TW201336105A - Vertical LED with current-guiding structure - Google Patents
Vertical LED with current-guiding structure Download PDFInfo
- Publication number
- TW201336105A TW201336105A TW102105714A TW102105714A TW201336105A TW 201336105 A TW201336105 A TW 201336105A TW 102105714 A TW102105714 A TW 102105714A TW 102105714 A TW102105714 A TW 102105714A TW 201336105 A TW201336105 A TW 201336105A
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- emitting diode
- led
- electrode
- layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 47
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 229910052737 gold Inorganic materials 0.000 claims description 64
- 229910052782 aluminium Inorganic materials 0.000 claims description 40
- 229910052804 chromium Inorganic materials 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 229910052759 nickel Inorganic materials 0.000 claims description 25
- 229910052719 titanium Inorganic materials 0.000 claims description 21
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 230000004888 barrier function Effects 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 12
- 229910008938 W—Si Inorganic materials 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 230000001052 transient effect Effects 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910002367 SrTiO Inorganic materials 0.000 claims description 3
- 239000012777 electrically insulating material Substances 0.000 claims description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052950 sphalerite Inorganic materials 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 3
- 229910017727 AgNi Inorganic materials 0.000 claims description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910004140 HfO Inorganic materials 0.000 claims description 2
- 229920001486 SU-8 photoresist Polymers 0.000 claims description 2
- -1 Si 3 N 4 Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 2
- 239000011810 insulating material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 97
- 239000000463 material Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 229910017816 Cu—Co Inorganic materials 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Led Devices (AREA)
Abstract
Description
本申請案係為2011年6月15日申請之美國專利申請案第13/161,254號(後文以’254案稱之)的部分延續案(continuation-in-part),而’254案係為2010年6月25日申請之美國專利申請案第12/823,866號(後文以’866案稱之)的延續案(continuation),’866案目前已公告為美國專利第8,003,994號,且’866案係為2008年6月10日申請之美國專利申請案第12/136,547號(後文以’547案稱之)的分割案(division),’547案目前已公告為美國專利第7,759,670號,而’547案係已主張美國臨時申請案第60/943,533號的優點,其全部內容以參考文獻的方式合併於此。 This application is a continuation-in-part of US Patent Application No. 13/161,254 (hereinafter referred to as the '254 case) filed on June 15, 2011, and the '254 case is The continuation of US Patent Application No. 12/823,866 (hereinafter referred to as the '866 case) filed on June 25, 2010, the '866 case is currently published as US Patent No. 8,003,994, and '866 The case is a division of US Patent Application No. 12/136,547 (hereinafter referred to as the '547 case) filed on June 10, 2008, and the '547 case is currently announced as US Patent No. 7,759,670. The '547 case has claimed the advantages of U.S. Provisional Application No. 60/943,533, the entire contents of which are hereby incorporated by reference.
本發明的實施例一般係關於半導體處理,具體而言,本發明的實施例係關於發光二極體(LED)結構的形成。 Embodiments of the present invention generally relate to semiconductor processing, and in particular, embodiments of the present invention relate to the formation of light emitting diode (LED) structures.
在製造發光二極體(light-emitting diode,LED)時,可能形成「LED堆疊」的磊晶結構,例如,「LED堆疊」包括p摻雜GaN層及n摻雜GaN層。圖1係一示意圖,說明習知的LED元件102之一例,其具有n摻雜層106和p摻雜層110,此兩層被多量子井(multi-quantum well,MQW)層108隔開。一般來說,LED元件102係沉積在合適材料的載體/成長支撐基板(圖未示)上,例如c-平面(c-plane)碳化矽或c-平面藍寶石,且係藉由接合層204與導熱導電基板101接合。反射層202可加強亮度。各別地經由n電極117和導熱導電基板101,可以在n摻雜層106和p摻雜層110之間施加電壓。 In the manufacture of a light-emitting diode (LED), an epitaxial structure of an "LED stack" may be formed. For example, the "LED stack" includes a p-doped GaN layer and an n-doped GaN layer. 1 is a schematic diagram showing an example of a conventional LED element 102 having an n-doped layer 106 and a p-doped layer 110 separated by a multi-quantum well (MQW) layer 108. In general, the LED component 102 is deposited on a carrier/growth support substrate (not shown) of a suitable material, such as a c-plane tantalum carbide or a c-plane sapphire, and is bonded by a bonding layer 204. The thermally conductive conductive substrate 101 is joined. The reflective layer 202 enhances brightness. A voltage can be applied between the n-doped layer 106 and the p-doped layer 110 via the n-electrode 117 and the thermally conductive conductive substrate 101, respectively.
在某些例子中,希望能控制通過n電極117而到基板101的電流量,例如,以用來限制功率損耗及/或防止LED元件102的損壞。因此在p摻雜層110之下、反射層202之中形成電性絕緣層206,以增加n電極 117下的接觸電阻並且限制電流。絕緣層206可類似於「Photonics Spectra,December 1991,pp.64-66 by H.Kaplan」中所描述的電流限制層(current-blocking layer))。在標題為「Wafer Bonding of Light Emitting Diode Layers」的美國專利第5,376,580號中,Kish等人揭示了蝕刻圖案化半導體晶圓以形成一凹部,並且使該晶圓與單獨的LED結構接合,使得凹部在該結合結構中形成一腔室(cavity)。當藉由施加電壓使該結合結構為正向偏壓時,電流將在LED結構中流動,但因為空氣(air)是電性絕緣體,所以將沒有電流會流過腔室或流到直接在腔室之下的區域。因此,空氣腔室(air cavity)當作另一種型式的電流限制結構(current-blocking structure)。 In some instances, it may be desirable to control the amount of current through the n-electrode 117 to the substrate 101, for example, to limit power loss and/or prevent damage to the LED component 102. Therefore, an electrically insulating layer 206 is formed under the p-doped layer 110 and in the reflective layer 202 to increase the n-electrode. Contact resistance at 117 and current limiting. The insulating layer 206 can be similar to the current-blocking layer described in "Photonics Spectra, December 1991, pp. 64-66 by H. Kaplan." Kish et al. disclose etching a patterned semiconductor wafer to form a recess and bonding the wafer to a separate LED structure such that the recess is in U.S. Patent No. 5,376,580, the disclosure of which is incorporated herein by reference. A cavity is formed in the bonded structure. When the bonding structure is forward biased by applying a voltage, current will flow in the LED structure, but since air is an electrical insulator, no current will flow through the chamber or flow directly into the cavity. The area under the room. Therefore, the air cavity is treated as another type of current-blocking structure.
