TW201425974A - Apparatus and method for gesture detecting - Google Patents
Apparatus and method for gesture detecting Download PDFInfo
- Publication number
- TW201425974A TW201425974A TW101147900A TW101147900A TW201425974A TW 201425974 A TW201425974 A TW 201425974A TW 101147900 A TW101147900 A TW 101147900A TW 101147900 A TW101147900 A TW 101147900A TW 201425974 A TW201425974 A TW 201425974A
- Authority
- TW
- Taiwan
- Prior art keywords
- radar signal
- signal
- tested
- original
- attitude sensing
- Prior art date
Links
Landscapes
- Position Input By Displaying (AREA)
Abstract
Description
本發明是有關於一種姿態感測裝置與方法,且特別是有關於一種利用雷達信號判斷操作型態之姿態感測裝置與方法。 The present invention relates to an attitude sensing apparatus and method, and more particularly to an attitude sensing apparatus and method for determining an operational type using a radar signal.
請參見第1A圖,其係根據習用技術所提供的智慧型手機之示意圖。近年來,智慧型手機11所提供的功能越來越多,但是智慧型手機11必須便於攜帶,因此顯示螢幕11a的尺寸不能過大。受限於顯示螢幕11a的尺寸,智慧型手機11除了將功能選項的圖式全部縮小並以一個顯示頁面呈現外,也可能將功能選項分別以不同的顯示頁面呈現。 Please refer to FIG. 1A, which is a schematic diagram of a smart phone provided according to the conventional technology. In recent years, the smart phone 11 has provided more and more functions, but the smart phone 11 must be portable, so the size of the display screen 11a cannot be too large. Limited by the size of the display screen 11a, the smart phone 11 may display the function options in different display pages, in addition to reducing the layout of the function options and presenting them as one display page.
基於便利性的考量,現今許多智慧型手機11提供了手指觸控的操作方式。然而,以手指觸控時,如果功能選項的圖式過小或排列過於密集時,使用者的手指很容易同時誤觸其他的功能選項。 Based on convenience considerations, many smart phones 11 today provide a finger-touch operation. However, when the finger is touched, if the pattern of the function option is too small or the arrangement is too dense, the user's finger can easily touch other function options at the same time.
為了改善此種缺失,習用技術的一種方式是透過分類方式或先後排序方式,將功能選項分別以不同的顯示頁面呈現。此種做法雖然能減少誤觸的機會,但是使用者必須反覆的在各個頁面中查找自己所欲使用的功能,因此仍不夠便利。 In order to improve this deficiency, one way to use the technique is to present the function options in different display pages by means of classification or sequencing. Although this approach can reduce the chance of misunderstanding, users must repeatedly find the features they want to use on each page, so it is still not convenient.
請參見第1B圖,其係根據習用技術所提供的微型投影機之示意圖。尺寸相當迷你而容易攜帶的微型投影機,近來在市場上相當受到矚目。微型投影機13除了能獨立當作投影機使用外,也可將其嵌入在各種可攜式裝置中。 Please refer to FIG. 1B, which is a schematic diagram of a pico projector provided according to conventional techniques. A miniature projector that is relatively small in size and easy to carry has recently attracted considerable attention in the market. In addition to being able to be used independently as a projector, the pico projector 13 can also be embedded in various portable devices.
儘管微型投影機13能透過鏡頭13b投射出大範圍的顯示畫面,若使用者需要進一步對顯示畫面的內容進行調整時,小尺寸的微型投影機13卻有著與智慧型手機相類似的問題。即,微型投影機13可提供操作介面13a的範圍太小,讓使用者不容易操作。 Although the pico projector 13 can project a wide range of display images through the lens 13b, if the user needs to further adjust the content of the display screen, the small-sized pico projector 13 has a problem similar to that of the smart phone. That is, the range in which the pico projector 13 can provide the operation interface 13a is too small for the user to operate.
換言之,無論微型投影機是以獨立方式操作,或被整合於可攜式裝置內,習用技術的微型投影機僅提供了較大範圍的顯示區域,但其操作介面的範圍仍然過於窄小而不易控制。 In other words, whether the pico projector is operated in an independent manner or integrated into a portable device, the conventional micro-projector provides only a large range of display areas, but the range of its operation interface is still too narrow and not easy. control.
更進一步的,有些習用技術採用影像感測的方式提供非觸控感測的功能。簡言之,此種做法是利用攝影裝置感測使用者在立體空間的操作,讓使用者的操作行為不需局限於狹小的觸控平面上。 Further, some conventional technologies provide non-touch sensing functions by means of image sensing. In short, this method uses the photographic device to sense the operation of the user in a three-dimensional space, so that the user's operation behavior is not limited to a narrow touch plane.
然而,這種做法卻必須額外搭配攝影裝置使用。如此一來,除了使成本大幅增加外,攝影裝置的架設位置也將限制可供感測的範圍。因此,藉由影像感測提供非觸控輸入的作法對可攜式裝置而言並不恰當。 However, this approach must be used in conjunction with the camera. As a result, in addition to the substantial increase in cost, the erection position of the photographic device will also limit the range available for sensing. Therefore, the practice of providing non-touch input by image sensing is not appropriate for portable devices.
根據前述說明可以發現,隨著不同的應用需求,目前的非觸控輸入作法仍不夠成熟而亟待發展。 According to the foregoing description, it can be found that with the different application requirements, the current non-touch input method is still not mature enough and needs to be developed.
本發明係為一種電子裝置,包含:一姿態感測模組,包含:一信號產生單元,週期性地以一脈波格式產生一原始雷達信號;一雷達天線,電連接於該信號產生單元,其係傳送該原始雷達信號,並接收由該原始雷達信號於接觸一待測物體時,對應產生的一反射雷達信號;以及,一判斷單元,電連接於該信號產生器與該雷達天線,其係根據該原始雷達信號與該反射雷達信號而判斷與該待測物體之位置變化相對應的一操作指令;以及,一播放模組,電連接於該姿態感測模組,其係根據該操作指令而進行相對應的一操作行為。 The present invention is an electronic device, comprising: an attitude sensing module, comprising: a signal generating unit, periodically generating an original radar signal in a pulse wave format; and a radar antenna electrically connected to the signal generating unit, Transmitting the original radar signal and receiving a corresponding reflected radar signal when the original radar signal contacts an object to be tested; and a determining unit electrically connected to the signal generator and the radar antenna, Determining, according to the original radar signal and the reflected radar signal, an operation command corresponding to the position change of the object to be tested; and a play module electrically connected to the attitude sensing module, according to the operation The instruction performs a corresponding operational behavior.
本發明之另一實施例係為一種姿態感測方法,應用於一電子裝置,包含以下步驟:週期性地以一脈波格式產生一原始雷達信號;傳送該原始雷達信號,其中該原始雷達信號於接觸一待測物體時,對應產生一反射雷達信號;接收該反射雷達信號;根據該原始雷達信號與該反射雷達信號而判斷與該待測物體之位置變化相對應的一操作型態;以及,根據該操作型態而進行相對應的一操作行為。 Another embodiment of the present invention is an attitude sensing method applied to an electronic device, comprising the steps of: periodically generating an original radar signal in a pulse wave format; transmitting the original radar signal, wherein the original radar signal When contacting an object to be measured, correspondingly generating a reflected radar signal; receiving the reflected radar signal; determining an operation type corresponding to the position change of the object to be tested according to the original radar signal and the reflected radar signal; According to the operation type, a corresponding operation behavior is performed.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
本發明之提出了一種非觸控感測的做法,將微型化雷達與感測單元整合於電子裝置內。透過微型化雷達與感測 單元分別傳送原始雷達信號、接收反射雷達信號後,進一步根據反射雷達信號的都普勒現象而判斷使用者的姿態變化。為了便於說明,以下的實施例主要以可攜式裝置為例。 The invention provides a non-touch sensing method for integrating a miniaturized radar and a sensing unit into an electronic device. Through miniaturized radar and sensing After transmitting the original radar signal and receiving the reflected radar signal, the unit further determines the user's attitude change according to the Doppler phenomenon of the reflected radar signal. For convenience of description, the following embodiments mainly take a portable device as an example.
首先,電子裝置由微型化雷達持續以脈波信號的方式傳送原始雷達信號至待測物體,當原始雷達信號遇到待測物體(例如:使用者的手勢)後,將對應產生反射的回傳脈波信號。 First, the electronic device continuously transmits the original radar signal to the object to be tested by means of the pulse wave signal by the miniaturized radar. When the original radar signal encounters the object to be tested (for example, the gesture of the user), the corresponding back transmission is generated. Pulse signal.
