[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201503312A - Electrostatic discharge protection structure - Google Patents

Electrostatic discharge protection structure Download PDF

Info

Publication number
TW201503312A
TW201503312A TW102124436A TW102124436A TW201503312A TW 201503312 A TW201503312 A TW 201503312A TW 102124436 A TW102124436 A TW 102124436A TW 102124436 A TW102124436 A TW 102124436A TW 201503312 A TW201503312 A TW 201503312A
Authority
TW
Taiwan
Prior art keywords
region
conductivity type
electrostatic discharge
protection structure
discharge protection
Prior art date
Application number
TW102124436A
Other languages
Chinese (zh)
Other versions
TWI585936B (en
Inventor
Yung-Ju Wen
Chang-Tzu Wang
Tien-Hao Tang
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW102124436A priority Critical patent/TWI585936B/en
Publication of TW201503312A publication Critical patent/TW201503312A/en
Application granted granted Critical
Publication of TWI585936B publication Critical patent/TWI585936B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Provided is an electrostatic discharge (ESD) protection structure including a substrate, a pick-up region, a first MOS device, a second MOS device, a first doped region and a second doped region. The pick-up region is located in the substrate. The first MOS device has a first drain region of a first conductivity type located in the substrate. The second MOS device has a second drain region of the first conductivity type located in the substrate. The first drain region is closer to the pick up region than the second drain region is. The first doped region of a second conductivity type is located under the first doped region. The second doped region of the second conductivity type is located under the second doped region. The area and/or doping concentration of the first doped region is greater than that of the second doped region.

Description

靜電放電保護結構 Electrostatic discharge protection structure

本發明是有關於一種半導體元件,且特別是有關於靜電放電保護結構。 This invention relates to a semiconductor component, and more particularly to an electrostatic discharge protection structure.

靜電放電(electrostatic discharge,ESD)是電荷在非導體或未接地的導體上累積後,經由放電路徑,在短時間內快速移動(放電)的現象。靜電放電會損害由積體電路之元件構成的電路。舉例而言,人體、封裝積體電路的機器或測試積體電路的儀器都是常見的帶電體,當前述帶電體與晶片接觸時,即有可能向晶片放電。靜電放電的瞬間功率可能造成晶片中的積體電路損壞或失效。 Electrostatic discharge (ESD) is a phenomenon in which charges accumulate on a non-conductor or an ungrounded conductor and then rapidly move (discharge) in a short time via a discharge path. Electrostatic discharge can damage circuits formed by components of an integrated circuit. For example, a human body, a machine that houses an integrated circuit, or a device that tests an integrated circuit are common charged bodies, and when the charged body is in contact with the wafer, it is possible to discharge the wafer. The instantaneous power of the electrostatic discharge can cause damage or failure of the integrated circuit in the wafer.

通常商用積體電路的靜電放電耐受度必需通過人體放電模式(HumanBody Model,HBM)2 kV與機器放電模式(Machine Model,MM)200 V的測試。為了能夠承受如此高電壓的靜電放電測試,積體電路上的靜電放電防護元件常具有大元件尺寸的設計。為了盡可能節省晶粒面積,在佈局(layout)上,這種大尺寸的元件通常以指狀(multi-finger)的方式來實現。雖然指狀的防護元件 能夠節省晶粒面積,但這種佈局方式常造成元件不均勻導通(non-uniform turn-on)的問題。 Generally, the electrostatic discharge tolerance of commercial integrated circuits must be tested by Human Body Model (HBM) 2 kV and Machine Discharge Mode (MM) 200 V. In order to withstand such high voltage electrostatic discharge tests, electrostatic discharge protection components on integrated circuits often have large component size designs. In order to save as much as possible on the die area, such large-sized components are usually implemented in a multi-finger manner on the layout. Finger-shaped protective element The area of the die can be saved, but this layout often causes problems with non-uniform turn-on of the component.

本發明提供一種靜電放電保護結構,可以提升靜電放電保護結構的健全性(robustness)。 The invention provides an electrostatic discharge protection structure, which can improve the robustness of the electrostatic discharge protection structure.

本發明提供一種靜電放電保護結構,可以使得各寄生BJT的開啟時間大致一致。 The invention provides an electrostatic discharge protection structure, which can make the opening time of each parasitic BJT substantially the same.

本發明提出一種靜電放電保護結構,包括基底、接點(pick up)區、第一金氧半導體元件、第二金氧半導體元件、第一摻雜區以及第一摻雜區。接點(pick up)區,位於上述基底中。第一金氧半導體元件,位於上述基底上,包括具有第一導電型的第一汲極區。第二金氧半導體元件,位於上述基底上,包括具有第一導電型的第二汲極區。上述第一汲極區較上述第二汲極區接近上述接點區。第一摻雜區,具有第二導電型,位於上述第一汲極區下方。第二摻雜區,具有第二導電型,位於上述第二汲極區下方,其中上述第一摻雜區的面積、摻雜濃度或兩者大於上述第二摻雜區的面積、摻雜濃度或兩者。 The present invention provides an electrostatic discharge protection structure including a substrate, a pick up region, a first MOS device, a second MOS device, a first doped region, and a first doped region. A pick up zone is located in the substrate. A first MOS device is disposed on the substrate and includes a first drain region having a first conductivity type. A second MOS device is disposed on the substrate and includes a second drain region having a first conductivity type. The first bungee region is closer to the contact region than the second bungee region. The first doped region has a second conductivity type and is located below the first drain region. a second doped region having a second conductivity type, located below the second drain region, wherein an area, a doping concentration, or both of the first doped region is greater than an area of the second doped region, a doping concentration Or both.

依照本發明一實施例,上述第一導電型為N型,上述第二導電型為P型。 According to an embodiment of the invention, the first conductivity type is an N type, and the second conductivity type is a P type.