可惜的是,這些電流引導的方法有一些缺點。例如,電性絕緣層206、空氣腔室、以及其它的習知電流限制結構可能限制了導熱性,因此可能增加操作中的溫度,並減損了元件可靠度及/或壽命。 Unfortunately, these current-directed methods have some drawbacks. For example, the electrically insulating layer 206, the air chamber, and other conventional current limiting structures may limit thermal conductivity and thus may increase the temperature during operation and detract from component reliability and/or lifetime.
此外,習知的LED元件,例如圖1中的LED元件102,容易被靜電放電(ESD)及其它高電壓暫態所破壞。ESD尖峰可能發生,例如,於元件的處理期間,不論是在LED元件本身的製造時、在運送時、或是在置放於印刷電路板或其它合適的電連接用固定表面之上時。過電壓暫態可能發生於LED元件的用電操作過程中。這樣的高電壓暫態可能破壞元件的半導體層,甚至可能導致元件故障,因此減少LED元件的壽命及可靠度。 Moreover, conventional LED components, such as LED component 102 of FIG. 1, are susceptible to electrostatic discharge (ESD) and other high voltage transients. ESD spikes may occur, for example, during processing of the component, whether at the time of manufacture of the LED component itself, during shipping, or when placed over a printed circuit board or other suitable fixed surface for electrical connection. Overvoltage transients can occur during the electrical operation of the LED components. Such high voltage transients can damage the semiconductor layer of the component and can even cause component failure, thus reducing the lifetime and reliability of the LED component.
因此,需要一種用來引導電流通過LED元件的改良方法。 Therefore, there is a need for an improved method for directing current through an LED component.
本發明的實施例提出用來引導半導體元件(例如發光二極體,LED)中的電流之方法和元件。 Embodiments of the present invention propose methods and elements for directing current in semiconductor components, such as light emitting diodes, LEDs.
本發明的一實施例提出一種LED。該LED通常包括一基板;用於發射光線並配置在該基板上的一LED堆疊(stack),其中該LED堆疊包括一p型半導體層和一n型半導體層;配置在該n型半導體層上的一n電極;以及一導電材料,耦接於該基板和該n型半導體層之間,並與該n型半導體層形成一非歐姆接觸。 An embodiment of the invention provides an LED. The LED generally includes a substrate; an LED stack for emitting light and disposed on the substrate, wherein the LED stack includes a p-type semiconductor layer and an n-type semiconductor layer; and the n-type semiconductor layer is disposed on the LED stack And an n-electrode coupled between the substrate and the n-type semiconductor layer and forming a non-ohmic contact with the n-type semiconductor layer.
本發明的另一實施例提出一種LED。該LED通常包括一基板;用於發射光線並配置在該基板上的一LED堆疊,其中該LED堆疊包括 一p型半導體層和一n型半導體層;一配置在該n型半導體層上的一n電極;配置在該n型半導體上的一保護元件;以及一導電材料,耦接於該基板和該保護元件之間。 Another embodiment of the invention provides an LED. The LED typically includes a substrate; an LED stack for emitting light and disposed on the substrate, wherein the LED stack includes a p-type semiconductor layer and an n-type semiconductor layer; an n-electrode disposed on the n-type semiconductor layer; a protective element disposed on the n-type semiconductor; and a conductive material coupled to the substrate and the Protect between components.
本發明的再一實施例提出一種LED。該LED通常包括一基板;配置在該基板上並且具有第一和第二接觸的一p電極,其中該第一接觸的電阻高於該第二接觸的電阻;用於發射光線並配置在該p電極上的一LED堆疊,其中該LED堆疊包括一p型半導體層,該p型半導體層係耦接到該p電極和一n型半導體層;以及配置在該n型半導體層上的一n電極。 Yet another embodiment of the present invention provides an LED. The LED generally includes a substrate; a p-electrode disposed on the substrate and having first and second contacts, wherein the resistance of the first contact is higher than the resistance of the second contact; for emitting light and being disposed at the p An LED stack on the electrode, wherein the LED stack includes a p-type semiconductor layer coupled to the p-electrode and an n-type semiconductor layer; and an n-electrode disposed on the n-type semiconductor layer .
