TW201308438A - Semiconductor device and method of making the same - Google Patents
Semiconductor device and method of making the same Download PDFInfo
- Publication number
- TW201308438A TW201308438A TW100128219A TW100128219A TW201308438A TW 201308438 A TW201308438 A TW 201308438A TW 100128219 A TW100128219 A TW 100128219A TW 100128219 A TW100128219 A TW 100128219A TW 201308438 A TW201308438 A TW 201308438A
- Authority
- TW
- Taiwan
- Prior art keywords
- fin structure
- gate
- semiconductor device
- layer
- active region
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
本發明係關於一種半導體裝置及其製作方法,尤指一種具有應變矽通道區的半導體裝置及其製作方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a semiconductor device having a strained channel region and a method of fabricating the same.
隨著金氧半導體(metal-oxide-semiconductor,MOS)電晶體元件尺寸持續地縮小,習知技術提出以立體或非平面(non-planar)之電晶體元件例如多閘極場效電晶體(multiple gate field effect transistor,multiple gate FET)元件取代平面電晶體元件的解決方式。由於多閘極場效電晶體元件的立體結構可增加閘極與鰭狀矽基體的接觸面積,因此,可進一步增加閘極對於通道區域的載子控制,從而降低小尺寸元件面臨的由源極引發的能帶降低(drain induced barrier lowering,DIBL)效應以及短通道效應(short channel effect)。此外,由於多閘極場效電晶體元件中同樣長度的閘極具有更大的通道寬度,因而可獲得加倍的汲極驅動電流。As the size of metal-oxide-semiconductor (MOS) transistor elements continues to shrink, conventional techniques have proposed stereo or non-planar transistor elements such as multiple gate field effect transistors (multiple). The gate field effect transistor (multiple gate FET) element replaces the solution of the planar transistor element. Since the three-dimensional structure of the multi-gate field effect transistor element can increase the contact area between the gate and the fin-shaped germanium substrate, the gate control of the gate region can be further increased, thereby reducing the source of the small-sized component. The induced induced barrier lowering (DIBL) effect and the short channel effect. In addition, since the gate of the same length in the multi-gate field effect transistor element has a larger channel width, a doubled drain drive current can be obtained.
因此,為符合高積集度、高效能和低耗電之半導體元件設計潮流以及產品需求,如何製作一新穎的多閘極場效電晶體元件以增進電性表現仍為相關技術者所欲研究之課題。Therefore, in order to meet the trend of high-integration, high-efficiency and low-power semiconductor component design and product requirements, how to make a novel multi-gate field-effect transistor component to enhance electrical performance is still studied by the relevant technology. The subject.
本發明之目的之一在於提供一種具有應變矽通道區的半導體裝置及其製作方法。It is an object of the present invention to provide a semiconductor device having a strained channel region and a method of fabricating the same.
本發明之一較佳實施例是提供一種製作半導體裝置的方法,包括下列步驟。首先,提供一具有一第一主動區域以及一第二主動區域半導體基底。形成至少一第一鰭狀結構於第一主動區域上,而整個第一鰭狀結構具有一第一應力。形成至少一第二鰭狀結構於第二主動區域上,而整個第二鰭狀結構具有不同於第一應力之一第二應力。A preferred embodiment of the present invention provides a method of fabricating a semiconductor device comprising the following steps. First, a semiconductor substrate having a first active region and a second active region is provided. Forming at least one first fin structure on the first active region, and the entire first fin structure has a first stress. Forming at least one second fin structure on the second active region, and the entire second fin structure has a second stress different from the first stress.
本發明之另一較佳實施例是提供一種半導體裝置,包括:一半導體基底,具有至少一第一主動區域以及至少一第二主動主動區域。其中,至少一第一鰭狀結構設置於第一主動區域,以及至少一第二鰭狀結構設置於第二主動區域。第一鰭狀結構具有一第一應力,且第二鰭狀結構具有不同於第一應力之一第二應力。Another preferred embodiment of the present invention provides a semiconductor device including: a semiconductor substrate having at least one first active region and at least one second active active region. The at least one first fin structure is disposed on the first active region, and the at least one second fin structure is disposed on the second active region. The first fin structure has a first stress and the second fin structure has a second stress different from the first stress.
本發明以離子佈植製程搭配選擇性磊晶成長製程形成具有應變矽磊晶層的鰭狀結構,可避免習知應變矽磊晶層製程中蝕刻、清洗等步驟對已形成結構造成的損傷,以及減少清洗溶液、蝕刻液及化學溶劑的殘留對半導體裝置之電性表現的不良影響。另外,本發明亦提出將具有應變矽磊晶層的鰭狀結構與金屬閘極製程做進一步整合,形成新穎的多閘極場效電晶體元件以增進電晶體的速度效能及電性表現。The invention adopts an ion implantation process and a selective epitaxial growth process to form a fin structure having a strained bismuth epitaxial layer, which can avoid damage caused to the formed structure by etching, cleaning and the like in the conventional strain 矽 epitaxial layer process. And reducing the adverse effects of the residual of the cleaning solution, the etching solution, and the chemical solvent on the electrical performance of the semiconductor device. In addition, the present invention also proposes to further integrate the fin structure with the strained germanium epitaxial layer and the metal gate process to form a novel multi-gate field effect transistor component to enhance the speed performance and electrical performance of the transistor.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .
請參考第1圖至第3圖,第1圖至第3圖為本發明一較佳實施例之形成一鰭狀結構的示意圖。如第1圖所示,本實施例首先提供一半導體基底10。半導體基底10可包含一塊矽(bulk silicon)基底,其上至少定義有一第一主動區域以及一第二主動區域等之二個主動區域,例如:一N型金氧半導體電晶體(NMOS)區11以及一P型金氧半導體電晶體(PMOS)區13。此外,本發明之半導體基底10亦可為其他種類之基底,例如絕緣層上覆矽(silicon-on-insulator,SOI)基底,以提供較好的散熱與接地效果,及有助於降低成本與抑制雜訊。Please refer to FIG. 1 to FIG. 3 . FIG. 1 to FIG. 3 are schematic diagrams showing the formation of a fin structure according to a preferred embodiment of the present invention. As shown in FIG. 1, this embodiment first provides a semiconductor substrate 10. The semiconductor substrate 10 may include a bulk silicon substrate having at least two active regions defined by a first active region and a second active region, for example, an N-type MOS transistor region 11 And a P-type MOS transistor region (PMOS) region 13. In addition, the semiconductor substrate 10 of the present invention may also be other kinds of substrates, such as a silicon-on-insulator (SOI) substrate, to provide better heat dissipation and grounding effects, and to reduce cost and Suppresses noise.