依照本發明一實施例,上述第一導電型為P型,上述第二導電型為N型。 According to an embodiment of the invention, the first conductivity type is a P type, and the second conductivity type is an N type.

依照本發明一實施例,上述第一金氧半導體元件與上述第二金氧半導體元件為並列成手指狀金氧半導體元件。 According to an embodiment of the invention, the first oxynitride semiconductor element and the second oxynitride semiconductor device are juxtaposed into a finger-shaped MOS device.

依照本發明一實施例,上述第一金氧半導體元件與上述第二金氧半導體元件為棋格狀(Waffle)金氧半導體元件。 According to an embodiment of the invention, the first oxynitride semiconductor element and the second oxynitride semiconductor component are Waffle MOS devices.

依照本發明一實施例,上述接點區為環狀,上述第一金氧半導體元件與上述第二金氧半導體元件位於上述接點區所圍的區域之內。 According to an embodiment of the invention, the contact region is annular, and the first oxynitride semiconductor element and the second MOS device are located within a region surrounded by the contact region.

本發明還提出一種靜電放電保護結構,包括:基底、接點區、多數個金氧半導體元件、多數個摻雜區。接點(pick up)區,位於上述基底中。多數個金氧半導體元件,位於上述基底上,分別具有第一導電型的汲極區。多數個摻雜區,具有第二導電型且分別位於各個金氧半導體元件的上述汲極區下方。自遠離上述接點區的上述摻雜區至接近上述接點區的上述摻雜區的面積、摻雜濃度或兩者逐漸遞增。 The invention also provides an electrostatic discharge protection structure comprising: a substrate, a contact region, a plurality of MOS devices, and a plurality of doped regions. A pick up zone is located in the substrate. A plurality of MOS devices are located on the substrate and each have a first conductivity type drain region. A plurality of doped regions have a second conductivity type and are respectively located below the above-described drain regions of the respective MOS devices. The area, the doping concentration, or both of the doped regions far from the contact region to the contact region are gradually increased.

依照本發明一實施例,上述第一導電型為N型,上述第二導電型為P型。 According to an embodiment of the invention, the first conductivity type is an N type, and the second conductivity type is a P type.

依照本發明一實施例,上述第一導電型為P型,上述第二導電型為N型。 According to an embodiment of the invention, the first conductivity type is a P type, and the second conductivity type is an N type.

依照本發明一實施例,上述第一金氧半導體元件與上述第二金氧半導體元件為並列成手指狀金氧半導體元件。 According to an embodiment of the invention, the first oxynitride semiconductor element and the second oxynitride semiconductor device are juxtaposed into a finger-shaped MOS device.

依照本發明一實施例,上述第一金氧半導體元件與上述第二金氧半導體元件為棋格狀(Waffle)金氧半導體元件。 According to an embodiment of the invention, the first oxynitride semiconductor element and the second oxynitride semiconductor component are Waffle MOS devices.

依照本發明一實施例,上述接點區為環狀,上述第一金氧半導體元件與上述第二金氧半導體元件位於上述接點區所圍的區域之內。 According to an embodiment of the invention, the contact region is annular, and the first oxynitride semiconductor element and the second MOS device are located within a region surrounded by the contact region.

基於上述,本發明提供一種靜電放電保護結構,在汲極 區下方設置與其導電型相異的摻雜區可以提升靜電放電保護結構的健全性,而且藉由改變位於汲極區下方的摻雜區的面積/摻雜濃度,可以修正摻雜區與接點區距離不同所造成的差異,使得各寄生BJT的崩潰電壓大致相同,便可以使各BJT的導通時間幾乎一致。 Based on the above, the present invention provides an electrostatic discharge protection structure in a bungee The doping region different from the conductivity type under the region can improve the soundness of the electrostatic discharge protection structure, and the doping region and the contact can be corrected by changing the area/doping concentration of the doping region under the drain region. The difference in the distance between the regions makes the breakdown voltage of each parasitic BJT substantially the same, and the conduction time of each BJT can be made almost the same.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

10‧‧‧基底 10‧‧‧Base

20‧‧‧第一金氧半導體元件 20‧‧‧First MOS components

22‧‧‧第一閘極結構 22‧‧‧First gate structure

24‧‧‧第一源極區 24‧‧‧First source area

24a、26a、34a、36a、50a、74a‧‧‧接觸窗 24a, 26a, 34a, 36a, 50a, 74a‧‧‧ contact windows

26‧‧‧第一汲極區 26‧‧‧First bungee area

30‧‧‧第二金氧半導體元件 30‧‧‧Second MOS components

32‧‧‧第二閘極結構 32‧‧‧Second gate structure

34‧‧‧第二源極區 34‧‧‧Second source area

36‧‧‧第二汲極區 36‧‧‧Second bungee area

40‧‧‧第一摻雜區 40‧‧‧First doped area

50‧‧‧接點(pick up)區 50‧‧‧pick up area

52‧‧‧隔離結構 52‧‧‧Isolation structure

60‧‧‧第二摻雜區 60‧‧‧Second doped area

70‧‧‧第三金氧半導體元件 70‧‧‧ Third MOS component

74‧‧‧第三源極區 74‧‧‧ Third source region

80‧‧‧第四金氧半導體元件 80‧‧‧fourth oxynitride component

100a、100b‧‧‧靜電放電保護結構 100a, 100b‧‧‧ Electrostatic discharge protection structure

110、210‧‧‧金氧半導體元件 110, 210‧‧‧ MOS components

220、230‧‧‧閘極結構 220, 230‧‧ ‧ gate structure

212‧‧‧源極區 212‧‧‧ source area

114、114a、114b、214、214a、214b‧‧‧汲極區 114, 114a, 114b, 214, 214a, 214b‧‧‧ bungee area

140、140a、140b、240、240a、240b‧‧‧摻雜區 140, 140a, 140b, 240, 240a, 240b‧‧‧ doped areas

A1、A2‧‧‧面積 A 1 , A 2 ‧ ‧ area

PW1、PW2‧‧‧寬度 P W1 , P W2 ‧‧‧Width

PL1、PL2‧‧‧長度 P L1 , P L2 ‧‧‧ length

圖1是本發明的一實施例的靜電放電保護結構的局部俯視圖。 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a partial plan view showing an electrostatic discharge protection structure according to an embodiment of the present invention.

