201251027 六、發明說明: 【發明所屬之技術領域】 本發明是有關於/種主動元件,且特別是有關於一種 具有富矽氧化物保護層之主動元件。 【先前技術】 近年來,由於各種顯示技術不斷地蓬勃發展,在經過 持續地研究開發之後,如電泳顯示器、液晶顯示器、電漿 顯示器、有機發光二極體顯示器等產品,已逐漸地商業化 並應用於各種尺寸以及各種面積的顯示裝置。隨著可攜式 電子產品的日益普及,可撓性顯示器(如電子紙(e-paper)、 電子書(e-book)等)已逐漸受到市場的關注。一般而言,電 子紙(e-paper)以及電子書(e_b〇〇k)係採用電泳顯示技術來 達到顯示之目的。以僅能顯示黑白的電子書為例,其電泳 顯示薄膜(EPD film)主要是由黑色電泳液以及摻雜於黑色 電泳液中的白色帶電粒子所構成,透過施加電壓的方式可 以驅動白色帶電粒子移動’以使電泳顯示薄膜顯示出黑 色、白色或疋不同階5周的灰色。此外,在彩色的電子書中, 為了顯示紅、、綠、藍三原色,需於將摻雜有白色帶電粒子 之紅色電泳液、綠色電泳液以及藍色電泳液形成於不同的 微杯(micro-cups)中,習知的作法主要有兩種’ i中一 透過用喷墨印刷的方式將不同顏色的電泳_ = 中,另-侧是透過乡轉光聽製縣 的= 液密封於微杯中。 匕幻€冰 201251027 由於電泳顯示器屬於反射式之顯示器,因此不論是里 白還是彩色的電子書,㈣要環境光的照射才能顯示晝 ,。值得注意的是,由於電泳顯示器中所使用的電泳顯示 薄膜無法完全遮蔽環境光,因此當電泳顯示雜環境光照 射時’心:^!_電賴示薄膜的馳電晶體陣列會產生光 漏電流(photo leakage current) ’進而導致電泳顯示薄膜的顯 示異常。 為了上述之改善光漏電流的問題,已有習知技術在薄 膜電晶體上額外製作遮光金屬’此遮光金屬的製作會 程所需使用的群數增加,進而造成本上的負擔以^產能 的降低。此外’亦有習知技術直接制金屬材f (例如術 銘/錮來s作畫素電極’喊畫素電極具有遮光的效果, 但此作法會面金屬腐I虫(c〇rr〇si〇n)等問題。 【發明内容】 泳 ^發明提供-種主動元件與具有此主動之 顯不器。 層、-閘絕緣層、,及極其,一閘極、-通道 LIZ 間極與通道層之間,源極與沒極分別 屉ΐ通道層的部分區域未被源極與汲極所覆 &於富♦氧化物保護層與閘極之間,而富%氧 八少魏未獅極與祕所錢之通道層的部 从供―種電泳顯示ϋ,其包括-主動元件陣 201251027 列基板以及一電泳顯示薄膜。主動元件陣列基板具有少個 前述之主動元件以及多個畫素電極,其中各個主^元^分 別與其中一畫素電極電性連接,電泳顯示薄膜則配 動元件陣列基板上。 且於土 在本發明之一實施例中,前述之主動元件可進—牛勺 括-無機保護層,此無機保護層配置於富 = 與通道層之間。 初诉^隻層 在本發明之一實施例_,前述之主動元件可進—步包 括一無機保護層與一有機保護層,無機保護層配置於舍矽 氧化物保護層與通道層之間,且有機保護層配置於富ς 化物保護層上。 一在本發明之一實施例中,前述之主動元件可進—步包 ^有機保護層’此有舰制配£於富魏化物保護層 ^本發明之一實施射,前述之富石夕氧化物保護層的 厚度例如係介於1000埃至6000埃之間。 八佑ϊί翻之—實施射,前述之富魏化物保護層僅 刀佈於未破源極歧極所覆蓋之通道層的部分區域上方。 =本發明之主動元件具有穿透率低於或等於观 電^^化物保護層,因此本發明之主動元件具有較佳的 易懂為之上述和其他目的、特徵和優點能更明顯 明如下。肖+較佳實施例,並配合所附圖式,作詳細說 6 201251027 【實施方式】 圖1為本發明第—實施例之電泳顯示n的剖面示意 °。清參照圖1,本實施例之電泳顯示H 1GG包括一主動 元件陣列基板110以及一雷、、u 匕括主動 示薄膜120㈣认電賴2〇,其中電泳顯 溥膜i2〇配置於主動元件陣列基板11〇上201251027 VI. Description of the Invention: [Technical Field] The present invention relates to an active element, and more particularly to an active element having a yttrium-rich oxide protective layer. [Prior Art] In recent years, as various display technologies continue to flourish, products such as electrophoretic displays, liquid crystal displays, plasma displays, and organic light-emitting diode displays have been gradually commercialized after continuous research and development. It is applied to display devices of various sizes and various areas. With the increasing popularity of portable electronic products, flexible displays (such as e-paper, e-books, etc.) have gradually gained market attention. In general, electronic paper (e-paper) and e-book (e_b〇〇k) use electrophoretic display technology for display purposes. Taking an e-book that can only display black and white as an example, the electrophoretic display film (EPD film) is mainly composed of a black electrophoresis liquid and white charged particles doped in a black electrophoresis liquid, and can drive white charged particles by applying a voltage. Move 'to make the electrophoretic display film show black, white