接著,進行一選擇性磊晶成長(selective epitaxial growth,SEG)製程於半導體基底10的表面全面性形成一半導體層16,並使半導體層16之材料具有至少二種4A族元素,其成分組成可以矽鍺碳(Si(1-x-y)GexCy)表示,其中x及y為大於或等於0且小於1的正數,以利用矽鍺碳的晶格常數與單晶矽(single crystal Si)不同的特性,使半導體層16產生結構上應變而形成具一特定應力之應變矽,藉由矽的帶結構(band structure)發生改變,而造成載子移動性增加來提升半導體裝置例如:電晶體的速度。其中,在選擇性磊晶成長(SEG)製程之前,本發明亦可先選擇性進行一離子佈植製程於半導體基底10上,此處所使用的摻雜物種類可包括4A族元素例如碳(carbon,C)、鍺(germanium,Ge)或兩種以上4A族元素之組合等。Then, a selective epitaxial growth (SEG) process is performed to form a semiconductor layer 16 on the surface of the semiconductor substrate 10, and the material of the semiconductor layer 16 has at least two kinds of 4A elements, and the composition thereof can be Neodymium carbon (Si (1-xy) Ge x C y ) represents a positive number in which x and y are greater than or equal to 0 and less than 1, in order to utilize the lattice constant of germanium carbon and single crystal Si (single crystal Si) Different characteristics cause the semiconductor layer 16 to be structurally strained to form a strain 具 having a specific stress, and the band structure of the ytterbium is changed, thereby causing an increase in carrier mobility to enhance a semiconductor device such as a transistor. speed. Wherein, prior to the selective epitaxial growth (SEG) process, the present invention may also selectively perform an ion implantation process on the semiconductor substrate 10, and the dopant species used herein may include a Group 4A element such as carbon (carbon). , C), germanium (Gemanium, Ge) or a combination of two or more elements of Group 4A, and the like.
隨後,再針對不同的元件特性來調整NMOS區11及/或PMOS區13之半導體層16的應變狀態。例如至少包含下列各實施態樣:Subsequently, the strain state of the semiconductor layer 16 of the NMOS region 11 and/or the PMOS region 13 is adjusted for different device characteristics. For example, at least the following implementations are included:
當全面性形成之半導體層16為矽鍺碳(Si(1-x-y)GexCy),且y>0.1x時,半導體層16具有一原生之伸張應力。因此,本實施態樣即可利用一圖案化光阻層(圖未示),覆蓋NMOS區11並暴露PMOS區13,來針對PMOS區13之半導體層16進行一包括鍺(Ge)之4A族元素的離子佈植製程,以使PMOS區13之半導體層16的y<0.1x,而轉變成一具壓縮應力的磊晶層。最後再去除圖案化光阻層。When the fully formed semiconductor layer 16 is germanium carbon (Si (1-xy) Ge x C y ) and y>0.1x, the semiconductor layer 16 has a native tensile stress. Therefore, in this embodiment, a patterned photoresist layer (not shown) can be used to cover the NMOS region 11 and expose the PMOS region 13 to perform a 4A group including germanium (Ge) for the semiconductor layer 16 of the PMOS region 13. The ion implantation process of the element is such that y < 0.1 x of the semiconductor layer 16 of the PMOS region 13 is converted into a depressive layer having a compressive stress. Finally, the patterned photoresist layer is removed.
當全面性形成之半導體層16為矽鍺碳(Si(1-x-y)GexCy),且y<0.1x時,半導體層16具有一原生之壓縮應力。因此,本實施態樣即可利用一圖案化光阻層(圖未示),覆蓋PMOS區13並暴露NMOS區11,來針對NMOS區11之半導體層16進行一包括碳(C)之4A族元素的離子佈植製程,以使NMOS區11之半導體層16的y>0.1x,而轉變成一具伸張應力的磊晶層。最後再去除圖案化光阻層。When the fully formed semiconductor layer 16 is germanium carbon (Si (1-xy) Ge x C y ), and y < 0.1 x , the semiconductor layer 16 has a native compressive stress. Therefore, in this embodiment, a patterned photoresist layer (not shown) can be used to cover the PMOS region 13 and expose the NMOS region 11 to perform a 4A group including carbon (C) for the semiconductor layer 16 of the NMOS region 11. The ion implantation process of the element is such that y>0.1x of the semiconductor layer 16 of the NMOS region 11 is converted into an epitaxial layer with tensile stress. Finally, the patterned photoresist layer is removed.
當全面性形成之半導體層16為矽鍺(Si(1-x)Gex)時,半導體層16具有一原生之壓縮應力。因此,本實施態樣即可利用一圖案化光阻層(圖未示),覆蓋PMOS區13並暴露NMOS區11,來針對NMOS區11之半導體層16進行一包括碳(C)之4A族元素的離子佈植製程,以使NMOS區11之半導體層16改質成矽鍺碳(Si(1-x-y)GexCy),且y>0.1x,進而轉變成一具伸張應力的磊晶層。最後再去除圖案化光阻層。When the fully formed semiconductor layer 16 is bismuth (Si (1-x) Ge x ), the semiconductor layer 16 has a native compressive stress. Therefore, in this embodiment, a patterned photoresist layer (not shown) can be used to cover the PMOS region 13 and expose the NMOS region 11 to perform a 4A group including carbon (C) for the semiconductor layer 16 of the NMOS region 11. The ion implantation process of the element is such that the semiconductor layer 16 of the NMOS region 11 is modified into germanium carbon (Si (1-xy) Ge x C y ), and y>0.1x, which is transformed into an epitaxial strain of tensile stress. Floor. Finally, the patterned photoresist layer is removed.
當全面性形成之半導體層16為矽碳(Si(1-y)Cy)時,半導體層16具有一原生之伸張應力。因此,本實施態樣即可利用一圖案化光阻層(圖未示),覆蓋NMOS區11並暴露PMOS區13,來針對PMOS區13之半導體層16進行一包括鍺(Ge)之4A族元素的離子佈植製程,以使PMOS區13之半導體層16改質成矽鍺碳(Si(1-x-y)GexCy),且y<0.1x,進而轉變成一具壓縮應力的磊晶層。最後再去除圖案化光阻層。When the fully formed semiconductor layer 16 is germanium carbon (Si (1-y) C y ), the semiconductor layer 16 has a native tensile stress. Therefore, in this embodiment, a patterned photoresist layer (not shown) can be used to cover the NMOS region 11 and expose the PMOS region 13 to perform a 4A group including germanium (Ge) for the semiconductor layer 16 of the PMOS region 13. The ion implantation process of the element is such that the semiconductor layer 16 of the PMOS region 13 is modified into germanium carbon (Si (1-xy) Ge x C y ), and y<0.1x, which is transformed into a compressive stress epitaxy Floor. Finally, the patterned photoresist layer is removed.