圖2是本發明的一實施例的靜電放電保護結構的局部剖面示意圖。 2 is a partial cross-sectional view showing an electrostatic discharge protection structure according to an embodiment of the present invention.

圖3是本發明的另一實施例的靜電放電保護結構的局部俯視圖。 Fig. 3 is a partial plan view showing an electrostatic discharge protection structure according to another embodiment of the present invention.

圖4是本發明的另一實施例的靜電放電保護結構的局部剖面示意圖。 4 is a partial cross-sectional view showing an electrostatic discharge protection structure according to another embodiment of the present invention.

圖5是本發明的又一實施例的靜電放電保護結構的俯視。 Fig. 5 is a plan view showing an electrostatic discharge protection structure according to still another embodiment of the present invention.

本發明實施例的一種靜電放電保護結構,其包括多個金氧半導體元件。在每一個金氧半導體元件的汲極區下方,設置與 汲極區導電型相異的摻雜區,以提升靜電放電保護結構的健全性。再者,在接近接點(pick up)區的汲極區下方的摻雜區的面積/摻雜濃度大於遠離接點區的汲極區下方的摻雜區的面積/摻雜濃度,以使得各寄生BJT的崩潰電壓大致相同,近而使各寄生BJT導通時間幾乎一致。 An electrostatic discharge protection structure according to an embodiment of the present invention includes a plurality of MOS devices. Below the bungee region of each MOS device, set and The doping region of the draining region is different in conductivity, so as to improve the soundness of the electrostatic discharge protection structure. Furthermore, the area/doping concentration of the doped region below the drain region near the pick up region is greater than the area/doping concentration of the doped region below the drain region away from the contact region, so that The breakdown voltage of each parasitic BJT is approximately the same, and the parasitic BJT conduction time is almost the same.

圖1是本發明的實施例的靜電放電保護結構的局部俯視圖。圖2是本發明的實施例的靜電放電保護結構的局部剖面示意圖。 1 is a partial plan view of an electrostatic discharge protection structure of an embodiment of the present invention. 2 is a partial cross-sectional view showing an electrostatic discharge protection structure of an embodiment of the present invention.

請先參照圖1與2,本發明一實施例的靜電放電保護結構100a包括基底10、第一金氧半導體元件20、第二金氧半導體元件30、接點(pick up)區50、第一摻雜區40與第二摻雜區60。第一金氧半導體元件20與第二金氧半導體元件30具有第一導電型通道。接點區50、第一摻雜區40與第二摻雜區60具有第二導電型摻雜。在一實施例中,第一導電型為N型,第二導電型為P型。在另一實施例中,第一導電型為P型,第二導電型為N型。P型摻雜區的摻雜例如是硼或三氟化硼(BF3)。N型摻雜區的摻雜例如是磷或砷。為了清楚描述本實施例,圖1與2中以文字標示各區域的導電類型,「+」號表示摻雜濃度較高的區域。然而,本發明並不以圖1與2中標示的導電類型為限。 Referring first to FIGS. 1 and 2, an electrostatic discharge protection structure 100a according to an embodiment of the present invention includes a substrate 10, a first MOS device 20, a second MOS device 30, a pick up region 50, and a first Doped region 40 and second doped region 60. The first oxy-semiconductor element 20 and the second oxy-semiconductor element 30 have a first conductivity type channel. The contact region 50, the first doping region 40 and the second doping region 60 have a second conductivity type doping. In one embodiment, the first conductivity type is an N type and the second conductivity type is a P type. In another embodiment, the first conductivity type is a P type and the second conductivity type is an N type. The doping of the P-type doping region is, for example, boron or boron trifluoride (BF 3 ). The doping of the N-type doping region is, for example, phosphorus or arsenic. In order to clearly describe the present embodiment, the conductivity types of the respective regions are indicated by text in FIGS. 1 and 2, and the "+" sign indicates a region having a higher doping concentration. However, the invention is not limited to the type of conductivity indicated in Figures 1 and 2.

第一金氧半導體元件20包括第一閘極結構22、第一源極區24與第一汲極區26。第一閘極結構22位於第一源極區24與第一汲極區26之間的基底10上。第一閘極結構22包括第一閘極導 體層與第一閘介電層。第一閘極導體層的材料可以是導體,例如金屬或摻雜多晶矽。第一閘介電層的材料可以是絕緣體,例如氧化矽或介電常數大於4的高介電常數材料。第一閘極結構22還可包括間隙壁,其材料可以是絕緣體,例如氧化矽或氮化矽。第一源極區24與第一汲極區26具有第一導電型,位於基底10之中,其彼此之間具有第一導電型通道,位於第一閘極結構22下方。 The first MOS device 20 includes a first gate structure 22, a first source region 24, and a first drain region 26. The first gate structure 22 is located on the substrate 10 between the first source region 24 and the first drain region 26. The first gate structure 22 includes a first gate guide The bulk layer and the first gate dielectric layer. The material of the first gate conductor layer may be a conductor such as a metal or doped polysilicon. The material of the first gate dielectric layer may be an insulator such as hafnium oxide or a high dielectric constant material having a dielectric constant greater than four. The first gate structure 22 may also include a spacer, the material of which may be an insulator such as hafnium oxide or tantalum nitride. The first source region 24 and the first drain region 26 have a first conductivity type, located in the substrate 10, and have a first conductivity type channel therebetween, located below the first gate structure 22.