當原始雷達信號遇到靜態或動態的物體時,回傳至感測單元的反射雷達信號之頻率也不同,而本發明便利用此種都普勒現象判斷使用者的姿態操作。 When the original radar signal encounters a static or dynamic object, the frequency of the reflected radar signal transmitted back to the sensing unit is also different, and the present invention facilitates the use of such a Doppler phenomenon to determine the user's gesture operation.
以下假設使用者的手勢為待測物體,說明如何利用雷達信號的都普勒現象,判斷四種不同類型的操作手勢。 The following assumes that the user's gesture is the object to be tested, and explains how to use the Doppler phenomenon of the radar signal to determine four different types of operation gestures.
在以下圖式中,以向右的箭頭代表原始雷達信號的行進方向,並以向左的箭頭代表反射雷達信號的行進方向。當原始雷達信號朝右發送時,經由反射而產生的反射雷達信號,其頻率將隨著待測物體22的移動狀態而改變。 In the following figures, the arrow pointing to the right represents the direction of travel of the original radar signal, and the arrow to the left represents the direction of travel of the reflected radar signal. When the original radar signal is sent to the right, the reflected radar signal generated by the reflection will change in frequency with the moving state of the object 22 to be tested.
請參見第2圖,其係利用雷達信號的都普勒現象感測靜止手勢之示意圖。 Please refer to FIG. 2, which is a schematic diagram of sensing a still gesture using a Doppler phenomenon of a radar signal.
首先,利用微型化的雷達天線21以固定頻率的方式產生原始雷達信號。原始雷達信號在行進過程接觸至待測物體22後,將產生反射雷達信號。 First, the original radar signal is generated in a fixed frequency manner using the miniaturized radar antenna 21. The original radar signal will generate a reflected radar signal after it contacts the object 22 to be measured during the traveling process.
在第2圖中,使用者的手勢維持靜止。此時,原始雷達信號與反射雷達信號的頻率彼此相同。換言之,若原始雷達信號所碰到的待測物體是固定不動的,那麼所反彈回 來的反射雷達信號與原始雷達信號具有相同的頻率。 In Figure 2, the user's gesture remains static. At this time, the frequencies of the original radar signal and the reflected radar signal are identical to each other. In other words, if the object to be tested encountered by the original radar signal is stationary, then bounce back. The resulting reflected radar signal has the same frequency as the original radar signal.
請參見第3圖,其係利用雷達信號的都普勒現象感測手勢向左移動之示意圖。由微型化雷達產生的原始雷達信號維持與第2圖相同的頻率,即,以相同的頻率產生原始雷達信號。 Please refer to FIG. 3, which is a schematic diagram of sensing the gesture moving to the left by using the Doppler phenomenon of the radar signal. The original radar signal produced by the miniaturized radar maintains the same frequency as in Figure 2, i.e., produces the original radar signal at the same frequency.
比較第2、3圖可以看出,若待測物體22朝著微型化的雷達天線21的方向前進時,相對應而產生的反射雷達信號之頻率較高。也就是說,反射雷達信號的頻率會隨之增加。 Comparing Figures 2 and 3, it can be seen that if the object 22 to be measured advances in the direction of the miniaturized radar antenna 21, the corresponding reflected radar signal has a higher frequency. In other words, the frequency of the reflected radar signal will increase.
請參見第4A圖,其係利用雷達信號感測手勢向右移動之示意圖。若物體是朝著遠離原始雷達信號方向行進時,反射雷達信號的頻率會較原始雷達信號的頻率低。 See Figure 4A, which is a schematic diagram of the use of a radar signal to sense a gesture moving to the right. If the object is moving away from the original radar signal, the frequency of the reflected radar signal will be lower than the frequency of the original radar signal.
承上,手勢的移動方向會影響反射雷達信號的頻率。此外,手勢移動的速度也會影響反射雷達信號的頻率。請參見第4B圖,其係利用雷達信號感測手勢快速向右移動之示意圖。在第4B圖中,反射雷達信號的頻率不但比原始雷達信號的頻率低,第4B圖的反射雷達信號之頻率亦較第4A圖的反射雷達信號更低。 In the above, the direction of movement of the gesture affects the frequency of the reflected radar signal. In addition, the speed at which the gesture moves will also affect the frequency of the reflected radar signal. See Figure 4B, which is a schematic diagram of using a radar signal to sense a gesture moving quickly to the right. In Fig. 4B, the frequency of the reflected radar signal is not only lower than the frequency of the original radar signal, but the frequency of the reflected radar signal of Fig. 4B is also lower than that of the reflected radar signal of Fig. 4A.
根據前述圖式可以得知,當待測物體與微型化雷達間存在相對運動時,反射雷達信號的頻率也連帶改變。 According to the foregoing figure, when there is relative motion between the object to be tested and the miniaturized radar, the frequency of the reflected radar signal also changes.
以下,將進一步說明根據本發明構想之實施例,如何利用姿態感測模組,以低功率脈衝方式產生雷達信號後,根據反射雷達信號判斷待測物體(例如:使用者的手勢)是否產生移動。在實際應用時,待測物體的移動情形可進一步搭配可攜式裝置所提供的操作介面使用。 Hereinafter, the embodiment of the inventive concept is further described. How to use the attitude sensing module to generate a radar signal in a low power pulse manner, and then determine whether the object to be tested (for example, a user's gesture) generates a motion according to the reflected radar signal. . In practical applications, the movement of the object to be tested can be further used in conjunction with the operation interface provided by the portable device.
此處以單一方向的手勢移動為例,但是在實際應用時,姿態感測模組亦可用於感測多個待測物體與其移動方式。再者,待測物體的移動方向並不以水平方向為限,也可能是立體空間的任意方向。 Here, the gesture movement in a single direction is taken as an example, but in practical applications, the gesture sensing module can also be used to sense multiple objects to be tested and how they move. Furthermore, the moving direction of the object to be tested is not limited to the horizontal direction, and may be any direction of the three-dimensional space.
請參見第5圖,其係利用姿態感測模組傳送原始雷達信號,以及接收反射雷達信號之示意圖。本發明的電子裝置所採用的姿態感測模組51包含電連接於彼此的信號產生單元53、雷達天線57與判斷單元55。 Please refer to FIG. 5, which is a schematic diagram of transmitting an original radar signal by using an attitude sensing module and receiving a reflected radar signal. The attitude sensing module 51 employed in the electronic device of the present invention includes a signal generating unit 53, which is electrically connected to each other, a radar antenna 57, and a judging unit 55.
信號產生單元53週期性地以脈波格式產生原始雷達信號。例如:根據超寬頻(Ultra wideband,簡稱為UWB)技術而產生脈波格式的原始雷達信號。 The signal generating unit 53 periodically generates the original radar signal in a pulse wave format. For example, an original radar signal in a pulse wave format is generated according to an ultra wideband (UWB) technology.
接著,利用雷達天線57將原始雷達信號傳送至待測物體59。當原始雷達信號接觸於待測物體59的表面時,待測物體59的表面將產生反射雷達信號。如前所述,反射雷達信號的頻率與振動量係因應待測物體59的移動而產生變化。 Next, the original radar signal is transmitted to the object 59 to be measured by the radar antenna 57. When the original radar signal is in contact with the surface of the object 59 to be measured, the surface of the object 59 to be measured will generate a reflected radar signal. As described above, the frequency and the amount of vibration of the reflected radar signal vary depending on the movement of the object 59 to be measured.
接收器533透過雷達天線57擷取得到反射雷達信號的振動變化後,將反射雷達信號的振動變化傳送至判斷單元55,由判斷單元55作進一步的分析與判讀。此方式以待測物體之運動作為觸發源,且能持續接收待測物體運動的情形,作為姿態感測的判斷基礎。 The receiver 533 obtains the vibration change of the reflected radar signal through the radar antenna 57, and transmits the vibration change of the reflected radar signal to the judging unit 55, and the judging unit 55 performs further analysis and interpretation. In this way, the motion of the object to be tested is used as a trigger source, and the motion of the object to be tested can be continuously received as the basis for the judgment of the attitude sensing.
其中判斷單元55包含:延遲器531、接收器533、混波器(mixer)535、信號處理器537。 The determining unit 55 includes a delay unit 531, a receiver 533, a mixer 535, and a signal processor 537.
