero or near zero. Please refer to FIG. 1. FIG. 1 is a detailed circuit diagram of a hybrid mode active clamp power converter according to an exemplary embodiment of the invention. As shown in FIG. 1, the hybrid mode active clamp power converter 100 operates in a boundary conduction mode (BCM) or discontinuous conduction mode (DCM) by inputting an inductor current i in to enable a hybrid mode active clamp power converter. Zero voltage switching is achieved over the full load range, which in turn increases the power conversion efficiency of the hybrid mode active clamp power converter.
混合模式主動箝位電源轉換器100包括輸入電感Lin、下橋開關S1、上橋開關S2、第一儲能電容Cb、箝位電容Cc、諧振電感Llk、激磁電感Lm、變壓器110、輸出二極體Do與輸出電容Co,其中混合模式主動箝位電源轉換器100連接至一負載Ro且輸出一輸出電壓Vo。輸入電感Lin之第一端連接輸入電壓源Vg之正端,其中輸入電壓源Vg操作於第一電壓與第二電壓之間。下橋開關S1之控制端接收第一控制訊號CS1,下橋開關S1之第一端連接輸入電壓源Vg之負端。上橋開關S2之控制端接收第二控制訊號CS2,上橋開關S2之第一端連接下橋開關S1之第二端。第一儲能電容Cb之第一端連接下橋開關S1之第一端。箝位電容Cb之第一端連接上橋開關S2之第二端,箝位電容Cc之第二端連接第一儲能電容Cb之第二端。諧振電感Llk之第一端連接下橋開關S1之第二端。激磁電感Lm之第一端連接諧振電感Llk,激磁電感Lm之第二端連接箝位電容Cc之第二端。變壓器110具有一次側電感L11與二次側電感L12,所述一次側電感L11並聯連接激磁電感Lm,其中一次側電感L11與二次側電感L12具有互感效應。 The hybrid mode active clamp power converter 100 includes an input inductor L in , a lower bridge switch S 1 , an upper bridge switch S 2 , a first storage capacitor C b , a clamp capacitor C c , a resonant inductor L lk , a magnetizing inductance L m The transformer 110, the output diode D o and the output capacitor C o , wherein the hybrid mode active clamp power converter 100 is connected to a load R o and outputs an output voltage V o . A first input terminal of inductor L is connected in the positive input terminal of the voltage source V g, wherein the operation input voltage source V g between the first and second voltages. The bridge control terminal of switch S 1 receives a first control signal CS1, the first end of the bridge switch S 1 connects the input negative terminal of the voltage source V g. A control terminal S 2 of the switch bridge receives the second control signal CS2, a first end of the bridge switch S 2 is connected at a second end of the bridge switches S 1. The first end of the first storage capacitor C b is connected to the first end of the lower bridge switch S 1 . The first end of the clamp capacitor C b is connected to the second end of the upper bridge switch S 2 , and the second end of the clamp capacitor C c is connected to the second end of the first storage capacitor C b . The first end of the resonant inductor L lk is connected to the second end of the lower bridge switch S 1 . The first end of the magnetizing inductance L m is connected to the resonant inductor L lk , and the second end of the exciting inductor L m is connected to the second end of the clamping capacitor C c . The transformer 110 has a primary side inductance L11 and a secondary side inductance L12, and the primary side inductance L11 is connected in parallel with the exciting inductance L m , wherein the primary side inductance L11 and the secondary side inductance L12 have a mutual inductance effect.