第二金氧半導體元件30包括第二閘極結構32、第二源極區34與第二汲極區36。第二閘極結構32位於第二源極區34與第二汲極區36之間的基底10上。第二閘極結構32包括第二閘極導體層與第二閘介電層。第二閘極導體層的材料可以是導體,例如金屬或摻雜多晶矽。第二閘介電層的材料可以是絕緣體,例如氧化矽或介電常數大於4的高介電常數材料。第二閘極結構32還可包括間隙壁,其材料可以是絕緣體,例如氧化矽或氮化矽。第二源極區34與第二汲極區36具有第一導電型,位於基底10之中,其彼此之間具有第一導電型通道,位於第二閘極結構32下方。 The second MOS device 30 includes a second gate structure 32, a second source region 34, and a second drain region 36. The second gate structure 32 is located on the substrate 10 between the second source region 34 and the second drain region 36. The second gate structure 32 includes a second gate conductor layer and a second gate dielectric layer. The material of the second gate conductor layer may be a conductor such as a metal or doped polysilicon. The material of the second gate dielectric layer may be an insulator such as hafnium oxide or a high dielectric constant material having a dielectric constant greater than four. The second gate structure 32 may also include a spacer, the material of which may be an insulator such as hafnium oxide or tantalum nitride. The second source region 34 and the second drain region 36 have a first conductivity type, located in the substrate 10, having a first conductivity type channel therebetween, below the second gate structure 32.

在一實施例中,靜電放電保護結構100a還包括位於第一金氧半導體元件20與第二金氧半導體元件30之間第三金氧半導體元件70與第四金氧半導體元件80。第三金氧半導體元件70與第一金氧半導體元件20共用第一汲極區26。第四金氧半導體元件80與第二金氧半導體元件30共用第二汲極區36,且與第三金氧半導體共用第三源極區74。在一實施例中,第一金氧半導體元件20、第二金氧半導體元件30、第三金氧半導體元件70與第四金氧 半導體元件80可以為並列成手指狀金氧半導體元件。 In one embodiment, the ESD protection structure 100a further includes a third MOS device 70 and a fourth MOS device 80 between the first MOS device 20 and the second MOS device 30. The third MOS device 70 shares the first drain region 26 with the first MOS device 20. The fourth MOS device 80 shares the second drain region 36 with the second MOS device 30 and shares the third source region 74 with the third MOS semiconductor. In one embodiment, the first MOS device 20, the second MOS device 30, the third MOS device 70, and the fourth gold oxide The semiconductor element 80 may be a pin-shaped MOS device.

接點區50具有第二導電型且位於基底10中。在一實施例中,接點區50為環狀,第一金氧半導體元件20、第二金氧半導體元件30、第三金氧半導體元件70與第四金氧半導體元件80位於接點區50所圍的區域之內。接點區50與第一金氧半導體元件20以隔離結構52分隔。隔離結構52可以含有絕緣材料,例如氧化矽。隔離結構52可以是局部區域氧化層(FOX)或淺溝渠隔離結構(STI)。相較於第二金氧半導體元件30,第一金氧半導體元件20較接近接點(pick up)區50。即,相較於第二金氧半導體元件30的第二汲極區36,第一金氧半導體元件20的第一汲極區26較接近接點區50。 The contact region 50 has a second conductivity type and is located in the substrate 10. In one embodiment, the contact region 50 is annular, and the first oxy-semiconductor element 20, the second MOS device 30, the third MOS device 70, and the fourth MOS device 80 are located in the contact region 50. Within the enclosed area. The contact region 50 is separated from the first oxynitride semiconductor element 20 by an isolation structure 52. The isolation structure 52 may contain an insulating material such as hafnium oxide. The isolation structure 52 can be a partial area oxide layer (FOX) or a shallow trench isolation structure (STI). The first MOS device 20 is closer to the pick up region 50 than the second MOS device 30. That is, the first drain region 26 of the first MOS device 20 is closer to the contact region 50 than the second drain region 36 of the second MOS device 30.

