TW201301357A - Manufacturing method for metal gate - Google Patents
Manufacturing method for metal gate Download PDFInfo
- Publication number
- TW201301357A TW201301357A TW100121257A TW100121257A TW201301357A TW 201301357 A TW201301357 A TW 201301357A TW 100121257 A TW100121257 A TW 100121257A TW 100121257 A TW100121257 A TW 100121257A TW 201301357 A TW201301357 A TW 201301357A
- Authority
- TW
- Taiwan
- Prior art keywords
- work function
- manufacturing
- metal layer
- function metal
- ion implantation
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
本發明係有關於一種金屬閘極及其製作方法,尤指一種採用後閘極(gate last)製程之金屬閘極及其製作方法。The invention relates to a metal gate and a manufacturing method thereof, in particular to a metal gate using a gate last process and a manufacturing method thereof.
隨著半導體元件尺寸持續微縮,傳統方法中利用降低閘極介電層,例如降低二氧化矽層厚度,以達到最佳化目的之方法,係面臨到因電子的穿燧效應(tunneling effect)而導致漏電流過大的物理限制。為了有效延展邏輯元件的世代演進,高介電常數(high dielectric constant,以下簡稱為high-k)材料因具有可有效降低物理極限厚度,並且在相同的等效氧化厚度(equivalent oxide thickness,EOT)下,有效降低漏電流並達成等效電容以控制通道開關等優點,而被用以取代傳統二氧化矽層或氮氧化矽層作為閘極介電層。As the size of semiconductor components continues to shrink, the conventional method of reducing the thickness of the gate dielectric layer, such as reducing the thickness of the yttria layer, for optimization purposes, is due to the tunneling effect of electrons. A physical limitation that causes excessive leakage current. In order to effectively extend the evolution of logic components, high dielectric constant (hereinafter referred to as high-k) materials have an effective reduction in physical limit thickness and the same equivalent oxide thickness (EOT). In order to effectively reduce the leakage current and achieve the equivalent capacitance to control the channel switch, it is used to replace the conventional ruthenium dioxide layer or the ruthenium oxynitride layer as the gate dielectric layer.
而傳統的閘極材料多晶矽則面臨硼穿透(boron penetration)效應,導致元件效能降低等問題;且多晶矽閘極更遭遇難以避免的空乏效應(depletion effect),使得等效的閘極介電層厚度增加、閘極電容值下降,進而導致元件驅動能力的衰退等困境。針對此問題,半導體業界更提出以新的閘極材料,例如利用具有功函數(work function)金屬層的金屬閘極來取代傳統的多晶矽閘極,用以作為匹配high-k閘極介電層的控制電極。However, the conventional gate material polysilicon is faced with boron penetration effect, which leads to problems such as lower component efficiency; and the polysilicon gate encounters an inevitable depletion effect, making the equivalent gate dielectric layer The increase in thickness and the decrease in the gate capacitance value lead to difficulties such as the deterioration of the component driving capability. In response to this problem, the semiconductor industry has proposed to replace the traditional polysilicon gate with a new gate material, such as a metal gate with a work function metal layer, as a matching high-k gate dielectric layer. Control electrode.
然而,即使利用high-k閘極介電層取代傳統二氧化矽或氮氧化矽介電層,並以具有匹配功函數之金屬閘極取代傳統多晶矽閘極,如何持續地增加半導體元件效能,例如能確保N型金氧半導體(n-type metal-oxide-semiconductor,nMOS)電晶體的金屬閘極具有4.1電子伏特(eV)左右的功函數,以及確保p型金氧半導體(p-type metal-oxide-semiconductor,pMOS)電晶體的金屬閘極具有5.1 eV左右的功函數,一直為半導體業者所欲解決的問題。However, even if a high-k gate dielectric layer is used in place of a conventional germanium dioxide or tantalum oxynitride dielectric layer, and a metal gate with a matching work function is substituted for a conventional polysilicon gate, how to continuously increase the performance of the semiconductor device, for example, It can ensure that the metal gate of an n-type metal-oxide-semiconductor (nMOS) transistor has a work function of about 4.1 electron volts (eV) and a p-type metal-oxide (p-type metal- Oxide-semiconductor, pMOS) The metal gate of the transistor has a work function of around 5.1 eV, which has been a problem for semiconductor manufacturers.
因此,本發明之一目的係在於提供一種金屬閘極之製作方法,可確保nMOS電晶體或pMOS電晶體之金屬閘極具有所需的功函數。Accordingly, it is an object of the present invention to provide a method of fabricating a metal gate that ensures that the metal gate of an nMOS transistor or pMOS transistor has a desired work function.
根據本發明所提供之申請專利範圍,係提供一種金屬閘極之製作方法,該製作方法首先提供一基底,該基底上形成有至少一半導體元件,且該半導體元件具有一導電型式。接下來於該半導體元件內形成一閘極溝渠,在形成閘極溝渠後,係於該閘極溝渠內形成一功函數金屬層,該功函數金屬層具有該導電型式以及一對應該導電型式之預設功函數。最後進行一離子佈植製程,調整該預設功函數至一目標功函數,且該目標功函數係對應該導電型式。According to the scope of the invention provided by the present invention, a method for fabricating a metal gate is provided. The fabrication method first provides a substrate on which at least one semiconductor component is formed, and the semiconductor component has a conductive pattern. Forming a gate trench in the semiconductor device, and forming a work function metal layer in the gate trench after forming the gate trench, the work function metal layer having the conductive pattern and a pair of conductive patterns Preset work function. Finally, an ion implantation process is performed to adjust the preset work function to a target work function, and the target work function corresponds to the conductive type.