其中延遲器531電連接於信號產生單元53;接收器533電連接於雷達天線57;混波器535電連接於接收器533 與延遲器531;以及,信號處理器537電連接於混波器535。 The delay 531 is electrically connected to the signal generating unit 53; the receiver 533 is electrically connected to the radar antenna 57; and the mixer 535 is electrically connected to the receiver 533. And a delay 531; and the signal processor 537 is electrically connected to the mixer 535.
延遲器531將原始雷達信號延遲一段時間得出經延遲後的原始雷達信號;接收器533用於暫存由雷達天線57所接收的反射雷達信號;透過混波器535將經延遲後的原始雷達信號與反射雷達信號混合後,得出加總雷達信號;以及,信號處理器537根據加總雷達信號而判斷待測物體與姿態感測模組之相對位置的改變。 The delay 531 delays the original radar signal for a period of time to obtain the delayed original radar signal; the receiver 533 is used to temporarily store the reflected radar signal received by the radar antenna 57; and the delayed original radar is transmitted through the mixer 535. After the signal is mixed with the reflected radar signal, the summed radar signal is obtained; and the signal processor 537 determines the change of the relative position of the object to be tested and the attitude sensing module according to the summed radar signal.
首先由信號產生單元53利用雷達信號產生原始雷達信號,這個原始雷達信號將分別提供給雷達天線57與延遲器。 First, the original radar signal is generated by the signal generating unit 53 using the radar signal, and this original radar signal is supplied to the radar antenna 57 and the delayer, respectively.
原始雷達信號藉由雷達天線57被傳送至待測物體59時,待測物體59的表面將產生反射脈波信號,因而形成反射雷達信號。接著,雷達天線57將接收反射雷達信號,並提供反射雷達信號給接收器533。 When the original radar signal is transmitted to the object 59 to be measured by the radar antenna 57, the surface of the object 59 to be measured will generate a reflected pulse wave signal, thereby forming a reflected radar signal. Next, the radar antenna 57 will receive the reflected radar signal and provide a reflected radar signal to the receiver 533.
另一方面,延遲器531提供給混波器535的原始雷達信號則是將信號產生單元53所提供的原始雷達信號延遲了一段時間△t後所產生的。在實際應用時,延遲器531所提供的延遲時間△t的長度可以因應系統應用或待測物體59的種類、體積、位置等考量而彈性調整。 On the other hand, the original radar signal supplied from the delay 531 to the mixer 535 is generated by delaying the original radar signal supplied from the signal generating unit 53 by a period of time Δt. In practical applications, the length of the delay time Δt provided by the delay 531 can be flexibly adjusted according to the type, volume, position, and the like of the system application or the object 59 to be tested.
其次,混和器535根據接收器533所提供的反射雷達信號,以及延遲器531所提供的延遲後的原始雷達信號進行混合,進而產生混合後的雷達信號。 Next, the mixer 535 mixes based on the reflected radar signal provided by the receiver 533 and the delayed original radar signal provided by the delay 531 to generate a mixed radar signal.
接著,利用信號處理器537對加總後的雷達信號,以奈秒脈衝近場感測技術(Nano-second Pulse Near-field Sensor,簡稱為NPNS)進行處理。即,進一步判讀經過加 總後的雷達信號所代表之信號內容(振動量變化),並判斷與振動量變化相對應之操作類型。 Then, the summed radar signal is processed by the signal processor 537 by a nano-second pulse near-field sensor (NPNS). That is, further interpretation is added The content of the signal (the amount of vibration) represented by the total radar signal, and the type of operation corresponding to the change in the amount of vibration.
信號處理器537判斷與振動量變化相對應的操作類型時,其做法為:將其與資料庫預存的複數個振動量變化、複數個待測物體之位置變化與複數個操作指令之對應關係相比較,據此而判斷與待測物體的位置變化相對應之操作類型。 When the signal processor 537 determines the type of operation corresponding to the change in the amount of vibration, the method is: changing the plurality of vibration amounts pre-stored with the database, the position change of the plurality of objects to be tested, and the correspondence between the plurality of operation instructions. In comparison, the type of operation corresponding to the change in the position of the object to be tested is judged accordingly.
超寬頻技術使用的脈衝信號所佔用的頻寬可達到幾GHz,因為使用的是極短脈衝,UWB設備的發射功率卻很小。由於耗電量相對較低的緣故,超寬頻技術相當適合被應用於可攜式裝置或搭配其他類型的電子裝置使用。 The pulse signal used by the ultra-wideband technology can occupy a bandwidth of several GHz, because the ultra-short pulse is used, and the transmission power of the UWB device is small. Due to the relatively low power consumption, ultra-wideband technology is well suited for use in portable devices or with other types of electronic devices.
接著,本發明透過奈秒脈衝近場感測技術感測超寬頻技術所產生的反射雷達信號,再進一步判斷待測物體的移動情形。 Next, the present invention senses the reflected radar signal generated by the ultra-wideband technology through the nanosecond pulse near-field sensing technology, and further determines the movement of the object to be tested.
請參見第6圖,其係說明原始雷達信號、經延遲後的原始雷達信號,與反射雷達信號之示意圖。 Please refer to Fig. 6, which is a schematic diagram showing the original radar signal, the delayed original radar signal, and the reflected radar signal.
第一列代表由信號產生單元產生原始雷達信號;第二列代表經延遲一段時間△t的原始雷達信號;以及,利用第三列代表透過天線所接收的反射雷達信號。 The first column represents the original radar signal generated by the signal generating unit; the second column represents the original radar signal delayed by a period of time Δt; and the third column represents the reflected radar signal received through the antenna.
由信號產生單元直接產生的原始雷達信號與反射雷達信號間具有時間差。因此,本發明先將原始雷達信號延遲一段時間後,將時間軸上相對應的延遲後的原始雷達信號與回傳的反射雷達信號的振動變化加總,得出加總後的雷達信號。 There is a time difference between the original radar signal generated directly by the signal generating unit and the reflected radar signal. Therefore, the present invention first delays the original radar signal for a period of time, and sums the vibration changes of the corresponding delayed original radar signal on the time axis and the returned reflected radar signal to obtain the aggregated radar signal.
如前所述,反射雷達信號會跟著待測物體的移動而改變頻率與振動量。據此,延遲後的原始雷達信號與反射雷達信號的振動變化之加總結果也會隨著待測物體的移動方向、移動速度而不同。 As mentioned earlier, the reflected radar signal changes the frequency and amount of vibration following the movement of the object to be tested. Accordingly, the sum of the vibration changes of the delayed original radar signal and the reflected radar signal will also vary with the moving direction and moving speed of the object to be tested.
根據本發明構想之較佳實施例,透過微型化的雷達天線發出低功率的脈衝電波,並根據感測標的(待測物體、使用者的手勢變化)位移而判斷使用者的姿態變化。須留意的是,姿態感測方法能夠感測之姿態類型相當多元,並不以前述橫向移動的例子為限。 According to a preferred embodiment of the present invention, a low-power pulse wave is emitted through the miniaturized radar antenna, and the user's posture change is judged based on the displacement of the sensing target (the object to be measured, the user's gesture change). It should be noted that the type of gesture that the attitude sensing method can sense is quite diverse and is not limited to the aforementioned example of lateral movement.
據此,本發明利用雷達信號的都卜勒效應,先感測並記錄待測物體的操作型態與相對應之振動量變化。接著,於進行非觸控方式之姿態感測時,再根據實際感測結果與記錄之資料的比對結果,判斷待測物體的移動資訊。例如:待測物體是否產生移動,以及實際的移動方向、移動速度等。因此,本發明能透過非接觸的方式,驅使無線裝置做影像切換或其他功能。 Accordingly, the present invention utilizes the Doppler effect of the radar signal to first sense and record the operational pattern of the object to be measured and the corresponding vibration amount change. Then, when the non-touch mode attitude sensing is performed, the movement information of the object to be tested is determined according to the comparison result between the actual sensing result and the recorded data. For example: whether the object to be tested is moving, and the actual moving direction, moving speed, and the like. Therefore, the present invention can drive a wireless device to perform image switching or other functions in a non-contact manner.
請參見第7A圖,其係於可攜式裝置應用姿態感測方法之示意圖。此圖式左上方的信號產生單元73搭配震盪器產生脈波格式的原始雷達信號。原始雷達信號經由濾波器741與開關743後,傳送至雷達天線77。 Please refer to FIG. 7A, which is a schematic diagram of a gesture sensing method applied to a portable device. The signal generating unit 73 at the upper left of this figure cooperates with the oscillator to generate the original radar signal in the pulse wave format. The original radar signal is transmitted to the radar antenna 77 via the filter 741 and the switch 743.