第一摻雜區40具有第二導電型,位於第一金氧半導體元件20的第一汲極區26的下方。第二摻雜區60具有第二導電型,位於第二金氧半導體元件30的第二汲極區36的下方。在一實施例中,第一摻雜區40與第一汲極區26緊鄰,第二摻雜區60與第二汲極區36緊鄰,如圖2所示。在另一實施例中,第一摻雜區40的頂面與第一汲極區26的底面之間的距離例如是約0.05μm至0.2μm;第二摻雜區60的頂面與第二汲極區36的底面之間的距離例如是約0.05μm至0.2μm。藉由第一摻雜區40與第二摻雜區60的設置,可以提升靜電放電保護結構的健全性(robustness)。第一摻雜區40的寬度為PW1,長度為PL1,面積A1=PW1×PL1。第二摻雜區60的寬度為PW2,長度為PL2,面積A2=PW2×PL2。第一摻雜區40與第二摻雜區60的面積的大小或摻雜濃度的高低會與影響 側向二極體的崩潰電壓。在一實施例中,第一汲極區26比第二汲極區36接近接點區50,第一摻雜區40的面積A1較大於第二摻雜區60的面積A2。在另一實施例中,第一汲極區26比第二汲極區36接近接點區50,第一摻雜區40的摻雜濃度較大於第二摻雜區60。在又一實施例中,第一汲極區26比第二汲極區36接近接點區50,第一摻雜區40的面積A1與摻雜濃度均較大於第二摻雜區60的面積A2與摻雜濃度。 The first doped region 40 has a second conductivity type located below the first drain region 26 of the first MOS device 20. The second doped region 60 has a second conductivity type located below the second drain region 36 of the second MOS device 30. In one embodiment, the first doped region 40 is in close proximity to the first drain region 26, and the second doped region 60 is in close proximity to the second drain region 36, as shown in FIG. In another embodiment, the distance between the top surface of the first doping region 40 and the bottom surface of the first drain region 26 is, for example, about 0.05 μm to 0.2 μm; the top surface and the second portion of the second doping region 60 The distance between the bottom surfaces of the drain regions 36 is, for example, about 0.05 μm to 0.2 μm. By the arrangement of the first doping region 40 and the second doping region 60, the robustness of the electrostatic discharge protection structure can be improved. The first doped region 40 has a width P W1 , a length P L1 , and an area A 1 = P W1 × P L1 . The second doped region 60 has a width P W2 , a length P L2 , and an area A 2 = P W2 × P L2 . The size of the area of the first doping region 40 and the second doping region 60 or the doping concentration may affect the breakdown voltage of the lateral diode. In one embodiment, the first drain region 26 is closer to the contact region 50 than the second drain region 36, and the area A 1 of the first doped region 40 is larger than the area A 2 of the second doped region 60. In another embodiment, the first drain region 26 is closer to the contact region 50 than the second drain region 36, and the doping concentration of the first doping region 40 is greater than the second doping region 60. In still another embodiment, the first drain region 26 is closer to the contact region 50 than the second drain region 36, and the area A 1 and the doping concentration of the first doped region 40 are both larger than the second doping region 60 . Area A 2 and doping concentration.

一般而言,寄生BJT的導通是靠基底10漏電流Ioff。在基底中漏電流的值基本上幾乎固定。決定寄生BJT的導通速度是由基極至射極電壓(Vbe)的大小(Vbe=Ioff×Rsub)來決定。第一摻雜區40距離接點區50較近,其基底10的阻值較小,故Vbe電壓便較小,寄生BJT便會較慢導通。反之,而第二摻雜區60距離接點區50較遠,其基底10的阻值較大,故電壓Vbe便較大,BJT便會較快導通。因此,便會有各個BJT導通時間不一致的問題。 In general, the conduction of the parasitic BJT is based on the substrate 10 leakage current Ioff. The value of the leakage current in the substrate is substantially fixed. The conduction speed of the parasitic BJT is determined by the magnitude of the base-to-emitter voltage (Vbe) (Vbe=Ioff×Rsub). The first doped region 40 is closer to the contact region 50, and the resistance of the substrate 10 is smaller, so the Vbe voltage is smaller, and the parasitic BJT is turned on slowly. On the contrary, the second doping region 60 is farther away from the contact region 50, and the resistance of the substrate 10 is larger, so the voltage Vbe is larger, and the BJT is turned on faster. Therefore, there is a problem that the respective BJT conduction times are inconsistent.

如上所述,使寄生BJT導通的關鍵在於電壓Vbe,而電壓Vbe的電壓相當於Ioff×Rsub。根據本實施例,這邊討論的Ioff又會大致上與摻雜區的面積A成正比(即,Ioff≒k×A,k為比例常數)。因此,若要讓各寄生BJT可以同時導通,亦即要讓各寄生BJT的電壓Vbe大致上相同,可以推導出以下關係式:Vbe≒Ioff×Rsub≒k×A×Rsub故,假設在遠離接點區50的第二摻雜區60面積為A2,接近接點區50的第一摻雜區40的面積為A1,則由於在遠離接點區50的 Rsub較大,故可以得到第二摻雜區60需要小的面積,反之在接近接點區50的Rsub較小,故可以得到第一摻雜區40需要大的面積。如此,在遠離接點區50與接近接點區50的各寄生BJT的電壓Vbe便可以幾乎相等,也就可以達到使各寄生BJT幾乎同時導通的目的。 As described above, the key to turning on the parasitic BJT is the voltage Vbe, and the voltage of the voltage Vbe is equivalent to Ioff × Rsub. According to this embodiment, Ioff discussed herein will again be substantially proportional to the area A of the doped region (i.e., Ioff ≒ k x A, k is a proportionality constant). Therefore, if the parasitic BJTs can be turned on at the same time, that is, the voltage Vbe of each parasitic BJT is substantially the same, the following relationship can be derived: Vbe≒Ioff×Rsub≒k×A×Rsub, assuming that it is far away The area of the second doping region 60 of the dot region 50 is A 2 , and the area of the first doping region 40 close to the contact region 50 is A 1 , since the Rsub is far away from the contact region 50, The second doped region 60 requires a small area, whereas the Rsub near the contact region 50 is small, so that a large area is required for the first doped region 40. In this way, the voltage Vbe of each parasitic BJT away from the contact region 50 and the proximity contact region 50 can be almost equal, and the purpose of making each parasitic BJT turn on almost simultaneously can be achieved.

綜上所述,在本實施例中,將第一摻雜區40的面積A1、摻雜濃度或兩者改變為較大於第二摻雜區60的面積A2、摻雜濃度或兩者,可以修正第一摻雜區40和第二摻雜區60與接點區50距離不同所造成的差異,使得側向寄生二極體的崩潰電壓大致相同,便可以使各BJT的導通時間幾乎一致。 In summary, in the embodiment, the area A 1 , the doping concentration, or both of the first doping region 40 is changed to be larger than the area A 2 of the second doping region 60, the doping concentration, or both. The difference between the first doping region 40 and the second doping region 60 and the contact region 50 can be corrected, so that the breakdown voltage of the lateral parasitic diode is substantially the same, so that the conduction time of each BJT can be made almost Consistent.