根據本發明所提中申請專利範圍,另提供一種金屬閘極之製作方法,該製作方法首先提供一基底,該基底上形成有至少一第一半導體元件與一第二半導體元件,該第一半導體元件具有一第一導電型式,該第二半導體元件具有第二導電型式,且該第一導電型式與該第二導電型式互補。接下來於該第一半導體元件與該第二半導體元件內分別形成一第一閘極溝渠與一第二閘極溝渠,隨後於該第一閘極溝渠內形成一第一功函數金屬層,該第一功函數金屬層具有該第一導電型式以及一對應該第一導電型式之第一預設功函數。在形成該第一功函數金屬層之後,係進行一第一離子佈植製程,調整該第一預設功函數至一第一目標功函數。之後,移除部分該第一功函數金屬層,以暴露出該第二閘極溝渠之底部。接下來於該第二閘極溝渠內形成一第二功函數金屬層,該第二功函數金屬層具有該第二導電型式以及一對應該第二導電型式之第二預設功函數。最後進行一第二離子佈植製程,調整該第二預設功函數至一第二目標功函數。According to the scope of the patent application of the present invention, a method for fabricating a metal gate is provided. The fabrication method first provides a substrate on which at least a first semiconductor component and a second semiconductor component are formed. The first semiconductor The component has a first conductivity pattern, the second semiconductor component has a second conductivity pattern, and the first conductivity pattern is complementary to the second conductivity pattern. Forming a first gate trench and a second gate trench respectively in the first semiconductor component and the second semiconductor component, and then forming a first work function metal layer in the first gate trench. The first work function metal layer has the first conductivity pattern and a first predetermined work function that should be the first conductivity pattern. After forming the first work function metal layer, performing a first ion implantation process to adjust the first predetermined work function to a first target work function. Thereafter, a portion of the first work function metal layer is removed to expose the bottom of the second gate trench. Next, a second work function metal layer is formed in the second gate trench, and the second work function metal layer has the second conductivity type and a second predetermined work function of the second conductivity type. Finally, a second ion implantation process is performed to adjust the second predetermined work function to a second target work function.
根據本發明所提供之金屬閘極之製作方法,係於p型半導體元件或n型半導體元件之閘極溝渠內形成一功函數金屬層,且此功函數金屬層本身係具有對應該導電型式的預設功函數。隨後藉由離子佈植製程將特定的離子佈植進入該功函數金屬層,以調整該功函數金屬層之預設功函數至一目標功函數。離子佈植製程後的該功函數金屬層係具有對應該導電型式,且符合該導電型式要求的目標功函數。換句話說,本發明所提供之金屬閘極之製作方法係可確保p型半導體元件或n型半導體元件之金屬閘極皆具有符合要求之功函數,更進一步確保具有金屬閘極之p型半導體元件或n型半導體元件之電性表現。According to the method for fabricating a metal gate provided by the present invention, a work function metal layer is formed in a gate trench of a p-type semiconductor element or an n-type semiconductor element, and the work function metal layer itself has a corresponding conductive pattern. Preset work function. A specific ion is then implanted into the work function metal layer by an ion implantation process to adjust a predetermined work function of the work function metal layer to a target work function. The work function metal layer after the ion implantation process has a target work function corresponding to the conductivity type and conforming to the conductivity type requirement. In other words, the metal gate provided by the present invention can ensure that the metal gates of the p-type semiconductor element or the n-type semiconductor element have the required work function, and further ensure the p-type semiconductor having the metal gate. Electrical representation of an element or n-type semiconductor element.
請參閱第1圖至第10圖,第1圖至第10圖係為本發明所提供之具有金屬閘極之半導體元件之製作方法之一較佳實施例之示意圖。如第1圖所示,本較佳實施例首先提供一基底100,例如一矽基底、含矽基底、或矽覆絕緣(silicon-on-insulator,SOI)基底。基底100上形成有一第一半導體元件110與一第二半導體元件112,而第一半導體元件110與第二半導體元件112之間的基底100內係形成有提供電性隔離的淺溝隔離(shallow trench isolation,STI) 102。第一半導體元件110具有一第一導電型式,而第二半導體元件112具有一第二導電型式,且第一導電型式與第二導電型式互補(complementary)。在本較佳實施例中,第一導電型式係為P型;而第二導電型式係為N型,但熟習該項技藝之人士應知反之亦可。Please refer to FIG. 1 to FIG. 10 . FIG. 1 to FIG. 10 are schematic diagrams showing a preferred embodiment of a method for fabricating a semiconductor device having a metal gate according to the present invention. As shown in FIG. 1, the preferred embodiment first provides a substrate 100, such as a germanium substrate, a germanium-containing substrate, or a silicon-on-insulator (SOI) substrate. A first semiconductor component 110 and a second semiconductor component 112 are formed on the substrate 100, and a shallow trench isolation (shallow trench) for providing electrical isolation is formed in the substrate 100 between the first semiconductor component 110 and the second semiconductor component 112. Isolation, STI) 102. The first semiconductor component 110 has a first conductivity type, and the second semiconductor component 112 has a second conductivity pattern, and the first conductivity pattern is complementary to the second conductivity pattern. In the preferred embodiment, the first conductivity type is a P type; and the second conductivity type is an N type, but those skilled in the art should know the reverse.