當全面性形成之半導體層16為矽時,本實施態樣即可先利用一圖案化光阻層(圖未示),覆蓋NMOS區11並暴露PMOS區13,來針對PMOS區13之半導體層16進行一包括鍺(Ge)之4A族元素的離子佈植製程,以使PMOS區13之半導體層16改質成矽鍺碳(Si(1-x-y)GexCy),且y<0.1x,進而轉變成一具壓縮應力的磊晶層。在去除圖案化光阻層之後,再利用另一圖案化光阻層(圖未示),覆蓋PMOS區13並暴露NMOS區11,來針對NMOS區11之半導體層16進行一包括碳(C)之4A族元素的離子佈植製程,以使NMOS區11之半導體層16改質成矽鍺碳(Si(1-x-y)GexCy),且y>0.1x,進而轉變成一具伸張應力的磊晶層。最後再去除圖案化光阻層。When the fully formed semiconductor layer 16 is germanium, the present embodiment may first utilize a patterned photoresist layer (not shown) to cover the NMOS region 11 and expose the PMOS region 13 to the semiconductor layer of the PMOS region 13. An ion implantation process comprising a Group 4A element of germanium (Ge) is performed to modify the semiconductor layer 16 of the PMOS region 13 to germanium carbon (Si (1-xy) Ge x C y ), and y < 0.1 x, which in turn is transformed into an epitaxial layer with compressive stress. After removing the patterned photoresist layer, another patterned photoresist layer (not shown) is used to cover the PMOS region 13 and expose the NMOS region 11 to perform a carbon (C) on the semiconductor layer 16 of the NMOS region 11. The ion implantation process of the 4A element is such that the semiconductor layer 16 of the NMOS region 11 is modified into germanium carbon (Si (1-xy) Ge x C y ), and y>0.1x, which is converted into a tensile stress. Epitaxial layer. Finally, the patterned photoresist layer is removed.
在選擇性磊晶成長(SEG)製程之前,本發明亦可先選擇性進行一離子佈植製程於半導體基底10上,此處所使用的摻雜物種類可包括4A族元素例如碳(C)、鍺(Ge)或兩種以上4A族元素之組合等。例如先利用一圖案化光阻層(圖未示),覆蓋NMOS區11並暴露PMOS區13,來針對PMOS區13之半導體基底10進行一包括鍺(Ge)之4A族元素的離子佈植製程,以使後續形成於PMOS區13的半導體層16成為矽鍺(Si(1-x)Gex)或y<0.1x的矽鍺碳(Si(1-x-y)GexCy),而具有一壓縮應力。同樣地,利用另一圖案化光阻層(圖未示),覆蓋PMOS區13並暴露NMOS區11,來針對NMOS區11之半導體基底10進行一包括碳(C)之4A族元素的離子佈植製程,以使後續形成於NMOS區11的半導體層16成為矽碳(Si(1-y)Cy)或y>0.1x的矽鍺碳(Si(1-x-y)GexCy),而具有一伸張應力。Prior to the selective epitaxial growth (SEG) process, the present invention may also selectively perform an ion implantation process on the semiconductor substrate 10, and the dopant species used herein may include a Group 4A element such as carbon (C).锗 (Ge) or a combination of two or more Group 4A elements. For example, by using a patterned photoresist layer (not shown), covering the NMOS region 11 and exposing the PMOS region 13, an ion implantation process including a germanium (Ge) group 4A element is performed on the semiconductor substrate 10 of the PMOS region 13. So that the semiconductor layer 16 formed later in the PMOS region 13 becomes germanium (Si (1-x) Ge x ) or germanium carbon (Si (1-xy) Ge x C y ) with y < 0.1x, and has A compressive stress. Similarly, another patterned photoresist layer (not shown) is used to cover the PMOS region 13 and expose the NMOS region 11 to perform an ion cloth including a carbon (C) 4A element for the semiconductor substrate 10 of the NMOS region 11. The implantation process is such that the semiconductor layer 16 formed later in the NMOS region 11 becomes germanium carbon (Si (1- y) C y ) or y > 0.1 x germanium carbon (Si (1-xy) Ge x C y ), It has a tensile stress.
換句話說,本發明即利用一選擇性磊晶成長(selective epitaxial growth,SEG)製程以及至少一包括4A族元素的離子佈植製程,以於半導體基底10表面全面性形成一半導體層16,並使半導體層16之材料具有至少二種4A族元素,其成分組成可以矽鍺碳(Si(1-x-y)GexCy)表示,其中x及y為大於或等於0且小於1的正數,而且半導體基底10之NMOS區11中的半導體層16與PMOS區13中的半導體層16分別具有不同的x、y值。例如,當半導體層16之材料中碳元素莫耳分率比(y)實質上大於鍺元素莫耳分率比(x)的十分之一,也就是說y>0.1x時,由於半導體層16的晶格常數(lattice constant)比矽小,可形成一具伸張應力的磊晶層,之後可進一步作為N型電晶體(NMOS)的應變矽通道區,有利於改善電流驅動。同理論之,當半導體層16之材料中碳元素莫耳分率比(y)實質上小於鍺元素莫耳分率比(x)的十分之一,也就是說y<0.1x時,由於半導體層16的晶格常數(lattice constant)比矽大,可形成一具壓縮應力的磊晶層,之後可進一步作為P型電晶體(PMOS)的應變矽通道區,有利於改善電流驅動。In other words, the present invention utilizes a selective epitaxial growth (SEG) process and at least one ion implantation process including a group 4A element to form a semiconductor layer 16 on the surface of the semiconductor substrate 10 in a comprehensive manner. The material of the semiconductor layer 16 is made to have at least two Group 4A elements, the composition of which may be represented by bismuth carbon (Si (1-xy) Ge x C y ), wherein x and y are positive numbers greater than or equal to 0 and less than 1, Moreover, the semiconductor layer 16 in the NMOS region 11 of the semiconductor substrate 10 and the semiconductor layer 16 in the PMOS region 13 have different x, y values, respectively. For example, when the carbon element molar ratio (y) in the material of the semiconductor layer 16 is substantially greater than one tenth of the 锗 element molar ratio (x), that is, y>0.1x, due to the semiconductor layer The lattice constant of 16 is smaller than that of 矽, which can form an epitaxial layer with tensile stress, and can be further used as a strained 矽 channel region of an N-type transistor (NMOS), which is advantageous for improving current drive. Theoretically, when the carbon element molar ratio (y) in the material of the semiconductor layer 16 is substantially less than one tenth of the 锗 element molar ratio (x), that is, y<0.1x, The lattice constant of the semiconductor layer 16 is larger than that of the germanium, and a depressive layer having a compressive stress can be formed, which can be further used as a strained channel region of a P-type transistor (PMOS), which is advantageous for improving current driving.