or 疋 different grades of 5 weeks of gray. In addition, in a color e-book, in order to display the three primary colors of red, green, and blue, a red electrophoresis liquid, a green electrophoresis liquid, and a blue electrophoresis liquid doped with white charged particles are formed in different microcups (micro- In cups), there are two main practices in the 'i. One is to use electrophoresis in different colors by inkjet printing _ = medium, and the other side is sealed by liquid crystal in the village. in.匕幻€冰 201251027 Since the electrophoretic display is a reflective display, it can display 昼, whether it is a white or color e-book, or (4) ambient light. It is worth noting that since the electrophoretic display film used in the electrophoretic display cannot completely obscure the ambient light, when the electrophoretic display shows the ambient light irradiation, the photo-current leakage crystal of the thin film of the film is generated. Photo leakage current) 'In turn, the display of the electrophoretic display film is abnormal. In order to improve the problem of light leakage current, the prior art has additionally produced a light-shielding metal on a thin film transistor. The number of groups required for the production process of the light-shielding metal is increased, thereby causing a burden on the device. reduce. In addition, there is also a conventional technique for directly producing metal materials f (for example, the technique of ing ming 锢 s 作 画 电极 ' ' ' ' ' ' ' ' 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极[Summary of the Invention] [Summary of the Invention] The invention provides an active device and a device having such an active layer, a gate, a gate insulating layer, and an extreme, a gate, a channel between the LIZ and the channel layer. The source and the immersed part of the channel layer are not covered by the source and the bungee and are between the OX oxide protective layer and the gate, and the rich oxygen is less than the Wei lion and the secret The portion of the channel layer of the money is displayed from the donor electrophoresis layer, which includes an active element array 201251027 column substrate and an electrophoretic display film. The active device array substrate has a small number of the aforementioned active elements and a plurality of pixel electrodes, each of which The main element is electrically connected to one of the pixel electrodes, and the electrophoretic display film is coupled to the element array substrate. And in one embodiment of the invention, the active element can be incorporated into the elemental Protective layer, this inorganic protective layer is configured in rich = and Between the channel layers. In the first embodiment of the present invention, the active device may further include an inorganic protective layer