請參閱第1圖。第一半導體元件110與第二半導體元件112各包含一閘極介電層104、一底部阻障層(bottom barrier layer)106與一虛置閘極(圖未示)如一多晶矽層。閘極介電層104可為一傳統二氧化矽層或一高介電常數閘極介電層或其組合;而底部阻障層106則包含氮化鈦(titanium nitride,TiN),但不限於此。此外第一半導體元件110與第二半導體元件112分別包含一第一輕摻雜汲極(light doped drain,LDD)120與一第二LDD 122、一側壁子124、與一第一源極/汲極130與一第二源極/汲極132。另外,第一源極/汲極130與第二源極/汲極132之表面係分別包含有一金屬矽化物134。而在第一半導體元件110與第二半導體元件112上,係依序形成一接觸洞蝕刻停止層(contact etch stop layer,CESL)140與一內層介電(inter-layer dielectric,ILD)層142。上述元件之製作步驟以及材料選擇,甚至是半導體業界中為提供應力作用更改善電性表現而實施選擇性磊晶成長(selective epitaxial growth,SEG)方法形成源極/汲極130/132等皆為該領域之人士所熟知,故於此皆不再贅述。Please refer to Figure 1. The first semiconductor device 110 and the second semiconductor device 112 each include a gate dielectric layer 104, a bottom barrier layer 106 and a dummy gate (not shown) such as a polysilicon layer. The gate dielectric layer 104 can be a conventional germanium dioxide layer or a high dielectric constant gate dielectric layer or a combination thereof; and the bottom barrier layer 106 comprises titanium nitride (TiN), but is not limited thereto. this. In addition, the first semiconductor component 110 and the second semiconductor component 112 respectively include a first light doped drain (LDD) 120 and a second LDD 122, a sidewall 124, and a first source/汲The pole 130 and a second source/drain 132. In addition, the surface of the first source/drain 130 and the second source/drain 132 respectively comprise a metal halide 134. On the first semiconductor device 110 and the second semiconductor device 112, a contact etch stop layer (CESL) 140 and an inter-layer dielectric (ILD) layer 142 are sequentially formed. . The fabrication steps and material selection of the above components, and even the selective epitaxial growth (SEG) method for forming the source/drain electrodes 130/132 in the semiconductor industry to provide stress and improve electrical performance are Those skilled in the art are well known and will not be described here.
請繼續參閱第1圖。在形成CESL 140與ILD層142後,係藉由一平坦化製程移除部分的CESL 140與ILD層142,直至暴露出第一半導體元件110與第二半導體元件112之虛置閘極,隨後利用一適合之蝕刻製程移除第一半導體元件110與第二半導體元件112之虛置閘極,而於第一半導體元件110與第二半導體元件112內分別形成一第一閘極溝渠150與一第二閘極溝渠152。值得注意的是,本較佳實施例係可與先閘極介電層(high-k first)製程整合,此時閘極介電層104包含一高介電常數(high dielectric constant,high-k)閘極介電層,其可以是一金屬氧化物層,例如一稀土金屬氧化物層。High-k閘極介電層104係可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。另外,在high-k閘極介電層104與基底100之間,係可設置於一介面層(interfacial layer)(圖未示)。而在形成第一閘極溝渠150與第二閘極溝渠152後,係可於第一閘極溝渠150與第二閘極溝渠152內的底部阻障層106上形成一蝕刻停止層(etch stop layer) 108,故蝕刻停止層108係暴露於第一閘極溝渠150與第二閘極溝渠152之底部。蝕刻停止層108可包含氮化鉭(tantalum nitride,TaN),但不限於此。Please continue to see Figure 1. After forming the CESL 140 and the ILD layer 142, a portion of the CESL 140 and the ILD layer 142 are removed by a planarization process until the dummy gates of the first semiconductor component 110 and the second semiconductor component 112 are exposed, and then utilized. A suitable etching process removes the dummy gates of the first semiconductor component 110 and the second semiconductor component 112, and a first gate trench 150 and a first gate are formed in the first semiconductor component 110 and the second semiconductor component 112, respectively. Two gate ditches 152. It should be noted that the preferred embodiment can be integrated with a high-k first process, in which case the gate dielectric layer 104 contains a high dielectric constant (high-k constant). A gate dielectric layer, which may be a metal oxide layer, such as a rare earth metal oxide layer. The high-k gate dielectric layer 104 can be selected from the group consisting of hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), and hafnium silicon oxynitride (HfSiON). , aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), oxidation Zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), yttrium Oxide (strontium bismuth tantalate, SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (Ba x Sr) a group consisting of 1-x TiO 3 , BST). In addition, between the high-k gate dielectric layer 104 and the substrate 100, an interfacial layer (not shown) may be disposed. After forming the first gate trench 150 and the second gate trench 152, an etch stop layer may be formed on the bottom barrier layer 106 in the first gate trench 150 and the second gate trench 152 (etch stop) The etch stop layer 108 is exposed to the bottom of the first gate trench 150 and the second gate trench 152. The etch stop layer 108 may include tantalum nitride (TaN), but is not limited thereto.
