[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201442548A - Method and apparatus to enable direct link setup in opportunistic multi-RAT aggregation systems - Google Patents

Method and apparatus to enable direct link setup in opportunistic multi-RAT aggregation systems Download PDF

Info

Publication number
TW201442548A
TW201442548A TW103109015A TW103109015A TW201442548A TW 201442548 A TW201442548 A TW 201442548A TW 103109015 A TW103109015 A TW 103109015A TW 103109015 A TW103109015 A TW 103109015A TW 201442548 A TW201442548 A TW 201442548A
Authority
TW
Taiwan
Prior art keywords
rat
sta
direct link
common
mac address
Prior art date
Application number
TW103109015A
Other languages
Chinese (zh)
Inventor
Amith V Chincholi
Sanjay Goyal
Tan B Le
Alpaslan Demir
Original Assignee
Interdigital Patent Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings filed Critical Interdigital Patent Holdings
Publication of TW201442548A publication Critical patent/TW201442548A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method performed by a multiple radio-access technology (RAT) capable access point (AP), for communicating the direct link capability and RAT capability between a first station (STA) and a second STA is disclosed. The method may comprise the AP receiving a direct link discovery request message from the first STA using a first common enabled RAT. The AP may select a second common enabled RAT for communication with a second STA. The AP may forward the direct link discovery request message to the second STA using the second common enabled RAT. The first common enabled RAT and the second common enabled RAT may be the same. The AP may receive a direct link setup request message from the first STA using the first common enabled RAT and forward the direct link setup request message to the second STA using the second common enabled RAT.

Description

在機會型多RAT聚合系統中賦能直接鏈路設置的方法及裝置Method and device for enabling direct link setting in opportunistic multi-RAT aggregation system

相關申請案的交叉引用
本申請案要求2013年3月14日申請的美國臨時申請案No.61/783,978的權益,該申請案的內容作為引用結合於此。
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit.


多無線電存取技術(多RAT)裝置是能夠支援在多於一種無線電存取技術(RAT)上的資料傳輸的裝置。多RAT裝置可以是基礎設施裝置,例如存取點(AP)、家用節點B(HNB)、家用演進型節點B(H(e)NB)等等。多RAT裝置也可以是用戶端裝置,例如Wi-Fi中的站(STA)和蜂巢系統中的無線傳輸/接收單元(WTRU)等等。
機會型多媒體存取控制(MAC)聚合(OMMA)允許多RAT裝置來聚合在單獨的頻段上操作的多個RAT。聚合可以在空中介面協定堆疊之上但在IP層之下進行。此層可以被稱作OMMA層,其對於所有RAT可以是公共的。OMMA層還能夠接收來自每個RAT的元資料和鏈路統計回饋。
直接鏈路(DL)通信使得裝置能夠彼此傳遞資料而不使用AP。在電子電氣工程學會(IEEE)802.11n中,具有服務品質(QoS)設施(facility)的STA可以藉由使用直接鏈路設置(DLS)來建立資料傳送以將訊框直接傳送到另一STA。在IEEE 802.11z中,DLS被稱作隧道直接鏈路設置(TDLS)。TDLS以使用在資料訊框中封裝的傳訊訊框為特徵,使得傳訊訊框可以經由存取點(AP)透明地傳送。期望賦能在能夠聚合兩個或多個RAT的多RAT裝置之間的直接鏈路通信。
A multi-radio access technology (multi-RAT) device is a device capable of supporting data transmission over more than one radio access technology (RAT). The multi-RAT device may be an infrastructure device such as an access point (AP), a home node B (HNB), a home evolved node B (H(e)NB), and the like. The multi-RAT device may also be a client device, such as a station in a Wi-Fi (STA) and a wireless transmit/receive unit (WTRU) in a cellular system, and the like.
Opportunistic Multimedia Access Control (MAC) aggregation (OMMA) allows multi-RAT devices to aggregate multiple RATs operating on separate frequency bands. Aggregation can be done above the empty intermediaries protocol stack but below the IP layer. This layer may be referred to as an OMMA layer, which may be common to all RATs. The OMMA layer is also capable of receiving metadata and link statistics feedback from each RAT.
Direct link (DL) communication enables devices to pass data to each other without using an AP. In the Institute of Electrical and Electronic Engineering (IEEE) 802.11n, STAs with Quality of Service (QoS) facilities can establish a data transfer by using Direct Link Setup (DLS) to transfer frames directly to another STA. In IEEE 802.11z, DLS is called Tunnel Direct Link Setup (TDLS). TDLS features a messaging frame encapsulated in a data frame so that the frame can be transparently transmitted via an access point (AP). It is desirable to enable direct link communication between multi-RAT devices capable of aggregating two or more RATs.

揭露了用於在第一具有多無線電存取技術(RAT)能力的站(STA)和第二具有多RAT能力的STA之間傳遞直接鏈路能力和RAT能力的方法和裝置。第一STA和第二STA可能不知道彼此的RAT能力來確定哪個RAT是它們間公共的。由此RAT能力發現是期望的以用於兩個多RAT裝置使用直接鏈路來彼此直接通信。在一個示例中,具有多RAT能力的存取點(AP)可使用第一公共賦能RAT接收來自第一STA的直接鏈路發現請求訊息。AP可選擇用於與第二STA進行通信的第二公共賦能RAT並且可使用第二公共賦能RAT將直接鏈路發現請求訊息轉發到第二STA。第二STA可使用與第一STA相關的至少一個公共賦能RAT以直接發送至少一個直接鏈路發現回應訊息到第一STA。
揭露了用於建立在第一具有多RAT能力的STA和第二具有多RAT能力的STA之間的直接鏈路的方法和裝置。還揭露了用於在第一具有多RAT能力的STA和第二具有多RAT能力的STA之間的直接鏈路拆除的方法和裝置。揭露了用於管理在第一具有多RAT能力的STA和第二具有多RAT能力的STA之間的RAT可用性的方法和裝置。還揭露了用於動態地切換RAT的方法和裝置以及用於傳送具有多RAT能力的STA的多媒體存取控制(MAC)聚合(OMMA)模式的方法和裝置。
Methods and apparatus are disclosed for communicating direct link capability and RAT capability between a first multi-radio access technology (RAT) capable station (STA) and a second multi-RAT capable STA. The first STA and the second STA may not know each other's RAT capabilities to determine which RAT is common to them. Thus RAT capability discovery is desirable for two multi-RAT devices to communicate directly with each other using a direct link. In one example, a multi-RAT capable access point (AP) may receive a direct link discovery request message from a first STA using a first common enabled RAT. The AP may select a second common enabled RAT for communicating with the second STA and may forward the direct link discovery request message to the second STA using the second common enabled RAT. The second STA may use the at least one common grant RAT associated with the first STA to directly transmit at least one direct link discovery response message to the first STA.
A method and apparatus for establishing a direct link between a first multi-RAT capable STA and a second multi-RAT capable STA is disclosed. Also disclosed are methods and apparatus for direct link teardown between a first multi-RAT capable STA and a second multi-RAT capable STA. Methods and apparatus are disclosed for managing RAT availability between a first multi-RAT capable STA and a second multi-RAT capable STA. Methods and apparatus for dynamically switching RATs and methods and apparatus for transmitting Multimedia Access Control (MAC) aggregation (OMMA) mode for multi-RAT capable STAs are also disclosed.

100...通信系統100. . . Communication Systems

102、102a、102b、102c、102d...無線傳輸/接收單元(WRU)102, 102a, 102b, 102c, 102d. . . Wireless transmission/reception unit (WRU)

104...無線電存取網路(RAN)104. . . Radio access network (RAN)

106...核心網路106. . . Core network

108...公共交換電話網路(PSTN)108. . . Public switched telephone network (PSTN)

110...網際網路110. . . Internet

112...其他網路112. . . Other network

114a、114b...基地台114a, 114b. . . Base station

116...空中介面116. . . Empty intermediary

118...處理器118. . . processor

120...收發器120. . . transceiver

122...傳輸/接收元件122. . . Transmission/reception component

124...揚聲器/麥克風124. . . Speaker/microphone

126...鍵盤126. . . keyboard

128...顯示器/觸控板128. . . Display/trackpad

130...不可移式記憶體130. . . Non-removable memory

132...可移式記憶體132. . . Removable memory

134...電源134. . . power supply

136...全球定位系統(GPS)晶片組136. . . Global Positioning System (GPS) chipset

138...週邊裝置138. . . Peripheral device

140a、140b、140c...e節點B140a, 140b, 140c. . . eNodeB

142...移動性管理閘道(MME)142. . . Mobility Management Gateway (MME)

144...服務閘道144. . . Service gateway

146...封包資料網路(PDN)閘道146. . . Packet Data Network (PDN) gateway

202、204、302、304、510、515...站(STA)202, 204, 302, 304, 510, 515. . . Station (STA)

206、306、505、601、1201、2301...存取點(AP)206, 306, 505, 601, 1201, 2301. . . Access point (AP)

210a、210b...請求訊息210a, 210b. . . Request message

220a、220b...回應訊息220a, 220b. . . Response message

310...設置請求訊息310. . . Set request message

320...設置回應訊息320. . . Set response message

330...確認訊息330. . . Confirmation message

400...多無線電存取技術(RAT)裝置架構400. . . Multi-radio access technology (RAT) device architecture

410a、410b、410n、506、507、508、509、511、512...RAT模組410a, 410b, 410n, 506, 507, 508, 509, 511, 512. . . RAT module

420a、420b、420n...天線/射頻(RF)前端對420a, 420b, 420n. . . Antenna/radio frequency (RF) front-end pair

430...OMMA層模組430. . . OMMA layer module

440...IP層模組440. . . IP layer module

605、1205...DL發起方STA605, 1205. . . DL initiator STA

610、1210...DL回應方STA610, 1210. . . DL responder STA

S615、S620、S625、S630、S635、S640a、S640b、S640n...基本示例DL/RAT能力發現程序的流呼叫S615, S620, S625, S630, S635, S640a, S640b, S640n. . . Basic example streaming call for DL/RAT capability discovery program

705、710、715、720、1005、1010、1015、1020、1305、1310、1315、1320、1505、1510、1515、1520、1605、1610、1615、1620、1805、1810、1815、1820、1905、1910、1915、1920、2105、2110、2115、2120、2405、2410、2415、2420、2505、2510、2515、2520...位址欄位705, 710, 715, 720, 1005, 1010, 1015, 1020, 1305, 1310, 1315, 1320, 1505, 1510, 1515, 1520, 1605, 1610, 1615, 1620, 1805, 1810, 1815, 1820, 1905, 1910, 1915, 1920, 2105, 2110, 2115, 2120, 2405, 2410, 2415, 2420, 2505, 2510, 2515, 2520. . . Address field

800...TDLS發現請求訊框格式800. . . TDLS discovery request frame format

802、1102、1402、1702、2002、2602...次序802, 1102, 1402, 1702, 2002, 2602. . . order

804、1104、1404、1704、2004、2604...資訊元素804, 1104, 1404, 1704, 2004, 2604. . . Information element

900...TDLS鏈路識別符元素格式900. . . TDLS link identifier element format

902...元素ID欄位902. . . Element ID field

904...長度欄位904. . . Length field

906...BSSID欄位906. . . BSSID field

908...DL發起方STA位址欄位908. . . DL initiator STA address field

910...DL回應方STA位址欄位910. . . DL responder STA address field

1100...TDLS發現回應訊框格式1100. . . TDLS discovery response frame format

S1215、S1220、S1225、S1230、S1235、S1240、S1245、S1250、S1255、S1260、S1265、S1270...基本示例DL設置程序的流呼叫S1215, S1220, S1225, S1230, S1235, S1240, S1245, S1250, S1255, S1260, S1265, S1270. . . Basic example DL setup program for streaming calls

1400...TDLS設置請求訊框格式1400. . . TDLS setup request frame format

1700...TDLS設置回應訊框格式1700. . . TDLS setting response frame format

2000...TDLS設置確認訊框格式2000. . . TDLS setting confirmation frame format

2205、2305...拆除發起方STA2205, 2305. . . Demolition initiator STA

2210、2310...拆除回應方STA2210, 2310. . . Demolition responder STA

S2220、S2225、S2230...在直接路徑上的示例拆除程序的呼叫流S2220, S2225, S2230. . . Call flow for an example teardown procedure on a direct path

S2320、S2325、S2330、S2335、S2340、S2345、S2350、S2355、S2360、S2365、S2370、S2375...通過AP的示例拆除程序的呼叫流S2320, S2325, S2330, S2335, S2340, S2345, S2350, S2355, S2360, S2365, S2370, S2375. . . Deleting the program's call flow through the AP's example

2705、2710、2805、2810、2905、2910...DL對等STA2705, 2710, 2805, 2810, 2905, 2910. . . DL peer STA

S2720a、S2720n、S2725a、S2725n、S2730、S2735、S2740、S2745、S2750、S2755、S2760、S2765、S2770...用於RAT可用性更新管理的示例呼叫流S2720a, S2720n, S2725a, S2725n, S2730, S2735, S2740, S2745, S2750, S2755, S2760, S2765, S2770. . . Example call flow for RAT availability update management

S2815a、S2815b、S2815c、S2820、S2825、S2830、S2835、S2840、S2845、S2850、S2855、S2860a、S2860b...用於動態RAT切換的示例呼叫流S2815a, S2815b, S2815c, S2820, S2825, S2830, S2835, S2840, S2845, S2850, S2855, S2860a, S2860b. . . Example call flow for dynamic RAT handover

S2915、S2920、S2925、S2930、S2935、S2940、S2945、S2950、S2955...示例OMMA模式傳送程序的呼叫流S2915, S2920, S2925, S2930, S2935, S2940, S2945, S2950, S2955. . . Example OMMA mode transfer program call flow

DL...直接鏈路DL. . . Direct link

ID...識別符ID. . . Identifier

IP...網際網路協定IP. . . Internet protocol

OMMA...機會型多媒體存取控制(MAC)聚合OMMA. . . Opportunistic Multimedia Access Control (MAC) aggregation

RAT...多無線電存取技術RAT. . . Multi-radio access technology

STA...站STA. . . station

TCP...傳輸控制協定TCP. . . Transmission control protocol

TDLS...隧道直接鏈路設置TDLS. . . Tunnel direct link setup

UDP...使用者資料包通訊協定UDP. . . User data packet protocol

從以下描述中可以更詳細地理解本發明,這些描述是以實例方式給出的,並且可以結合附圖加以理解,其中:
第1A圖為可以在其中實施一個或多個所揭露的實施方式的示例通信系統的系統圖;
第1B圖為示例無線傳輸/接收單元(WTRU)的系統圖,其中該WTRU可以在如第1A圖所示的通信系統中使用;
第1C圖為可以在如第1A圖所示的通信系統中使用的示例無線電存取網路和示例核心網路的系統圖;
第2圖是描述兩個站(STA)之間的示例直接鏈路設置(DLS)程序的訊息流的圖式;
第3圖是描述兩個站(STA)之間的示例TDLS程序的訊息流的圖式;
第4圖是示例多RAT裝置架構的圖式;
第5圖是示例具有多RAT能力的無線系統的圖式;
第6圖是基本示例DL/RAT能力發現程序的流呼叫;
第7圖是在由DL發起方STA發送到AP的DL發現請求訊框的MAC層訊框中的位址欄位的示例格式;
第8圖是由DL發起方STA發送到AP的示例TDLS發現請求訊框格式;
第9圖是TDLS發現請求訊框的示例TDLS鏈路識別符元素格式;
第10圖是在由AP發送到DL回應方STA的DL發現請求訊框的MAC層訊框中的位址欄位的示例格式;
第11圖是由AP發送到DL回應方STA的示例TDLS發現回應訊框格式;
第12圖是基本示例DL設置程序的流呼叫;
第13圖是在由DL發起方STA發送到AP的DL設置請求訊框的MAC層訊框中的位址欄位的示例格式;
第14圖是由DL發起方STA發送到AP的示例TDLS設置請求訊框格式;
第15圖是在由AP發送到DL回應方STA的DL設置請求訊框的MAC層訊框中的位址欄位的示例格式;
第16圖是在由DL回應方STA發送到AP的DL設置回應訊框的MAC層訊框中的位址欄位的示例格式;
第17圖是由DL回應方STA發送到AP的示例TDLS設置回應訊框格式;
第18圖是在由AP發送到DL發起方STA的DL設置回應訊框的MAC層訊框中的位址欄位的示例格式;
第19圖是在由DL發起方STA發送到AP的DL設置確認訊框的MAC層訊框中的位址欄位的示例格式;
第20圖是由DL發起方STA發送到AP的示例TDLS設置確認訊框格式;
第21圖是在由AP發送到DL回應方STA的DL設置確認訊框的MAC層訊框中的位址欄位的示例格式;
第22圖是在直接路徑上的示例拆除程序的呼叫流;
第23圖是通過AP的示例拆除程序的呼叫流;
第24圖是在由拆除發起方STA發送到AP的DL拆除訊框的MAC層訊框中的位址欄位的示例格式;
第25圖是在由AP發送到DL拆除回應方STA的DL拆除訊框的MAC層訊框中的位址欄位的示例格式;
第26圖是示例TDLS拆除訊框格式;
第27圖是用於RAT可用性更新管理的示例呼叫流;
第28圖是用於動態RAT切換的示例呼叫流;以及
第29圖是示例OMMA模式傳送程序的呼叫流。
The invention may be understood in more detail from the following description, which is given by way of example, and
1A is a system diagram of an example communication system in which one or more disclosed embodiments may be implemented;
1B is a system diagram of an exemplary wireless transmit/receive unit (WTRU), where the WTRU may be used in a communication system as shown in FIG. 1A;
1C is a system diagram of an example radio access network and an example core network that can be used in a communication system as shown in FIG. 1A;
Figure 2 is a diagram depicting a message flow of an example direct link setup (DLS) procedure between two stations (STAs);
Figure 3 is a diagram depicting the flow of information for an example TDLS procedure between two stations (STAs);
Figure 4 is a diagram of an example multi-RAT device architecture;
Figure 5 is a diagram illustrating a wireless system with multi-RAT capability;
Figure 6 is a streaming call of the basic example DL/RAT capability discovery procedure;
Figure 7 is an example format of an address field in a MAC layer frame of a DL discovery request frame sent by the DL initiator STA to the AP;
Figure 8 is an example TDLS discovery request frame format sent by the DL initiator STA to the AP;
Figure 9 is an example TDLS link identifier element format of the TDLS discovery request frame;
Figure 10 is an example format of an address field in a MAC layer frame of a DL discovery request frame sent by an AP to a DL responding STA;
Figure 11 is an example TDLS discovery response frame format sent by the AP to the DL responding STA;
Figure 12 is a streaming call of the basic example DL setup program;
Figure 13 is an example format of an address field in a MAC layer frame of a DL setup request frame sent by the DL initiator STA to the AP;
Figure 14 is an example TDLS setup request frame format sent by the DL initiator STA to the AP;
Figure 15 is an example format of an address field in a MAC layer frame of a DL setting request frame sent by an AP to a DL responding STA;
Figure 16 is an example format of an address field in a MAC layer frame of a DL setting response frame sent by the DL responding STA to the AP;
Figure 17 is an example TDLS setup response frame format sent by the DL responding STA to the AP;
Figure 18 is an example format of an address field in a MAC layer frame of a DL setup response frame sent by the AP to the DL initiator STA;
Figure 19 is an example format of an address field in a MAC layer frame of a DL setting confirmation frame sent by the DL initiator STA to the AP;
Figure 20 is an example TDLS setup confirmation frame format sent by the DL initiator STA to the AP;
Figure 21 is an example format of an address field in a MAC layer frame of a DL setting confirmation frame sent by the AP to the DL responding STA;
Figure 22 is a call flow of an example teardown procedure on a direct path;
Figure 23 is a call flow of the program removal procedure through the AP;
Figure 24 is an example format of an address field in a MAC layer frame of a DL teardown frame sent by the teardown initiator STA to the AP;
Figure 25 is an example format of an address field in a MAC layer frame of a DL teardown frame sent by an AP to a DL teardown responding STA;
Figure 26 is an example TDLS removal frame format;
Figure 27 is an example call flow for RAT availability update management;
Figure 28 is an example call flow for dynamic RAT handover; and Figure 29 is a call flow for an exemplary OMMA mode transfer procedure.