輸出二極體Do之陽極連接二次側電感L12之第一端(具有一打點)。輸出電容Co之第一端連接輸出二極體Do之陰極,輸出電容Co之第二端連接二次側電感L12之第二端。值得注意的是,輸入電感Lin具有邊界電感值(Boundary Inductance Value,BIV)並且該邊界電感值為根據該第一電壓與一重載(邊界條件)來進行設定以作為混合模式主動箝位電源轉換器100之初始條件,以使得當下橋開關S1導通時,輸入電感電流iin會對輸入電感Lin進行充電,並且流經下橋開關S1之第一開關電流iS1會等於輸入電感電流iin與激磁電感電流iLm之總和,以便實現零電壓切換(ZVS)。當輸入電壓源Vg操作在第一電壓時,輸入電感Lin會操作於邊界導通模式(BCM)且使得混合模式主動箝位電源轉換器100實現零電壓切換。當輸入電壓源Vg操作在大於第一電壓時,輸入電感電流iin操作於不連續導通模式(CCM)且產生負電流之現象,以使得下橋開關S1之本體二極體易於導通且使得混合模式主動箝位電源轉換器以便實現零電壓切換。 The anode of the output diode D o is connected to the first end of the secondary side inductor L12 (having a dot). D o of the output capacitor C o a first end connected to the output of the diode cathode and the second terminal of the output capacitor C o is connected a second end of the secondary side inductor L12. It is worth noting that the input inductor L in has a Boundary Inductance Value (BIV) and the boundary inductance value is set according to the first voltage and a heavy load (boundary condition) as a hybrid mode active clamp power supply. when the initial conditions of the converter 100, such that the lower bridge switch S 1 is turned on, the input current i in the inductor L in the input inductor will charge the bridge and through the first switch S 1 is the switching current i S1 will equal the input inductor The sum of the current i in and the magnetizing inductor current i Lm in order to achieve zero voltage switching (ZVS). When the input voltage source V g during the first operating voltage, the inductor L in the input will operate in boundary conduction mode (BCM) and mixed such that the active-clamp mode power converter 100 to achieve zero-voltage switching. When the input voltage source V g is operated at a greater than the first voltage, the input inductor current i in operates in a discontinuous conduction mode (CCM) and generates a negative current phenomenon, so that the body diode of the lower bridge switch S 1 is easily turned on and The hybrid mode is actively clamped to the power converter for zero voltage switching.
進一步來說,在本實施例中,第一電壓之電壓值為90伏特,並且第二電壓之電壓值為264伏特。輸入電感Lin之邊界電感值是根據90伏特與重載(亦即滿載的負載Ro)來進行設定以作為初始條件,以使得弦波波形之輸入電感電流iin之波谷接觸到零電流準位,因此輸入電感Lin會被操作於邊界導通模式(BCM)以使得下橋開關S1能夠進行零電壓切換。再者,當輸入電壓源Vg被操作在90伏特至264伏特之間時,弦波波形之輸入電感電流iin會往下移而產生負電流之現象,以使得輸入電感Lin會被操作於不連續導通模式(DCM)並且使得下橋開關S1之本體二極體易於導通,其中輸入電感電流iin會對輸入電感Lin進行充電。此外,當下橋開關S1導通時,流經下橋開關S1之第一開關電流iS1會等於輸入電感電流iin與激磁電感電流iLm之總和,以便使得下橋開關S1實現零電壓切換。 Further, in the present embodiment, the voltage value of the first voltage is 90 volts, and the voltage value of the second voltage is 264 volts. The boundary inductance value of the input inductor L in is set according to 90 volts and heavy load (that is, the load R o of the full load) as an initial condition, so that the valley of the input inductor current i in of the sine wave waveform is brought into contact with the zero current Bit, so the input inductor L in will be operated in the boundary conduction mode (BCM) to enable the lower bridge switch S 1 to perform zero voltage switching. Further, when the input voltage source V g is operated between 90 volts to 264 volts, the input inductor current i in sinusoidal waveforms will be shifted down the phenomenon of negative current, so that the input is operated in the inductance L In the discontinuous conduction mode (DCM) and making the body diode of the lower bridge switch S 1 easy to conduct, the input inductor current i in charges the input inductor L in . In addition, when the lower bridge switch S 1 is turned on, the first switching current i S1 flowing through the lower bridge switch S 1 is equal to the sum of the input inductor current i in and the exciting inductor current i Lm , so that the lower bridge switch S 1 realizes zero voltage. Switch.
接下來要教示的,是進一步說明混合模式主動箝位電源轉換器100的工作原理。 What follows is to further explain the working principle of the hybrid mode active clamp power converter 100.
