[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201340327A - Top drain LDMOS, semiconductor power device and method of manufacturing the same - Google Patents

Top drain LDMOS, semiconductor power device and method of manufacturing the same Download PDF

Info

Publication number
TW201340327A
TW201340327A TW102111534A TW102111534A TW201340327A TW 201340327 A TW201340327 A TW 201340327A TW 102111534 A TW102111534 A TW 102111534A TW 102111534 A TW102111534 A TW 102111534A TW 201340327 A TW201340327 A TW 201340327A
Authority
TW
Taiwan
Prior art keywords
trench
region
source
field effect
gate
Prior art date
Application number
TW102111534A
Other languages
Chinese (zh)
Other versions
TWI493718B (en
Inventor
Shekar Mallikarjunaswamy
John Chen
Yongzhong Hu
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/436,308 external-priority patent/US9159828B2/en
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW201340327A publication Critical patent/TW201340327A/en
Application granted granted Critical
Publication of TWI493718B publication Critical patent/TWI493718B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

In an embodiment, this invention discloses a top-drain lateral diffusion metal oxide field effect semiconductor (TD-LDMOS) device supported on a semiconductor substrate. The TD-LDMOS includes a source electrode disposed on a bottom surface of the semiconductor substrate. The TD-LDMOS further includes a source region and a drain region disposed on two opposite side of a planar gate disposed on a top surface of the semiconductor substrate wherein the source region is encompassed in a body region constituting a drift region as a lateral current channel between the source region and drain region under the planar gate. The TD-LDMOS further includes at least a trench filled with a conductive material and extending vertically from the body region near the top surface downwardly to electrically contact the source electrode disposed on the bottom surface of the semiconductor substrate.

Description

頂部汲極橫向擴散金屬氧化物半導體、半導體功率元件及其製備方法Top-dip lateral diffusion metal oxide semiconductor, semiconductor power device and preparation method thereof

本發明主要關於半導體功率元件。更確切的說,本發明是關於一種反轉接地的源極橫向擴散金屬氧化物半導體場效應電晶體(Laterally Diffused Metal Oxide Semiconductor Field Effect Transistor, LDMOSFET)結構及其製備方法。
The invention is primarily concerned with semiconductor power components. More specifically, the present invention relates to a reverse grounded source laterally diffused metal oxide semiconductor field effect transistor (LDMOSFET) structure and a method of fabricating the same.

進一步降低半導體功率元件的源極電感(包括場效電晶體(Field Effect Transistor, FET)、金氧半導體場效電晶體(Metal Oxide Semiconductor Field Effect Transistor, MOSFET)和接面場效電晶體(Junction Field Effect Transistor, JFET)元件中的源極電感)的傳統製程,受到諸多技術難題的侷限與挑戰。尤其是,本領域的技術人員要降低源極電感所面臨的技術難題。與此同時,由於越來越多的功率元件必須具有高效率、高增益以及高頻率,因此降低半導體功率元件的源極電感的需求愈加強烈。一般來說,藉由消除半導體功率元件封裝中的結合引線,可以降低源極電感。可以嘗試將半導體基板配置成源極電極,用於連接半導體功率元件,消除結合引線。這些方法中存在的一些難題,源於典型的垂直半導體功率元件將連接電極置於基板上。垂直功率元件(溝槽閘極或平面閘極雙擴散金氧半導體(Double-Diffused Metal-Oxide- Semiconductor, DMOS)元件)將閘極用作汲極電極,電流從設置在基板上方的源極區開始,垂直向下流至設置在基板底部的汲極區,在元件封裝過程中,頂部源極電極通常需要結合引線用於電連接,從而增大了源極電感。Further reducing the source inductance of the semiconductor power device (including Field Effect Transistor (FET), Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and Junction Field Effect Transistor (Junction Field) The traditional process of the source transistor in the Effect Transistor (JFET) component is limited and challenged by many technical problems. In particular, those skilled in the art are faced with the technical challenges of reducing source inductance. At the same time, as more and more power components must have high efficiency, high gain, and high frequency, the need to reduce the source inductance of semiconductor power components is increasing. In general, source inductance can be reduced by eliminating bond leads in a semiconductor power device package. It is possible to attempt to configure the semiconductor substrate as a source electrode for connecting the semiconductor power device and eliminating the bonding wires. Some of the difficulties in these methods stem from the typical vertical semiconductor power components that place the connection electrodes on the substrate. A vertical power component (a trench gate or a double gated double-diffused metal-oxy-semiconductor (DMOS) device) uses a gate as a drain electrode and a current from a source region disposed above the substrate Initially, it flows vertically down to the drain region disposed at the bottom of the substrate. During component packaging, the top source electrode typically needs to be bonded to the leads for electrical connection, thereby increasing the source inductance.

習知技術提出了許多帶有底部源極的橫向DMOS。橫向DMOS元件通常在源極接頭內含有一個深P+沉降區(注入沉降或溝槽沉降),以便將頂部源極連接到P+基板,但是沉降區所佔據的面積會產生很大的晶胞間距,或者深P+沉降區位於晶胞外部,但是這會產生更高的源極電阻。G. Cao等人於2004年8月在IEEE 電子元件(1296-1303頁)《RF LDMOSFET中漂流區設計方案的比較性研究》一文中提出了一種底部源極橫向(Laterally Diffused Metal Oxide Semiconductor, LDMOS)元件,如第1A圖所示,該橫向LDMOS元件包括一個在源極接頭中擴散的深沉降片。Conventional techniques have proposed a number of lateral DMOS with bottom sources. The lateral DMOS component typically contains a deep P+ sinker (injection or trench settle) in the source junction to connect the top source to the P+ substrate, but the area occupied by the settling region creates a large cell spacing. Or the deep P+ settling zone is outside the unit cell, but this produces a higher source resistance. In August 2004, G. Cao et al. proposed a Polarized Dffused Metal Oxide Semiconductor (LDMOS) in IEEE Electronic Components (pp. 1296-1303) "Comparative Study of Drift Region Design Schemes in RF LDMOSFETs". The component, as shown in Figure 1A, includes a deep sinker that diffuses in the source connector.

Ishiwaka O等人於1985年12月1-12月4日在美國華盛頓召開的國際電子元件會議——技術文摘(166-169頁)中發表的《藉由V-溝槽連接降低2.45 GHz功率Ld-MOSFET的源極電感》一文中,提出了一種帶有V-溝槽連接的橫向雙-擴散MOS場效應電晶體(LD-MOSFET),用於降低源極電感、閘汲電容以及通道長度。V-溝槽貫穿P-型外延層,觸及P+型基板,形成在SiO2區中,緊靠有源區外側。LD-MOSFET的N+型源極區直連到帶有金屬的V-溝槽上,從而消除了源極的結合引線。Ishiwaka O et al., December 1 - December 4, 1985, at the International Electronic Components Conference, Technical Digest (pp. 166-169), Washington, DC, "Reducing Power of 2.45 GHz by V-Gap Connections" - Source Derivation of MOSFETs, a lateral double-diffused MOS field effect transistor (LD-MOSFET) with V-groove connection is proposed to reduce source inductance, gate capacitance and channel length. The V-groove penetrates the P-type epitaxial layer and touches the P+ type substrate, and is formed in the SiO 2 region, immediately outside the active region. The N+ source region of the LD-MOSFET is connected directly to the V-groove with metal, eliminating the bond leads of the source.

美國專利6,372,557(2002年4月16日,Leong)提出了一種底部源極橫向LDMOS元件,在P+和P-外延層的交界面處,嘗試使用一個掩埋層,降低橫向擴散,從而減小晶胞間距。美國專利5,821,144(1998年10月13日,D’Anna等人)以及美國專利5,869,875(1999年2月9日,Hebert)也提出了橫向DMOS元件,該元件在結構的外圍區域上含有一個深沉降區(一個注入沉降或溝槽沉降),以減小晶胞間距。U.S. Patent 6,372,557 (April 16, 2002, Leong), which proposes a bottom-source lateral LDMOS device, attempts to use a buried layer at the interface of the P+ and P- epitaxial layers to reduce lateral diffusion and thereby reduce the unit cell. spacing. U.S. Patent No. 5,821,144 (Dr. et al., issued Oct. 13, 1998), and U.S. Patent No. 5,869,875 (Hebert, Feb. 9, 1999) also discloses a lateral DMOS component which has a deep settling on the peripheral region of the structure. Zone (an injection settling or trench settling) to reduce cell spacing.

