TW201532112A - Plasma processing apparatus, electrostatic chuck, and method of manufacturing electrostatic chuck - Google Patents
Plasma processing apparatus, electrostatic chuck, and method of manufacturing electrostatic chuck Download PDFInfo
- Publication number
- TW201532112A TW201532112A TW103142806A TW103142806A TW201532112A TW 201532112 A TW201532112 A TW 201532112A TW 103142806 A TW103142806 A TW 103142806A TW 103142806 A TW103142806 A TW 103142806A TW 201532112 A TW201532112 A TW 201532112A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- heat
- electrostatic chuck
- thermal barrier
- plasma processing
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 42
- 230000004888 barrier function Effects 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000005507 spraying Methods 0.000 claims abstract description 5
- 230000000903 blocking effect Effects 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 12
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 12
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 11
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 abstract description 10
- 238000009832 plasma treatment Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 abstract 7
- 239000012790 adhesive layer Substances 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
本發明涉及等離子體處理技術領域,尤其涉及一種靜電卡盤及其製作的技術領域。 The present invention relates to the field of plasma processing technologies, and in particular, to an electrostatic chuck and a technical field thereof.
在等離子體處理工藝過程中,常採用靜電卡盤(Electro Static Chuck,簡稱ESC)來固定、支撐及傳送基片(Wafer)等待加工件。靜電卡盤設置於反應腔室中,其採用靜電引力的方式,而非機械方式來固定基片,可減少對基片可能的機械損失,並且使靜電卡盤與基片完全接觸,有利於熱傳導。反應過程中,向反應腔室通入反應氣體,並對反應腔施加射頻功率,通常射頻功率施加到靜電卡盤下方的導體基座上,射頻功率主要包括射頻源功率和射頻偏置功率,射頻源功率和射頻偏置功率共同作用,將反應氣體電離生成等離子體,等離子體與基片進行等離子體反應,完成對基片的工藝處理。 In the plasma processing process, Electro Static Chuck (ESC) is often used to fix, support and transfer the substrate (Wafer) to the workpiece. The electrostatic chuck is disposed in the reaction chamber, and the electrostatic chucking method is used instead of mechanically fixing the substrate, which can reduce the possible mechanical loss to the substrate and completely contact the electrostatic chuck with the substrate, thereby facilitating heat conduction. . During the reaction, a reaction gas is introduced into the reaction chamber, and RF power is applied to the reaction chamber. Usually, the RF power is applied to the conductor base under the electrostatic chuck. The RF power mainly includes the RF source power and the RF bias power, and the RF The source power and the RF bias power work together to ionize the reaction gas to generate a plasma, and the plasma and the substrate undergo a plasma reaction to complete the processing of the substrate.
靜電卡盤在固定支撐基片進行等離子體刻蝕的同時還對基片進行加熱,使其達到目標溫度,確保等離子體與基片反應的效率。為此,需要在靜電卡盤內部設置加熱裝置,如加熱絲,通過對加熱絲供電,實現加熱絲對靜電卡盤的加熱。為了實現靜電卡盤的溫度可控,還需要設計能降低靜電卡盤溫度的裝置,以避免加熱裝置導致的靜電卡盤溫度持續上升。目前常用的降溫裝置通常設置在基座內部,採用水冷結構對基座上方 的靜電卡盤進行降溫。 The electrostatic chuck heats the substrate while the plasma is etched on the fixed support substrate to reach the target temperature, ensuring the efficiency of the plasma and substrate reaction. To this end, it is necessary to provide a heating device inside the electrostatic chuck, such as a heating wire, and to heat the heating wire to realize heating of the electrostatic chuck by the heating wire. In order to control the temperature of the electrostatic chuck, it is also necessary to design a device capable of lowering the temperature of the electrostatic chuck to prevent the temperature of the electrostatic chuck caused by the heating device from continuously rising. Currently commonly used cooling devices are usually placed inside the base, using a water-cooled structure above the base The electrostatic chuck is cooled.