接著再蝕刻部份的半導體層,以於半導體基底上形成所需的鰭狀結構。其步驟可如第2圖所示,首先於半導體層16上形成一圖案化硬遮罩15,用以定義至少一鰭狀結構18。隨後進行一蝕刻製程,用以移除部份的半導體層16以及部份的半導體基底10,而於半導體基底10上同時形成複數個鰭狀結構18以及其間之淺溝渠。然後以高密度電漿化學氣相沈積(High Density Plasma CVD,HDPCVD)、次常壓化學氣相沈積(sub atmosphere CVD,SACVD)、旋塗式介電材料(Spin on dielectric,SOD)等製程於半導體基底10上形成一介電層17,覆蓋該等鰭狀結構18並填滿淺溝渠。之後再以化學機械研磨製程(CMP)來平坦化介電層17,並利用蝕刻製程去除圖案化硬遮罩15以及部份的介電層17,以於各鰭狀結構18間的半導體基底10中形成淺溝渠隔離19,如第3圖所示。A portion of the semiconductor layer is then etched to form the desired fin structure on the semiconductor substrate. The steps may be as shown in FIG. 2, first forming a patterned hard mask 15 on the semiconductor layer 16 for defining at least one fin structure 18. An etching process is then performed to remove portions of the semiconductor layer 16 and portions of the semiconductor substrate 10, and a plurality of fin structures 18 and shallow trenches therebetween are simultaneously formed on the semiconductor substrate 10. Then, high-density plasma chemical vapor deposition (HDPCVD), sub-atmospheric chemical vapor deposition (SACVD), spin-on dielectric (SOD), etc. A dielectric layer 17 is formed on the semiconductor substrate 10 to cover the fin structures 18 and fill the shallow trenches. The dielectric layer 17 is then planarized by a chemical mechanical polishing process (CMP), and the patterned hard mask 15 and a portion of the dielectric layer 17 are removed by an etching process to form the semiconductor substrate 10 between the fin structures 18. A shallow trench isolation 19 is formed in the middle, as shown in FIG.
值得注意的是,離子佈植製程與圖案化半導體層16以形成複數個鰭狀結構18的順序不以此為限,例如:可於半導體基底10以選擇性磊晶成長製程形成半導體層16之後,先進行圖案化製程定義至少一鰭狀結構18後,再進行前述各實施態樣之離子佈植製程,以分別調整NMOS區11與PMOS區13中之各鰭狀結構18的矽鍺碳(Si(1-x-y)GexCy)組成比例。亦即,本發明之4A族元素的離子佈植製程可全面性/區域性實行於半導體基底/鰭狀結構上。It should be noted that the order of the ion implantation process and the patterned semiconductor layer 16 to form the plurality of fin structures 18 is not limited thereto. For example, after the semiconductor layer 10 is formed by the selective epitaxial growth process on the semiconductor substrate 10 After the patterning process is defined to define at least one fin structure 18, the ion implantation process of each of the foregoing embodiments is performed to adjust the germanium carbon of each of the fin structures 18 in the NMOS region 11 and the PMOS region 13 ( Si (1-xy) Ge x C y ) composition ratio. That is, the ion implantation process of the Group 4A element of the present invention can be performed comprehensively/regionally on the semiconductor substrate/fin structure.
之後可進行各式所需之半導體製程,例如具有多晶矽閘極或金屬閘極等之MOS製程。現以整合於後閘極(gate last)製程之後閘極介電層(high-K last)製程並搭配前述之鰭狀結構製程為例做說明。請參考第圖4至第9圖,第4圖至第9圖為本發明一較佳實施例之形成一半導體裝置的示意圖,如第4圖所示,首先,於半導體基底上10依序形成一介電層21、一閘極材料層22並覆蓋各鰭狀結構18,再對閘極材料層22進行一平坦化製程。接著如第5圖所示,於閘極材料層22上形成一圖案化蓋層28,用以定義NMOS區11與PMOS區13中各閘極的位置。隨後利用圖案化蓋層28當作蝕刻遮罩來蝕刻閘極材料層22與介電層21,而於半導體基底10上形成複數個覆蓋部分之各鰭狀結構18的虛置閘極20。其中,虛置閘極20之延伸方向係與鰭狀結構18之延伸方向垂直交錯且虛置閘極20係直接部分覆蓋各鰭狀結構18的兩側壁與頂面。介電層21可包含如氧化矽(SiO)、氮化矽(SiN)、氮氧化矽(SiON)等介電材料。閘極材料層22可由不具有任何摻質(undoped)的多晶矽材料或由具有N+摻質的多晶矽材料所構成。而圖案化蓋層28設置於虛置閘極20的上方,其可由氮化矽、二氧化矽(SiO2)或氮氧化矽(SiON)等材料所構成。Various semiconductor processes are then required, such as MOS processes with polysilicon gates or metal gates. The process of integrating the high-K last process and the fin structure process described above after the gate last process is taken as an example. Please refer to FIG. 4 to FIG. 9 . FIG. 4 to FIG. 9 are schematic diagrams showing a semiconductor device according to a preferred embodiment of the present invention. As shown in FIG. 4 , firstly, sequentially formed on the semiconductor substrate 10 . A dielectric layer 21, a gate material layer 22 covers the fin structures 18, and a planarization process is performed on the gate material layer 22. Next, as shown in FIG. 5, a patterned cap layer 28 is formed on the gate material layer 22 for defining the positions of the gates in the NMOS region 11 and the PMOS region 13. The gate material layer 22 and the dielectric layer 21 are then etched using the patterned cap layer 28 as an etch mask, and the dummy gates 20 of the respective fin structures 18 of the plurality of cap portions are formed on the semiconductor substrate 10. The extending direction of the dummy gate 20 is perpendicular to the extending direction of the fin structure 18 and the dummy gate 20 directly covers the two side walls and the top surface of each fin structure 18 . The dielectric layer 21 may include a dielectric material such as yttrium oxide (SiO), tantalum nitride (SiN), yttrium oxynitride (SiON). The gate material layer 22 may be composed of a polycrystalline germanium material having no undoped or a polycrystalline germanium material having an N+ dopant. The patterned cap layer 28 is disposed above the dummy gate 20, and may be composed of a material such as tantalum nitride, cerium oxide (SiO 2 ) or cerium oxynitride (SiON).