另外請參閱第2圖,第2圖係為本較佳實施例之一變化型之示意圖。如第2圖所示,本變化型係採用後閘極介電層(high-k last)製程整合,因此閘極介電層104可先為一傳統的二氧化矽層。而在移除多晶矽層形成第一閘極溝渠150與第二閘極溝渠152之後,暴露於第一閘極溝渠150與第二閘極溝渠152底部的閘極介電層140可作為一介面層。隨後於基底100上形成一high-k閘極介電層104a,其可包含上述材料。且如第2圖所示,在第一閘極溝渠150與第二閘極溝渠152內的high-k閘極介電層104a係具有一U型形狀,覆蓋第一閘極溝渠150與第二閘極溝渠152之側壁與底部。在形成high-k閘極介電層104a後,亦可再於其上形成前述之蝕刻停止層108。In addition, please refer to FIG. 2, which is a schematic diagram of a variation of the preferred embodiment. As shown in FIG. 2, the variation uses a high-k last process integration, so the gate dielectric layer 104 can be a conventional ruthenium dioxide layer. After the first gate trench 150 and the second gate trench 152 are formed by removing the polysilicon layer, the gate dielectric layer 140 exposed to the bottom of the first gate trench 150 and the second gate trench 152 can serve as an interface layer. . A high-k gate dielectric layer 104a is then formed over the substrate 100, which may comprise the materials described above. As shown in FIG. 2, the high-k gate dielectric layer 104a in the first gate trench 150 and the second gate trench 152 has a U-shape, covering the first gate trench 150 and the second The sidewall and bottom of the gate trench 152. After the high-k gate dielectric layer 104a is formed, the aforementioned etch stop layer 108 may be formed thereon.
請參閱第3圖。在形成完第1圖或第2圖之實施例的蝕刻停止層108後,進行一化學氣相沈積(chemical vapor deposition,CVD)製程或一物理氣相沈積(physical vapor deposition,PVD)製程,於第一閘極溝渠150與第二閘極溝渠152內形成一第一功函數金屬層160。第一功函數金屬層160具有一預設功函數,且預設功函數係對應於第一半導體元件110的導電型式,即第一功函數金屬層160可為一具有p型導電型式的p型功函數金屬層,例如包含氮化鈦(titanium nitride,TiN)、碳化鈦(titanium carbide,TiC)、氮化鉭(tantalum nitride,TaN)、碳化鉭(tantalum carbide,TaC)、碳化鎢(tungsten carbide,WC)、或氮化鋁鈦(aluminum titanium nitride,TiAlN),但不限於此。此外,第一功函數金屬層160可為一單層結構或一複合層結構。Please refer to Figure 3. After the etch stop layer 108 of the embodiment of FIG. 1 or FIG. 2 is formed, a chemical vapor deposition (CVD) process or a physical vapor deposition (PVD) process is performed. A first work function metal layer 160 is formed in the first gate trench 150 and the second gate trench 152. The first work function metal layer 160 has a predetermined work function, and the predetermined work function corresponds to the conductive pattern of the first semiconductor device 110, that is, the first work function metal layer 160 may be a p-type having a p-type conductivity type. The work function metal layer includes, for example, titanium nitride (TiN), titanium carbide (TiC), tantalum nitride (TaN), tantalum carbide (TaC), tungsten carbide (tungsten carbide). , WC), or aluminum titanium nitride (TiAlN), but is not limited thereto. In addition, the first work function metal layer 160 may be a single layer structure or a composite layer structure.
請繼續參閱第3圖。在形成第一功函數金屬層160之後,係進行一離子佈植製程162,用以植入鋁(aluminum,Al)、氮(nitrogen,N)、氯(chlorine,Cl)、氧(oxygen,O)、氟(fluorine,F)、或溴(bromine,Br)至第一功函數金屬層160,用以調整第一功函數金屬層160之預設功函數至一目標功函數。該目標功函數係介於4.9電子伏特(eV)與5.2 eV之間,且較佳為5.1 eV。Please continue to see Figure 3. After forming the first work function metal layer 160, an ion implantation process 162 is performed for implanting aluminum (aluminum), nitrogen (nitrogen, N), chlorine (chlorine, Cl), oxygen (oxygen, O). , fluorine (F), or bromine (Br) to the first work function metal layer 160 for adjusting the predetermined work function of the first work function metal layer 160 to a target work function. The target work function is between 4.9 electron volts (eV) and 5.2 eV, and preferably 5.1 eV.