在接點區50、第一源極區24、第一汲極區26、第二源極區34、第二汲極區36以及第三源極區74上設置有多個接觸窗50a、24a、26a、34a、36a以及74a。接觸窗50a、24a、26a、34a、36a以及74a的材料可以是導體。此外,接觸窗50a、24a、26a、34a、36a以及74a的結構可以包括阻障層與主導電層。阻障層例如是Ti與TiN的複合層、Ta與TaN的複合層或其任意組合;主導電層例如是鎢層、銅層或鋁層。在接觸窗50a、24a、26a、34a、36a以及74a與其下方的接點區50、第一源極區24、第一汲極區26、第二源極區34、第二汲極區36以及第三源極區74之間可選擇性設有金屬矽化物層以確保低接觸電阻及歐姆接觸。 A plurality of contact windows 50a, 24a are disposed on the contact region 50, the first source region 24, the first drain region 26, the second source region 34, the second drain region 36, and the third source region 74. , 26a, 34a, 36a, and 74a. The material of the contact windows 50a, 24a, 26a, 34a, 36a, and 74a may be a conductor. Further, the structures of the contact windows 50a, 24a, 26a, 34a, 36a, and 74a may include a barrier layer and a main conductive layer. The barrier layer is, for example, a composite layer of Ti and TiN, a composite layer of Ta and TaN, or any combination thereof; the main conductive layer is, for example, a tungsten layer, a copper layer or an aluminum layer. a contact region 50, a first source region 24, a first drain region 26, a second source region 34, a second drain region 36, and the contact regions 50a, 24a, 26a, 34a, 36a, and 74a thereof A metal telluride layer may be selectively disposed between the third source regions 74 to ensure low contact resistance and ohmic contact.

在其他的實施例中,請參照圖3與4,靜電放電保護結構100b包括多個金氧半導體元件110。每一個金氧半導體元件110的汲極區114下方具有摻雜區140,摻雜區140的導電型與汲極區114的導電型相異,且自遠離接點區150的摻雜區140至接近接點 (pick up)區150的摻雜區140的面積/摻雜濃度逐漸遞增。 In other embodiments, referring to FIGS. 3 and 4, the electrostatic discharge protection structure 100b includes a plurality of MOS devices 110. Each of the MOSFETs 110 has a doped region 140 under the drain region 114. The conductivity of the doped region 140 is different from the conductivity of the drain region 114, and is from the doped region 140 away from the contact region 150 to Proximity contact The area/doping concentration of the doped region 140 of the (pick up) region 150 is gradually increased.

在一實施例中,請參照圖1與2,上述的靜電放電保護結構100a的第一金氧半導體元件20、第二金氧半導體元件30、第三金氧半導體元件70與第四金氧半導體元件80可以為並列的手指狀MOS。接點區50環繞在第一金氧半導體元件20、第二金氧半導體元件30、第三金氧半導體元件70與第四金氧半導體元件80外圍。同樣地,請參照圖3與4,上述的靜電放電保護結構100b的多個金氧半導體元件110可以為並列的手指狀MOS。接點區150環繞在金氧半導體元件110外圍。 In one embodiment, referring to FIGS. 1 and 2, the first MOS device 20, the second MOS device 30, the third MOS device 70, and the fourth MOS semiconductor of the above electrostatic discharge protection structure 100a. Element 80 can be a parallel finger MOS. The contact region 50 surrounds the periphery of the first MOS device 20, the second MOS device 30, the third MOS device 70, and the fourth MOS device 80. Similarly, referring to FIGS. 3 and 4, the plurality of MOS devices 110 of the above-described electrostatic discharge protection structure 100b may be juxtaposed finger MOS. The contact region 150 surrounds the periphery of the MOS device 110.

在另一實施例中,請參照圖5,上述的靜電放電保護結構100c包括多個金氧半導體元件210,且這些金氧半導體元件排列成棋格狀(WaffLe)。更具體地說,靜電放電保護結構100c的多個金氧半導體元件210包括多個沿著第一方向排列的閘極結構220與多個沿著第二方向排列的閘極結構230。在一實施例中,第一方向與第二方向互相垂直。多個閘極結構220與多個閘極結構230構成多個棋格。而源極區212與汲極區214則交替配置於棋格之中,使得任一源極區212周圍被四個汲極區214圍繞,任一汲極區214被四個源極區212圍繞。接點區250環繞於棋格狀之金氧半導體元件210的外圍。 In another embodiment, referring to FIG. 5, the above-described electrostatic discharge protection structure 100c includes a plurality of MOS devices 210, and these MOS devices are arranged in a checkerboard shape (WaffLe). More specifically, the plurality of MOS devices 210 of the ESD protection structure 100c include a plurality of gate structures 220 arranged in a first direction and a plurality of gate structures 230 arranged in a second direction. In an embodiment, the first direction and the second direction are perpendicular to each other. The plurality of gate structures 220 and the plurality of gate structures 230 constitute a plurality of tiles. The source region 212 and the drain region 214 are alternately arranged in the chessboard such that any source region 212 is surrounded by four drain regions 214, and any of the drain regions 214 is surrounded by four source regions 212. . The contact region 250 surrounds the periphery of the chevron-shaped MOS device 210.