為了便於對基片進行加熱,通常加熱裝置設置在具有良好導熱係數的導熱層內部,此時,導熱層同時與基座接觸,基座內部的水冷結構很容易將加熱裝置升高的溫度降低下來,使得加熱裝置的熱量不能及時傳遞到基片上,導致加熱裝置和基座的水冷結構間溫度梯度過小,不利於工藝的順利進行。 In order to facilitate heating of the substrate, usually the heating device is disposed inside the heat conducting layer having a good thermal conductivity. At this time, the heat conducting layer is simultaneously in contact with the susceptor, and the water-cooling structure inside the susceptor can easily lower the temperature of the heating device. Therefore, the heat of the heating device cannot be transferred to the substrate in time, and the temperature gradient between the water-cooling structure of the heating device and the pedestal is too small, which is not conducive to the smooth progress of the process.
為了解決上述技術問題,本發明公開了一種等離子體處理裝置,包括一真空反應腔,所述真空反應腔下方設置一支撐基片的靜電卡盤,所述靜電卡盤下方設置一基座,所述靜電卡盤包括內部設置有直流電極的絕緣層,所述絕緣層下方設置具有低導熱係數材料的阻熱層,所述阻熱層材料的導熱係數小於等於10W/m.K。 In order to solve the above technical problem, the present invention discloses a plasma processing apparatus including a vacuum reaction chamber, an electrostatic chuck supporting a substrate is disposed under the vacuum reaction chamber, and a pedestal is disposed under the electrostatic chuck. The electrostatic chuck includes an insulating layer internally provided with a DC electrode, and a heat resistant layer having a material having a low thermal conductivity is disposed under the insulating layer, and a thermal conductivity of the thermal resist material is less than or equal to 10 W/mK.
優選的,所述靜電卡盤還包括加熱裝置,所述加熱裝置位於所述阻熱層與所述絕緣層之間或位於所述阻熱層內部。 Preferably, the electrostatic chuck further comprises a heating device located between the thermal barrier layer and the insulating layer or inside the thermal barrier layer.
優選的,所述阻熱層的材料為氧化鋁或氧化釔或氧化鋁和氧化釔的混合物。 Preferably, the material of the heat blocking layer is alumina or cerium oxide or a mixture of aluminum oxide and cerium oxide.
優選的,所述阻熱層包括第一阻熱層和第二阻熱層,所述第一阻熱層和第二阻熱層之間設置黏結層黏結。 Preferably, the thermal barrier layer comprises a first thermal barrier layer and a second thermal barrier layer, and a bonding layer is disposed between the first thermal barrier layer and the second thermal barrier layer.
優選的,所述第一阻熱層和所述第二阻熱層材料為相同或不相同。 Preferably, the first heat blocking layer and the second heat blocking layer material are the same or different.
進一步的,本發明還公開了一種靜電卡盤,所述靜電卡盤位於一基座上方,所述靜電卡盤包括內部設置有直流電極的絕緣層和位於絕 緣層下方的具有低導熱係數材料的阻熱層,所述阻熱層與所述絕緣層之間或所述阻熱層內部設置加熱裝置。 Further, the present invention also discloses an electrostatic chuck, the electrostatic chuck is located above a pedestal, and the electrostatic chuck comprises an insulating layer internally provided with a DC electrode and is located at the A heat-resistant layer having a material having a low thermal conductivity under the edge layer, and a heating device disposed between the heat-resistant layer and the insulating layer or inside the heat-resistant layer.
優選的,所述阻熱層包括第一阻熱層和第二阻熱層,所述第一阻熱層和所述第二阻熱層之間設置黏結層。 Preferably, the thermal barrier layer comprises a first thermal barrier layer and a second thermal barrier layer, and a bonding layer is disposed between the first thermal barrier layer and the second thermal barrier layer.
進一步的,本發明還公開了一種製作靜電卡盤的方法,包括下列步驟:在內部設置有直流電極的絕緣層背面熱噴塗第一阻熱層,在噴塗過程中,將加熱裝置設置在所述阻熱層內部;在一基座上表面熱噴塗第二阻熱層;在所述第一阻熱層下表面或者第二阻熱層上表面設置一黏結層,所述黏結層將第一阻熱層和第二阻熱層黏結固定,將所述靜電卡盤固定到所述基座上。 Further, the present invention also discloses a method for manufacturing an electrostatic chuck, comprising the steps of: thermally spraying a first heat-resisting layer on a back surface of an insulating layer provided with a DC electrode therein, and setting a heating device in the spraying process a second heat-resisting layer is thermally sprayed on a surface of the susceptor; a bonding layer is disposed on the lower surface of the first heat-resisting layer or the upper surface of the second heat-resisting layer, and the bonding layer is first resistive The thermal layer and the second heat resistant layer are bonded and fixed to fix the electrostatic chuck to the base.