and an organic protective layer, and the inorganic protective layer is disposed on the protective layer of the oxide layer. Between the channel layers, and the organic protective layer is disposed on the yttrium-rich protective layer. In one embodiment of the present invention, the active component can be further encapsulated with an organic protective layer. A protective layer of the present invention is applied to one of the present inventions, and the thickness of the protective layer of the above-mentioned rich shixi oxide is, for example, between 1000 angstroms and 6000 angstroms. The layer is only disposed over a portion of the channel layer covered by the unbroken source. The active element of the present invention has a transmittance lower than or equal to the protective layer of the electro-chemical layer, and thus the active device of the present invention has The above and other objects, features and advantages will be more apparent from the following description. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a first embodiment of the present invention. - Electrophoretic display of the examples n Referring to FIG. 1, the electrophoretic display H 1GG of the present embodiment includes an active device array substrate 110 and a laser, and an active display film 120 (4), which is an electrophoretic display film i2〇. Disposed on the active device array substrate 11
動元件陣瓶板U0具有多個絲元件112U =⑷其中各個主動元件112分別與其中4= 屏如圖1所示’主動元件112包括二閘極 H2G —通道層112C、—問絕緣層⑴、一源極心、一 >及極112D以及一富石夕氧化物保護層m,其中間戶 =配置於閘極mG與通道層之間,源極u2s ^ 分別與通道層112c接觸,且通道層咖的部分 區域X未被源極U2S與汲極112D所覆蓋。通道声⑽ 位於富魏化物保護層PV1與閘極112(}之間,而 化純護層PV1至少遮蔽未被源極㈣與祕uiD戶^ S之ίΐ層112c的部分區域x,且富魏化物保護層 之牙透率低於或等於7〇%。 如圖1所示,主動元件112可選擇性地包括一有 匕層PV3 ’此有機保護層pv3配置於富石夕氧化物保護層 PV1上:且晝素電極114配置於有機保護層PV3上。為^ 使主動tl件112的汲極U2D與晝素電極114電性, 有機保護層PV3與富魏化物保護層ρνι中例如形 接觸齒wi ’而晝素電極114係透過接觸窗wi與主動元 件112的及極112d電性連接。在本實施例中,有機保護 層PV3之材㈣如為高分子聚合物、含感光材質之有機 201251027 物、苯并環丁烯(Benzocyclobutene ; BCB)、全氟環丁烧 (Perfhiorocydobutane ; PFCB)、氟化之對二甲苯(flu〇rinated para-xylene)、丙烯酸酯樹脂(acrylic resin)及有色樹脂(c〇i〇r resin)等。 在本實施例中,富矽氧化物保護層PV1的厚度例如係 介於1000埃至6000埃之間。富石夕氧化物保護層pvi例如 係採用化學氣相沈積的方式形成,而形成富石夕氧化物保護 層PV1的製程配方(recipe)例如是以矽甲烷(SiH4)與一氧化 二氮(ΝζΟ)作為反應氣體,其中矽曱烷(SiH4)與一氧化二氣 (AO)之氣體流量比例如是大於或等於丨8。當石夕甲烧⑸仏) 與一氧化二氮(N2〇)之氣體流量比大於或等於丨8時,富石^ 氧化物保護層PV1的穿透率可被控制在70%以下。舉例而 言’石夕甲烷(SiH4)之氣體流量為497 seem,一氧化二氮(n2〇) 之氣體流量為276 seem或以下。 值得注意的是,本實施例之富矽氧化物保護層ρνι的 穿透率可藉由製程配方調整(即矽曱烷(SiH4)與一氧化二 氮(νζο)之流量比)。此外’富矽氧化物保護層ρνι的穿 透率亦可透過富矽氧化物保護層PV1的厚度進行調整。 在本實施例中,電泳顯示薄膜120包括一導電層122、 一介電層124以及多個電泳顯示介質126。如圖! ^示, 介電層124配置於導電層122之一表面上,介電層具 有多個呈陣列排列且位於其下表面之微杯124a,:介電^ 124位於導電層122與主動元件陣列基板11()之間。此外, 電泳顯示介質126配置於微杯124a内。電泳顯示介質126 包含電泳液126a與帶電荷粒子126b。本實施例之各個微 8 201251027 杯124a可為—多邊形柱體空間(如六角柱體空間)、擴圓 柱體空間,或是圓柱體空間。 圖2為本發明第二實施例之電泳顯示器的剖面示音 圖。請參照圖1與圖2,本實施例之電泳顯示器⑽ 一貫施例之電泳顯示器1⑻類似,二者差異之處在於.、本 貫施例之主動元件112a進一步包括一無機保護層pv2,且 無機保護層PV2配置於富⑪氧化物保制PV1與通道層 ii^c之間。