TW201405714A - Nonvolatile memory device - Google Patents
Nonvolatile memory device Download PDFInfo
- Publication number
- TW201405714A TW201405714A TW101126718A TW101126718A TW201405714A TW 201405714 A TW201405714 A TW 201405714A TW 101126718 A TW101126718 A TW 101126718A TW 101126718 A TW101126718 A TW 101126718A TW 201405714 A TW201405714 A TW 201405714A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- electrode
- volatile memory
- buffer layer
- voltage
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
本發明揭露關於揮發性記憶體元件,特別是有關於一種使用有機材料的非揮發性記憶體元件。 The present invention relates to volatile memory components, and more particularly to a non-volatile memory component using an organic material.
記憶體元件可分為揮發性記憶體及非揮發性記憶體元件。動態隨機存取記憶體(dynamic random access memory,DRAM)通常作為揮發性記憶體元件使用,而快閃記憶體(flash memory)通常作為非揮發性記憶體元件使用。動態隨機存取記憶體在其一端括一電晶體及一電容器,且藉由充電(charges)或放電(discharges)電容器(capacitor)以讀取其狀態。然而,動態隨機存取記憶體需要連續地對電容器再充電(recharge)。換句話說,若無提供電源,動態隨機存取記憶體中的資料會因漏電流(leakage current)而消失。因此,需要大量電力消耗來保存資料。再者,快閃記憶體包括堆疊的浮置閘極以及控制閘極。根據施加於控制閘極及通道區域的電壓利用富爾諾罕穿隧(Fowler-Nordheim tunneling,F-N tunneling),藉由在改變浮置閘極中的電荷量之後測量臨限電壓來分辨資料。然而,由於快閃記憶體利用富爾諾罕穿隧,因此其所使用的電壓相對非常高。再者,由於寫入及讀取資料是以預定順序進行,資料處理變得較為緩慢。 Memory components can be divided into volatile memory and non-volatile memory components. Dynamic random access memory (DRAM) is commonly used as a volatile memory component, and flash memory is commonly used as a non-volatile memory component. The DRAM includes a transistor and a capacitor at one end thereof, and its state is read by charging or discharging a capacitor. However, dynamic random access memory requires continuous recharging of the capacitor. In other words, if no power is supplied, the data in the DRAM will disappear due to the leakage current. Therefore, a large amount of power consumption is required to save the data. Furthermore, the flash memory includes stacked floating gates and control gates. The Fowler-Nordheim tunneling (F-N tunneling) is used to determine the threshold voltage by changing the amount of charge in the floating gate according to the voltage applied to the control gate and the channel region. However, since the flash memory utilizes the Furnohan tunneling, the voltage used is relatively high. Furthermore, since writing and reading data are performed in a predetermined order, data processing becomes slower.
為了克服動態隨機存取記憶體(DRAM)以及快閃記憶體以上的限制,及實施具備價值的次世代記憶體元件,許多研究正在進行中。根據構成記憶體電池的材料(亦即基本單元),許 多次世代記憶體元件的研究導向不同的方向。換句話說,無論基於電流施加於特定材料後,基於材料變成低電阻結晶狀態(low-resistance crystalline state)或高電阻非晶形狀態(high-resistance amorphous state);或者在電源施加於材料後透過鐵電性質(ferroelectric property)以具有自發性極化性質(spontaneous polarization property),藉此來使材料作為記憶體元件;或者利用鐵磁性材料透過磁場而產生的N及S極性質以儲存材料來嘗試儲存資料,皆積極進行中。另外,利用具有兩種不同的導電性質的導電有機材料,以形成記憶體元件之研究正積極地被進行。 In order to overcome the limitations of dynamic random access memory (DRAM) and flash memory, and to implement valuable next generation memory components, many studies are underway. According to the material constituting the memory battery (ie, the basic unit), The study of multiple generations of memory components leads to different directions. In other words, whether the material is changed to a low-resistance crystalline state or a high-resistance amorphous state, whether based on a current applied to a specific material; or through the iron after the power is applied to the material The ferroelectric property has a spontaneous polarization property whereby the material is used as a memory element; or the N and S pole properties produced by the ferromagnetic material passing through the magnetic field are attempted to store the material. The information is actively in progress. In addition, research using a conductive organic material having two different conductive properties to form a memory element is actively being carried out.
由於非揮發性記憶體元件利用具有較低驅動電壓及優異雙穩態性質(bistable property)的導電有機材料,被評價為較優異的元件。又,由於資料保持時間(data retention time)變得較長,且依據重複資料程式化(repeatedly programming)及抹除資料的性質改變較少,被評價為較優異的元件。因此,利用具有以上特性的有機材料來實現非揮發性記憶體的研究已在進行中。 Since the non-volatile memory element utilizes a conductive organic material having a lower driving voltage and excellent bistable property, it is evaluated as a superior element. Moreover, since the data retention time becomes long, and the nature of the repeated data programming and the erased data is less changed, it is evaluated as a superior component. Therefore, research on non-volatile memory using organic materials having the above characteristics has been underway.
另外,美國專利第6,747,321號提出一種記憶體元件,其有一作為肖特基二極體(Schottky diode)的特殊層,其插入於記憶體層與電極層之間。換句話說,美國專利第6,747,321號有一種堆疊著記憶體層與使用肖特基二極體之選擇元件(selection device)的結構。然而,關於具有選擇元件的記憶體元件,記憶體元件的性質會依據選擇元件的性質而改變,於是使如讀取電壓容限(read voltage margin)或記憶體容限 (memory margin)等特性被惡化。另外,美國專利第7,482,621號提出一種有機記憶體元件,該有機記憶體元件在銦錫氧化物(Indium Tin Oxide,ITO)電極與銅電極之間形成有機層,而且在有機層與銅電極之間形成氟化鋰(Lithium fluoride,LiF)緩衝層。在此,根據施加於兩極的電壓,氟化鋰(Lithium fluoride,LiF)緩衝層對於銅電極而言,作為金屬離子屏障或銅離子屏障。 In addition, U.S. Patent No. 6,747,321 discloses a memory device having a special layer as a Schottky diode interposed between the memory layer and the electrode layer. In other words, U.S. Patent No. 6,747,321 has a structure in which a memory layer is stacked and a selection device using a Schottky diode is used. However, with regard to a memory element having a selected element, the nature of the memory element may vary depending on the nature of the selected element, thus making, for example, a read voltage margin or a memory tolerance. Features such as (memory margin) are deteriorated. In addition, U.S. Patent No. 7,482,621 discloses an organic memory device that forms an organic layer between an indium tin oxide (ITO) electrode and a copper electrode, and between the organic layer and the copper electrode. A lithium fluoride (Lithium fluoride, LiF) buffer layer is formed. Here, depending on the voltage applied to the two electrodes, a lithium fluoride (Lithium fluoride, LiF) buffer layer acts as a metal ion barrier or a copper ion barrier for the copper electrode.
本揭示(disclosure)提供一種沒有選擇元件的非揮發性記憶體元件。 The disclosure provides a non-volatile memory element that has no selected components.
本揭示亦提供一種非揮發性記憶體元件,其在低驅動電壓下透過結構變化而具有雙穩態性質。 The present disclosure also provides a non-volatile memory element that has bistable properties through structural changes at low drive voltages.
本揭示也提供一種非揮發性記憶體元件包括緩衝層,其當施加順向偏壓時,促進(facilitate)電荷轉移,且當施加逆向偏壓時,抑制電荷轉移。 The present disclosure also provides a non-volatile memory element comprising a buffer layer that facilitates charge transfer when a forward bias is applied and inhibits charge transfer when a reverse bias is applied.
根據例示性實施例,非揮發性記憶體元件包括第一電極及第二電極,彼此間隔;至少一奈米晶體層,配置於第一電極及第二電極之間;第一材料層及第二材料層,分別配置於第一電極與奈米晶體層之間以及配置於第二電極與奈米晶體層之間,且其具有雙穩態導電性,其中第一材料層及第二材料層彼此不對稱地被形成。 According to an exemplary embodiment, the non-volatile memory element includes a first electrode and a second electrode spaced apart from each other; at least one nano crystal layer disposed between the first electrode and the second electrode; the first material layer and the second The material layers are respectively disposed between the first electrode and the nano crystal layer and disposed between the second electrode and the nano crystal layer, and have bistable conductivity, wherein the first material layer and the second material layer are mutually Asymmetrically formed.
奈米晶體層可包括多個奈米晶體以及障壁層,其中障壁層圍繞這些奈米晶體。 The nanocrystal layer may include a plurality of nanocrystals and a barrier layer, wherein the barrier layer surrounds the nanocrystals.
第一材料層可包括至少一導電有機層,且第二材料層可包括至少一導電有機層以及至少一緩衝層。 The first material layer may include at least one conductive organic layer, and the second material layer may include at least one conductive organic layer and at least one buffer layer.
這些導電有機層可具有不同的厚度。 These conductive organic layers can have different thicknesses.
這些導電有機層的至少其中之一可包括一低分子量材料,其中該低分子量材料具有電荷轉移特性。 At least one of the conductive organic layers may comprise a low molecular weight material, wherein the low molecular weight material has charge transfer characteristics.
這些導電有機層的至少其中之一可由Alq3、AIDCN、α-NPD、PtOEP、TPD、ZnPc、CuPc、C60、PBD、CBP、Pentacene、Balq及PCBM的至少其中之一形成。 At least one of the conductive organic layers may be formed of at least one of Alq 3 , AIDCN, α-NPD, PtOEP, TPD, ZnPc, CuPc, C60, PBD, CBP, Pentacene, Balq, and PCBM.
第二材料層可包括至少一第一緩衝層與一第二緩衝層的至少其中之一,其中第一緩衝層於奈米晶體層與這些第二材料層的導電有機層之間,且第二緩衝層於第二材料層的導電有機層與第二電極之間。 The second material layer may include at least one of the at least one first buffer layer and the second buffer layer, wherein the first buffer layer is between the nano crystal layer and the conductive organic layer of the second material layer, and the second The buffer layer is between the conductive organic layer of the second material layer and the second electrode.
第一緩衝層與第二緩衝層可包括金屬的金屬化合物,其中該金屬具有小的功函數。 The first buffer layer and the second buffer layer may comprise a metal compound of a metal, wherein the metal has a small work function.
第一緩衝層或第二緩衝層可包括鹼金屬或鹼土金屬的金屬化合物。 The first buffer layer or the second buffer layer may include a metal compound of an alkali metal or an alkaline earth metal.
第一緩衝層或第二緩衝層可由LiF、NaCl、CsF、Li2O、BaO及Liq的至少其中之一形成。 The first buffer layer or the second buffer layer may be formed of at least one of LiF, NaCl, CsF, Li 2 O, BaO, and Liq.
第一緩衝層相較於第二緩衝層可具有不同的厚度。 The first buffer layer may have a different thickness than the second buffer layer.
當分別施加高電壓與低電壓於第一電極及第二電極,緩衝層可在順向偏壓中促進電荷轉移,而當分別施加低電壓與高電壓於第一電極與第二電極時,緩衝層在順向偏壓中抑制電荷轉移。 When a high voltage and a low voltage are respectively applied to the first electrode and the second electrode, the buffer layer can promote charge transfer in the forward bias, and when the low voltage and the high voltage are respectively applied to the first electrode and the second electrode, buffering The layer inhibits charge transfer in the forward bias.
非揮發性記憶體元件可更包括臨限電壓區域,其中臨限 電壓區域中根據施加於第一電極與第二電極之間的電位差,電流量劇烈增加;以及負微分電阻區域,其中負微分電阻區域中,電流隨著施加於第一電極與第二電極之間的電位差增加而減少。 The non-volatile memory component may further include a threshold voltage region, wherein the threshold In the voltage region, the amount of current is drastically increased according to a potential difference applied between the first electrode and the second electrode; and a negative differential resistance region in which a current is applied between the first electrode and the second electrode in the negative differential resistance region The potential difference increases and decreases.
在低於臨限電壓的第一電壓位準執行讀取操作;在臨限電壓至微分電阻區域的第二電壓位準執行程式化操作;以及在大於第二電壓位準的第三電壓位準執行抹除操作。 Performing a read operation at a first voltage level below a threshold voltage; performing a programmatic operation at a second voltage level of the threshold voltage to the differential resistance region; and a third voltage level at a second voltage level greater than a second voltage level Perform an erase operation.
根據第二電壓位準,非揮發性記憶體元件可被多位準地程式化。 The non-volatile memory component can be programmed in multiple levels based on the second voltage level.
根據另一個例示性實施例,非揮發性記憶體元件包括:第一電極與第二電極,彼此間隔;至少奈米晶體層,配置於第一電極與第二電極之間;第一導電有機層與第二導電有機層,分別配置於第一電極與奈米晶體層之間及配置於第二電極與奈米晶體層之間,且具有雙穩態導電性質;以及至少一緩衝層配置於第一電極及第二電極之間。其中,當分別施加一高電壓與一低電壓於第一電極與第二電極時,緩衝層在順向偏壓中促進電荷轉移,當分別施加一低電壓與一高電壓於第一電極及第二電極時,緩衝層在順向偏壓中抑制電荷轉移。 According to another exemplary embodiment, the non-volatile memory element includes: a first electrode and a second electrode spaced apart from each other; at least a nanocrystal layer disposed between the first electrode and the second electrode; and a first conductive organic layer And the second conductive organic layer is disposed between the first electrode and the nanocrystal layer, and disposed between the second electrode and the nanocrystal layer, and has bistable conductive properties; and at least one buffer layer is disposed at Between an electrode and a second electrode. Wherein, when a high voltage and a low voltage are respectively applied to the first electrode and the second electrode, the buffer layer promotes charge transfer in the forward bias, when a low voltage and a high voltage are respectively applied to the first electrode and the first electrode In the case of the two electrodes, the buffer layer suppresses charge transfer in the forward bias.
奈米晶體層可包括多個奈米晶體以及障壁層,其中障壁層圍繞這些奈米晶體。 The nanocrystal layer may include a plurality of nanocrystals and a barrier layer, wherein the barrier layer surrounds the nanocrystals.
第一導電有機層及第二導電有機層可由低分子量材料形成,其中低分子量材料具有電荷轉移特性。 The first conductive organic layer and the second conductive organic layer may be formed of a low molecular weight material, wherein the low molecular weight material has charge transfer characteristics.
第一導電有機層及第二導電有機層的其中至少之一可由Alq3、AIDCN、α-NPD、PtOEP、TPD、ZnPc、CuPc、C60、 PBD、CBP、Pentacene、Balq、及PCBM形成。 At least one of the first conductive organic layer and the second conductive organic layer may be formed of Alq 3 , AIDCN, α-NPD, PtOEP, TPD, ZnPc, CuPc, C60, PBD, CBP, Pentecene, Balq, and PCBM.
第二導電有機層可厚於第一導電有機層。 The second conductive organic layer may be thicker than the first conductive organic layer.
緩衝層可製備於第一電極或第二電極與第一有機層或第二有機層之間,或者於第一導電有機層或第二導電有機層與奈米晶體層之間。 The buffer layer may be prepared between the first electrode or the second electrode and the first organic layer or the second organic layer, or between the first conductive organic layer or the second conductive organic layer and the nanocrystalline layer.
緩衝層可包括鹼金屬或鹼土金屬的金屬化合物。 The buffer layer may include a metal compound of an alkali metal or an alkaline earth metal.
這些緩衝層可包括金屬的金屬化合物,該金屬具有小的功函數。 These buffer layers may include metallic metal compounds having a small work function.
這些緩衝層可包括LiF、NaCl、CsF、Li2O、BaO及Liq的至少其中之一。 These buffer layers may include at least one of LiF, NaCl, CsF, Li 2 O, BaO, and Liq.
根據一實施例,記憶體元件可執行整流操作(rectifying operation)而作為自身的儲存單元,因此可實現一種根據電位差來執行選擇功能的儲存單元可被實現,且該儲存單元無如二極體之額外的選擇元件。 According to an embodiment, the memory element can perform a rectifying operation as its own storage unit, so that a storage unit that performs a selection function according to the potential difference can be realized, and the storage unit is less like a diode. Additional selection components.