101‧‧‧導熱導電基板 101‧‧‧ Thermal conductive substrate
102‧‧‧LED元件 102‧‧‧LED components
106‧‧‧n摻雜層(n型半導體層) 106‧‧‧n doped layer (n-type semiconductor layer)
108‧‧‧多量子井層(主動層) 108‧‧‧Multi-quantum well layer (active layer)
110‧‧‧p摻雜層(p型半導體層) 110‧‧‧p-doped layer (p-type semiconductor layer)
117‧‧‧n電極 117‧‧‧n electrode
119‧‧‧頂面 119‧‧‧ top surface
202‧‧‧反射層 202‧‧‧reflective layer
204‧‧‧接合層 204‧‧‧Connection layer
206‧‧‧絕緣層 206‧‧‧Insulation
208‧‧‧阻隔金屬層 208‧‧‧Barrier metal layer
211‧‧‧高接觸電阻區 211‧‧‧High contact resistance zone
213‧‧‧低接觸電阻區 213‧‧‧Low contact resistance zone
300‧‧‧等效電路 300‧‧‧ equivalent circuit
302‧‧‧RL 302‧‧‧R L
304‧‧‧RH 304‧‧‧R H
306‧‧‧二極體 306‧‧‧dipole
400‧‧‧LED元件 400‧‧‧LED components
402‧‧‧第二電流路徑 402‧‧‧Second current path
404‧‧‧電性絕緣層 404‧‧‧Electrical insulation
411‧‧‧第二導電材料 411‧‧‧Second conductive material
412‧‧‧非歐姆接觸 412‧‧‧Non-ohmic contact
500‧‧‧等效電路 500‧‧‧ equivalent circuit
502‧‧‧等效電阻器 502‧‧‧ equivalent resistor
504‧‧‧理想LED 504‧‧‧Ideal LED
506‧‧‧TVS二極體 506‧‧‧TVS diode
700‧‧‧等效電路 700‧‧‧ equivalent circuit
810‧‧‧保護元件 810‧‧‧protective components
1002‧‧‧貼合金屬層 1002‧‧‧Metal metal layer
1102‧‧‧共用封裝陽極導線 1102‧‧‧Shared package anode wire
1104‧‧‧焊接線 1104‧‧‧welding line
1106‧‧‧陰極封裝導線 1106‧‧‧Cathode package wire
1108‧‧‧焊接線 1108‧‧‧welding line
1200‧‧‧曲線圖 1200‧‧‧Chart
1202‧‧‧不具有第二電流路徑的LED元件之例示性電流對電壓曲線 1202‧‧‧Executive current-to-voltage curve for LED components without a second current path
1204‧‧‧具有第二電流路徑的LED元件之例示性電流對電壓曲線 1204‧‧‧An exemplary current-to-voltage curve for an LED component with a second current path
1300‧‧‧例示性圖表 1300‧‧‧ exemplary chart
1302‧‧‧LED元件 1302‧‧‧LED components
1304‧‧‧LED元件 1304‧‧‧LED components
1306‧‧‧LED元件 1306‧‧‧LED components
1308‧‧‧LED元件 1308‧‧‧LED components
1310‧‧‧LED元件 1310‧‧‧LED components
1312‧‧‧LED元件 1312‧‧‧LED components
為了可詳細地瞭解到本發明上述的參考特性之手段,以至於本發明一更特別的描述,即上述簡短地摘要,係可參考實施例來獲得,其某些實施例係繪示在附加的圖式中。然而,所注意的是,附加的圖式係僅繪示本發明典型的實施例,且因此其並不會限制其範圍,本發明係可容許其他等效的實施例。 For a more detailed description of the above-described reference features of the present invention, a more particular description of the present invention, that is, the brief summary above may be obtained by reference to the embodiments, some of which are shown in the appended In the schema. However, it is to be understood that the appended drawings are only illustrative of the exemplary embodiments of the invention
第1圖係表示習知具有電流引導結構的LED元件之一例的示意圖。 Fig. 1 is a schematic view showing an example of a conventional LED element having a current guiding structure.
第2圖係表示本發明具有電流引導結構的LED元件之一例的示意圖。 Fig. 2 is a view showing an example of an LED element having a current guiding structure of the present invention.
第3圖係表示第2圖中之LED元件的等效電路圖。 Fig. 3 is an equivalent circuit diagram showing the LED element in Fig. 2.
第4圖係表示本發明具有一第二電流路徑之LED元件之一例的示意圖。 Fig. 4 is a view showing an example of an LED element having a second current path of the present invention.
第5圖係表示第4圖之LED元件的等效電路圖。 Fig. 5 is an equivalent circuit diagram showing the LED element of Fig. 4.
第6圖係表示本發明具有一電流導引結構及一第二電流路徑之LED元件之一例的示意圖。 Fig. 6 is a view showing an example of an LED element having a current guiding structure and a second current path of the present invention.
第7圖係表示第6圖之LED元件的等效電路圖。 Fig. 7 is an equivalent circuit diagram showing the LED element of Fig. 6.
第8圖係表示本發明具有一第二電流路徑並具有一保護元件之LED元件之一例的示意圖。 Fig. 8 is a view showing an example of an LED element of the present invention having a second current path and having a protective element.
第9圖係表示本發明具有一電流導引結構、一第二電流路徑及一保護元件之LED元件之一例的示意圖。 Fig. 9 is a view showing an example of an LED element having a current guiding structure, a second current path and a protective element of the present invention.
第10圖係表示本發明具有一第二電流路徑並為晶片型態之LED元件之一例的示意圖。 Fig. 10 is a view showing an example of the LED element of the present invention having a second current path and being of a wafer type.
第11圖係表示本發明具有一第二電流路徑並為封裝型態之LED元件之一例的示意圖。 Fig. 11 is a view showing an example of the LED element of the present invention having a second current path and being of a package type.
第12圖係表示比較具有第二電流路徑及不具第二電流路徑之LED元件的電流-電壓圖。 Figure 12 shows a current-voltage diagram comparing LED elements having a second current path and no second current path.
第13圖係表示具有第二電流路徑及不具第二電流路徑之LED元件的靜電防護程度及相對應之存活率。 Figure 13 is a graph showing the degree of electrostatic protection and the corresponding survival rate of an LED element having a second current path and having no second current path.
本發明的實施例通常提出用來控制通過半導體元件(例如LED)的電流流動之方法。該控制可能藉由電流引導結構、第二電流路徑、或此兩者的結合。 Embodiments of the present invention generally propose methods for controlling the flow of current through a semiconductor component, such as an LED. This control may be by a current directing structure, a second current path, or a combination of the two.
下文中,例如「在...之上」、「在...之下」、「鄰接於...」、「在...底下」等的相對用詞,僅是為了方便說明,通常並不需要特定的方向。 In the following, the relative terms such as "above", "below", "adjacent to", "under", etc. are for convenience of explanation only. No specific direction is required.
第2圖係表示本發明具有電流引導結構的LED元件之一例的示意圖。此LED元件包括一已知為LED堆疊之元件結構,而LED堆疊包括任何可適用於發射光線的半導體材料,例如AlInGaN。LED堆疊係可包括異質接面(heterojunction),而異質接面係由p型半導體層110、用於發射光線之主動層108、及n型半導體層106組成。LED堆疊具有一頂面119,而頂面119係已經過粗糙化,如第2圖所示。LED元件係可包括形成於頂面119之上的一n電極117,以及位於p型半導體層110上的p電極(反射層202和阻隔金屬層208係可以當作p電極的作用使用),其中n電極117係電性耦接到n型半導體層106。 Fig. 2 is a view showing an example of an LED element having a current guiding structure of the present invention. This LED element comprises an element structure known as an LED stack, and the LED stack comprises any semiconductor material suitable for emitting light, such as AlInGaN. The LED stack may include a heterojunction composed of a p-type semiconductor layer 110, an active layer 108 for emitting light, and an n-type semiconductor layer 106. The LED stack has a top surface 119 and the top surface 119 has been roughened as shown in FIG. The LED component can include an n-electrode 117 formed over the top surface 119, and a p-electrode on the p-type semiconductor layer 110 (the reflective layer 202 and the barrier metal layer 208 can be used as a p-electrode), wherein The n-electrode 117 is electrically coupled to the n-type semiconductor layer 106.