然而,在這些說明書中的元件都是使用一個單獨的金屬,而不是源極或本體接觸區和閘極遮蔽區,單獨的金屬很厚(3 um或更厚),該厚度將使源極金屬到N-漂流汲極的電容變得更高,在閘極上產生更大的應力,而且到汲極金屬的距離也變得更大,從而增大了晶胞間距。另一方面,部分元件為源極或本體接觸區使用第一金屬,為汲極和閘極遮蔽區使用第二金屬,然後使第一金屬較薄,因此可以纏繞閘極,保護閘極不受低電容和小應力的影響,而且不會影響晶胞間距。然而,使用兩個金屬就需要兩個額外的遮罩,一個用於通孔、一個用於頂部金屬,從而增加了成本。這種結構藉由頂部向下擴散,通常形成P+沉降片,由於用於將頂部源極向下連接到重摻雜基板的深沉降片的橫向擴散比較顯著,因此導致晶胞間距較大,從而增大了晶胞在水平面上的整體尺寸。導通電阻是電阻和元件面積的函數,因此晶胞間距大會使導通電阻也增大。大晶胞間距引起的元件尺寸增大和封裝尺寸增大,也會增加元件的成本。此外,減小這些習知技術的底部-源極元件的晶胞間距會使元件的電學性能產生漂移。例如,將擴散沉降片(摻雜的P+)靠近第1A圖所示閘極的源極邊,會產生較高的門檻值電壓,其原因在於,擴散的p+沉降片用於將頂部源極連接到底部基板,其橫向擴散會侵佔閘極下面的通道區,通道區也是p-型,增大了通道中的摻雜濃度,從而使門檻值電壓升高,這是我們所不希望看到的結果。However, the components in these specifications use a single metal instead of the source or body contact area and the gate masking area. The individual metal is very thick (3 um or thicker), which will make the source metal The capacitance to the N-drifting bungee becomes higher, generating more stress on the gate, and the distance to the drain metal is also increased, thereby increasing the cell pitch. On the other hand, some of the components use the first metal for the source or body contact regions, the second metal for the drain and gate shield regions, and then the first metal is thinner so that the gate can be wound and the gate is protected from Low capacitance and small stress effects without affecting cell pitch. However, the use of two metals requires two additional masks, one for the through hole and one for the top metal, which adds cost. This structure is diffused from the top down, usually forming a P+ sinker, which results in a large inter-cell diffusion due to the lateral diffusion of the deep sinker for connecting the top source down to the heavily doped substrate. The overall size of the unit cell on the horizontal plane is increased. The on-resistance is a function of the resistance and the area of the component, so the cell pitch assembly also increases the on-resistance. An increase in component size and an increase in package size due to large cell pitch also increases component cost. Furthermore, reducing the cell pitch of the bottom-source elements of these prior art techniques can cause drift in the electrical performance of the elements. For example, placing a diffusion sinker (doped P+) close to the source side of the gate shown in Figure 1A produces a higher threshold voltage because the diffused p+ sinker is used to connect the top source. To the bottom substrate, its lateral diffusion will encroach on the channel region under the gate, and the channel region is also p-type, which increases the doping concentration in the channel, thereby increasing the threshold voltage, which is what we do not want to see. result.

專利7,554,154提出了一種在重摻雜基板(例如重摻雜P+基板)上的改良型反轉接地-源極FET,如第1B圖所示,帶有自對準的本體-源極接頭用於減小晶胞間距。改良型FET包括一個集成的本體-源極短接結構,即P+沉降片,在通道下面較低的部分處朝著汲極擴散。P+沉降片在表面通道下面延伸,以補償汲極延伸摻雜,從而降低Cgd,減小晶胞間距。另外,適當調節累積區的摻雜濃度,使峰值的Cgd*Rdson圖像最小。憑藉這種頂部汲極LDMOS結構,為本體-源極接頭配置一個嵌入式閘極遮蔽,以降低閘汲電容Cgd,元件晶胞排佈在一個封閉式結構中,可以進一步減小端接所需的額外空間。然而,用於將頂部源極向下連接到重摻雜基板上的深P+沉降片,其顯著的橫向擴散佔據了較大的空間,無法進一步降低和縮減晶胞間距。Patent 7,554,154 proposes a modified reverse ground-source FET on a heavily doped substrate, such as a heavily doped P+ substrate, as shown in Figure 1B, with a self-aligned body-source connector for Reduce the cell spacing. The improved FET includes an integrated body-source shorting structure, P+ sinker, that diffuses toward the drain at the lower portion below the channel. The P+ sinker extends below the surface channel to compensate for the drain extension doping, thereby reducing Cgd and reducing the cell pitch. In addition, the doping concentration of the accumulation region is appropriately adjusted to minimize the peak Cgd*Rdson image. With this top-dole LDMOS structure, an embedded gate shield is provided for the body-source junction to reduce the gate capacitance Cgd, and the element cells are arranged in a closed structure, which can further reduce the termination requirements. Extra space. However, the deep P+ sinker used to connect the top source down to the heavily doped substrate occupies a large space for significant lateral diffusion, which cannot further reduce and reduce the cell pitch.

因此,十分有必要提出一種功率半導體元件的新型元件結構和新製備方法,從而解決上述困難和侷限。

Therefore, it is highly desirable to propose a novel component structure and a new preparation method of a power semiconductor component, thereby solving the above difficulties and limitations.

因此,本發明的一個方面在於,提出了一種新型、改良的頂部-汲極橫向擴散MOS(TD-LDMOS)半導體功率元件,帶有溝槽源極-本體互連,從頂面開始穿過本體區,向下延伸到底部源極電極。元件結構的晶胞間距很小,降低了晶片成本,從而解決了上述技術難題與侷限。Accordingly, one aspect of the present invention is directed to a new and improved top-drain laterally diffused MOS (TD-LDMOS) semiconductor power device with a trench source-body interconnect that passes through the body from the top surface Zone, extending down to the bottom source electrode. The cell pitch of the component structure is small, which reduces the cost of the wafer, thereby solving the above technical problems and limitations.

確切地說,本發明的一個方面在於,提出了一種改良的頂部汲極橫向擴散MOS(TD-LDMOS)半導體功率元件,帶有底部基板源極接頭的溝槽源極-本體互連,從而大幅降低源極電感,使功率元件獲得高效率、高增益和高使用頻率。Specifically, an aspect of the present invention is to provide an improved top-drain laterally diffused MOS (TD-LDMOS) semiconductor power device having a trench source-body interconnection with a bottom substrate source connection, thereby substantially Reduce the source inductance to achieve high efficiency, high gain and high frequency of use.

本發明的另一個方面在於,提出了一種改良的頂部汲極橫向擴散MOS(TD-LDMOS)半導體功率元件,帶有溝槽源極-本體互連,從頂面開始穿過本體區,向下延伸到底部源極電極,帶有一個窄開口和高縱橫比,從而大幅降低晶胞間距以及對遮罩的需求,進一步降低高質量的可靠半導體功率元件的製備成本。Another aspect of the present invention is to provide an improved top-drain laterally diffused MOS (TD-LDMOS) semiconductor power device with a trench source-body interconnect starting from the top surface through the body region, down Extending to the bottom source electrode with a narrow opening and high aspect ratio, which significantly reduces cell spacing and masking requirements, further reduces the cost of manufacturing high quality, reliable semiconductor power components.

本發明的另一個方面在於,提出了一種改良的頂部汲極橫向擴散MOS(TD-LDMOS)半導體功率元件,帶有溝槽源極-本體互連,從頂面開始穿過本體區,向下延伸到底部源極電極,帶有用SEG P++或SEG P++ SiGe或金屬填充材料填充的溝槽。該溝槽更被溝槽底面以下的P++襯墊注入區包圍著,在溝槽側壁周圍,進一步降低設置本體和在底面上的源極之間的互連電阻。Another aspect of the present invention is to provide an improved top-drain laterally diffused MOS (TD-LDMOS) semiconductor power device with a trench source-body interconnect starting from the top surface through the body region, down Extends to the bottom source electrode with trenches filled with SEG P++ or SEG P++ SiGe or metal fill material. The trench is further surrounded by a P++ pad implant region below the bottom surface of the trench, further reducing the interconnect resistance between the body and the source on the bottom surface.