另外,離子佈植製程162亦可實施於形成第一功函數金屬層160之前。請參閱第4圖。第4圖係為本較佳實施例之另一變化型之示意圖。如第4圖所示,本變化型係於形成蝕刻停止層108之後與形成第一功函數金屬層160之前,先進行離子佈植製程162,用以將Al、N、Cl、O、F或Br植入蝕刻停止層108。而在離子佈植製程162之後,方於第一閘極溝渠150與第二閘極溝渠152內形成第一功函數金屬層160。Additionally, the ion implantation process 162 can also be performed prior to forming the first work function metal layer 160. Please refer to Figure 4. Figure 4 is a schematic view of another variation of the preferred embodiment. As shown in FIG. 4, the present variation is performed prior to forming the etch stop layer 108 and before forming the first work function metal layer 160, and then performing an ion implantation process 162 for Al, N, Cl, O, F or Br implants an etch stop layer 108. After the ion implantation process 162, a first work function metal layer 160 is formed in the first gate trench 150 and the second gate trench 152.
在進行離子佈植製程162以及形成第一功函數金屬層160等步驟之後,係進行一熱處理164,使蝕刻停止層108內的摻雜質進入第一功函數金屬層160,以調整第一功函數金屬層160之預設功函數調整至目標功函數。另外,熱處理164亦可包含氧氣的通入,用以參與第一功函數金屬層160之功函數調整。值得注意的是,熱處理164更可如第5圖所示,係於對第一功函數金屬層160進行離子佈植製程162後進行,更確保第一功函數160的功函數調整結果。然而,當離子佈植製程162已可調整第一功函數金屬層160的預設功函數至目標功函數時,亦可省略熱處理164。換句話說,當本較佳實施例所提供之離子佈植製程162已將第一功函數金屬層160之預設功函數調整至目標功函數時,本較佳實施例所提供之離子佈植製程162係可取代包含氧氣的熱處理164。After performing the ion implantation process 162 and forming the first work function metal layer 160, a heat treatment 164 is performed to cause the dopant in the etch stop layer 108 to enter the first work function metal layer 160 to adjust the first work. The predetermined work function of the function metal layer 160 is adjusted to the target work function. In addition, the heat treatment 164 may also include the passage of oxygen to participate in the work function adjustment of the first work function metal layer 160. It should be noted that the heat treatment 164 can be performed as shown in FIG. 5 after performing the ion implantation process 162 on the first work function metal layer 160 to ensure the work function adjustment result of the first work function 160. However, when the ion implantation process 162 has adjusted the preset work function of the first work function metal layer 160 to the target work function, the heat treatment 164 may also be omitted. In other words, when the ion implantation process 162 provided in the preferred embodiment has adjusted the preset work function of the first work function metal layer 160 to the target work function, the ion implantation provided by the preferred embodiment Process 162 can replace heat treatment 164 containing oxygen.
請參閱第6圖。接下來於基底100上形成一圖案化遮罩,例如一圖案化光阻層(圖未示),但不限於此。圖案化遮罩係用以遮蓋第一半導體元件110,並暴露出第二半導體元件112處之第一功函數金屬層160。隨後利用一合適之蝕刻劑移除未被圖案化遮罩保護的第一功函數金屬層160,使得蝕刻停止層108重新暴露於第二閘極溝渠152之內。在移除第一功函數金屬層160時,蝕刻停止層108係可保護其下方的底部阻障層106與high-k閘極介電層104。另外值得注意的是,為了改善後續金屬膜層的填入結果,在完全去除第二閘極溝渠152內之第一功函數金屬層160時,圖案化遮罩係可為一形成在第一閘極溝渠150內,且表面低於第一閘極溝渠150開口之膜層,因此後續進行移除第一功函數金屬層160時,第一功函數金屬層160僅存留於第一閘極溝渠160內,尤其是第一閘極溝渠160之底部與側壁,使得第一閘極溝渠160側壁之第一功函數金屬層160的高度小於第一閘極溝渠150的深度,進而增加後續金屬膜層的填入能力。Please refer to Figure 6. Next, a patterned mask, such as a patterned photoresist layer (not shown), is formed on the substrate 100, but is not limited thereto. The patterned mask is used to cover the first semiconductor component 110 and expose the first work function metal layer 160 at the second semiconductor component 112. The first work function metal layer 160, which is not protected by the patterned mask, is then removed using a suitable etchant such that the etch stop layer 108 is re-exposed within the second gate trench 152. Upon removal of the first work function metal layer 160, the etch stop layer 108 protects the underlying barrier layer 106 and the high-k gate dielectric layer 104. It is also worth noting that, in order to improve the filling result of the subsequent metal film layer, when the first work function metal layer 160 in the second gate trench 152 is completely removed, the patterned mask can be formed in the first gate. The surface of the pole trench 150 is lower than the opening of the first gate trench 150. Therefore, when the first work function metal layer 160 is subsequently removed, the first work function metal layer 160 remains only in the first gate trench 160. The bottom of the first gate trench 160 and the sidewall of the first gate trench 160 are such that the height of the first work function metal layer 160 on the sidewall of the first gate trench 160 is smaller than the depth of the first gate trench 150, thereby increasing the thickness of the subsequent metal film layer. Fill in the ability.