反射層202係配置為鄰接到p型層110,且插設有阻隔金屬層208,以分別形成低接觸電阻區213和高接觸電阻區211。對於某些實施例,低接觸電阻區213的體積係大於高接觸電阻區211。可導電、但電阻比低接觸電阻區213高的高接觸電阻區211,可利用如下所述的金屬材料形成。利用具有不同接觸電阻的區域,並且小心地加以控制,可用來引導電 流,以從期望區域中的主動層發光,例如,發光主要來自於不在用來加強光線發射之n電極117下的區域之主動層。 The reflective layer 202 is configured to abut the p-type layer 110 and is interposed with a barrier metal layer 208 to form a low contact resistance region 213 and a high contact resistance region 211, respectively. For certain embodiments, the volume of the low contact resistance region 213 is greater than the high contact resistance region 211. The high contact resistance region 211 which is electrically conductive but has a higher electric resistance than the low contact resistance region 213 can be formed using a metal material as described below. Use areas with different contact resistances and carefully control them to guide the electricity The flow is to illuminate from the active layer in the desired region, for example, the luminescence is primarily from the active layer of the region that is not under the n-electrode 117 used to enhance light emission.
根據這種方式,與具有常見的電流限制或其它電流引導結構之習知LED元件(如第1圖中具有電絕緣層206的LED元件)相比,第2圖中具有完全導電的電流引導結構之LED元件有較大的導熱性。因此,和習知的LED元件相比,第2圖的LED元件及本發明的其它實施例之具有導電電流引導結構的LED元件,係可享有降低的操作溫度與增加的元件可靠度及/或壽命。 In this manner, a fully conductive current conducting structure is shown in FIG. 2 compared to conventional LED elements having conventional current limiting or other current directing structures (such as LED elements having electrically insulating layer 206 in FIG. 1). The LED elements have greater thermal conductivity. Therefore, the LED element of FIG. 2 and the LED element having the conductive current guiding structure of other embodiments of the present invention can enjoy reduced operating temperature and increased component reliability and/or compared to conventional LED elements. life.
第3圖係表示第2圖中的LED元件之等效電路300的示意圖。如圖所示,等效電路300係包括並聯的電阻器RL 302和RH 304,電阻器RL 302和RH 304係模擬第2圖的高接觸電阻區211及低接觸電阻區213之等效電阻。雖然只顯示一個電阻器當作低接觸電阻區,但電阻器RL 302可能代表一個以上的並聯低接觸電阻區之集總等效物,例如第2圖中所示的兩個區域213。類似地,電阻器RH 304係可代表一個以上的並聯高接觸電阻區211之集總等效物。對於某些實施例而言,等效高接觸電阻係可至少是等效低接觸電阻的兩倍。如圖所示,並聯的電阻器RL 302和RH 304係與二極體306串聯,二極體306代表無串聯電阻的一理想的LED。 Fig. 3 is a schematic view showing an equivalent circuit 300 of the LED element in Fig. 2. As shown, the equivalent circuit 300 includes resistors R L 302 and R H 304 in parallel, and the resistors R L 302 and R H 304 simulate the high contact resistance region 211 and the low contact resistance region 213 of FIG. Equivalent resistance. Although only one resistor is shown as a low contact resistance region, resistor R L 302 may represent a lumped equivalent of more than one parallel low contact resistance region, such as the two regions 213 shown in FIG. Similarly, resistor R H 304 can represent a lumped equivalent of more than one parallel high contact resistance region 211. For certain embodiments, the equivalent high contact resistance can be at least twice the equivalent low contact resistance. As shown, the parallel resistors R L 302 and R H 304 are connected in series with the diode 306, which represents an ideal LED without series resistance.
一層以上的一基板201係配置為鄰接到p電極(由第2圖中的反射層202和阻隔金屬層208所組成)。基板201係可為導電性或是半導電性。在某些實施例中,基板201係可為導熱性。一導電基板係可為一單一層或多重層,並可包括金屬或金屬合金,例如Cu、Ni、Ag、Au、Al、Cu-Co、Ni-Co、Cu-W、Cu-Mo、Ge、Ni/Cu、及Ni/Cu-Mo。如此的一基板201係可使用任何合適的薄膜沉積法進行沉積,例如電化學沉積法(ECD)、無電化學沉積法(Eless CD)、化學氣相沉積法(CVD)、有機金屬化學氣相沉積法(MOCVD)、及物理氣相沉積法(PVD)。對於某些實施例而言,係可使用無電化學沉積法沉積一晶種金屬層(seed metal layer),然後使用電鍍法在晶種金屬層上沉積基板的一層以上的額外金屬層。一半導電基板(semi-conductive substrate)係可包括依單一層或多重層,並可由例如矽(Si)或碳化矽(SiC)所構成。基板201的厚度係可在10到400μm範圍之間。 One or more substrates 201 are disposed adjacent to the p-electrode (consisting of the reflective layer 202 and the barrier metal layer 208 in FIG. 2). The substrate 201 can be electrically conductive or semi-conductive. In some embodiments, the substrate 201 can be thermally conductive. A conductive substrate may be a single layer or multiple layers, and may include a metal or a metal alloy such as Cu, Ni, Ag, Au, Al, Cu-Co, Ni-Co, Cu-W, Cu-Mo, Ge, Ni/Cu, and Ni/Cu-Mo. Such a substrate 201 can be deposited using any suitable thin film deposition method, such as electrochemical deposition (ECD), electroless deposition (Eless CD), chemical vapor deposition (CVD), and organometallic chemical vapor deposition. Method (MOCVD), and physical vapor deposition (PVD). For certain embodiments, a seed metal layer can be deposited using electroless deposition and then one or more additional metal layers of the substrate are deposited on the seed metal layer using electroplating. The semi-conductive substrate may comprise a single layer or multiple layers and may be composed of, for example, germanium (Si) or tantalum carbide (SiC). The thickness of the substrate 201 can be in the range of 10 to 400 μm.