第1A圖為可以在其中實施一個或者多個所揭露實施方式的示例通信系統100的圖式。通信系統100可以是將諸如語音、資料、視訊、訊息、廣播等之類的內容提供給多個無線使用者的多重存取系統。通信系統100可以經由系統資源(包括無線頻寬)的共用以使多個無線使用者能夠存取這些內容。例如,通信系統100可以使用一個或多個頻道存取方法,例如分碼(CDMA)多重存取、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。
如第1A圖所示,通信系統100可包括無線傳輸/接收單元(WTRU) 102a、102b、102c、102d、無線電存取網路(RAN)104、核心網路106、公共交換電話網路(PSTN)108、網際網路110和其他網路112,但可理解的是所揭露的實施方式涵蓋任何數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d中的每一個可以是被配置為在無線通訊中操作及/或通信的任何類型的裝置。作為示例,WTRU 102a、102b、102c、102d可以被配置為發送及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、用戶、固定或行動使用者單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、隨身型易網機、個人電腦、無線感測器、消費電子產品等。
通信系統100也可以包括基地台114a和基地台114b。基地台114a、114b中的每一個可以是被配置為與WTRU 102a、102b、102c、102d中的至少一者無線介接、以便於存取一個或多個通信網路(例如,核心網路106、網際網路110及/或其它網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、家用節點B、家用e節點B、網站控制器、存取點(AP)、無線路由器以及類似裝置。儘管基地台114a、114b每個均被描述為單一元件,但是可以理解的是基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104的一部分,該RAN 104也可以包括諸如網站控制器(BSC)、無線電網路控制器(RNC)、中繼節點之類的其他基地台及/或網路元件(未示出)。基地台114a及/或基地台114b可以被配置為發送及/或接收特定地理區域內的無線信號,該特定地理區域可以被稱作胞元(未示出)。胞元也可以被劃分為胞元扇區。例如,與基地台114a相關聯的胞元可以被劃分為三個扇區。因此,在一種實施方式中,基地台114a可以包括三個收發器,即針對該胞元的每個扇區都有一個收發器。在另一實施方式中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且由此可以使用針對胞元的每個扇區的多個收發器。
基地台114a、114b可以經由空中介面116以與WTRU 102a,102b,102c,102d中的一者或多者進行通信,該空中介面116可以是任何合適的無線通訊鏈路(例如,射頻(RF)、微波、紅外(IR)、紫外(UV)、可見光等)。空中介面116可以使用任何合適的無線電存取技術(RAT)來設置。
更為具體地,如前所述,通信系統100可以是多重存取系統、並且可以使用一個或多個頻道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA以及類似的方案。例如,在RAN 104中的基地台114a和WTRU 102a、102b、102c可以實施諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來設置空中介面116。WCDMA可以包括諸如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)。HSPA可以包括高速下鏈封包存取(HSDPA)及/或高速上鏈封包存取(HSUPA)。
在另一實施方式中,基地台114a和WTRU 102a、102b、102c可以實施諸如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其可以使用長期演進(LTE)及/或高級LTE(LTE-A)來設置空中介面116。
在其它實施方式中,基地台114a和WTRU 102a、102b、102c可以實施諸如IEEE 802.16(即全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1x、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、增強型資料速率GSM演進(EDGE)、GSM EDGE(GERAN)之類的無線電技術。
舉例來講,第1A圖中的基地台114b可是無線路由器、家用節點B、家用e節點B或者存取點、且可以使用任何合適的RAT,以用於促進在諸如公司、家庭、車輛、校園之類的局部區域的無線連接。在一種實施方式中,基地台114b和WTRU 102c、102d可實施諸如IEEE 802.11的無線電技術以設置無線區域網路(WLAN)。在另一種實施方式中,基地台114b和WTRU 102c、102d可實施諸如IEEE 802.15的無線電技術以設置無線個人區域網路(WPAN)。在又一種實施方式中,基地台114b和WTRU 102c、102d可使用基於蜂巢的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A等)以設置微微胞元(picocell)或毫微微胞元(femtocell)。如第1A圖所示,基地台114b可具有至網際網路110的直接連接。因此,基地台114b不必經由核心網路106來存取網際網路110。
RAN 104可以與核心網路106通信,該核心網路106可以是被配置為將語音、資料、應用及/或網際網路協定語音(VoIP)服務提供到WTRU 102a,102b,102c,102d中的一者或多者的任何類型的網路。例如,核心網路106可以提供呼叫控制、帳單服務、基於移動位置的服務、預付費呼叫、網際網路連接性、視訊分配等、及/或執行高階安全性功能,例如用戶驗證。儘管第1A圖中未示出,應該理解的是RAN 104及/或核心網路106可以直接或間接地與其他RAN進行通信,這些其他RAT可以使用與RAN 104相同的RAT或者不同的RAT。例如,除了連接到可以採用E-UTRA無線電技術的RAN 104,核心網路106也可以與使用GSM無線電技術的其他RAN(未顯示)通信。
核心網路106也可以充當WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供普通老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括互連電腦網路的全球系統以及使用公共通信協定的裝置,該公共通信協定例如傳輸控制協定(TCP)/網際網路協定(IP)網際網路協定套件的中的TCP、使用者資料包通訊協定(UDP)和IP。網路112可以包括由其他服務提供方擁有及/或操作的無線或有線通信網路。例如,網路112可以包括連接到一個或多個RAN的另一核心網路,這些RAN可以使用與RAN 104相同的RAT或者不同的RAT。
通信系統100中的WTRU 102a、102b、102c、102d中的一些或者全部可以包括多模式能力,即WTRU 102a、102b、102c、102d可以包括用於經由不同通信鏈路以與不同的無線網路進行通信的多個收發器。例如,第1A圖中顯示的WTRU 102c可以被配置為與使用基於蜂巢的無線電技術的基地台114a進行通信、並且與可以使用IEEE 802無線電技術的基地台114b進行通信。
第1B圖為示例WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、鍵盤126、顯示器/觸控板128、不可移式記憶體130、可移式記憶體132、電源134、全球定位系統晶片組136和其他週邊裝置138。應該理解的是,在保持與實施方式一致的同時,WTRU 102可以包括上述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心相關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可編程閘陣列(FPGA)電路、其他任何類型的積體電路(IC)、狀態機等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理及/或使WTRU 102能夠在無線環境中操作的任何其他功能。處理器118可以耦合到收發器120,該收發器120可以耦合到傳輸/接收元件122。儘管第1B圖中將處理器118和收發器120描述為單獨的元件,應該理解的是處理器118和收發器120可以被一起集成到電子封裝或者晶片中。
傳輸/接收元件122可以被配置為經由空中介面116將信號發送到基地台(例如,基地台114a)、或者從基地台(例如,基地台114a)接收信號。例如,在一種實施方式中,傳輸/接收元件122可以是被配置為發送及/或接收RF信號的天線。在另一實施方式中,傳輸/接收元件122可以是被配置為發送及/或接收例如IR、UV或者可見光信號的發射器/偵測器。在又一實施方式中,傳輸/接收元件122可以被配置為發送和接收RF信號和光信號兩者。應該理解的是傳輸/接收元件122可以被配置為發送及/或接收無線信號的任何組合。
此外,儘管傳輸/接收元件122在第1B圖中描述為單一元件,但WTRU 102可包括任何數量的傳輸/接收元件122。更特別地,WTRU 102可使用MIMO技術。因此,在一種實施方式中,WTRU 102可包括兩個或更多個傳輸/接收元件122(例如,多個天線)以用於經由空中介面116來傳輸和接收無線信號。
收發器120可被配置為對將由傳輸/接收元件122發送的信號進行調變、並且被配置為對由傳輸/接收元件122接收的信號進行解調。如以上所述,WTRU 102可具有多模式能力。因此,收發器120可包括多個收發器以使WTRU 102能夠經由例如UTRA和IEEE 802.11之類的多RAT進行通信。
WTRU 102的處理器118可以被耦合到揚聲器/麥克風124、鍵盤126及/或顯示器/觸控板128(例如,液晶顯示器(LCD)顯示單元或者有機發光二極體(OLED)顯示單元)、並且可以從上述裝置接收使用者輸入資料。處理器118也可以向揚聲器/麥克風124、鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以存取來自任何類型的合適的記憶體中的資訊、以及向任何類型的合適的記憶體中儲存資料,該記憶體例如可以是不可移式記憶體130及/或可移式記憶體132。不可移式記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或者任何其他類型的記憶體儲存裝置。可移式記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等類似裝置。在其它實施方式中,處理器118可以存取來自實體上未位元於WTRU 102上而位於伺服器或者家用電腦(未示出)上的記憶體的資訊、以及向上述記憶體中儲存資料。
處理器118可以從電源134接收功率、並且可以被配置為將功率分配給WTRU 102中的其他元件及/或對至WTRU 102中的其他元件的功率進行控制。電源134可以是任何適用於為WTRU 102供電的裝置。例如,電源134可以包括一個或多個乾電池(鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等)、太陽能電池、燃料電池等。
處理器118也可以耦合到GPS晶片組136,該GPS晶片組136可以被配置為提供關於WTRU 102的目前位置的位置資訊(例如,經度和緯度)。作為來自GPS晶片組136的資訊的補充或者替代,WTRU 102可以經由空中介面116從基地台(例如,基地台114a、114b)接收位置資訊、及/或基於從兩個或更多個相鄰基地台接收到的信號的時序來確定其位置。應該理解的是,在保持與實施方式一致的同時,WTRU 102可以用任何合適的位置確定方法來獲取位置資訊。
處理器118也可以耦合到其他週邊裝置138,該週邊裝置138可以包括提供附加特徵、功能性及/或無線或有線連接的一個或多個軟體及/或硬體模組。例如,週邊裝置138可以包括加速度計、電子指南針(e-compass)、衛星收發器、數位相機(用於照片或者視訊)、通用序列匯流排(USB)埠、震動裝置、電視收發器、免持耳機、藍牙R模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲播放機模組、網際網路瀏覽器等等。
第1C圖為根據實施方式的RAN 104和核心網路106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術以經由空中介面116來與WTRU 102a、102b、102c進行通信。RAN 104也可以與核心網路106進行通信。
RAN 104可以包括e基地台140a、140b、140c,儘管應該理解的是RAN 104可以包括任何數量的e節點B而仍然與實施方式保持一致。e節點B 140a、140b、140c可以分別包括一個或多個收發器,以經由空中介面116來與WTRU 102a、102b、102c通信。在一種實施方式中,e節點B 140a、140b、140c可以使用MIMO技術。由此,例如,e節點B 140a可以使用多個天線來傳送無線信號至WTRU 102a並且從WTRU 102a中接收無線信號。
e節點B 140a、140b,140c中的每一個可以與特定胞元(未示出)相關聯並且可以被配置為處理無線電資源管理決定、切換決定、在上鏈及/或下鏈中的使用者排程。如第1C圖中所示,e節點B 140a、140b,140c可以經由X2介面彼此進行通信。
第1C圖中所示的核心網路106可以包括移動性管理閘道(MME)142、服務閘道144和封包資料網路(PDN)閘道146。儘管上述元素中的每個被描述為核心網路106的一部分,但是應該理解的是這些元素中的任何一個可以被除了核心網路操作者以外的實體擁有及/或操作。
MME 142可以經由S1介面而被連接到RAN 104中的e節點B 140a、140b,140c中的每一個並且可以作為控制節點。例如,MME 142可以負責認證WTRU 102a、102b、102c的使用者、承載啟動/停用、在WTRU 102a、102b、102c的初始連結期間選擇特定服務閘道等等。MME 142也可以為RAN 104與使用其他無線電技術(例如,GSM或WCDMA)的RAN(未示出)之間的切換提供控制平面功能。
服務閘道144可以經由S1介面而被連接到RAN 104中的e節點B 140a、140b,140c的每一個。服務閘道144通常可以路由和轉發使用者資料封包至WTRU 102a、102b、102c、或者路由和轉發來自WTRU 102a、102b、102c的使用者資料封包。服務閘道144也可以執行其他功能,例如在e節點B間切換期間錨定使用者平面、當下鏈資料可用於WTRU 102a、102b,102c時觸發傳呼、為WTRU 102a、102b、102c管理和儲存上下文等等。
服務閘道144也可以被連接到PDN閘道146,該閘道146可以向WTRU 102a、102b、102c提供至封包交換網路(例如,網際網路110)的存取,從而便於WTRU 102a、102b、102c與IP賦能裝置之間的通信。
核心網路106可以促進與其他網路之間的通信。例如,核心網路106可以向WTRU 102a、102b、102c提供至電路切換式網路(例如,PSTN 108)的存取,從而便於WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。例如,核心網路106可以包括、或可以與下述通信:作為核心網路106和PSTN 108之間介面的IP閘道(例如,IP多媒體子系統(IMS)伺服器)。另外,核心網路106可以向WTRU 102a、102b、102c提供至網路112的存取,該網路112可包含被其他服務提供者擁有及/或操作的其他有線或無線網路。
此處術語站(STA)包括但不限於無線傳輸/接收單元(WTRU)、使用者設備(UE)、行動站、固定或行動使用者單元、AP、呼叫器、行動電話、個人數位助理(PDA)、電腦、行動網際網路裝置(MID)或其他任何類型的能在無線環境中操作的使用者設備。當此處提及,術語存取點(AP)包括但不限於基地台、節點B、網站控制器或是其他任何類型的能在無線環境中操作的週邊裝置。
直接鏈路(DL)通信使裝置能夠彼此傳遞資料而不使用AP。在IEEE 802.11n中,具有服務品質(QoS)設施(facility)的站(STA)可以藉由使用直接鏈路設置(DLS)建立資料傳送來賦能DL通信,即,將訊框直接傳送到另一STA。第2圖是描述兩個站(STA)之間的示例DLS程序的訊息流的圖式。參考第2圖,想要與第二STA 204建立直接鏈路的第一STA 202將針對第二STA 204的請求訊息210a傳送到存取點(AP)206。請求訊息210a可以是DLS請求訊息。AP 206傳送請求訊息210b到第二STA 204。第二STA 204傳送回應訊息220a到AP 206以回應於接收到的請求訊息210b。回應訊息220a可以是DLS回應訊息。AP 206傳送DLS回應訊息220b到第一STA 202。在此程序中,請求和回應訊息兩者非透明地通過AP,即AP直接參與在其中並且在第一STA和第二STA之間中繼DLS請求和回應訊息的交換,由此完成DLS程序。在成功DLS之後,兩個STA可以使用針對使用IEEE 802.11n標準中定義的任何存取機制的資料傳送的直接鏈路。此外,DLS中的安全通信可以藉由執行對等金鑰交握(PeerKey Handshake)程序而被確保。
STA發起的或AP發起的DLS拆除程序可以被用於拆除第一STA和第二STA之間建立的直接鏈路。在STA發起的拆除中,第一STA可以經由AP來發送DLS拆除訊框到第二STA。DLS拆除訊框非透明地通過AP,即AP直接參與在其中並且中繼DLS拆除訊框到第二STA。STA也可以維持非活動的計時器以用於每個協商的DL。如果任何STA在逾時事件之前未接收到對DLS請求訊息的DLS回應訊息,則STA可以發起DLS拆除程序。
在一些實例中,STA不能發起DLS拆除程序,例如AP偵測DLS鏈路的任一端(即對等STA中的一個)已經保留基本服務集合(BSS)而不拆除DLS鏈路。由此,AP可以發起拆除程序。在AP發起的拆除程序中,AP可以從BSS列表中移除一個或多個STA、並且發送DLS拆除訊息到被移除的STA的所有對等端。
IEEE 802.11z中的DLS被稱作隧道直接鏈路設置(TDLS)。TDLS以使用在資料訊框中封裝的傳訊訊框為特徵,使得傳訊訊框可以經由AP透明地傳送,即AP不直接參與在其中。在TDLS中,不像DLS,AP不需要DL感知,AP也不必支援將在DL上使用的相同能力集合。
在TDLS中,發現程序被用於發現相同BSS中的具有TDLS能力的STA。TDLS發起方STA,也就是發起直接鏈路設置程序的STA可以經由AP來發送TDLS發現請求訊框到單播目的位址(DA)。接收TDLS發現請求訊框的具有TDLS能力的STA可以經由直接路徑來發送TDLS發現回應訊框至請求STA。
第3圖是描述兩個站(STA)之間的示例TDLS程序的訊息流的圖式。參考第3圖,打算與第二STA 304建立直接鏈路的第一STA 302傳送用於請求DLS的設置請求訊息310到第二STA 304。設置請求訊息可以是TDLS設置請求訊框。該訊息可以經由AP 306透明地被傳送,即AP 306簡單地將從第一STA 302接收到的請求訊息中繼到第二STA 304。已經接收到設置請求訊息310的第二STA 304回應於設置請求訊息310而傳送設置回應訊息320到第一STA 302。設置回應訊息可以是TDLS設置回應訊框。再次,訊息可以經由AP 306透明地被傳送,即AP 306簡單地將從第二STA 304接收到的設置回應訊息320中繼到第一STA 302。已經接收到設置回應訊息320的第一STA 302可以傳送確認訊息330到第二STA 304,以表明設置回應訊框被成功接收。該確認訊息330可以是TDLS設置確認訊框。注意如果STA已經在與AP的鏈路上安全賦能,則TDLS對等金鑰(TPK)交握程序可以在TDLS設置程序期間執行。在完成TDLS之後,也可以被稱作對等STA的第一STA 302和第二STA 304可以彼此直接發送資料訊框。
在TDLS拆除程序中,TDLS對等STA可以發送TDLS拆除訊框到各自的TDLS對等STA。在大多數實例中,TDLS拆除訊框可以在直接鏈路上被發送。然而,當TDLS對等STA經由TDLS直接鏈路不能到達時,TDLS拆除訊框可以經由AP被發送。
隧道DL可以在來自AP的不同頻道上操作。AP正操作在的頻道可以被稱作基礎頻道。如果DL切換到不是基礎頻道的頻道,則此頻道被稱作偏離頻道(off-channel)。TDLS對等STA可以執行頻道切換程序以從基礎頻道切換到偏離頻道,反之亦然。
TDLS也包括功率節省機制,例如對等功率節省模式(PSM)和對等未排程自動功率接收遞送(U-ASPD)。對等PSM是基於週期性排程的服務週期並且對等U-APSD是基於未排程的服務週期,其可以在已經建立TDLS直接鏈路的兩個STA之間使用。
描述了用於賦能可以藉由基於來自RAT的即時鏈路品質回饋動態排程多RAT裝置間的IP訊務來聚合兩個或多個RAT的多RAT裝置之間的直接鏈路通信的方法和裝置。多RAT裝置可以是基礎設施裝置,例如存取點(AP)、家用節點B(HNB)、家用演進型節點B(H(e)NB)等等。多RAT裝置也可以是用戶端裝置,例如Wi-Fi中的站(STA)和蜂巢系統中的無線傳輸/接收單元(WTRU)等等。
第4圖是示例多RAT裝置架構400的圖式。第4圖中所示的多RAT裝置的示例架構能夠實現使用機會型多MAC聚合(OMMA)層的多RAT聚合。參考第4圖,示例裝置可以包含多個RAT模組410a-n。每個RAT模組410a-n可以被配置為在特定波段上操作。例如,RAT模組410a可以是在2.4 GHz ISM波段上操作的802.11n PHY/MAC RAT,RAT模組410b可以是在512 MHz-698 MHz TV白空間(TVWS)波段上操作的802.11af PHY/MAC RAT,RAT模組410c可以是在許可的700 MHz波段上操作的長期演進(LTE)RAT,以及RAT 410d可以是在2.4 GHz ISM波段上操作的藍牙RAT等。該裝置可以包含多個天線/射頻(RF)前端對420a-n,對應於每個RAT模組410a-n。每個天線/RF前端對420a-n可以在特定波段上操作,例如天線/RF前端對420a可以操作在2.4 GHz ISM波段無線電上,天線/RF前端對420b可以操作在被劃分為低波段無線電和高波段無線電的512 MHz-698 MHz TVWS波段上,天線/RF前端對420c可以操作在LTE 700 MHz無線電上等等。該裝置可以包含OMMA層模組430和IP層模組440。OMMA層模組430是IP層模組440和多個RAT模組410a-n之間的公共模組。OMMA層模組430負責分配IP封包給單獨的RAT。
第5圖是示例具有多RAT能力的無線系統500的圖式。參考第5圖,無線系統可以由網路終端(NT)(例如AP 505)、以及多個使用者終端(UT)(例如STA 510,515)組成。NT(即AP 505)和UT(即STA 510、515)兩者均具有支援一個或多個RAT(例如,K種RAT)的能力,其中所有RAT可以在不同頻段上操作。能夠經由直接鏈路彼此通信的一些UT對(即STA 510、515)可以使用對於他們公共的一個或多個RAT。波段可以是正交的並且不同波段上的信號可以互不干擾。如第5圖所示,AP 505能夠在RAT 1(506)、RAT 2(507)、RAT 3(508)和RAT 4(509)上操作。STA 510也能夠在RAT 1(506)、RAT 2(507)上操作並且由此可以經由那些RAT來與AP 505通信,如所示。STA 515能夠在RAT 3(508)和RAT 4(509)上操作,並且由此可以經由那些RAT來與AP 505通信,如所示。如果STA 510和STA 515能夠在它們之間建立直接鏈路,則STA 510處和指定到STA 515的到達封包的流可以經由他們之間的一個或多個公共RAT發送。STA 510和515具有他們之間公共的RAT 5(511)和RAT 6(512)、並且由此可以經由這些RAT通信,如所示。然而,STA 510和STA 515可能不會知道彼此的RAT能力來確定哪些RAT在他們之間是公共的。由此,為了兩個多RAT裝置彼此直接通信,RAT能力發現是期望的。
RAT能力發現可以例如藉由自主發現、基於基礎設施的發現或類似方法以不同方式完成。在自主發現中,多RAT裝置可以自主地發現彼此並且可以在開始通信之前彼此共用它們的裝置能力和操作參數。在基於基礎設施的發現中,多RAT裝置可以使用其鄰近的基礎設施裝置(例如,AP)來輔助多RAT裝置之間的初始交握機制以及也使用管理傳訊來支援他們週期性及/或非週期性更新以幫助維持直接鏈路。
多RAT裝置可以針對所有RAT而使用公共多媒體存取控制(MAC)位址。替代地,多RAT裝置可以針對每個RAT而使用單獨的MAC位址。在任一種情況中,AP可以維持儲存與其MAC位址相關聯的所有STA的RAT能力的資料庫。表1是AP處的示例RAT能力資料庫。類似地,STA可以針對其相關聯的AP而儲存相同的資訊。


           表1:AP處的RAT能力資料庫 
為了多RAT裝置發現對等多RAT裝置的DL能力和RAT能力,多RAT裝置可以發起DL/RAT能力發現。第6圖中示出了基本程序。
第6圖是示例DL/RAT能力發現程序的流呼叫。參考第6圖,示出了DL發起方STA 605、DL回應方STA 610和AP 601。AP 601對於DL發起方STA 605和DL回應方STA 610是公共的。DL發起方STA 605,也就是發起DLS程序的STA想要發送請求訊息到相同BSS集合中的對等STA(即DL回應方STA 610)以發現對等STA的DL能力和RAT能力。請求訊息可以是DL發現請求訊框。可以使用TDLS(即使用TDLS發現請求訊框)以經由AP 601來傳送此請求訊息。DL發起方STA 605可以選擇對於DL發起方STA 605和AP 601兩者是公共的公共賦能RAT,例如RAT 3(S615)。DL發起方STA 605可以使用選擇的公共賦能RAT來發送請求訊息到AP(S620)。如果公共MAC位址被用於所有RAT,請求訊息中的MAC層訊框的所有位址欄位(即針對單RAT裝置的位址欄位)可以被映射到公共MAC位址。如果單獨的MAC位址被用於每個RAT,MAC層訊框中的位址欄位可以如第7圖所示被格式化。
第7圖是在由DL發起方STA發送到AP的DL發現請求訊框的MAC層訊框中的位址欄位的示例格式。參考第7圖,MAC層訊框中的位址欄位可以被格式化為包括位址欄位705,其可以是AP和DL發起方STA之間的選擇的公共RAT的AP的MAC位址;位址欄位710,其可以是AP和DL發起方STA之間的選擇的公共RAT的DL發起方STA的MAC位址;位址欄位715,其可以是DL發起方STA想要做出針對特定DL回應方的請求所針對的DL回應方STA的MAC位址、或者是RAT的廣播位址;以及位址欄位720,其可以是RAT的DL發起方STA的MAC位址,在該RAT上其想要做出至DL回應方STA的請求。需要注意的是可以使用替代的位址欄位,並且描述的那些僅作為示例。
第8圖是由DL發起方STA發送到AP的示例TDLS發現請求訊框格式800。TDLS發現請求訊框格式800可以包括各種資訊元素804,其可以按照802處表明的進行排序。第8圖中描述的示例TDLS發現請求訊框格式800可包括以下資訊元素欄位:類別、動作、對話訊標和鏈路識別符。也可以使用其他資訊元素。
第9圖是TDLS發現請求訊框的示例TDLS鏈路識別符元素格式900。TDLS鏈路識別符元素格式900可以包括元素ID欄位902、長度欄位904、BSSID欄位906、DL發起方STA位址欄位908和DL回應方STA位址欄位910。也可以使用其他欄位。
在多RAT STA的情況中,BSSID欄位906和DL發起方STA位址欄位908可以被修改。如果公共MAC位址被用於所有RAT,則BSSID欄位906可以被修改為包含AP的單一BSSID,並且DL發起方STA位址欄位908可以被修改為包含針對DL發起方STA的單一公共MAC位址。如果單獨的MAC位址被用於每個RAT,則BSSID欄位906可以被修改為包括在AP處的所有RAT的所有BSSID,並且DL發起方STA位址欄位908可以被修改為包含在DL發起方STA處的所有RAT的所有MAC位址。利用以上描述的對於TDLS鏈路識別符元素格式900的修改,DL發起方STA可以發送其能夠通信所在的RAT的資訊。DL發起方STA可以利用MAC位址(即鏈路識別符元素中的DL發起方STA位址欄位908)或藉由在DL發現請求訊框格式800中添加新的資訊元素來發送此資訊。DL發起方STA可以用如表2所示的格式發送此資訊。