又,在低操作電壓下可清楚地維持程式狀態及抹除狀態,導通電流Ion對關閉電流Ioff的比值Ion/Ioff大,且根據重複程式化及抹除而沒有性質改變。因此,可實現一種優異的非揮發性記憶體。 Moreover, the program state and the erase state can be clearly maintained at a low operating voltage, and the ratio Ion/Ioff of the on-current Ion to the off current Ioff is large, and there is no property change according to the repetitive stylization and erasing. Therefore, an excellent non-volatile memory can be realized.
又,由於不需要選擇元件,因此可實現具有簡單結構且容易應用於立體(three-dimensional)結構的記憶體元件。 Moreover, since it is not necessary to select an element, a memory element having a simple structure and being easily applied to a three-dimensional structure can be realized.
在下文中,將參看隨附的圖式來詳細描述具體實施 例。然而,本發明可以不同形式來體現,且不應被解釋為侷限於本文中所陳述之實施例。相反地,提供此等實施例是為了使本揭露案將更詳盡且完整,且將向熟習此項技術者全面地傳達本發明之範疇。 In the following, the detailed implementation will be described in detail with reference to the accompanying drawings. example. However, the invention may be embodied in different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and the scope of the invention will be fully conveyed by those skilled in the art.
圖1是根據例示性實施例之一種非揮發性記憶體元件中一單元的儲存單元的剖視圖。 1 is a cross-sectional view of a unit of storage unit in a non-volatile memory element, in accordance with an illustrative embodiment.
如圖1所示,非揮發性記憶體元件包括第一電極120、第二電極180及奈米晶體層140。於第一電極120與奈米晶體層140之間的材料層與於第二電極180與奈米晶體層140之間的材料層是彼此不對稱地被形成。在此,“不對稱”所指在奈米晶體層140的兩側的材料層之厚度不同、是否包括如緩衝層的中間層以及特性、位置或緩衝層的數量。 As shown in FIG. 1, the non-volatile memory element includes a first electrode 120, a second electrode 180, and a nanocrystal layer 140. The material layer between the first electrode 120 and the nanocrystal layer 140 and the material layer between the second electrode 180 and the nanocrystal layer 140 are formed asymmetrically with each other. Here, "asymmetry" means that the thickness of the material layers on both sides of the nanocrystal layer 140 is different, whether or not the intermediate layer such as the buffer layer, and the number of characteristics, positions, or buffer layers are included.
更具體來說,非揮發性記憶體元件包括分別間隔的第一電極120及第二電極180;於第一電極120與第二電極180之間具有雙穩態導電性的第一導電有機層130及第二導電有機層160;奈米晶體層140,於第一導電有機層130至第二導電有機層160之間,所述奈米晶體層140包括奈米晶體141及絕緣層142;第一緩衝層150,於奈米晶體層140與第二導電有機層160之間;以及於第二導電有機層160與第二電極180之間的第二緩衝層170。 More specifically, the non-volatile memory element includes a first electrode 120 and a second electrode 180 that are respectively spaced apart; and a first conductive organic layer 130 having bistable conductivity between the first electrode 120 and the second electrode 180. And a second conductive organic layer 160; a nanocrystalline layer 140 between the first conductive organic layer 130 and the second conductive organic layer 160, the nanocrystalline layer 140 includes a nanocrystal 141 and an insulating layer 142; The buffer layer 150 is between the nano crystal layer 140 and the second conductive organic layer 160; and the second buffer layer 170 between the second conductive organic layer 160 and the second electrode 180.
基板100可為絕緣基板、半導體基板或導電基板。也就是說,基板100可為氧化鋁(aluminum oxide,Al2O3)基板、碳化矽(silicon carbide,SiC)基板、氧化鋅(zinc oxide,ZnO)基板、矽(silicon,Si)基板、砷化鎵(Gallium arsenide,GaAs)基板、磷化鎵 (gallium phosphide,GaP)基板、氧化鋰鋁(lithium aluminum oxide,LiAl2O3)基板、氮化硼(boron nitride,BN)基板、氮化鋁(aluminum nitride,AlN)基板、矽晶絕緣體(silicon-on-insulator,SOI)基板、及氮化鎵(gallium arsenide,GaN)基板至少其中一個。在此,若基板100包括半導體基板及導電基板,需要於第一電極120與基板110之間形成絕緣體以絕緣。此外,基板110可為硬質的基板或可撓性基板。可撓性基板包括聚乙烯(Polyethylene,PE)、聚硫醚(Polyethersulfones,PES)塑膠基板,聚對苯二甲酸乙二醇酯(Poly(ethyleneterephthalate),PET),或聚萘二甲酸乙二醇酯(Poly(Ethlene2,6-Naphthalene Dicarboxylate),PEN)。 The substrate 100 may be an insulating substrate, a semiconductor substrate, or a conductive substrate. That is, the substrate 100 may be an aluminum oxide (Al 2 O 3 ) substrate, a silicon carbide (SiC) substrate, a zinc oxide (ZnO) substrate, a silicon (Si) substrate, or arsenic. Gallium arsenide (GaAs) substrate, gallium phosphide (GaP) substrate, lithium aluminum oxide (LiAl 2 O 3 ) substrate, boron nitride (BN) substrate, aluminum nitride At least one of an (aluminum nitride, AlN) substrate, a silicon-on-insulator (SOI) substrate, and a gallium arsenide (GaN) substrate. Here, if the substrate 100 includes a semiconductor substrate and a conductive substrate, it is necessary to form an insulator between the first electrode 120 and the substrate 110 to insulate. Further, the substrate 110 may be a rigid substrate or a flexible substrate. The flexible substrate comprises polyethylene (PE), polyether sulfide (PES) plastic substrate, polyethylene terephthalate (Poly(ethylene terephthalate), PET), or polyethylene naphthalate. Poly (Ethlene 2, 6-Naphthalene Dicarboxylate), PEN).
第一電極120與第二電極180可使用具有導電性的所有材料,但也可使用低電阻以及對於有機材料有優異界面性質的材料。金屬如鋁(Aluminum,Al)、鈦(Titanium,Ti)、鋅(Zinc,Zn)、鐵(Iron,Fe)、鎳(Nickel,Ni)、錫(Tin,Sn)、鉛(Lead,Pb)、銅(Copper,Cu)及其合金可作為第一電極120及第二電極180。此外,分別間隔的第一電極120往一方向延伸,且分別間隔的第二電極180往另一個垂直於第一電極120方向延伸。材料層堆疊於分別往垂直方向延伸的第一電極120與第二電極180交叉點之間以構成基本儲存單元。 The first electrode 120 and the second electrode 180 may use all materials having electrical conductivity, but materials having low electrical resistance and excellent interfacial properties for organic materials may also be used. Metals such as aluminum (Aluminum, Al), titanium (Titanium, Ti), zinc (Zinc, Zn), iron (Iron, Fe), nickel (Nickel, Ni), tin (Tin, Sn), lead (Lead, Pb) Copper (Copper, Cu) and its alloy can be used as the first electrode 120 and the second electrode 180. In addition, the respectively spaced first electrodes 120 extend in one direction, and the respectively spaced second electrodes 180 extend toward the other direction perpendicular to the first electrodes 120. The material layers are stacked between the intersections of the first electrode 120 and the second electrode 180 respectively extending in the vertical direction to constitute a basic storage unit.
第一導電有機層130及第二導電有機層160可使用具有電荷轉移性質的低分子量材料,例如可形成羥基喹啉鋁(hydroxyquinoline aluminum,Alq3)、AIDCN(2-amino-4,5-imidazoledicarbonitrile)、α-NPD(N,N’-bis (1-naphthyl)-N,N’-diphenybenzidine)、PtOEP、TPD、ZnPc、CuPc、C60、PBD、CBP、Pentacene、Balq及PCBM的至少其中之一。此外,第一導電有機層130及第二導電有機層160可由高分子量聚乙烯基咔唑(Polyvinylcarbazole,PVK)與聚苯乙烯(Polystyrene,PS)形成。第一導電有機層130及第二導電有機層160有雙穩態性質,亦即在相同電壓下,具有高電阻及低電阻兩種導電性。 The first conductive organic layer 130 and the second conductive organic layer 160 may use a low molecular weight material having charge transfer properties, for example, hydroxyquinoline aluminum (Alq 3 ), AIDCN (2-amino-4, 5-imidazoledicarbonitrile). , at least one of α-NPD (N, N'-bis (1-naphthyl)-N, N'-diphenybenzidine), PtOEP, TPD, ZnPc, CuPc, C60, PBD, CBP, Pentacene, Balq, and PCBM . In addition, the first conductive organic layer 130 and the second conductive organic layer 160 may be formed of high molecular weight polyvinylcarbazole (PVK) and polystyrene (PS). The first conductive organic layer 130 and the second conductive organic layer 160 have a bistable property, that is, have high electrical resistance and low electrical resistance at the same voltage.
第一導電有機層130與第二導電有機層160的每一個可形成的厚度為約20奈米至約70奈米,且可為相同厚度或不同的厚度。例如,可形成比第一導電有機層130厚的第二導電有機層160。如此形成不對稱的記憶體是為了改善整流操作,及防止因為在施加順向偏壓時,流入大量電荷而造成的過電流,記憶體元件被損壞。 Each of the first conductive organic layer 130 and the second conductive organic layer 160 may have a thickness of about 20 nm to about 70 nm, and may be the same thickness or a different thickness. For example, the second conductive organic layer 160 thicker than the first conductive organic layer 130 may be formed. The asymmetric memory is formed in such a manner as to improve the rectification operation and prevent the memory element from being damaged due to an overcurrent caused by a large amount of electric charge flowing when a forward bias is applied.
當施加偏壓時,奈米晶體層140的電荷是被充電或被放電,因此,記憶體元件維持低電阻狀態或高電阻狀態。也就是說,根據奈米晶體層40的狀態,記憶體元件維持程式化或抹除狀態。奈米晶體層140包括結晶材料的奈米晶體141以及絕緣層142(亦即穿隧障礙(tunneling barrier))。 When a bias voltage is applied, the charge of the nanocrystal layer 140 is charged or discharged, and therefore, the memory element maintains a low resistance state or a high resistance state. That is, depending on the state of the nanocrystal layer 40, the memory element maintains a stylized or erased state. The nanocrystal layer 140 includes a nanocrystal 141 of a crystalline material and an insulating layer 142 (i.e., a tunneling barrier).
奈米晶體141可使用鋁(Al)、鎂(Mg)、鋅(Zn)、鎳(Ni)、鐵(Fe)、銅(Cu)、金(Au)、銀(Ag)及其合金來形成。絕緣層142可圍繞奈米晶體141形成,且可包括絕緣體如氧化物或分散穩定劑。例如:奈米晶體141可由鎳形成,且絕緣層142可由氧化鎳形成。奈米晶體層140可藉由在蒸鍍腔室(evaporation deposition chamber)中沈積及氧化金屬來形成。 The nanocrystal 141 can be formed using aluminum (Al), magnesium (Mg), zinc (Zn), nickel (Ni), iron (Fe), copper (Cu), gold (Au), silver (Ag), and alloys thereof. . The insulating layer 142 may be formed around the nanocrystals 141 and may include an insulator such as an oxide or a dispersion stabilizer. For example, the nanocrystal 141 may be formed of nickel, and the insulating layer 142 may be formed of nickel oxide. The nanocrystal layer 140 can be formed by depositing and oxidizing a metal in an evaporation deposition chamber.
例如,於蒸鍍腔室中在第一導電有機層130上沈積金屬材料,然後於其內使用氧氣電漿實施氧化製程,以形成奈米晶體層140。然而,本發明不限於此,因此,奈米晶體層140可在蒸鍍腔室中經由金屬的氧化而形成。然而,為了形成具有預定尺寸的穩定的奈米晶體141,透過O2(氧氣)電漿製程沿著晶粒邊界可使用強制性氧化製程。奈米晶體層140包括經由如金屬沈積製程及氧化製程形成的奈米晶體141及圍繞其的絕緣層142。量子井深度因絕緣層142而增加。因此,可改善記憶體元件的資料保持。 For example, a metal material is deposited on the first conductive organic layer 130 in the evaporation chamber, and then an oxidation process is performed using oxygen plasma therein to form the nanocrystal layer 140. However, the present invention is not limited thereto, and therefore, the nanocrystal layer 140 may be formed in the evaporation chamber via oxidation of a metal. However, in order to form a stable nanocrystal 141 having a predetermined size, a forced oxidation process can be used along the grain boundary through the O 2 (oxygen) plasma process. The nanocrystal layer 140 includes a nanocrystal 141 formed through a metal deposition process and an oxidation process, and an insulating layer 142 surrounding the same. The quantum well depth increases due to the insulating layer 142. Therefore, the data retention of the memory element can be improved.
又,奈米晶體層140可由單層或多層形成。具有單層的奈米晶體層140厚度可為約1奈米至約40奈米。單層奈米晶體層140可堆疊一到十層。具有以上範圍的奈米晶體層140,可維持有效能隙,以改善元件的資料保持。並且,在每個堆疊層的奈米晶體層140所形成的厚度一致。 Also, the nanocrystal layer 140 may be formed of a single layer or a plurality of layers. The nanocrystal layer 140 having a single layer may have a thickness of from about 1 nm to about 40 nm. The single-layer nanocrystal layer 140 can be stacked one to ten layers. The nanocrystal layer 140 having the above range can maintain an effective energy gap to improve data retention of components. Also, the thickness of the nanocrystal layer 140 formed in each of the stacked layers is uniform.
第一緩衝層150與第二緩衝層170分別在第二導電有機層160之上下形成。換句話說,第一緩衝層形成於奈米晶體層140與第二導電有機層160之間,且第二緩衝層170形成於第二導電有機層160與第二電極180之間。第一緩衝層150與第二緩衝層170的至少其中之一由具有低功函數金屬之金屬化合物形成。例如:金屬化合物可包括鹼金屬或鹼土金屬。更具體來說,金屬化合物可由氟化鋰(LiF)、氯化鈉(NaCl)、氟化銫(CsF)、氧化鋰(Li2O)、氧化鋇(BaO)及羥基喹啉鋰(Lithium quinolate,Liq)的至少其中之一形成。隨著所形成的第一緩衝層150或第二緩衝層170,可對第一電極120或奈米晶體層140 的界面性質進行改善。 The first buffer layer 150 and the second buffer layer 170 are formed under the second conductive organic layer 160, respectively. In other words, the first buffer layer is formed between the nano crystal layer 140 and the second conductive organic layer 160, and the second buffer layer 170 is formed between the second conductive organic layer 160 and the second electrode 180. At least one of the first buffer layer 150 and the second buffer layer 170 is formed of a metal compound having a low work function metal. For example, the metal compound may include an alkali metal or an alkaline earth metal. More specifically, the metal compound may be lithium fluoride (LiF), sodium chloride (NaCl), cesium fluoride (CsF), lithium oxide (Li 2 O), barium oxide (BaO), and lithium hydroxyquinolate (Lithium quinolate). At least one of Liq) is formed. The interface properties of the first electrode 120 or the nanocrystal layer 140 may be improved with the first buffer layer 150 or the second buffer layer 170 formed.
根據本發明一實施例,第一緩衝層與第二緩衝層可由相同材料形成,但本發明不限於此。換句話說,第一緩衝及第二緩衝可由不同的材料形成。 According to an embodiment of the invention, the first buffer layer and the second buffer layer may be formed of the same material, but the invention is not limited thereto. In other words, the first buffer and the second buffer can be formed of different materials.