反射層202係可包括單一層或多重層,其係包括任何合適的 材料,此材料係用來反射光線並且和用來產生高接觸電阻區211的材料相比具有相當低的電阻。例如,反射層202係可包括例如Ag、Au、Al、Ag-Al、Mg/Ag、Mg/Ag/Ni、Mg/Ag/Ni/Au、AgNi、Ni/Ag/Ni/Au、Ag/Ni/Au、Ag/Ti/Ni/Au、Ti/Al、Ni/Al、AuBe、AuGe、AuPd、AuPt、AuZn、或使用包含Ag、Au、Al、Ni、Cr、Mg、Pt、Pd、Rh、或Cu的合金。 The reflective layer 202 can comprise a single layer or multiple layers, including any suitable The material is used to reflect light and has a relatively low resistance compared to the material used to create the high contact resistance region 211. For example, the reflective layer 202 may include, for example, Ag, Au, Al, Ag-Al, Mg/Ag, Mg/Ag/Ni, Mg/Ag/Ni/Au, AgNi, Ni/Ag/Ni/Au, Ag/Ni. /Au, Ag/Ti/Ni/Au, Ti/Al, Ni/Al, AuBe, AuGe, AuPd, AuPt, AuZn, or using Ag, Au, Al, Ni, Cr, Mg, Pt, Pd, Rh, Or an alloy of Cu.
對於某些實施例而言,低接觸電阻區213係可包含全向反射(omni-directional reflective,ODR)系統。一ODR係可包括一透明傳導層以及一反射層,透明傳導層係由例如銦錫氧化物(ITO)或銦鋅氧化物(IZO)等材料所組成。ODR係可插設有一電流限制結構或其它用來引導電流的合適結構。一例示性的ODR系統係已揭示於共同擁有的美國專利申請案第11/682,780號,其申請日為2007年3月6日、且標題為「Vertical Light-Emitting Diode Structure with Omni-Directional Reflector」,其全文合併於此做為參考文獻。 For some embodiments, the low contact resistance region 213 can comprise an omni-directional reflective (ODR) system. An ODR system may include a transparent conductive layer and a reflective layer composed of a material such as indium tin oxide (ITO) or indium zinc oxide (IZO). The ODR system can be plugged with a current limiting structure or other suitable structure for directing current. An exemplary ODR system is disclosed in commonly-owned U.S. Patent Application Serial No. 11/682,780, filed on March 6, 2007, and entitled "Vertical Light-Emitting Diode Structure with Omni-Directional Reflector" The full text is incorporated herein by reference.
n電極117(也稱為接觸焊墊或n焊墊)係可為單一金屬層或多重金屬層,單一金屬層或多重金屬層係由任何適合用來導電的材料所組成,例如Cr/Au、Cr/Al、Cr/Pt/Au、Cr/Ni/Au、Cr/Al/Pt/Au、Cr/Al/Ni/Au、Ti/Al、Ti/Au、Ti/Al/Pt/Au、Ti/Al/Ni/Au、Al、Al/Pt/Au、Al/Pt/Al、Al/Ni/Au、Al/Ni/Al、Al/W/Al、Al/W/Au、Al/TaN/Al、Al/TaN/Au、Al/Mo/Au。n電極117的厚度係可為大約0.1到50μm。n電極117係可利用沉積、濺鍍、蒸鍍、電鍍、無電電鍍、塗佈、及/或印刷等方法形成於LED堆疊的頂面119之上。 The n-electrode 117 (also referred to as a contact pad or n-pad) may be a single metal layer or a multiple metal layer, and the single metal layer or multiple metal layers are composed of any material suitable for conducting electricity, such as Cr/Au, Cr/Al, Cr/Pt/Au, Cr/Ni/Au, Cr/Al/Pt/Au, Cr/Al/Ni/Au, Ti/Al, Ti/Au, Ti/Al/Pt/Au, Ti/ Al/Ni/Au, Al, Al/Pt/Au, Al/Pt/Al, Al/Ni/Au, Al/Ni/Al, Al/W/Al, Al/W/Au, Al/TaN/Al, Al/TaN/Au, Al/Mo/Au. The thickness of the n-electrode 117 may be about 0.1 to 50 μm. The n-electrode 117 can be formed over the top surface 119 of the LED stack by deposition, sputtering, evaporation, electroplating, electroless plating, coating, and/or printing.
阻隔金屬層208係可為單一層或多重層,單一層或多重層係包括任何適合用來形成高接觸電阻區211的材料。例如,阻隔金屬層208係可包括例如Ag、Au、Al、Mo、Ti、Hf、Ge、Mg、Zn、Ni、Pt、Ta、W、W-Si、W/Au、Ni/Cu、Ta/Au、Ni/Au、Pt/Au、Ti/Au、Cr/Au、Ti/Al、Ni/Al、Cr/Al、AuGe、AuZn、Ti/Ni/Au、W-Si/Au、Cr/W/Au、Cr/Ni/Au、Cr/W-Si/Au、Cr/Pt/Au、Ti/Pt/Au、Ta/Pt/Au、ITO、以及IZO等的材料。 The barrier metal layer 208 can be a single layer or multiple layers, and the single layer or multiple layers include any material suitable for forming the high contact resistance region 211. For example, the barrier metal layer 208 may include, for example, Ag, Au, Al, Mo, Ti, Hf, Ge, Mg, Zn, Ni, Pt, Ta, W, W-Si, W/Au, Ni/Cu, Ta/ Au, Ni/Au, Pt/Au, Ti/Au, Cr/Au, Ti/Al, Ni/Al, Cr/Al, AuGe, AuZn, Ti/Ni/Au, W-Si/Au, Cr/W/ Materials such as Au, Cr/Ni/Au, Cr/W-Si/Au, Cr/Pt/Au, Ti/Pt/Au, Ta/Pt/Au, ITO, and IZO.