本發明的另一個方面在於,提出了一種改良的頂部汲極橫向擴散MOS(TD-LDMOS)半導體功率元件,帶有溝槽源極-本體互連,從頂面開始穿過本體區,向下延伸到底部源極電極,其中所形成的閘極遮蔽Ti/TiN層和自對準多晶矽化物層覆蓋閘極絕緣層上方的絕緣層和本體區的頂面,從而進一步降低閘汲電容。因此,本發明中所述的元件堅固耐用、高度可靠,此元件結構更加適合應用於高壓和低壓元件中。Another aspect of the present invention is to provide an improved top-drain laterally diffused MOS (TD-LDMOS) semiconductor power device with a trench source-body interconnect starting from the top surface through the body region, down Extending to the bottom source electrode, the formed gate shielding Ti/TiN layer and the self-aligned polycrystalline germanide layer cover the insulating layer above the gate insulating layer and the top surface of the body region, thereby further reducing the gate capacitance. Therefore, the components described in the present invention are robust and highly reliable, and the component structure is more suitable for use in high voltage and low voltage components.

本發明的一個較佳實施例主要提出了一種形成在半導體基板上的頂部汲極橫向擴散金屬氧化物場效應半導體(TD-LDMOS)元件。該頂部汲極LDMOS包括一個源極電極,形成在半導體基板的底面上。該頂部汲極LDMOS更包括一個源極和汲極區,設置在平面閘極的兩條對邊上,平面閘極設置在半導體基板的頂面上,其中源極區包圍在本體區中,構成漂流區,在平面閘極下方的源極區和汲極區之間,作為一個橫向電流通道。該頂部汲極LDMOS更包括至少一個用導電材料填充的溝槽,從頂面附近的本體區開始,垂直向下延伸,以便電接觸設置在半導體基板底面上的源極電極。A preferred embodiment of the present invention primarily provides a top-dip laterally diffused metal oxide field effect semiconductor (TD-LDMOS) device formed on a semiconductor substrate. The top drain LDMOS includes a source electrode formed on a bottom surface of the semiconductor substrate. The top drain LDMOS further includes a source and a drain region disposed on two opposite sides of the planar gate, the planar gate is disposed on a top surface of the semiconductor substrate, wherein the source region is enclosed in the body region, and the The drift zone acts as a lateral current path between the source and drain regions below the planar gate. The top drain LDMOS further includes at least one trench filled with a conductive material extending vertically downward from the body region near the top surface to electrically contact the source electrode disposed on the bottom surface of the semiconductor substrate.

此外,本發明提出了一種在半導體基板上製備半導體功率元件的方法。該方法包括:1)製備一個本體區,包圍著源極區和汲極區,閘極在半導體基板的頂面上,用於控制基板頂面附近的源極區和汲極區之間本體區中的橫向電流通路;2)打通溝槽,從本體區開始向下延伸到基板底面上的源極電極,並且用導電材料填充溝槽,作為本體-源極互連。在一個實施例中,用導電材料填充溝槽的步驟包括,用含有矽選擇性外延生長(Selective Epitaxial Growth, SEG)或鍺化矽(SiGe)SEG的導電材料填充溝槽。在另一個實施例中,該方法更包括在溝槽底部下方以及溝槽側壁周圍,注入重摻雜線性區。Furthermore, the present invention proposes a method of fabricating a semiconductor power device on a semiconductor substrate. The method comprises: 1) preparing a body region surrounding the source region and the drain region, the gate being on the top surface of the semiconductor substrate for controlling the body region between the source region and the drain region near the top surface of the substrate The lateral current path; 2) the through trench, extending from the body region down to the source electrode on the bottom surface of the substrate, and filling the trench with a conductive material as a body-source interconnect. In one embodiment, the step of filling the trench with a conductive material includes filling the trench with a conductive material comprising a Selective Epitaxial Growth (SEG) or a SiGe SEG. In another embodiment, the method further includes implanting a heavily doped linear region below the bottom of the trench and around the sidewall of the trench.

閱讀以下詳細說明並參照圖式之後,本發明的這些和其他的特點和優勢,對於本領域的通常知識者而言,無疑將顯而易見。

These and other features and advantages of the present invention will become apparent to those skilled in the <RTIgt;

101...N++基板101. . . N++ substrate

105...P+基板105. . . P+ substrate

110...P-外延層110. . . P-epitaxial layer

115...本體區115. . . Body area

120...深溝槽120. . . Deep trench

125...汲極漂流區125. . . Bungee drifting area

128...P++線性注入區128. . . P++ linear injection area

129...金屬襯墊129. . . Metal liner

130...場氧化物130. . . Field oxide

135...閘極氧化物135. . . Gate oxide

140...堆疊平面閘極140. . . Stacked planar gate

160...源極區160. . . Source area

165...閘極墊片165. . . Gate gasket

170-G...閘極遮蔽金屬170-G. . . Gate shielding metal

170-S...多晶矽化物部分170-S. . . Polycrystalline telluride moiety

180...BPSG層180. . . BPSG layer

185...鈍化層185. . . Passivation layer

190...N+摻雜區190. . . N+ doped region

198...Ti/TiN線性阻擋層198. . . Ti/TiN linear barrier

199...頂部汲極金屬199. . . Top bungee metal

205...硼摻雜的P+基板205. . . Boron doped P+ substrate

210...P-外延層210. . . P-epitaxial layer

212...襯墊氧化層212. . . Pad oxide layer

215...深緩衝層215. . . Deep buffer

220...局部區域互連220. . . Local area interconnection

225...N-漂流區225. . . N-drift zone

230...場氧化區230. . . Field oxidation zone

235...閘極氧化層235. . . Gate oxide layer

240...多晶矽矽化物層240. . . Polycrystalline telluride layer

245...氧化罩層245. . . Oxidation mask

250...P-本體區250. . . P-body area

255...溝槽255. . . Trench

260...N+源極區260. . . N+ source region

265...墊片氧化層265. . . Gasket oxide

275...Ti/TiN層275. . . Ti/TiN layer

275’...Co層275’. . . Co layer

280...絕緣層280. . . Insulation

285...汲極接觸開口285. . . Bungee contact opening

290...接觸區290. . . Contact area

295...汲極金屬295. . . Bungee metal

298...金屬層298. . . Metal layer

第1A圖表示用於RF基站放大器的帶有底部源極傳統的橫向擴散MOS(LDMOS)元件之剖面圖。
第1B圖表示專利7,554,154中提出了一種帶有擴散沉降區的底部源極LDMOS之剖面圖。
第2A圖表示依據本發明的一個實施例,帶有溝槽本體-源極短接結構的頂部汲極LDMOS元件之剖面圖。
第2B圖表示在一個封閉式晶胞結構中排佈整個頂部汲極LDMOS元件晶胞之剖面圖。
第2C圖表示在一個封閉式晶胞結構中排佈整個頂部汲極LDMOS元件晶胞之俯視圖。
第3圖表示依據本發明的另一個實施例,另一個頂部汲極LDMOS元件之剖面圖。
第4A至4L圖表示用於製備本發明的頂部汲極LDMOS元件的製備製程一系列之剖面圖。

Figure 1A shows a cross-sectional view of a laterally diffused MOS (LDMOS) device with a bottom source for an RF base station amplifier.
Figure 1B shows a cross-sectional view of a bottom source LDMOS with a diffusion settling zone, as taught in U.S. Patent No. 7,554,154.
Figure 2A shows a cross-sectional view of a top drain LDMOS device with a trench body-source shorting structure in accordance with one embodiment of the present invention.
Figure 2B shows a cross-sectional view of the entire top drain LDMOS cell unit arranged in a closed cell structure.
Figure 2C shows a top view of the entire top drain LDMOS cell unit arranged in a closed cell structure.
Figure 3 is a cross-sectional view showing another top drain LDMOS device in accordance with another embodiment of the present invention.
4A through 4L are cross-sectional views showing a series of processes for preparing the top drain LDMOS device of the present invention.