每一第一導電有機層150與第二導電有機層170形成的厚度約0.1奈米到約1奈米,且可具有相同厚度或不同的厚度。例如:可形成厚於第一緩衝層150的第二緩衝層170。如此當施加順向偏壓時,亦即施加高電壓於第一電極120及施加低電壓於第二電極180,第一緩衝層150與第二緩衝層170促進由第二電極180向奈米晶體層140的電荷注入及轉移;如此當施加逆向偏壓時,亦即施加低電壓於第一電極120及施加高電壓於第二電極180,第一緩衝層150及第二緩衝層170作為障壁以阻止(block)電荷轉移到第二電極180。當在順向偏壓中促進電荷轉移並且在逆向偏壓中作為障壁的第一緩衝層150及第二緩衝層170被製備時,記憶體元件在沒有如二極體的額外元件下具有整流功能而自身作為電池(cell)。 Each of the first conductive organic layer 150 and the second conductive organic layer 170 is formed to have a thickness of about 0.1 nm to about 1 nm, and may have the same thickness or a different thickness. For example, a second buffer layer 170 thicker than the first buffer layer 150 may be formed. Thus, when a forward bias is applied, that is, a high voltage is applied to the first electrode 120 and a low voltage is applied to the second electrode 180, the first buffer layer 150 and the second buffer layer 170 promote the nanoelectrode 180 to the nanocrystal. The charge injection and transfer of the layer 140; when the reverse bias is applied, that is, a low voltage is applied to the first electrode 120 and a high voltage is applied to the second electrode 180, and the first buffer layer 150 and the second buffer layer 170 serve as barriers. Blocking charge transfer to the second electrode 180. When the first buffer layer 150 and the second buffer layer 170, which promote charge transfer in the forward bias and function as barriers in the reverse bias, are prepared, the memory element has a rectifying function without an additional component such as a diode. And as a battery.
儘管非揮發性記憶體元件如上述包括第一緩衝層150及第二緩衝層170,本發明不限於此。因此,可製造包括第一緩衝層150及第二緩衝層170至少其中之一的非揮發性記憶體元件。 Although the non-volatile memory element includes the first buffer layer 150 and the second buffer layer 170 as described above, the present invention is not limited thereto. Therefore, a non-volatile memory element including at least one of the first buffer layer 150 and the second buffer layer 170 can be fabricated.
圖2及圖3是根據另一例示性實施例之一種非揮發性記憶體元件的剖視圖。 2 and 3 are cross-sectional views of a non-volatile memory element in accordance with another exemplary embodiment.
如圖2所示,非揮發性記憶體元件包括分別間隔的第一電極120與第二電極180,配置於基板110上;具有雙穩態導 電性的第一導電有機層130及第二導電有機層160於第一電極120與第二電極180之間;奈米晶體層140具有氧化表面,且均勻地分布於第一導電有機層130至第二導電有機層160之間;於奈米晶體層140與第二導電有機層160之間的緩衝層150。 As shown in FIG. 2, the non-volatile memory element includes a first electrode 120 and a second electrode 180 which are respectively spaced apart and disposed on the substrate 110; The first conductive organic layer 130 and the second conductive organic layer 160 are electrically connected between the first electrode 120 and the second electrode 180; the nanocrystalline layer 140 has an oxidized surface and is uniformly distributed to the first conductive organic layer 130 to Between the second conductive organic layer 160; a buffer layer 150 between the nanocrystalline layer 140 and the second conductive organic layer 160.
如圖3所示,非揮發性記憶體元件包括分別間隔的第一電極120及第二電極180,配置於基板110上;具有雙穩態導電性的第一導電有機層130及第二導電有機層160於第一電極120與第二電極180之間;奈米晶體層140包括具有氧化表面的奈米晶體141,且均勻地分布於第一導電有機層130至第二導電有機層160之間;於第二導電有機層160與第二電極180之間的緩衝層170。非揮發性記憶體元件包括於第一電極120與第二電極180之間的奈米晶體層140。再者,於第一電極120與奈米晶體層140之間的材料層與於奈米晶體層140與第二電極180之間的材料層是彼此不對稱地被製備。換句話說,第一導電有機層130被製備於第一電極120與奈米晶體層140之間,且第二導電有機層160以及緩衝層150與緩衝層170的至少其中之一被製備於奈米晶體層140與第二電極180之間。緩衝層150及緩衝層170在順向偏壓中促進向奈米晶體層140的電荷注入及轉移,且在逆向偏壓中作為障壁以抑制電荷轉移。一旦允許記憶體元件執行選擇功能的緩衝層150及緩衝層170被製備時,記憶體可提供儲存單元,其中儲存單元在沒有如二極體之額外選擇元件下具有選擇功能。 As shown in FIG. 3, the non-volatile memory device includes a first electrode 120 and a second electrode 180 which are respectively spaced apart and disposed on the substrate 110. The first conductive organic layer 130 and the second conductive organic layer have bistable conductivity. The layer 160 is between the first electrode 120 and the second electrode 180; the nanocrystal layer 140 includes a nanocrystal 141 having an oxidized surface, and is uniformly distributed between the first conductive organic layer 130 to the second conductive organic layer 160. a buffer layer 170 between the second conductive organic layer 160 and the second electrode 180. The non-volatile memory element includes a nanocrystal layer 140 between the first electrode 120 and the second electrode 180. Furthermore, the material layer between the first electrode 120 and the nanocrystal layer 140 and the material layer between the nanocrystal layer 140 and the second electrode 180 are prepared asymmetrically with each other. In other words, the first conductive organic layer 130 is prepared between the first electrode 120 and the nanocrystal layer 140, and at least one of the second conductive organic layer 160 and the buffer layer 150 and the buffer layer 170 is prepared. The rice crystal layer 140 is between the second electrode 180. The buffer layer 150 and the buffer layer 170 promote charge injection and transfer to the nanocrystal layer 140 in the forward bias, and act as a barrier in the reverse bias to suppress charge transfer. Once the buffer layer 150 and the buffer layer 170, which allow the memory element to perform the selection function, are prepared, the memory can provide a storage unit in which the storage unit has a selection function without additional selection elements such as diodes.
下文中將描述根據非揮發性記憶體元件各種修改的特 性。 Special modifications according to various modifications of non-volatile memory elements will be described hereinafter. Sex.
(實驗1)非揮發性有機記憶體元件包括第一及第二緩衝層。 (Experiment 1) The non-volatile organic memory element includes first and second buffer layers.
在矽基板上堆疊80奈米的第一電極(鋁,Al)、35奈米的第一導電有機層(羥基喹啉基鋁,Alq3)、20奈米的奈米晶體(鎳,Ni)、0.2奈米的第一緩衝層(氟化鋰,LiF)、45奈米的第二導電有機層(羥基喹啉基鋁,Alq3)、0.6奈米的第二緩衝層(氟化鋰,LiF)及80奈米的第二電極(鋁,Al)以製造非揮發性記憶體元件。在此,鎳透過的氧氣電漿處理、花費300秒而形成奈米晶體層。 A 80 nm first electrode (aluminum, Al), a 35 nm first conductive organic layer (hydroxyquinolinyl aluminum, Alq 3 ), and 20 nm nanocrystals (nickel, Ni) were stacked on a tantalum substrate. 0.2 nm first buffer layer (lithium fluoride, LiF), 45 nm second conductive organic layer (hydroxyquinolinyl aluminum, Alq 3 ), 0.6 nm second buffer layer (lithium fluoride, LiF) and a second electrode of 80 nm (aluminum, Al) to make non-volatile memory components. Here, the oxygen plasma treatment of nickel permeation takes 300 seconds to form a nanocrystal layer.
圖4是根據實驗1之一種非揮發性記憶體元件電流-電壓(安培-伏特)的特性圖。圖5是根據實驗1之一種非揮發性記憶體元件保持特性圖。圖6是根據實驗1之一種非揮發性記憶體程式化及抹除記憶體數量的耐度特性圖。 4 is a characteristic diagram of current-voltage (ampere-volt) of a non-volatile memory element according to Experiment 1. Fig. 5 is a graph showing the retention characteristics of a non-volatile memory element according to Experiment 1. Fig. 6 is a graph showing the endurance characteristics of a non-volatile memory stylized and erased memory according to Experiment 1.
如圖4所示,當第一電極及第二電極分別連接於陽極及陰極以施加順向偏壓並繼續增加其大小,記憶體元件具有高電阻狀態,亦即斷開狀態Ioff(其中電流以指數地及緩慢地增加直到第一位準電壓,亦即臨限電壓Vth)。然後,當施加高於臨限電壓Vth的電壓,電流會劇烈增加。直到第二位準電Vp,隨著電壓增加,電流增加。然而,在負微分電阻區域(NDR),在第二位準電壓Vp之後,出現電流減少。然後,在經過NDR區域過後,當施加電壓高於第三電壓Ve時,隨著電壓增加,電流增加。例如,當第一電極連接至陽極且第二電極連接至陰極時,以持續地增加順向偏壓到約8伏特並施加它,在臨限電 壓Vth約2.1伏特時,電流量增加。再者,從臨限電壓Vth到電壓Vp約3.4伏特中,隨著電壓增加,電流連續地增加並達到最大值。此後,直到電壓Ve約5伏特,隨著電壓增加,電流減少,亦即NDR區域出現。然後,在電壓Ve約5伏特之後,隨著電壓增加,電流增加。 As shown in FIG. 4, when the first electrode and the second electrode are respectively connected to the anode and the cathode to apply a forward bias and continue to increase in size, the memory element has a high resistance state, that is, an off state Ioff (where the current is Exponentially and slowly increase until the first level voltage, that is, the threshold voltage Vth). Then, when a voltage higher than the threshold voltage Vth is applied, the current is drastically increased. Until the second potential is Vp, the current increases as the voltage increases. However, in the negative differential resistance region (NDR), after the second level voltage Vp, a current reduction occurs. Then, after the passage of the NDR region, when the applied voltage is higher than the third voltage Ve, the current increases as the voltage increases. For example, when the first electrode is connected to the anode and the second electrode is connected to the cathode, to continuously increase the forward bias to about 8 volts and apply it, at the limit When the voltage Vth is about 2.1 volts, the amount of current increases. Furthermore, from the threshold voltage Vth to the voltage Vp of about 3.4 volts, as the voltage increases, the current continuously increases and reaches a maximum value. Thereafter, until the voltage Ve is about 5 volts, as the voltage increases, the current decreases, that is, the NDR region appears. Then, after the voltage Ve is about 5 volts, the current increases as the voltage increases.
透過此一現象,程式化、抹除、及讀取操作的電壓範圍可被設定為非揮發性記憶體元件。例如:讀取操作在電壓低於臨限電壓Vth下執行,程式化操作在電壓於臨限電壓Vth與NDR區域的電壓Ve之間時執行,而抹除操作在電壓超過NDR區域的電壓Ve下執行。於是,非揮發性記憶體元件在電壓低於約2.1伏特時,執行讀取操作;在電壓於約2.1伏特到約5伏特之間,執行程式化操作;(可在約3.4伏特),而在電壓超過約5伏特執行抹除操作。又,藉由施加第二位準電壓Vp與第三位準電壓Ve之間的NDR區域的電壓,記憶體元件可被程式化。在這種情況下,記憶體元件在NDR區域電壓程式化時的電流低於在儲存單元在第二位準電壓Vp程式化時的導通電流Ion,並高於關閉電流Ioff。因此,可實現多階程式化。 Through this phenomenon, the voltage range of stylization, erasing, and reading operations can be set to non-volatile memory components. For example, the read operation is performed when the voltage is lower than the threshold voltage Vth, and the program operation is performed when the voltage is between the threshold voltage Vth and the voltage Ve of the NDR region, and the erase operation is performed under the voltage Ve exceeding the NDR region. carried out. Thus, the non-volatile memory element performs a read operation when the voltage is less than about 2.1 volts; performs a stylized operation between about 2.1 volts to about 5 volts; (approximately 3.4 volts), and The erase operation is performed with a voltage exceeding approximately 5 volts. Further, the memory element can be programmed by applying a voltage of the NDR region between the second level voltage Vp and the third level voltage Ve. In this case, the current of the memory element when the voltage is programmed in the NDR region is lower than the on-current Ion when the memory cell is programmed at the second level voltage Vp, and is higher than the off current Ioff. Therefore, multi-level stylization can be achieved.
此外,如圖4所示,施加程式化電壓Vp於非揮發性記憶體元件來程式化後,然後再次增加順向偏壓到約8伏特並施加,由於電荷在奈米晶體層中充電,記憶體元件具有低電阻狀態,亦即導通電流Ion的狀態,其中電流相較於之前增加。然而,導通電流Ion與關閉電流Ioff的比值約為8.4×102。又,當第一電極連接至陰極及第二電極至連接陽極以繼續增加 逆向偏壓,當電壓在負值位置(negative position)增加,電流緩慢的增加。 In addition, as shown in FIG. 4, the stylized voltage Vp is applied to the non-volatile memory element to be programmed, and then the forward bias is again increased to about 8 volts and applied, since the charge is charged in the nanocrystal layer, the memory The body element has a low resistance state, that is, a state in which the current Ion is turned on, in which the current is increased compared to before. However, the ratio of the on current Ion to the off current Ioff is about 8.4 × 10 2 . Also, when the first electrode is connected to the cathode and the second electrode to the connection anode to continue to increase the reverse bias, the current slowly increases as the voltage increases at a negative position.
關於此非揮發性記憶體元件,因第一導電有機層130與第二導電有機層160之間的能階差,電子在奈米晶體層140中並未被充電時,電流流(current flow)在預定電壓位準下可被微小地增加,但當施加於導電有機層130與導電有機層160兩端的電壓高於臨限電壓Vth時,電流流(current flow)會劇烈增加而電子在奈米晶體層140中被充電。因此,非揮發性記憶體元件維持在高電阻狀態及低電阻狀態。又,當電子在奈米晶體層140中被充電時,相較於電子沒被充電的情況,電流流會變為數十倍或數千倍大。由於製備第一緩衝層150及第二緩衝層170,電子注入在施加順向偏壓時被促進而高於臨限電壓Vth,因此程式化電壓降低。再者,當施加逆向偏壓時,藉由限制電子轉移可防止電流劇烈增加。 Regarding the non-volatile memory element, current flow is not charged when the electrons are not charged in the nanocrystal layer 140 due to the energy difference between the first conductive organic layer 130 and the second conductive organic layer 160. It can be slightly increased at a predetermined voltage level, but when the voltage applied across the conductive organic layer 130 and the conductive organic layer 160 is higher than the threshold voltage Vth, the current flow is drastically increased while the electrons are in the nanometer. The crystal layer 140 is charged. Therefore, the non-volatile memory element is maintained in a high resistance state and a low resistance state. Also, when electrons are charged in the nanocrystal layer 140, the current flow becomes tens or thousands of times larger than when the electrons are not charged. Since the first buffer layer 150 and the second buffer layer 170 are prepared, electron injection is promoted when the forward bias is applied and is higher than the threshold voltage Vth, so that the stylized voltage is lowered. Furthermore, when a reverse bias is applied, a sharp increase in current can be prevented by limiting electron transfer.
圖5是根據實驗1之一種非揮發性記憶體元件的資料保持(retention)特性圖。比較變化A及變化B,其中變化A是根據施加約3伏特以程式化後,當施加讀取電壓1伏特,導通電流Ion的時間;其中變化B是根據施加約10伏特以抹除後,當施加讀取電壓1伏特,關閉電流Ioff的時間。如圖5所示,可觀察到在導通電流Ion與關閉電流Ioff之間有大電流差。此時,導通/關閉電流比值Ion/Ioff約為2.7×102。 Fig. 5 is a graph showing the retention characteristics of a non-volatile memory element according to Experiment 1. Comparing change A and change B, wherein change A is based on the application of about 3 volts after staging, when a read voltage of 1 volt is applied, and the current Ion is applied; wherein the change B is based on the application of about 10 volts after erasing, when The reading voltage is applied at 1 volt and the current Ioff is turned off. As shown in FIG. 5, it is observed that there is a large current difference between the on current Ion and the off current Ioff. At this time, the on/off current ratio Ion/Ioff is about 2.7 × 10 2 .