雷達天線77用於傳送原始雷達信號,以及接收反射雷達信號。反射雷達信號透過接收器733接收後,先經由放大器747再接著傳送至混波器735的一端。 The radar antenna 77 is used to transmit the original radar signal and receive the reflected radar signal. The reflected radar signal is received by the receiver 733 and then transmitted to one end of the mixer 735 via the amplifier 747.
在混波器735的另一端,則接收經由延遲器731與開關743、放大器745而傳送的原始雷達信號。 At the other end of the mixer 735, the original radar signal transmitted via the delay 731, the switch 743, and the amplifier 745 is received.
混波器接著將混合了反射雷達信號,以及經延遲後的原始雷達信號的結果(加總雷達信號)傳送至處理器737。接著,信號處理器737根據加總雷達信號而判斷待測物體與姿態感測模組之相對位置的改變。 The mixer then transmits the reflected radar signal and the result of the delayed original radar signal (the summed radar signal) to the processor 737. Next, the signal processor 737 determines a change in the relative position of the object to be tested and the attitude sensing module based on the summed radar signal.
此外,透過儲存模組749的使用,可提供電子裝置判讀姿態感測時的資料庫。即,在儲存模組提供預存之複數個振動量變化與相對應的複數個姿態操作類型。 In addition, through the use of the storage module 749, a database for the electronic device to interpret the attitude sensing can be provided. That is, the storage module provides a plurality of pre-stored plurality of vibration amount changes and corresponding plurality of posture operation types.
其後,控制器76再進一步將信號處理器737的輸出,以及儲存模組749所提供的資料庫,提供上層的應用軟體使用。 Thereafter, the controller 76 further provides the output of the signal processor 737 and the database provided by the storage module 749 for use by the upper application software.
以下,利用第7B圖進一步說明第7A圖的電路實現方式。第7B圖的元件編號均對應於第7A圖,並進一步標示電路元件的連線關係。再者,關於各個模組之間的信號傳送關係,可進一步參看第8圖的說明。 Hereinafter, the circuit implementation of FIG. 7A will be further described using FIG. 7B. The component numbers of Fig. 7B correspond to Fig. 7A, and further indicate the wiring relationship of the circuit components. Furthermore, regarding the signal transmission relationship between the respective modules, the description of FIG. 8 can be further referred to.
請參見第8圖,其係根據本發明構想之較佳實施例,將姿態感測方法應用於姿態感測模組的流程圖。 Please refer to FIG. 8 , which is a flow chart of applying the attitude sensing method to the attitude sensing module according to a preferred embodiment of the present invention.
首先,利用信號產生單元73週期性地以脈波格式產生原始雷達信號(步驟S71)號;其次,透過雷達天線77而傳送原始雷達信號(步驟S73)。 First, the original radar signal is generated in the pulse wave format by the signal generating unit 73 (step S71); secondly, the original radar signal is transmitted through the radar antenna 77 (step S73).
當原始雷達信號觸及待測物體時,待測物體的表面將相對應產生反射雷達信號。需留意的是,隨著待測物體的移動,反射雷達信號的頻率、振幅也會連帶的產生變化。亦即,原始雷達信號會因應待測物體之位置變化,進而產生反射雷達信號(步驟S74)。 When the original radar signal touches the object to be tested, the surface of the object to be tested will correspondingly generate a reflected radar signal. It should be noted that as the object to be measured moves, the frequency and amplitude of the reflected radar signal will also change. That is, the original radar signal changes depending on the position of the object to be measured, thereby generating a reflected radar signal (step S74).
接著,透過雷達天線77與接收器733而接收反射雷達信號(步驟S75);姿態感測模組根據原始雷達信號與反射雷達信號而判斷與待測物體之位置變化相對應的操作型態(步驟S77);以及,根據操作型態而控制電子裝置進行相對應的操作行為(步驟S79)。 Then, the reflected radar signal is received through the radar antenna 77 and the receiver 733 (step S75); the attitude sensing module determines the operation type corresponding to the change of the position of the object to be tested according to the original radar signal and the reflected radar signal (step S77); and controlling the electronic device to perform a corresponding operational behavior according to the operation type (step S79).
請參見第9圖,其係進一步說明第8圖之步驟S77的流程圖。 Please refer to Fig. 9, which is a flow chart for further explaining step S77 of Fig. 8.
步驟S77包含以下步驟:利用延遲器731將原始雷達信號延遲一段時間得出經延遲後的原始雷達信號(步驟S771);利用混波器735將經延遲後的原始雷達信號與反射雷達信號的振動量變化混合後,得出加總雷達信號(步驟S773);根據加總雷達信號而判斷待測物體之位置變化(步驟S775);以及,於資料庫查找與待測物體之位置變化相對應的該操作型態(步驟S777)。 Step S77 includes the following steps: delaying the original radar signal by a delay device 731 to obtain a delayed original radar signal (step S771); using the mixer 735 to vibrate the delayed original radar signal and the reflected radar signal After the quantity change is mixed, the summed radar signal is obtained (step S773); the position change of the object to be tested is determined according to the summed radar signal (step S775); and the database is searched for corresponding to the position change of the object to be tested. This operation type (step S777).
承上,若電子裝置提供儲存模組時,第9圖的流程可進一步於儲存模組中建立資料庫。透過資料庫的建立,在儲存模組提供預存之複數個振動量變化與相對應的複數個姿態操作類型。因此,步驟S777便能透過查表、索引對應、雜湊方式,判斷與待測物體之位置變化相對應的操作型態。 In the above, if the electronic device provides the storage module, the process of FIG. 9 can further establish a database in the storage module. Through the establishment of the database, a plurality of pre-stored vibration quantity changes and corresponding plurality of posture operation types are provided in the storage module. Therefore, in step S777, the operation type corresponding to the change of the position of the object to be tested can be determined through the table lookup, the index correspondence, and the hash mode.
第10圖,其係本發明的電子裝置之方塊圖。在此圖式中,電子裝置80包含了彼此電連接的姿態感測模組81、操作模組83、儲存模組85。關於姿態感測模組81的用途此處不再重述。 Figure 10 is a block diagram of an electronic device of the present invention. In this figure, the electronic device 80 includes an attitude sensing module 81, an operation module 83, and a storage module 85 that are electrically connected to each other. The use of the attitude sensing module 81 will not be repeated here.
其中,儲存模組85用於提供儲存複數個振動量變 化、複數個待測物體之位置變化與複數個操作指令之對應關係的資料庫。據此,姿態感測模組81內的判斷單元可以透過對儲存模組內預存的資料以查表、索引查找的方式,判斷與感測振動量變化相對應之姿態操作。 The storage module 85 is configured to provide a plurality of vibration variables for storing A database of the correspondence between the positional changes of a plurality of objects to be tested and a plurality of operational commands. Accordingly, the determination unit in the attitude sensing module 81 can determine the posture operation corresponding to the change of the sensed vibration amount by means of looking up the table and indexing the data pre-stored in the storage module.
在實際應用時,操作模組83的類型可以根據電子裝置80的用途而不同。 In practical applications, the type of the operation module 83 may vary depending on the use of the electronic device 80.
舉例而言,操作模組83可為顯示面板,因應操作指令而控制顯示畫面的呈現方式。例如:當姿態感測的結果為使用者的手勢向右揮動時,信號處理器根據產生的振動量變化而判斷顯示畫面要進行換頁或更換頻道的動作。 For example, the operation module 83 can be a display panel that controls the presentation manner of the display screen in response to an operation command. For example, when the result of the attitude sensing is that the user's gesture is swung to the right, the signal processor determines the action of the display screen to change pages or replace the channel according to the generated vibration amount change.
或者,操作模組83可為揚聲器,因應操作指令而控制播放音量。例如:當姿態感測的結果為使用者的手勢向右揮動時,產生的振動量變化用於代表播放音量要變大聲。當然,操作模組83並不限於顯示面板與播放模組,例如:若可攜式裝置為微型投影機時,播放模組83指的是用於投映畫面的播放元件。 Alternatively, the operation module 83 can be a speaker that controls the playback volume in response to an operation command. For example, when the result of the gesture sensing is that the user's gesture is swung to the right, the amount of vibration generated is used to represent that the playback volume is louder. Of course, the operation module 83 is not limited to the display panel and the playback module. For example, if the portable device is a pico projector, the playback module 83 refers to a playback component for projecting a screen.