        表2用於發送RAT資訊的元素的示例格式
再次參考第6圖,在針對所有RAT的單獨MAC位址的情況中,AP 601可以藉由將如第7圖所示的DL發現請求訊框的MAC層訊框的位址欄位715與其儲存所有RAT的RAT能力(具有MAC位址)的資料庫匹配來得知DL回應方STA 610。注意AP的資料庫填充有在每個裝置的各自關聯程序期間連接到它的每個裝置的MAC位址。在得知DL回應方STA 610之後,AP 601可以選擇與DL回應方STA 610的公共賦能RAT,例如RAT 2,以轉發DL發現請求訊框到DL回應方STA 610(S625)。AP 601接著使用選擇的RAT來轉發DL發現請求訊框到DL回應方STA 610(S630)。從AP 601發送到DL回應方STA 610的DL發現請求訊框的MAC層訊框的位址欄位可以如第10圖所示格式化。
第10圖是在由AP發送到DL回應方STA的DL發現請求訊框的MAC層訊框中的位址欄位的示例格式。參考第10圖,從AP發送到DL回應方STA的DL發現請求訊框的MAC層訊框中的位址欄位可以被格式化為包括位址欄位1005,其可以是針對由AP選定的選擇的公共RAT的DL回應方STA的MAC位址;位址欄位1010,其可以是AP和DL回應方STA之間的選擇的公共RAT的AP的MAC位址;位址欄位1015,其可以是DL發起方STA想要做出針對特定DL回應方的請求所針對的DL回應方STA的MAC位址、或者可以是RAT的廣播位址;以及位址欄位1020,其可以是RAT的DL發起方STA的MAC位址,在該RAT上其想要做出至DL回應方STA的請求。需要注意的是可以使用替代的位址欄位,並且描述的那些僅作為示例。
接收在鏈路識別符元素中具有匹配的BSSID(在多個BSSID的情況中至少一個匹配的BSSID)的DL發現請求訊框的具有DL能力的STA可以直接發送DL發現回應訊框到請求STA。再次參考第6圖,DL回應方STA 610可以經由DL發現請求訊框得知DL發起方STA 605的RAT能力。由此,DL回應方STA 610可以選擇所有公共RAT,例如RAT 1、RAT 5、RAT 6(S635),並且在所有公共RAT(例如,RAT 1、RAT 5、RAT 6(S640a-n))上將DL發現回應訊框直接發送到DL發起方STA 605。可以使用TDLS來發送DL發現回應訊息。由於鏈路品質或移動性等等,一些公共RAT在那一時間不被啟動,由此在所有公共RAT上發送可以避免損失DL發現回應訊框。另一方面,DL發起方STA 605可以僅考慮第一DL發現回應訊框並且可以丟棄在其他RAT上從DL回應方STA 610接收的所有DL發現回應訊框(如果有的話)。DL回應方STA 610可以使用RAT的MAC位址(公共MAC位址或單獨MAC位址),其在該RAT上發送該訊框,由DL發起方STA 605和其本身在該訊框的MAC定址中使用。如果不存在對於DL回應方STA 610和DL發起方STA 605公共的RAT,則不發送DL發現回應訊框。
第11圖是示例TDLS發現回應訊框格式1100。TDLS發現回應訊框格式1100可以包括各種資訊元素1104,其可以按照1102處所表明的進行排序。示例TDLS發現回應訊框格式1100可以包括以下資訊元素欄位:類別、動作、對話訊標、能力、支援的速率、擴展的受支援的速率、支援的頻道、強健安全網路資訊元素(RSNIE)、擴展的能力、快速BSS轉換資訊元素(FTIE)、逾時間隔、支援的調節(regulatory)等級、高通量(HT)能力、20/40 BSS共存、和鏈路識別符。也可以使用其他資訊元素。
在多RAT STA的情況中,以下欄位可以被修改。這些欄位可以被設計用於所有RAT(即DL回應方STA的最大RAT能力),而不是像在TDLS情況下僅用於單一RAT。
●支援的速率:在多RAT STA的情況中,此元素可以被修改為表明在每個RAT上由STA分別支援的速率。
●擴展的受支援的速率:在多RAT STA的情況中,每當在RAT上存在多於八個支援的速率時,此元素針對RAT存在,並且其可以是另外可選的。
●支援的頻道:在多RAT STA的情況中,此元素可以被修改為包含頻道子波段的列表,其中多RAT STA能夠針對每個RAT操作。
●支援的調節等級:在多RAT STA的情況中,此元素可以被修改為包含針對每個RAT的資訊。
●安全參數(即TDLS情況中的RSNIE、FTIE、逾時間隔):在多RAT STA的情況中,與安全參數(例如,IEEE 802.11情況中的RSNIE、FTIE、逾時間隔)相關的每個元素可以被修改為包含針對每個RAT的相應參數。
●能力(如在TDLS情況中的HT能力、擴展的能力等):在多RAT STA的情況中,每個能力元素可以被修改為包含針對每個RAT的相應參數。
●鏈路識別符:在多RAT STA的情況中,鏈路識別符元素的以下欄位可以被修改。
○BSSID:此欄位可以被修改為包含在公共MAC位址情況下AP的單一BSSID、或者在對於每個RAT的單獨MAC位址的情況下AP處的所有RAT的所有BSSID。
○DL發起方STA位址:此欄位可以被修改為包含在公共MAC位址情況下DL發起方的單一公共MAC位址、或者在對於每個RAT的單獨MAC位址的情況下DL回應方處的所有RAT的所有MAC位址。
以下描述的表3是DL發起方STA可以使用來發送所有以上修改後的元素到DL回應方STA的格式的示例性視圖。



         表3用於發送針對多RAT裝置的資訊的格式
在表3中,RAT 1、RAT 2、……RAT N可以是由DL發起方STA支援的所有RAT的ID的列表。利用以上修改,DL發起方STA還可以發送RAT的資訊,DL發起方STA在該RAT能夠進行通信。其可以與針對DL發現請求訊框討論的相同方式發送此資訊。由此,在完成DL發現過程之後,DL發起方STA和DL回應方STA可以知道彼此的RAT能力(具有MAC位址)。如以上所述,知道任何其他STA的RAT能力的每個STA可以用與表1中示出的類似方式在其RAT能力資料庫中儲存此資訊。
現在將描述一種用於在兩個多RAT OMMA裝置之間建立DL的方法。第12圖是基本示例DL程序的流呼叫。參考第12圖,示出了DL發起方STA 1205,DL回應方STA 1210和AP 1201。AP 1201對於DL發起方STA 1205和DL回應方STA 1210是公共的。為了建立DL,發起多RAT裝置(即DL發起方STA 1205)可以發送設置請求訊息到預期的對等多RAT OMMA裝置,即DL回應方STA 1210。設置請求訊息可以是DL設置請求訊框。此設置請求訊息還可以使用TDLS(即使用TDLS設置請求訊框)以經由AP 1201來傳送。如果DL發現過程已經在DL發起方STA 1205和DL回應方STA 1210之間完成(即DL發起方STA 1205已經接收到DL發現回應訊框),則DL發起方STA 1205可以選定與DL回應方STA 1210的公共RAT中的一者、並且使用如第13圖所示的DL設置請求訊框中的那一公共RAT的MAC位址。如果DL發現過程在DL發起方STA 1205和DL回應方STA之間未被執行或者完成,則DL發起方STA仍然可以發送DL設置請求到DL回應方STA。MAC定址可以與在第7圖中描述的DL發現請求類似的方式來完成。
參考第12圖,DL發起方STA 1205可以選擇與AP 1201的公共賦能RAT,例如RAT 3(S1215)。DL發起方STA 1205在選擇的RAT上發送DL設置請求訊框到AP 1201(S1220)。DL發起方STA 1205和AP 1201可以在他們之間動態更新公共賦能RAT。在針對所有RAT的公共MAC位址的情況中,DL設置請求訊框的MAC層訊框中的所有位址欄位可以被映射到公共MAC位址。在針對每個RAT的單獨MAC位址的情況中,MAC層訊框中的位址欄位可以如第13圖所示被格式化。
第13圖是在由DL發起方STA發送到AP的DL設置請求訊框的MAC層訊框中的位址欄位的示例格式。參考第13圖,MAC層訊框中的位址欄位可以被格式化為包括位址欄位1305,其可以是針對由DL發起方STA選定的選擇的公共RAT的AP的MAC位址;位址欄位1310,其可以是AP和DL發起方STA之間的選擇的公共RAT的DL發起方STA的MAC位址;位址欄位1315,其可以是針對由DL發起方STA選定的選擇的公共RAT的DL回應方STA的MAC位址;以及位址欄位1320,其可以是與DL回應方STA的選擇的公共RAT的DL發起方STA的MAC位址。需要注意的是可以使用替代的位址欄位,並且描述的那些僅作為示例。
第14圖是由DL發起方STA發送到AP的示例TDLS設置請求訊框格式1400。TDLS設置請求訊框格式1400可以包括各種資訊元素1404,其可以按照1402處表明的進行排序。第14圖中描述的示例TDLS設置請求訊框格式1400包括以下資訊元素欄位:類別、動作、對話訊標、能力、支援的速率、國家、擴展的受支援的速率、支援的頻道、RSNIE、擴展的能力、服務品質(QoS)能力、FTIE、逾時間隔、支援的調節等級、HT能力、20/40 BSS共存以及鏈路識別符。也可以使用其他資訊元素。
在多RAT STA的情況中,以下欄位可以被修改。
●支援的速率:在多RAT STA的情況中,此元素可以被修改為表明在每個RAT上由STA分別支援的速率。
●擴展的受支援的速率:在多RAT STA的情況中,每當在RAT上存在多於八個支援的速率時,此元素針對RAT存在,並且其可以是另外可選的。
●支援的頻道:在多RAT STA的情況中,此元素可以被修改為包含頻道子波段的列表,其中多RAT STA能夠針對每個RAT操作。
●QoS能力:在多RAT STA的情況中,QoS能力資訊應當針對每個RAT被發送。
●支援的調節等級:在多RAT STA的情況中,此元素可以被修改為包含針對每個RAT的資訊。
●安全參數(即TDLS情況中的RSNIE、FTIE、逾時間隔):在多RAT STA的情況中,與安全參數(例如,IEEE 802.11情況中的RSNIE、FTIE、逾時間隔)相關的每個元素可以被修改為包含針對每個RAT的相應參數。
●能力(如在TDLS情況中的HT能力、擴展的能力等):在多RAT STA的情況中,每個能力元素可以被修改為包含針對每個RAT的相應參數。
●鏈路識別符:在多RAT STA的情況中,鏈路識別符元素的以下欄位可以被修改。
○BSSID:此欄位可以被修改為包含在公共MAC位址情況下AP的單一BSSID、或者在對於每個RAT的單獨MAC位址的情況下AP處的所有RAT的所有BSSID。
○DL發起方STA位址:此欄位可以被修改為包含在公共MAC位址情況下DL發起方的單一公共MAC位址、或者在對於每個RAT的單獨MAC位址的情況下DL回應方處的所有RAT的所有MAC位址。
DL發起方STA還可以發送針對RAT的資訊,DL發起方STA在RAT上能夠進行通信。其可以如以上針對DL發現請求訊框描述的相同方式發送此資訊。
再次參考第12圖,在針對所有RAT的單獨MAC位址的情況中,AP 1201可以藉由將如第13圖所示的DL設置請求訊框的MAC層訊框的位址欄位1315(從DL發起方STA 1205接收)與其儲存針對所有RAT的RAT能力(具有MAC位址)的資料庫匹配來得知DL回應方STA 1210。在得知DL回應方STA 1210之後,AP 1201可以選擇與DL回應方STA 1210的公共賦能RAT,例如RAT 2(S1225)。AP 1201可以使用公共賦能RAT來轉發DL設置請求訊框到DL回應方STA 1210(S1230)。DL設置請求訊框(從AP 1201發送到DL回應方STA 1210)的MAC層訊框中的位址欄位可以如第15圖所示格式化。
第15圖是在由AP發送到DL回應方STA的DL設置請求訊框的MAC層訊框中的位址欄位的示例格式。參考第15圖,MAC層訊框中的位址欄位可以被格式化為包括位址欄位1505,其可以是針對由AP選定的選擇的公共RAT的DL回應方STA的MAC位址;位址欄位1510,其是AP和DL回應方STA之間的選擇的公共RAT的AP的MAC位址;位址欄位1515,其可以是從DL發起方STA接收的請求的“位址3”欄位;以及位址欄位1520,其可以是從DL發起方STA接收的請求的“位址4”欄位。需要注意的是可以使用替代的位址欄位,並且描述的那些僅作為示例。
再次參考第12圖,回應於由DL回應方STA 1210接收到DL設置請求訊息,設置回應訊息可以從DL回應方STA 1210被發送到DL發起方STA 1205。設置訊息可以是DL設置回應訊框,其可以使用TDLS以經由AP 1201被傳送。DL回應方STA 1210可以選擇與AP 1201的公共賦能RAT,例如RAT 2,在該RAT上發送DL設置回應訊框(S1235)。DL回應方STA 1210可以使用公共賦能RAT來發送DL設置回應訊框到AP 1201(S1240)。DL設置回應訊框的MAC層訊框中的位址欄位可以如第16圖所示被格式化。
第16圖是在由DL回應方STA發送到AP的DL設置回應訊框的MAC層訊框中的位址欄位的示例格式。參考第16圖,MAC層訊框中的位址欄位可以被格式化為包括位址欄位1605,其可以是針對由DL回應方STA選定的選擇的公共RAT的AP的MAC位址;位址欄位1610,其可以是針對與AP的選擇的公共RAT的DL回應方STA的MAC位址;位址欄位1615,其可以是DL設置請求的“位址4”欄位;以及位址欄位1620,其可以是DL設置請求的“位址3”欄位。如所描述,在MAC層訊框中,“位址3”和“位址4”欄位可以分別從接收到的DL設置請求的“位址4”和“位址3”欄位中被複製。需要注意的是可以使用替代的位址欄位,並且描述的那些僅作為示例。
第17圖是由DL回應方STA發送到AP的示例TDLS設置回應訊框格式1700。TDLS設置回應訊框格式1700可以包括各種資訊元素1704,其可以按照1702處表明的進行排序。第17圖中描述的示例TDLS設置回應訊框格式1700可以包括以下資訊元素欄位:類別、動作、狀態碼、對話訊標、能力、支援的速率、國家、擴展的受支援的速率、支援的頻道、RSNIE、擴展的能力、QoS能力、FTIE、逾時間隔IE、支援的調節等級、HT能力、20/40 BSS共存、鏈路識別符。也可以使用其他資訊元素。
在多RAT STA情況中,以下欄位可以被修改。
●狀態碼:在TDLS中,為TDLS回應方STA列出了五種選項(即狀態碼‘0’、‘37’等)來做出其回應。在多RAT STA的情況中,所有那些選項可以利用在選項2(在IEEE 802.11z中的章節11.21.4)中的以下修改對於DL回應方保持相同。
○DL回應方STA可以拒絕DL設置請求訊框,在該情況中,DL回應方STA可以用具有狀態碼37(“請求已經被拒絕”)的DL設置回應訊框來回應。當接收到的鏈路識別符元素中的任一BSSID不匹配DL回應方STA的任一BSSID時,DL回應方STA未找到與DL發起方的任何公共RAT,則DL設置請求可以被拒絕。
●支援的速率:在多RAT STA的情況中,此元素可以被修改為指示在每個RAT上由STA分別支援的速率。
●擴展的受支援的速率:在多RAT STA的情況中,每當在RAT上存在多於八個支援的速率時,此元素針對RAT存在,並且其可以是另外可選的。
●支援的頻道:在多RAT STA的情況中,此元素可以被修改為包含頻道子波段的列表,其中多RAT STA能夠針對每個RAT操作。
●QoS能力:在多RAT STA的情況中,QoS能力資訊應當針對每個RAT被發送。
●支援的調節等級:在多RAT STA的情況中,此元素可以被修改為包含針對每個RAT的資訊。
●安全參數(即TDLS情況中的RSNIE、FTIE、逾時間隔):在多RAT STA的情況中,與安全參數(例如,IEEE 802.11情況中的RSNIE、FTIE、逾時間隔)相關的每個元素可以被修改為包含針對每個RAT的相應參數。
●能力(如在TDLS情況中的HT能力、擴展的能力等):在多RAT STA的情況中,每個能力元素可以被修改為包含針對每個RAT的相應參數。
●鏈路識別符:在多RAT STA的情況中,鏈路識別符元素的以下欄位可以被修改。
○BSSID:此欄位可以被修改為包含在公共MAC位址情況下AP的單一BSSID、或者在對於每個RAT的單獨MAC位址的情況下AP處的所有RAT的所有BSSID。
○DL發起方STA位址:此欄位可以被修改為包含在公共MAC位址情況下DL發起方的單一公共MAC位址或者在對於每個RAT的單獨MAC位址的情況下DL回應方處的所有RAT的所有MAC位址。
DL回應方STA還可以發送針對其能夠通信所處的RAT的資訊。其可以如以上針對DL發現請求訊框描述的相同方式發送此資訊。
再次參考第12圖,在針對所有RAT的單獨MAC位址的情況中,AP 1201可以藉由將如第16圖所示的MAC層訊框的位址欄位1615(從DL回應方STA 1210接收)與其可以儲存針對所有RAT的RAT能力(具有MAC位址)的資料庫匹配來得知DL發起方STA 1205。在得知DL發起方STA 1205之後,AP 1201可以選擇與DL發起方STA 1205的公共賦能RAT,例如RAT3(S1245)。AP 1201可以使用公共賦能RAT來轉發DL設置回應訊框到DL發起方STA 1205(S1250)。DL設置回應訊框(從AP到DL發起方)的MAC層訊框中的位址欄位可以如第18圖所示被格式化。
第18圖是在由AP發送到DL發起方STA的DL設置回應訊框的MAC層訊框中的位址欄位的示例格式。參考第18圖,由AP發送到DL發起方STA的DL設置回應訊框的MAC層訊框中的位址欄位可以被格式化為包括位址欄位1805,其可以是針對由AP選定的選擇的公共RAT的DL發起方STA的MAC位址;位址欄位1810,其可以是針對與DL發起方STA的選擇的公共RAT的AP的MAC位址;位址欄位1815,其可以是從DL回應方STA接收的回應的“位址3”欄位;以及位址欄位1820,其可以是從DL回應方STA接收的回應的“位址4”欄位。需要注意的是,可以使用替代的位址欄位,並且描述的那些僅作為示例。
如果DL發起方STA接收到具有狀態碼零的DL設置回應、並且在逾時(如果針對DL設置回應已定義)發生之前,則DL發起方STA可以發送DL設置確認訊框到DL回應方STA。此訊息可以經由AP傳送。再次參考第12圖,DL發起方STA 1205可以選擇與AP 1201的公共賦能RAT,如RAT 3(S1255)。DL發起方STA 1205可以使用選擇的公共賦能RAT來發送DL設置確認訊框到AP 1201(S1260)。DL設置確認訊框的MAC層訊框中的位址欄位可以如第19圖所示被格式化。
第19圖是在由DL發起方STA發送到AP的DL設置確認訊框的MAC層訊框中的位址欄位的示例格式。參考第19圖,由DL發起方STA發送到AP的DL設置確認訊框的MAC層訊框中的位址欄位可以被格式化為包括位址欄位1905,其可以是針對由DL發起方STA選定的選擇的公共RAT的AP的MAC位址;位址欄位1910,其可以是針對與AP的選擇的公共RAT的DL發起方STA的MAC位址;位址欄位1915,其可以是DL設置回應訊框的MAC層訊框的“位址4”欄位;以及位址欄位1920,其可以是DL設置回應的MAC層訊框的“位址3”欄位。如所描述,在MAC層訊框中,“位址3”和“位址4”欄位可以分別從接收到的DL設置回應的“位址4”和“位址3”欄位中複製。需要注意的是可以使用替代的位址欄位,並且描述的那些僅作為示例。
第20圖是示例TDLS設置確認訊框格式2000。TDLS設置確認訊框格式2000可以包括各種資訊元素2004,其可以按照2002處表明的進行排序。第20圖中描述的示例TDLS設置確認訊框格式2000可以包括以下資訊元素欄位:類別、動作、狀態碼、對話訊標、RSNIE、EDCA參數集合、FTIE、逾時間隔IE、HT操作和鏈路識別符。也可以使用其他資訊元素。
針對多RAT裝置,在資訊元素的子集合中的修改可以被做出,類似於針對DL設置請求做出的那些。在多RAT的情況中,DL設置確認訊框的安全參數(即RSNIE、FTIE和逾時間隔IE)、EDCA參數集合和HT操作欄位可以包含針對DL發起方STA和DL回應方STA之間的所有公共RAT的資訊(在從DL回應方STA獲取到成功的DL設置回應訊框之後,DL發起方STA可以知道其與DL回應方STA的公共RAT能力)。在鏈路識別符中,以下欄位可以被修改。
●BSSID:此欄位可以包含在公共MAC位址情況下AP的單一BSSID、或者在針對每個RAT的單獨MAC位址的情況下AP處的所有RAT的所有BSSID。
●DL發起方STA位址:此欄位可以包含在公共MAC位址情況下DL發起方的單一公共MAC位址、或者在針對每個RAT的單獨MAC位址的情況下DL發起方和回應方之間的公共RAT的所有MAC位址。
再次參考第12圖,在針對所有RAT的單獨MAC位址的情況中,AP 1201可以藉由將如第19圖所示的DL設置確認訊框的MAC層訊框的位址欄位1915(從DL發起方STA 1205接收)與其可以儲存針對所有RAT的RAT能力(具有MAC位址)的資料庫匹配來得知DL回應方STA 1210。在得知DL回應方STA 1210之後,AP 1201可以選擇與DL回應方STA 1210的公共賦能RAT,例如RAT 2(S1265)。AP 1201可以使用選擇的公共賦能RAT來轉發DL設置確認訊框到DL回應方STA 1270(S1270)。DL設置確認訊框(從AP到DL回應方STA)的MAC層訊框中的位址欄位可以如第21圖所示被格式化。
第21圖是在由AP發送到DL回應方STA的DL設置確認訊框的MAC層訊框的位址欄位的示例格式。參考第21圖,由AP發送到DL回應方STA的DL設置確認訊框的MAC層訊框中的位址欄位可以被格式化為包括位址欄位2105,其可以是針對由AP選定的選擇的公共RAT的DL回應方STA的MAC位址;位址欄位2110,其可以是針對與DL回應方STA的選擇的公共RAT的AP的MAC位址;位址欄位2115,其可以是從DL發起方接收的確認訊框的“位址3”欄位;以及位址欄位2120,其可以是從DL發起方接收的確認訊框的“位址4”欄位。需要注意的是可以使用替代的位址欄位,並且描述的那些僅作為示例。
現在將描述用於拆除兩個多RAT OMMA裝置之間的直接鏈路的方法。DL對等STA(即DL發起方STA或DL回應方STA)可以發送DL拆除訊框到預期的DL對等STA以拆除直接鏈路。DL拆除訊框可以是TDLS拆除訊框。可以存在多種方式發送此訊框,例如經由直接路徑或者經由AP。
第22圖是在直接路徑上的示例拆除程序的呼叫流。當預期的DL對等STA經由DL鏈路可到達時,DL拆除訊框可以經由直接路徑發送。參考第22圖,示出了拆除發起方STA 2205和拆除回應方STA 2210。拆除發起方STA 2205可以選擇與預期的DL對等STA(即拆除回應方STA 2210)的公共RAT,例如RAT 4(S2220)。拆除發起方STA 2205可以在選擇的公共RAT上發送DL拆除請求訊框到拆除回應方STA 2210(S2225)。回應於接收到DL拆除請求訊框,拆除回應方2210將發送DL拆除回應訊框到拆除發起方STA 2205(S2230)。
第23圖是經由AP的示例拆除程序的呼叫流。參考第23圖,示出了拆除發起方STA 2305,拆除回應方STA 2310和對於拆除發起方STA 2305和拆除回應方STA 2310公共的AP 2301。拆除發起方STA 2305可以選擇與預期的DL對等STA(即拆除回應方STA 2310)的公共RAT,例如RAT 4(S2320)。拆除發起方STA 2305可以在選擇的公共RAT上發送DL拆除請求訊框到拆除回應方STA 2310(S2325)。回應於接收到DL拆除請求訊框,拆除回應方STA 2310可以發送DL拆除回應訊框到拆除發起方STA 2305(S2330)。如果DL拆除回應訊框在逾時時段內未被接收(S2335),則DL拆除訊框可以經由AP 2301發送。拆除發起方STA 2305可以選擇與AP的公共RAT,例如RAT 1(S2340)。拆除發起方STA 2305可以使用選擇的公共RAT來發送DL拆除請求訊框到AP 2301(S2345)。拆除發起方STA可以使用如第24圖所示的DL拆除訊框中的那一公共RAT的MAC位址,這在以下將更詳細描述。AP 2301可以選擇與拆除回應方STA 2310的公共RAT,例如RAT 3(S2350)。AP 2301可以使用選擇的RAT來發送DL拆除請求訊框到拆除回應方STA 2310(S2355)。作為回應,拆除回應方STA 2310可以使用相同的公共RAT來發送DL拆除回應訊框到AP 2301(S2360)。AP 2301可以在對於AP 2301及拆除發起方STA 2305公共的RAT上轉發DL拆除回應訊框到拆除發起方STA 2305(S2365)。作為回應,拆除發起方STA 2305可以使用相同的公共RAT來發送DL拆除確認訊框到AP 2301(S2370)。AP 2301可以使用對於AP 2301和拆除回應方STA 2310公共的RAT來轉發DL拆除確認訊框到拆除回應方STA 2310(S2375)。在針對所有RAT的公共MAC位址的情況中,該訊息的MAC層訊框中的所有位址欄位可以被映射到裝置的公共MAC位址。在針對每個RAT的單獨MAC位址的情況中,MAC層訊框中的位址欄位可以如第24圖被格式化。
第24圖是在由拆除發起方STA發送到AP的DL拆除訊框的MAC層訊框中的位址欄位的示例格式。參考第24圖,MAC層訊框中的位址欄位可以被格式化為包括位址欄位2405,其可以是針對由拆除發起方STA選定的選擇的公共RAT的AP的MAC位址;位址欄位2410,其可以是針對與AP的選擇的公共RAT的拆除發起方STA的MAC位址;位址欄位2415,其可以是針對由拆除發起方STA選定的選擇的公共RAT的預期的DL對等STA的MAC位址;以及位址欄位2420,其可以是針對與預期的DL對等STA的選擇的公共RAT的拆除發起方STA的MAC位址。需要注意的是可以使用替代的位址欄位,並且描述的那些僅作為示例。
在針對所有RAT的單獨MAC位址的情況中,AP可以藉由將如第24圖所示的DL拆除訊框的MAC層訊框的位址欄位2415(從拆除發起方STA接收)與其可以儲存針對所有RAT的RAT能力(具有MAC位址)的資料庫匹配來得知預期的DL對等STA。在得知預期的DL對等STA之後,其可以選定與預期的DL對等STA的公共賦能RAT,以轉發DL拆除訊框到預期的DL對等STA 。MAC層訊框(從AP到DL回應方STA)中的位址欄位可以如第25圖所示被格式化。
第25圖是在由AP發送到DL拆除回應方STA的DL拆除訊框的MAC層訊框中的位址欄位的示例格式。參考第25圖,MAC層訊框中的位址欄位可以被格式化為包括位址欄位2505,其可以是針對由AP選定的選擇的公共RAT的預期的DL對等STA的MAC位址;位址欄位2510,其可以是針對與預期的DL對等STA的選擇的公共RAT的AP的MAC位址;位址欄位2515,其可以是從拆除發起方STA接收的確認訊框的“位址3”欄位;以及位址欄位2520,其可以是從拆除發起方STA接收的確認訊框的“位址4”欄位。需要注意的是可以使用替代的位址欄位,並且描述的那些僅作為示例。
第26圖是示例TDLS拆除訊框格式2600。TDLS拆除訊框格式2600包括各種資訊元素2604,該各種資訊元素2604可以按照2602處所指示的進行排序。第26圖中所描述的示例TDLS拆除訊框格式2600可以包括以下資訊元素欄位:類別、動作、原因碼、FTIE和鏈路識別符。也可以使用其他資訊元素。
對於多RAT裝置,在以上欄位的子集合中可以做出以下修改:
●安全相關參數(即TDLS中的FTIE):與任何安全參數相關的資訊可以針對每個RAT被發送。
●鏈路識別符:在鏈路識別符中,以下欄位可以被修改:
○BSSID:此欄位可以包含在公共MAC位址情況下AP的單一BSSID、或者在針對每個RAT的單獨MAC位址的情況下AP處的所有RAT的所有BSSID。
○DL發起方STA位址:此欄位可以包含在公共MAC位址情況下拆除發起方的單一公共MAC位址、或者在針對每個RAT的單獨MAC位址的情況下在拆除發起方和預期的DL對等STA之間的公共RAT的所有MAC位址。
以下將描述針對RAT可用性管理的方法。每個DL STA對可以藉由在此時用信號發送其最大匹配的RAT能力來建立DL。由此DL STA對可以知道在DL設置時在其之間的公共最大RAT能力。但是,針對DL STA對的RAT可用性列表根據若干因素(例如,移動性、鏈路品質波動等)隨時間變化。由此,可以存在對針對DL STA對的RAT可用性的動態管理的需要,其中DL對等STA兩者知道彼此的RAT可用性。
第27圖是用於RAT可用性更新管理的示例呼叫流。參考第27圖,示出了第一DL對等STA 2705和第二DL對等STA 2710。在第27圖中提供的示例中,DL對等STA 2710是DL發起方STA、以及DL對等STA 2705是DL回應方STA。每個DL對等STA包括OMMA控制器(即RAT更新管理模組)、OMMA排程器(即RAT更新發送方)、STA RAT能力資料庫以及RAT 1-N。應該注意的是出於簡化說明目的,DL對等STA 2710的OMMA排程器未在第27圖中示出。DL對等STA 2710週期性地或非週期性地發送所有公共RAT(即公共最大RAT能力)上的探測/訓練信號至DL對等STA 2705(S2720a-n)。在DL對等STA 2710處,偵聽探測/訓練信號的每個RAT可以將有關RAT可用性通知或更新OMMA控制器(即RAT更新管理模組)(S2725a-n)。該更新或通知可以經由在A3介面上的信號RAT_Capablities_A3(RAT_能力_A3)來實現。DL對等STA 2705的OMMA控制器在DL對等STA 2705的STA RAT能力資料庫中更新RAT能力的此資訊(S2730)。該更新可以經由在A1介面上的STA_RAT_Capability_Update_A1(STA_RAT_能力_更新_A1)信號來實現。DL對等STA 2705的OMMA排程器(即RAT更新發送方)可以查詢針對DL對等STA 2710的RAT可用性列表的DL對等STA 2705的STA RAT能力資料庫(S2735)。此查詢可以是經由A4介面上的STA_RAT_Capability_Query_A4(STA_RAT_能力_查詢_A4)信號。DL對等STA 2405的STA RAT能力資料庫可以發送對該查詢的回應,表明DL對等STA 2710的RAT可用性(S2740)。DL對等STA 2705的OMMA排程器選擇公共可用的RAT,例如RAT2(S2745)。DL對等STA 2705的OMMA排程器產生可以包括以下參數的STA_RAT_Availability(STA_RAT_可用性)訊息:

●源STA_Addr:自我位址;
●目的STA_Addr:其需要發送此資訊到的DL發起方的位址;以及
●RAT_Ids:可用的所有RAT的Id列表[RAT_1,RAT_2 …..]。
DL對等STA 2705的OMMA排程器使用所選擇的公共可用RAT(S2750)發送STA_RAT_Availability訊息至DL對等STA 2710(S2755)。在DL對等STA 2710處,STA_RAT_Availability訊息在所選擇的可用RAT處被接收。所選擇的公共RAT將DL對等STA 2705的RAT能力通知給DL對等STA 2710的OMMA控制器(S2760)。這可以經由在A3介面上的RAT_Capablities_A3信號來實現。DL對等STA 2710的OMMA控制器可以更新針對DL對等STA 2705的STA RAT能力資料庫中的RAT可用性資訊(S2765)。這可以經由在A1介面上的STA_RAT_Capability_Update_A1來實現。在此方法中,任何DL STA對的RAT可用性資訊可以被更新。以上程序可以被週期性地執行(S2770)。
有時在多RAT裝置中,由於各種原因,一些RAT上的封包錯誤率變得太高。在該情況中,在RAT集合上獲得高錯誤封包的接收器可以通知傳輸器不要選擇特定的RAT集合來傳送至該接收器中。由此,需要針對DL STA的動態RAT切換。
第28圖是用於動態RAT切換的示例呼叫流。參考第28圖,示出了第一DL對等STA 2805和第二DL對等STA 2810。在第28圖中提供的示例中,DL對等STA 2805為一傳送DL STA並且DL對等STA 2810為一接收DL STA。每個DL對等STA包括OMMA控制器(即RAT更新管理模組)、OMMA排程器(即RAT更新發送方)、STA RAT能力資料庫以及RAT 1-3。第28圖中示出的RAT數量為僅用於示例性目的並且不意在限制性。DL對等STA可以包括任何數量的RAT。此外,出於簡化目的,DL對等STA 2810的OMMA排程器未在第28圖中示出。如第28圖中所示,DL對等STA 2810在RAT 1-3上接收資料通信(S2815a-c)。DL對等STA 2810連續地接收在RAT 2上的高封包錯誤率(S2820)。應該注意的是DL對等STA 2810可以連續地接收另一RAT或RAT集合上的高封包錯誤率。DL對等STA 2810的OMMA排程器查詢針對DL對等STA 2805的RAT可用性列表的DL對等2810的STA RAT可用性資料庫(錯誤的封包的傳輸器)(S2825)。這可以經由在A4介面上的STA_RAT_Capability_Query_A4(STA_RAT_能力_查詢_A4)信號來實現。DL對等STA 2810的STA RAT可用性資料庫發送針對該請求的回應、提供DL對等STA 2805的RAT可用性列表(S2830)。這可以經由在A4介面上的STA_RAT_Capability_Response_A4(STA_RAT_能力_回應_A4)信號來實現。DL對等STA 2810可以從該列表中移除這些RAT,其中在該RAT上其變得高封包錯誤率(例如,在預先確定的值之上的封包錯誤率)。DL對等STA 2810的OMMA排程器選擇公共可用RAT,例如RAT 1(S2835)。所選擇的公共可用RAT(例如,RAT 1)將不是DL對等STA連續接收高封包錯誤率的RAT。DL對等STA 2810的OMMA排程器產生被發送至DL對等STA 2805的STA_RAT_Availability訊息。STA_RAT_Availability訊息可包括以下參數:
●源STA_Addr:發送此訊息的DL對等STA的位址;
●目的STA_Addr:其需要被發送到的DL對等STA的位址;
●RAT_Ids:可用的以及不接收高封包錯誤率的所有RAT的Id列表[RAT_1,RAT_2 …]。
DL對等STA 2810的OMMA排程器使用所選擇的公共可用RAT(S2840)發送STA_RAT_Availability訊息至DL對等STA 2805(S2845)。在DL對等STA 2805側處,接收STA_RAT_Availability訊息的RAT可以通知DL對等STA 2805的OMMA控制器(S2850)。這可以經由在A3介面上的RAT_Capablities_A3信號來實現。DL對等STA 2805的OMMA控制器可以更新針對該STA的DL對等STA 2805的STA RAT能力資料庫中的RAT可用性資訊(S2855)。這可以經由在A1介面上的STA_RAT_Capability_Update_A1信號來實現。由此,在針對該DL STA接收器的STA RAT能力資料庫中獲得任何新的更新之前,DL對等STA 2805不能夠使用這些高封包錯誤的RAT來傳送至DL對等STA 2810。DL對等STA 2805接著可以在可用RAT(即RAT1和RAT3)上發送資料通信至DL對等STA 2810(S2860a-b)。
DL對等STA可以知道彼此的OMMA模式(例如,透明或非透明),例如,DL接收器可以知道正在使用多個RAT來發送IP流至其的DL傳輸器,由此其在接收期間可以聚合所有這些封包。因此,DL對等STA如果需要時可以傳送其OMMA操作模式至另一DL對等STA。在新關聯的DL對等STA的情況下,DL發起方STA可以在DL設置確認訊框中的DL建立程序期間發送其OMMA模式至DL回應方STA。替代地,DL發起方STA可以使用包含該模式的新信號來發送其OMMA模式。DL發起方STA可以在任何資料通信開始之前發送其OMMA模式。
第29圖是示例OMMA模式傳送程序的呼叫流。參考第29圖,示出了第一DL對等STA 2905和第二DL對等STA 2910。在第29圖中提供的示例中,DL對等STA 2905是DL回應方STA並且DL對等STA 2910是DL發起方STA。每個DL對等STA包括OMMA控制器、OMMA排程器、STA RAT能力資料庫以及RAT 1-N。出於說明目的,STA 2905 STA的DL回應方RAT能力資料庫未被示出。此外,僅所選擇的RAT被描述用於每個DL對等STA。如以上所表明,每個DL對等STA具有一個或多個可用的RAT。參考第29圖,DL發起方STA 2910的OMMA控制器選擇在其中操作的OMMA模式(S2915)。DL發起方STA 2910的OMMA控制器傳遞其模式決定至DL發起方STA 2910的OMMA排程器(S2920)。這可以經由在A9介面上的OMMA_Mode_Decision_A9(OMMA_模式_決定_A9)信號來實現。DL發起方STA 2910的OMMA控制器可以查詢DL發起方STA 2910的STA RAT能力資料庫以獲取針對DL回應方STA 2905的可用RAT(S2925)。這可以使用A1介面以經由STA_RAT_Capability_Query_A1信號來實現。DL發起方STA 2910的STA RAT可用性資料庫可以發送針對該請求的回應,以提供DL回應方STA 2905的RAT可用性列表(S2930)。DL發起方STA 2910的OMMA控制器可以在RAT可用性列表上選擇任何一個可用RAT(S2935)。DL發起方STA 2910的OMMA控制器發送OMMA模式至所選擇的RAT(S2940)。這可以使用A3介面以經由Mode_to_RAT_A3(模式_至_RAT_A3)信號來實現。所選擇的RAT發送包含OMMA模式決定的新信號至DL回應方STA 2905(S2945)。包含該模式的新信號可以使用經由空中傳訊來發送。其可以具有以下參數:
●源STA位址:產生該訊息的DL對等STA的位址;
●目的STA位址:其需要被發送到的DL對等STA的位址;以及
●模式:模式資訊。
在DL回應方STA 2905處,在包含來自DL發起方STA 2910的模式的信號中接收到的模式資訊可以被傳送至DL回應方STA 2905的OMMA控制器(S2950)。這可以使用A3介面經由Mode_to_Controller_A3(模式_至_控制器_A3)來實現。DL回應方STA 2905的OMMA控制器可以向針對該模式操作的DL回應方STA 2605的OMMA排程器發送信號(S2955)。此外,無論何時任何對等STA(DL發起方STA或DL回應方STA)需要改變其目前操作模式(例如,從多個RAT聚合至僅單一RAT通信),其可以在與以上討論的相同程序中通知其它對等STA。
實施例
1、一種在站(STA)中使用的方法,該方法包括:
發送訊息至存取點(AP),其中該訊息包括對於STA可用的多個無線電存取技術(RAT)中的至少一者的訊息。
2、如實施例1所述的方法,其中該訊息為直接鏈路(DL)發現請求訊息。
3、如實施例1所述的方法,其中該訊息為直接鏈路(DL)設置請求訊息。
4、如實施例2所述的方法,更包括:
在STA處接收DL發現回應訊息,其中發現回應訊息包括對於STA可用的多個RAT中的至少一者的資訊。
5、如實施例3所述的方法,更包括:
在STA處接收DL設置回應訊息,其中DL回應訊息包括對於STA可用的多個無線存取技術(RAT)中的至少一者的資訊。
6、如實施例5所述的方法,更包括:
發送DL設置確認訊息。
7、如實施例1所述的方法,其中該訊息為直接鏈路(DL)拆除訊息。
8、如實施例6所述的方法,其中該DL設置確認訊息包括STA的機會型多媒體存取控制(MAC)聚合(OMMA)模式。
9、一種在站(STA)中使用的方法,該方法包括:
發送直接鏈路(DL)拆除訊息至預期的DL對等STA,其中該訊息包括對於STA可用的多個無線存取技術(RAT)中的至少一者的資訊。
10、如實施例1-9中任一實施例中所述的方法,其中該資訊包括針對STA和AP公共的RAT的STA的媒體存取控制(MAC)位址。
11、如實施例1-10中任一實施例中所述的方法,其中該資訊更包括針對STA和AP公共的RAT的AP的MAC位址。
12、如實施例1-11中任一實施例中所述的方法,其中該資訊更包括針對STA和預期的DL對等STA公共的RAT的STA的MAC位址。
13、如實施例1-12中任一實施例中所述的方法,其中該資訊更包括針對STA和預期的DL對等STA公共的RAT的預期的對等STA的MAC位址。
14、如實施例1-13中任一實施例中所述的方法,其中該資訊更包括針對AP和預期的對等STA公共的RAT的AP的MAC位址。
15、如實施例1-14中任一實施例中所述的方法,其中該資訊更包括針對AP和預期的對等STA公共的RAT的預期的對等STA的MAC位址。
16、如實施例1-15中任一實施例中所述的方法,其中該資訊更包括對於STA可用的RAT列表。
17、如實施例1-16中任一實施例中所述的方法,更包括:
維護至少一個AP的多個RAT能力的資料庫。
18、一種在站(STA)中使用的方法,該方法包括:
經由針對STA和預期的對等STA公共的多個無線存取技術(RAT)中的至少一者來發送探測信號至預期的對等STA;以及
經由針對STA和預期的對等STA公共的RAT來接收RAT可用性訊息,其中該RAT可用性訊息包括可用RAT列表。
19、一種用於站(STA)中的方法,該方法包括:
在由STA所使用的多個RAT中的至少一者上的封包錯誤率位於預先確定的值之上的情況下,查詢針對無線電存取技術(RAT)可用性列表的資料庫;
接收RAT可用性列表;
從可用性列表移除封包錯誤率在預先確定的臨界值之上所在的RAT;以及
經由針對STA和預期的對等STA公共的多個RAT中的至少一者來發送更新後的可用性列表至預期的對等STA。
20、一種在站(STA)中使用的方法,該方法包括:
查詢針對預期的對等STA的無線電存取技術(RAT)可用性列表的資料庫;
選擇可用的RAT;以及
發送包含所選擇的RAT的機會型多媒體存取控制(MAC)聚合(OMMA)模式的信號至預期的對等STA。
21、一種在存取點(AP)中使用的方法,該方法包括:
從站(STA)中接收訊息,其中該訊息包括對於STA可用的多個無線電存取技術(RAT)中的至少一者的資訊。
22、如實施例21所述的方法,其中該訊息為直接鏈路(DL)發現請求訊息。
23、如實施例21所述的方法,其中該訊息為直接鏈路(DL)設置請求訊息。
24、如實施例22所述的方法,更包括:
發送DL發現回應訊息至預期的對等STA。
25、如實施例23所述的方法,更包括:
發送DL設置請求訊息至預期的對等STA。
26、如實施例25所述的方法,更包括:
從STA中接收DL設置確認訊息,以及
發送DL設置確認訊息至預期的對等STA。
27、如實施例21所述的方法,其中該訊息為直接鏈路(DL)拆除訊息。
28、如實施例26所述的方法,其中所接收到的DL設置確認訊息包括STA的機會型多媒體存取控制(MAC)聚合(OMMA)模式。
29、如實施例21-28中任一實施例所述的方法,其中該資訊包括針對STA和AP公共的RAT的STA的媒體存取控制(MAC)位址。
30、如實施例21-29中任一實施例所述的方法,其中該資訊更包括針對STA和AP公共的RAT的AP的MAC位址。
31、如實施例22-30中任一實施例所述的方法,其中該資訊更包括針對STA和預期的DL對等STA公共的RAT的STA的MAC位址。
32、如實施例21-31中任一實施例所述的方法,其中該資訊更包括針對STA和預期的DL對等STA公共的RAT的預期的對等STA的MAC位址。
33、如實施例21-32中任一實施例所述的方法,其中該資訊更包括針對AP和預期的對等STA公共的RAT的AP的MAC位址。
34、如實施例21-33中任一實施例所述的方法,其中該資訊更包括針對AP和預期的對等STA公共的RAT的預期的對等STA的MAC位址。
35、如實施例21-34中任一實施例所述的方法,其中該資訊更包括對於STA可用的RAT列表。
36、如實施例21-35中任一實施例所述的方法,其中該方法更包括維護至少一個STA的多個RAT能力的資料庫。
37、一種站(STA),該STA被配置為執行如實施例1-20中任一實施例所述的方法的至少一部分。
38、一種存取點(AP),該AP被配置為執行如實施例21-36中任一實施例所述的方法的至少一部分。
39、一種無線通訊系統,該通信系統被配置為執行如實施例1-36中任一實施例所述的方法的至少一部分。
雖然本發明的特徵和元素以特定的結合在以上進行了描述,但本領域中具有通常知識者可以理解的是,每個特徵或元素可以單獨使用,或在與本發明的任何其它特徵和元素結合的各種情況下使用。此外,以上描述的流程可以在由電腦或處理器執行的電腦程式、軟體及/或韌體中實施,其中該電腦程式、軟體或/或韌體被包含在電腦可讀媒體中。電腦可讀媒體的實例包括但不限於電子信號(經由有線及/或無線連接而傳送)和電腦可讀儲存媒體。關於電腦可讀儲存媒體的實例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體存放裝置、磁性媒體(例如,內部硬碟或抽取式磁碟)、磁光媒體和諸如CD-ROM光碟和數位多功能光碟(DVD)之類的光學媒體。與軟體有關的處理器可以被用於實施在WTRU、UE、終端、基地台、RNC或任何主機電腦中使用的無線電頻率收發器。
FIG. 1A is a diagram of an example communication system 100 in which one or more disclosed embodiments may be implemented. Communication system 100 may be a multiple access system that provides content such as voice, data, video, messaging, broadcast, etc. to multiple wireless users. Communication system 100 can be shared by system resources (including wireless bandwidth) to enable multiple wireless users to access such content. For example, communication system 100 may use one or more channel access methods, such as code division (CDMA) multiple access, time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). Single carrier FDMA (SC-FDMA) and the like.
As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, radio access network (RAN) 104, core network 106, public switched telephone network (PSTN). 108, the Internet 110 and other networks 112, but it will be understood that the disclosed embodiments encompass any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in wireless communication. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), mobile stations, users, fixed or mobile subscriber units, pagers, mobile phones. Personal digital assistants (PDAs), smart phones, laptops, portable Internet devices, personal computers, wireless sensors, consumer electronics, etc.
Communication system 100 can also include base station 114a and base station 114b. Each of the base stations 114a, 114b can be configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks (eg, the core network 106) Any type of device of the Internet 110 and/or other network 112). For example, base stations 114a, 114b may be base transceiver stations (BTS), Node Bs, eNodeBs, home Node Bs, home eNodeBs, website controllers, access points (APs), wireless routers, and the like. Although base stations 114a, 114b are each depicted as a single component, it will be understood that base stations 114a, 114b may include any number of interconnected base stations and/or network elements.
The base station 114a may be part of the RAN 104, which may also include other base stations and/or network elements such as a website controller (BSC), a radio network controller (RNC), a relay node (not show). Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area, which may be referred to as cells (not shown). Cells can also be divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, i.e., one for each sector of the cell. In another embodiment, base station 114a may use multiple input multiple output (MIMO) technology, and thus multiple transceivers for each sector of the cell may be used.
The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via an empty intermediation plane 116, which may be any suitable wireless communication link (e.g., radio frequency (RF)) , microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The empty intermediaries 116 can be set using any suitable radio access technology (RAT).
More specifically, as previously discussed, communication system 100 can be a multiple access system and can utilize one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 104 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may be set using Wideband CDMA (WCDMA) Empty mediation plane 116. WCDMA may include, for example, High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA).
In another embodiment, base station 114a and WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or Advanced LTE (LTE-A) sets up the null mediation plane 116.
In other embodiments, base station 114a and WTRUs 102a, 102b, 102c may implement such as IEEE 802.16 (ie, Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1x, CDMA2000 EV-DO, Temporary Standard 2000 (IS-2000) Radio technology such as Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rate GSM Evolution (EDGE), GSM EDGE (GERAN).
For example, the base station 114b in FIG. 1A can be a wireless router, a home Node B, a home eNodeB, or an access point, and any suitable RAT can be used for facilitating in, for example, a company, a home, a vehicle, a campus. A wireless connection to a local area like that. In one embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to set up a wireless local area network (WLAN). In another embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.15 to set up a wireless personal area network (WPAN). In yet another embodiment, base station 114b and WTRUs 102c, 102d may use a cellular based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to set up picocells or femtocells. (femtocell). As shown in FIG. 1A, the base station 114b can have a direct connection to the Internet 110. Therefore, the base station 114b does not have to access the Internet 110 via the core network 106.
The RAN 104 can be in communication with a core network 106, which can be configured to provide voice, data, application, and/or Voice over Internet Protocol (VoIP) services to the WTRUs 102a, 102b, 102c, 102d. Any type of network of one or more. For example, core network 106 may provide call control, billing services, mobile location based services, prepaid calling, internet connectivity, video distribution, etc., and/or perform high level security functions such as user authentication. Although not shown in FIG. 1A, it should be understood that the RAN 104 and/or the core network 106 can communicate directly or indirectly with other RANs that can use the same RAT as the RAN 104 or a different RAT. For example, in addition to being connected to the RAN 104, which may employ an E-UTRA radio technology, the core network 106 may also be in communication with other RANs (not shown) that employ GSM radio technology.
The core network 106 can also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). Internet 110 may include a global system interconnecting computer networks and devices that use public communication protocols such as TCP in the Transmission Control Protocol (TCP)/Internet Protocol (IP) Internet Protocol Suite. , User Datagram Protocol (UDP) and IP. Network 112 may include a wireless or wired communication network that is owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs that may use the same RAT as RAN 104 or a different RAT.
Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, i.e., the WTRUs 102a, 102b, 102c, 102d may be included for communicating with different wireless networks via different communication links. Multiple transceivers for communication. For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that uses a cellular-based radio technology and with a base station 114b that can use IEEE 802 radio technology.
FIG. 1B is a system diagram of an example WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a keyboard 126, a display/touchpad 128, a non-removable memory 130, and a removable Memory 132, power supply 134, global positioning system chipset 136, and other peripheral devices 138. It should be understood that the WTRU 102 may include any sub-combination of the above-described elements while remaining consistent with the embodiments.
The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a micro control , dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (IC), state machine, etc. The processor 118 can perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although processor 118 and transceiver 120 are depicted as separate components in FIG. 1B, it should be understood that processor 118 and transceiver 120 can be integrated together into an electronic package or wafer.
The transmit/receive element 122 can be configured to transmit signals to or from a base station (e.g., base station 114a) via the null plane 116. For example, in one embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. In another embodiment, the transmit/receive element 122 can be a transmitter/detector configured to transmit and/or receive, for example, IR, UV, or visible light signals. In yet another embodiment, the transmit/receive element 122 can be configured to transmit and receive both RF signals and optical signals. It should be understood that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals.
Moreover, although the transmit/receive element 122 is depicted as a single element in FIG. 1B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and receiving wireless signals via the null intermediate plane 116.
The transceiver 120 can be configured to modulate a signal to be transmitted by the transmit/receive element 122 and configured to demodulate a signal received by the transmit/receive element 122. As described above, the WTRU 102 may have multi-mode capabilities. Thus, the transceiver 120 can include multiple transceivers to enable the WTRU 102 to communicate via multiple RATs such as UTRA and IEEE 802.11.
The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a keyboard 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), and User input data can be received from the above device. The processor 118 can also output user data to the speaker/microphone 124, the keyboard 126, and/or the display/touchpad 128. In addition, the processor 118 can access information from any type of suitable memory and store the data in any type of suitable memory, such as non-removable memory 130 and/or removable. Memory 132. The non-removable memory 130 may include random access memory (RAM), read only memory (ROM), a hard disk, or any other type of memory storage device. The removable memory 132 may include a Subscriber Identity Module (SIM) card, a memory stick, a Secure Digital (SD) memory card, and the like. In other embodiments, processor 118 may access information from memory that is not physically located on WTRU 102 and located on a server or home computer (not shown), and store data in the memory.
The processor 118 may receive power from the power source 134 and may be configured to allocate power to other elements in the WTRU 102 and/or to control power to other elements in the WTRU 102. Power source 134 can be any device suitable for powering WTRU 102. For example, the power source 134 may include one or more dry cells (nickel cadmium (NiCd), nickel zinc (NiZn), nickel hydrogen (NiMH), lithium ion (Li-ion), etc.), solar cells, fuel cells, and the like.
Processor 118 may also be coupled to GPS die set 136, which may be configured to provide location information (eg, longitude and latitude) with respect to the current location of WTRU 102. Additionally or alternatively to the information from the GPS chipset 136, the WTRU 102 may receive location information from a base station (e.g., base station 114a, 114b) via an empty intermediation plane 116, and/or based on two or more neighboring bases. The timing of the signals received by the station determines its position. It should be understood that the WTRU 102 may obtain location information using any suitable location determination method while remaining consistent with the implementation.
The processor 118 can also be coupled to other peripheral devices 138, which can include one or more software and/or hardware modules that provide additional features, functionality, and/or wireless or wired connections. For example, peripheral device 138 may include an accelerometer, an electronic compass (e-compass), a satellite transceiver, a digital camera (for photo or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, and a hands-free Headphones, Bluetooth R modules, FM radio units, digital music players, media players, video game player modules, Internet browsers, and more.
1C is a system diagram of RAN 104 and core network 106, in accordance with an embodiment. As described above, the RAN 104 can use E-UTRA radio technology to communicate with the WTRUs 102a, 102b, 102c via the null plane 116. The RAN 104 can also communicate with the core network 106.
The RAN 104 may include e base stations 140a, 140b, 140c, although it should be understood that the RAN 104 may include any number of eNodeBs while still being consistent with the embodiments. The eNodeBs 140a, 140b, 140c may each include one or more transceivers to communicate with the WTRUs 102a, 102b, 102c via the null plane 116. In an embodiment, the eNodeBs 140a, 140b, 140c may use MIMO technology. Thus, for example, eNodeB 140a may use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a.
Each of the eNodeBs 140a, 140b, 140c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, users in the uplink and/or downlink schedule. As shown in FIG. 1C, the eNodeBs 140a, 140b, 140c can communicate with each other via the X2 interface.
The core network 106 shown in FIG. 1C may include a mobility management gateway (MME) 142, a service gateway 144, and a packet data network (PDN) gateway 146. While each of the above elements is described as being part of the core network 106, it should be understood that any of these elements may be owned and/or operated by entities other than the core network operator.
The MME 142 may be connected to each of the eNodeBs 140a, 140b, 140c in the RAN 104 via the S1 interface and may act as a control node. For example, the MME 142 may be responsible for authenticating the users of the WTRUs 102a, 102b, 102c, bearer activation/deactivation, selecting a particular service gateway during the initial connection of the WTRUs 102a, 102b, 102c, and the like. The MME 142 may also provide control plane functionality for handover between the RAN 104 and a RAN (not shown) that uses other radio technologies (e.g., GSM or WCDMA).
Service gateway 144 may be connected to each of eNodeBs 140a, 140b, 140c in RAN 104 via an S1 interface. The service gateway 144 can typically route and forward user data packets to the WTRUs 102a, 102b, 102c, or route and forward user data packets from the WTRUs 102a, 102b, 102c. The service gateway 144 may also perform other functions, such as anchoring the user plane during inter-eNode B handover, triggering paging when the downlink data is available to the WTRUs 102a, 102b, 102c, managing and storing context for the WTRUs 102a, 102b, 102c and many more.
Service gateway 144 may also be coupled to PDN gateway 146, which may provide WTRUs 102a, 102b, 102c with access to a packet switched network (e.g., Internet 110) to facilitate WTRUs 102a, 102b. Communication between 102c and the IP-enabled device.
The core network 106 can facilitate communication with other networks. For example, core network 106 can provide WTRUs 102a, 102b, 102c with access to a circuit-switched network (e.g., PSTN 108) to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. For example, core network 106 may include, or may communicate with, an IP gateway (eg, an IP Multimedia Subsystem (IMS) server) that interfaces between core network 106 and PSTN 108. In addition, core network 106 can provide WTRUs 102a, 102b, 102c with access to network 112, which can include other wired or wireless networks that are owned and/or operated by other service providers.
The term station (STA) herein includes, but is not limited to, a WTRU, a User Equipment (UE), a mobile station, a fixed or mobile user unit, an AP, a pager, a mobile phone, a personal digital assistant (PDA). ), computer, mobile internet device (MID) or any other type of user device that can operate in a wireless environment. As referred to herein, the term access point (AP) includes, but is not limited to, a base station, a Node B, a website controller, or any other type of peripheral device capable of operating in a wireless environment.
Direct link (DL) communication enables devices to pass data to each other without using an AP. In IEEE 802.11n, a station (STA) with a Quality of Service (QoS) facility can enable DL communication by establishing a data transfer using Direct Link Setup (DLS), ie, transmitting the frame directly to another One STA. Figure 2 is a diagram depicting the flow of information for an example DLS program between two stations (STAs). Referring to FIG. 2, the first STA 202 that wants to establish a direct link with the second STA 204 transmits a request message 210a for the second STA 204 to the access point (AP) 206. The request message 210a may be a DLS request message. The AP 206 transmits a request message 210b to the second STA 204. The second STA 204 transmits a response message 220a to the AP 206 in response to the received request message 210b. The response message 220a may be a DLS response message. The AP 206 transmits a DLS response message 220b to the first STA 202. In this procedure, both the request and response messages pass through the AP non-transparently, i.e., the AP directly participates in and exchanges the DLS request and the response message between the first STA and the second STA, thereby completing the DLS procedure. After successful DLS, the two STAs can use a direct link for data transfer using any of the access mechanisms defined in the IEEE 802.11n standard. In addition, secure communication in the DLS can be secured by performing a PeerKey Handshake procedure.
The STA initiated or AP initiated DLS teardown procedure can be used to tear down the direct link established between the first STA and the second STA. In the STA-initiated teardown, the first STA may send the DLS teardown frame to the second STA via the AP. The DLS teardown frame passes through the AP non-transparently, that is, the AP directly participates in it and relays the DLS to remove the frame to the second STA. The STA can also maintain an inactive timer for each negotiated DL. If any STA does not receive a DLS response message to the DLS request message before the timeout event, the STA may initiate a DLS removal procedure.
In some instances, the STA cannot initiate a DLS teardown procedure, for example, the AP detects that either end of the DLS link (ie, one of the peer STAs) has reserved the Basic Service Set (BSS) without tearing down the DLS link. Thus, the AP can initiate a teardown procedure. In the AP initiated teardown procedure, the AP may remove one or more STAs from the BSS list and send a DLS teardown message to all peers of the removed STA.
The DLS in IEEE 802.11z is called Tunnel Direct Link Setup (TDLS). The TDLS is characterized by the use of a message frame encapsulated in the data frame so that the frame can be transparently transmitted via the AP, ie the AP is not directly involved. In TDLS, unlike DLS, the AP does not need DL awareness, and the AP does not have to support the same set of capabilities that will be used on the DL.
In TDLS, the discovery procedure is used to discover TDLS capable STAs in the same BSS. The TDLS Initiator STA, that is, the STA that initiates the direct link setup procedure, can send a TDLS Discovery Request frame to the Unicast Destination Address (DA) via the AP. The TDLS capable STA that receives the TDLS discovery request frame may send the TDLS discovery response frame to the requesting STA via the direct path.
Figure 3 is a diagram depicting the flow of information for an example TDLS procedure between two stations (STAs). Referring to FIG. 3, the first STA 302 intending to establish a direct link with the second STA 304 transmits a setup request message 310 for requesting the DLS to the second STA 304. The setup request message can be a TDLS setup request frame. The message can be transparently transmitted via the AP 306, ie the AP 306 simply relays the request message received from the first STA 302 to the second STA 304. The second STA 304 that has received the setup request message 310 transmits a setup response message 320 to the first STA 302 in response to the setup request message 310. The setup response message can be a TDLS setup response frame. Again, the message can be transmitted transparently via the AP 306, ie the AP 306 simply relays the setup response message 320 received from the second STA 304 to the first STA 302. The first STA 302 that has received the setup response message 320 can transmit an acknowledgement message 330 to the second STA 304 to indicate that the setup response frame was successfully received. The confirmation message 330 can be a TDLS setup confirmation frame. Note that if the STA is already securely enabled on the link with the AP, the TDLS Peer-to-Peer (TPK) handshake procedure can be performed during the TDLS setup procedure. After completing the TDLS, the first STA 302 and the second STA 304, which may also be referred to as peer STAs, may directly transmit data frames to each other.
In the TDLS teardown procedure, the TDLS peer STAs can send TDLS teardown frames to their respective TDLS peer STAs. In most instances, the TDLS teardown frame can be sent on the direct link. However, when the TDLS peer STA cannot reach via the TDLS direct link, the TDLS teardown frame can be sent via the AP.
The tunnel DL can operate on different channels from the AP. The channel on which the AP is operating may be referred to as the base channel. If the DL switches to a channel other than the base channel, this channel is called an off-channel. The TDLS peer STA can perform a channel switching procedure to switch from the base channel to the off-channel and vice versa.
TDLS also includes power saving mechanisms such as peer to peer power save mode (PSM) and peer unscheduled automatic power receive delivery (U-ASPD). The peer-to-peer PSM is based on a periodic scheduled service period and the peer-to-peer U-APSD is based on an unscheduled service period, which can be used between two STAs that have established a TDLS direct link.
A method for enabling direct link communication between multi-RAT devices that can aggregate two or more RATs by IP traffic between dynamically scheduled multi-RAT devices based on instant link quality from the RAT is described And equipment. The multi-RAT device may be an infrastructure device such as an access point (AP), a home node B (HNB), a home evolved node B (H(e)NB), and the like. The multi-RAT device may also be a client device, such as a station in a Wi-Fi (STA) and a wireless transmit/receive unit (WTRU) in a cellular system, and the like.
FIG. 4 is a diagram of an example multi-RAT device architecture 400. The example architecture of the multi-RAT device shown in FIG. 4 enables multi-RAT aggregation using an opportunistic multi-MAC aggregation (OMMA) layer. Referring to FIG. 4, an example apparatus can include a plurality of RAT modules 410a-n. Each RAT module 410a-n can be configured to operate on a particular band. For example, RAT module 410a may be an 802.11n PHY/MAC RAT operating on the 2.4 GHz ISM band, and RAT module 410b may be an 802.11af PHY/MAC operating on a 512 MHz-698 MHz TV white space (TVWS) band. The RAT, RAT module 410c may be a Long Term Evolution (LTE) RAT operating on a licensed 700 MHz band, and the RAT 410d may be a Bluetooth RAT operating on the 2.4 GHz ISM band, and the like. The apparatus can include a plurality of antenna/radio frequency (RF) front end pairs 420a-n corresponding to each of the RAT modules 410a-n. Each antenna/RF front end pair 420a-n can operate on a particular band, for example, the antenna/RF front end pair 420a can operate on a 2.4 GHz ISM band radio, and the antenna/RF front end pair 420b can operate in a low band radio and On the 512 MHz-698 MHz TVWS band for high-band radios, the antenna/RF front-end pair 420c can operate on LTE 700 MHz radios and more. The device can include an OMMA layer module 430 and an IP layer module 440. The OMMA layer module 430 is a common module between the IP layer module 440 and the plurality of RAT modules 410a-n. The OMMA layer module 430 is responsible for allocating IP packets to individual RATs.
Figure 5 is a diagram illustrating a wireless system 500 with multi-RAT capabilities. Referring to Figure 5, the wireless system can be comprised of a network terminal (NT) (e.g., AP 505), and a plurality of user terminals (UTs) (e.g., STAs 510, 515). Both NT (ie, AP 505) and UT (ie, STA 510, 515) have the capability to support one or more RATs (eg, K RATs), where all RATs can operate on different frequency bands. Some UT pairs (ie, STAs 510, 515) that are able to communicate with each other via a direct link may use one or more RATs that are common to them. The bands can be orthogonal and the signals on different bands can not interfere with each other. As shown in FIG. 5, the AP 505 is capable of operating on RAT 1 (506), RAT 2 (507), RAT 3 (508), and RAT 4 (509). STA 510 is also capable of operating on RAT 1 (506), RAT 2 (507) and thus can communicate with AP 505 via those RATs, as shown. The STA 515 is capable of operating on RAT 3 (508) and RAT 4 (509), and thus can communicate with the AP 505 via those RATs, as shown. If STA 510 and STA 515 are able to establish a direct link between them, the flow of packets arriving at STA 510 and assigned to STA 515 may be sent via one or more public RATs between them. STAs 510 and 515 have a common RAT 5 (511) and RAT 6 (512) between them, and thus can communicate via these RATs, as shown. However, STA 510 and STA 515 may not know each other's RAT capabilities to determine which RATs are common between them. Thus, in order for two multi-RAT devices to communicate directly with each other, RAT capability discovery is desirable.
RAT capability discovery can be done in different ways, for example, by autonomous discovery, infrastructure based discovery, or the like. In autonomous discovery, multi-RAT devices can autonomously discover each other and can share their device capabilities and operational parameters with each other before starting communication. In infrastructure-based discovery, multi-RAT devices can use their neighboring infrastructure devices (eg, APs) to assist in the initial handshake mechanism between multi-RAT devices and also use management messaging to support their periodicity and/or non- Periodic updates to help maintain direct links.
Multi-RAT devices may use a Common Multimedia Access Control (MAC) address for all RATs. Alternatively, the multi-RAT device may use a separate MAC address for each RAT. In either case, the AP can maintain a repository of RAT capabilities for all STAs associated with its MAC address. Table 1 is an example RAT capability database at the AP. Similarly, a STA may store the same information for its associated AP.