此外,圖6是根據實驗1之依據非揮發性記憶體元件的程式化及抹除數量的一種耐度循環圖。可觀察到變化A與變化B有很大的差異,其中變化A是根據施加電壓3伏特以程 式化後,當施加讀取電壓1伏特,程式化的數量;其中變化B是根據施加電壓10伏特以抹除後,當施加讀取電壓1伏特,抹除的數量。此時,導通/關閉電流比值,Ion/Ioff約為0.33×102。 In addition, FIG. 6 is a tolerance cycle diagram based on the stylization and erasing amount of the non-volatile memory element according to Experiment 1. It can be observed that there is a big difference between the change A and the change B, wherein the change A is based on the applied voltage of 3 volts after stylization, when the read voltage is applied 1 volt, the number of stylized; wherein the change B is 10 volts according to the applied voltage After erasing, when applying a read voltage of 1 volt, erase the amount. At this time, the on/off current ratio, Ion/Ioff, is about 0.33 × 10 2 .
從此結果可觀察,根據例示性實施例的非揮發性記憶體元件,其第一導電有機層、奈米晶體層、第一緩衝層、第二導電有機層及第二緩衝層堆疊於第一電極與第二電極之間,其具有低程式化電壓、抹除電壓及讀取電壓,其具有優異的導通/關閉電流比值Ion/Ioff及優異的資料保持及耐度(endurance)性質。因此,本發明可實施具有以上優異性質的非揮發性記憶體元件。 From this result, it can be observed that, according to the non-volatile memory element of the exemplary embodiment, the first conductive organic layer, the nanocrystal layer, the first buffer layer, the second conductive organic layer, and the second buffer layer are stacked on the first electrode Between the second electrode and the second electrode, it has a low program voltage, an erase voltage, and a read voltage, and has an excellent on/off current ratio Ion/Ioff and excellent data retention and endurance properties. Therefore, the present invention can implement a non-volatile memory element having the above excellent properties.
(實驗2)在可撓性基板上製造非揮發性記憶體元件 (Experiment 2) Fabrication of non-volatile memory components on a flexible substrate
在聚硫醚(Polyether sulphones,PES)薄膜上堆疊80奈米的第一電極(鋁,Al)、35奈米的第一導電有機層(喹啉基鋁,Alq3)、20奈米的奈米的晶體(鎳,Ni)、0.2奈米的第一緩衝層(氟化鋰,LiF)、45奈米的第二導電有機層(喹啉基鋁,Alq3)、O.6奈米的第二緩衝層(氟化鋰,LiF)及80奈米的第二電極(鋁,Al)來製造非揮發性記憶體元件。 80 nm of the first electrode (aluminum, Al), 35 nm of the first conductive organic layer (quinolinyl aluminum, Alq 3 ), 20 nm of naphthalene were stacked on a polyether sulphones (PES) film. Crystal of rice (nickel, Ni), first buffer layer of 0.2 nm (lithium fluoride, LiF), second conductive organic layer of 45 nm (arqolin aluminum, Alq 3 ), O.6 nm A second buffer layer (lithium fluoride, LiF) and a second electrode of 80 nm (aluminum, Al) were used to make a non-volatile memory element.
圖7是根據實驗2之一種非揮發性記憶體元件的電流-電壓(安培-伏特)特性圖。圖8是根據實驗2之一種非揮發性記憶體元件的保持特性圖。圖9是根據彎曲數的特性圖。 Figure 7 is a graph of current-voltage (ampere-volt) characteristics of a non-volatile memory element according to Experiment 2. Fig. 8 is a graph showing the retention characteristics of a non-volatile memory element according to Experiment 2. Fig. 9 is a characteristic diagram according to the number of bends.
如圖7所示,當第一電極與第二電極分別連接陽極與陰極以施加順向偏壓並依次增加其大小,記憶體元件具有高電阻狀態,亦即斷開狀態Ioff(其中電流以指數地及緩慢地的增加 到臨限電壓Vth約2.9伏特)。然後,當施加一高於臨限電壓Vth約2.9伏特的電壓時,隨著電壓增加,電流增加直到約4.0伏特。此後,出現電流減少的NDR區域。然後,當電壓在通過NDR區域後變成高於約6.2伏特的電壓Ve時,隨著電壓增加,電流再次增加。因此,低於約2.9伏特的電壓被用來作為讀取電壓;約2.9伏特到約6.2伏特,其約為4.0伏特,可用來作為程式化電壓;以及超過約6.2伏特的電壓被用來作為抹除電壓。當施加一電壓至記憶體元件,其中該記憶體元件藉由施加一操作電壓而程式化,例如,約4.0伏特時,電流劇烈增加,然後變成導通電流Ion的狀態。記憶體元件的導通/關閉電流比值Ion/Ioff約為0.38×102,其低於圖4中形成於矽基板的非揮發性記憶體元件。然而,由於其操作電壓沒有大幅增加,記憶體元件操作為優異的一個。此外,當施加並且依次增加逆向偏壓,在起始狀態時,電流劇烈增加。然而,隨著電壓往正方向增加,電流緩慢增加。 As shown in FIG. 7, when the first electrode and the second electrode are respectively connected to the anode and the cathode to apply a forward bias and sequentially increase the size thereof, the memory element has a high resistance state, that is, an off state Ioff (where the current is indexed) Ground and slowly increase to a threshold voltage Vth of about 2.9 volts). Then, when a voltage of about 2.9 volts above the threshold voltage Vth is applied, as the voltage increases, the current increases until about 4.0 volts. Thereafter, a reduced current NDR region occurs. Then, when the voltage becomes a voltage Ve higher than about 6.2 volts after passing through the NDR region, the current increases again as the voltage increases. Thus, a voltage of less than about 2.9 volts is used as the read voltage; about 2.9 volts to about 6.2 volts, which is about 4.0 volts, can be used as a stylized voltage; and a voltage of more than about 6.2 volts is used as a wipe. In addition to voltage. When a voltage is applied to the memory element, wherein the memory element is programmed by applying an operating voltage, for example, about 4.0 volts, the current is drastically increased and then becomes the state of the on current Ion. The on/off current ratio Ion/Ioff of the memory element is about 0.38 x 10 2 , which is lower than the non-volatile memory element formed on the germanium substrate in FIG. However, since the operating voltage is not greatly increased, the memory element operates as an excellent one. Further, when the reverse bias is applied and sequentially increased, the current is drastically increased in the initial state. However, as the voltage increases in the positive direction, the current slowly increases.
此外,如圖8所示,變化A與變化B有很大的電流差,其中變化A是根據施加電壓約4伏特以程式化後,當施加讀取電壓1伏特的導通電流Ion;其中變化B是根據施加電壓8伏特以抹除後,當施加讀取電壓1伏特的關閉電流Ioff。此時,導通/關閉電流比值,Ion/Ioff約為0.5×102。 In addition, as shown in FIG. 8, the change A and the change B have a large current difference, wherein the change A is about 4 volts according to the applied voltage to be stylized, and when the read voltage is applied, the volt current is 1 volt; It is a shutdown current Ioff when a read voltage of 1 volt is applied after erasing according to an applied voltage of 8 volts. At this time, the on/off current ratio, Ion/Ioff is about 0.5 × 10 2 .
圖9是根據彎曲數量的特性圖。為了測量彎曲特性,彎曲具有40奈米寬度的可撓性元件以在一端與其另一端具有約25毫米的間隔(interval),然後,根據彎曲的數量測量導通電流Ion與關閉電流Ioff。 Fig. 9 is a characteristic diagram according to the number of bends. In order to measure the bending property, a flexible member having a width of 40 nm was bent to have an interval of about 25 mm at one end and the other end thereof, and then the on current Ion and the off current Ioff were measured according to the number of bends.
如圖9所示,當變化A相較於變化B,其中變化A是根據施加電壓約4伏特以程式化後,當施加讀取電壓1伏特時的彎曲數量;其中變化B是根據施加電壓8伏特以抹除之後,當施加讀取電壓1伏特的彎曲數量,即使彎曲數量增加,導通電流Ion與關閉電流Ioff維持很大的差異。此時,接通/關閉電流比值,Ion/Ioff約為1.0×102。 As shown in FIG. 9, when the change A is compared to the change B, wherein the change A is a stud according to an applied voltage of about 4 volts, the number of bends when the read voltage is applied at 1 volt; wherein the change B is according to the applied voltage 8 After the volt is erased, when the number of bends of the read voltage of 1 volt is applied, even if the number of bends increases, the on current Ion and the off current Ioff maintain a large difference. At this time, the current ratio is turned on/off, and Ion/Ioff is about 1.0 × 10 2 .
(實驗3)非揮發性記憶體元件只包括第一緩衝層 (Experiment 3) Non-volatile memory components only include the first buffer layer
在矽基板上堆疊80奈米的第一電極(鋁,Al)、35奈米的第一導電有機層(喹啉基鋁,Alq3)、20奈米的奈米晶體(鎳,Ni)、0.2奈米的第一緩衝層(氟化鋰,LiF)、45奈米的第二導電有機層(喹啉基鋁,Alq3)及80奈米的第二電極(鋁,Al)以製造非揮發性記憶體元件。在此,鎳透過的氧氣電漿處理、花費300秒而形成奈米晶體層。換句話說,除未形成第二緩衝層外,實驗1與實驗2相同。 A 80 nm first electrode (aluminum, Al), a 35 nm first conductive organic layer (quinolinyl aluminum, Alq 3 ), a 20 nm nanocrystal (nickel, Ni), 0.2 nm of the first buffer layer (lithium fluoride, LiF), 45 nm of the second conductive organic layer (quinolinyl aluminum, Alq 3 ) and 80 nm of the second electrode (aluminum, Al) to make non- Volatile memory components. Here, the oxygen plasma treatment of nickel permeation takes 300 seconds to form a nanocrystal layer. In other words, Experiment 1 was the same as Experiment 2 except that the second buffer layer was not formed.
圖10是根據實驗3之一種非揮發性記憶體元件的電流-電壓的特性圖。換句話說,圖10表示了記憶體元件的電流-電壓特性圖,其包括於奈米晶體層與第二導電有機層之間的第一緩衝層。 Fig. 10 is a graph showing the current-voltage characteristics of a non-volatile memory element according to Experiment 3. In other words, Fig. 10 shows a current-voltage characteristic diagram of a memory element including a first buffer layer between the nanocrystal layer and the second conductive organic layer.
如圖10所示,當第一電極與第二電極分別連接至陽極與陰極以施加順向偏壓並依次增加其大小,記憶體元件具有高電阻狀態,亦即斷開狀態Ioff(其中電流以指數地及緩慢地增加直到臨限電壓Vth約2.1伏特)。然後,當施加一高於臨限電壓Vth約2.1伏特的電壓時,電流劇烈增加。隨著電壓增加,電流增加,直到約3.6伏特。此後,出現電流減少的NDR區 域。然後,當電壓在通過NDR區域後變成高於約5.4伏特的電壓Ve時,隨著電壓增加,電流再次增加。此外,當施加一電壓至記憶體元件,其中該記憶體元件藉由施加約3.9伏特而程式化時,記憶體元件具有電流劇烈增加的導通電流Ion狀態。此外,隨著逆向偏壓依此增加,電流在預定電壓下有些大增加,但整體上緩慢地增加。 As shown in FIG. 10, when the first electrode and the second electrode are respectively connected to the anode and the cathode to apply a forward bias and sequentially increase the size thereof, the memory element has a high resistance state, that is, an off state Ioff (where the current is Increase exponentially and slowly until the threshold voltage Vth is about 2.1 volts). Then, when a voltage of about 2.1 volts higher than the threshold voltage Vth is applied, the current is drastically increased. As the voltage increases, the current increases until it is about 3.6 volts. Thereafter, the NDR area where current reduction occurs area. Then, when the voltage becomes a voltage Ve higher than about 5.4 volts after passing through the NDR region, the current increases again as the voltage increases. Further, when a voltage is applied to the memory element, wherein the memory element is programmed by applying about 3.9 volts, the memory element has a conduction current Ion state in which the current is drastically increased. In addition, as the reverse bias voltage increases accordingly, the current increases somewhat at a predetermined voltage, but increases slowly as a whole.
(實驗4)非揮發性記憶體元件只包括第二緩衝層 (Experiment 4) Non-volatile memory components only include the second buffer layer
在矽基板上堆疊80奈米的第一電極(鋁,Al)、35奈米的第一導電有機層(喹啉基鋁,Alq3)、20奈米的奈米的晶體(鎳,Ni)、45奈米的第二導電有機層(喹啉基鋁,Alq3)、0.6奈米的第二緩衝層(氟化鋰,LiF)及80奈米的第二電極(鋁,Al)以製造非揮發性記憶體元件。 A 80 nm first electrode (aluminum, Al), a 35 nm first conductive organic layer (quinolyl aluminum, Alq 3 ), and a 20 nm nanocrystal (nickel, Ni) were stacked on a tantalum substrate. , a 45 nm second conductive organic layer (quinolyl aluminum, Alq 3 ), a 0.6 nm second buffer layer (lithium fluoride, LiF), and a 80 nm second electrode (aluminum, Al) are manufactured. Non-volatile memory components.
圖11是根據實驗4之一種非揮發性記憶體元件的電流-電壓特性圖。換句話說,圖10表示了記憶體元件的電流-電壓特性圖,其包括於第二導電有機層與第二電極之間的第二緩衝層。換句話說,如圖11所示,當施加順向偏壓且依次增加電壓時,記憶體元件具有高電阻狀態,亦即斷開狀態Ioff(其中電流以指數地及緩慢地增加直到臨限電壓Vth約2.1伏特)。然後,當施加一高於臨限電壓Vth約2.1伏特的電壓,電流劇烈增加。直到約3.5伏特,隨著電壓增加,電流增加。此後,出現電流減少的NDR區域。然後,當電壓在經過NDR區域後變成高於約7.1伏特的電壓Ve時,隨著電壓增加,電流再次增加。此外,當施加電壓約3.5伏特之電壓於記憶體元件使其程式化,記憶體元件具有導通電流Ion狀態,其中電流劇烈 增加。此外,隨著逆向偏壓繼續增加,電流緩慢地增加。 Figure 11 is a graph showing the current-voltage characteristics of a non-volatile memory element according to Experiment 4. In other words, Fig. 10 shows a current-voltage characteristic diagram of a memory element including a second buffer layer between the second conductive organic layer and the second electrode. In other words, as shown in FIG. 11, when a forward bias is applied and the voltage is sequentially increased, the memory element has a high resistance state, that is, an off state Ioff (wherein the current increases exponentially and slowly until the threshold voltage Vth is about 2.1 volts). Then, when a voltage of about 2.1 volts higher than the threshold voltage Vth is applied, the current is drastically increased. Up to about 3.5 volts, as the voltage increases, the current increases. Thereafter, a reduced current NDR region occurs. Then, when the voltage becomes a voltage Ve higher than about 7.1 volts after passing through the NDR region, the current increases again as the voltage increases. In addition, when a voltage of about 3.5 volts is applied to the memory device to program it, the memory device has a conduction current Ion state in which the current is severe increase. Furthermore, as the reverse bias continues to increase, the current slowly increases.
(實驗5)有機記憶體元件包括具有相同厚度第一緩衝層與第二緩衝層。 (Experiment 5) The organic memory element includes a first buffer layer and a second buffer layer having the same thickness.
在矽基板上堆疊80奈米的第一電極(鋁,Al)、35奈米的第一導電有機層(喹啉基鋁,Alq3)、20奈米的奈米晶體(鎳,Ni)、0.6奈米的第一緩衝層(氟化鋰,LiF)、45奈米的第二導電有機層(喹啉基鋁,Alq3)、0.6奈米的第二緩衝層(氟化鋰,LiF)及80奈米的第二電極(鋁,Al)以製造非揮發性記憶體元件。 A 80 nm first electrode (aluminum, Al), a 35 nm first conductive organic layer (quinolinyl aluminum, Alq 3 ), a 20 nm nanocrystal (nickel, Ni), 0.6 nm first buffer layer (lithium fluoride, LiF), 45 nm second conductive organic layer (quinolyl aluminum, Alq 3 ), 0.6 nm second buffer layer (lithium fluoride, LiF) And a second electrode of 80 nm (aluminum, Al) to make a non-volatile memory component.