優選的,所述阻熱層材料的熱傳導係數小於等於10W/m.K。 Preferably, the heat resist layer material has a heat transfer coefficient of 10 W/m·K or less.
優選的,所述阻熱層的材料為氧化鋁或者氧化釔或氧化鋁和氧化釔的混合物。 Preferably, the material of the heat blocking layer is alumina or cerium oxide or a mixture of aluminum oxide and cerium oxide.
優選的,所述第一阻熱層和所述第二阻熱層的材料為相同或不相同。 Preferably, the materials of the first heat blocking layer and the second heat blocking layer are the same or different.
本發明的優點在於:本發明公開了一種靜電卡盤,其製作方法及其應用的等離子體處理裝置,所述靜電卡盤包括絕緣層和位於絕緣層下方的阻熱層。通過選擇熱傳導係數較小的材料作為阻熱層,設置在加熱裝置和基座之間,能夠有效降低加熱裝置產生的熱量向基座傳導的速率,便於在靜電卡盤和基座之間形成較大的溫度梯度,維持靜電卡盤上方基片的正常等離子體處理工藝,考慮到熱噴塗工藝製作的阻熱層厚度較小,可以分別在絕緣層下方和基座上方熱噴塗兩層阻熱層,利用黏結層黏結固 定,更好地提高了靜電卡盤和基座之間的溫度梯度。 An advantage of the present invention is that the present invention discloses an electrostatic chuck, a method of fabricating the same, and a plasma processing apparatus therefor, the electrostatic chuck comprising an insulating layer and a thermal barrier layer under the insulating layer. By selecting a material with a small heat transfer coefficient as a heat blocking layer, it is disposed between the heating device and the base, which can effectively reduce the rate of heat generated by the heating device to the susceptor, and facilitate formation between the electrostatic chuck and the pedestal. Large temperature gradient maintains the normal plasma treatment process of the substrate above the electrostatic chuck. Considering the small thickness of the thermal barrier layer produced by the thermal spraying process, two layers of thermal barrier can be thermally sprayed under the insulating layer and above the pedestal respectively. , bonding with a bonding layer The temperature gradient between the electrostatic chuck and the pedestal is better improved.
100‧‧‧真空反應腔 100‧‧‧vacuum reaction chamber
110‧‧‧下電極 110‧‧‧ lower electrode
115‧‧‧冷卻液流道 115‧‧‧Cooling runner
120‧‧‧靜電卡盤 120‧‧‧Electrostatic chuck
121‧‧‧絕緣層 121‧‧‧Insulation
122‧‧‧阻熱層 122‧‧‧heat barrier
1221‧‧‧第一阻熱層 1221‧‧‧First heat barrier
1222‧‧‧第二阻熱層 1222‧‧‧second thermal barrier
1223‧‧‧黏結層 1223‧‧‧Bonded layer
125‧‧‧直流電極 125‧‧‧DC electrode
126‧‧‧加熱裝置 126‧‧‧ heating device
130‧‧‧氣體供應裝置 130‧‧‧ gas supply
140‧‧‧基片 140‧‧‧Substrate
150‧‧‧上電極 150‧‧‧Upper electrode
160‧‧‧等離子體 160‧‧‧ Plasma
170‧‧‧射頻功率源 170‧‧‧RF power source
180‧‧‧抽氣泵 180‧‧‧Air pump
第1圖,為本發明所述等離子體處理裝置的結構示意圖。 Fig. 1 is a schematic view showing the structure of a plasma processing apparatus according to the present invention.
第2圖,為本發明所述靜電卡盤的結構示意圖。 2 is a schematic structural view of an electrostatic chuck according to the present invention.