Table 1: RAT Capability Database at the AP
In order for a multi-RAT device to discover the DL capabilities and RAT capabilities of a peer to peer multi-RAT device, the multi-RAT device may initiate DL/RAT capability discovery. The basic procedure is shown in Figure 6.
Figure 6 is a streaming call of an example DL/RAT capability discovery procedure. Referring to FIG. 6, a DL Initiator STA 605, a DL Responder STA 610, and an AP 601 are shown. The AP 601 is common to the DL Initiator STA 605 and the DL Responder STA 610. The DL Initiator STA 605, that is, the STA that initiated the DLS procedure, wants to send a request message to a peer STA (ie, DL Responder STA 610) in the same BSS set to discover the DL capabilities and RAT capabilities of the Peer STA. The request message can be a DL discovery request frame. The TDLS (ie, using the TDLS Discovery Request frame) can be used to transmit this request message via the AP 601. The DL Initiator STA 605 may select a publicly-enabled RAT that is common to both the DL Initiator STA 605 and the AP 601, such as RAT 3 (S615). The DL Initiator STA 605 may transmit the request message to the AP using the selected Common Empowerment RAT (S620). If the public MAC address is used for all RATs, all of the address fields of the MAC layer frame in the request message (ie, the address field for the single RAT device) can be mapped to the public MAC address. If a separate MAC address is used for each RAT, the address field in the MAC layer frame can be formatted as shown in Figure 7.
Figure 7 is an example format of an address field in the MAC layer frame of the DL Discovery Request frame sent by the DL Initiator STA to the AP. Referring to FIG. 7, the address field in the MAC layer frame may be formatted to include an address field 705, which may be the MAC address of the AP of the selected public RAT between the AP and the DL initiator STA; Address field 710, which may be the MAC address of the DL Initiator STA of the selected public RAT between the AP and the DL Initiator STA; the address field 715, which may be the DL Initiator STA wants to make The MAC address of the DL responder STA for which the request of the specific DL responder is directed, or the broadcast address of the RAT; and the address field 720, which may be the MAC address of the DL initiator STA of the RAT, at the RAT It wants to make a request to the DL responding STA. It should be noted that alternative address fields can be used, and those described are only examples.
Figure 8 is an example TDLS discovery request frame format 800 sent by the DL Initiator STA to the AP. The TDLS discovery request frame format 800 can include various information elements 804 that can be ordered as indicated at 802. The example TDLS discovery request frame format 800 depicted in FIG. 8 may include the following information element fields: category, action, dialog beacon, and link identifier. Other information elements can also be used.
Figure 9 is an example TDLS link identifier element format 900 for a TDLS discovery request frame. The TDLS link identifier element format 900 can include an element ID field 902, a length field 904, a BSSID field 906, a DL initiator STA address field 908, and a DL responder STA address field 910. Other fields can also be used.
In the case of a multi-RAT STA, the BSSID field 906 and the DL initiator STA address field 908 may be modified. If the public MAC address is used for all RATs, the BSSID field 906 can be modified to include a single BSSID of the AP, and the DL Initiator STA address field 908 can be modified to include a single public MAC for the DL Initiator STA Address. If a separate MAC address is used for each RAT, the BSSID field 906 can be modified to include all BSSIDs for all RATs at the AP, and the DL Initiator STA address field 908 can be modified to be included in the DL All MAC addresses of all RATs at the initiator STA. Using the modifications described above for the TDLS Link Identifier Element Format 900, the DL Initiator STA can transmit information for the RAT in which it can communicate. The DL Initiator STA may transmit this information using a MAC address (ie, DL Initiator STA Address Field 908 in the Link Identifier Element) or by adding a new information element in the DL Discovery Request Frame Format 800. The DL Initiator STA can send this information in the format shown in Table 2.