圖12是根據實驗5之一種依厚度變化的非揮發性記憶體元件電流-電壓特性圖。 Figure 12 is a graph showing current-voltage characteristics of a non-volatile memory element according to thickness variation according to Experiment 5.
如圖12所示,當依次增加順向偏壓,記憶體元件具有高電阻狀態,亦即斷開狀態Ioff(其中電流以指數地及緩慢地增加直到臨限電壓Vth約2.1伏特)。然後,當施加一高於臨限電壓Vth約2.1伏特的電壓時,電流劇烈增加。然後,出現隨著電壓增加,電流增加到約4.0伏特,且之後電流減少的NDR區域。然後,當電壓在經過NDR區域後變成高於約5.7伏特的電壓Ve時,隨著電壓增加,電流再次增加。此外,當施加一電壓至記憶體元件,其中該記憶體元件藉由施加約4.0伏特而程式化,記憶體元件具有電流劇烈增加的導通電流Ion狀態。此外,當逆向偏壓增加時,電流劇烈增加。然而,隨著逆向偏壓再次增加,電流緩慢地增加。 As shown in FIG. 12, when the forward bias is sequentially increased, the memory element has a high resistance state, that is, an off state Ioff (wherein the current increases exponentially and slowly until the threshold voltage Vth is about 2.1 volts). Then, when a voltage of about 2.1 volts higher than the threshold voltage Vth is applied, the current is drastically increased. Then, as the voltage increases, the current increases to about 4.0 volts, and then the current decreases in the NDR region. Then, when the voltage becomes a voltage Ve higher than about 5.7 volts after passing through the NDR region, the current increases again as the voltage increases. Further, when a voltage is applied to the memory element, wherein the memory element is programmed by applying about 4.0 volts, the memory element has a conduction current Ion state in which the current is drastically increased. In addition, as the reverse bias increases, the current increases dramatically. However, as the reverse bias increases again, the current slowly increases.
即使第一緩衝層與第二緩衝層具有相同厚度,可觀察到記憶體元件的操作特性沒有很大的變化。 Even if the first buffer layer and the second buffer layer have the same thickness, it can be observed that the operational characteristics of the memory element are not greatly changed.
(實驗6)使用喹啉基鋰(Liq)製造非揮發性有機記憶體元 件。 (Experiment 6) Preparation of non-volatile organic memory cells using quinolyllithium (Liq) Pieces.
在矽基板上堆疊80奈米的第一電極(鋁,Al)、35奈米的第一導電有機層(喹啉基鋁,Alq3)、20奈米的奈米的晶體(鎳,Ni)、0.2奈米的第一緩衝層(氟化鋰,LiF)、45奈米的第二導電有機層(喹啉基鋁,Alq3)、0.6奈米的第二緩衝層(氟化鋰,LiF)及80奈米的第二電極(鋁,Al)以製造非揮發性有機記憶體元件。 A 80 nm first electrode (aluminum, Al), a 35 nm first conductive organic layer (quinolyl aluminum, Alq 3 ), and a 20 nm nanocrystal (nickel, Ni) were stacked on a tantalum substrate. , 0.2 nm first buffer layer (lithium fluoride, LiF), 45 nm second conductive organic layer (quinolyl aluminum, Alq 3 ), 0.6 nm second buffer layer (lithium fluoride, LiF And a second electrode of 80 nm (aluminum, Al) to make a non-volatile organic memory element.
圖13是根據實驗6之一種非揮發性記憶體元件的電流-電壓特性圖。如圖13所示,當依次增加順向偏壓並於之後施加其時,記憶體元件具有高電阻狀態,亦即斷開狀態Ioff(其電流以指數地及緩慢地增加直到臨限電壓Vth約2.2伏特)。然後,當施加一高於臨限電壓Vth約1.1伏特的電壓時,電流劇烈增加。然後,出現隨著電壓增加,電流增加到約3.5伏特,且之後電流減少的NDR區域。然後,當電壓在經過NDR區域之後變成高於約6.2伏特電壓Ve時,隨著電壓增加,電流再次增加。此外,當施加一電壓至記憶體元件,其中該記憶體元件藉由施加約3.5伏特而程式化,記憶體元件具有電流劇烈增加的導通電流Ion狀態。又,在記憶體元件藉由施加約4.5伏特及約5.5伏特而被程式化之後,亦即NDR區域的電壓,然後,再次施加相同電壓,其具有中間電流Iint1與Iint2的狀態,其低於導通電流Ion且高於關閉電流Ioff。換句話說,當施加預定電壓以使記憶體元件程式化後執行讀取操作時,可觀察到一高於關閉電流Ioff的電流流動。因此,可實現根據程式化電壓而多階程式化。此外,當施加逆向偏壓,電流在一預定 電壓下具有很大的變化,但緩慢地增加及流動。 Figure 13 is a graph showing the current-voltage characteristics of a non-volatile memory element according to Experiment 6. As shown in FIG. 13, when the forward bias is sequentially increased and then applied thereafter, the memory element has a high resistance state, that is, an off state Ioff (its current increases exponentially and slowly until the threshold voltage Vth is about 2.2 volts). Then, when a voltage of about 1.1 volts higher than the threshold voltage Vth is applied, the current is drastically increased. Then, as the voltage increases, the current increases to about 3.5 volts, and then the current decreases in the NDR region. Then, when the voltage becomes higher than about 6.2 volts Ve after passing through the NDR region, the current increases again as the voltage increases. Further, when a voltage is applied to the memory element, wherein the memory element is programmed by applying about 3.5 volts, the memory element has a conduction current Ion state in which the current is drastically increased. Moreover, after the memory component is programmed by applying about 4.5 volts and about 5.5 volts, that is, the voltage of the NDR region, then the same voltage is applied again, which has the state of the intermediate currents Iint1 and Iint2, which is lower than the conduction. The current Ion is higher than the off current Ioff. In other words, when a predetermined voltage is applied to program the memory element to perform a read operation, a current flow higher than the off current Ioff can be observed. Therefore, multi-step programming based on the stylized voltage can be realized. In addition, when a reverse bias is applied, the current is at a predetermined time. There is a large change in voltage, but it slowly increases and flows.
圖14是根據實驗6之一種非揮發性記憶體元件的資料保持特性圖。將變化A、變化B、變化C及變化D彼此比較,其中變化A是根據施加約3.5伏特以程式化後,當施加讀取電壓1伏特時的導通電流Ion的時間;變化B是根據施加約8伏特以抹除後,當施加讀取電壓1伏特時的關閉電流Ioff的時間;以及變化C及D是根據分別施加約4.5伏特及約5.5伏特以程式化之後,當施加讀取電壓1伏特時的中間電流Iint1與Iint2的時間。如圖14所示,隨著時間推移,可觀察到導通電流Ion、關閉電流Ioff,以及中間電流Iint1與Iint2的預定資料之間維持很大差異。 Figure 14 is a data retention characteristic diagram of a non-volatile memory element according to Experiment 6. The change A, the change B, the change C, and the change D are compared with each other, wherein the change A is a time when the on-current Ion is applied when the read voltage is 1 volt after the application of about 3.5 volts is applied; the change B is based on the application 8 volts after erasing, the time to turn off the current Ioff when a read voltage of 1 volt is applied; and the changes C and D are based on the application of about 4.5 volts and about 5.5 volts respectively after stylization, when a read voltage of 1 volt is applied The time between the intermediate currents Iint1 and Iint2. As shown in FIG. 14, as time passes, the on current Ion, the off current Ioff, and the predetermined data of the intermediate currents Iint1 and Iint2 are observed to maintain a large difference.
當喹啉基鋰用來作為第一緩衝層與第二緩衝層的材料,有類似的操作特性顯示。 When quinolinyllithium is used as the material of the first buffer layer and the second buffer layer, similar operational characteristics are shown.
如上所述,將程式化電壓或抹除電壓施加於第一電極110與第二電極180之間,以具有預定電位差後,非揮發性記憶體元件藉由電荷在奈米晶體層140中充電或放電來執行程式化或抹除操作。再者,當施加讀取電壓時,非揮發性記憶體元件根據儲存在奈米晶體層140中的電荷來偵測程式化或抹除狀態。這樣的非揮發性記憶體元件的驅動方法如下文中所述。 As described above, after a stylized voltage or an erase voltage is applied between the first electrode 110 and the second electrode 180 to have a predetermined potential difference, the non-volatile memory element is charged in the nanocrystal layer 140 by electric charge or Discharge to perform a program or erase operation. Furthermore, when a read voltage is applied, the non-volatile memory element detects a stylized or erased state based on the charge stored in the nanocrystal layer 140. The driving method of such a non-volatile memory element is as follows.
圖15是根據例示性實施例繪示之一種驅動非揮發性記憶體元件方法的示意圖。換句話說,圖15的示意圖表示非揮發性記憶體元件程式化方法、抹除方法及讀取方法。 15 is a schematic diagram of a method of driving a non-volatile memory component, in accordance with an illustrative embodiment. In other words, the schematic diagram of FIG. 15 shows a non-volatile memory element stylization method, an erase method, and a reading method.
如圖15所示,非揮發性記憶體元件包括多個第一導電線10包括往同一方向延伸且彼此隔開預定間隔的11、12及13; 多個第二導電線20,其包括垂直於第一導電線10的方向延伸且彼此隔開預定間隔的21、22及23;以及多個儲存單元30,其配置於第一導電線10與第二導電線20之間的交叉點。此外,如上所述,儲存單元30包括第一電極120、第一導電有機層130、奈米晶體層140、第二導電有機層160、第一緩衝層150與第二緩衝層170的至少其中之一,以及第二電極180。在此,第一電極120與第二電極180是第一導電線10與第二導電線20的一部分。根據本實施例,分別在電位差為約4伏特、約1伏特及約7伏特執行程式化操作、讀取操作及抹除操作。換句話說,將描述驅動非揮發性記憶體元件的方法。 As shown in FIG. 15, the non-volatile memory element includes a plurality of first conductive lines 10 including 11, 12, and 13 extending in the same direction and spaced apart from each other by a predetermined interval; a plurality of second conductive lines 20 including 21, 22, and 23 extending perpendicular to the first conductive line 10 and spaced apart from each other by a predetermined interval; and a plurality of memory cells 30 disposed on the first conductive lines 10 and The intersection between the two conductive lines 20. In addition, as described above, the storage unit 30 includes at least one of the first electrode 120, the first conductive organic layer 130, the nanocrystal layer 140, the second conductive organic layer 160, the first buffer layer 150, and the second buffer layer 170. First, and the second electrode 180. Here, the first electrode 120 and the second electrode 180 are part of the first conductive line 10 and the second conductive line 20. According to the present embodiment, the stylizing operation, the reading operation, and the erasing operation are performed at potential differences of about 4 volts, about 1 volt, and about 7 volts, respectively. In other words, a method of driving a non-volatile memory element will be described.
為了選擇並程式化第一導電線12與第二導電線22交叉點的儲存單元31,施加約2伏特於經過儲存單元31的第一導電線12並且施加約-2伏特於經過儲存單元31的第二導電線22。此外,施加約2伏特於不連接儲存單元31的第一導電線11與第一導電線13,及施加約2伏特於第二導電線21與第二導電線23。因此,在第一導電線12與第二導電線22之間所選擇的儲存單元31產生4伏特的電位差,以使儲存單元31程式化,且在其他的儲存單元產生約0伏特或約-4伏特的電位差。然而,由於儲存單元30包括第一緩衝層150與第二緩衝層180中的至少其中之一,當施加順向偏壓時,促進電荷注入,而當施加逆向偏壓,抑制電荷轉移。因此,除了所選擇儲存單元10之外的其他儲存單元,其被施加了約-4伏特的逆向偏壓,並無法被程式化。 In order to select and program the storage unit 31 where the first conductive line 12 and the second conductive line 22 intersect, about 2 volts is applied to the first conductive line 12 passing through the storage unit 31 and about -2 volts is applied to the storage unit 31. The second conductive line 22. Further, about 2 volts is applied to the first conductive line 11 and the first conductive line 13 which are not connected to the memory unit 31, and about 2 volts is applied to the second conductive line 21 and the second conductive line 23. Thus, the selected memory cell 31 between the first conductive line 12 and the second conductive line 22 produces a potential difference of 4 volts to program the memory cell 31 and produce about 0 volts or about -4 in other memory cells. The potential difference of volts. However, since the storage unit 30 includes at least one of the first buffer layer 150 and the second buffer layer 180, charge injection is promoted when a forward bias is applied, and charge transfer is suppressed when a reverse bias is applied. Therefore, other storage cells than the selected storage unit 10 are applied with a reverse bias of about -4 volts and cannot be programmed.
此外,為了儲存單元31的讀取操作,施加約0.5伏特於 通過儲存單元31的第一導電線12與施加約-0.5伏特於通過儲存單元31的第二導電線22。此外,施加約-0.5伏特於不連接儲存單元31的第一導電線11與第一導電線13,及施加約0.5伏特於第二導電線21與第二導電線23。因此,在第一導電線12與第二導電線22之間所選擇的儲存單元31產生1伏特電位差,以讀取儲存單元31的狀態,且在其他的儲存單元產生約0伏特或約-1伏特的電位差。然而,由於儲存單元30包括第一緩衝層150與第二緩衝層180中的至少其中之一,當施加順向偏壓時,其促進電荷注入,當施加逆向偏壓時,其作為抑制電荷轉移的障壁,除了所選擇儲存單元31以外的其他儲存單元,其施加約-1伏特的逆向偏壓,並無法被讀取。 Further, for the reading operation of the storage unit 31, about 0.5 volts is applied The first conductive line 12 of the storage unit 31 is applied with about -0.5 volts to the second conductive line 22 that passes through the storage unit 31. Further, about -0.5 volts is applied to the first conductive line 11 and the first conductive line 13 which are not connected to the memory unit 31, and about 0.5 volts is applied to the second conductive line 21 and the second conductive line 23. Therefore, the selected memory cell 31 between the first conductive line 12 and the second conductive line 22 generates a potential difference of 1 volt to read the state of the memory cell 31, and generates about 0 volts or about -1 in other memory cells. The potential difference of volts. However, since the storage unit 30 includes at least one of the first buffer layer 150 and the second buffer layer 180, it promotes charge injection when a forward bias is applied, and suppresses charge transfer when a reverse bias is applied. The barrier, except for the selected storage unit 31, applies a reverse bias of about -1 volt and cannot be read.
此外,為了儲存單元31的抹除操作,施加約3.5伏特於通過儲存單元31的第一導電線12與施加約-3.5伏特於通過儲存單元31的第二導電線22。此外,施加約-3.5伏特於不連接儲存單元31的第一導電線11及第一導電線13,以及施加約3.5伏特於第二導電線21與第二導電線23。因此,在第一導電線12與第二導電線22之間所選擇的儲存單元31產生7伏特的電位差,以抹除儲存單元31,且在其他的儲存單元產生約0伏特或約-7伏特的電位差。然而,由於儲存單元30包括第一緩衝層150與第二緩衝層180中的至少其中之一,當施加順向偏壓時,其促進電荷注入,當施加逆向偏壓時,其作為抑制電荷轉移的障壁,除了所選擇儲存單元31以外的其他儲存單元,其施加約-7伏特的逆向偏壓,並無法被抹除。 Further, for the erase operation of the storage unit 31, about 3.5 volts is applied to the first conductive line 12 passing through the storage unit 31 and about -3.5 volts is applied to the second conductive line 22 passing through the storage unit 31. Further, about -3.5 volts is applied to the first conductive line 11 and the first conductive line 13 which are not connected to the memory unit 31, and about 3.5 volts is applied to the second conductive line 21 and the second conductive line 23. Thus, the selected memory cell 31 between the first conductive line 12 and the second conductive line 22 produces a potential difference of 7 volts to erase the memory cell 31 and produces about 0 volts or about -7 volts in other memory cells. The potential difference. However, since the storage unit 30 includes at least one of the first buffer layer 150 and the second buffer layer 180, it promotes charge injection when a forward bias is applied, and suppresses charge transfer when a reverse bias is applied. The barrier, except for the selected storage unit 31, applies a reverse bias of about -7 volts and cannot be erased.