第3圖,為本發明另一實施例的靜電卡盤結構示意圖。 FIG. 3 is a schematic structural view of an electrostatic chuck according to another embodiment of the present invention.
本發明公開了一種等離子體處理裝置及靜電卡盤和靜電卡盤的製作方法,為使本發明的上述目的、特徵和優點能夠更為明顯易懂,下面結合附圖和實施例對本發明的具體實施方式做詳細的說明。 The present invention discloses a plasma processing apparatus, an electrostatic chuck, and a method for manufacturing an electrostatic chuck. The above objects, features and advantages of the present invention will become more apparent and understood. The embodiment will be described in detail.
本發明所述的技術方案適用於電容耦合型等離子體處理裝置或電感耦合型等離子體處理裝置,以及其他使用靜電卡盤加熱待處理基片溫度的等離子體處理裝置。示例性的,第1圖示出本發明所述等離子體反應室結構示意圖;所述等離子體反應室為電容耦合型等離子體反應室,本領域技術人員通過本發明揭示的技術方案不經過創造性的勞動做出的變形均屬於本發明的保護範圍。 The technical solution described in the present invention is applicable to a capacitive coupling type plasma processing apparatus or an inductively coupled type plasma processing apparatus, and other plasma processing apparatuses that use an electrostatic chuck to heat the temperature of a substrate to be processed. Illustratively, FIG. 1 is a schematic view showing the structure of a plasma reaction chamber according to the present invention; the plasma reaction chamber is a capacitive coupling type plasma reaction chamber, and the technical solution disclosed by the present invention is not inventive. All modifications made by labor are within the scope of protection of the present invention.
第1圖示出電容耦合型等離子體反應室結構示意圖,包括一大致為圓柱形的真空反應腔100,真空反應腔100內設置上下對應的上電極150和下電極110,上電極150連接氣體供應裝置130,上電極150同時作為反應氣體均勻進入等離子體反應腔的氣體分佈板;下電極110連接射頻功率源170,其上方支撐靜電卡盤120,靜電卡盤120用於支撐基片140。本實施例所述等離子體反應室的工作原理為,上電極150和下電極110在射頻功 率的作用下對注入等離子體反應腔100的氣體進行解離,生成等離子體160,等離子體160對基片140進行物理轟擊或化學反應,實現對基片140的加工處理。反應後的副產物和未用盡的氣體通過抽氣泵180排出等離子體反應腔100。 1 is a schematic view showing the structure of a capacitive coupling type plasma reaction chamber, comprising a substantially cylindrical vacuum reaction chamber 100. The vacuum reaction chamber 100 is provided with upper and lower corresponding upper electrodes 150 and lower electrodes 110, and the upper electrode 150 is connected to a gas supply. In the device 130, the upper electrode 150 simultaneously serves as a gas distribution plate for the reaction gas to uniformly enter the plasma reaction chamber; the lower electrode 110 is connected to the RF power source 170, and the electrostatic chuck 120 is supported above the electrostatic chuck 120 for supporting the substrate 140. The working principle of the plasma reaction chamber in this embodiment is that the upper electrode 150 and the lower electrode 110 are in the RF work. Under the action of the rate, the gas injected into the plasma reaction chamber 100 is dissociated to generate a plasma 160, and the plasma 160 physically bombards or chemically reacts the substrate 140 to realize processing of the substrate 140. The by-products after the reaction and the exhausted gas are discharged from the plasma reaction chamber 100 through the air pump 180.