請同時參照圖1與圖2,在時間t0~t1期間(輸入電壓源Vg為零),當混合模式主動箝位電源轉換器100之上橋開關S2不導通並且輸入電感電流iin為零時,激磁電感電流iLm會對下橋開關S1之寄生電容Ce(Parasitic capacitance)進行充電。在時間t1~t2期間(輸入電壓源Vg為零),當混合模式主動箝位電源轉換器100之下橋電晶體S1之第一端與第二端之間的跨壓VDS1為零電壓時,激磁電感電流iLm流經下橋開關S1的本體二極體,進而使得第一儲能電容Cb之電容電壓VCb會隨著激磁電感電流iLm之上升而線性增加。在時間t2~t3期間(輸入電壓源Vg等於電壓Vgs1),下橋開關S1會因為ZVS而開始導通,所以輸入電感電流iin會開始進行充電,並且流經下橋開關S1的第一開關電流iS1等於輸入電感電流iin與激磁電感電流iLm之總和。在時間t3~t4期間(輸入電壓源Vg等於零電壓),當混合模式主動箝位電源轉換器100之下橋開關S1不導通時,輸入電感電流iin與激磁電感電流iLm會對下橋開關S1之寄生電容Ce進行充電。 Referring to FIG. 1 and FIG. 2 simultaneously, during the time t 0 ~ t 1 (the input voltage source V g is zero), when the hybrid mode active clamp power converter 100 is above the bridge switch S 2 is not turned on and the input inductor current i When in is zero, the magnetizing inductor current i Lm charges the parasitic capacitance C e (Parasitic capacitance) of the lower bridge switch S 1 . During the time t 1 ~ t 2 (the input voltage source V g is zero), the cross-over voltage V DS1 between the first end and the second end of the bridge transistor S 1 under the hybrid mode active clamp power converter 100 When the voltage is zero, the magnetizing inductor current i Lm flows through the body diode of the lower bridge switch S 1 , so that the capacitance voltage V Cb of the first storage capacitor C b linearly increases as the exciting inductor current i Lm rises. . During the time t 2 ~ t 3 (the input voltage source V g is equal to the voltage V gs1 ), the lower bridge switch S 1 will start to conduct due to ZVS, so the input inductor current i in will start to charge and flow through the lower bridge switch S The first switching current i S1 of 1 is equal to the sum of the input inductor current i in and the exciting inductor current i Lm . During time t 3 ~ t 4 (the input voltage source V g is equal to zero voltage), when the bridge mode S1 is not turned on under the hybrid mode active clamp power converter 100, the input inductor current i in and the magnetizing inductor current i Lm will The parasitic capacitance C e of the lower bridge switch S 1 is charged.
在時間t4~t5期間(輸入電壓源Vg等於零電壓),當混合模式主動箝位電源轉換器100之上橋開關S2之本體二極體開始導通時,導通電流對箝位電容Cc進行充電,其中導通電流為輸入電感電流iin與激磁電感電流iLm。在時間t5~t6期間(輸入電壓源Vg等於零電壓),當混合模式主動箝位電源轉換器100之上橋開關S2導通時,第一開關電流iS1會緩慢地下降為零,以便實現零電壓切換。在時間t6~t7期間(輸入電壓源Vg等於電壓Vgs2),箝位電容Cc的電容電壓VCc足夠讓混合模式主動箝位電源轉換器100之二次側之輸出二極體Do順向導通,然而二次側之輸出電壓Vo會因變壓器n倍(一次側電感與二次側電感之繞阻比為n:1)映射回一次側,其中n為正整數。在時間t7~t8期間(輸入電壓源Vg等於零電壓),諧振電感電流iLr會小於激磁電感電流iLm,因此二次側之輸出二極體會以零電流切換(Zero Current Switch,ZCS)方式來關閉。 During the time t 4 ~ t 5 (the input voltage source V g is equal to zero voltage), when the body diode of the bridge switch S 2 starts to conduct on the hybrid mode active clamp power converter 100, the conduction current to the clamp capacitor Cc Charging is performed, wherein the on current is the input inductor current i in and the magnetizing inductor current i Lm . During time t 5 ~ t 6 (the input voltage source V g is equal to zero voltage), when the bridge switch S 2 is turned on above the hybrid mode active clamp power converter 100, the first switch current i S1 will slowly fall to zero. In order to achieve zero voltage switching. During the period t 6 ~ t 7 (the input voltage source V g is equal to the voltage V gs2 ), the capacitance voltage V Cc of the clamp capacitor C c is sufficient for the mixed mode to actively clamp the output diode of the secondary side of the power converter 100 D o is guided, but the output voltage Vo of the secondary side is mapped back to the primary side by n times the transformer (the ratio of the primary side inductance to the secondary side inductance is n:1), where n is a positive integer. During time t 7 ~ t 8 (the input voltage source V g is equal to zero voltage), the resonant inductor current i Lr will be smaller than the magnetizing inductor current i Lm , so the secondary side output diode will switch with zero current (Zero Current Switch, ZCS) ) Way to close.
綜上所述,本發明實施例所提出之混合模式主動箝位電源轉換器,透過根據邊界條件來設定輸入電感之邊界電感值,以將輸入電感操作在混合模式下以使得混合模式主動箝位電源轉換器在全負載範圍內實現零電壓切換,進而提高混合模式主動箝位電源轉換器之電源轉換效率。 In summary, the hybrid mode active clamp power converter proposed in the embodiment of the present invention sets the boundary inductance value of the input inductor according to the boundary condition to operate the input inductor in the hybrid mode to make the hybrid mode active clamp. The power converter achieves zero voltage switching over the full load range, which in turn increases the power conversion efficiency of the hybrid mode active clamp power converter.