在本發明中,姿態感測模組使用了奈秒脈衝近場感測技術,能以相對簡單的做法進行姿態判斷。也就是說,由於本發明是針對雷達信號進行振動量加總,毋須繁複的計算,而能節省判斷操作類型所需的運算量,讓感測速度得以提升。 In the present invention, the attitude sensing module uses a nanosecond pulse near-field sensing technique to perform posture determination in a relatively simple manner. That is to say, since the present invention is directed to the summation of the vibration amount of the radar signal, complicated calculation is required, and the amount of calculation required for judging the operation type can be saved, and the sensing speed can be improved.
第11圖,其係搭配儲存模組判斷姿態操作類型之示意圖。 Figure 11 is a schematic diagram of determining the type of gesture operation with a storage module.
圖中的第一欄代表使用者實際進行姿態操作的類 型。第二欄代表將經延遲後的原始雷達信號與反射雷達信號加總後得出的加總雷達信號的振動量變化。第三欄代表在顯示面板可能提供的相對應的操作行為。 The first column in the figure represents the class in which the user actually performs the gesture operation. type. The second column represents the change in the vibration amount of the summed radar signal obtained by summing the delayed original radar signal and the reflected radar signal. The third column represents the corresponding operational behavior that may be provided on the display panel.
當使用者的手勢為向左揮動時,加總信號的振動量變化將對應於第一振動量變化。此時,可以根據資料庫的記錄判斷此種振福模式實際上對應的多媒體播放行為。例如:若操作模組為一顯示面板時,則顯示畫面的游標可能被向左移動,進而顯示出一個左移軌跡。 When the user's gesture is to swing to the left, the change in the amount of vibration of the sum signal will correspond to the change in the first amount of vibration. At this time, according to the record of the database, the multimedia playing behavior actually corresponding to the vibration mode can be judged. For example, if the operation module is a display panel, the cursor of the display screen may be moved to the left, thereby displaying a left shift track.
當使用者的手勢為向右揮動時,加總信號的振動量變化將對應於第二振動量變化。此時,可以根據資料庫的記錄判斷此種振福模式實際上對應的多媒體播放行為。例如:若操作模組為一顯示面板時,則顯示畫面的游標可能被向右移動,進而顯示出一個右移軌跡。 When the user's gesture is to swing to the right, the change in the amount of vibration of the sum signal will correspond to the change in the second amount of vibration. At this time, according to the record of the database, the multimedia playing behavior actually corresponding to the vibration mode can be judged. For example, if the operation module is a display panel, the cursor of the display screen may be moved to the right, thereby displaying a right shift track.
當使用者的手勢為向上揮動時,加總信號的振動量變化將對應於第三振動量變化。此時,可以根據資料庫的記錄判斷此種振福模式實際上對應的多媒體播放行為。例如:若操作模組為一顯示面板時,則顯示畫面的游標可能被向右移動,進而顯示出一個上移軌跡。 When the user's gesture is to swing upward, the change in the amount of vibration of the sum signal will correspond to the change in the third amount of vibration. At this time, according to the record of the database, the multimedia playing behavior actually corresponding to the vibration mode can be judged. For example, if the operation module is a display panel, the cursor of the display screen may be moved to the right, thereby displaying an upward movement track.
當然,使用者進行姿態操作的類型並不以此為限,且姿態操作的類型與顯示面板所提供的相對應之操作行為之間的對應關係也不一定以此為限。例如:當使用者的手勢為向上揮動時,雖然同樣對應於第三振動量變化,但是的多媒體播放行為卻是將揚聲器的播放音量調弱。 Of course, the type of the gesture operation performed by the user is not limited thereto, and the correspondence between the type of the gesture operation and the corresponding operation behavior provided by the display panel is not necessarily limited thereto. For example, when the gesture of the user is waving upward, although the third vibration amount is also changed, the multimedia playing behavior is to weaken the playing volume of the speaker.
在更進一步的應用中,姿態感測模組可包含複數個脈衝產生器與複數個接收器。亦即,可以提供多組的原始雷 達信號與反射雷達信號,進而提升姿態感測的精準度。 In still further applications, the attitude sensing module can include a plurality of pulse generators and a plurality of receivers. That is, multiple sets of original mines can be provided Signal and reflection radar signals, which enhance the accuracy of attitude sensing.
接著說明以多個姿態感測模組排列成陣列時,如何感測使用者的手勢。當電子裝置使用多個姿態感測模組時,可進一步包含一控制模組。將控制模組電連接於各個姿態感測模組,進而使控制模組接收並彙整各個姿態感測模組所產生的資訊。此部分之操作與判斷可由本案相關領域者所自由應用,因而不予贅述。 Next, how to sense the gesture of the user when a plurality of posture sensing modules are arranged in an array will be described. When the electronic device uses multiple attitude sensing modules, it may further include a control module. The control module is electrically connected to each of the attitude sensing modules, so that the control module receives and summarizes the information generated by each of the attitude sensing modules. The operation and judgment of this part can be freely applied by the relevant fields in this case, and thus will not be described.
以下假設將9個姿態感測模組分別編號,並以3*3的方式排列。因此,第一列由左而右分別為第一姿態感測模組101、第二姿態感測模組102、第三姿態感測模組103;第二列由左而右分別為第四姿態感測模組104、第五姿態感測模組105、第六姿態感測模組106;以及,第三列由左而右分別為第七姿態感測模組107、第八姿態感測模組108、第九姿態感測模組109。 The following assumes that the nine attitude sensing modules are numbered separately and arranged in a 3*3 manner. Therefore, the first column is the first attitude sensing module 101, the second attitude sensing module 102, and the third attitude sensing module 103 from left to right; the second column is the fourth posture from left to right. The sensing module 104, the fifth attitude sensing module 105, and the sixth attitude sensing module 106; and the third column is the seventh attitude sensing module 107 and the eighth attitude sensing module from left to right respectively. Group 108, ninth attitude sensing module 109.
以下的例子假設姿態感測模組的個數為9個,但是實際應用時,姿態感測模組的個數與排列方式並不以此為限。 The following example assumes that the number of posture sensing modules is nine, but in actual application, the number and arrangement of the attitude sensing modules are not limited thereto.
請參見第12A圖,其係以俯視方向呈現以陣列方式排列姿態感測模組,並感測使用者將手勢由左向右揮動之示意圖。當使用者的手勢由左向右揮動時,首先由第一姿態感測模組101、第四姿態感測模組104、第七姿態感測模組107感測較為強烈的振動量變化。 Referring to FIG. 12A, the attitude sensing module is arranged in an array in a top view direction, and the user is sensed to swing the gesture from left to right. When the user's gesture is swung from left to right, the first attitude sensing module 101, the fourth attitude sensing module 104, and the seventh attitude sensing module 107 first sense a relatively strong vibration amount change.
接著,由第二姿態感測模組102、第五姿態感測模組105、第八姿態感測模組108感測較為強烈的振動量變化。 Then, the second attitude sensing module 102, the fifth attitude sensing module 105, and the eighth attitude sensing module 108 sense a relatively strong vibration amount change.
其後,由第三姿態感測模組103、第六姿態感測模組 106、第九姿態感測模組109感測較為強烈的振動量變化。 Thereafter, the third attitude sensing module 103 and the sixth attitude sensing module 106. The ninth attitude sensing module 109 senses a relatively strong vibration quantity change.
因此,一旦控制模組判斷電子裝置內的姿態感測模組具有前述的振動量變化的情形時,便可參考儲存模組內部的資訊,判斷使用者的手勢為由左而右。 Therefore, once the control module determines that the attitude sensing module in the electronic device has the aforementioned vibration amount change, the information inside the storage module can be referred to, and the user's gesture is determined to be left and right.
請參見第12B圖,其係以俯視方向呈現以陣列方式排列姿態感測模組,並感測使用者將手勢由右向左揮動之示意圖。此時,控制模組所接收到各姿態感測模組的振動量變化順序將與第12A圖反向。 Referring to FIG. 12B, the attitude sensing module is arranged in an array in a top view direction, and the user is sensed to swing the gesture from right to left. At this time, the order of change of the vibration amount of each attitude sensing module received by the control module will be reversed from FIG. 12A.
請參見第12C圖,其係以俯視方向呈現以陣列方式排列姿態感測模組,並感測使用者將手勢由上向下揮動之示意圖。 Referring to FIG. 12C, the attitude sensing module is arranged in an array in a top view direction, and the user is sensed to swing the gesture from top to bottom.