如第2圖所示,保護層220係可形成於鄰接到LED元件的側表面。保護層220係可做為鈍化保護層(passivation layer),用以保護LED元件(特別是異質接面)使其不受周遭環境的電和化學狀況所影響。 As shown in FIG. 2, the protective layer 220 may be formed on a side surface adjacent to the LED element. The protective layer 220 can serve as a passivation layer to protect the LED components (especially the heterojunction) from electrical and chemical conditions in the surrounding environment.
例如,藉由任何合適的處理(如電化學沈積法或無電化學沉 積法)沉積做為反射層202的一或多層,係可形成高/低接觸電阻區。再藉由任何合適的處理(如溼蝕刻或乾蝕刻),將反射層202中被指定為高接觸電阻區211的區域加以移除。在移除指定區域之後,在反射層202內的空白空間中形成阻隔金屬層208。對於如第2圖所示的某些實施例而言,構成高接觸電阻區211的阻隔金屬層208係可填入反射層202內的空白空間(voided spaces),並且覆蓋反射層。 For example, by any suitable treatment (such as electrochemical deposition or no electrochemical deposition) The deposition method, as one or more layers of the reflective layer 202, forms a high/low contact resistance region. The region of the reflective layer 202 designated as the high contact resistance region 211 is then removed by any suitable process, such as wet etching or dry etching. After the specified area is removed, a barrier metal layer 208 is formed in the blank space within the reflective layer 202. For some embodiments as shown in FIG. 2, the barrier metal layer 208 constituting the high contact resistance region 211 can be filled into voided spaces within the reflective layer 202 and cover the reflective layer.
對於某些實施例而言,當與具有平滑頂面的LED堆疊相比較,為了增加光提取,係可以將LED堆疊之頂面119加以圖案化或粗糙化。頂面119的圖案化或粗糙化係可利用任何合適的技術(例如溼或乾蝕刻)。 For certain embodiments, the top surface 119 of the LED stack can be patterned or roughened in order to increase light extraction compared to an LED stack having a smooth top surface. The patterning or roughening of the top surface 119 can utilize any suitable technique (e.g., wet or dry etching).
對於某些實施例而言,本文中所描述的電流引導結構可與第6圖和第9圖中所示的第二電流路徑相結合。在與第4圖有關的下文中,將會更詳細地對第二電流路徑加以敘述。 For certain embodiments, the current directing structures described herein can be combined with the second current paths shown in FIGS. 6 and 9. In the following in connection with Fig. 4, the second current path will be described in more detail.
第4圖係表示本發明具有第二電流路徑402的例示性LED元件400的實施例之示意圖。如圖所示,LED元件400係可包括一基板201、配置於基板201上的p電極207、配置於p電極207上的LED堆疊104、以及配置於LED堆疊104上的n電極117。基板201係可為如上所述之導熱性及導電性或半導電性。LED堆疊104係可包括一異質接面,異質接面係可包括p型半導體層110、用於發射光線的主動層108、及n型半導體層106。一第二導電材料411係可連接到基板201和n型半導體層106,並與n型半導體層106形成非歐姆接觸412,以在基板201和n型半導體層106之間提供一第二電流路徑402。第二導電材料411的形成係可藉由任何合適的製程,例如電子束沉積法、濺鍍法、及/或印刷法。 4 is a schematic diagram showing an embodiment of an exemplary LED component 400 having a second current path 402 of the present invention. As shown, the LED element 400 can include a substrate 201, a p-electrode 207 disposed on the substrate 201, an LED stack 104 disposed on the p-electrode 207, and an n-electrode 117 disposed on the LED stack 104. The substrate 201 may be thermally conductive and electrically conductive or semiconductive as described above. The LED stack 104 can include a heterojunction that can include a p-type semiconductor layer 110, an active layer 108 for emitting light, and an n-type semiconductor layer 106. A second conductive material 411 is connectable to the substrate 201 and the n-type semiconductor layer 106 and forms a non-ohmic contact 412 with the n-type semiconductor layer 106 to provide a second current path between the substrate 201 and the n-type semiconductor layer 106. 402. The second conductive material 411 can be formed by any suitable process such as electron beam deposition, sputtering, and/or printing.
如圖所示,電性絕緣層404係可將第二導電材料411和至少一部份的LED堆疊104分隔開來。絕緣層404係可包括任何合適的電性絕緣材料,例如SiO2、Si3N4、TiO2、Al2O3、HfO2、Ta2O5、旋轉塗佈玻璃(spin-on-glass,SOG)、MgO、高分子、聚醯亞胺、光敏電阻、聚對二甲苯基、SU-8、及熱塑性塑膠。對於某些實施例而言,保護層220可當做絕緣層404。 As shown, the electrically insulating layer 404 can separate the second electrically conductive material 411 from at least a portion of the LED stack 104. The insulating layer 404 can comprise any suitable electrically insulating material such as SiO 2 , Si 3 N 4 , TiO 2 , Al 2 O 3 , HfO 2 , Ta 2 O 5 , spin-on-glass, SOG), MgO, polymers, polyimine, photoresistors, parylene, SU-8, and thermoplastics. For some embodiments, the protective layer 220 can serve as the insulating layer 404.
如上所述,基板201係可為一單一層或多重層,單一層或多重層係包括金屬或金屬合金,例如Cu、Ni、Ag、Au、Al、Cu-Co、Ni-Co、 Cu-W、Cu-Mo、Ge、Ni/Cu、及Ni/Cu-Mo。基板201的厚度係可大約10到400μm。 As described above, the substrate 201 may be a single layer or multiple layers, and the single layer or multiple layers include a metal or a metal alloy such as Cu, Ni, Ag, Au, Al, Cu-Co, Ni-Co, Cu-W, Cu-Mo, Ge, Ni/Cu, and Ni/Cu-Mo. The thickness of the substrate 201 can be about 10 to 400 μm.