第2圖示出本發明所述靜電卡盤的結構示意圖,如第2圖所示,靜電卡盤120設於基座110上方,用於承載基片140。靜電卡盤120包括絕緣層121,絕緣層內部設置有直流電極125,直流電極連接直流電源(圖中未示出),直流電源作用於直流電極125在靜電卡盤120表面產生靜電吸力,用於固定基片140。絕緣層121下方設置一阻熱層122,阻熱層材料的熱傳導係數較低。阻熱層122和絕緣層121之間或者阻熱層122內部設置加熱裝置126,本實施例選擇將加熱裝置126設置於阻熱層122內部,其也可以緊貼絕緣層121下表面設置。加熱裝置通常為加熱絲,用於對靜電卡盤120進行加熱,通過靜電卡盤120將熱量傳導到基片140。由於阻熱層122材料的熱傳導係數較小,為了保證加熱裝置126產生的熱量能儘快傳遞到基片140,加熱裝置126可以設置在阻熱層122和絕緣層121之間,如果設置在阻熱層122內部,可以設置在靠近阻熱層122上方的位置。阻熱層122與基座上表面接觸,保證靜電卡盤120坐落在基座110上方。 2 is a schematic view showing the structure of the electrostatic chuck of the present invention. As shown in FIG. 2, the electrostatic chuck 120 is disposed above the susceptor 110 for carrying the substrate 140. The electrostatic chuck 120 includes an insulating layer 121. The insulating layer is internally provided with a DC electrode 125. The DC electrode is connected to a DC power source (not shown). The DC power source acts on the DC electrode 125 to generate an electrostatic attraction on the surface of the electrostatic chuck 120. The substrate 140 is fixed. A heat blocking layer 122 is disposed under the insulating layer 121, and the heat conductive layer material has a low heat transfer coefficient. The heating device 126 is disposed between the heat-resisting layer 122 and the insulating layer 121 or the heat-resisting layer 122. In this embodiment, the heating device 126 is disposed inside the heat-resistant layer 122, and may also be disposed adjacent to the lower surface of the insulating layer 121. The heating device is typically a heating wire for heating the electrostatic chuck 120 to conduct heat through the electrostatic chuck 120 to the substrate 140. Since the heat transfer coefficient of the material of the heat blocking layer 122 is small, in order to ensure that the heat generated by the heating device 126 can be transferred to the substrate 140 as soon as possible, the heating device 126 may be disposed between the heat blocking layer 122 and the insulating layer 121, if disposed in the heat resistance layer. The inside of the layer 122 may be disposed at a position above the heat blocking layer 122. The heat blocking layer 122 is in contact with the upper surface of the pedestal to ensure that the electrostatic chuck 120 is seated above the susceptor 110.
根據上文描述可知,靜電卡盤120在固定支撐基片140進行等離子體刻蝕的同時還對基片140進行加熱,使其達到目標溫度,確保等離子體與基片反應的效率。為了避免加熱裝置導致的靜電卡盤溫度持續上升,還需要設計能降低靜電卡盤溫度的裝置,以實現靜電卡盤120的溫度升降可調。目前常用的降溫裝置通常設置在基座內部,如在基座110中設 有冷卻液流道115,其通常用於注入冷卻液對靜電卡盤進行冷卻。現有技術中加熱裝置通常設置在具有良好導熱材料的內部,加熱裝置產生的熱量可以通過導熱材料快速的傳遞到基片上,使基片達到所需的溫度,與等離子體進行反應。但導熱材料在將熱量向上快速傳遞到基片的同時,也會將熱量迅速的傳遞到基座的冷卻液通道115處,使得加熱裝置126產生的熱量過多的流失,加熱裝置126無法和冷卻液通道115之間保持所需的溫度梯度。 According to the above description, the electrostatic chuck 120 heats the substrate 140 while the plasma is etched by the fixed supporting substrate 140 to reach the target temperature, ensuring the efficiency of the plasma and substrate reaction. In order to avoid the temperature of the electrostatic chuck caused by the heating device continuously rising, it is also necessary to design a device capable of lowering the temperature of the electrostatic chuck to achieve an adjustable temperature rise and fall of the electrostatic chuck 120. Currently, the commonly used cooling device is usually disposed inside the base, such as in the base 110. There is a coolant flow path 115 which is typically used to inject coolant to cool the electrostatic chuck. In the prior art, the heating device is usually disposed inside a material having a good heat conductive material, and the heat generated by the heating device can be quickly transferred to the substrate through the heat conductive material to bring the substrate to a desired temperature to react with the plasma. However, while the heat conductive material transfers the heat upward to the substrate, the heat is quickly transferred to the coolant passage 115 of the base, so that the heat generated by the heating device 126 is excessively lost, and the heating device 126 cannot be cooled with the coolant. The desired temperature gradient is maintained between channels 115.