又,本發明之一實施例及其變形例(modifications)是描 述一非揮發性記憶體元,其中第一材料層是不對稱於第二材料層而形成的,其中第一材料層於第一導電層電極110與奈米晶體層140之間,第二材料層於奈米晶體層140與第二導電層電極180之間。換句話說,第一材料層由第一導電有機層130形成,而第二材料藉由堆疊第二導電有機層160以及第一緩衝層150與第二緩衝層170中的至少其中之一而形成。然而,如圖16到圖18所示。非揮發性記憶體元件包括於第一導電層電極110與奈米晶體層140之間的第一材料層,非揮發性記憶體元件由堆疊第一導電有機層130以及第三緩衝層152與第四緩衝層172的至少其中之一所形成。換句話說,如圖16所示,可在基板110上堆疊第一導電層120、第四緩衝層172、第一導電有機層130、第三緩衝層152、奈米晶體層140、第二導電有機層160及第二導電層電極180。此外,如圖17所示,可在基板110上,堆疊第一導電層120、第四緩衝層172、第一導電有機層130、奈米晶體層140、第二導電有機層160及第二導電層電極180。再者,如圖18所示,可在基板110上,堆疊第一導電層120、第四緩衝層172、第一導電有機層130、第三緩衝層152、奈米晶體層140、第二導電有機層160及第二導電層電極180。在此,可形成相同厚度的第三緩衝層152與第四緩衝層172,但可形成厚於第三緩衝層152的第四緩衝層172。 Moreover, an embodiment of the present invention and its modifications are descriptions A non-volatile memory cell, wherein the first material layer is formed asymmetrically with the second material layer, wherein the first material layer is between the first conductive layer electrode 110 and the nano crystal layer 140, and the second material The layer is between the nanocrystal layer 140 and the second conductive layer electrode 180. In other words, the first material layer is formed by the first conductive organic layer 130, and the second material is formed by stacking the second conductive organic layer 160 and at least one of the first buffer layer 150 and the second buffer layer 170. . However, as shown in FIGS. 16 to 18. The non-volatile memory element includes a first material layer between the first conductive layer electrode 110 and the nano crystal layer 140, and the non-volatile memory element is composed of a first conductive organic layer 130 and a third buffer layer 152 At least one of the four buffer layers 172 is formed. In other words, as shown in FIG. 16, the first conductive layer 120, the fourth buffer layer 172, the first conductive organic layer 130, the third buffer layer 152, the nano crystal layer 140, and the second conductive layer may be stacked on the substrate 110. The organic layer 160 and the second conductive layer electrode 180. In addition, as shown in FIG. 17, the first conductive layer 120, the fourth buffer layer 172, the first conductive organic layer 130, the nano crystal layer 140, the second conductive organic layer 160, and the second conductive layer may be stacked on the substrate 110. Layer electrode 180. Furthermore, as shown in FIG. 18, the first conductive layer 120, the fourth buffer layer 172, the first conductive organic layer 130, the third buffer layer 152, the nano crystal layer 140, and the second conductive layer may be stacked on the substrate 110. The organic layer 160 and the second conductive layer electrode 180. Here, the third buffer layer 152 and the fourth buffer layer 172 of the same thickness may be formed, but the fourth buffer layer 172 thicker than the third buffer layer 152 may be formed.
此外,可在第一材料層中形成至少一緩衝層,且可在第二材料層中形成至少一緩衝層。換句話說,如圖19所示,第一材料層可包括第三緩衝層152與第四緩衝層172而形成,且 第二材料層可包括第一緩衝層150與第二緩衝層170而形成。此外,如圖20所示,第一材料層可包括第三緩衝層152而形成,且第二材料層可包括第二緩衝層170而形成。 Further, at least one buffer layer may be formed in the first material layer, and at least one buffer layer may be formed in the second material layer. In other words, as shown in FIG. 19, the first material layer may include a third buffer layer 152 and a fourth buffer layer 172, and The second material layer may include a first buffer layer 150 and a second buffer layer 170. Further, as shown in FIG. 20, the first material layer may be formed including the third buffer layer 152, and the second material layer may be formed including the second buffer layer 170.
如上述,根據本發明,至少一緩衝層形成於第一電極120與奈米晶體層140之間的至少一第一材料層,以及形成於奈米晶體層140與第二電極180之間的第二材料層,藉此在順向偏壓中促進電荷注入且在逆向偏壓中抑制電荷轉移。 As described above, according to the present invention, at least one buffer layer is formed between at least one first material layer between the first electrode 120 and the nanocrystal layer 140, and between the nanocrystal layer 140 and the second electrode 180. Two layers of material whereby charge injection is promoted in the forward bias and charge transfer is suppressed in the reverse bias.
下文中,根據本發明,將非揮發性記憶體元件不同的製造方法描述如下。 Hereinafter, different manufacturing methods of non-volatile memory elements are described below in accordance with the present invention.
圖21至25是根據一例示性實施例之一種非揮發性記憶體元件製造方法的連續剖視圖。換句話說,剖視圖繪示奈米晶體層透過氧化製程的製造方法。 21 through 25 are continuous cross-sectional views of a method of fabricating a non-volatile memory device, in accordance with an exemplary embodiment. In other words, the cross-sectional view shows a manufacturing method in which the nanocrystal layer is passed through an oxidation process.
如圖21所示,在基板110上形成第一電極120與第一導電有機層130。在此,基板110可為導電基板、絕緣基板或半導體基板也可以是可撓性基板。此外,當使用導電基板時,需要於其上形成絕緣層。此時,絕緣層可包括一氧化物層或氮化物層。此外,第一電極120可使用具有導電性的所有材料,也可以使用對於導電有機材料具有低電阻及優異的界面性質的材料。第一電極120可使用金屬如鋁(Al)、鈦(Ti)、鋅(Zn)、鐵(Fe)、鎳(Ni)、錫(Sn)、鉛(Pb)、銅(Cu)及其合金。然後,在具有第一電極120的基板120上執行清洗製程,然後在其上實施紫外線與臭氧處理。此時,清洗製程可使用有機溶劑,如異丙醇(isopropanol,IPA)及丙酮(acetone)。此外,在真空條件之下,可在洗淨的基板110上實施電漿處理。然後,第一導電有機層 130藉由以下的條件而形成:在溫度約150℃至約400℃、腔室內部之壓力為約10-6帕至約10-3帕下蒸鍍有機材料,且沈積速率約0.2埃/秒至約2埃/秒。第一導電有機層130可由喹啉基鋁(Alq3)形成,且可形成為約20奈米至約50奈米的厚度。 As shown in FIG. 21, the first electrode 120 and the first conductive organic layer 130 are formed on the substrate 110. Here, the substrate 110 may be a conductive substrate, an insulating substrate, or a semiconductor substrate, or may be a flexible substrate. Further, when a conductive substrate is used, it is necessary to form an insulating layer thereon. At this time, the insulating layer may include an oxide layer or a nitride layer. Further, the first electrode 120 may use all materials having conductivity, or a material having low electrical resistance and excellent interfacial properties for the conductive organic material. The first electrode 120 may use a metal such as aluminum (Al), titanium (Ti), zinc (Zn), iron (Fe), nickel (Ni), tin (Sn), lead (Pb), copper (Cu), and alloys thereof. . Then, a cleaning process is performed on the substrate 120 having the first electrode 120, and then ultraviolet and ozone treatment is performed thereon. At this time, the cleaning process may use an organic solvent such as isopropanol (IPA) and acetone. Further, under vacuum conditions, a plasma treatment can be performed on the cleaned substrate 110. Then, the first conductive organic layer 130 is formed by evaporating the organic material at a temperature of about 150 ° C to about 400 ° C, a pressure inside the chamber of about 10 -6 Pa to about 10 -3 Pa, and The deposition rate is from about 0.2 angstroms per second to about 2 angstroms per second. The first conductive organic layer 130 may be formed of quinolyl aluminum (Alq 3 ), and may be formed to a thickness of about 20 nm to about 50 nm.
如圖22與圖27(a)-至圖27(c)所示,在第一導電有機層130上形成奈米晶體層140。此時,為了使奈米晶體層140具有約1奈米至約30奈米之均勻厚度分布,在於第一導電有機層130上沈積金屬層140a後,透過氧氣電漿,在其上執行氧化製程,以形成奈米晶體層140。在此,在第一導電有機層130上,以蒸鍍金屬的材料如鎳,在溫度為約800℃至約1500℃、腔室內部之壓力在約10-6帕至約10-3帕,且沈積速率為約0.1埃/秒至約2埃/秒的條件下,形成具有約1奈米至約30奈米厚度的金屬層140a。 As shown in FIG. 22 and FIGS. 27(a) to 27(c), a nanocrystal layer 140 is formed on the first conductive organic layer 130. At this time, in order to make the nanocrystal layer 140 have a uniform thickness distribution of about 1 nm to about 30 nm, after the metal layer 140a is deposited on the first conductive organic layer 130, the oxygen plasma is passed through, and an oxidation process is performed thereon. To form a nanocrystal layer 140. Here, on the first conductive organic layer 130, a metal-deposited material such as nickel is at a temperature of about 800 ° C to about 1500 ° C, and a pressure inside the chamber is about 10 -6 Pa to about 10 -3 Pa. And a metal layer 140a having a thickness of from about 1 nm to about 30 nm is formed under conditions of a deposition rate of from about 0.1 Å/sec to about 2 Å/sec.
此時,由於金屬層140a具有高沈積速率,其無法以奈米晶體形狀形成,而形成具有晶粒邊界的金屬薄層,如圖26(A)所示。 At this time, since the metal layer 140a has a high deposition rate, it cannot be formed in a nanocrystal shape, and a thin metal layer having grain boundaries is formed as shown in Fig. 26(A).
接著,將有金屬層140a的基板110載入至腔室中氧化。例如,藉由施加射頻電源約50瓦至約300瓦、直流偏壓約100伏至約200伏、注入氧氣約100標準狀態毫升/分鐘(sccm)至約200標準狀態毫升/分鐘而壓力約0.5帕至約3.0帕的條件下,在腔室中實施氧化製程。此時,製程時間為約30秒至約500秒。 Next, the substrate 110 having the metal layer 140a is loaded into the chamber for oxidation. For example, by applying a radio frequency power source of about 50 watts to about 300 watts, a DC bias of about 100 volts to about 200 volts, and an oxygen injection of about 100 standard conditions in milliliters per minute (sccm) to about 200 standard conditions in milliliters per minute and a pressure of about 0.5. The oxidation process is carried out in the chamber at a condition of about 3.0 Pa. At this time, the process time is about 30 seconds to about 500 seconds.
如圖26(B)所示,透過此,氧氣電漿沿著邊界滲入金屬層140a中,且金屬層140a沿著晶粒邊界而氧化。如圖26(C)所 示,形成具有相同尺寸的奈米晶體141,且在其表面上形成絕緣層142,亦即非晶形層。此時,根據金屬層140a的厚度將奈米晶體層140厚度形成為約1奈米至約30奈米。當然,即使可形成較厚的金屬層140a,但若金屬層140a過厚(例如:多於約50奈米),氧氣可能無法充分地滲入金屬層140a的晶粒邊界中,因此奈米晶體層140無法被有效地形成。如圖26(D)所示,在氧化製程完成之後,提供奈米晶體層140與圍繞其的氧化鎳(NiO)絕緣層142。 As shown in Fig. 26(B), through this, the oxygen plasma penetrates into the metal layer 140a along the boundary, and the metal layer 140a oxidizes along the grain boundaries. As shown in Figure 26(C) It is shown that nanocrystals 141 having the same size are formed, and an insulating layer 142, that is, an amorphous layer, is formed on the surface thereof. At this time, the thickness of the nanocrystal layer 140 is formed to be about 1 nm to about 30 nm in accordance with the thickness of the metal layer 140a. Of course, even if a thick metal layer 140a can be formed, if the metal layer 140a is too thick (for example, more than about 50 nm), oxygen may not sufficiently penetrate into the grain boundaries of the metal layer 140a, so the nanocrystal layer 140 cannot be formed effectively. As shown in Fig. 26(D), after the oxidation process is completed, a nanocrystal layer 140 and a nickel oxide (NiO) insulating layer 142 surrounding it are provided.
在此,可執行多次金屬層140a的沈積與氧化製程來形成多層奈米晶體層140。此時,根據金屬層140a的沈積厚度,可形成每一層具有相同厚度或不同厚度的多層奈米晶體層150。奈米晶體層140具有相同厚度的一至十層之多層結構較為有效。 Here, the deposition and oxidation process of the metal layer 140a may be performed multiple times to form the multilayer nanocrystal layer 140. At this time, according to the deposition thickness of the metal layer 140a, the multilayer nanocrystal layer 150 each having the same thickness or different thickness may be formed. It is effective that the nanocrystal layer 140 has a multilayer structure of one to ten layers of the same thickness.
如圖23所示,在奈米晶體層140上形成第一層150。第一緩衝層150可透過真空熱沈積或旋轉塗佈法來形成,且可由如氟化鋰(LiF)、氯化鈉(NaCl)、氟化銫(CsF)、氧化鋰(Li2O)、BaO(氧化鋇)及喹啉基鋰(Liq)的材料來形成。在此,所形成第一緩衝層150的厚度約0.1奈米至約1奈米。 As shown in FIG. 23, a first layer 150 is formed on the nanocrystal layer 140. The first buffer layer 150 may be formed by vacuum thermal deposition or spin coating, and may be, for example, lithium fluoride (LiF), sodium chloride (NaCl), cesium fluoride (CsF), lithium oxide (Li 2 O), A material of BaO (yttria) and quinolinyl lithium (Liq) is formed. Here, the first buffer layer 150 is formed to have a thickness of about 0.1 nm to about 1 nm.
如圖24所示,在第一緩衝層150上形成第二導電有機層160。在溫度約150℃至約400℃、腔室內部之壓力為約10-5帕至約10-3帕,且沈積速率為約0.2埃/秒至約2埃/秒的條件下,藉由蒸鍍有機材料來形成第二導電有機層160。第二導電有機層160可由Alq3形成,而可形成為約20奈米至約50奈米的厚度。 As shown in FIG. 24, a second conductive organic layer 160 is formed on the first buffer layer 150. At a temperature of from about 150 ° C to about 400 ° C, a pressure inside the chamber of from about 10 -5 Pa to about 10 -3 Pa, and a deposition rate of from about 0.2 Å / sec to about 2 Å / sec, by steaming An organic material is plated to form the second conductive organic layer 160. The second conductive organic layer 160 may be formed of Alq 3 and may be formed to a thickness of about 20 nm to about 50 nm.
如圖25所示,在第二導電有機層160上形成第二緩衝層170,然後在其上形成第二電極180。第二緩衝層170可透過真空熱沈積或旋轉塗佈方法來形成,且可由如氟化鋰(LiF)、氯化鈉(NaCl)、氟化銫(CsF)、氧化鋰(Li2O)、氧化鋇(BaO)、及喹啉基鋰(Liq)的材料形成。在此,第二緩衝層170可形成的厚度為約0.1奈米至約1奈米,且可厚於第一緩衝層150。此外,在溫度約1000℃至約1500℃、腔室內部之壓力為約10-6帕至約10-3帕,且沈積速率為約2埃/秒至約7埃/秒的條件下,藉由蒸鍍金屬材料形成第二電極180。第二電極180可由鋁形成,且可形成為約20奈米至約150奈米的厚度。 As shown in FIG. 25, a second buffer layer 170 is formed on the second conductive organic layer 160, and then a second electrode 180 is formed thereon. The second buffer layer 170 may be formed by a vacuum thermal deposition or a spin coating method, and may be, for example, lithium fluoride (LiF), sodium chloride (NaCl), cesium fluoride (CsF), lithium oxide (Li 2 O), A material of barium oxide (BaO) and quinolinyl lithium (Liq) is formed. Here, the second buffer layer 170 may be formed to have a thickness of about 0.1 nm to about 1 nm, and may be thicker than the first buffer layer 150. Further, at a temperature of from about 1000 ° C to about 1500 ° C, a pressure inside the chamber of from about 10 -6 Pa to about 10 -3 Pa, and a deposition rate of from about 2 Å/sec to about 7 Å/sec, The second electrode 180 is formed of a vapor-deposited metal material. The second electrode 180 may be formed of aluminum and may be formed to a thickness of about 20 nm to about 150 nm.