在本實施例中,無機保護層pv2之材質例士曰口 為氮化矽、氧化矽、氮氧化矽。 從圖2可知,為了使主動元件U2a的汲極U2d盥苎 ^電極114 t性連接,富魏化物保護層ρνι、無機保護 曰PV2與有機保護層PV3中例如形成有接觸窗w2,而晝 素電極114係透過接觸窗W2與主動元件112的 ^ 電性連接。 一值得注意的是,在其他可行的實施例中,前述之主動 元,112a亦可僅具有無機保護層pv2,但不具有配置於富 矽f化物保護層PV1上之有機保護層pv3。換言之,在形 成前述之絲元件112a的製財,可以省略有機保護層 PV3的製作。 ,3為本發明第三實施例之電泳顯示器的剖面示意 圖。請參照圖3 ’本實施例之電泳顯示器1〇%與第一實施 例之電泳顯示器1GG類似’二者差異之處在於:本實施例 之主動tl件112b中之富矽氧化物保護層ρνι,僅分佈於未 被源極112S與汲極112D所覆蓋之通道層112C的部分區 域X上方。此外,晝素電極114係透過形成於有機保護層 201251027 ^中的接觸請與杨4U2b__D電性連 圖。發Γί四實施例之電泳齡-剖面示音 例之電冰顯示器職類似, Ί實知 之主動元件112c中之富二之處在於.本貫施例 層PV2’僅分佈於未被源極lus ^呆及與無機保護 道層112C的部分區域又上:外木佥=所覆蓋之通 的沒極mD電性連接。中的接觸窗W4與絲元件mc 由於本發明之主動元件山 =低於或等於70%之富_保:= 本發明之主動元件112罝古仏处^ V1因此 漏電流)。 H佳的電氣特性(即較低的光 實驗例 圖5B圖中物保護層的波長·穿透率關係圖,而 轉氧化物保護層之電泳顯示器“ί 在波長範圍介於300太;=圖5A,昌石夕氧化物保護層 ,,富.氧化:_〇==穿= ===^—氧化二氮(⑽作歧應氣 甲坑(SlH4)與一氧化二氮(明之氣體流量比例 201251027 如,大於鱗於L8。切甲邮叫與—氧化二氣(N2〇) 之氣體流量比大於或等於L8時,料氧化物保護層ρνι 的穿透率可被控制在7G%以下。舉例而言,碎曱烧(siH4) 之氣體流量為497 _,-氧化二氮_)之氣體流量為 276 seem或以下。 接著請參照圖5B,關係曲線A代表具有富矽氧化物 保護層之電泳顯示器(如圖2所繪示)的波長·穿透率關係 曲線,而關係曲線B代表不具有富矽氧化物保護層之電泳 顯示器的波長-穿透率關係曲線。從關係曲線A、B可知, 富矽氧化物保護層可以將主動元件陣列基板11〇的穿透率 大幅降低。詳言之,主動元件陣列基板11()的平均穿透 從4.4%左右降至1%左右。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保蠖 範圍當視後附之申請專利範圍所界定者為準。 ,、 【圖式簡單說明】 圖1為本發明第一實施例之電泳顯示器的剖面示音 圖。 w • 圖2為本發明第二實施例之電泳顯示器的剖面示十 圖3為本發明第三實施例之電泳顯示器的 圖。 面示意 11 201251027 圖。圖4為本發明第四實施例之電泳顯示器的剖面示意 圖5A為富矽氧化物保護屑 圖沾中的二關係曲線;穿透率關係圖。 之電泳顯示器與不具有富有富矽氧化物保 波長-穿透率關係曲線。氧化物保護層之電泳顯示2 【主要元件符號說明】 電冰顯示器 主動元件 100、100a、l〇〇b、100c : 110 :主動元件陣列基板 112、112a、112b、112c : 112G :閘極 112C .通道層 112S :源極 112D :汲極 114 :晝素電極 120 .電泳顯示薄膜 122 :導電層 124 :介電層 124a :微杯 126 :電泳顯示介質 126a :電泳液 126b .帶電荷粒子 GI :閘絕緣層 12 201251027 PVl、PV1’ :富矽氧化物保護層 PV2、PV2’ :無機保護層 PV3 :有機保護層 Wl、W2、W3、W4 :接觸窗 X:部分區域 13The moving element array board U0 has a plurality of wire elements 112U=(4) wherein each active element 112 and 4= respectively of the screen as shown in FIG. 1 'active element 112 includes two gates H2G - channel layer 112C, - insulating layer (1), a source core, a > and a pole 112D and a rich shixi oxide protective layer m, wherein the middle of the household = is disposed between the gate mG and the channel layer, the source u2s ^ is in contact with the channel layer 112c, respectively, and the channel A partial area X of the layer coffee is not covered by the source U2S and the drain 112D. The channel sound (10) is located between the PV-rich protective layer PV1 and the gate 112 (}, and the pure protective layer PV1 at least shields the partial region x of the ΐ ΐ layer 112c that is not the source (four) and the secret uiD The tooth resistivity of the protective layer is lower than or equal to 7〇%. As shown in Fig. 1, the active element 112 may optionally include a germanium layer PV3 'this organic protective layer pv3 is disposed on the Fu Shi Xi oxide protective layer PV1 Upper: and the halogen electrode 114 is disposed on the organic protective layer PV3. The