參閱第2A圖,本發明之帶有頂部汲極和底部源極的N-通道反轉頂部-汲極和接地-源極的溝槽式FET元件之剖面圖。反轉頂部-汲極接地-源極N-通道FET元件位於P+基板105上,作為底部源極電極。更可選擇,P-通道元件形成在N+ 矽(Si)基板上方。P-外延層110位於基板105上方。為基板配置有源晶胞區和端接區,通常設置在基板外圍。打通高縱橫比的深溝槽120,穿過外延層110,向下延伸到基板105。選擇性外延生長(Selective Epitaxial Growth, SEG)矽或SEG鍺化矽(SiGe),進行重P摻雜P++,填充深溝槽120,構成自對準的源極或本體接頭,作為超低電阻的局部區域互連,從源極到本體和基板。為了改善接頭,在溝槽中填充P++導電溝槽填充材料之前,製備P++線性注入區128,帶角度的P++注入到溝槽底部以下以及源極-本體互連溝槽120的側壁周圍。本體區115形成在外延層110上部,外延層110橫向延伸到汲極漂流區125。本體區115中的P-摻雜物包圍電晶體累積中的部分N-摻雜物,以適合N-漂流區125的摻雜物結構,使閘汲電容最小,同時保持較低的汲源電阻Rdson。深溝槽源極-本體互連120更垂直向下延伸到底部P+基板105,向上延伸到本體區115。部分本體區115在閘極氧化物135下方的頂面處形成一個通道。深溝槽源極-本體互連120具有一個窄開口和高縱橫比,無需沉降區以便減小晶胞間距,因為形成沉降區帶有橫向擴散延伸,才能將沉降區延伸到較大的深度,觸及底部源極區105。Referring to Figure 2A, there is shown a cross-sectional view of an N-channel inverted top-drain and ground-source trench FET device with top and bottom sources of the present invention. The inverted top-drain-ground-source N-channel FET component is located on the P+ substrate 105 as the bottom source electrode. Alternatively, the P-channel component is formed over the N+ germanium (Si) substrate. The P- epitaxial layer 110 is located above the substrate 105. The active cell region and the termination region are configured for the substrate, typically disposed on the periphery of the substrate. The high aspect ratio deep trenches 120 are opened through the epitaxial layer 110 and extend down to the substrate 105. Selective Epitaxial Growth (SEG) or SEG (SiGe), heavy P-doped P++, filled deep trenches 120, form a self-aligned source or body joint, as a local part of ultra-low resistance Area interconnects, from source to body and substrate. To improve the joint, a P++ linear implant region 128 is prepared prior to filling the trench with a P++ conductive trench fill material, with angled P++ implanted below the trench bottom and around the sidewalls of the source-body interconnect trench 120. The body region 115 is formed on the upper portion of the epitaxial layer 110, and the epitaxial layer 110 extends laterally to the drain drift region 125. The P-dopant in the body region 115 surrounds a portion of the N-dopant in the transistor accumulation to accommodate the dopant structure of the N-drift region 125, minimizing the gate capacitance while maintaining a low source resistance. Rdson. The deep trench source-body interconnect 120 extends more vertically downward to the bottom P+ substrate 105 and extends up to the body region 115. A portion of the body region 115 forms a channel at the top surface below the gate oxide 135. The deep trench source-body interconnect 120 has a narrow opening and a high aspect ratio, eliminating the need for a settling zone to reduce the cell pitch, since the formation of the settling zone with lateral diffusion extension can extend the settling zone to a greater depth, reaching Bottom source region 105.

堆疊平面閘極140設置在閘極氧化層135上方,閘極墊片165包圍堆疊平面閘極140,閘極遮蔽金屬170-G覆蓋堆疊平面閘極140,閘極氧化層135形成在源極區160和汲極漂流區125之間的頂面上。因此,閘極140控制源極區160和汲極漂流區125之間的電流,穿過本體區115構成的通道,在閘極140下方,作為橫向MOS元件。汲極漂流區125設置在場氧化物130下方,硼磷矽玻璃(Boron Phosphorus Silicon Glass, BPSG)層180以及鈍化層185(可選擇)覆蓋場氧化物130。藉由鈍化層185和BPSG層180,蝕刻汲極接觸開口,使頂部汲極金屬199藉由接觸N+摻雜區190,接觸汲極區125,以降低接觸電阻。如圖所示,可以利用不同的方法製備堆疊閘極140,在堆疊閘極140下面帶有氧化物130、135。該方法包括生長或沉積氧化物,並在通道區蝕刻氧化物,或利用LOCOS類型的氧化製程。堆疊閘極140具有較長的閘極長度以及在汲極延伸物上方的場板,而沒有增加晶胞間距。堆疊閘極140控制電流在通道和閘極氧化物135及場氧化物130下方的汲極之間的通路,具有較低的閘汲電容。絕緣墊片165和掩埋閘極遮蔽170-G包圍堆疊閘極140,堆疊閘極140更包括用於本體-源極接頭的自對準多晶矽化物部分170-S,以便進一步降低閘汲電容Cgd,閘極遮蔽層170-G保護覆蓋在頂面上方的汲極金屬199。為了獲得較好的機械和電學性能,Ti/TiN線性阻擋層198更形成在汲極接觸區190和汲極金屬199之間。由於溝槽互連120用選擇性外延生長(SEG)P++ Si或SEGP++ SiGe,從而不需要沉降擴散,因此所形成的自對準源極-本體互連,使晶胞的間距大幅降低了一半。The stacked planar gate 140 is disposed over the gate oxide layer 135, the gate pad 165 surrounds the stacked planar gate 140, the gate shielding metal 170-G covers the stacked planar gate 140, and the gate oxide layer 135 is formed in the source region. The top surface between the 160 and the bungee drift zone 125. Thus, the gate 140 controls the current between the source region 160 and the drain drift region 125, through the channel formed by the body region 115, below the gate 140, as a lateral MOS device. The bungee drift region 125 is disposed under the field oxide 130, and a Boron Phosphorus Silicon Glass (BPSG) layer 180 and a passivation layer 185 (optional) cover the field oxide 130. The drain contact opening is etched by the passivation layer 185 and the BPSG layer 180 such that the top drain metal 199 contacts the drain region 125 by contacting the N+ doped region 190 to reduce the contact resistance. As shown, the stacked gates 140 can be fabricated using different methods with oxides 130, 135 under the stacked gates 140. The method includes growing or depositing an oxide and etching the oxide in the channel region, or utilizing an oxidation process of the LOCOS type. Stack gate 140 has a longer gate length and a field plate above the drain extension without increasing cell pitch. Stack gate 140 controls the path of current between the channel and gate oxide 135 and the drain below field oxide 130, with a lower gate capacitance. The insulating spacer 165 and the buried gate shield 170-G surround the stack gate 140, and the stack gate 140 further includes a self-aligned poly germanide portion 170-S for the body-source junction to further reduce the gate capacitance Cgd, Gate shielding layer 170-G protects the drain metal 199 overlying the top surface. In order to achieve better mechanical and electrical properties, a Ti/TiN linear barrier layer 198 is formed between the drain contact region 190 and the drain metal 199. Since the trench interconnect 120 is selectively epitaxially grown (SEG) P++ Si or SEGP++ SiGe, thereby eliminating the need for settling diffusion, the resulting self-aligned source-body interconnects substantially reduce the cell pitch by half.

第2B圖表示本發明之頂部汲極LDMOS元件整個晶胞排佈在一個封閉式晶胞結構中之剖面圖。如第2B圖所示,由於一半晶胞間距中的源極都接地,不必為頂部汲極LDMOS元件的端接區提供額外的空間,從而節省了空間。第2C圖表示本發明之頂部汲極LDMOS元件的整個晶胞排佈在一個封閉式晶胞結構中之俯視圖。Figure 2B is a cross-sectional view showing the entire cell of the top drain LDMOS device of the present invention arranged in a closed cell structure. As shown in Figure 2B, since the source in half of the cell pitch is grounded, it is not necessary to provide additional space for the termination region of the top drain LDMOS device, thereby saving space. Figure 2C shows a top view of the entire unit cell of the top drain LDMOS device of the present invention arranged in a closed cell structure.

第3圖表示與第2圖所示元件類似的頂部汲極LDMOS元件的另一個實施例。唯一的不同之處在於,元件形成在重摻雜N++基板101上,大幅降低了串聯電阻。P+外延層105用作底部源極電極,形成在N++基板101上方,並且短接至N++基板,降低了基板的電阻。此外,更可選擇深緩衝層115形成在P-外延層110中的預定義深處,在P+源極層105上方,以便調節擊穿電壓(Breakdown Voltage, BV),並且利用製備製程中所需的熱循環,阻止表面下穿通。在本實施例中,打通深溝槽120,穿過P-外延層110和P+源極層105,向下延伸到N++基板101。如第2A圖所示,深溝槽120具有很高的縱橫比,並且用選擇性外延生長(SEG)矽或SEG鍺化矽(SiGe)等重P摻雜的P++導電材料填充深溝槽120。更可選擇,用P++多晶矽或鎢等金屬填充深溝槽120,金屬襯墊129(例如自對準多晶矽化物)在汲極和源極之間,形成超低電阻的侷域互連。在這種元件結構中,可以忽略鈍化層185。Figure 3 shows another embodiment of a top drain LDMOS device similar to that shown in Figure 2. The only difference is that the components are formed on the heavily doped N++ substrate 101, which greatly reduces the series resistance. The P+ epitaxial layer 105 is used as a bottom source electrode, formed over the N++ substrate 101, and shorted to the N++ substrate, reducing the resistance of the substrate. In addition, it is further selected that a deep buffer layer 115 is formed at a predefined depth in the P- epitaxial layer 110 above the P+ source layer 105 in order to adjust the breakdown voltage (BV) and utilize the preparation process. The thermal cycle prevents the surface from penetrating. In the present embodiment, the deep trenches 120 are opened, pass through the P- epitaxial layer 110 and the P+ source layer 105, and extend down to the N++ substrate 101. As shown in FIG. 2A, the deep trenches 120 have a high aspect ratio, and the deep trenches 120 are filled with a heavy P-doped P++ conductive material such as selective epitaxially grown (SEG) germanium or SEG germanium telluride (SiGe). Alternatively, the deep trenches 120 are filled with a metal such as P++ polysilicon or tungsten, and a metal pad 129 (e.g., a self-aligned polysilicon telluride) is formed between the drain and the source to form an ultra low resistance local interconnect. In this element structure, the passivation layer 185 can be omitted.