此外,上述每一層可在真空氣氛中原位(in-situ)形成。換句話說,上述第一電極120與第二電極180、第一導電有機層130與第二導電有機層160、奈米晶體層140、第一緩衝層150與第二緩衝層170可在單一沈積系統中沈積。例如,在單一系統中可執行沈積,其中一腔室用來沈積第一電極120、第二電極180及奈米晶體層140用金屬層140a;一腔室用來沈積第一導電有機層130、第二導電有機層160及第一緩衝層150與第二緩衝層170用有機層;一腔室用來產生氧化用電漿;一冷卻腔室;一載入閉鎖腔室(load lock chamber)以及一遮蔽罩腔室(shadow mask chamber),上述腔室連接到一個傳送模組。在這種情況下,當基板從電極沈積用腔室傳送到有機層用沈積腔室,其可在沒有被暴露於空氣的真空狀態下,使用傳送模組來傳送。當然,本發明不限於此。所述腔室可連接到不同的系統。 Furthermore, each of the above layers can be formed in-situ in a vacuum atmosphere. In other words, the first electrode 120 and the second electrode 180, the first conductive organic layer 130 and the second conductive organic layer 160, the nanocrystal layer 140, the first buffer layer 150 and the second buffer layer 170 may be deposited in a single manner. Deposited in the system. For example, deposition can be performed in a single system in which a chamber is used to deposit a first electrode 120, a second electrode 180, and a metal layer 140a for the nanocrystal layer 140; a chamber for depositing the first conductive organic layer 130, The second conductive organic layer 160 and the first buffer layer 150 and the second buffer layer 170 use an organic layer; a chamber is used to generate plasma for oxidation; a cooling chamber; a load lock chamber and A shadow mask chamber, the chamber being coupled to a transfer module. In this case, when the substrate is transferred from the electrode deposition chamber to the deposition chamber for the organic layer, it can be transferred using a transfer module in a vacuum state that is not exposed to the air. Of course, the invention is not limited thereto. The chamber can be connected to different systems.
在上述描述的內容中,可在無蝕刻製程之情況下藉由遮蔽罩以及真空蒸鍍來製造非揮發性記憶體元件。然而,本發明不限於此。換句話說,非揮發性記憶體元件可透過不同的方法製造。換句話說,除了熱蒸鍍製程(Thermal evaporation process)外,可透過電荷束沈積製程(E-beam deposition process)、濺射製程(sputtering process)、化學氣相沈積製程(Chemical vapor deposition process,CVD)、金屬有機化學氣相沈積製程(Metal organic chemical vapor deposition process,MOCVD)、分子束磊晶製程(Molecular beam epitaxy process,MBE)、物理氣相沈積製程(Physical vapor deposition process,PVD)及原子層沈積製程(Atomic Layer deposition process,ALD)來形成電極120與電極280、導電有機層130與導電有機層160、奈米晶體層140以及緩衝層150與緩衝層170。此外,電極120與電極180、導電有機層130與導電有機層160以及緩衝層150與緩衝層170可被形成於一整體結構上,然後,透過圖案化製程形成其形狀。例如,在基板110上形成導電材料後,第一電極120可透過光蝕刻法(photolithography)及使用光罩之蝕刻製程(etching process),移除用於第一電極120以外的導電材料來形成。此外,可透過濕式及乾式氧化方法實施氧化製程。 In the above description, the non-volatile memory element can be fabricated by a mask and vacuum evaporation without an etching process. However, the invention is not limited thereto. In other words, non-volatile memory components can be fabricated by different methods. In other words, in addition to the thermal evaporation process, it can be passed through an E-beam deposition process, a sputtering process, or a chemical vapor deposition process (CVD). ), metal organic chemical vapor deposition process (MOCVD), molecular beam epitaxy process (MBE), physical vapor deposition process (PVD) and atomic layer The electrode 120 and the electrode 280, the conductive organic layer 130 and the conductive organic layer 160, the nanocrystal layer 140, and the buffer layer 150 and the buffer layer 170 are formed by an Atomic Layer Deposition Process (ALD). In addition, the electrode 120 and the electrode 180, the conductive organic layer 130 and the conductive organic layer 160, and the buffer layer 150 and the buffer layer 170 may be formed on a unitary structure, and then formed into a shape through a patterning process. For example, after the conductive material is formed on the substrate 110, the first electrode 120 may be formed by removing photoconductive materials other than the first electrode 120 by photolithography and an etching process using a photomask. In addition, the oxidation process can be carried out by a wet and dry oxidation process.
根據第一實施例之非揮發性記憶體元件的製造方法中,第一導電有機層130及第二導電有機層160由如喹啉基鋁(Alq3)之低分子量有機材料形成,且藉由使用氧氣電漿使金屬層氧化來形成奈米晶體層140。然而,第一導電有機層130 與第二導電有機層160可由高分子量材料形成。除了透過沈積及氧化金屬層來形成奈米晶體層140的方法外,可有多種的方法例如形成被絕緣層包圍的奈米晶體層的方法。下文中,將描述另一個實施例,製造非揮發性記憶體元件的另一種方法,使用高分子量材料形成第一導電有機層130與第二導電有機層160。又,將其他實施例重複的內容簡短地描述。 According to the manufacturing method of the non-volatile memory element of the first embodiment, the first conductive organic layer 130 and the second conductive organic layer 160 are formed of a low molecular weight organic material such as quinolinyl aluminum (Alq 3 ), and The metal layer is oxidized using oxygen plasma to form the nanocrystal layer 140. However, the first conductive organic layer 130 and the second conductive organic layer 160 may be formed of a high molecular weight material. In addition to the method of forming the nanocrystal layer 140 by depositing and oxidizing a metal layer, there are various methods such as a method of forming a nanocrystal layer surrounded by an insulating layer. Hereinafter, another embodiment of a method of manufacturing a non-volatile memory element in which the first conductive organic layer 130 and the second conductive organic layer 160 are formed using a high molecular weight material will be described. Also, the contents of the other embodiments are briefly described.
圖27(a)至圖27(c)是根據另一例示性實施例之一種非揮發性記憶體元件的製造方法連續剖視圖。本實施例描述非揮發性記憶體元件的製造方法,其中是使用高分子量材料來形成導電有機層,且透過沈積及固化(curing)製程來形成奈米晶體層。 27(a) through 27(c) are successive cross-sectional views showing a method of fabricating a non-volatile memory element in accordance with another exemplary embodiment. This embodiment describes a method of manufacturing a non-volatile memory element in which a high molecular weight material is used to form a conductive organic layer, and a nanocrystal layer is formed through a deposition and curing process.
如圖27(A)所示,在基板110上形成第一電極120。然後,在第一電極120上形成第一導電有機層130。在此,可藉由旋轉塗佈法以如PVK以及PS等高分子材料來形成第一導電有機層130。 As shown in FIG. 27(A), the first electrode 120 is formed on the substrate 110. Then, a first conductive organic layer 130 is formed on the first electrode 120. Here, the first conductive organic layer 130 can be formed by a spin coating method using a polymer material such as PVK or PS.
如圖27(B)所示,在第一導電有機層130上依序形成第一障壁層192、金屬層140a、第二障壁層194及第二導電有機層160。在此,在奈米晶體層中,第一障壁層192與第二障壁層194作為圍繞奈米晶體的電子穿隧障壁,其是通過後續製程而完成的。可藉由ALD製程使用如氧化鎳(NiO)、氧化鋁(Al2O3)以及氧化鈦(TiO2)之金屬氧化物來形成第一障壁層192與第二障壁層194。此外,金屬層140a可藉由沈積方法,由可氧化或不可氧化的金屬來形成,且形成為約1奈米至約10奈米的厚度。此外,第二導電有機層160可使用類似於 第一導電有機層130來形成。例如,其可透過旋轉塗佈方法,使用高分子量材料如PVK或PS來形成。 As shown in FIG. 27(B), a first barrier layer 192, a metal layer 140a, a second barrier layer 194, and a second conductive organic layer 160 are sequentially formed on the first conductive organic layer 130. Here, in the nanocrystal layer, the first barrier layer 192 and the second barrier layer 194 serve as electron tunneling barriers surrounding the nanocrystals, which are completed by subsequent processes. The first barrier layer 192 and the second barrier layer 194 may be formed by an ALD process using a metal oxide such as nickel oxide (NiO), aluminum oxide (Al 2 O 3 ), and titanium oxide (TiO 2 ). Further, the metal layer 140a may be formed of an oxidizable or non-oxidizable metal by a deposition method and formed to a thickness of about 1 nm to about 10 nm. Further, the second conductive organic layer 160 may be formed using a structure similar to the first conductive organic layer 130. For example, it can be formed by a spin coating method using a high molecular weight material such as PVK or PS.
如圖27(C)所示,形成第二導電有機層160後,在其上實施固化製程。透過固化製程,金屬層140上之第一障壁層192及於金屬層140下之第二障壁層194在金屬層140a中圍繞金屬奈米晶體層141。因此,奈米晶體層140得以形成,所述奈米晶體層140包括奈米晶體141以及圍繞奈米晶體141之障壁143。可在溫度約150℃及約300℃下實施約0.5時至約4時的固化製程。在形成奈米晶體層140之後,在第二導電有機層160上形成第二緩衝層170,然後,在具有第二緩衝層170的基板100上形成第二電極180。 As shown in FIG. 27(C), after the second conductive organic layer 160 is formed, a curing process is performed thereon. Through the curing process, the first barrier layer 192 on the metal layer 140 and the second barrier layer 194 under the metal layer 140 surround the metal nanocrystal layer 141 in the metal layer 140a. Therefore, the nanocrystal layer 140 is formed, and the nanocrystal layer 140 includes the nanocrystal 141 and the barrier 143 surrounding the nanocrystal 141. The curing process can be carried out at a temperature of about 150 ° C and about 300 ° C for about 0.5 to about 4 hours. After the nanocrystal layer 140 is formed, the second buffer layer 170 is formed on the second conductive organic layer 160, and then the second electrode 180 is formed on the substrate 100 having the second buffer layer 170.
根據第二實施例之非揮發性記憶體元件的製造方法中,在依序堆疊著第一絕緣層192、金屬層140a及第二絕緣層194的結構上實施固化製程,藉此形成包括圍繞奈米晶體層141之絕緣層143的奈米晶體層140,且第一導電有機層130及第二導電有機層160由高分子量材料形成。透過上述方法可形成具有均勻尺寸以及分佈之奈米晶體層。因此,可獲得穩定元件特性。 In the method of fabricating the non-volatile memory device according to the second embodiment, the curing process is performed on the structures in which the first insulating layer 192, the metal layer 140a, and the second insulating layer 194 are sequentially stacked, thereby forming a surrounding structure including The nanocrystal layer 140 of the insulating layer 143 of the rice crystal layer 141, and the first conductive organic layer 130 and the second conductive organic layer 160 are formed of a high molecular weight material. A nanocrystal layer having a uniform size and distribution can be formed by the above method. Therefore, stable element characteristics can be obtained.
圖28(a)至圖28(b)是根據另一例示性實施例之一種非揮發性記憶體元件的製造方法連續剖視圖。亦即,剖視圖表示藉由沈積一分散有奈米晶體之有機材料來形成導電有機層以及奈米晶體層。 28(a) through 28(b) are successive cross-sectional views showing a method of fabricating a non-volatile memory element in accordance with another exemplary embodiment. That is, the cross-sectional view shows that the conductive organic layer and the nanocrystal layer are formed by depositing an organic material in which nanocrystals are dispersed.
如圖28(A)所示,在基板110上形成第一電極120後,在第一電極120上形成分散有多個奈米晶體141的導電有機層 135。在此,絕緣層144可圍繞於奈米晶體層141而形成。一種形成有機材料之方法將參照圖25來進行說明,其中該有機材料中散布有由絕緣層144所圍繞的奈米晶體141。此外,透過旋轉塗佈(Rotation coating)及熱處理製程(Thermal treatment process)可形成導電有機層135。例如,可藉由將散布有奈米晶體141之有機材料滴下至基板110上,同時以約1,500轉/分鐘(rpm)至約3,000轉/分鐘旋轉基板110,且接著在約100攝氏度至約150攝氏度下實施約30分鐘至約90分鐘的熱處理,以形成導電有機層135。在此,在滴下有機材料之後,可進一步旋轉基板110約50秒至約100秒,以使有機材料均勻分布。 As shown in FIG. 28(A), after the first electrode 120 is formed on the substrate 110, a conductive organic layer in which a plurality of nanocrystals 141 are dispersed is formed on the first electrode 120. 135. Here, the insulating layer 144 may be formed to surround the nanocrystal layer 141. A method of forming an organic material will be described with reference to FIG. 25 in which a nanocrystal 141 surrounded by an insulating layer 144 is interspersed. Further, the conductive organic layer 135 can be formed by a Rotation coating and a thermal treatment process. For example, the substrate 110 can be rotated by rotating the organic material dispersed with the nanocrystals 141 onto the substrate 110 while rotating at about 1,500 revolutions per minute (rpm) to about 3,000 revolutions per minute, and then at about 100 degrees Celsius to about 150 degrees. A heat treatment is performed at a temperature of about 30 minutes to about 90 minutes to form a conductive organic layer 135. Here, after the organic material is dropped, the substrate 110 may be further rotated for about 50 seconds to about 100 seconds to uniformly distribute the organic material.
如圖28(B)所示,在導電有機層135形成緩衝層170後,在基板110上形成第二電極180。 As shown in FIG. 28(B), after the buffer layer 170 is formed on the conductive organic layer 135, the second electrode 180 is formed on the substrate 110.
根據第三例示性實施例之非揮發性記憶體元件的製造方法,圍繞每一奈米晶體141之絕緣層144作為穿隧障壁。當然,奈米晶體141可在沒有形成絕緣層144之情況下配置至導電有機層135中。與未形成絕緣層144之狀況相比,若形成絕緣層144以圍繞奈米晶體141,可改善元件可靠性以及耐久性。 According to the method of manufacturing the non-volatile memory element of the third exemplary embodiment, the insulating layer 144 surrounding each of the nanocrystals 141 serves as a tunneling barrier. Of course, the nanocrystal 141 can be disposed into the conductive organic layer 135 without forming the insulating layer 144. If the insulating layer 144 is formed to surround the nanocrystal 141, the reliability and durability of the element can be improved as compared with the case where the insulating layer 144 is not formed.
圖29(a)至圖29(g)繪示形成圖28(A)之有機層的方法。將說明一種有機材料作為一例,其中該有機材料散布有具有障壁層的奈米晶體。 29(a) to 29(g) illustrate a method of forming the organic layer of Fig. 28(A). An organic material will be described as an example in which the organic material is interspersed with a nanocrystal having a barrier layer.
首先,實施圖21(a)至圖21(e)中之操作,以合成被障壁層144圍繞的奈米晶體141。 First, the operations in FIGS. 21(a) to 21(e) are performed to synthesize the nanocrystal 141 surrounded by the barrier layer 144.