金氧半導體元件排列成棋格狀在棋格狀中心處的金氧半導體元件210b距離接點區250最遠,而在棋格狀邊緣處的金氧半導體元件210a距離接點區250最近,其寄生BJT導通時間不一致的問題更為嚴重。因此,可以依照上述實施例之方式,在汲極區214下方設置摻雜區240,摻雜區240的導電型與源極區212以及 汲極區214的導電型不同。在距離接點區250較近的摻雜區240a的面積/摻雜濃度設計成大於距離接點區250較遠的摻雜區240b的面積/摻雜濃度。或者,自遠離接點區250的汲極區214b下方的摻雜區240b至接近接點區250的汲極區214a下方的摻雜區240a的面積/摻雜濃度設計成逐漸遞增,藉以修正摻雜區240與接點區250距離不同所造成的差異,使得各寄生BJT的崩潰電壓大致相同,變可以使各BJT的導通時間幾乎一致。 The oxynitride semiconductor elements are arranged in a checkerboard shape at the chevron-like center of the MOS element 210b farthest from the contact region 250, and the MOS device 210a at the checkered edge is closest to the contact region 250, The problem of inconsistent parasitic BJT conduction time is more serious. Therefore, the doping region 240, the conductivity type and the source region 212 of the doping region 240, and the doping region 240 may be disposed under the drain region 214 according to the above embodiment. The conductivity type of the drain region 214 is different. The area/doping concentration of the doped region 240a that is closer to the contact region 250 is designed to be larger than the area/doping concentration of the doped region 240b that is further from the contact region 250. Alternatively, the area/doping concentration from the doped region 240b below the drain region 214b of the contact region 250 to the doped region 240a under the drain region 214a of the contact region 250 is designed to gradually increase, thereby modifying the blend. The difference between the miscellaneous region 240 and the contact region 250 is different, so that the breakdown voltage of each parasitic BJT is substantially the same, and the conduction time of each BJT can be made almost uniform.

在以上的實施例中,接點區環繞於棋格狀之金氧半導體元件的外圍。然而,本發明並不限於此。接點區亦可以設置在相鄰的兩個金氧半導體元件或是相鄰的兩組的金氧半導體元件之間。 In the above embodiment, the contact region surrounds the periphery of the chevron-shaped MOS device. However, the invention is not limited thereto. The contact region can also be disposed between two adjacent MOS devices or between two adjacent sets of MOS devices.

綜合以上所述,本發明實施例在汲極區下方設置與其導電型相異的摻雜區可以提升靜電放電保護結構的健全性。此外,藉由改變位於汲極區下方的摻雜區的面積/摻雜濃度,可以修正摻雜區與接點區距離不同所造成的差異,使得不同區域的各寄生BJT的崩潰電壓大致相同,便可以使各BJT的導通時間幾乎一致。 In summary, in the embodiment of the present invention, the doping region different from the conductivity type is disposed under the drain region to improve the soundness of the electrostatic discharge protection structure. In addition, by changing the area/doping concentration of the doped region under the drain region, the difference between the doped region and the contact region can be corrected, so that the breakdown voltages of the parasitic BJTs in different regions are substantially the same. The conduction time of each BJT can be made almost the same.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

20‧‧‧第一金氧半導體元件 20‧‧‧First MOS components

22‧‧‧第一閘極結構 22‧‧‧First gate structure

24‧‧‧第一源極區 24‧‧‧First source area

24a、26a、34a、36a、50a、74a‧‧‧接觸窗 24a, 26a, 34a, 36a, 50a, 74a‧‧‧ contact windows

26‧‧‧第一汲極區 26‧‧‧First bungee area

30‧‧‧第二金氧半導體元件 30‧‧‧Second MOS components

32‧‧‧第二閘極結構 32‧‧‧Second gate structure

34‧‧‧第二源極區 34‧‧‧Second source area

36‧‧‧第二汲極區 36‧‧‧Second bungee area

40‧‧‧第一摻雜區 40‧‧‧First doped area

50‧‧‧接點區 50‧‧‧Contact area

60‧‧‧第二摻雜區 60‧‧‧Second doped area

70‧‧‧第三金氧半導體元件 70‧‧‧ Third MOS component

74‧‧‧第三源極區 74‧‧‧ Third source region

80‧‧‧第四金氧半導體元件 80‧‧‧fourth oxynitride component

100a‧‧‧靜電放電保護結構 100a‧‧‧Electrostatic discharge protection structure

PW1、PW2‧‧‧寬度 P W1 , P W2 ‧‧‧Width

PL1、PL2‧‧‧長度 P L1 , P L2 ‧‧‧ length

Claims (12)