Table 2 Example format for elements that send RAT information
Referring again to FIG. 6, in the case of a separate MAC address for all RATs, the AP 601 can store the address field 715 of the MAC layer frame of the DL discovery request frame as shown in FIG. The database of all RAT RAT capabilities (with MAC address) is matched to learn the DL responder STA 610. Note that the AP's database is populated with the MAC address of each device connected to it during each associated program of each device. After learning the DL responder STA 610, the AP 601 may select a publicly-enabled RAT with the DL responder STA 610, such as RAT 2, to forward the DL Discovery Request frame to the DL Responder STA 610 (S625). The AP 601 then forwards the DL Discovery Request frame to the DL Responder STA 610 using the selected RAT (S630). The address field of the MAC layer frame of the DL discovery request frame transmitted from the AP 601 to the DL responding STA 610 can be formatted as shown in FIG.
Figure 10 is an example format of an address field in the MAC layer frame of the DL Discovery Request frame sent by the AP to the DL Responder STA. Referring to FIG. 10, the address field in the MAC layer frame of the DL discovery request frame sent from the AP to the DL responding STA may be formatted to include the address field 1005, which may be selected for the AP. The MAC address of the DL responder STA of the selected public RAT; the address field 1010, which may be the MAC address of the AP of the selected public RAT between the AP and the DL responder STA; the address field 1015, It may be the MAC address of the DL Responder STA for which the DL Initiator STA wants to make a request for a particular DL Responder, or may be the broadcast address of the RAT; and the Address Field 1020, which may be a RAT The MAC address of the DL Initiator STA on which it wants to make a request to the DL Responder STA. It should be noted that alternative address fields can be used, and those described are only examples.
A DL-capable STA that receives a DL Discovery Request frame having a matching BSSID (at least one matching BSSID in the case of multiple BSSIDs) in the Link Identifier Element may directly send a DL Discovery Response frame to the requesting STA. Referring again to FIG. 6, the DL responder STA 610 can learn the RAT capabilities of the DL Initiator STA 605 via the DL Discovery Request frame. Thus, the DL responder STA 610 can select all public RATs, such as RAT 1, RAT 5, RAT 6 (S635), and on all common RATs (eg, RAT 1, RAT 5, RAT 6 (S640a-n)) The DL discovery response frame is sent directly to the DL initiator STA 605. TDLS can be used to send DL discovery response messages. Due to link quality or mobility, etc., some public RATs are not activated at that time, thereby transmitting on all public RATs can avoid loss of DL discovery response frames. On the other hand, the DL Initiator STA 605 may only consider the first DL discovery response frame and may discard all DL discovery response frames (if any) received from the DL Responder STA 610 on other RATs. The DL Responder STA 610 may use the MAC address of the RAT (Public MAC Address or Separate MAC Address), which sends the frame on the RAT, by the DL Initiator STA 605 and its own MAC address in the frame Used in. If there is no RAT common to the DL responder STA 610 and the DL initiator STA 605, the DL discovery response frame is not transmitted.
Figure 11 is an example TDLS discovery response frame format 1100. The TDLS discovery response frame format 1100 can include various information elements 1104 that can be ordered as indicated at 1102. The example TDLS discovery response frame format 1100 can include the following information element fields: category, action, dialog beacon, capability, supported rate, extended supported rate, supported channel, robust secure network information element (RSNIE) Extended capabilities, fast BSS conversion information elements (FTIE), timeout intervals, supported regulation levels, high throughput (HT) capabilities, 20/40 BSS coexistence, and link identifiers. Other information elements can also be used.
In the case of a multi-RAT STA, the following fields can be modified. These fields can be designed for all RATs (ie, the maximum RAT capability of the DL Responder STA), rather than just for a single RAT as in the case of TDLS.
Supported Rates: In the case of multi-RAT STAs, this element can be modified to indicate the rate supported by the STAs on each RAT.
Extended Extended Supported Rate: In the case of multi-RAT STAs, this element is present for the RAT whenever there are more than eight supported rates on the RAT, and it may be additionally optional.
Supported Channels: In the case of multi-RAT STAs, this element can be modified to include a list of channel sub-bands, where multi-RAT STAs can operate for each RAT.
• Supported adjustment levels: In the case of multi-RAT STAs, this element can be modified to include information for each RAT.
Security parameters (ie RSNIE, FTIE, time-out interval in TDLS case): in the case of multi-RAT STAs, each element related to security parameters (eg RSNIE, FTIE, timeout interval in IEEE 802.11 case) It can be modified to include the corresponding parameters for each RAT.
• Capabilities (such as HT capabilities in TDLS cases, extended capabilities, etc.): In the case of multi-RAT STAs, each capability element can be modified to include corresponding parameters for each RAT.
Link Identifier: In the case of a multi-RAT STA, the following fields of the link identifier element can be modified.
○ BSSID: This field can be modified to include a single BSSID of the AP in the case of a public MAC address, or all BSSIDs of all RATs at the AP in the case of a separate MAC address for each RAT.
○ DL Initiator STA Address: This field can be modified to include a single public MAC address of the DL Initiator in the case of a public MAC address, or a DL Responder in the case of a separate MAC address for each RAT. All MAC addresses of all RATs at the location.
Table 3, described below, is an exemplary view of the format that the DL Initiator STA can use to transmit all of the above modified elements to the DL Responder STA.