接著,於未被虛置閘極20覆蓋之鰭狀結構18中分別選擇性形成一輕摻雜源極/汲極區(圖未示)。然後,於虛置閘極20的周圍側壁形成一側壁子32,側壁子32可為單一層或多層結構,或可包括襯層(liner)等一起組成。側壁子32之材料可包括高溫氧化矽層(high temperature oxide,HTO)、氮化矽、氧化矽或使用六氯二矽烷(hexachlorodisilane,Si2Cl6)形成的氮化矽(HCD-SiN),但不以此為限。形成側壁子32的方法為習知技術,在此不加以贅述。之後,以側壁子32及蓋層28為遮罩,進行離子佈植製程,摻入適當的摻質,摻質可包括N型或P型摻質,以於NMOS區11與PMOS區13中之虛置閘極20兩側暴露出來的鰭狀結構18上分別植入相對應電性之源極/汲極摻質,並搭配一退火製程以活化形成源極/汲極區34,如第6圖所示。雖然本實施例較佳為依序形成輕摻雜源極/汲極區、側壁子32及源極/汲極區34,但不侷限於此,本發明又可依據製程上的需求任意調整上述形成側壁子及掺雜區的順序,此均屬本發明所涵蓋的範圍。Next, a lightly doped source/drain region (not shown) is selectively formed in the fin structure 18 not covered by the dummy gate 20. Then, a sidewall 32 is formed on the surrounding sidewall of the dummy gate 20, and the sidewall 32 may be a single layer or a multilayer structure, or may include a liner or the like. The material of the sidewall 32 may include a high temperature oxide (HTO), tantalum nitride, hafnium oxide or tantalum nitride (HCD-SiN) formed using hexachlorodisilane (Si 2 Cl 6 ). But not limited to this. The method of forming the side wall sub-32 is a conventional technique and will not be described herein. Thereafter, the sidewall spacer 32 and the cap layer 28 are used as masks to perform an ion implantation process, and a suitable dopant is doped, and the dopant may include an N-type or a P-type dopant in the NMOS region 11 and the PMOS region 13 The fin structure 18 exposed on both sides of the dummy gate 20 is respectively implanted with a corresponding source/drain dopant, and is combined with an annealing process to activate the source/drain region 34, such as the sixth The figure shows. Although the present embodiment preferably forms the lightly doped source/drain region, the sidewall spacer 32, and the source/drain region 34 in sequence, the present invention is not limited thereto, and the present invention can be arbitrarily adjusted according to the requirements of the process. The order in which the sidewalls and the doped regions are formed is within the scope of the present invention.
值得注意的是,論述至此,實已完成一般具有多晶矽閘極之多閘極場效電晶體的製程。在本實施例中,鰭狀結構18與介電層21之間具有三直接接觸面例如兩接觸側面及一接觸頂面,形成的多閘極場效電晶體係為立體電晶體(Tri-gate),但不以此為限,鰭狀結構18之頂面與介電層21之間亦可存有前述之硬遮罩15,此時,鰭狀結構18與介電層21之間將僅有兩直接接觸面例如兩接觸側面,形成的多閘極場效電晶體係為鰭式場效電晶體(Fin Field effect transistor,FinFET)。位於本發明主動區域的鰭狀結構18包含至少二種4A族元素例如矽、鍺、碳,其組成比例可以(Si(1-x-y)GexCy)表示之。受虛置閘極20部分覆蓋的鰭狀結構18,可做為源極/汲極區34中間的通道區,有利於改善電流驅動。當碳元素莫耳分率比實質上大於鍺元素莫耳分率比的十分之一,也就是說y與x的比值大於0.1,亦即y>0.1x時,整個鰭狀結構18可包括具伸張應力的磊晶層,有利於作為後續形成之NMOS的應變矽通道區,而當碳元素莫耳分率比實質上小於鍺元素莫耳分率比的十分之一,也就是說y與x的比值小於0.1,亦即y<0.1x時,整個鰭狀結構18可包括具壓縮應力的磊晶層,有利於作為後續形成之PMOS的應變矽通道區。本發明以離子佈植方式搭配選擇性磊晶成長製程形成具有應力的磊晶層,再經由蝕刻製程以構成鰭狀結構,不同於習知應變矽電晶體製程,為製作預定生成磊晶層的凹口,需額外在半導體基底上進行多道蝕刻、清洗等製程,本發明可避免此類前置製程對已形成的結構造成損傷,以及減少清洗溶液、蝕刻液及化學溶劑的殘留對半導體裝置之電性表現的不良影響。It is worth noting that, at this point, the process of a multi-gate field effect transistor with a polysilicon gate is generally completed. In this embodiment, the fin structure 18 and the dielectric layer 21 have three direct contact surfaces, for example, two contact sides and a contact top surface, and the multi-gate field effect crystal system is a stereo transistor (Tri-gate). ), but not limited thereto, the hard mask 15 may be present between the top surface of the fin structure 18 and the dielectric layer 21 . In this case, only the fin structure 18 and the dielectric layer 21 will be There are two direct contact surfaces, for example, two contact sides, and the formed multi-gate field effect crystal system is a Fin Field effect transistor (FinFET). The fin structure 18 located in the active region of the present invention contains at least two Group 4A elements such as ruthenium, osmium, and carbon, and the composition ratio thereof may be represented by (Si (1-xy) Ge x C y ). The fin structure 18 partially covered by the dummy gate 20 can serve as a channel region in the middle of the source/drain region 34, which is advantageous for improving current drive. When the carbon element molar fraction ratio is substantially greater than one tenth of the 锗 element molar ratio, that is, the ratio of y to x is greater than 0.1, that is, y>0.1x, the entire fin structure 18 may include The epitaxial layer with tensile stress is favorable as a strained channel region of the subsequently formed NMOS, and when the carbon element molar ratio is substantially less than one tenth of the ratio of the elemental molar ratio, that is, y When the ratio to x is less than 0.1, that is, y < 0.1x, the entire fin structure 18 may include an epitaxial layer with compressive stress, which is advantageous as a strained channel region of the subsequently formed PMOS. The invention adopts an ion implantation method together with a selective epitaxial growth process to form a stress epitaxial layer, and then forms an fin structure through an etching process, which is different from the conventional strain 矽 transistor process for preparing a predetermined epitaxial layer. The notch needs to be additionally etched, cleaned and the like on the semiconductor substrate, and the invention can avoid the damage of the formed structure caused by such pre-process, and reduce the residual of the cleaning solution, the etching solution and the chemical solvent to the semiconductor device. The adverse effects of electrical performance.