第4A至4L圖表示用於製備第2A圖和第3圖所示的元件結構的製備方法的一系列剖面圖。藉由製備製程的說明,可以理解利用自對準結構,本製程僅需6個遮罩步驟。如第4A圖所示,製程從初始矽基板開始,矽基板包括用硼摻雜的P+基板205,其電阻率為3至5 mOhm-cm或更低。基板205最好是沿<100>晶體取向,作為標準的初始方向。P-外延層210形成在基板205上,厚度為2至7微米,通常用5E14至5E15的劑量摻雜,用於20-60 V元件。在另一個實施例中,外延層210可以是N-摻雜層。4A to 4L are a series of cross-sectional views showing a preparation method for preparing the element structures shown in Figs. 2A and 3. By the description of the preparation process, it can be understood that with the self-aligned structure, the process requires only six mask steps. As shown in Fig. 4A, the process starts from the initial ruthenium substrate, which includes a boron-doped P+ substrate 205 having a resistivity of 3 to 5 mOhm-cm or less. Substrate 205 is preferably oriented along the <100> crystal as a standard initial direction. P- epitaxial layer 210 is formed on substrate 205, having a thickness of 2 to 7 microns, typically doped with a dose of 5E14 to 5E15 for 20-60 V devices. In another embodiment, epitaxial layer 210 can be an N-doped layer.

在第4B圖中,生長一個襯墊氧化層212,用於後續的氮化物設置製程。一個可選的處理步驟是:在600 KEV的注入能量下,用1E14的注入劑量全面注入深緩衝層,以便在後續製程中製備深緩衝層215,用於調節擊穿電壓(BV),並阻止N-漂流層之間的子表面穿通,當進行後續製備製程時,由於需要熱循環,因此更要製備P+基板205。全面P注入可以是輕摻雜的,以增大P-摻雜,避免穿通,或者對於N-外延層來說,使用的是輕摻雜的N-注入。In Figure 4B, a pad oxide layer 212 is grown for subsequent nitride setup processes. An optional processing step is to fully implant a deep buffer layer with an implant dose of 1E14 at an implantation energy of 600 KEV to prepare a deep buffer layer 215 for subsequent breakdown to adjust the breakdown voltage (BV) and prevent The sub-surfaces between the N-drift layers are punched through, and when a subsequent preparation process is performed, the P+ substrate 205 is further prepared since thermal cycling is required. The full P implant can be lightly doped to increase P-doping, avoid punchthrough, or use a lightly doped N- implant for the N- epitaxial layer.

在襯墊氧化層212上方,進行氮化物沉積,然後利用有源遮罩、第一遮罩(圖中沒有表示出)進行蝕刻,以保護通道區,在後續製程中,使汲極延伸區裸露出來。在零度傾斜角時,在未被氮化物保護的區域中進行N-漂流注入,製成N-漂流區225,如第4C圖所示。可以藉由注入能量為60 Kev至200 Kev範圍內,劑量從5E11至2E13的磷,製備N-漂流區225,實際應用中,30 V下較適宜的劑量為3E12。該步驟會在LDMOS元件的漂流汲極延伸物、區域225中,形成自對準的n-型漂流注入(對於NMOS來說)。然後利用標準的場氧化製程(稱為Local Oxidation of Silicon, LOCOS),可選的N2驅動製程,在N-漂流區225上方形成場氧化區230。溫度在900至1100℃的範圍內,生長厚度為0.3至1微米的氧化物,較適宜的厚度約為0.55微米。Above the pad oxide layer 212, nitride deposition is performed, and then an active mask, a first mask (not shown) is used for etching to protect the channel region, and the drain region is exposed in a subsequent process. come out. At a zero degree tilt angle, N-drift implantation is performed in a region not protected by nitride to form an N-drift region 225 as shown in Fig. 4C. The N-drift zone 225 can be prepared by implanting phosphorus in the range of 60 Kev to 200 Kev at a dose ranging from 5E11 to 2E13. In practical applications, a suitable dose at 30 V is 3E12. This step creates a self-aligned n-type drift implant (for NMOS) in the drifting drain extension, region 225 of the LDMOS device. Field oxide zone 230 is then formed over N-drift zone 225 using a standard field oxidation process (referred to as Local Oxidation of Silicon, LOCOS), an optional N2 drive process. The temperature is in the range of 900 to 1100 ° C, and an oxide having a thickness of 0.3 to 1 μm is grown, and a suitable thickness is about 0.55 μm.

剝去氮化物(圖中沒有表示出)和襯墊氧化物212,然後生長犧牲氧化層並剝去(圖中沒有表示出),以清潔該結構的表面。在第4D圖中,生長一個閘極氧化層235,然後沉積一個多晶矽層,或者最適宜的情況是多晶矽矽化物層240,厚度達2000至6000埃,以形成閘極。隨後,將N+摻雜離子注入到多晶矽層,更可選擇在上方製備一個WSix層,以製備閘極電阻很低的接觸層。注意,多晶矽可以是原位摻雜,或者也可以利用三氯氧磷(POCl3)摻雜。利用高溫氧化(High Temperature Oxidation, HTO)或低溫氧化(Low Temperature Oxidation, LTO)製程,進行氧化罩沉積,從而在多晶矽層240上方,沉積一個氧化罩層245。在多晶矽層240上方,氧化罩層245的厚度約為500至4500埃。利用閘極遮罩(即第二遮罩(圖中沒有表示出))蝕刻,並形成氧化罩層245和閘極層240的圖案。首先進行氧化物蝕刻,形成氧化罩層245的圖案,然後進行多晶矽或多晶矽矽化物蝕刻。如圖所示,多晶矽或多晶矽矽化物蝕刻終止在閘極氧化層235和場氧化物230上方。The nitride (not shown) and the pad oxide 212 are stripped, and then the sacrificial oxide layer is grown and stripped (not shown) to clean the surface of the structure. In Fig. 4D, a gate oxide layer 235 is grown, and then a polysilicon layer is deposited, or a polycrystalline germanide layer 240, most suitably a thickness of 2000 to 6000 angstroms, to form a gate. Subsequently, N+ doping ions are implanted into the polysilicon layer, and a WSix layer may be optionally prepared above to prepare a contact layer having a very low gate resistance. Note that the polysilicon may be doped in situ or may be doped with phosphorus oxychloride (POCl 3 ). Oxidation hood deposition is performed using a High Temperature Oxidation (HTO) or Low Temperature Oxidation (LTO) process to deposit an oxidized cap layer 245 over the polysilicon layer 240. Above the polysilicon layer 240, the oxide cap layer 245 has a thickness of about 500 to 4500 angstroms. Etching is performed using a gate mask (ie, a second mask (not shown)) and a pattern of oxide cap layer 245 and gate layer 240 is formed. First, an oxide etch is performed to form a pattern of the oxide cap layer 245, followed by polysilicon or polymorph etch. As shown, the polysilicon or poly germanide etch terminates over the gate oxide layer 235 and the field oxide 230.