基於上述原因,本發明第2圖中的靜電卡盤120與基座110之間採用熱傳導係數較低的阻熱層材料,能延緩熱量向基座傳導的速率。根據熱傳導公式Q=K*△T/d。其中Q為單位面積的熱量,單位面積的熱量Q可以通過加熱裝置126的加熱功率與靜電卡盤120的面積之比計算得出;K為材料層的熱傳導係數,△T為溫度梯度,即加熱裝置126與冷卻液通道115之間的溫度差;d為導熱距離。本發明所述的阻熱層122材料可以為氧化鋁或氧化釔或氧化鋁和氧化釔的混合物,氧化鋁的熱傳導係數為3.55W/m.K,氧化釔的熱傳導係數小於2W/m.K,相比現有技術中的鈦合金導熱層,熱傳導係數約為20W/m.K,鋁合金導熱層,熱傳導係數約為170W/m.K,本發明的阻熱層可以有效的延緩加熱裝置產生的熱量向基座傳導的速度。保證靜電卡盤和基座之間存在比較大的溫度梯度。 For the above reasons, the heat-resistant layer material having a low thermal conductivity between the electrostatic chuck 120 and the susceptor 110 in the second embodiment of the present invention can delay the rate at which heat is conducted to the susceptor. According to the heat transfer formula Q = K * ΔT / d. Where Q is the heat per unit area, and the heat Q per unit area can be calculated by the ratio of the heating power of the heating device 126 to the area of the electrostatic chuck 120; K is the heat transfer coefficient of the material layer, and ΔT is the temperature gradient, that is, heating The temperature difference between the device 126 and the coolant passage 115; d is the heat transfer distance. The material of the heat-resistant layer 122 of the present invention may be alumina or cerium oxide or a mixture of aluminum oxide and cerium oxide. The thermal conductivity of alumina is 3.55 W/mK, and the thermal conductivity of cerium oxide is less than 2 W/mK. The titanium alloy heat conduction layer in the technology has a heat conduction coefficient of about 20 W/mK, and the aluminum alloy heat conduction layer has a heat conduction coefficient of about 170 W/mK. The heat resistance layer of the invention can effectively delay the heat conduction from the heating device to the susceptor. . Ensure that there is a large temperature gradient between the electrostatic chuck and the base.
阻熱層122的厚度也是決定靜電卡盤120和基座110之間溫度梯度的一個重要因素,由於本發明的阻熱層為將氧化鋁或者氧化釔或其混合物熱噴塗到絕緣層背面,受限於目前熱噴塗工藝的限制,氧化鋁或氧化釔阻熱層厚度只能製作的較小,通常小於1毫米,對於需要溫度梯度較大的等離子體處理裝置,不能滿足其需求。為此,可以設置在靜電卡盤的 絕緣層和基座之間設置兩層阻熱層的方式,增大組熱層122的厚度。 The thickness of the thermal barrier layer 122 is also an important factor determining the temperature gradient between the electrostatic chuck 120 and the susceptor 110. Since the thermal barrier layer of the present invention thermally sprays aluminum oxide or cerium oxide or a mixture thereof to the back of the insulating layer, Limited to the limitations of current thermal spraying processes, the thickness of the aluminum oxide or yttria heat-resistant layer can only be made smaller, usually less than 1 mm, and cannot meet the needs of a plasma processing apparatus that requires a large temperature gradient. For this purpose, it can be set on the electrostatic chuck A method of providing two heat-insulating layers between the insulating layer and the pedestal increases the thickness of the heat-generating layer 122.