本發明可在任何適合的形式中實施,包括硬體、軟體、韌體或以上這些的任意結合。本發明也可部分地以在一或多個資料處理器及/或數位信號處理器上執行的電腦軟體實施。本發明實施例的單元及組件,可以實體地、功能地及邏輯地以任何適合的方式實施。事實上,某功能可在單一的單元、複數個單元、或其它功能單元的一部分內實施。就本發明本身而論,可在單一的單元上實施,或實體地及功能地分布於不同單元及處理器間。 The invention can be embodied in any suitable form, including hardware, software, firmware, or any combination of the above. The invention may also be implemented in part by computer software executing on one or more data processors and/or digital signal processors. The units and components of the embodiments of the invention may be implemented in any suitable manner, physically, functionally, and logically. In fact, a function can be implemented in a single unit, in a plurality of units, or as part of other functional units. As far as the invention is concerned, it can be implemented on a single unit, or physically and functionally distributed between different units and processors.
以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.
100‧‧‧混合模式主動箝位電源轉換器 100‧‧‧ Mixed mode active clamp power converter
Cb‧‧‧第一儲能電容 C b ‧‧‧first storage capacitor
Cc‧‧‧箝位電容 C c ‧‧‧Clamp Capacitor
Ce‧‧‧寄生電容 C e ‧‧‧Parasitic capacitance
Co‧‧‧輸出電容 C o ‧‧‧output capacitor
CS1‧‧‧第一控制訊號 CS1‧‧‧First control signal
CS2‧‧‧第二控制訊號 CS2‧‧‧second control signal
Do‧‧‧輸出二極體 D o ‧‧‧ output diode
iin‧‧‧輸入電感電流 i in ‧‧‧Input inductor current
iS1‧‧‧第一開關電流 i S1 ‧‧‧first switch current
iS2‧‧‧第二開關電流 i S2 ‧‧‧Second switch current
iLr‧‧‧諧振電感電流 i Lr ‧‧‧Resonant inductor current
Vg‧‧‧輸入電壓源 Input voltage source V g ‧‧‧
HT‧‧‧變壓器 HT‧‧‧Transformer
iLm‧‧‧激磁電感電流 i Lm ‧‧‧Magnetic inductor current
L11‧‧‧一次側電感 L11‧‧‧ primary side inductance
L12‧‧‧二次側電感 L12‧‧‧secondary inductance
Lin‧‧‧輸入電感 L in ‧‧‧Input inductance
Llk‧‧‧諧振電感 L lk ‧‧‧Resonant Inductance
Lm‧‧‧激磁電感 L m ‧‧‧Magnetic inductance
S1‧‧‧下橋開關 S1‧‧‧Bridge switch
S2‧‧‧上橋開關 S2‧‧‧Upper Bridge Switch
Ro‧‧‧負載 R o ‧‧‧load
Vo‧‧‧輸出電壓 V o ‧‧‧output voltage
VCb、VCc‧‧‧電容電壓 V Cb , V Cc ‧‧‧ capacitor voltage
VDS1‧‧‧跨壓 V DS1 ‧‧‧cross pressure
ip、iDo‧‧‧電流 i p , i Do ‧‧‧ current
VDo‧‧‧電壓 VDo‧‧‧ voltage
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103116281A TWI521851B (en) | 2014-05-07 | 2014-05-07 | Hybrid mode active clamping power transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103116281A TWI521851B (en) | 2014-05-07 | 2014-05-07 | Hybrid mode active clamping power transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201543798A true TW201543798A (en) | 2015-11-16 |
TWI521851B TWI521851B (en) | 2016-02-11 |
Family
ID=55221036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103116281A TWI521851B (en) | 2014-05-07 | 2014-05-07 | Hybrid mode active clamping power transformer |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI521851B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI621328B (en) * | 2017-04-18 | 2018-04-11 | 立錡科技股份有限公司 | Flyback Power Converter Circuit with Active Clamping and Zero Voltage Switching and Control Circuit thereof |
US10177668B2 (en) | 2016-08-31 | 2019-01-08 | Delta Electronics, Inc. | Converter and control method thereof |
US10523121B2 (en) | 2017-12-26 | 2019-12-31 | Silergy Semiconductor Technology (Hangzhou) Ltd | Direct current-direct current converter |
US10673325B2 (en) | 2018-06-04 | 2020-06-02 | Silergy Semiconductor Technology (Hangzhou) Ltd | DC-DC converter configured to support series and parallel port arrangements |
US10734905B2 (en) | 2017-12-26 | 2020-08-04 | Silergy Semiconductor Technology (Hangzhou) Ltd | Direct current-direct current converter |
TWI748868B (en) * | 2021-02-08 | 2021-12-01 | 大陸商蘇州明緯科技有限公司 | DC voltage conversion device |
TWI756102B (en) * | 2020-11-13 | 2022-02-21 | 亞元科技股份有限公司 | Forward-flyback conversion device with zero current switching and method of zero current switching the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI626821B (en) * | 2017-04-18 | 2018-06-11 | 立錡科技股份有限公司 | Flyback power converter circuit with active clamping and zero voltage switching and conversion control circuit thereof |