在第4E圖中,進行全面淺本體高角度注入硼(高角度注入以便在閘極下方引入通道),劑量範圍在1E12至1E14之間,最適宜的劑量為1E13,製備P-本體區250。更可選擇,在零度角和較高能量的本體注入下,進行全面淺本體注入,以製備P-本體區250。憑藉場氧化物230、閘極240和氧化罩245的堆疊結構,硼離子僅僅注入到閘極的源極邊緣中。然後,在950至1150攝氏度的高溫範圍內(最適宜的溫度為1050攝氏度),進行本體驅動約60分鐘。在第4F圖中,進行全面淺源極-注入,例如在劑量範圍為1E15至1E16之間(最適宜的劑量為4E15),注入As摻雜離子,以製備N+源極區260。然後,在850至1000攝氏度的高溫範圍內(最適宜的溫度為950攝氏度),進行源極退火操作約30分鐘。在源極退火製程中,根據閘極堆疊,可以使用部分氧氣,從而在堆疊閘極240的邊緣上形成多晶矽氧化物側壁。In Fig. 4E, a full shallow bulk high angle implant of boron (high angle implant to introduce channels under the gate) is performed, with a dose ranging from 1E12 to 1E14, and an optimum dose of 1E13, to prepare a P-body region 250. Alternatively, a full shallow body implant is performed at a zero degree angle and higher energy bulk implant to produce a P-body region 250. With the stacked structure of field oxide 230, gate 240 and oxide cap 245, boron ions are only implanted into the source edge of the gate. Then, in a high temperature range of 950 to 1150 degrees Celsius (the optimum temperature is 1050 degrees Celsius), the body is driven for about 60 minutes. In Figure 4F, a full shallow source-injection is performed, for example, at a dose ranging from 1E15 to 1E16 (the most suitable dose is 4E15), and As dopant ions are implanted to prepare an N+ source region 260. Then, in a high temperature range of 850 to 1000 degrees Celsius (the optimum temperature is 950 degrees Celsius), a source annealing operation is performed for about 30 minutes. In the source anneal process, depending on the gate stack, a portion of the oxygen may be used to form polysilicon oxide sidewalls on the edges of the stacked gate 240.

在第4G圖中,沉積墊片氧化層265,最好的共形氧化層,厚度範圍為1000至4000埃,最好在3000埃以上,用作厚遮罩,用於本體溝槽蝕刻,為選擇性外延生長(SEG)提供絕緣,更在後續製備製程中,提供鈍化閘極側壁。然後,利用源極-本體局部區域互連溝槽遮罩(即第三遮罩(圖中沒有表示出)),進行氧化物蝕刻和矽蝕刻,打通溝槽255,使溝槽255具有一個窄開口和高縱橫比,溝槽深度向下延伸,以觸及P+基板205。然後,除去光致抗蝕劑(圖中沒有表示出)。在7°傾斜注入角度下,可以選擇進行全面P++注入,在溝槽底部和溝槽側壁(圖中沒有表示出)注入重摻雜P++,從而形成襯墊注入區258,用於更好的接觸。在第4H圖中,用重摻雜P++進行選擇外延生長(SEG)Si或SiGe,最好是摻雜P++硼的SEG SiGe,從源極260到本體層250和深緩衝層215,並且到基板205,形成超低電阻的局部區域互連220。在第4I圖中,藉由活性離子蝕刻(Reactive Ion Etching, RIE),進行氧化物墊片蝕刻,形成閘極墊片265,藉由最小的過度蝕刻,到鈍化閘極側壁,以確保多晶矽閘極240下方和汲極延伸物上,保留氧化物230、245。In FIG. 4G, a pad oxide layer 265, preferably a conformal oxide layer, having a thickness in the range of 1000 to 4000 angstroms, preferably more than 3,000 angstroms, is used as a thick mask for bulk trench etching. Selective epitaxial growth (SEG) provides insulation and provides passivated gate sidewalls in subsequent fabrication processes. Then, using a source-body local area interconnect trench mask (ie, a third mask (not shown)), performing an oxide etch and a germanium etch, opening the trench 255 to make the trench 255 have a narrow The opening and the high aspect ratio, the groove depth extends downward to access the P+ substrate 205. Then, the photoresist is removed (not shown). At a 7° tilt implant angle, a full P++ implant can be selected for implantation of heavily doped P++ at the bottom of the trench and trench sidewalls (not shown) to form a pad implant region 258 for better contact. . In Figure 4H, selective epitaxial growth (SEG) Si or SiGe, preferably P++ boron doped SEG SiGe, from source 260 to body layer 250 and deep buffer layer 215, and to the substrate are performed with heavily doped P++. 205, forming an ultra-low resistance local area interconnect 220. In Figure 4I, oxide pad etching is performed by reactive ion etching (RIE) to form a gate pad 265, with minimal over-etching, to passivate the gate sidewalls to ensure polysilicon gates. Oxides 230, 245 are retained on the bottom of the pole 240 and on the drain extension.

在第4J圖中,進行輕微的濕氧化物蝕刻,除去N+源極區260上方的氧化物。然後,在矽的頂面上沉積Ti或Co,形成Ti或Co層275’。然後,利用第一快速熱退火(Rapid Thermal Annealing, RTA)製程,進行第一自對準多晶矽化物製備製程,從而在氧化層265、245、230上方的矽和Ti/TiN層275的頂面上,形成TiSi或CoSi層275’。利用閘極遮蔽遮罩(即第四遮罩(圖中沒有表示出)),以及Ti/TiN濕蝕刻,繼續進行製程,以製備閘極遮蔽275。如果不需要閘極遮蔽的話,那麼也就不需要這個遮罩。然後,藉由RTA,除去光致抗蝕劑,利用第二自對準多晶矽化物製備,在矽的頂面上,形成TiSi2或CoSi2層275’。矽化製程製備的自對準本體-源極互連,具有良好的接頭、很低的電阻,以及優良的閘極遮蔽金屬,提供優良的絕緣。In Figure 4J, a slight wet oxide etch is performed to remove the oxide above the N+ source region 260. Then, Ti or Co is deposited on the top surface of the crucible to form a Ti or Co layer 275'. Then, a first self-aligned polycrystalline germanide preparation process is performed using a first Rapid Thermal Annealing (RTA) process to expose the top surface of the tantalum and Ti/TiN layer 275 over the oxide layers 265, 245, and 230. Forming a TiSi or CoSi layer 275'. The gate mask 275 is prepared using a gate mask (i.e., a fourth mask (not shown)) and a Ti/TiN wet etch. This mask is not needed if gate shielding is not required. Then, the photoresist is removed by RTA, and a second self-aligned polycrystalline germanide is used to form a TiSi 2 or CoSi 2 layer 275' on the top surface of the crucible. The self-aligned body-source interconnects prepared by the deuteration process have good joints, low electrical resistance, and excellent gate shielding metal to provide excellent insulation.

在第4K圖中,沉積含有氧化物、氮化物或氧化-氮化物的層間介電質(Interlayer Dielectric, ILD0)材料,形成絕緣層280,然後利用一個汲極和閘極遮罩(即第五遮罩(圖中沒有表示出)),打通絕緣層280上方的閘極接觸開口(圖中沒有表示出)和汲極接觸開口285。用磷離子在5E14至1E16範圍內的注入劑量下,進行低能接觸注入,形成低電阻接觸區290,然後在700-900攝氏度的N2中,進行退火製程(最好利用RTA),持續20秒至5分鐘(最好是1分鐘)。在第4L圖中,藉由帶有Ti/TiN襯墊的厚金屬沉積,形成帶有阻擋金屬層298的汲極金屬295。然後,利用金屬遮罩(即第六遮罩(圖中沒有表示出)),進行金屬蝕刻,從而在頂面上形成閘極金屬和汲極金屬,然後除去光致抗蝕劑,清潔乾淨,最後進行合金製程,完成製備過程。In Figure 4K, an interlayer dielectric (ILD) material containing oxide, nitride or oxide-nitride is deposited to form an insulating layer 280, which is then masked with a drain and gate (ie, fifth A mask (not shown) is opened to open the gate contact opening (not shown) over the insulating layer 280 and the drain contact opening 285. Low-energy contact implantation is performed with an implantation dose of phosphorus ions in the range of 5E14 to 1E16 to form a low-resistance contact region 290, and then an annealing process (preferably using RTA) is performed in N2 at 700-900 ° C for 20 seconds. 5 minutes (preferably 1 minute). In Figure 4L, a gate metal 295 with a barrier metal layer 298 is formed by thick metal deposition with a Ti/TiN liner. Then, using a metal mask (ie, a sixth mask (not shown)), metal etching is performed to form a gate metal and a gate metal on the top surface, and then the photoresist is removed and cleaned. Finally, the alloy process is completed to complete the preparation process.

在另一個沒有表示出的實施例中,從重摻雜N++矽基板開始,在N++基板上形成一個P+源極外延層,然後在P+源極外延層上,生長一個P-外延層。以下步驟除去溝槽255向下延伸穿過P-外延層和P+源極外延層,觸及N++基板之外,其他都與第4B至4K圖所示的製程步驟類似。In another embodiment not shown, a P+ source epitaxial layer is formed on the N++ substrate starting from the heavily doped N++ germanium substrate, and then a P- epitaxial layer is grown on the P+ source epitaxial layer. The following steps remove the trench 255 extending downward through the P- epitaxial layer and the P+ source epitaxial layer, touching the N++ substrate, and the others are similar to the process steps shown in FIGS. 4B-4K.