第5圖係表示第4圖中LED元件之等效電路500的一示意圖。如圖所示,等效電路500包括兩個平行的電流路徑。第一電流路徑係包括等效電阻器RL 502,等效電阻器RL 502係與理想LED 504串聯,以形成從基板201到n電極117的一順向電流路徑。第二電流路徑402係表示為雙向暫態電壓抑制(transient voltage suppression,TVS)二極體506。TVS二極體506的操作係可類似於兩個相對串聯的齊納二極體,並可用來保護電阻器502和理想LED 504以避免高電壓暫態。相較於其它常見的過電壓保護元件(例如變阻器、或氣體放電管),TVS二極體506對過電壓的反應較快速,使得TVS二極體506可用於防護非常快速且頻繁的有害電壓暫態,例如靜電放電(ESD)。第4圖中的第二導電材料411係可形成第5圖中的TVS二極體506。當感應電壓超過齊納崩潰電壓,第二導電材料411係可將任一方向的過量電流加以分流。 Fig. 5 is a view showing an equivalent circuit 500 of the LED element in Fig. 4. As shown, the equivalent circuit 500 includes two parallel current paths. It comprises a first current path based equivalent resistor R L 502, equivalent resistor R L 502 over the system and the LED 504 connected in series to form a current path from substrate 201 to the n-electrode 117 along the. The second current path 402 is represented as a bidirectional transient voltage suppression (TVS) diode 506. The operation of the TVS diode 506 can be similar to two relatively series Zener diodes and can be used to protect the resistor 502 and the ideal LED 504 from high voltage transients. Compared to other common overvoltage protection components (such as varistor or gas discharge tube), TVS diode 506 reacts more quickly to overvoltage, making TVS diode 506 useful for protecting very fast and frequent harmful voltages. State, such as electrostatic discharge (ESD). The second conductive material 411 in FIG. 4 can form the TVS diode 506 in FIG. When the induced voltage exceeds the Zener breakdown voltage, the second conductive material 411 can shunt excess current in either direction.
第6圖係表示本發明另一個具有第二電流路徑402的例示性LED元件的實施例之示意圖。如圖所示,具有第二電流路徑402的LED元件係亦包括由各別的高/低接觸電阻區211/213所組成之電流引導結構。例如,如同前文中有關第2圖的描述,藉由在反射層202中插設阻隔金屬層208,可形成這些不同的接觸區。 Figure 6 is a schematic illustration of another embodiment of an exemplary LED component having a second current path 402 of the present invention. As shown, the LED component having the second current path 402 also includes a current directing structure comprised of respective high/low contact resistance regions 211/213. For example, as described above with respect to FIG. 2, these different contact regions can be formed by interposing a barrier metal layer 208 in the reflective layer 202.
第7圖係表示第6圖中LED元件的等效電路700的一示意圖。如圖所示,第5圖的單一等效電阻器RL 502被RH 304和RL 302的串聯組合所取代,RH 304和RL 302代表第6圖中鄰接的高/低接觸電阻區211/213。電路700的其餘部份和第5圖的電路500相同。也就是說,第6圖的LED元件係可具有電流引導和暫態抑制的優點。 Fig. 7 is a view showing an equivalent circuit 700 of the LED element in Fig. 6. As shown, FIG. 5, a single equivalent resistor R L 502 are replaced by a series combination of R H and R L 302 to 304, 304 adjacent R H and R L 302 represented in Figure 6 of the high / low contact resistance District 211/213. The remainder of circuit 700 is identical to circuit 500 of Figure 5. That is to say, the LED element of Fig. 6 can have the advantages of current steering and transient suppression.
第8圖係表示本發明另一個具有第二電流路徑402的例示性LED元件的實施例的示意圖。在此實施例中,在第二電流路徑402中形成保護元件810。如圖所示,保護元件810係可形成於n型半導體層106之上,並可用來增加暫態電壓保護或電流能力,藉此,以增加LED元件的可靠度及/或壽命。保護元件810係可包括任何合適的材料,例如ZnO、ZnS、TiO2、NiO、SrTiO3、SiO2、Cr2O3、以及聚甲基丙烯酸甲脂(PMMA)。保護元件810 的厚度範圍係可從大約1 nm到10μm。 Figure 8 is a schematic diagram showing another embodiment of an exemplary LED element having a second current path 402 of the present invention. In this embodiment, a protection element 810 is formed in the second current path 402. As shown, a protection element 810 can be formed over the n-type semiconductor layer 106 and can be used to increase transient voltage protection or current capability, thereby increasing the reliability and/or lifetime of the LED component. The protective element 810 can comprise any suitable material such as ZnO, ZnS, TiO 2 , NiO, SrTiO 3 , SiO 2 , Cr 2 O 3 , and polymethyl methacrylate (PMMA). The thickness of the protective element 810 can range from about 1 nm to 10 [mu]m.
如第9圖所示,具有一第二電流路徑402和一保護元件810的LED元件(如第8圖所示),係亦可包括由各別的高/低接觸電阻區211/213所組成之電流引導結構。例如,如同前文中有關第2圖的描述,藉由在反射層202中插設阻隔金屬層208,可形成這些不同的接觸區。 As shown in FIG. 9, an LED element having a second current path 402 and a protection element 810 (as shown in FIG. 8) may also include a plurality of high/low contact resistance regions 211/213. Current guiding structure. For example, as described above with respect to FIG. 2, these different contact regions can be formed by interposing a barrier metal layer 208 in the reflective layer 202.
第10圖係表示本發明具有第二電流路徑、且為晶片型式的例示性LED元件的實施例之示意圖。如圖所示,一貼合金屬層1002係可沉積在第二電流路徑中的保護元件810之上。貼合層1002係可包括任何適合用做電性連接的材料,例如Al、Au、Ti/Au、Ti/Al、Ti/Pt/Au、Cr/Au、Cr/Al、Ni/Au、Ni/Al、或Cr/Ni/Au。貼合層1002的厚度範圍係可從0.5到10μm。對於某些實施例而言,n電極117係可延伸到允許貼合(bonding)成至一封裝,如同下文中關於第11圖的說明。 Figure 10 is a schematic illustration of an embodiment of an exemplary LED element of the present invention having a second current path and being of the wafer type. As shown, a conforming metal layer 1002 can be deposited over the protective element 810 in the second current path. The bonding layer 1002 may comprise any material suitable for electrical connection, such as Al, Au, Ti/Au, Ti/Al, Ti/Pt/Au, Cr/Au, Cr/Al, Ni/Au, Ni/. Al, or Cr/Ni/Au. The thickness of the conforming layer 1002 can range from 0.5 to 10 μm. For certain embodiments, the n-electrode 117 can be extended to allow bonding to a package, as explained below with respect to FIG.