接續進行金屬閘極製程之後閘極介電層(high-K last)製程。現以單個電晶體元件為例來做說明,如第7圖所示,依序於半導體基底10上沉積一接觸洞蝕刻停止層(contact etch stop layer,CESL) 36與一內層介電層(inter-layer dielectric,ILD) 38全面性覆蓋半導體基底10。接觸洞蝕刻停止層36的材料可包括例如氮化矽,而內層介電層38的材料可包含氮化物、氧化物、碳化物、低介電係數材料中之一或多者。The gate-high dielectric layer (high-K last) process is continued after the metal gate process. A single transistor component is taken as an example. As shown in FIG. 7, a contact etch stop layer (CESL) 36 and an inner dielectric layer are deposited on the semiconductor substrate 10 in sequence. Inter-layer dielectric (ILD) 38 comprehensively covers the semiconductor substrate 10. The material of the contact hole etch stop layer 36 may include, for example, tantalum nitride, and the material of the inner dielectric layer 38 may include one or more of nitride, oxide, carbide, low-k material.
如第8圖所示,進行一平坦化製程,例如一化學機械平坦化(chemical mechanical polish,CMP)製程或者一回蝕刻製程,依序移除部份的內層介電層38、部份的接觸洞蝕刻停止層36、部份的側壁子32,再完全移除蓋層28以暴露出閘極材料層22。然後進行一蝕刻製程,用以移除閘極材料層22。蝕刻製程可包括乾蝕刻或濕蝕刻,例如於一實施例中係先以氯氣做為蝕刻氣體對虛置閘極20進行乾蝕刻,然後使用氫氧化四甲基銨(tetra methyl ammonium hydroxide,TMAH)溶液作為蝕刻液移除剩餘的閘極材料層22形成一閘極開口(圖未示),但不以此為限。接著再於閘極開口內形成一高介電常數閘極介電層42覆蓋介電層21、側壁子32、接觸洞蝕刻停止層36與內層介電層38。而高介電常數閘極介電層42之材料可選自例如氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)、鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)、及其所組成之群組,但不限於此。此外,在形成high-k閘極介電層42之前,也可以先重新形成一介面層(interfacial layer)(圖未示)以取代介電層21。As shown in FIG. 8, a planarization process, such as a chemical mechanical polish (CMP) process or an etch process, is performed to sequentially remove portions of the inner dielectric layer 38 and portions. The contact etch stop layer 36, a portion of the sidewall spacers 32, and the cap layer 28 are completely removed to expose the gate material layer 22. An etch process is then performed to remove the gate material layer 22. The etching process may include dry etching or wet etching. For example, in one embodiment, the dummy gate 20 is dry etched with chlorine gas as an etching gas, and then tetramethyl ammonium hydroxide (TMAH) is used. The solution removes the remaining gate material layer 22 as an etchant to form a gate opening (not shown), but is not limited thereto. A high dielectric constant gate dielectric layer 42 is then formed over the gate opening to cover the dielectric layer 21, the sidewall spacers 32, the contact hole etch stop layer 36, and the inner dielectric layer 38. The material of the high dielectric constant gate dielectric layer 42 may be selected from, for example, hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), hafnium silicon (hafnium silicon). Oxynitride, HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 ) 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ) , strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT), barium strontium titanate , Ba x Sr 1-x TiO 3 , BST), and a group thereof, but are not limited thereto. In addition, an intermediate layer (not shown) may be newly formed to replace the dielectric layer 21 before the high-k gate dielectric layer 42 is formed.
接著,選擇性形成一功函數金屬層44於高介電常數閘極介電層42上方,用以調整之後形成的金屬閘極之功函數,使其適用於N型電晶體(NMOS)或P型電晶體(PMOS)。若電晶體為N型電晶體,功函數金屬層可選用功函數為3.9電子伏特(eV)~4.3 eV的金屬材料,如鋁化鈦(TiAl)、鋁化鋯(ZrAl)、鋁化鎢(WAl)、鋁化鉭(TaAl)或鋁化鉿(HfAl)等,但不以此為限;若電晶體為P型電晶體,功函數金屬層可選用功函數為4.8 eV~5.2 eV的金屬材料,如氮化鈦(TiN)、氮化鉭(TaN)或碳化鉭(TaC)等,但不以此為限。Next, a work function metal layer 44 is selectively formed over the high dielectric constant gate dielectric layer 42 for adjusting the work function of the metal gate formed later to be suitable for an N-type transistor (NMOS) or P. Type transistor (PMOS). If the transistor is an N-type transistor, the work function metal layer may be selected from a metal material having a work function of 3.9 eV to 4.3 eV, such as titanium aluminide (TiAl), zirconium aluminide (ZrAl), or tungsten aluminide ( WAl), tantalum aluminide (TaAl) or hafnium aluminide (HfAl), etc., but not limited thereto; if the transistor is a P-type transistor, the work function metal layer may be selected from a metal having a work function of 4.8 eV to 5.2 eV Materials such as titanium nitride (TiN), tantalum nitride (TaN) or tantalum carbide (TaC), etc., but not limited thereto.
然後,填入一金屬導電層46於功函數金屬層44上並填滿閘極開口。在本實施例中,金屬導電層46可選自銅(Cu)、鋁(Al)、鎢(W)、鈦鋁合金(TiAl)、鈷鎢磷化物(cobalt tungsten phosphide,CoWP)等低電阻材料或其組合。在形成高介電常數閘極介電層42、功函數金屬層44及金屬導電層46後,如第9圖所示,可再進行一平坦化製程,例如一化學機械平坦化(chemical mechanical polish,CMP)製程,去除部分之金屬導電層46、部分之功函數金屬層44及部分之高介電常數閘極介電層42至內層介電層38之頂面,至此完成一具有金屬閘極48及鰭狀結構18的半導體裝置。此外,在功函數金屬層44與高介電常數閘極介電層42之間以及功函數金屬層44與金屬導電層46之間,也可以選擇性分別形成一包含鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)等材料之阻障層(barrier layer)(圖未示)。Then, a metal conductive layer 46 is filled in the work function metal layer 44 and fills the gate opening. In this embodiment, the metal conductive layer 46 may be selected from low resistance materials such as copper (Cu), aluminum (Al), tungsten (W), titanium aluminum alloy (TiAl), cobalt tungsten phosphide (CoWP), and the like. Or a combination thereof. After forming the high dielectric constant gate dielectric layer 42, the work function metal layer 44, and the metal conductive layer 46, as shown in FIG. 9, a planarization process, such as a chemical mechanical polish, may be performed. , CMP) process, removing part of the metal conductive layer 46, part of the work function metal layer 44 and part of the high dielectric constant gate dielectric layer 42 to the top surface of the inner dielectric layer 38, thereby completing a metal gate A semiconductor device having a pole 48 and a fin structure 18. In addition, between the work function metal layer 44 and the high dielectric constant gate dielectric layer 42 and between the work function metal layer 44 and the metal conductive layer 46, a titanium (Ti) and a nitride may be selectively formed. A barrier layer of a material such as titanium (TiN), tantalum (Ta), tantalum nitride (TaN) or the like (not shown).