一種靜電放電保護結構,包括:一基底;一接點(pick up)區,位於該基底中;一第一金氧半導體元件,位於該基底上,包括具有一第一導電型的一第一汲極區;一第二金氧半導體元件,位於該基底上,包括具有該第一導電型的一第二汲極區,其中該第一汲極區較該第二汲極區接近該接點區;一第一摻雜區,具有一第二導電型,位於該第一汲極區下方;以及一第二摻雜區,具有該第二導電型,位於該第二汲極區下方,其中該第一摻雜區的面積、摻雜濃度或兩者大於該第二摻雜區的面積、摻雜濃度或兩者。 An electrostatic discharge protection structure comprising: a substrate; a pick up region in the substrate; a first MOS device on the substrate, including a first 具有 having a first conductivity type a second MOS device, on the substrate, including a second drain region having the first conductivity type, wherein the first drain region is closer to the contact region than the second drain region a first doped region having a second conductivity type under the first drain region; and a second doped region having the second conductivity type under the second drain region, wherein the first doped region The area of the first doped region, the doping concentration, or both are greater than the area of the second doped region, the doping concentration, or both. 如申請專利範圍第1項所述之靜電放電保護結構,其中該第一導電型為N型,該第二導電型為P型。 The electrostatic discharge protection structure according to claim 1, wherein the first conductivity type is an N type, and the second conductivity type is a P type. 如申請專利範圍第1項所述之靜電放電保護結構,其中該第一導電型為P型,該第二導電型為N型。 The electrostatic discharge protection structure according to claim 1, wherein the first conductivity type is a P type, and the second conductivity type is an N type. 如申請專利範圍第1項所述之靜電放電保護結構,其中該第一金氧半導體元件與該第二金氧半導體元件為並列成手指狀金氧半導體元件。 The electrostatic discharge protection structure according to claim 1, wherein the first oxynitride semiconductor element and the second oxynitride semiconductor element are juxtaposed into a finger-shaped MOS device. 如申請專利範圍第1項所述之靜電放電保護結構,其中該第一金氧半導體元件與該第二金氧半導體元件為棋格狀(Waffle)金氧半導體元件。 The electrostatic discharge protection structure of claim 1, wherein the first oxynitride semiconductor component and the second oxynitride semiconductor component are Waffle MOS devices. 如申請專利範圍第1項所述之靜電放電保護結構,其中該接點區為環狀,該第一金氧半導體元件與該第二金氧半導體元件位於該接點區所圍的區域之內。 The electrostatic discharge protection structure of claim 1, wherein the contact region is annular, and the first MOS device and the second MOS device are located within a region surrounded by the contact region. . 一種靜電放電保護結構,包括:一基底;一接點(pick up)區,位於該基底中;多數個金氧半導體元件,位於該基底上,分別具有第一導電型的一汲極區;多數個摻雜區,具有一第二導電型且分別位於各個金氧半導體元件的該汲極區下方,其中自遠離該接點區的該摻雜區至接近該接點區的該摻雜區的面積、摻雜濃度或兩者逐漸遞增。 An electrostatic discharge protection structure comprising: a substrate; a pick up region located in the substrate; a plurality of MOS devices located on the substrate, each having a first conductivity type of a drain region; Doped regions having a second conductivity type and respectively located under the drain regions of the respective MOS devices, wherein the doped regions away from the contact regions are close to the doped regions of the contact regions The area, doping concentration, or both are gradually increasing. 如申請專利範圍第7項所述之靜電放電保護結構,其中該第一導電型為N型,該第二導電型為P型。 The electrostatic discharge protection structure according to claim 7, wherein the first conductivity type is an N type, and the second conductivity type is a P type. 如申請專利範圍第7項所述之靜電放電保護結構,其中該第一導電型為P型,該第二導電型為N型。 The electrostatic discharge protection structure according to claim 7, wherein the first conductivity type is a P type, and the second conductivity type is an N type. 如申請專利範圍第7項所述之靜電放電保護結構,其中該些金氧半導體元件為並列成手指狀金氧半導體元件。 The electrostatic discharge protection structure according to claim 7, wherein the MOS devices are juxtaposed into a finger-shaped MOS device. 如申請專利範圍第7項所述之靜電放電保護結構,其中該些金氧半導體元件為棋格狀(Waffle)金氧半導體元件。 The electrostatic discharge protection structure of claim 7, wherein the MOS devices are Waffle MOS devices. 如申請專利範圍第7項所述之靜電放電保護結構,其中該接點區為環狀,該些金氧半導體元件位於該接點區所圍的區域之內。 The electrostatic discharge protection structure of claim 7, wherein the contact region is annular, and the MOS devices are located within a region surrounded by the contact region.
TW102124436A 2013-07-08 2013-07-08 Electrostatic discharge protection structure TWI585936B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102124436A TWI585936B (en) 2013-07-08 2013-07-08 Electrostatic discharge protection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102124436A TWI585936B (en) 2013-07-08 2013-07-08 Electrostatic discharge protection structure

Publications (2)

Publication Number Publication Date
TW201503312A true TW201503312A (en) 2015-01-16
TWI585936B TWI585936B (en) 2017-06-01

Family

ID=52718504

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102124436A TWI585936B (en) 2013-07-08 2013-07-08 Electrostatic discharge protection structure

Country Status (1)

Country Link
TW (1) TWI585936B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815775B2 (en) * 2001-02-02 2004-11-09 Industrial Technology Research Institute ESD protection design with turn-on restraining method and structures
US6858900B2 (en) * 2001-10-08 2005-02-22 Winbond Electronics Corp ESD protection devices and methods to reduce trigger voltage

Also Published As

Publication number Publication date
TWI585936B (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US9190519B2 (en) FinFET-based ESD devices and methods for forming the same
TWI515862B (en) Esd protection circuit
KR101454537B1 (en) Esd devices comprising semiconductor fins
US8704271B2 (en) Bidirectional electrostatic discharge (ESD) protection
US20150129977A1 (en) Semiconductor electrostatic discharge protection apparatus
TWI704670B (en) Semiconductor device for electrostatic discharge protection
US9613952B2 (en) Semiconductor ESD protection device
US9691752B1 (en) Semiconductor device for electrostatic discharge protection and method of forming the same
US9607980B1 (en) High voltage transistor
US7081394B2 (en) Device for electrostatic discharge protection and method of manufacturing the same
CN104299966B (en) ESD-protection structure
TWI697092B (en) Semiconductor electrostatic discharge protection circuit, esd protection semiconductor device, and layout structure of esd protection semiconductor device
US9449960B2 (en) Electrostatic discharge protection structure
TWI652768B (en) Layout structure of esd protection device with high esd tolerance
US9136373B2 (en) Semiconductor device and manufacturing method for the same
TWI585936B (en) Electrostatic discharge protection structure
US11011510B2 (en) Breakdown uniformity for ESD protection device
TWI538160B (en) Electrostatic discharge protection device and applications thereof
TWI728090B (en) Semiconductor structure
CN106558571B (en) A kind of ESD layout structure, electronic device
US9997642B2 (en) Diode, diode string circuit, and electrostatic discharge protection device having doped region and well isolated from each other
US9899369B2 (en) Layout structure for electrostatic discharge protection
KR20210074159A (en) Electrostatic discharge protection device and semiconductor devices including the same
TWI597814B (en) Semiconductor device
TWI394277B (en) Lateral diffused metal-oxide semiconductor