請繼續參閱第6圖。在移除第二閘極溝渠152內的第一功函數金屬層160後,係進行一CVD製程或PVD製程,於基底100上形成一第二功函數金屬層170。第二功函數金屬層170亦具有一預設功函數,且預設功函數係對應於第二半導體元件120的導電型式,即第二功函數金屬層170可為一具有n型導電型式之n型功函數金屬層。此外,第二功函數金屬層170可為一單層結構或一複合層結構。在本較佳實施例中,當第二功函數金屬層170可為一金屬層,較佳為一由CVD製程或PVD製程形成的鈦層,並且在形成鈦層之後隨即進行一鋁離子佈植製程172,以將鋁離子佈植進入該金屬層,而形成第二功函數金屬層170,例如一鋁化鈦層,同時可預調整第二功函數金屬層170的預設功函數。Please continue to see Figure 6. After the first work function metal layer 160 in the second gate trench 152 is removed, a CVD process or a PVD process is performed to form a second work function metal layer 170 on the substrate 100. The second work function metal layer 170 also has a predetermined work function, and the predetermined work function corresponds to the conductive pattern of the second semiconductor device 120, that is, the second work function metal layer 170 can be an n-type conductive type. Type work function metal layer. In addition, the second work function metal layer 170 may be a single layer structure or a composite layer structure. In the preferred embodiment, when the second work function metal layer 170 can be a metal layer, preferably a titanium layer formed by a CVD process or a PVD process, and then an aluminum ion implant is performed immediately after the titanium layer is formed. Process 172 is used to implant aluminum ions into the metal layer to form a second work function metal layer 170, such as a titanium aluminide layer, while presetting the predetermined work function of the second work function metal layer 170.
另外,在本較佳實施例中,第二功函數金屬層170亦為一由CVD製程或PVD製程形成的鋁化鈦(titanium aluminide,TiAl)層、鋁化鋯(zirconium aluminide,ZrAl)層、鋁化鎢(tungsten aluminide,WAl)層、鋁化鉭(tantalum aluminide,TaAl)層或鋁化鉿(hafnium aluminide,HfAl)層,但不限於此。並且,在形成TiAl層、ZrAl層、WAl層或HfAl層之後,隨即進行鋁離子佈植製程172,以將鋁離子佈植進入第二功函數金屬層170,用以調整第二功函數金屬層170的鋁含量,並預調整第二功函數金屬層170的預設功函數。In addition, in the preferred embodiment, the second work function metal layer 170 is also a titanium aluminide (TiAl) layer formed by a CVD process or a PVD process, and a zirconium aluminide (ZrAl) layer. A tungsten aluminide (WAl) layer, a tantalum aluminide (TaAl) layer or a hafnium aluminide (HfAl) layer, but is not limited thereto. And, after forming the TiAl layer, the ZrAl layer, the WAl layer or the HfAl layer, the aluminum ion implantation process 172 is performed to implant the aluminum ions into the second work function metal layer 170 for adjusting the second work function metal layer. The aluminum content of 170 is pre-adjusted to a predetermined work function of the second work function metal layer 170.
請參閱第7圖。在形成第二功函數金屬層170之後,係進行一離子佈植製程174,用以植入鑭(lanthanum,La)、鋯(zirconium,Zr)、鉿(hafnium,Hf)、鈦(titanium,Ti)、鋁(aluminum,Al)、鈮(niobium,Nb)或鎢(tungsten,W)至第二功函數金屬層170,調整第二功函數金屬層170之預設功函數至一目標功函數。該目標功函數係介於3.9 eV與4.2 eV之間,且較佳為4.1 eV。Please refer to Figure 7. After forming the second work function metal layer 170, an ion implantation process 174 is performed for implanting lanthanum (La), zirconium (Zr), hafnium (Hf), titanium (titanium, Ti). And aluminum (aluminum, Al), niobium (Nb) or tungsten (tungsten, W) to the second work function metal layer 170, adjusting the predetermined work function of the second work function metal layer 170 to a target work function. The target work function is between 3.9 eV and 4.2 eV, and preferably 4.1 eV.
另外,離子佈植製程174亦可實施於形成第二功函數金屬層170之前。請參閱第8圖。第8圖係為本較佳實施例之另一變化型之示意圖。如第8圖所示,本變化型係於移除第一功函數金屬層160、暴露出蝕刻停止層108之後、以及形成第二功函數金屬層170之前,先進行離子佈植製程174,用以將La、Zr、Hf、Ti、Al、Nb或W植入蝕刻停止層108。而在離子佈植製程174之後,方於基底100上形成第二功函數金屬層170。Additionally, the ion implantation process 174 can also be performed prior to forming the second work function metal layer 170. Please refer to Figure 8. Figure 8 is a schematic view of another variation of the preferred embodiment. As shown in FIG. 8, the present variation is performed after the first work function metal layer 160 is removed, after the etch stop layer 108 is exposed, and before the second work function metal layer 170 is formed, the ion implantation process 174 is performed. La, Zr, Hf, Ti, Al, Nb or W is implanted into the etch stop layer 108. After the ion implantation process 174, a second work function metal layer 170 is formed on the substrate 100.