換句話說,如圖29(e)所示,藉由使金屬鹽四氯金酸(HAuCl4)溶解於水溶劑的去離子水(DI water),以製備金屬鹽水溶液。此時,水溶液中的金屬鹽電離成(ionized)氫離子(H+)以及四氯金酸根(AuCl4 -),並作為金(Au)來源。此外,使四辛基溴化銨(tetraoctylammonium bromide,TOAB)溶解於非水溶劑的甲苯(toluene),以製備包括經電離之四辛基溴化銨之甲苯溶液。TOAB作為轉移AuCl4 -的相轉移催化劑,亦即含有金屬之離子在後續製程期間移動至甲苯溶液。 In other words, as shown in Fig. 29 (e), an aqueous metal salt solution is prepared by dissolving a metal salt of tetrachloroauric acid (HAuCl 4 ) in deionized water (DI water) of an aqueous solvent. At this time, the metal salt in the aqueous solution ionizes hydrogen ions (H + ) and tetrachloroaurate (AuCl 4 - ) and serves as a source of gold (Au). Further, tetraoctyllammonium bromide (TOAB) was dissolved in toluene in a nonaqueous solvent to prepare a toluene solution including ionized tetraoctyl ammonium bromide. TOAB acts as a phase transfer catalyst for the transfer of AuCl 4 - , that is, ions containing metals are moved to a toluene solution during subsequent processes.
然後,如圖29(b)所示,藉由攪拌金屬鹽的水溶液與溶解有TOAB之甲苯溶液,四氯金酸根(AuCl4 -)(亦即含金屬之離子)轉移至甲苯溶液。此時可以約500轉/分鐘或更高速度來執行攪拌。 Then, as shown in Fig. 29 (b), tetrachloroaurate (AuCl 4 - ) (i.e., metal-containing ions) is transferred to a toluene solution by stirring an aqueous solution of the metal salt and a toluene solution in which TOAB is dissolved. Stirring can be performed at a speed of about 500 rpm or higher at this time.
在甲苯溶液中添加咔唑封端硫醇(carbazole terminated thiol,CB)作為分散穩定劑,其使隨後的金奈米晶體均勻分散,然後執行攪拌。此時,可在室溫下執行攪拌約5分鐘至約20分鐘。CB之分子式(亦即分散穩定劑)為C23H31NS,且其化學名稱為11-咔唑基十二烷硫醇(11-carbazolyl dodecane thiol)。 A carbazole terminated thiol (CB) was added as a dispersion stabilizer to the toluene solution, which uniformly dispersed the subsequent gold nanocrystals, followed by stirring. At this time, stirring may be performed at room temperature for about 5 minutes to about 20 minutes. The molecular formula of CB (i.e., the dispersion stabilizer) is C23H31NS, and its chemical name is 11-carbazolyl dodecane thiol.
然後,如圖29(c)所示,在添加有圖29(b)的CB的甲苯溶液中添加硼氫化鈉(sodium brohydride,NaBH4),其中該硼氫化鈉(sodium brohydride,NaBH4)作為還原四氯金酸根(AuCl4 -)的還原劑,然後執行攪拌,此時,可在室溫下以約500轉/分鐘或更高之速度執行攪拌約3小時至約10小時。 Then, as shown in FIG. 29(c), sodium borohydride (NaBH 4 ) was added to the toluene solution to which CB of FIG. 29(b) was added, wherein the sodium borohydride (NaBH 4 ) was used as The reducing agent of tetrachloroaurate (AuCl 4 - ) is reduced, and then stirring is performed, and at this time, stirring can be performed at a temperature of about 500 rpm or more at room temperature for about 3 hours to about 10 hours.
結果,如圖29(d)所示,在甲苯溶液內形成金奈米晶體與CB之組合材料(combined material)。此時,由於CB被形成為圍繞金奈米晶體,所以CB作為穩定劑,也作為類似於障壁材料之電荷穿隧障壁。 As a result, as shown in Fig. 29 (d), a combined material of gold nanocrystals and CB was formed in a toluene solution. At this time, since CB is formed to surround the gold nanocrystal, CB acts as a stabilizer and also acts as a charge tunneling barrier similar to the barrier material.
然後,如圖29(e)所示,使甲苯溶液蒸發,藉此留下金奈米晶體與CB之組合材料。可在旋轉蒸發器(rotary evaporator)中在約-1巴(barr)或更低之相對較低之壓力條件下執行此蒸發。 Then, as shown in Fig. 29 (e), the toluene solution was evaporated, thereby leaving a combination of gold nanocrystals and CB. This evaporation can be carried out in a rotary evaporator at relatively low pressure conditions of about -1 barr or less.
然後,如圖29(f)所示,將金奈米晶體與CB之組合材料溶解至氯仿(chloroform)中。這是用以與高分子材料混合。PVK作為高分子量材料(例如,PVK)與氯仿溶液混合。 Then, as shown in Fig. 29 (f), the combination of the gold nanocrystals and the CB was dissolved in chloroform. This is used to mix with polymer materials. PVK is mixed as a high molecular weight material (for example, PVK) with a chloroform solution.
最後,如圖29(g)所示,產生最終產物溶液(final product solution),其中被CB圍繞之金奈米晶體與高分子材料相混合。若此最終產物溶液旋轉塗佈於基板上,形成表示在圖28(A)中的導電有機層135。在此例示性實施例中,分散於導電有機層135中的奈米晶體141可由金形成,而圍繞奈米晶體141之障壁144可由CB形成。 Finally, as shown in Fig. 29(g), a final product solution is produced in which the gold nanocrystals surrounded by the CB are mixed with the polymer material. If the final product solution is spin-coated on the substrate, the conductive organic layer 135 shown in Fig. 28(A) is formed. In this exemplary embodiment, the nanocrystals 141 dispersed in the conductive organic layer 135 may be formed of gold, and the barrier 144 surrounding the nanocrystals 141 may be formed of CB.
透過根據第三例示性實施例之方法,形成具有均勻尺寸及分佈之奈米晶體。特別的是,一次形成包括奈米晶體的有機層,製造過程簡單,且可實現大量生產。 Nanocrystals having a uniform size and distribution are formed by the method according to the third exemplary embodiment. In particular, the organic layer including the nanocrystals is formed at a time, the manufacturing process is simple, and mass production can be achieved.
雖然已經參看本發明特定例示性實施例而繪示且描述了本發明,但熟習此項技術者將明白,可在不偏離由隨附申請專利範圍定義之本發明精神及範疇的情況下對本發 明作各種形式以及細節上的改變。 While the invention has been illustrated and described with respect to the specific embodiments of the present invention, it will be understood by those skilled in the art Make a variety of forms and changes in detail.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
10、11、12、13‧‧‧第一導電線 10, 11, 12, 13‧‧‧ first conductive line
20、21、22、23‧‧‧第二導電線 20, 21, 22, 23‧‧‧ second conductive line
30、31‧‧‧儲存單元 30, 31‧‧‧ storage unit
110‧‧‧基板 110‧‧‧Substrate
120‧‧‧第一電極、第一導電層電極、第一導電層、電極 120‧‧‧first electrode, first conductive layer electrode, first conductive layer, electrode
130‧‧‧第一導電有機層、導電有機層 130‧‧‧First conductive organic layer, conductive organic layer
135‧‧‧導電有機層 135‧‧‧ Conductive organic layer
140‧‧‧奈米晶體層 140‧‧‧ nano crystal layer
140a‧‧‧金屬層 140a‧‧‧metal layer
141‧‧‧奈米晶體 141‧‧N nm crystal
142‧‧‧絕緣層、障壁層 142‧‧‧Insulation, barrier layer
143‧‧‧障壁、絕緣層 143‧‧‧Baffles, insulation
144‧‧‧絕緣層 144‧‧‧Insulation
150‧‧‧第一緩衝層、緩衝層 150‧‧‧First buffer layer, buffer layer
152‧‧‧第三緩衝層 152‧‧‧ third buffer layer
160‧‧‧第二導電有機層、導電有機層 160‧‧‧Second conductive organic layer, conductive organic layer
170‧‧‧第二緩衝層、緩衝層 170‧‧‧Second buffer layer, buffer layer
172‧‧‧第四緩衝層 172‧‧‧fourth buffer layer
180‧‧‧第二電極、第二導電層電極、電極 180‧‧‧Second electrode, second conductive layer electrode, electrode
192‧‧‧第一障壁層、第一絕緣層 192‧‧‧ first barrier layer, first insulation
194‧‧‧第二障壁層 194‧‧‧ second barrier layer
Iint1、Iint2‧‧‧中間電流 Iint1, Iint2‧‧‧Intermediate current
Ioff‧‧‧關閉電流 Ioff‧‧‧ Turn off the current
Ion‧‧‧導通電流 Ion‧‧‧ conduction current
NDR‧‧‧負微分電阻 NDR‧‧‧negative differential resistance
Ve‧‧‧抹除電壓 Ve‧‧‧ erase voltage
Vp‧‧‧程式化電壓 Vp‧‧‧ stylized voltage
Vth‧‧‧臨限電壓 Vth‧‧‧ threshold voltage
圖1是根據例示性實施例之一種非揮發性記憶體元件的剖視圖。 1 is a cross-sectional view of a non-volatile memory element in accordance with an illustrative embodiment.
圖2及圖3是根據另一例示性實施例之一種非揮發性記憶體元件的剖視圖。 2 and 3 are cross-sectional views of a non-volatile memory element in accordance with another exemplary embodiment.
圖4及圖6是根據實驗1之一種非揮發性記憶體元件的特性圖。 4 and 6 are characteristic diagrams of a non-volatile memory element according to Experiment 1.
圖7及圖9是根據實驗2之一種在可撓性基板上的非揮發性記憶體元件的特性圖。 7 and 9 are characteristic diagrams of a non-volatile memory element on a flexible substrate according to Experiment 2.
圖10是根據實驗3之一種非揮發性記憶體元件的電流-電壓特性圖。 Figure 10 is a graph showing the current-voltage characteristics of a non-volatile memory element according to Experiment 3.
圖11是根據實驗4之一種非揮發性記憶體元件的電流-電壓特性圖。 Figure 11 is a graph showing the current-voltage characteristics of a non-volatile memory element according to Experiment 4.
圖12是根據實驗5之一種非揮發性記憶體元件的電流-電壓特性圖。 Figure 12 is a graph showing the current-voltage characteristics of a non-volatile memory element according to Experiment 5.
圖13及圖14是根據實驗6之一種非揮發性記憶體元件的特性圖。 13 and 14 are characteristic diagrams of a non-volatile memory element according to Experiment 6.
圖15是根據例示性實施例繪示之一種驅動非揮發性記憶體元件方法的示意圖。 15 is a schematic diagram of a method of driving a non-volatile memory component, in accordance with an illustrative embodiment.
圖16及圖18是根據另一例示性實施例的另一種非揮發性記憶體元件的剖視圖。 16 and 18 are cross-sectional views of another non-volatile memory element, in accordance with another exemplary embodiment.
圖19及圖20是根據另一例示性實施例的再一種非揮發性記憶體元件的剖視圖。 19 and 20 are cross-sectional views of still another non-volatile memory element, in accordance with another exemplary embodiment.
圖21至圖25是根據一例示性實施例之一種非揮發性記憶體元件製造方法的連續剖視圖。 21 through 25 are continuous cross-sectional views of a method of fabricating a non-volatile memory device, in accordance with an exemplary embodiment.
圖26(a)~圖26(d)是根據一例示性實施例之一種非揮發性記憶體元件的製造方法概念剖視圖。 26(a) to 26(d) are conceptual cross-sectional views showing a method of manufacturing a non-volatile memory element according to an exemplary embodiment.
圖27(a)~圖27(c)是根據另一例示性實施例之一種非揮發性記憶體元件的製造方法連續剖視圖。 27(a) to 27(c) are successive cross-sectional views showing a method of fabricating a non-volatile memory element in accordance with another exemplary embodiment.
圖28(a)~圖28(b)是根據再一例示性實施例之一種非揮發性記憶體元件的製造方法連續剖視圖。 28(a) to 28(b) are cross-sectional views showing a method of manufacturing a non-volatile memory element according to still another exemplary embodiment.
圖29(a)~圖29(g)是根據再另一例示性實施例之一種非揮發性記憶體元件的製造方法連續剖視圖。 29(a) to 29(g) are continuous cross-sectional views showing a method of manufacturing a non-volatile memory element according to still another exemplary embodiment.
110‧‧‧基板 110‧‧‧Substrate
120‧‧‧第一電極 120‧‧‧first electrode
130‧‧‧導電有機層 130‧‧‧Electrically conductive organic layer
140‧‧‧奈米晶體層 140‧‧‧ nano crystal layer
141‧‧‧奈米晶體 141‧‧N nm crystal
142‧‧‧障壁層 142‧‧ ‧ barrier layer
150‧‧‧第一緩衝層 150‧‧‧First buffer layer
160‧‧‧導電有機層 160‧‧‧Electrically conductive organic layer
170‧‧‧第二緩衝層 170‧‧‧Second buffer layer
180‧‧‧第二電極 180‧‧‧second electrode
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101126718A TWI571971B (en) | 2012-07-25 | 2012-07-25 | Nonvolatile memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101126718A TWI571971B (en) | 2012-07-25 | 2012-07-25 | Nonvolatile memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201405714A true TW201405714A (en) | 2014-02-01 |
TWI571971B TWI571971B (en) | 2017-02-21 |
Family
ID=50550114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101126718A TWI571971B (en) | 2012-07-25 | 2012-07-25 | Nonvolatile memory device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI571971B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI594236B (en) * | 2015-02-17 | 2017-08-01 | 美光科技公司 | Memory cells |
TWI764029B (en) * | 2019-03-15 | 2022-05-11 | 日商鎧俠股份有限公司 | semiconductor device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI229937B (en) * | 2004-06-10 | 2005-03-21 | Ind Tech Res Inst | Organic bistable devices and manufacturing method thereof |
KR100996191B1 (en) * | 2007-04-25 | 2010-11-24 | 주식회사 하이닉스반도체 | Non-volatile memory device and method for manufacturing the same |
-
2012
- 2012-07-25 TW TW101126718A patent/TWI571971B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI594236B (en) * | 2015-02-17 | 2017-08-01 | 美光科技公司 | Memory cells |
TWI764029B (en) * | 2019-03-15 | 2022-05-11 | 日商鎧俠股份有限公司 | semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TWI571971B (en) | 2017-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7615446B2 (en) | Charge trap flash memory device, fabrication method thereof, and write/read operation control method thereof | |
US7759771B2 (en) | Resistance random access memory and method of manufacturing the same | |
US8050081B2 (en) | Conductive organic nonvolatile memory device having nanocrystals surrounded by amorphous barrier | |
KR100994677B1 (en) | Luminescence device and method of menufacturing the same | |
US9337425B2 (en) | Method of manufacturing resistance change layer using irradiation of electron beam and resistive random access memory device using the same | |
US12058871B2 (en) | Semiconductor device including ferroelectric layer and metal particles embedded in metal-organic framework layer | |
TWI571971B (en) | Nonvolatile memory device | |
US9755169B2 (en) | Nonvolatile memory device | |
JP2007134720A (en) | Memory device utilizing nano-dot as trap site, and manufacturing method for the same | |
KR101355813B1 (en) | Nonvolatile memory device including self-assembled monolayer | |
JP2007221143A (en) | Semiconductor memory device including gate electrode layer formed from alloy | |
US20100044775A1 (en) | Semiconductor memory device and semiconductor device | |
US20140339490A1 (en) | Resistive switching memory device having improved nonlinearity and method of fabricating the same | |
KR101460165B1 (en) | Nonvolatile memory device | |
JP2008277827A (en) | Non-volatile memory element and its manufacturing method | |
KR101433273B1 (en) | Non-volatile memory device and method for manufacturing the same | |
KR101485507B1 (en) | Nonvolatile memory device | |
KR100652135B1 (en) | Organic non-volatile memory fabricated by multi-layer of quantum dots and method for manufacturing the same | |
JP2007332397A (en) | Electroconductive thin film and manufacturing method therefor | |
TWI280604B (en) | Creation of electron traps in metal nitride and metal oxide electrodes in polymer memory devices | |
US20230099330A1 (en) | Semiconductor device including ferroelectric layer and insulation layer with metal particles and methods of manufacturing the same | |
Wang et al. | Improving photovoltaic effect of inorganic perovskite by resistive switching using various electrode materials | |
TWI427166B (en) | System and method for processing an organic memory cell | |
US7633129B1 (en) | Memory devices with active and passive layers having multiple self-assembled sublayers | |
US7307280B1 (en) | Memory devices with active and passive doped sol-gel layers |