如第3圖所示,所述阻熱層122包括第一阻熱層1221和第二阻熱層1222,第一阻熱層1221熱噴塗到絕緣層121背面,熱噴塗過程中,將加熱裝置126設置在第一阻熱層1221內部。在基座110上表面熱噴塗第二阻熱層1222,第二阻熱層1222的材料可以與第一阻熱層材料相同,也可以不相同,在第一阻熱層1221下表面或者第二阻熱層1222上表面設置一層黏結層1223,黏結層1223可以將第一阻熱層1221和第二阻熱層1222黏結到一起,實現阻熱層122厚度的增加,黏結層1223的材料可以為矽膠或者特氟龍膜,由於矽膠和特氟龍的熱傳導係數較小,可以有效的阻礙熱量的傳導,幫助靜電卡盤120和基座110之間形成較大的溫度梯度。同時,在熱噴塗阻熱層122時,在氧化釔或者氧化鋁中添加其他熱傳導係數較小的材料也可以降低整個阻熱層的熱傳導係數,實現靜電卡盤和基座之間較高的溫度梯度。 As shown in FIG. 3, the heat blocking layer 122 includes a first heat blocking layer 1221 and a second heat blocking layer 1222. The first heat blocking layer 1221 is thermally sprayed onto the back surface of the insulating layer 121. During the thermal spraying process, the heating device is heated. 126 is disposed inside the first heat blocking layer 1221. The second heat-resisting layer 1222 is thermally sprayed on the upper surface of the susceptor 110. The material of the second heat-resisting layer 1222 may be the same as or different from the first heat-resisting layer material, and may be on the lower surface or the second surface of the first heat-resisting layer 1221. The upper surface of the heat blocking layer 1222 is provided with a bonding layer 1223. The bonding layer 1223 can bond the first heat blocking layer 1221 and the second heat blocking layer 1222 together to increase the thickness of the heat blocking layer 122. The material of the bonding layer 1223 can be Tannin or Teflon film, because of the small heat transfer coefficient of silicone and Teflon, can effectively block the conduction of heat, and help to form a large temperature gradient between the electrostatic chuck 120 and the susceptor 110. At the same time, when the thermal insulation layer 122 is thermally sprayed, adding other materials having a small thermal conductivity to yttrium oxide or aluminum oxide can also lower the heat transfer coefficient of the entire thermal resistance layer, thereby achieving a higher temperature between the electrostatic chuck and the susceptor. gradient.
本發明採用在加熱裝置和基座之間設置至少一層熱傳導係數較小的阻熱層,能夠降低加熱裝置產生的熱量向基座傳導的速率,便於在靜電卡盤和基座之間形成較大的溫度梯度,維持靜電卡盤上方基片的正常等離子體處理工藝,優選阻熱層材料熱傳導係數小於10W/m.K。此外,本發明還公開了一種利用上述方案設計的靜電卡盤和靜電卡盤的製作方法,具體詳見上文描述,此處不再贅述。 The invention adopts at least one heat-resisting layer with a small heat conduction coefficient between the heating device and the base, which can reduce the rate of heat generated by the heating device to the pedestal, and facilitates formation between the electrostatic chuck and the pedestal. The temperature gradient maintains the normal plasma treatment process of the substrate above the electrostatic chuck. Preferably, the thermal conductivity layer material has a thermal conductivity of less than 10 W/mK. In addition, the present invention also discloses an electrostatic chuck and an electrostatic chuck designed by the above solution, which are described in detail above, and are not described herein again.
本發明雖然以較佳實施例公開如上,但其並不是用來限定本發明,任何本領域技術人員在不脫離本發明的精神和範圍內,都可以做出可能的變動和修改,因此本發明的保護範圍應當以本發明權利要求所界定 的範圍為准。 The present invention is disclosed in the above preferred embodiments, but it is not intended to limit the present invention, and any one skilled in the art can make possible variations and modifications without departing from the spirit and scope of the invention. The scope of protection should be defined by the claims of the present invention The scope is subject to.