在進行離子佈植製程174以及形成第二功函數金屬層170等步驟之後,係進行一熱處理176,使蝕刻停止層108內的摻雜質進入第二功函數金屬層170,以調整第二功函數金屬層170之預設功函數調整至目標功函數。另外,熱處理176較佳包含氮氣的通入,用以緻密化(densify)第二功函數金屬層170。值得注意的是,熱處理176更可如第9圖所示,係於對第二功函數金屬層170進行離子佈植製程174調整功函數之後方進行,更確保第二功函數170的功函數調整結果,同時緻密化第二功函數金屬層170的表面。After performing the ion implantation process 174 and forming the second work function metal layer 170, a heat treatment 176 is performed to cause the dopant in the etch stop layer 108 to enter the second work function metal layer 170 to adjust the second work. The predetermined work function of the function metal layer 170 is adjusted to the target work function. Additionally, heat treatment 176 preferably includes the passage of nitrogen to densify the second work function metal layer 170. It should be noted that the heat treatment 176 can be performed as shown in FIG. 9 after the second work function metal layer 170 is subjected to the ion implantation process 174 to adjust the work function, and the work function adjustment of the second work function 170 is further ensured. As a result, the surface of the second work function metal layer 170 is simultaneously densified.
請參閱第10圖。最後,係於第一閘極溝渠150與第二閘極溝渠152內的第二功函數金屬層170上形成一填充金屬層180。此外第二功函數金屬層170與填充金屬層180之間較佳可設置一頂部阻障層(圖未示),頂部阻障層可包含TiN,但不限於此。填充金屬層180係用以填滿第一閘極溝渠150與第二閘極溝渠152,並可選擇具有優良填充能力與較低阻值的金屬或金屬氧化物,例如鋁(aluminum,Al)、鋁化鈦(titanium aluminide,TiAl)或氧化鋁鈦(titanium aluminum oxide,TiAlO),但不限於此。Please refer to Figure 10. Finally, a fill metal layer 180 is formed on the second work function metal layer 170 in the first gate trench 150 and the second gate trench 152. In addition, a top barrier layer (not shown) may be disposed between the second work function metal layer 170 and the filling metal layer 180, and the top barrier layer may include TiN, but is not limited thereto. The filling metal layer 180 is used to fill the first gate trench 150 and the second gate trench 152, and may select a metal or metal oxide having excellent filling ability and a lower resistance, such as aluminum (Al). Titanium aluminide (TiAl) or titanium aluminum oxide (TiAlO), but is not limited thereto.
最後,進行一平坦化製程,例如一CMP製程,用以移除多餘的填充金屬層180、第二功函數金屬層170、第一功函數金屬層160、以及蝕刻停止層108,而完成一第一金屬閘極(圖未示)與一第二金屬閘極(圖未示)之製作。此外,本實施例亦可再選擇性去除ILD層142與CESL 140等,然後重新形成CESL與介電層,以有效提升半導體元件的電性表現。由於上述CMP製程等步驟係為該技術領域中具通常知識者所知,故於此係不再贅述。Finally, a planarization process, such as a CMP process, is performed to remove the excess fill metal layer 180, the second work function metal layer 170, the first work function metal layer 160, and the etch stop layer 108, and complete a A metal gate (not shown) and a second metal gate (not shown) are fabricated. In addition, the present embodiment can also selectively remove the ILD layer 142 and the CESL 140 and the like, and then reform the CESL and the dielectric layer to effectively improve the electrical performance of the semiconductor device. Since the above CMP process and the like are known to those of ordinary skill in the art, they are not described herein.
根據本發明所提供之金屬閘極之製作方法,係於p型半導體元件或n型半導體元件之閘極溝渠內形成一功函數金屬層,且此功函數金屬層本身係具有對應該導電型式的預設功函數。隨後藉由離子佈植製程將特定的離子佈植進入該功函數金屬層,以調整該功函數金屬層之預設功函數至一目標功函數。離子佈植製程後的該功函數金屬層係具有對應該導電型式,且符合該導電型式要求的目標功函數。換句話說,本發明所提供之金屬閘極之製作方法係可確保p型半導體元件或n型半導體元件之金屬閘極皆具有符合要求之功函數,更進一步確保具有金屬閘極之p型半導體元件或n型半導體元件之電性表現。According to the method for fabricating a metal gate provided by the present invention, a work function metal layer is formed in a gate trench of a p-type semiconductor element or an n-type semiconductor element, and the work function metal layer itself has a corresponding conductive pattern. Preset work function. A specific ion is then implanted into the work function metal layer by an ion implantation process to adjust a predetermined work function of the work function metal layer to a target work function. The work function metal layer after the ion implantation process has a target work function corresponding to the conductivity type and conforming to the conductivity type requirement. In other words, the metal gate provided by the present invention can ensure that the metal gates of the p-type semiconductor element or the n-type semiconductor element have the required work function, and further ensure the p-type semiconductor having the metal gate. Electrical representation of an element or n-type semiconductor element.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
100...基底100. . . Base
102...淺溝隔離102. . . Shallow trench isolation
104...閘極介電層104. . . Gate dielectric layer
104a...高介電常數閘極介電層104a. . . High dielectric constant gate dielectric layer
106...底部阻障層106. . . Bottom barrier layer
108...蝕刻停止層108. . . Etch stop layer
110...第一半導體元件110. . . First semiconductor component
112...第二半導體元件112. . . Second semiconductor component
120...第一輕摻雜汲極120. . . First lightly doped bungee
122...第二輕摻雜汲極122. . . Second lightly doped bungee
124...側壁子124. . . Side wall
130...第一源極/汲極130. . . First source/dip
132...第二源極/汲極132. . . Second source/dip
134...金屬矽化物134. . . Metal telluride
140...接觸洞蝕刻停止層140. . . Contact hole etch stop layer
142...內層介電層142. . . Inner dielectric layer
150...第一閘極溝渠150. . . First gate ditches
152...第二閘極溝渠152. . . Second gate ditches
160...第一功函數金屬層160. . . First work function metal layer
162...離子佈植製程162. . . Ion implantation process
164...熱處理164. . . Heat treatment
170...第二功函數金屬層170. . . Second work function metal layer
172...鋁離子佈植製程172. . . Aluminum ion implantation process
174...離子佈植製程174. . . Ion implantation process
176...熱處理176. . . Heat treatment
180...填充金屬層180. . . Filled metal layer
第1圖至第10圖係為本發明所提供之具有金屬閘極之半導體元件之製作方法之一較佳實施例之示意圖,其中第2圖係為本較佳實施例之一變化型之示意圖、第4圖係為本較佳實施例之另一變化型之示意圖、第8圖係為本較佳實施例之另一變化型之示意圖。1 to 10 are schematic views of a preferred embodiment of a method for fabricating a semiconductor device having a metal gate according to the present invention, wherein FIG. 2 is a schematic diagram of a variation of the preferred embodiment. 4 is a schematic view showing another variation of the preferred embodiment, and FIG. 8 is a schematic view showing another variation of the preferred embodiment.