請參考第10圖,第10圖為本發明一較佳實施例之一半導體裝置的示意圖。如第10圖所示,半導體基底10具有至少一第一主動區域11以及至少一第二主動區域13。半導體基底10可包含一矽覆絕緣(silicon-on-insulator,SOI)基底或一塊矽(bulk silicon)基底。在本實施例中,以半導體基底10為一塊矽基底進行說明。第一主動區域11包括一N型電晶體設置於其中,作為NMOS區。而第二主動區域13包括一P型電晶體設置於其中,作為PMOS區,但不以此為限。另外,至少一第一鰭狀結構58設置於第一主動區域11,以及至少一第二鰭狀結構60設置於第二主動區域13。第一鰭狀結構58及第二鰭狀結構60包含一半導體材料,其成分可以矽鍺碳(Si(1-x-y)GexCy)表示,且x及y為大於或等於0且小於1的正數。更明確地說,當第一鰭狀結構58之材料組成中,y與x的比值大於0.1(y>0.1x)時,整個第一鰭狀結構58具有一伸張應力。而當第二鰭狀結構60之材料組成中,y與x的比值小於0.1(y<0.1x)時,整個第二鰭狀結構60具有一壓縮應力。還有,一第一閘極54部分覆蓋第一鰭狀結構58以及一第二閘極56部分覆蓋第二鰭狀結構60。第一閘極54包括高介電常數閘極介電層42、一第一功函數金屬層50以及金屬導電層46,而第二閘極56包括高介電常數閘極介電層42、一第二功函數金屬層52以及金屬導電層46。第一功函數金屬層50及第二功函數金屬層52的材料可依NMOS及PMOS各自的功函數要求進行選擇,如前所述;依NMOS及PMOS各自的功函數要求,第一功函數金屬層50及第二功函數金屬層52亦可選擇使用單層或多層的結構。在第一主動區域11(NMOS區)中另包括一第一源極/汲極區(圖未示)分別設置於第一閘極54兩側的第一鰭狀結構58中。而在第二主動區域13(PMOS區)中另包括一第二源極/汲極區(圖未示)分別設置於第二閘極56兩側的第二鰭狀結構60中。第一閘極54、一第二閘極56、第一鰭狀結構58、第二鰭狀結構60與源極/汲極區的相對配置狀況如同第6圖所示,其中虛置閘極20之延伸方向係與鰭狀結構18之延伸方向垂直交錯,也就是說,目前所述的源極/汲極區係位於延伸方向垂直於紙面的鰭狀結構上。Please refer to FIG. 10, which is a schematic diagram of a semiconductor device according to a preferred embodiment of the present invention. As shown in FIG. 10, the semiconductor substrate 10 has at least one first active region 11 and at least one second active region 13. The semiconductor substrate 10 may comprise a silicon-on-insulator (SOI) substrate or a bulk silicon substrate. In the present embodiment, the semiconductor substrate 10 is described as a unitary substrate. The first active region 11 includes an N-type transistor disposed therein as an NMOS region. The second active region 13 includes a P-type transistor disposed therein as a PMOS region, but is not limited thereto. In addition, at least one first fin structure 58 is disposed on the first active region 11 , and at least one second fin structure 60 is disposed on the second active region 13 . The first fin structure 58 and the second fin structure 60 comprise a semiconductor material whose composition can be represented by carbon (Si (1-xy) Ge x C y ), and x and y are greater than or equal to 0 and less than 1 Positive number. More specifically, when the ratio of y to x is greater than 0.1 (y > 0.1 x) in the material composition of the first fin structure 58, the entire first fin structure 58 has a tensile stress. When the ratio of y to x is less than 0.1 (y<0.1x) in the material composition of the second fin structure 60, the entire second fin structure 60 has a compressive stress. Also, a first gate 54 partially covers the first fin structure 58 and a second gate 56 partially covers the second fin structure 60. The first gate 54 includes a high dielectric constant gate dielectric layer 42 , a first work function metal layer 50 , and a metal conductive layer 46 , and the second gate 56 includes a high dielectric constant gate dielectric layer 42 . The second work function metal layer 52 and the metal conductive layer 46. The materials of the first work function metal layer 50 and the second work function metal layer 52 may be selected according to respective work function requirements of the NMOS and the PMOS, as described above; according to the work function requirements of the NMOS and the PMOS, the first work function metal The layer 50 and the second work function metal layer 52 may also optionally use a single layer or a multilayer structure. A first source/drain region (not shown) is further disposed in the first active region 11 (NMOS region) in the first fin structure 58 on both sides of the first gate 54. In the second active region 13 (PMOS region), a second source/drain region (not shown) is respectively disposed in the second fin structure 60 on both sides of the second gate 56. The relative arrangement of the first gate 54 , the second gate 56 , the first fin structure 58 , the second fin structure 60 and the source/drain regions is as shown in FIG. 6 , wherein the dummy gate 20 The direction of extension is perpendicular to the direction in which the fin structures 18 extend, that is, the source/drain regions described so far are located on the fin structure extending perpendicular to the plane of the paper.