同理,此時的姿態感測模組將依照:第一姿態感測模組101、第二姿態感測模組102、第三姿態感測模組103優先感測較大振動量;其次由第四姿態感測模組104、第五姿態感測模組105、第六姿態感測模組106感測較大振動量;以及,最後由第七姿態感測模組107、第八姿態感測模組108、第九姿態感測模組109感測較大振動量的順序而判斷使用者的手勢為由上向下。 Similarly, the attitude sensing module at this time will preferentially sense a large amount of vibration according to the first attitude sensing module 101, the second attitude sensing module 102, and the third attitude sensing module 103; The fourth attitude sensing module 104, the fifth attitude sensing module 105, and the sixth attitude sensing module 106 sense a large amount of vibration; and finally, the seventh attitude sensing module 107 and the eighth posture sense The measurement module 108 and the ninth attitude sensing module 109 sense the order of the large vibration amount and determine that the user's gesture is from top to bottom.
請參見第12D圖,其係以俯視方向呈現以陣列方式排列姿態感測模組,並感測使用者將手勢由下向上揮動之示意圖。此時,控制模組所接收到各姿態感測模組的振動量變化順序將與第12C圖反向。 Referring to FIG. 12D, the attitude sensing module is arranged in an array in a top view direction, and the user is sensed to swing the gesture from bottom to top. At this time, the order of change of the vibration amount of each attitude sensing module received by the control module will be reversed from the 12Cth map.
請參見第13圖,其係以側視方向呈現以陣列方式排列姿態感測模組,並感測使用者將手勢由遠而近揮動之示意圖。由於姿態感測模組以陣列方式排列,此圖式僅繪式 第一姿態感測模組101、第二姿態感測模組102、第三姿態感測模組103的側面。 Referring to FIG. 13 , the gesture sensing module is arranged in an array in a side view direction, and the user is sensed to swing the gesture from far to near. Since the attitude sensing modules are arranged in an array, this pattern is only drawn The side of the first attitude sensing module 101, the second attitude sensing module 102, and the third attitude sensing module 103.
當使用者的手勢由遠而靠近姿態感測模組時,各個姿態感測模組所接收到的振動頻率將會增加。此時,控制模組便能判定使用者的手勢是以由遠而近的方向移動。 When the user's gesture is far from the attitude sensing module, the vibration frequency received by each attitude sensing module will increase. At this point, the control module can determine that the user's gesture is moving in a far and near direction.
當姿態感測模組的個數增加時,綜合各個姿態感測模組所能得出的操作行為之類型也越多。實際應用時,可以根據所需要的感測精密程度而決定姿態感測模組的個數。 When the number of attitude sensing modules is increased, the types of operational behaviors that can be obtained by integrating the various attitude sensing modules are also increased. In practical applications, the number of attitude sensing modules can be determined according to the required degree of sensing precision.
請參見第14圖,其係根據本發明之實施例,將姿態感測模組內嵌於智慧型手機之示意圖。 Please refer to FIG. 14, which is a schematic diagram of embedding a gesture sensing module in a smart phone according to an embodiment of the invention.
此圖式假設姿態感測模組92被設置在智慧型手機91的正面。當然,姿態感測模組92實際設置的位置並不以此為限。 This figure assumes that the attitude sensing module 92 is disposed on the front side of the smart phone 91. Of course, the position actually set by the attitude sensing module 92 is not limited thereto.
同樣的,姿態感測模組亦可被裝設於微投影機、平板電腦等其他可攜式裝置。 Similarly, the attitude sensing module can also be installed in other portable devices such as micro projectors and tablet computers.
根據本發明構想,實際使用奈秒脈衝近場感測技術的位移判斷資訊,以及如何搭配應用軟體、周邊裝置使用均可因應系統需求而彈性變化。 According to the concept of the present invention, the displacement judgment information actually using the nanosecond pulse near-field sensing technology, and how to use the application software and the peripheral device can be elastically changed according to the system requirements.
舉例來說,於可攜式裝置提供身分辨識功能,當使用者的操作姿態符合預設的操作姿態時,才能通過身分識別並進行後續的操作行為。或者,提供具有定位功能的軟體,根據手勢移動的軌跡,而於手勢移動的同時,同步於可攜式裝置的顯示面板上顯示相對應的移動軌跡。 For example, the portable device provides an identity recognition function, and when the user's operation posture conforms to the preset operation posture, the identity recognition and subsequent operation behavior can be performed. Alternatively, the software having the positioning function is provided, and according to the trajectory of the gesture movement, the corresponding movement trajectory is displayed on the display panel of the portable device while the gesture is moving.
此外,可攜式裝置也可提供資料傳輸的功能,透過無線或有線等傳輸方式,姿態感測模組偵測的姿態資訊串送 給其他裝置。 In addition, the portable device can also provide the function of data transmission, and the gesture information detected by the attitude sensing module is transmitted through a wireless or wired transmission mode. Give other devices.
本發明的姿態感測方法以超寬頻技術傳送奈秒脈衝信號,搭配脈衝信號的近場感測技術之作法,除了適合被應用於智慧型手機、微投影機等可攜式裝置外,亦可被應用於其他類型的電子裝置。舉例而言,電子裝置可能是用於播放電視節目的顯示器、電梯設備或對講設備。 The attitude sensing method of the present invention transmits a nanosecond pulse signal by using an ultra-wideband technology, and the near field sensing technology of the pulse signal is suitable for being applied to a portable device such as a smart phone or a micro projector. It is applied to other types of electronic devices. For example, the electronic device may be a display for playing a television program, an elevator device, or an intercom device.
以播放電視節目的顯示器為例,可以控制顯示器因應操作型態而進行轉換頻道、調整音量等調整操作。此部分進行多媒體相關的操作行為因為與可攜式裝置較為類似,此處不多詳述。 Taking a display for playing a television program as an example, it is possible to control the display to perform channel adjustment, volume adjustment, and the like in response to the operation mode. This part of the multimedia-related operational behavior is similar to the portable device, not detailed here.
接著以對講設備為例,搭配本發明的姿態感測方法時,可以控制對講設備因應操作型態而進行通話操作。 Taking the intercom device as an example, when the attitude sensing method of the present invention is used, the intercom device can be controlled to perform a call operation according to the operation mode.
例如:將具有本發明之姿態感測方法的對講機安裝於醫院時,醫護人員可能因為帶著手套而不適合直接按下對講機的通話按鍵,或者有些病人因為在病床上不方便起身按下對講機的通話按鍵而又需要請醫護人員幫忙時。 For example, when the walkie-talkie having the posture sensing method of the present invention is installed in a hospital, the medical staff may not be suitable for directly pressing the talk button of the walkie-talkie because of wearing gloves, or some patients may not get up and press the walkie-talkie call because they are inconvenient on the hospital bed. When you press the button, you need to ask the medical staff for help.
如果對講機能夠因應醫護人員或病人的手勢揮動而進行通話時,便能改善此種情況下操作對講設備的不便。 If the walkie-talkie can make a call in response to the gesture of the medical staff or the patient, the inconvenience of operating the intercom device in this case can be improved.
再以電梯設備為例,搭配本發明的姿態感測方法時,可以控制電梯設備因應操作型態而進行升降操作。同樣以醫院為例,由於到醫院看診的病人可能帶有不同的病菌或病毒,如果電梯能夠以非觸控方式操作時,也可以減少交互感染的情形。 Taking the elevator equipment as an example, when the attitude sensing method of the present invention is used, the elevator equipment can be controlled to perform the lifting operation according to the operation type. Similarly, in the case of a hospital, since patients visiting a hospital may have different germs or viruses, if the elevator can operate in a non-touch manner, the situation of cross-infection can also be reduced.
例如:當感測到使用者揮動手勢朝上時,判斷電梯朝上;當感測到使用者揮動手勢的距離越來越靠近電子裝置 時,判斷電梯門應該維持開啟;當感測到使用者揮動手勢的距離越來越遠時,判斷電梯門可以關閉了;或者,判斷使用者在空中移動手勢的軌跡,進而判斷電梯要前往的樓層等。 For example, when it is sensed that the user's waving gesture is facing upward, the elevator is judged to face upward; when the distance of the user's waving gesture is sensed, the electronic device is getting closer and closer to the electronic device. When it is determined that the elevator door should be kept open; when it is sensed that the distance of the user's waving gesture is getting farther and farther, it is judged that the elevator door can be closed; or, the user is judged to move the gesture of the gesture in the air, and then the elevator is determined to go. Floor and so on.