第11圖係表示本發明第10圖的LED元件之封裝型式實施例之示意圖。如圖所示,基板201係接合於一共用封裝陽極導線1102。藉由連接到貼合層1002的焊接線1104,貼合層1002係可連接到陽極導線1102,因此形成第二電流路徑。藉由另一條焊接線1108,n電極117係可連接到一陰極封裝導線1106。 Fig. 11 is a view showing a package type embodiment of the LED element of Fig. 10 of the present invention. As shown, the substrate 201 is bonded to a common package anode lead 1102. The bonding layer 1002 can be connected to the anode lead 1102 by a bonding wire 1104 that is connected to the bonding layer 1002, thus forming a second current path. The n-electrode 117 can be connected to a cathode package lead 1106 by another bond line 1108.
第12圖係表示分別描繪具有/不具有第二電流路徑的LED元件之例示性電流對電壓曲線1204、1202之一曲線圖1200。如電流對電壓曲線1204所示,在沒有過量電流的情況下,第二電流路徑係可允許一LED元件承受較高的電壓,因而可以防止損壞及/或延長元件壽命。 Figure 12 shows a graph 1200 of an exemplary current versus voltage curve 1204, 1202 depicting LED elements with/without a second current path, respectively. As shown by the current versus voltage curve 1204, the second current path can allow an LED component to withstand higher voltages without excessive current, thereby preventing damage and/or extending component life.
第13圖係表示具有/不具有第二電流路徑的LED元件之存活率與ESD電壓間的對應關係之一例示性圖表1300。不具有第二電流路徑的LED元件1304、1306、1308、1310、1312在不同的ESD電壓、以不同的存活率(survival rates)通過測試。反之,具有第二電流路徑的LED元件1302在具有甚至在大於2000伏特的較大ESD電壓下,以等於或接近於100%的比例通過測試。 Figure 13 is an exemplary graph 1300 showing the correspondence between the survival rate of the LED elements with/without the second current path and the ESD voltage. LED elements 1304, 1306, 1308, 1310, 1312 that do not have a second current path pass the test at different ESD voltages with different rates of survival. Conversely, LED element 1302 having a second current path passes the test at a ratio equal to or close to 100% at a relatively large ESD voltage of greater than 2000 volts.
雖然本文中所述的電流引導結構在應用於立式發光二極體(VLED)元件時具有優點,熟悉此項技術領域者應當了解,通常,這樣的優點適用於大部份的半導體元件。因此,對於具有PN接面的任何類型之半導 體元件,使用本文中所述的結構將有助於形成低電阻接觸及/或暫態抑制物。 While the current directing structures described herein have advantages in application to vertical light emitting diode (VLED) components, those skilled in the art will appreciate that such advantages are generally applicable to most semiconductor components. Therefore, for any type of semiconducting with a PN junction Body elements, using the structures described herein, will aid in the formation of low resistance contacts and/or transient inhibitors.
雖然前文係針對本發明的實施例,但在不偏離本發明的基本範圍下可設計出其它及另外的實施例,本發明的範圍由下列的申請專利範圍所界定。 While the foregoing is directed to embodiments of the present invention, the invention may
106‧‧‧n摻雜層 106‧‧‧n doped layer
110‧‧‧p摻雜層 110‧‧‧p-doped layer
117‧‧‧n電極 117‧‧‧n electrode
119‧‧‧頂面 119‧‧‧ top surface
201‧‧‧基板 201‧‧‧Substrate
202‧‧‧反射層 202‧‧‧reflective layer
208‧‧‧阻隔金屬層 208‧‧‧Barrier metal layer
211‧‧‧高階觸電阻區 211‧‧‧High-order contact resistance zone
213‧‧‧低階觸電阻區 213‧‧‧low-order contact resistance area
220‧‧‧保護層 220‧‧‧Protective layer
402‧‧‧第二電流路徑 402‧‧‧Second current path
404‧‧‧電性絕緣層 404‧‧‧Electrical insulation
411‧‧‧第二導電材料 411‧‧‧Second conductive material
412‧‧‧非歐姆接觸 412‧‧‧Non-ohmic contact
Claims (37)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/401,446 US8546818B2 (en) | 2007-06-12 | 2012-02-21 | Vertical LED with current-guiding structure |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201336105A true TW201336105A (en) | 2013-09-01 |
Family
ID=49627493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102105714A TW201336105A (en) | 2012-02-21 | 2013-02-19 | Vertical LED with current-guiding structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201336105A (en) |
-
2013
- 2013-02-19 TW TW102105714A patent/TW201336105A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8003994B2 (en) | Vertical LED with current guiding structure | |
TWI790984B (en) | Light-emitting device | |
US6255129B1 (en) | Light-emitting diode device and method of manufacturing the same | |
KR101552366B1 (en) | Improved LED structure | |
KR101039896B1 (en) | Light emitting device and manufacturing method | |
KR102075655B1 (en) | Light emitting device and light emitting device package | |
US9577172B2 (en) | Light emitting die component formed by multilayer structures | |
US8450765B2 (en) | Light emitting diode chip and method for manufacturing the same | |
US7411221B2 (en) | Light emitting device having protection element and method of manufacturing the light emitting device | |
US8703515B2 (en) | Method for guiding current in a light emitting diode (LED) device | |
US10505092B2 (en) | Light-emitting diode device | |
KR100999692B1 (en) | Light emitting device, light emitting device manufacturing method and light emitting device package | |
US8148733B2 (en) | Vertical LED with current guiding structure | |
US20230096346A1 (en) | Light-Emitting Diode and Light-Emitting Device Including the Same | |
KR100905884B1 (en) | Light emitting device having protection element | |
EP2814061B1 (en) | Light emitting diode device | |
US20240145632A1 (en) | Micro light emitting device and micro light emitting apparatus using the same | |
KR101646261B1 (en) | Light emitting device and method for fabricating the same | |
CN103996774A (en) | Vertical light-emitting diodes with current-guiding structure | |
TW201336105A (en) | Vertical LED with current-guiding structure | |
JP6003246B2 (en) | Light emitting device | |
KR20170096489A (en) | Light emitting diode |