依據上述元件結構,由於使用了小晶片,帶有溝槽源極本體互連,而沒有沉降接觸區的橫向擴散,減小了晶胞間距,從而獲得了較低的有效晶片成本,降低了製備成本。這部分降低的成本可以補償較高的製備成本。更重要的是,使用基板源極接頭,同時配置被P++襯墊注入區包圍著的源極-本體互連結構,使源極電阻達到最小,獲得了很低的源極電感。此外,如上所述元件的小間距更降低了指定工作電壓下的比導通電阻(Rsp)。該元件結構可以方便地調整,使其設計和操作適用於需要高壓和低壓範圍內的元件。According to the above-mentioned component structure, since a small wafer is used, the trench source body is interconnected without lateral diffusion of the sinker contact region, the cell pitch is reduced, thereby obtaining a lower effective wafer cost and reducing the preparation. cost. This reduced cost can compensate for higher manufacturing costs. More importantly, the substrate source connector is used, and the source-body interconnect structure surrounded by the P++ pad implant region is configured to minimize the source resistance and achieve a very low source inductance. In addition, the small pitch of the components as described above further reduces the specific on-resistance (Rsp) at a given operating voltage. The component structure can be easily adjusted to suit its design and operation for components requiring high and low voltage ranges.

因此,如上所述帶有反轉接地-源極的頂部汲極LDMOS元件允許垂直電流穿過垂直通道,配置了垂直通道的漂流區的可控漂流長度,使得可以製備微小、可測的晶胞間距。憑藉溝槽底部的源極接頭與重摻雜基板直接接觸,降低了源極電阻。因此,不再像傳統的底部源極FET元件那樣,必須配置深電阻沉降區或溝槽接頭。

Thus, the top-drain LDMOS device with reverse ground-source as described above allows vertical current to pass through the vertical channel, and the controlled drift length of the drift region of the vertical channel is configured so that a small, measurable unit cell can be prepared spacing. The source resistance is reduced by direct contact of the source tab at the bottom of the trench with the heavily doped substrate. Therefore, it is no longer necessary to configure a deep resistance sinking zone or a trench joint like a conventional bottom source FET component.

105...P+基板105. . . P+ substrate

110...P-外延層110. . . P-epitaxial layer

115...本體區115. . . Body area

120...深溝槽120. . . Deep trench

125...汲極漂流區125. . . Bungee drifting area

128...P++線性注入區128. . . P++ linear injection area

130...場氧化物130. . . Field oxide

135...閘極氧化物135. . . Gate oxide

140...堆疊平面閘極140. . . Stacked planar gate

160...源極區160. . . Source area

165...閘極墊片165. . . Gate gasket

170-G...閘極遮蔽金屬170-G. . . Gate shielding metal

170-S...多晶矽化物部分170-S. . . Polycrystalline telluride moiety

180...BPSG層180. . . BPSG layer

185...鈍化層185. . . Passivation layer

190...N+摻雜區190. . . N+ doped region

198...Ti/TiN線性阻擋層198. . . Ti/TiN linear barrier

199...頂部汲極金屬199. . . Top bungee metal

Claims (19)

一種形成在半導體基板上之頂部汲極橫向擴散金屬氧化物場效應半導體(TD-LDMOS)元件,包括:
一源極電極,設置在該半導體基板的底面上;
一源極區和一汲極區,設置在該半導體基板的頂面上的一平面閘極的兩對邊上,其中該源極區包圍在一本體區中,該本體區在該平面閘極下方的該源極區和該汲極區之間,作為橫向電流通道;以及
至少一溝槽用導電材料填充,並且從該半導體基板的頂面附近的該本體區開始垂直向下延伸,與設置在該半導體基板底面上的該源極電極電接觸。
A top-dip laterally diffused metal oxide field effect semiconductor (TD-LDMOS) device formed on a semiconductor substrate, comprising:
a source electrode disposed on a bottom surface of the semiconductor substrate;
a source region and a drain region are disposed on two opposite sides of a planar gate on a top surface of the semiconductor substrate, wherein the source region is enclosed in a body region, and the body region is at the planar gate Between the lower source region and the drain region, as a lateral current channel; and at least one trench is filled with a conductive material, and extends vertically downward from the body region near the top surface of the semiconductor substrate, and is disposed The source electrode on the bottom surface of the semiconductor substrate is in electrical contact.
如申請專利範圍第1項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
該半導體基板包括一承載著P外延層的P+基板,在該半導體基板的頂面附近構成一N型摻雜物的源極和汲極區。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 1, wherein:
The semiconductor substrate includes a P+ substrate carrying a P epitaxial layer, and a source and a drain region of an N-type dopant are formed in the vicinity of a top surface of the semiconductor substrate.
如申請專利範圍第1或2項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
用導電材料填充的該溝槽包括選擇性外延生長SEG矽或SEG鍺化矽SiGe。
The top bungee laterally diffused metal oxide field effect semiconductor device according to claim 1 or 2, wherein:
The trench filled with a conductive material includes selectively epitaxially growing SEG 矽 or SEG 矽 矽 SiGe.
如申請專利範圍第1項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,更包括:
一重摻雜襯墊注入區,設置在該溝槽底部下方和該溝槽側壁周圍。
The top bungee lateral diffusion metal oxide field effect semiconductor device as described in claim 1 of the patent application, further comprising:
A heavily doped pad implant region is disposed below the bottom of the trench and around the sidewall of the trench.
如申請專利範圍第2項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,更包括:
一P++襯墊注入區,設置在該溝槽底部下方和該溝槽側壁周圍。
The top bungee laterally diffused metal oxide field effect semiconductor device as described in claim 2, further comprising:
A P++ pad implant region is disposed below the bottom of the trench and around the sidewall of the trench.
如申請專利範圍第1項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
用金屬填充的溝槽,金屬作為溝槽中的導電材料。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 1, wherein:
A trench filled with metal, the metal acts as a conductive material in the trench.
如申請專利範圍第6項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
用鎢填充的溝槽,鎢作為溝槽中的導電材料。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 6, wherein:
Tungsten filled with tungsten, which acts as a conductive material in the trench.
如申請專利範圍第7項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
該溝槽更包括一金屬襯墊層,形成在該溝槽的底面上。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 7, wherein:
The trench further includes a metal liner layer formed on the bottom surface of the trench.
如申請專利範圍第1項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
該溝槽為窄、深溝槽,深度與寬度比很高,從10至25。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 1, wherein:
The trench is a narrow, deep trench with a high depth to width ratio from 10 to 25.
如申請專利範圍第1項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
將該頂部汲極橫向擴散金屬氧化物場效應半導體元件配置成封閉式晶胞佈局。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 1, wherein:
The top drain laterally diffused metal oxide field effect semiconductor device is configured in a closed cell layout.
如申請專利範圍第1項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
該半導體基板更包括一重摻雜層,其導電類型與該本體區的導電類型相反。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 1, wherein:
The semiconductor substrate further includes a heavily doped layer having a conductivity type opposite to that of the body region.
如申請專利範圍第1項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
該半導體基板更包括一注入摻雜物的深緩衝層,摻雜物的導電類型與半導體區的導電類型相同。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 1, wherein:
The semiconductor substrate further includes a deep buffer layer implanted with a dopant, the conductivity type of the dopant being the same as the conductivity type of the semiconductor region.
如申請專利範圍第1項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
該頂部汲極橫向擴散金屬氧化物場效應半導體包括一P-通道元件,形成在N+矽基板中。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 1, wherein:
The top drain laterally diffused metal oxide field effect semiconductor includes a P-channel element formed in the N+ germanium substrate.
如申請專利範圍第1項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,其中:
該平面閘極更包括一堆疊式平面閘極,下方墊有一閘極氧化層,被一閘極罩氧化物覆蓋,更被一側壁墊片層包圍。
The top bungee laterally diffused metal oxide field effect semiconductor device of claim 1, wherein:
The planar gate further comprises a stacked planar gate, the lower pad has a gate oxide layer, is covered by a gate cover oxide, and is surrounded by a sidewall spacer layer.
如申請專利範圍第14項所述之頂部汲極橫向擴散金屬氧化物場效應半導體元件,更包括:
一由金屬層構成的閘極遮蔽層,覆蓋在該閘極罩氧化物和該側壁墊片層上方,其中該閘極遮蔽層更延伸到該源極區上方的頂面,處理成自對準多晶矽化物層,用於在該源極區和一頂部金屬源極之間導電交界。
The top bungee lateral diffusion metal oxide field effect semiconductor device according to claim 14 of the patent application scope, further comprising:
a gate shielding layer composed of a metal layer overlying the gate cap oxide and the sidewall spacer layer, wherein the gate shielding layer extends further to a top surface above the source region, and is processed to be self-aligned A polycrystalline germanide layer for electrically conductively interface between the source region and a top metal source.
一種半導體功率元件包括:
一閘極,設置在一半導體基板的頂面上,用於控制一源極區和一汲極區之間的電流通路,該源極區和該汲極區設置在該半導體基板的頂面附近;以及
一用導電材料填充的溝槽,向下延伸,用於將該源極區短接至設置在該半導體基板底面上的一源極電極。
A semiconductor power device includes:
a gate disposed on a top surface of a semiconductor substrate for controlling a current path between a source region and a drain region, the source region and the drain region being disposed adjacent to a top surface of the semiconductor substrate And a trench filled with a conductive material extending downward for shorting the source region to a source electrode disposed on a bottom surface of the semiconductor substrate.
一種在半導體基板上製備半導體功率元件之方法,包括:
製備一包圍著一源極區的本體區和一汲極區,在該半導體基板的頂面上帶有一閘極,用於控制該半導體基板頂面附近的該源極區和該汲極區之間的該本體區中的一橫向電流通路;以及
打通一溝槽,從該本體區開始向下延伸到該半導體基板底面上的該源極電極,並且用導電材料填充該溝槽,用作本體-源極互連。
A method of fabricating a semiconductor power device on a semiconductor substrate, comprising:
Forming a body region and a drain region surrounding a source region, and having a gate on a top surface of the semiconductor substrate for controlling the source region and the drain region near the top surface of the semiconductor substrate a lateral current path in the body region; and opening a trench extending downward from the body region to the source electrode on the bottom surface of the semiconductor substrate, and filling the trench with a conductive material for use as a body - Source interconnection.
如申請專利範圍第17項所述之方法,其中用導電材料填充該溝槽的步驟包括:
用含有選擇性外延生長(SEG)矽或選擇性外延生長鍺化矽(SiGe)的導電材料填充該溝槽。
The method of claim 17, wherein the step of filling the trench with a conductive material comprises:
The trench is filled with a conductive material containing selective epitaxial growth (SEG) germanium or selective epitaxial growth of germanium telluride (SiGe).
如申請專利範圍第17項所述之方法,更包括:
在該溝槽底部下方和該溝槽側壁周圍,注入重摻雜襯墊區。
For example, the method described in claim 17 includes:
A heavily doped pad region is implanted under the bottom of the trench and around the sidewall of the trench.
TW102111534A 2012-03-30 2013-03-29 Top drain ldmos﹑semiconductor power device and method of manufacturing the same TWI493718B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/436,308 US9159828B2 (en) 2011-04-27 2012-03-30 Top drain LDMOS