如前所述,超寬頻技術提供了一種以超寬頻技術搭配奈秒脈衝近場感測技術,達到以非接觸方式進行姿態感測的作法。更進一步的,採用本發明的做法時,不但能改善觸控操作時的空間問題,還具有體積小、耗電少、成本低等優點。再者,本發明可感測達5公尺的距離、可同時感測多個待測物體的移動,且於待測物體的移動速度較快時,仍可以辨識出待測物體的移動方式。 As mentioned above, the ultra-wideband technology provides an ultra-wideband technology with nanosecond pulse near-field sensing technology to achieve attitude sensing in a non-contact manner. Furthermore, when the method of the present invention is adopted, not only the space problem in the touch operation can be improved, but also the advantages of small size, low power consumption, low cost, and the like. Furthermore, the invention can sense the distance of up to 5 meters, can simultaneously sense the movement of a plurality of objects to be tested, and can still recognize the movement mode of the object to be tested when the moving speed of the object to be tested is fast.
綜上所述,將本發明搭配各種類型的電子裝置使用時,能夠因應各種場合而簡化電子裝置的操作。 In summary, when the present invention is used in conjunction with various types of electronic devices, the operation of the electronic device can be simplified in response to various occasions.
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
11、91‧‧‧智慧型手機 11, 91‧‧‧ smart phones
11a‧‧‧顯示螢幕 11a‧‧‧display screen
13‧‧‧微型投影機 13‧‧‧Micro Projector
13a‧‧‧操作介面 13a‧‧‧Operator interface
13b‧‧‧鏡頭 13b‧‧‧ lens
21、57、77‧‧‧雷達天線 21, 57, 77‧‧‧ radar antenna
22、59‧‧‧待測物體 22, 59‧‧‧ objects to be tested
51、81、92‧‧‧姿態感測模組 51, 81, 92‧‧‧ attitude sensing module
53、73‧‧‧信號產生單元 53, 73‧‧‧Signal generating unit
55‧‧‧判斷單元 55‧‧‧judging unit
531、731‧‧‧延遲器 531, 731‧‧‧ retarder
533、733‧‧‧接收器 533, 733‧‧‧ Receiver
535、735‧‧‧混波器 535, 735‧‧‧ Mixer
537、737‧‧‧信號處理器 537, 737‧‧‧ signal processor
741‧‧‧濾波器 741‧‧‧ filter
743‧‧‧開關 743‧‧‧ switch
745、747‧‧‧放大器 745, 747‧‧ amp amplifier
76‧‧‧控制器 76‧‧‧ Controller
80‧‧‧電子裝置 80‧‧‧Electronic devices
83‧‧‧操作模組 83‧‧‧Operating module
749、85‧‧‧儲存模組 749, 85‧‧‧ storage modules
101‧‧‧第一姿態感測模組 101‧‧‧First attitude sensing module
102‧‧‧第二姿態感測模組 102‧‧‧Second attitude sensing module
103‧‧‧第三姿態感測模組 103‧‧‧3rd attitude sensing module
104‧‧‧第四姿態感測模組 104‧‧‧Four attitude sensing module
105‧‧‧第五姿態感測模組 105‧‧‧ fifth attitude sensing module
106‧‧‧第六姿態感測模組 106‧‧‧ sixth attitude sensing module
107‧‧‧第七姿態感測模組 107‧‧‧ seventh attitude sensing module
108‧‧‧第八姿態感測模組 108‧‧‧eightth attitude sensing module
109‧‧‧第九姿態感測模組 109‧‧‧Ninth Attitude Sensing Module
第1A圖,其係根據習用技術所提供的智慧型手機之示意圖。 Figure 1A is a schematic diagram of a smart phone provided according to the conventional technology.
第1B圖,其係根據習用技術所提供的微型投影機之示意圖。 Figure 1B is a schematic view of a pico projector provided in accordance with conventional techniques.
第2圖,其係利用雷達信號的都普勒現象感測靜止手 勢之示意圖。 Figure 2, which uses the Doppler phenomenon of the radar signal to sense the stationary hand. Schematic diagram of the potential.
第3圖,其係利用雷達信號的都普勒現象感測手勢向左移動之示意圖。 Fig. 3 is a schematic diagram of sensing the gesture to the left by using the Doppler phenomenon of the radar signal.
第4A圖,其係利用雷達信號感測手勢向右移動之示意圖。 Figure 4A is a schematic diagram of the use of a radar signal to sense a gesture moving to the right.
第4B圖,其係利用雷達信號感測手勢快速向右移動之示意圖。 Figure 4B is a schematic diagram of the use of a radar signal to sense a gesture to move quickly to the right.
第5圖,其係利用姿態感測模組傳送原始雷達信號,以及接收反射雷達信號之示意圖。 Figure 5 is a schematic diagram of transmitting an original radar signal using an attitude sensing module and receiving a reflected radar signal.
第6圖,其係說明原始雷達信號、經延遲後的原始雷達信號,與反射雷達信號之示意圖。 Figure 6 is a schematic diagram showing the original radar signal, the delayed original radar signal, and the reflected radar signal.
第7A圖,其係於可攜式裝置應用姿態感測方法之示意圖。 FIG. 7A is a schematic diagram of a gesture sensing method applied to a portable device.
第7B圖,其係進一步說明第7A圖的電路實現方式之示意圖。 Figure 7B is a schematic diagram further illustrating the implementation of the circuit of Figure 7A.
第8圖,其係根據本發明構想之較佳實施例,將姿態感測方法應用於姿態感測模組的流程圖。 Figure 8 is a flow diagram of a gesture sensing method applied to a gesture sensing module in accordance with a preferred embodiment of the present invention.
第9圖,其係進一步說明第8圖之步驟S77的流程圖。 Fig. 9 is a flow chart for further explaining step S77 of Fig. 8.
第10圖,其係於可攜式裝置中,搭配姿態感測模組與面板之方塊圖。 Figure 10 is a block diagram of a gesture sensing module and a panel in a portable device.
第11圖,其係搭配儲存模組判斷姿態操作類型之示意圖。 Figure 11 is a schematic diagram of determining the type of gesture operation with a storage module.
第12A圖,其係以俯視方向呈現以陣列方式排列姿態 感測模組,並感測使用者將手勢由左向右揮動之示意圖。 Figure 12A, which is arranged in an array in a top view Sensing the module and sensing the user's schematic diagram of waving the gesture from left to right.
第12B圖,其係以俯視方向呈現以陣列方式排列姿態感測模組,並感測使用者將手勢由右向左揮動之示意圖。 In Fig. 12B, the attitude sensing module is arranged in an array in a top view direction, and the user is sensed to swing the gesture from right to left.
第12C圖,其係以俯視方向呈現以陣列方式排列姿態感測模組,並感測使用者將手勢由下向上揮動之示意圖。 In Fig. 12C, the attitude sensing module is arranged in an array in a top view direction, and the user is sensed to swing the gesture from bottom to top.
第12D圖,其係以俯視方向呈現以陣列方式排列姿態感測模組,並感測使用者將手勢由上向下揮動之示意圖。 In the 12th figure, the attitude sensing module is arranged in an array in a top view direction, and the user is sensed to swing the gesture from top to bottom.
第13圖,其係以側視方向呈現以陣列方式排列姿態感測模組,並感測使用者將手勢由遠而近揮動之示意圖。 Figure 13 is a schematic diagram showing the arrangement of the attitude sensing module in an array in a side view direction and sensing the user's gesture of waving the gesture from far to near.