TWI650926B (en) * | 2017-10-16 | 2019-02-11 | 立錡科技股份有限公司 | Return-type power conversion circuit with active clamp and conversion control circuit and control method thereof |
-
2014
- 2014-05-07 TW TW103116281A patent/TWI521851B/en active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10177668B2 (en) | 2016-08-31 | 2019-01-08 | Delta Electronics, Inc. | Converter and control method thereof |
TWI621328B (en) * | 2017-04-18 | 2018-04-11 | 立錡科技股份有限公司 | Flyback Power Converter Circuit with Active Clamping and Zero Voltage Switching and Control Circuit thereof |
US10523121B2 (en) | 2017-12-26 | 2019-12-31 | Silergy Semiconductor Technology (Hangzhou) Ltd | Direct current-direct current converter |
US10734905B2 (en) | 2017-12-26 | 2020-08-04 | Silergy Semiconductor Technology (Hangzhou) Ltd | Direct current-direct current converter |
TWI703801B (en) * | 2017-12-26 | 2020-09-01 | 大陸商矽力杰半導體技術(杭州)有限公司 | DC-DC converter |
TWI714427B (en) * | 2017-12-26 | 2020-12-21 | 大陸商矽力杰半導體技術(杭州)有限公司 | DC-DC converter |
TWI713915B (en) * | 2017-12-26 | 2020-12-21 | 大陸商矽力杰半導體技術(杭州)有限公司 | DC-DC converter |
US11038424B2 (en) | 2017-12-26 | 2021-06-15 | Silergy Semiconductor Technology (Hangzhou) Ltd | Direct current-direct current converter |
US10673325B2 (en) | 2018-06-04 | 2020-06-02 | Silergy Semiconductor Technology (Hangzhou) Ltd | DC-DC converter configured to support series and parallel port arrangements |
TWI756102B (en) * | 2020-11-13 | 2022-02-21 | 亞元科技股份有限公司 | Forward-flyback conversion device with zero current switching and method of zero current switching the same |
TWI748868B (en) * | 2021-02-08 | 2021-12-01 | 大陸商蘇州明緯科技有限公司 | DC voltage conversion device |
Also Published As
Publication number | Publication date |
---|---|
TWI521851B (en) | 2016-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI521851B (en) | Hybrid mode active clamping power transformer | |
TWI513164B (en) | Flyback active clamping power converter | |
TWI672898B (en) | Bidirectional DC-DC converter | |
CN106533178B (en) | Isolated switching power supply and isolated switching power supply control method | |
US20210194377A1 (en) | Switching power circuit | |
US9071161B2 (en) | Single stage PFC power supply | |
US10566891B2 (en) | Power supply device and control method thereof | |
CN103973138A (en) | Dynamic variable-frequency power conversion system | |
CN105024534A (en) | Converter circuit with power factor correction | |
US9356527B2 (en) | Multi-mode active clamping power converter | |
CN101834527B (en) | Two-stage switching power supply conversion circuit | |
CN100474753C (en) | Power supply circuit and electronic device | |
TW201937329A (en) | Power supply device and control method thereof | |
CN103647448B (en) | Integrated step-down-flyback type high power factor constant current circuit and device | |
Lu et al. | High efficiency adaptive boost converter for LED drivers | |
CN109089343B (en) | Power supply device for light emitting diode | |
TWI530074B (en) | Converter circuit with power factor correction | |
JP2015042080A (en) | Switching power supply device | |
KR101456654B1 (en) | A common-core power factor correction resonant converter | |
CN108347169B (en) | LED constant-current control circuit of flyback conversion topology framework and harmonic distortion optimization method | |
CN103731029B (en) | Voltage reducing type direct current converter | |
CN203326884U (en) | Primary-side constant-current control quasi-single-stage high-power-factor circuit and device | |
CN211830585U (en) | Novel isolated DC-DC converter | |
CN105024553A (en) | Flyback active clamping power converter | |
CN215871196U (en) | Direct current-direct current DCDC converter and vehicle |