Publications (2)

Publication Number Publication Date
TW201340327A true TW201340327A (en) 2013-10-01
TWI493718B TWI493718B (en) 2015-07-21

Family

ID=49368410

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102111534A TWI493718B (en) 2012-03-30 2013-03-29 Top drain ldmos﹑semiconductor power device and method of manufacturing the same

Country Status (2)

Country Link
CN (1) CN103367444A (en)
TW (1) TWI493718B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647850B (en) * 2017-05-17 2019-01-11 立錡科技股份有限公司 High voltage component and method of manufacturing same
TWI690082B (en) * 2017-10-24 2020-04-01 美商雷森公司 Transistor having low capacitance field plate structure
US11164970B2 (en) 2014-11-25 2021-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Contact field plate
TWI748271B (en) * 2019-07-09 2021-12-01 台灣積體電路製造股份有限公司 Integrated chip and method of forming the same
US11271104B2 (en) 2014-11-25 2022-03-08 Taiwan Semiconductor Manufacturing Company, Ltd. Composite etch stop layer for contact field plate etching

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638005B (en) * 2013-11-15 2017-12-15 世界先进积体电路股份有限公司 Horizontal double diffusion metal-oxide-semiconductor (MOS) device and its manufacture method
CN104377137A (en) * 2014-11-19 2015-02-25 上海华虹宏力半导体制造有限公司 Manufacturing method of RFLDMOS device
CN106252415B (en) * 2016-08-02 2019-06-07 重庆中科渝芯电子有限公司 A kind of high performance MOSFET and its manufacturing method
CN109935633B (en) * 2017-12-15 2022-07-08 深圳尚阳通科技有限公司 LDMOS device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869875A (en) * 1997-06-10 1999-02-09 Spectrian Lateral diffused MOS transistor with trench source contact
US7652326B2 (en) * 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7041561B2 (en) * 2004-03-31 2006-05-09 Agere Systems Inc. Enhanced substrate contact for a semiconductor device
US7061057B2 (en) * 2004-06-16 2006-06-13 Cree Microwave, Llc Laterally diffused MOS transistor having N+ source contact to N-doped substrate
US7087959B2 (en) * 2004-08-18 2006-08-08 Agere Systems Inc. Metal-oxide-semiconductor device having an enhanced shielding structure
US7566931B2 (en) * 2005-04-18 2009-07-28 Fairchild Semiconductor Corporation Monolithically-integrated buck converter
KR100623175B1 (en) * 2005-05-30 2006-09-13 삼성전자주식회사 Stacked semiconductor device and method of manufacturing the same
US7420247B2 (en) * 2005-08-12 2008-09-02 Cicion Semiconductor Device Corp. Power LDMOS transistor
US7446375B2 (en) * 2006-03-14 2008-11-04 Ciclon Semiconductor Device Corp. Quasi-vertical LDMOS device having closed cell layout
US7554154B2 (en) * 2006-07-28 2009-06-30 Alpha Omega Semiconductor, Ltd. Bottom source LDMOSFET structure and method
US8008716B2 (en) * 2006-09-17 2011-08-30 Alpha & Omega Semiconductor, Ltd Inverted-trench grounded-source FET structure with trenched source body short electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11164970B2 (en) 2014-11-25 2021-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Contact field plate
US11271104B2 (en) 2014-11-25 2022-03-08 Taiwan Semiconductor Manufacturing Company, Ltd. Composite etch stop layer for contact field plate etching
TWI647850B (en) * 2017-05-17 2019-01-11 立錡科技股份有限公司 High voltage component and method of manufacturing same
TWI690082B (en) * 2017-10-24 2020-04-01 美商雷森公司 Transistor having low capacitance field plate structure
TWI748271B (en) * 2019-07-09 2021-12-01 台灣積體電路製造股份有限公司 Integrated chip and method of forming the same

Also Published As

Publication number Publication date
CN103367444A (en) 2013-10-23
TWI493718B (en) 2015-07-21

Similar Documents

Publication Publication Date Title
US10008598B2 (en) Top drain LDMOS
US7633120B2 (en) Inverted-trench grounded-source field effect transistor (FET) structure using highly conductive substrates
TWI493718B (en) Top drain ldmos﹑semiconductor power device and method of manufacturing the same
US8008716B2 (en) Inverted-trench grounded-source FET structure with trenched source body short electrode
US9356122B2 (en) Through silicon via processing method for lateral double-diffused MOSFETs
US8198154B2 (en) Method of forming bottom-drain LDMOS power MOSFET structure having a top drain strap
TWI381527B (en) Super-self-aligned trench-dmos structure and method
US7554154B2 (en) Bottom source LDMOSFET structure and method
US9564516B2 (en) Method of making integrated MOSFET-schottky diode device with reduced source and body kelvin contact impedance and breakdown voltage
US20160247899A1 (en) Power mosfet device structure for high frequency applications
US20100264488A1 (en) Low Qgd trench MOSFET integrated with schottky rectifier
TW201334188A (en) Nano MOSFET and fabricating method thereof with trench bottom oxide shielded and third dimensional P-body contact
WO2007098317A2 (en) Lateral power devices with self-biasing electrodes
JP2005286328A (en) Process for manufacturing terminal region of trench mis device, semiconductor die including mis device, and method for forming the same
JP7017733B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
EP1162665A2 (en) Trench gate MIS device and method of fabricating the same
US7494876B1 (en) Trench-gated MIS device having thick polysilicon insulation layer at trench bottom and method of fabricating the same
TWI437705B (en) Inverted-trench grounded-source fet structure using conductive substrates, with highly doped substrates