100‧‧‧真空反應腔 100‧‧‧vacuum reaction chamber
110‧‧‧下電極 110‧‧‧ lower electrode
120‧‧‧靜電卡盤 120‧‧‧Electrostatic chuck
130‧‧‧氣體供應裝置 130‧‧‧ gas supply
140‧‧‧基片 140‧‧‧Substrate
150‧‧‧上電極 150‧‧‧Upper electrode
160‧‧‧等離子體 160‧‧‧ Plasma
170‧‧‧射頻功率源 170‧‧‧RF power source
180‧‧‧抽氣泵 180‧‧‧Air pump
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310744220.0A CN104752135B (en) | 2013-12-30 | 2013-12-30 | The preparation method of plasma processing apparatus and electrostatic chuck and electrostatic chuck |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201532112A true TW201532112A (en) | 2015-08-16 |
TWI616925B TWI616925B (en) | 2018-03-01 |
Family
ID=53591660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103142806A TWI616925B (en) | 2013-12-30 | 2014-12-09 | Plasma processing device, electrostatic chuck and electrostatic chuck manufacturing method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104752135B (en) |
TW (1) | TWI616925B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI674648B (en) * | 2018-09-14 | 2019-10-11 | 大陸商北京北方華創微電子裝備有限公司 | Electrostatic chuck |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109839388A (en) * | 2017-11-29 | 2019-06-04 | 中微半导体设备(上海)股份有限公司 | Plasma operating status method for real-time monitoring, wafer inspection part and monitoring system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978202A (en) * | 1997-06-27 | 1999-11-02 | Applied Materials, Inc. | Electrostatic chuck having a thermal transfer regulator pad |
US7161121B1 (en) * | 2001-04-30 | 2007-01-09 | Lam Research Corporation | Electrostatic chuck having radial temperature control capability |
CN100595901C (en) * | 2007-08-29 | 2010-03-24 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Static chuck plate |
EP2232693A2 (en) * | 2007-12-20 | 2010-09-29 | Saint-Gobain Ceramics & Plastics, Inc. | Electrostatic chuck and method of forming it |
CN102145913A (en) * | 2011-04-21 | 2011-08-10 | 北京矿冶研究总院 | Preparation method of nano spherical yttrium oxide powder for thermal spraying |
CN103165381B (en) * | 2011-12-15 | 2016-08-24 | 中微半导体设备(上海)有限公司 | A kind of electrostatic chuck controlling loaded substrate temperature and plasma processing apparatus |
KR101974386B1 (en) * | 2012-03-21 | 2019-05-03 | 주식회사 미코 | Electrode static chuck |
-
2013
- 2013-12-30 CN CN201310744220.0A patent/CN104752135B/en active Active
-
2014
- 2014-12-09 TW TW103142806A patent/TWI616925B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI674648B (en) * | 2018-09-14 | 2019-10-11 | 大陸商北京北方華創微電子裝備有限公司 | Electrostatic chuck |
Also Published As
Publication number | Publication date |
---|---|
CN104752135B (en) | 2018-01-23 |
CN104752135A (en) | 2015-07-01 |
TWI616925B (en) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI659447B (en) | Loading stand and plasma processing device | |
TWI684238B (en) | Mounting table and substrate processing device | |
EP2551894B1 (en) | Region temperature-controlled structure | |
JP5388704B2 (en) | Method and apparatus for controlling spatial temperature distribution across the surface of a workpiece support | |
JP2019047132A (en) | Locally heated multi-zone substrate support | |
JP2022020732A (en) | Extreme uniformity heated substrate support assembly | |
JP3374033B2 (en) | Vacuum processing equipment | |
JP2007535816A5 (en) | ||
JP5876992B2 (en) | Plasma processing equipment | |
JPH1064983A (en) | Wafer stage | |
JP6165452B2 (en) | Plasma processing equipment | |
JPH11265931A (en) | Vacuum processor | |
TW201541536A (en) | Plasma processing apparatus and electrostatic chuck thereof | |
TWI536486B (en) | A method of manufacturing a plasma processing device, an electrostatic chuck and an electrostatic chuck | |
JP6140539B2 (en) | Vacuum processing equipment | |
TWI536495B (en) | A plasma reaction chamber and an electrostatic chuck | |
JP2010045170A (en) | Sample mounting electrode | |
TWI725666B (en) | Plasma processing device and substrate support for processing device | |
TW201419442A (en) | Electrostatic chuck | |
TW201532112A (en) | Plasma processing apparatus, electrostatic chuck, and method of manufacturing electrostatic chuck | |
TW201438099A (en) | Substrate processing chamber components incorporating anisotropic materials | |
TW201532185A (en) | Plasma processing device and electrostatic chuck thereof | |
WO2015194675A1 (en) | Heating device, heating method, temperature adjustment mechanism, and semiconductor manufacturing device | |
JP5953012B2 (en) | Substrate holding device | |
KR20110083979A (en) | Plasma processing apparatus |