第14圖,其係根據本發明之實施例,將姿態感測模組內嵌於智慧型手機之示意圖。 Figure 14 is a schematic diagram of embedding a gesture sensing module in a smart phone in accordance with an embodiment of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101147900A TW201425974A (en) | 2012-12-17 | 2012-12-17 | Apparatus and method for gesture detecting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101147900A TW201425974A (en) | 2012-12-17 | 2012-12-17 | Apparatus and method for gesture detecting |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201425974A true TW201425974A (en) | 2014-07-01 |
Family
ID=51725427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101147900A TW201425974A (en) | 2012-12-17 | 2012-12-17 | Apparatus and method for gesture detecting |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201425974A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106662639A (en) * | 2014-10-02 | 2017-05-10 | 谷歌公司 | Non-line-of-sight radar-based gesture recognition |
TWI601514B (en) * | 2015-01-29 | 2017-10-11 | 明泰科技股份有限公司 | Intelligent monitoring system and method, and camera using the same |
US10310621B1 (en) | 2015-10-06 | 2019-06-04 | Google Llc | Radar gesture sensing using existing data protocols |
CN109975799A (en) * | 2019-03-13 | 2019-07-05 | 谭伟 | A kind of method and its system of radar identification material |
US10409385B2 (en) | 2014-08-22 | 2019-09-10 | Google Llc | Occluded gesture recognition |
US10496182B2 (en) | 2015-04-30 | 2019-12-03 | Google Llc | Type-agnostic RF signal representations |
US10642367B2 (en) | 2014-08-07 | 2020-05-05 | Google Llc | Radar-based gesture sensing and data transmission |
US10817070B2 (en) | 2015-04-30 | 2020-10-27 | Google Llc | RF-based micro-motion tracking for gesture tracking and recognition |
US10936085B2 (en) | 2015-05-27 | 2021-03-02 | Google Llc | Gesture detection and interactions |
US10948996B2 (en) | 2014-06-03 | 2021-03-16 | Google Llc | Radar-based gesture-recognition at a surface of an object |
US11140787B2 (en) | 2016-05-03 | 2021-10-05 | Google Llc | Connecting an electronic component to an interactive textile |
US11169988B2 (en) | 2014-08-22 | 2021-11-09 | Google Llc | Radar recognition-aided search |
-
2012
- 2012-12-17 TW TW101147900A patent/TW201425974A/en unknown
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10948996B2 (en) | 2014-06-03 | 2021-03-16 | Google Llc | Radar-based gesture-recognition at a surface of an object |
US10642367B2 (en) | 2014-08-07 | 2020-05-05 | Google Llc | Radar-based gesture sensing and data transmission |
US10936081B2 (en) | 2014-08-22 | 2021-03-02 | Google Llc | Occluded gesture recognition |
US11169988B2 (en) | 2014-08-22 | 2021-11-09 | Google Llc | Radar recognition-aided search |
US11816101B2 (en) | 2014-08-22 | 2023-11-14 | Google Llc | Radar recognition-aided search |
US10409385B2 (en) | 2014-08-22 | 2019-09-10 | Google Llc | Occluded gesture recognition |
US11221682B2 (en) | 2014-08-22 | 2022-01-11 | Google Llc | Occluded gesture recognition |
US11163371B2 (en) | 2014-10-02 | 2021-11-02 | Google Llc | Non-line-of-sight radar-based gesture recognition |
CN106662639B (en) * | 2014-10-02 | 2019-07-26 | 谷歌有限责任公司 | The gesture recognition based on radar of non line of sight |
US10664059B2 (en) | 2014-10-02 | 2020-05-26 | Google Llc | Non-line-of-sight radar-based gesture recognition |
CN106662639A (en) * | 2014-10-02 | 2017-05-10 | 谷歌公司 | Non-line-of-sight radar-based gesture recognition |
US9958542B2 (en) | 2015-01-29 | 2018-05-01 | Alpha Networks Inc. | Intelligent monitoring system and method |
TWI601514B (en) * | 2015-01-29 | 2017-10-11 | 明泰科技股份有限公司 | Intelligent monitoring system and method, and camera using the same |
US11709552B2 (en) | 2015-04-30 | 2023-07-25 | Google Llc | RF-based micro-motion tracking for gesture tracking and recognition |
US10496182B2 (en) | 2015-04-30 | 2019-12-03 | Google Llc | Type-agnostic RF signal representations |
US10817070B2 (en) | 2015-04-30 | 2020-10-27 | Google Llc | RF-based micro-motion tracking for gesture tracking and recognition |
US10936085B2 (en) | 2015-05-27 | 2021-03-02 | Google Llc | Gesture detection and interactions |
US11256335B2 (en) | 2015-10-06 | 2022-02-22 | Google Llc | Fine-motion virtual-reality or augmented-reality control using radar |
US10310621B1 (en) | 2015-10-06 | 2019-06-04 | Google Llc | Radar gesture sensing using existing data protocols |
US10908696B2 (en) | 2015-10-06 | 2021-02-02 | Google Llc | Advanced gaming and virtual reality control using radar |
US10705185B1 (en) | 2015-10-06 | 2020-07-07 | Google Llc | Application-based signal processing parameters in radar-based detection |
US10540001B1 (en) | 2015-10-06 | 2020-01-21 | Google Llc | Fine-motion virtual-reality or augmented-reality control using radar |
US10503883B1 (en) | 2015-10-06 | 2019-12-10 | Google Llc | Radar-based authentication |
US11132065B2 (en) | 2015-10-06 | 2021-09-28 | Google Llc | Radar-enabled sensor fusion |
US11175743B2 (en) | 2015-10-06 | 2021-11-16 | Google Llc | Gesture recognition using multiple antenna |
US10459080B1 (en) | 2015-10-06 | 2019-10-29 | Google Llc | Radar-based object detection for vehicles |
US10401490B2 (en) | 2015-10-06 | 2019-09-03 | Google Llc | Radar-enabled sensor fusion |
US12117560B2 (en) | 2015-10-06 | 2024-10-15 | Google Llc | Radar-enabled sensor fusion |
US10823841B1 (en) | 2015-10-06 | 2020-11-03 | Google Llc | Radar imaging on a mobile computing device |
US11481040B2 (en) | 2015-10-06 | 2022-10-25 | Google Llc | User-customizable machine-learning in radar-based gesture detection |
US11385721B2 (en) | 2015-10-06 | 2022-07-12 | Google Llc | Application-based signal processing parameters in radar-based detection |
US10768712B2 (en) | 2015-10-06 | 2020-09-08 | Google Llc | Gesture component with gesture library |
US11592909B2 (en) | 2015-10-06 | 2023-02-28 | Google Llc | Fine-motion virtual-reality or augmented-reality control using radar |
US11656336B2 (en) | 2015-10-06 | 2023-05-23 | Google Llc | Advanced gaming and virtual reality control using radar |
US11693092B2 (en) | 2015-10-06 | 2023-07-04 | Google Llc | Gesture recognition using multiple antenna |
US11698438B2 (en) | 2015-10-06 | 2023-07-11 | Google Llc | Gesture recognition using multiple antenna |
US11698439B2 (en) | 2015-10-06 | 2023-07-11 | Google Llc | Gesture recognition using multiple antenna |
US12085670B2 (en) | 2015-10-06 | 2024-09-10 | Google Llc | Advanced gaming and virtual reality control using radar |
US10379621B2 (en) | 2015-10-06 | 2019-08-13 | Google Llc | Gesture component with gesture library |
US11140787B2 (en) | 2016-05-03 | 2021-10-05 | Google Llc | Connecting an electronic component to an interactive textile |
CN109975799A (en) * | 2019-03-13 | 2019-07-05 | 谭伟 | A kind of method and its system of radar identification material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201425974A (en) | Apparatus and method for gesture detecting | |
KR102051418B1 (en) | User interface controlling device and method for selecting object in image and image input device | |
KR102169206B1 (en) | Haptic feedback control system | |
US10656715B2 (en) | Systems and methods for a haptically-enabled projected user interface | |
CN105446646B (en) | Content input method, device and touch control device based on dummy keyboard | |
CN110286865A (en) | A kind of display methods and electronic equipment of touch screen | |
KR20140114913A (en) | Apparatus and Method for operating sensors in user device | |
EP2284655A2 (en) | Method and apparatus for controlling electronic device using user interaction | |
EP2710446A1 (en) | Gesture recognition using plural sensors | |
US20140282204A1 (en) | Key input method and apparatus using random number in virtual keyboard | |
US9870139B2 (en) | Portable apparatus and method for sharing content with remote device thereof | |
SE1350066A1 (en) | Scalable input from tracked object in touch-free user interface | |
CN108476339B (en) | Remote control method and terminal | |
TW201516844A (en) | Apparatus and method for selecting object | |
CN107562288A (en) | Response method based on infrared contactor control device, infrared contactor control device and medium | |
US11209914B1 (en) | Method and apparatus for detecting orientation of electronic device, and storage medium | |
CN104270664B (en) | Light pen remote control, the system and method for realizing intelligent operating platform input control | |
US11221760B2 (en) | Information processing apparatus, information processing method, and storage medium | |
CN109618234A (en) | Video playing control method, device, mobile terminal and storage medium | |
CN103345358A (en) | Display device and information processing method thereof | |
US9292107B1 (en) | Mobile telephone as computer mouse | |
KR20130115711A (en) | Remote control device and method for providing interface of the same | |
KR20080017194A (en) | Wireless mouse and driving method thereof | |
JP6221332B2 (en) | Operation device and information processing device | |
KR20180031238A (en) | Mobile terminal and method for controlling the same |