100...基底100. . . Base
102...淺溝隔離102. . . Shallow trench isolation
104...閘極介電層104. . . Gate dielectric layer
106...底部阻障層106. . . Bottom barrier layer
108...蝕刻停止層108. . . Etch stop layer
110...第一半導體元件110. . . First semiconductor component
112...第二半導體元件112. . . Second semiconductor component
120...第一輕摻雜汲極120. . . First lightly doped bungee
122...第二輕摻雜汲極122. . . Second lightly doped bungee
124...側壁子124. . . Side wall
130...第一源極/汲極130. . . First source/dip
132...第二源極/汲極132. . . Second source/dip
134...金屬矽化物134. . . Metal telluride
140...接觸洞蝕刻停止層140. . . Contact hole etch stop layer
142...內層介電層142. . . Inner dielectric layer
150...第一閘極溝渠150. . . First gate ditches
152...第二閘極溝渠152. . . Second gate ditches
160...第一功函數金屬層160. . . First work function metal layer
162...離子佈植製程162. . . Ion implantation process
Claims (36)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100121257A TWI518753B (en) | 2011-06-17 | 2011-06-17 | Manufacturing method for metal gate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100121257A TWI518753B (en) | 2011-06-17 | 2011-06-17 | Manufacturing method for metal gate |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201301357A true TW201301357A (en) | 2013-01-01 |
TWI518753B TWI518753B (en) | 2016-01-21 |
Family
ID=48137587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100121257A TWI518753B (en) | 2011-06-17 | 2011-06-17 | Manufacturing method for metal gate |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI518753B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI719510B (en) * | 2018-09-03 | 2021-02-21 | 大陸商芯恩(青島)積體電路有限公司 | Semiconductor device and manufacturing method thereof |
-
2011
- 2011-06-17 TW TW100121257A patent/TWI518753B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI719510B (en) * | 2018-09-03 | 2021-02-21 | 大陸商芯恩(青島)積體電路有限公司 | Semiconductor device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI518753B (en) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8536038B2 (en) | Manufacturing method for metal gate using ion implantation | |
US9754841B2 (en) | Method of forming integrated circuit having plural transistors with work function metal gate structures | |
US8951855B2 (en) | Manufacturing method for semiconductor device having metal gate | |
US8546212B2 (en) | Semiconductor device and fabricating method thereof | |
US20140339652A1 (en) | Semiconductor device with oxygen-containing metal gates | |
CN102842491B (en) | The manufacture method of metal gates | |
US8765588B2 (en) | Semiconductor process | |
TWI653762B (en) | Semiconductor device having metal gate and method for manufacturing the same | |
TWI663656B (en) | Semiconductor device having metal gate and fabrication method thereof | |
US9105623B2 (en) | Semiconductor device having metal gate and manufacturing method thereof | |
CN106683990B (en) | Semiconductor element and manufacturing method thereof | |
TW201904063A (en) | Semiconductor device having metal gate and method for manufacturing the same | |
US9508827B2 (en) | Method for fabricating semiconductor device | |
TWI671805B (en) | Semiconductor device and method for fabricating the same | |
US12132095B2 (en) | Method of fabricating metal gate transistor | |
TWI518753B (en) | Manufacturing method for metal gate | |
TWI518795B (en) | Manufacturing method for semiconductor device having metal gate | |
TWI567801B (en) | Semiconductor structure and process theoeof | |
TWI524394B (en) | Manufacturing method for semiconductor device having metal gate | |
TWI527125B (en) | Menufacturing method for semiconductor device having metal gate | |
TWI509667B (en) | Structure of metal gate and fabrication method thereof | |
TW201310577A (en) | Resistor and manufacturing method thereof | |
TWI782941B (en) | Method for fabricating p-type field effect transistor | |
TWI530991B (en) | Semiconductor device having metal gate and manufacturing method thereof | |
TW201318068A (en) | Semiconductor device having metal gate and manufacturing method thereof |