Table 3 format for transmitting information for multi-RAT devices
In Table 3, RAT 1, RAT 2, ... RAT N may be a list of IDs of all RATs supported by the DL Initiator STA. With the above modification, the DL initiator STA can also send information of the RAT, and the DL initiator STA can communicate at the RAT. It can send this information in the same way as discussed for the DL Discovery Request frame. Thus, after completing the DL discovery process, the DL Initiator STA and the DL Responder STA can know each other's RAT capabilities (with MAC address). As described above, each STA that knows the RAT capabilities of any other STA can store this information in its RAT capability database in a manner similar to that shown in Table 1.
A method for establishing a DL between two multi-RAT OMMA devices will now be described. Figure 12 is a streaming call of the basic example DL program. Referring to FIG. 12, a DL Initiator STA 1205, a DL Responder STA 1210, and an AP 1201 are shown. The AP 1201 is common to the DL Initiator STA 1205 and the DL Responder STA 1210. In order to establish the DL, the initiating multi-RAT device (i.e., DL Initiator STA 1205) may send a setup request message to the intended peer multi-RAT OMMA device, DL Responder STA 1210. The setup request message may be a DL setup request frame. This setup request message can also be transmitted via the AP 1201 using TDLS (ie, using the TDLS Setup Request frame). If the DL discovery procedure has been completed between the DL Initiator STA 1205 and the DL Responder STA 1210 (ie, the DL Initiator STA 1205 has received the DL Discovery Response frame), the DL Initiator STA 1205 may select the DL Responder STA One of the public RATs of 1210, and uses the MAC address of the public RAT in the request frame of the DL as shown in FIG. If the DL discovery procedure is not performed or completed between the DL Initiator STA 1205 and the DL Responder STA, the DL Initiator STA may still send a DL Setup Request to the DL Responder STA. The MAC addressing can be done in a similar manner to the DL discovery request described in FIG.
Referring to FIG. 12, the DL Initiator STA 1205 may select a publicly enabled RAT with the AP 1201, such as RAT 3 (S1215). The DL Initiator STA 1205 transmits a DL Setup Request frame to the AP 1201 on the selected RAT (S1220). The DL Initiator STA 1205 and AP 1201 may dynamically update the Common Empowered RAT between them. In the case of a public MAC address for all RATs, all address fields in the MAC layer frame of the DL Setup Request frame can be mapped to a public MAC address. In the case of a separate MAC address for each RAT, the address field in the MAC layer frame can be formatted as shown in FIG.
Figure 13 is an exemplary format of an address field in the MAC layer frame of the DL Setup Request frame sent by the DL Initiator STA to the AP. Referring to Figure 13, the address field in the MAC layer frame may be formatted to include an address field 1305, which may be the MAC address of the AP for the selected public RAT selected by the DL Initiator STA; Address field 1310, which may be the MAC address of the DL Initiator STA of the selected public RAT between the AP and the DL Initiator STA; the address field 1315, which may be for the selection selected by the DL Initiator STA The MAC address of the DL Responder STA of the public RAT; and the Address Field 1320, which may be the MAC address of the DL Initiator STA of the selected public RAT with the DL Responder STA. It should be noted that alternative address fields can be used, and those described are only examples.
Figure 14 is an example TDLS setup request frame format 1400 that is sent by the DL Initiator STA to the AP. The TDLS setup request frame format 1400 can include various information elements 1404 that can be ordered as indicated at 1402. The example TDLS setup request frame format 1400 depicted in FIG. 14 includes the following information element fields: category, action, dialog message, capability, supported rate, country, extended supported rate, supported channel, RSNIE, Extended capabilities, Quality of Service (QoS) capabilities, FTIE, timeout interval, supported adjustment levels, HT capabilities, 20/40 BSS coexistence, and link identifiers. Other information elements can also be used.
In the case of a multi-RAT STA, the following fields can be modified.
Supported Rates: In the case of multi-RAT STAs, this element can be modified to indicate the rate supported by the STAs on each RAT.
Extended Extended Supported Rate: In the case of multi-RAT STAs, this element is present for the RAT whenever there are more than eight supported rates on the RAT, and it may be additionally optional.
Supported Channels: In the case of multi-RAT STAs, this element can be modified to include a list of channel sub-bands, where multi-RAT STAs can operate for each RAT.
QoS capability: In the case of multi-RAT STAs, QoS capability information should be sent for each RAT.
• Supported adjustment levels: In the case of multi-RAT STAs, this element can be modified to include information for each RAT.
Security parameters (ie RSNIE, FTIE, time-out interval in TDLS case): in the case of multi-RAT STAs, each element related to security parameters (eg RSNIE, FTIE, timeout interval in IEEE 802.11 case) It can be modified to include the corresponding parameters for each RAT.
• Capabilities (such as HT capabilities in TDLS cases, extended capabilities, etc.): In the case of multi-RAT STAs, each capability element can be modified to include corresponding parameters for each RAT.
Link Identifier: In the case of a multi-RAT STA, the following fields of the link identifier element can be modified.
○ BSSID: This field can be modified to include a single BSSID of the AP in the case of a public MAC address, or all BSSIDs of all RATs at the AP in the case of a separate MAC address for each RAT.
○ DL Initiator STA Address: This field can be modified to include a single public MAC address of the DL Initiator in the case of a public MAC address, or a DL Responder in the case of a separate MAC address for each RAT. All MAC addresses of all RATs at the location.
The DL Initiator STA may also send information for the RAT that the DL Initiator STA is capable of communicating on. It can send this information in the same manner as described above for the DL Discovery Request frame.
Referring again to FIG. 12, in the case of a separate MAC address for all RATs, the AP 1201 can address the address field 1315 of the MAC layer frame of the DL setting request frame as shown in FIG. The DL Initiator STA 1205 receives the DL Responder STA 1210 as it matches the database that stores the RAT capabilities (with MAC address) for all RATs. After learning the DL responder STA 1210, the AP 1201 may select a publicly-enabled RAT with the DL responder STA 1210, such as RAT 2 (S1225). The AP 1201 may forward the DL setting request frame to the DL responding STA 1210 using the publicly-enabled RAT (S1230). The address field of the MAC layer frame of the DL setting request frame (sent from the AP 1201 to the DL responding STA 1210) can be formatted as shown in FIG.
Figure 15 is an exemplary format of an address field in the MAC layer frame of the DL Setup Request frame sent by the AP to the DL Responder STA. Referring to Figure 15, the address field in the MAC layer frame may be formatted to include an address field 1505, which may be the MAC address of the DL responder STA for the selected public RAT selected by the AP; Address field 1510, which is the MAC address of the AP of the selected public RAT between the AP and the DL responder STA; the address field 1515, which may be the "address 3" of the request received from the DL initiator STA A field; and an address field 1520, which may be the "Address 4" field of the request received from the DL Initiator STA. It should be noted that alternative address fields can be used, and those described are only examples.
Referring again to FIG. 12, in response to receiving the DL setup request message by the DL responder STA 1210, the setup response message can be sent from the DL responder STA 1210 to the DL initiator STA 1205. The setup message can be a DL setup response frame that can be transmitted via the AP 1201 using TDLS. The DL responder STA 1210 may select a publicly enabled RAT with the AP 1201, such as RAT 2, to transmit a DL setup response frame on the RAT (S1235). The DL responder STA 1210 may transmit a DL setup response frame to the AP 1201 using the publicly-enabled RAT (S1240). The address field in the MAC layer frame of the DL setting response frame can be formatted as shown in Figure 16.
Figure 16 is an example format of the address field in the MAC layer frame of the DL setup response frame sent by the DL responding STA to the AP. Referring to Figure 16, the address field in the MAC layer frame may be formatted to include an address field 1605, which may be the MAC address of the AP for the selected public RAT selected by the DL responder STA; Address field 1610, which may be the MAC address of the DL Responder STA for the public RAT selected with the AP; the address field 1615, which may be the "Address 4" field of the DL Setup Request; and the address Field 1620, which may be the "Address 3" field of the DL Setup Request. As described, in the MAC layer frame, the "Address 3" and "Address 4" fields can be copied from the "Address 4" and "Address 3" fields of the received DL setup request, respectively. . It should be noted that alternative address fields can be used, and those described are only examples.
Figure 17 is an example TDLS setup response frame format 1700 sent by the DL Responder STA to the AP. The TDLS setup response frame format 1700 can include various information elements 1704 that can be ordered as indicated at 1702. The example TDLS setup response frame format 1700 depicted in FIG. 17 may include the following information element fields: category, action, status code, dialog beacon, capability, supported rate, country, extended supported rate, supported Channel, RSNIE, extended capability, QoS capability, FTIE, time-out interval IE, supported adjustment level, HT capability, 20/40 BSS coexistence, link identifier. Other information elements can also be used.
In the case of multi-RAT STAs, the following fields can be modified.
• Status Code: In TDLS, five options (ie status codes '0', '37', etc.) are listed for the TDLS Responder STA to make a response. In the case of a multi-RAT STA, all of those options can be utilized for the DL responder to remain the same with the following modifications in option 2 (section 11.21.4 in IEEE 802.11z).
o The DL Responder STA may reject the DL Setup Request frame, in which case the DL Responder STA may respond with a DL Setup Responsive Frame with status code 37 ("Request has been rejected"). When any of the received link identifier elements does not match any of the BSSIDs of the DL responder STA, the DL responder STA does not find any public RAT with the DL initiator, then the DL setup request may be rejected.
Supported Rates: In the case of multi-RAT STAs, this element can be modified to indicate the rate supported by the STAs on each RAT.
Extended Extended Supported Rate: In the case of multi-RAT STAs, this element is present for the RAT whenever there are more than eight supported rates on the RAT, and it may be additionally optional.
Supported Channels: In the case of multi-RAT STAs, this element can be modified to include a list of channel sub-bands, where multi-RAT STAs can operate for each RAT.
QoS capability: In the case of multi-RAT STAs, QoS capability information should be sent for each RAT.
• Supported adjustment levels: In the case of multi-RAT STAs, this element can be modified to include information for each RAT.
Security parameters (ie RSNIE, FTIE, time-out interval in TDLS case): in the case of multi-RAT STAs, each element related to security parameters (eg RSNIE, FTIE, timeout interval in IEEE 802.11 case) It can be modified to include the corresponding parameters for each RAT.
• Capabilities (such as HT capabilities in TDLS cases, extended capabilities, etc.): In the case of multi-RAT STAs, each capability element can be modified to include corresponding parameters for each RAT.
Link Identifier: In the case of a multi-RAT STA, the following fields of the link identifier element can be modified.
○ BSSID: This field can be modified to include a single BSSID of the AP in the case of a public MAC address, or all BSSIDs of all RATs at the AP in the case of a separate MAC address for each RAT.
o DL Initiator STA Address: This field can be modified to include a single public MAC address of the DL Initiator in the case of a public MAC address or a DL Responder in the case of a separate MAC address for each RAT All MAC addresses of all RATs.
The DL Responder STA can also send information about the RAT in which it can communicate. It can send this information in the same manner as described above for the DL Discovery Request frame.
Referring again to FIG. 12, in the case of a separate MAC address for all RATs, the AP 1201 may receive the address field 1615 of the MAC layer frame as shown in FIG. 16 (received from the DL responder STA 1210) The DL Initiator STA 1205 is known with a database match that can store RAT capabilities (with MAC addresses) for all RATs. After learning the DL Initiator STA 1205, the AP 1201 may select a publicly-enabled RAT with the DL Initiator STA 1205, such as RAT3 (S1245). The AP 1201 may forward the DL setup response frame to the DL Initiator STA 1205 using the Common Empowered RAT (S1250). The address field in the MAC layer frame of the DL setup response frame (from the AP to the DL initiator) can be formatted as shown in Figure 18.
Figure 18 is an example format of the address field in the MAC layer frame of the DL setup response frame sent by the AP to the DL Initiator STA. Referring to FIG. 18, the address field in the MAC layer frame of the DL setting response frame sent by the AP to the DL initiator STA may be formatted to include the address field 1805, which may be for the AP selected. MAC address of the DL Initiator STA of the selected public RAT; address field 1810, which may be the MAC address of the AP for the selected public RAT with the DL Initiator STA; address field 1815, which may be The "Address 3" field of the response received from the DL Responder STA; and the Address Field 1820, which may be the "Address 4" field of the response received from the DL Responder STA. It should be noted that alternative address fields can be used, and those described are only examples.
If the DL Initiator STA receives a DL setup response with a status code of zero, and before the timeout (if a response is defined for the DL setup) occurs, the DL Initiator STA may send a DL Setup Confirmation Frame to the DL Responder STA. This message can be transmitted via the AP. Referring again to FIG. 12, the DL Initiator STA 1205 may select a publicly enabled RAT with the AP 1201, such as RAT 3 (S1255). The DL Initiator STA 1205 may transmit the DL Setup Confirmation frame to the AP 1201 using the selected Common Empowerment RAT (S1260). The address field in the MAC layer frame of the DL setting confirmation frame can be formatted as shown in Fig. 19.
Figure 19 is an exemplary format of an address field in the MAC layer frame of the DL setup confirmation frame sent by the DL Initiator STA to the AP. Referring to FIG. 19, the address field in the MAC layer frame of the DL setting confirmation frame sent by the DL initiator STA to the AP may be formatted to include the address field 1905, which may be for the DL initiator. The MAC address of the AP of the selected public RAT selected by the STA; the address field 1910, which may be the MAC address of the DL Initiator STA for the selected public RAT with the AP; the address field 1915, which may be The DL sets the "Address 4" field of the MAC layer frame of the response frame; and the address field 1920, which may be the "Address 3" field of the MAC layer frame of the DL setting response. As described, in the MAC layer frame, the "Address 3" and "Address 4" fields can be copied from the "Address 4" and "Address 3" fields of the received DL setup response, respectively. It should be noted that alternative address fields can be used, and those described are only examples.
Figure 20 is an example TDLS setup confirmation frame format 2000. The TDLS Setup Confirmation Frame Format 2000 can include various information elements 2004 that can be ordered as indicated at 2002. The example TDLS setup confirmation frame format 2000 depicted in FIG. 20 may include the following information element fields: category, action, status code, dialog beacon, RSNIE, EDCA parameter set, FTIE, time interval interval IE, HT operation, and chain Road identifier. Other information elements can also be used.
For multi-RAT devices, modifications in a subset of information elements can be made, similar to those made for DL setup requests. In the case of multi-RAT, the security parameters of the DL setup acknowledgement frame (ie, RSNIE, FTIE, and time-out interval IE), EDCA parameter set, and HT operation field may be included between the DL Initiator STA and the DL Responder STA Information of all public RATs (after obtaining a successful DL setup response frame from the DL Responder STA, the DL Initiator STA can know its public RAT capability with the DL Responder STA). In the link identifier, the following fields can be modified.
BSSID: This field may contain a single BSSID of the AP in the case of a public MAC address, or all BSSIDs of all RATs at the AP in the case of a separate MAC address for each RAT.
DL Initiator STA Address: This field may contain a single public MAC address of the DL Initiator in the case of a public MAC address, or a DL Initiator and Responder in the case of a separate MAC address for each RAT. All MAC addresses between the public RATs.
Referring again to FIG. 12, in the case of a separate MAC address for all RATs, the AP 1201 can set the address field 1915 of the MAC layer frame of the acknowledgment frame as shown in FIG. The DL Initiator STA 1205 receives the DL Responder STA 1210 as it can store a database match for the RAT capabilities (with MAC address) for all RATs. After learning the DL responder STA 1210, the AP 1201 may select a publicly-enabled RAT with the DL responder STA 1210, such as RAT 2 (S1265). The AP 1201 may forward the DL setting confirmation frame to the DL responder STA 1270 using the selected common enabled RAT (S1270). The address field in the MAC layer frame of the DL setting confirmation frame (from the AP to the DL responding STA) can be formatted as shown in FIG.
Figure 21 is an example format of the address field of the MAC layer frame of the DL setting confirmation frame sent by the AP to the DL responding STA. Referring to FIG. 21, the address field in the MAC layer frame of the DL setting confirmation frame sent by the AP to the DL responding STA may be formatted to include the address field 2105, which may be selected for the AP. MAC address of the selected DL responsive party STA; address field 2110, which may be the MAC address of the AP for the public RAT of the selection with the DL responder STA; address field 2115, which may be The "Address 3" field of the confirmation frame received from the DL Initiator; and the Address Field 2120, which may be the "Address 4" field of the confirmation frame received from the DL Initiator. It should be noted that alternative address fields can be used, and those described are only examples.
A method for tearing down a direct link between two multi-RAT OMMA devices will now be described. The DL peer STA (ie, the DL Initiator STA or the DL Responder STA) may send a DL teardown frame to the intended DL peer STA to tear down the direct link. The DL removal frame can be a TDLS removal frame. There may be multiple ways to send this frame, for example via a direct path or via an AP.
Figure 22 is a call flow of an example teardown procedure on a direct path. When the intended DL peer STA is reachable via the DL link, the DL teardown frame can be sent via the direct path. Referring to Fig. 22, the teardown initiator STA 2205 and the teardown responder STA 2210 are shown. The teardown initiator STA 2205 may select a public RAT, such as RAT 4 (S2220), with the intended DL peer STA (ie, tear down the responder STA 2210). The teardown initiator STA 2205 may send a DL teardown request frame to the teardown responder STA 2210 on the selected public RAT (S2225). In response to receiving the DL teardown request frame, the teardown responder 2210 will send a DL teardown response frame to the teardown initiator STA 2205 (S2230).
Figure 23 is a call flow of an example teardown procedure via the AP. Referring to FIG. 23, the teardown initiator STA 2305, the teardown responder STA 2310, and the AP 2301 common to the teardown initiator STA 2305 and the teardown responder STA 2310 are shown. The teardown initiator STA 2305 may select a public RAT, such as RAT 4 (S2320), with the intended DL peer STA (ie, tear down the responder STA 2310). The teardown initiator STA 2305 may send a DL teardown request frame to the teardown responder STA 2310 on the selected public RAT (S2325). In response to receiving the DL teardown request frame, the teardown responder STA 2310 may send a DL teardown response frame to the teardown initiator STA 2305 (S2330). If the DL teardown response frame is not received within the timeout period (S2335), the DL teardown frame may be sent via the AP 2301. The teardown initiator STA 2305 can select a public RAT with the AP, such as RAT 1 (S2340). The teardown initiator STA 2305 may send the DL teardown request frame to the AP 2301 using the selected public RAT (S2345). The teardown initiator STA may use the MAC address of the public RAT in the DL teardown frame as shown in Fig. 24, which will be described in more detail below. The AP 2301 can select and tear down the public RAT of the responding STA 2310, such as RAT 3 (S2350). The AP 2301 may transmit the DL teardown request frame to the teardown responder STA 2310 using the selected RAT (S2355). In response, the teardown responder STA 2310 can use the same public RAT to send a DL teardown response frame to the AP 2301 (S2360). The AP 2301 may forward the DL teardown response frame to the teardown initiator STA 2305 on the RAT common to the AP 2301 and the teardown initiator STA 2305 (S2365). In response, the teardown initiator STA 2305 can use the same public RAT to send a DL teardown confirmation frame to the AP 2301 (S2370). The AP 2301 may forward the DL teardown confirmation frame to the teardown responder STA 2310 using the RAT common to the AP 2301 and the teardown responder STA 2310 (S2375). In the case of a common MAC address for all RATs, all address fields in the MAC layer frame of the message can be mapped to the device's public MAC address. In the case of a separate MAC address for each RAT, the address field in the MAC layer frame can be formatted as shown in FIG.
Figure 24 is an example format of the address field in the MAC layer frame of the DL teardown frame sent by the teardown initiator STA to the AP. Referring to Figure 24, the address field in the MAC layer frame can be formatted to include an address field 2405, which can be the MAC address of the AP for the selected public RAT selected by the teardown initiator STA; Address field 2410, which may be the MAC address of the teardown initiator STA for the public RAT with the selection of the AP; the address field 2415, which may be the expected for the selected public RAT selected by the teardown initiator STA The MAC address of the DL peer STA; and the address field 2420, which may be the MAC address of the teardown initiator STA for the public RAT with the selection of the intended DL peer STA. It should be noted that alternative address fields can be used, and those described are only examples.
In the case of a separate MAC address for all RATs, the AP may pass the address field 2415 (received from the teardown initiator STA) of the MAC layer frame of the DL teardown frame as shown in FIG. A database match for RAT capabilities (with MAC address) for all RATs is stored to learn the expected DL peer STAs. After learning the expected DL peer STA, it can select the publicly-enabled RAT with the intended DL peer STA to forward the DL teardown frame to the intended DL peer STA. The address field in the MAC layer frame (from the AP to the DL responding STA) can be formatted as shown in Figure 25.
Figure 25 is an example format of the address field in the MAC layer frame of the DL teardown frame sent by the AP to the DL teardown responder STA. Referring to Figure 25, the address field in the MAC layer frame can be formatted to include an address field 2505, which can be the MAC address of the intended DL peer STA for the selected public RAT selected by the AP. Address field 2510, which may be the MAC address of the AP for the public RAT selected with the intended DL peer STA; the address field 2515, which may be the acknowledgement frame received from the teardown initiator STA The "Address 3"field; and the Address field 2520, which may be the "Address 4" field of the confirmation frame received from the Demolition Initiator STA. It should be noted that alternative address fields can be used, and those described are only examples.
Figure 26 is an example TDLS removal frame format 2600. The TDLS teardown frame format 2600 includes various information elements 2604 that can be ordered as indicated at 2602. The example TDLS teardown frame format 2600 depicted in FIG. 26 may include the following information element fields: category, action, reason code, FTIE, and link identifier. Other information elements can also be used.
For multi-RAT devices, the following modifications can be made in a subset of the above fields:
Security related parameters (ie FTIE in TDLS): Information related to any security parameters can be sent for each RAT.
● Link identifier: In the link identifier, the following fields can be modified:
○ BSSID: This field may contain a single BSSID of the AP in the case of a public MAC address, or all BSSIDs of all RATs at the AP in the case of a separate MAC address for each RAT.
○ DL Initiator STA Address: This field may contain the removal of the initiator's single public MAC address in the case of a public MAC address, or the removal of the initiator and the expected in the case of a separate MAC address for each RAT. All MAC addresses of the public RAT between the DL peer STAs.
A method for RAT availability management will be described below. Each DL STA pair can establish a DL by signaling its maximum matching RAT capability at this time. Thus the DL STA pair can know the public maximum RAT capability between them when the DL is set. However, the list of RAT availability for DL STA pairs varies over time based on several factors (eg, mobility, link quality fluctuations, etc.). Thus, there may be a need for dynamic management of RAT availability for DL STA pairs, where both DL peer STAs know each other's RAT availability.
Figure 27 is an example call flow for RAT availability update management. Referring to Figure 27, a first DL peer STA 2705 and a second DL peer STA 2710 are shown. In the example provided in FIG. 27, the DL peer STA 2710 is a DL initiator STA, and the DL peer STA 2705 is a DL responder STA. Each DL peer STA includes an OMMA controller (ie, a RAT update management module), an OMMA scheduler (ie, a RAT update sender), a STA RAT capability database, and a RAT 1-N. It should be noted that the OMMA scheduler for the DL peer STA 2710 is not shown in Figure 27 for simplicity of illustration. The DL Peer STA 2710 periodically or aperiodically transmits the probe/training signals on all common RATs (ie, the public maximum RAT capabilities) to the DL Peer STA 2705 (S2720a-n). At the DL Peer STA 2710, each RAT listening for the probe/training signal may inform or update the OMMA controller (ie, the RAT Update Management Module) (S2725a-n) regarding the RAT availability. This update or notification can be implemented via the signal RAT_Capablities_A3 (RAT_Capability_A3) on the A3 interface. The OMMA controller of the DL peer STA 2705 updates this information of the RAT capability in the STA RAT capability database of the DL peer STA 2705 (S2730). This update can be implemented via the STA_RAT_Capability_Update_A1 (STA_RAT_Capability_Update_A1) signal on the A1 interface. The OMMA scheduler of the DL peer STA 2705 (ie, the RAT update sender) may query the STA RAT capability database for the DL peer STA 2705 for the RAT availability list of the DL peer STA 2710 (S2735). This query may be a STA_RAT_Capability_Query_A4 (STA_RAT_Capability_Query_A4) signal via the A4 interface. The STA RAT capability database of the DL peer STA 2405 may send a response to the query indicating the RAT availability of the DL peer STA 2710 (S2740). The OMMA scheduler of the DL peer STA 2705 selects a publicly available RAT, such as RAT2 (S2745). The OMMA scheduler of the DL peer STA 2705 generates a STA_RAT_Availability (STA_RAT_Availability) message that may include the following parameters:

● Source STA_Addr: self address;
● Destination STA_Addr: the address of the DL initiator to which this information needs to be sent;
RAT_Ids: List of Ids of all RATs available [RAT_1, RAT_2 .....].
The OMMA scheduler of the DL peer STA 2705 transmits the STA_RAT_Availability message to the DL peer STA 2710 (S2755) using the selected public available RAT (S2750). At DL Peer STA 2710, a STA_RAT_Availability message is received at the selected available RAT. The selected public RAT notifies the RAT capability of the DL peer STA 2705 to the OMMA controller of the DL peer STA 2710 (S2760). This can be done via the RAT_Capablities_A3 signal on the A3 interface. The OMMA controller of the DL peer STA 2710 may update the RAT availability information in the STA RAT capability database for the DL peer STA 2705 (S2765). This can be achieved via STA_RAT_Capability_Update_A1 on the A1 interface. In this method, the RAT availability information for any DL STA pair can be updated. The above procedure can be executed periodically (S2770).
Sometimes in multi-RAT devices, the packet error rate on some RATs becomes too high for various reasons. In this case, the receiver that obtains a high error packet on the RAT set can inform the transmitter not to select a particular set of RATs to transmit to the receiver. Thus, dynamic RAT switching for DL STAs is required.
Figure 28 is an example call flow for dynamic RAT handover. Referring to Figure 28, a first DL peer STA 2805 and a second DL peer STA 2810 are shown. In the example provided in FIG. 28, the DL peer STA 2805 is a transmitting DL STA and the DL peer STA 2810 is a receiving DL STA. Each DL peer STA includes an OMMA controller (ie, a RAT update management module), an OMMA scheduler (ie, a RAT update sender), a STA RAT capability database, and RATs 1-3. The number of RATs shown in Figure 28 is for illustrative purposes only and is not intended to be limiting. A DL peer STA can include any number of RATs. Moreover, for simplicity purposes, the OMMA scheduler for the DL peer STA 2810 is not shown in FIG. As shown in Fig. 28, the DL peer STA 2810 receives the material communication on the RAT 1-3 (S2815a-c). The DL peer STA 2810 continuously receives the high packet error rate on the RAT 2 (S2820). It should be noted that the DL peer STA 2810 may continuously receive a high packet error rate on another RAT or RAT set. The OMMA scheduler of the DL peer STA 2810 queries the STA RAT availability database (the erroneous packet transmitter) for the DL peer 2810 of the RAT availability list for the DL peer STA 2805 (S2825). This can be achieved via the STA_RAT_Capability_Query_A4 (STA_RAT_Capability_Query_A4) signal on the A4 interface. The STA RAT availability database of the DL peer STA 2810 sends a response to the request, providing a list of RAT availability for the DL peer STA 2805 (S2830). This can be achieved via the STA_RAT_Capability_Response_A4 (STA_RAT_Capability_Response_A4) signal on the A4 interface. The DL Peer STA 2810 may remove these RATs from the list where it becomes a high packet error rate (e.g., a packet error rate above a predetermined value) on the RAT. The OMMA scheduler of the DL peer STA 2810 selects a publicly available RAT, such as RAT 1 (S2835). The selected publicly available RAT (e.g., RAT 1) will not be the RAT that the DL peer STA continuously receives the high packet error rate. The OMMA scheduler of the DL peer STA 2810 generates a STA_RAT_Availability message that is sent to the DL peer STA 2805. The STA_RAT_Availability message may include the following parameters:
Source STA_Addr: the address of the DL peer STA that sent this message;
Destination STA_Addr: the address of the DL peer STA to which it needs to be sent;
RAT_Ids: Id list [RAT_1, RAT_2 ...] of all RATs available and not receiving high packet error rate.
The OMMA scheduler of the DL peer STA 2810 transmits the STA_RAT_Availability message to the DL peer STA 2805 (S2845) using the selected publicly available RAT (S2840). At the DL Peer STA 2805 side, the RAT receiving the STA_RAT_Availability message may notify the OMMA controller of the DL Peer STA 2805 (S2850). This can be done via the RAT_Capablities_A3 signal on the A3 interface. The OMMA controller of the DL peer STA 2805 may update the RAT availability information in the STA RAT capability database for the DL peer STA 2805 of the STA (S2855). This can be achieved via the STA_RAT_Capability_Update_A1 signal on the A1 interface. Thus, the DL Peer STA 2805 is unable to transmit to the DL Peer STA 2810 using these high packet error RATs before any new updates are obtained in the STA RAT Capability Library for the DL STA Receiver. The DL Peer STA 2805 can then send the material communication to the DL Peer STA 2810 (S2860a-b) on the available RATs (ie, RAT1 and RAT3).
The DL peer STAs may know each other's OMMA mode (eg, transparent or non-transparent), for example, the DL receiver may know that a DL transmitter is being used to send IP flows to it using multiple RATs, whereby it may aggregate during reception All of these packets. Thus, a DL peer STA can transmit its OMMA mode of operation to another DL peer STA if needed. In the case of a newly associated DL peer STA, the DL Initiator STA may send its OMMA mode to the DL Responder STA during the DL setup procedure in the DL Setup Confirmation frame. Alternatively, the DL Initiator STA may send its OMMA mode using a new signal containing the mode. The DL Initiator STA can send its OMMA mode before any data communication begins.
Figure 29 is a diagram showing the call flow of the OMMA mode transfer program. Referring to Figure 29, a first DL peer STA 2905 and a second DL peer STA 2910 are shown. In the example provided in FIG. 29, DL Peer STA 2905 is a DL Responder STA and DL Peer STA 2910 is a DL Initiator STA. Each DL peer STA includes an OMMA controller, an OMMA scheduler, a STA RAT capability database, and a RAT 1-N. For illustrative purposes, the STA 2905 STA's DL Responder RAT Capability Library is not shown. Furthermore, only the selected RAT is described for each DL peer STA. As indicated above, each DL peer STA has one or more available RATs. Referring to Fig. 29, the OMMA controller of the DL initiator STA 2910 selects the OMMA mode in which it operates (S2915). The OMMA controller of the DL Initiator STA 2910 passes its mode decision to the OMMA Scheduler of the DL Initiator STA 2910 (S2920). This can be done via the OMMA_Mode_Decision_A9 (OMMA_Mode_Decision_A9) signal on the A9 interface. The OMMA controller of the DL Initiator STA 2910 may query the STA RAT Capability Library of the DL Initiator STA 2910 to obtain the available RAT for the DL Responder STA 2905 (S2925). This can be done using the A1 interface via the STA_RAT_Capability_Query_A1 signal. The STA RAT availability database of the DL Initiator STA 2910 may send a response to the request to provide a list of RAT availability for the DL Responder STA 2905 (S2930). The OMMA controller of the DL Initiator STA 2910 may select any of the available RATs on the RAT availability list (S2935). The OMMA controller of the DL Initiator STA 2910 sends the OMMA mode to the selected RAT (S2940). This can be done using the A3 interface via the Mode_to_RAT_A3 (mode_to__RAT_A3) signal. The selected RAT transmits a new signal including the OMMA mode decision to the DL responder STA 2905 (S2945). New signals containing this mode can be sent over the air. It can have the following parameters:
Source STA address: the address of the DL peer STA that generated the message;
• destination STA address: the address of the DL peer STA to which it needs to be sent;
● Mode: Mode information.
At the DL responder STA 2905, the mode information received in the signal containing the mode from the DL initiator STA 2910 may be transmitted to the OMMA controller of the DL responder STA 2905 (S2950). This can be done via Mode_to_Controller_A3 (Mode_to_Controller_A3) using the A3 interface. The OMMA controller of the DL responder STA 2905 may send a signal to the OMMA scheduler of the DL responder STA 2605 operating for this mode (S2955). Furthermore, whenever any peer STA (DL Initiator STA or DL Responder STA) needs to change its current mode of operation (eg, from multiple RATs to only a single RAT communication), it can be in the same procedure as discussed above Notify other peer STAs.
Example
1. A method for use in a station (STA), the method comprising:
A message is sent to an access point (AP), wherein the message includes a message for at least one of a plurality of radio access technologies (RATs) available to the STA.
2. The method of embodiment 1 wherein the message is a direct link (DL) discovery request message.
3. The method of embodiment 1, wherein the message is a direct link (DL) setup request message.
4. The method of embodiment 2, further comprising:
A DL discovery response message is received at the STA, wherein the discovery response message includes information for at least one of a plurality of RATs available to the STA.
5. The method of embodiment 3, further comprising:
A DL setup response message is received at the STA, wherein the DL response message includes information for at least one of a plurality of Radio Access Technologies (RATs) available to the STA.
6. The method of embodiment 5, further comprising:
Send a DL setup confirmation message.
7. The method of embodiment 1, wherein the message is a direct link (DL) teardown message.
8. The method of embodiment 6, wherein the DL setup confirmation message comprises an Opportunistic Multimedia Access Control (MAC) aggregation (OMMA) mode of the STA.
9. A method for use in a station (STA), the method comprising:
A direct link (DL) teardown message is sent to the intended DL peer STA, wherein the message includes information for at least one of a plurality of radio access technologies (RATs) available to the STA.
10. The method as in any one of embodiments 1-9, wherein the information comprises a Media Access Control (MAC) address of a STA for a RAT that is common to the STA and the AP.
11. The method as in any one of embodiments 1-10, wherein the information further comprises a MAC address of an AP for a RAT that is common to the STA and the AP.
12. The method as in any one of embodiments 1-11, wherein the information further comprises a MAC address of a STA for a RAT common to the STA and the intended DL peer STA.
13. The method as in any one of embodiments 1-12, wherein the information further comprises a MAC address of an intended peer STA of the RAT common to the STA and the intended DL peer STA.
14. The method as in any one of embodiments 1-13, wherein the information further comprises a MAC address of an AP for a RAT that is common to the AP and the intended peer STA.
15. The method as in any one of embodiments 1-14, wherein the information further comprises an expected peer MAC address of the RAT for the AP and the intended peer STA common RAT.
16. The method as in any one of embodiments 1-15, wherein the information further comprises a list of RATs available to the STA.
17. The method of any of embodiments 1-16, further comprising:
Maintain a database of multiple RAT capabilities of at least one AP.
18. A method for use in a station (STA), the method comprising:
Transmitting a sounding signal to an intended peer STA via at least one of a plurality of radio access technologies (RATs) common to the STA and the intended peer STA;
The RAT availability message is received via a RAT that is common to the STA and the intended peer STA, where the RAT availability message includes a list of available RATs.
19. A method for use in a station (STA), the method comprising:
Querying a database for a Radio Access Technology (RAT) availability list if the packet error rate on at least one of the plurality of RATs used by the STA is above a predetermined value;
Receive a list of RAT availability;
Removing the RAT from which the packet error rate is above a predetermined threshold from the availability list;
The updated availability list is sent to the intended peer STA via at least one of a plurality of RATs that are common to the STA and the intended peer STA.
20. A method for use in a station (STA), the method comprising:
Querying a database of radio access technology (RAT) availability lists for prospective peer STAs;
Select an available RAT;
A signal containing an Opportunistic Multimedia Access Control (MAC) aggregation (OMMA) mode of the selected RAT is sent to the intended peer STA.
21. A method for use in an access point (AP), the method comprising:
A message is received from a station (STA), wherein the message includes information for at least one of a plurality of radio access technologies (RATs) available to the STA.
22. The method of embodiment 21 wherein the message is a direct link (DL) discovery request message.
23. The method of embodiment 21 wherein the message is a direct link (DL) setup request message.
24. The method of embodiment 22, further comprising:
Send a DL discovery response message to the intended peer STA.
25. The method of embodiment 23, further comprising:
A DL setup request message is sent to the intended peer STA.
26. The method of embodiment 25, further comprising:
Receiving a DL setting confirmation message from the STA, and
Send a DL setup confirmation message to the intended peer STA.
27. The method of embodiment 21 wherein the message is a direct link (DL) teardown message.
28. The method of embodiment 26 wherein the received DL setup confirmation message comprises an Opportunistic Multimedia Access Control (MAC) aggregation (OMMA) mode of the STA.
The method of any one of embodiments 21-28, wherein the information comprises a Media Access Control (MAC) address of a STA for a RAT that is common to the STA and the AP.
The method of any one of embodiments 21-29, wherein the information further comprises a MAC address of an AP for a RAT common to the STA and the AP.
The method of any one of embodiments 22-30, wherein the information further comprises a MAC address of a STA for a RAT common to the STA and the intended DL peer STA.
The method of any one of embodiments 21-31, wherein the information further comprises a MAC address of an intended peer STA of the RAT common to the STA and the intended DL peer STA.
The method of any one of embodiments 21-32, wherein the information further comprises a MAC address of an AP for a RAT that is common to the AP and the intended peer STA.
The method of any one of embodiments 21-33, wherein the information further comprises a MAC address of an intended peer STA of the RAT that is common to the AP and the intended peer STA.
The method of any one of embodiments 21-34, wherein the information further comprises a list of RATs available to the STA.
The method of any one of embodiments 21-35, wherein the method further comprises maintaining a database of a plurality of RAT capabilities of the at least one STA.
37. A station (STA) configured to perform at least a portion of the method of any of embodiments 1-20.
38. An access point (AP) configured to perform at least a portion of the method of any of embodiments 21-36.
39. A wireless communication system configured to perform at least a portion of the method of any of embodiments 1-36.
Although the features and elements of the present invention have been described above in terms of specific combinations, it will be understood by those of ordinary skill in the art that each feature or element can be used alone or in any other feature or element of the present invention. Used in combination with various situations. Moreover, the processes described above can be implemented in a computer program, software and/or firmware executed by a computer or processor, where the computer program, software or/or firmware is embodied in a computer readable medium. Examples of computer readable media include, but are not limited to, electronic signals (transmitted via wired and/or wireless connections) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor storage device, magnetic media (eg, internal hard drive) Or removable disk), magneto-optical media, and optical media such as CD-ROMs and digital versatile discs (DVDs). The software related processor can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