綜上所述,本發明以離子佈植製程搭配選擇性磊晶成長製程形成具有應變矽磊晶層的鰭狀結構,可避免習知應變矽磊晶層製程中蝕刻、清洗等步驟對已形成結構造成的損傷,以及減少清洗溶液、蝕刻液及化學溶劑的殘留對半導體裝置之電性表現的不良影響。另外,本發明亦提出將具有應變矽磊晶層的鰭狀結構與金屬閘極製程做進一步整合,形成新穎的多閘極場效電晶體元件以增進電晶體的速度效能及電性表現。In summary, the present invention forms a fin structure having a strained bismuth epitaxial layer by an ion implantation process and a selective epitaxial growth process, which can avoid the steps of etching, cleaning, etc. in the conventional strain 矽 epitaxial layer process. Structural damage and reduced adverse effects of cleaning solutions, etchants, and chemical solvents on the electrical performance of semiconductor devices. In addition, the present invention also proposes to further integrate the fin structure with the strained germanium epitaxial layer and the metal gate process to form a novel multi-gate field effect transistor component to enhance the speed performance and electrical performance of the transistor.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
10...半導體基底10. . . Semiconductor substrate
11...NMOS區11. . . NMOS region
13...PMOS區13. . . PMOS area
15...硬遮罩15. . . Hard mask
16...半導體層16. . . Semiconductor layer
17...介電層17. . . Dielectric layer
18...鰭狀結構18. . . Fin structure
19...淺溝渠隔離19. . . Shallow trench isolation
20...虛置閘極20. . . Virtual gate
21...介電層twenty one. . . Dielectric layer
22...閘極材料層twenty two. . . Gate material layer
28...蓋層28. . . Cover
32...側壁子32. . . Side wall
34...源極/汲極區34. . . Source/bungee area
36...接觸洞蝕刻停止層36. . . Contact hole etch stop layer
38...內層介電層38. . . Inner dielectric layer
42...高介電常數閘極介電層42. . . High dielectric constant gate dielectric layer
44...功函數金屬層44. . . Work function metal layer
46...金屬導電層46. . . Metal conductive layer
48...金屬閘極48. . . Metal gate
50...第一功函數金屬層50. . . First work function metal layer
52...第二功函數金屬層52. . . Second work function metal layer
54...第一閘極54. . . First gate
56...第二閘極56. . . Second gate
58...第一鰭狀結構58. . . First fin structure
60...第二鰭狀結構60. . . Second fin structure
第1圖至第3圖為本發明一較佳實施例之形成一鰭狀結構的示意圖。1 to 3 are schematic views showing the formation of a fin structure according to a preferred embodiment of the present invention.
第4圖至第9圖為本發明一較佳實施例之形成一半導體裝置的示意圖。4 to 9 are schematic views showing the formation of a semiconductor device in accordance with a preferred embodiment of the present invention.
第10圖為本發明一較佳實施例之一半導體裝置的示意圖。Figure 10 is a schematic view of a semiconductor device in accordance with a preferred embodiment of the present invention.
10...半導體基底10. . . Semiconductor substrate
18...鰭狀結構18. . . Fin structure
19...淺溝渠隔離19. . . Shallow trench isolation
20...虛置閘極20. . . Virtual gate
28...蓋層28. . . Cover
32...側壁子32. . . Side wall
34...源極/汲極區34. . . Source/bungee area
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100128219A TWI518790B (en) | 2011-08-08 | 2011-08-08 | Semiconductor device and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100128219A TWI518790B (en) | 2011-08-08 | 2011-08-08 | Semiconductor device and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201308438A true TW201308438A (en) | 2013-02-16 |
TWI518790B TWI518790B (en) | 2016-01-21 |
Family
ID=48169908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100128219A TWI518790B (en) | 2011-08-08 | 2011-08-08 | Semiconductor device and method of making the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI518790B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107452737A (en) * | 2016-05-31 | 2017-12-08 | 台湾积体电路制造股份有限公司 | Semiconductor device |
US10840376B2 (en) | 2017-11-29 | 2020-11-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate structure and method with enhanced gate contact and threshold voltage |
US12119403B2 (en) | 2017-11-29 | 2024-10-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate structure and method with enhanced gate contact and threshold voltage |
-
2011
- 2011-08-08 TW TW100128219A patent/TWI518790B/en active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107452737A (en) * | 2016-05-31 | 2017-12-08 | 台湾积体电路制造股份有限公司 | Semiconductor device |
CN107452737B (en) * | 2016-05-31 | 2022-12-20 | 台湾积体电路制造股份有限公司 | Semiconductor device and method for manufacturing semiconductor device |
US10840376B2 (en) | 2017-11-29 | 2020-11-17 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate structure and method with enhanced gate contact and threshold voltage |
TWI713220B (en) * | 2017-11-29 | 2020-12-11 | 台灣積體電路製造股份有限公司 | Semiconductor structure and method for making the same |
US11804547B2 (en) | 2017-11-29 | 2023-10-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate structure and method with enhanced gate contact and threshold voltage |
US12119403B2 (en) | 2017-11-29 | 2024-10-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Gate structure and method with enhanced gate contact and threshold voltage |
Also Published As
Publication number | Publication date |
---|---|
TWI518790B (en) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10014227B2 (en) | Semiconductor device having strained fin structure and method of making the same | |
US9685337B2 (en) | Method for fabricating semiconductor device | |
US9142649B2 (en) | Semiconductor structure with metal gate and method of fabricating the same | |
US8975672B2 (en) | Metal oxide semiconductor transistor and manufacturing method thereof | |
US8981487B2 (en) | Fin-shaped field-effect transistor (FinFET) | |
CN113659004B (en) | Semiconductor element and manufacturing method thereof | |
US8575708B2 (en) | Structure of field effect transistor with fin structure | |
US9070710B2 (en) | Semiconductor process | |
US10211311B2 (en) | Method for fabricating semiconductor device | |
TW201822263A (en) | Semiconductor device and method for fabricating the same | |
TWI761529B (en) | Semiconductor device and method for fabricating the same | |
US8722501B2 (en) | Method for manufacturing multi-gate transistor device | |
US9646889B1 (en) | Method of removing a hard mask layer on a gate structure while forming a protective layer on the surface of a substrate | |
US11062954B2 (en) | Semiconductor device and method for fabricating the same | |
TWI729181B (en) | Semiconductor device and method for fabricating the same | |
US10068919B2 (en) | Semiconductor device and method of forming the same | |
CN102956453B (en) | Semiconductor device and manufacture method thereof | |
TW202006790A (en) | Semiconductor device and method for fabricating the same | |
US9450094B1 (en) | Semiconductor process and fin-shaped field effect transistor | |
TWI518790B (en) | Semiconductor device and method of making the same | |
TW201624712A (en) | Epitaxial structure and process thereof for forming fin-shaped field effect transistor | |
US10566327B2 (en) | Method for enlarging tip portion of a fin-shaped structure | |
TW201642324A (en) | Semiconductor device and method for fabricating the same | |
TWI508293B (en) | Semiconductor device having metal gate and manufacturing method thereof |