1201...存取點(AP)1201. . . Access point (AP)

1205...DL發起方STA1205. . . DL initiator STA

1210...DL回應方STA1210. . . DL responder STA

S1215、S1220、S1225、S1230、S1235、S1240、S1245、S1250、S1255、S1260、S1265、S1270...基本示例DL程序的流呼叫S1215, S1220, S1225, S1230, S1235, S1240, S1245, S1250, S1255, S1260, S1265, S1270. . . Basic example DL program streaming call

DL...直接鏈路DL. . . Direct link

MT...多無線電存取技術MT. . . Multi-radio access technology

STA...站STA. . . station

Claims (1)


1、一種由一具有多無線電存取技術(RAT)能力的存取點(AP)執行用於在一第一站(STA)和一第二STA之間傳遞一直接鏈路能力和一RAT能力的方法,該方法包括:

使用一第一公共賦能RAT接收來自該第一STA的一直接鏈路發現請求訊息;

選擇用於與一第二STA通信的一第二公共賦能RAT;以及

使用該第二公共賦能RAT將該直接鏈路發現請求訊息轉發到該第二STA。

2、如申請專利範圍第1項所述的方法,其中該第一公共賦能RAT和該第二公共賦能RAT相同。

3、如申請專利範圍第1項所述的方法,更包括:

確定該第二STA的該RAT能力。

4、如申請專利範圍第3項所述的方法,其中確定該第二STA的該RAT能力包括將與該第二STA相關聯的一媒體存取控制(MAC)位址與一資料庫進行比較,其中該資料庫包括所有相關聯的STA的該RAT能力。

5、如申請專利範圍第1項所述的方法,其中該第一STA和該第二STA處於相同的基本服務集合(BSS)中。

6、如申請專利範圍第1項所述的方法,其中所接收到的直接鏈路發現請求訊息包括與該AP相關聯的該公共賦能RAT的一媒體存取控制(MAC)位址、與該第一STA相關聯的該公共賦能RAT的一MAC位址、與該第二STA相關聯的一MAC位址。

7、如申請專利範圍第6項所述的方法,其中所接收到的直接鏈路發現請求訊息更包括該RAT的一MAC位址,該RAT的該MAC位址是該第一STA期望使用以做出對該第二STA的請求。

8、如申請專利範圍第7項所述的方法,其中所接收到的直接鏈路發現請求訊息更包括與該AP相關聯的所有RAT的BSS識別碼以及與該第一STA相關聯的所有RAT的MAC位址。

9、如申請專利範圍第1項所述的方法,更包括:

使用該第一公共賦能RAT接收來自該第一STA的一直接鏈路設置請求訊息;

使用該第二公共賦能RAT將該直接鏈路設置請求訊息轉發到該第二STA;

使用該第一公共賦能RAT接收來自該第二STA的一直接鏈路設置回應訊息;以及

使用該第二公共賦能RAT將該直接鏈路設置回應訊息轉發到該第一STA。

10、如申請專利範圍第9項所述的方法,更包括:

使用該第一公共賦能RAT接收來自該第一STA的一直接鏈路設置確認訊息;以及

使用該第二公共賦能RAT將該直接鏈路設置確認訊息轉發到該第二STA。

11、如申請專利範圍第1項所述的方法,更包括:

動態地更新該第一公共賦能RAT;以及

動態地更新該第二公共賦能RAT。

12、一種用於在一第一站(STA)和一第二STA之間傳遞一直接鏈路能力和一RAT能力的具有多無線電存取技術(RAT)能力的存取點(AP),該具有多RAT能力的AP包括:

一接收器,被配置為使用一第一公共賦能RAT接收來自該第一STA的一直接鏈路發現請求訊息;

一處理器,被配置為選擇用於與一第二STA進行通信的一第二公共賦能RAT;以及

一傳輸器,被配置為使用該第二公共賦能RAT將該直接鏈路發現請求訊息轉發到該第二STA。

13、如申請專利範圍第12項所述的具有多RAT能力的AP,其中該第一公共賦能RAT和該第二公共賦能RAT相同。

14、如申請專利範圍第12項所述的具有多RAT能力的AP,其中該處理器更被配置為確定該第二STA的該RAT能力。

15、如申請專利範圍第14項所述的具有多RAT能力的AP,其中確定該第二STA的該RAT能力包括將與該第二STA相關聯的一MAC位址與一資料庫進行比較,其中該資料庫包括所有相關聯的STA的該RAT能力。

16、如申請專利範圍第12項所述的具有多RAT能力的AP,其中該第一STA和該第二STA處於相同的基本服務集合(BSS)中。

17、如申請專利範圍第12項所述的具有多RAT能力的AP,其中所接收到的直接鏈路發現請求訊息包括與該AP相關聯的該公共賦能RAT的一媒體存取控制(MAC)位址、與該第一STA相關聯的該公共賦能RAT的一MAC位址、與該第二STA相關聯的一MAC位址。

18、如申請專利範圍第17項所述的具有多RAT能力的AP,其中所接收到的直接鏈路發現請求訊息更包括該RAT的一MAC位址,該RAT的該MAC位址是該第一STA期望使用以做出對該第二STA的請求。

19、如申請專利範圍第12項所述的具有多RAT能力的AP,其中所接收到的直接鏈路發現請求訊息更包括與該AP相關聯的所有RAT的BSS識別碼以及與該第一STA相關聯的所有RAT的MAC位址。

20、如申請專利範圍第12項所述的具有多RAT能力的AP,其中:

該接收器更被配置為:

使用該第一公共賦能RAT接收來自該第一STA的一直接鏈路設置請求訊息;以及

使用該第二公共賦能RAT接收來自該第二STA的一直接鏈路設置回應訊息;以及

該傳輸器更被配置為:

使用該第二公共賦能RAT將該直接鏈路設置請求訊息轉發到該第二STA;以及

使用該第一公共賦能RAT將該直接鏈路設置回應訊息轉發到該第一STA。

21、如申請專利範圍第20項所述的具有多RAT能力的AP,其中:

該接收器更被配置為使用該第一公共賦能RAT接收來自該第一STA的一直接鏈路設置確認訊息;以及

該傳輸器更被配置為使用該第二公共賦能RAT將該直接鏈路設置確認訊息轉發到該第二STA。

22、如申請專利範圍第12項所述的具有多RAT能力的AP,其中:

該處理器更被配置為:

動態地更新該第一公共賦能RAT;以及

動態地更新該第二公共賦能RAT。

23、一種由一具有多無線電存取技術(RAT)能力的站(STA)執行用於確定一第二STA的一直接鏈路能力和一RAT能力的方法,該方法包括:

選擇與一具有多RAT能力的存取點(AP)相關聯的一第一公共賦能RAT;

使用與該具有多RAT能力的AP相關聯的該第一公共賦能RAT將一直接鏈路發現請求訊息發送到欲用於一第二STA的該AP;

使用與該第二STA相關聯的至少一個公共賦能RAT接收來自該第二RAT的至少一個直接鏈路發現回應訊息。

24、如申請專利範圍第23項所述的方法,其中該具有多RAT能力的AP對於該第一STA和該第二STA是公共的。

25、如申請專利範圍第23項所述的方法,其中該第一STA和該第二STA處於相同的基本服務集合(BSS)中。

26、如申請專利範圍第23項所述的方法,其中該直接鏈路發現請求訊息包括與該AP相關聯的該公共賦能RAT的一媒體存取控制(MAC)位址、與該第一STA相關聯的該公共賦能RAT的一MAC位址、與該第二STA相關聯的一MAC位址。

27、如申請專利範圍第26項所述的方法,其中該直接鏈路發現請求訊息更包括該RAT的一MAC位址,該RAT的該MAC位址是該第一STA期望使用以做出對該第二STA的請求。

28、如申請專利範圍第27項所述的方法,其中該直接鏈路發現請求訊息更包括與該第一STA相關聯的所有RAT的MAC位址。

29、如申請專利範圍第23項所述的方法,更包括:

將該第二STA的一RAT能力資訊儲存在一資料庫中。

30、如申請專利範圍第23項所述的方法,更包括:

使用與該具有多RAT能力的AP相關聯的該第一公共賦能RAT將一直接鏈路設置請求訊息發送到該具有多RAT能力的AP;

使用與該具有多RAT能力的AP相關聯的該第一公共賦能RAT接收來自該具有多RAT能力的AP的一直接鏈路設置回應訊息;以及

使用與該具有多RAT能力的AP相關聯的該第一公共賦能RAT將一直接鏈路設置確認發送到該具有多RAT能力的AP。

1. An access point (AP) having a multi-radio access technology (RAT) capability for transmitting a direct link capability and a RAT capability between a first station (STA) and a second STA Method, the method includes:

Receiving, by using a first common-enabled RAT, a direct link discovery request message from the first STA;

Selecting a second common enable RAT for communicating with a second STA;

The direct link discovery request message is forwarded to the second STA using the second publicly-enabled RAT.

2. The method of claim 1, wherein the first common enabling RAT and the second common enabling RAT are the same.

3. The method described in claim 1 of the patent scope further includes:

The RAT capability of the second STA is determined.

4. The method of claim 3, wherein determining the RAT capability of the second STA comprises comparing a Media Access Control (MAC) address associated with the second STA to a database Where the database includes the RAT capabilities of all associated STAs.

5. The method of claim 1, wherein the first STA and the second STA are in the same basic service set (BSS).

6. The method of claim 1, wherein the received direct link discovery request message comprises a media access control (MAC) address of the publicly enabled RAT associated with the AP, and a MAC address of the publicly-enabled RAT associated with the first STA, and a MAC address associated with the second STA.

7. The method of claim 6, wherein the received direct link discovery request message further includes a MAC address of the RAT, and the MAC address of the RAT is expected to be used by the first STA. A request is made for the second STA.

8. The method of claim 7, wherein the received direct link discovery request message further comprises a BSS identification code of all RATs associated with the AP and all RATs associated with the first STA. MAC address.

9. The method described in claim 1 of the patent scope further includes:

Receiving, by the first publicly-enabled RAT, a direct link setup request message from the first STA;

Transmitting the direct link setup request message to the second STA by using the second publicly-enabled RAT;

Receiving, by the first common enabling RAT, a direct link setup response message from the second STA;

The direct link setup response message is forwarded to the first STA using the second common enable RAT.

10. The method of claim 9, wherein the method further comprises:

Receiving, by the first publicly-enabled RAT, a direct link setup confirmation message from the first STA;

The direct link setup confirmation message is forwarded to the second STA using the second common enable RAT.

11. The method of claim 1, wherein the method further comprises:

Dynamically updating the first common enable RAT;

The second common enable RAT is dynamically updated.

12. A multi-radio access technology (RAT) capable access point (AP) for communicating a direct link capability and a RAT capability between a first station (STA) and a second STA, APs with multi-RAT capabilities include:

a receiver configured to receive a direct link discovery request message from the first STA using a first common enabled RAT;

a processor configured to select a second common enable RAT for communicating with a second STA;

A transmitter configured to forward the direct link discovery request message to the second STA using the second common enabled RAT.

13. The multi-RAT capable AP as described in claim 12, wherein the first common enabling RAT and the second common enabling RAT are the same.

14. The multi-RAT capable AP as described in claim 12, wherein the processor is further configured to determine the RAT capability of the second STA.

15. The multi-RAT capable AP according to claim 14, wherein determining the RAT capability of the second STA comprises comparing a MAC address associated with the second STA with a database, Where the database includes the RAT capabilities of all associated STAs.

16. The multi-RAT capable AP according to claim 12, wherein the first STA and the second STA are in the same basic service set (BSS).

17. The multi-RAT capable AP according to claim 12, wherein the received direct link discovery request message includes a media access control (MAC) of the publicly enabled RAT associated with the AP. An address, a MAC address of the publicly-enabled RAT associated with the first STA, and a MAC address associated with the second STA.

18. The multi-RAT capable AP according to claim 17, wherein the received direct link discovery request message further includes a MAC address of the RAT, and the MAC address of the RAT is the first A STA desires to use to make a request for the second STA.

19. The multi-RAT capable AP according to claim 12, wherein the received direct link discovery request message further includes a BSS identification code of all RATs associated with the AP and the first STA. The MAC address of all associated RATs.

20. A multi-RAT capable AP as described in claim 12, wherein:

The receiver is further configured to:

Receiving, by the first common enabling RAT, a direct link setup request message from the first STA;

Receiving, by the second common-enabled RAT, a direct link setup response message from the second STA;

The transmitter is configured to:

Forwarding the direct link setup request message to the second STA using the second common enable RAT;

The direct link setup response message is forwarded to the first STA using the first common enable RAT.

21. A multi-RAT capable AP as described in claim 20, wherein:

The receiver is further configured to receive a direct link setup confirmation message from the first STA using the first common enable RAT;

The transmitter is further configured to forward the direct link setup confirmation message to the second STA using the second common enable RAT.

22. A multi-RAT capable AP as described in claim 12, wherein:

The processor is further configured to:

Dynamically updating the first common enable RAT;

The second common enable RAT is dynamically updated.

23. A method for determining a direct link capability and a RAT capability of a second STA by a multi-radio access technology (RAT) capable station (STA), the method comprising:

Selecting a first common enabling RAT associated with a multi-RAT capable access point (AP);

Transmitting, by the first publicly-enabled RAT associated with the multi-RAT capable AP, a direct link discovery request message to the AP to be used for a second STA;

At least one direct link discovery response message from the second RAT is received using at least one common enabled RAT associated with the second STA.

24. The method of claim 23, wherein the multi-RAT capable AP is common to the first STA and the second STA.

25. The method of claim 23, wherein the first STA and the second STA are in the same basic service set (BSS).

The method of claim 23, wherein the direct link discovery request message includes a media access control (MAC) address of the publicly-enabled RAT associated with the AP, and the first A MAC address of the publicly-enabled RAT associated with the STA, and a MAC address associated with the second STA.

The method of claim 26, wherein the direct link discovery request message further includes a MAC address of the RAT, the MAC address of the RAT is expected to be used by the first STA to make a pair The request of the second STA.

28. The method of claim 27, wherein the direct link discovery request message further comprises a MAC address of all RATs associated with the first STA.

29. The method of claim 23, further comprising:

The RAT capability information of the second STA is stored in a database.

30. The method of claim 23, further comprising:

Transmitting, by the first publicly-enabled RAT associated with the multi-RAT capable AP, a direct link setup request message to the multi-RAT capable AP;

Receiving, by the first publicly-enabled RAT associated with the multi-RAT capable AP, a direct link setup response message from the multi-RAT capable AP;

The first publicly-enabled RAT associated with the multi-RAT capable AP is used to send a direct link setup acknowledgment to the multi-RAT capable AP.
TW103109015A 2013-03-14 2014-03-13 Method and apparatus to enable direct link setup in opportunistic multi-RAT aggregation systems TW201442548A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361783978P 2013-03-14 2013-03-14

Publications (1)

Publication Number Publication Date
TW201442548A true TW201442548A (en) 2014-11-01

Family

ID=50678290

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103109015A TW201442548A (en) 2013-03-14 2014-03-13 Method and apparatus to enable direct link setup in opportunistic multi-RAT aggregation systems

Country Status (2)

Country Link
TW (1) TW201442548A (en)
WO (1) WO2014152853A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727914B (en) * 2020-03-18 2021-05-11 華碩電腦股份有限公司 Method and apparatus for sidelink identifier change in a wireless communication system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513274B1 (en) * 2015-08-21 2023-03-24 삼성전자주식회사 Method and apparatus for performing hybrid automatic repeat request in a wireless communication system
US10375562B2 (en) * 2016-08-31 2019-08-06 Qualcomm Incorporated Exchanging a recommendation of a set of D2D rat types for a proximity-based service and searching for a binary code that identifies a proximity-based service on at least one D2D rat type in accordance with a D2D rat sequence
US10972895B2 (en) 2018-12-19 2021-04-06 Sony Corporation Multi-BSS discovery assistance
EP3949298A1 (en) * 2019-06-25 2022-02-09 Huawei Technologies Co., Ltd. Multi radio media access control for ultra-low and bounded delay
CN113973400A (en) * 2020-07-24 2022-01-25 华为技术有限公司 Method, device and system for establishing direct connection link and sending wireless local area network frame
CN116711449A (en) * 2020-12-10 2023-09-05 松下电器(美国)知识产权公司 Communication device and communication method for multilink peer-to-peer communication
US20220286844A1 (en) * 2021-03-04 2022-09-08 Huawei Technologies Co., Ltd. Wlan multi-link tdls key derivation
CN116233776B (en) * 2021-11-29 2024-10-22 极米科技股份有限公司 Method, device, equipment and storage medium for establishing direct link of multi-link terminal
US20240064834A1 (en) * 2022-08-19 2024-02-22 Mediatek Inc. UHR Multi-Link Direct Link Operation In Wireless Communications

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9900759B2 (en) * 2009-11-04 2018-02-20 Qualcomm Incorporated Method and apparatus for peer discovery in a wireless communication network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727914B (en) * 2020-03-18 2021-05-11 華碩電腦股份有限公司 Method and apparatus for sidelink identifier change in a wireless communication system

Also Published As

Publication number Publication date
WO2014152853A3 (en) 2015-01-08
WO2014152853A2 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6861781B2 (en) Priority handling for ProSe communication
JP6093066B2 (en) Method and apparatus for providing a network connection for peer-to-peer direct link communication
JP6560183B2 (en) Method for enabling WLAN proximity service
CN107690832B (en) Implementing mobile relays for device-to-device (D2D) communications
TW201442548A (en) Method and apparatus to enable direct link setup in opportunistic multi-RAT aggregation systems
TWI739725B (en) Method and device for enabling non-3gpp offload in 3gpp
TWI594606B (en) Method and apparatus for multi-rat access mode operation
JP5998220B2 (en) Method and apparatus for accessing localized applications
JP5526236B2 (en) Method and apparatus for peer discovery in a wireless communication network
TWI533629B (en) Triggering devices that are not attached to a wireless network
TW201427340A (en) Methods for mobility control for Wi-Fi offloading in wireless systems
JP6139593B2 (en) Method and apparatus for local call routing for home evolved Node B
US20230026316A1 (en) Paging remote ue using a relay
JP2014510450A (en) Method for paging for downlink data to M2M devices
TW201501489A (en) Enhanced common logical-a protocol for reconfigurable systems
TW201412156A (en) Short messaging service (SMS) over evolved packet core using WiFi access