gate U2D of the active t-piece 112 is electrically connected to the halogen electrode 114, and the organic protective layer PV3 and the fermented protective layer ρνι are, for example, shaped contact teeth. Wi' and the halogen electrode 114 is electrically connected to the pole 112d of the active device 112 through the contact window wi. In the embodiment, the material of the organic protective layer PV3 (4) is a polymer, and the organic material containing the photosensitive material 201251027 Benzocyclobutene (BCB), Perfhiorocydobutane (PFCB), fluor〇rinated para-xylene, acrylic resin and colored resin ( C〇i〇r resin), etc. In this embodiment, the cerium-rich oxide The thickness of the sheath PV1 is, for example, between 1000 angstroms and 6000 angstroms. The Fu Shi Xi oxide protective layer pvi is formed, for example, by chemical vapor deposition, and forms a process recipe of the Fu Shi Xi oxide protective layer PV1 ( The recipe is, for example, a reaction gas of methane (SiH4) and nitrous oxide (ΝζΟ), wherein a gas flow ratio of decane (SiH4) to dioxin (AO) is, for example, greater than or equal to 丨8. When the gas flow ratio of cerium oxide (5) 仏) and nitrous oxide (N2 〇) is greater than or equal to 丨8, the penetration rate of the PV1 oxide protective layer PV1 can be controlled to be less than 70%. For example, the gas flow rate of Shixi methane (SiH4) is 497 seem, and the gas flow rate of nitrous oxide (n2〇) is 276 seem or less. It should be noted that the penetration rate of the cerium-rich oxide protective layer ρνι of the present embodiment can be adjusted by the process recipe (i.e., the flow ratio of silane (SiH4) to nitrous oxide (νζο)). Further, the transmittance of the ?-rich oxide protective layer ρνι can also be adjusted by the thickness of the cerium-rich oxide protective layer PV1. In this embodiment, the electrophoretic display film 120 includes a conductive layer 122, a dielectric layer 124, and a plurality of electrophoretic display media 126. As shown! The dielectric layer 124 is disposed on a surface of the conductive layer 122. The dielectric layer has a plurality of microcups 124a arranged in an array and located on the lower surface thereof. The dielectric layer 124 is located on the conductive layer 122 and the active device array substrate. Between 11(). Further, the electrophoretic display medium 126 is disposed in the microcup 124a. Electrophoretic display medium 126 includes electrophoretic fluid 126a and charged particles 126b. Each of the micro 8 201251027 cups 124a of the present embodiment may be a polygonal cylinder space (such as a hexagonal cylinder space), a circular cylinder space, or a cylindrical space. Fig. 2 is a cross-sectional view showing the electrophoretic display of the second embodiment of the present invention. Referring to FIG. 1 and FIG. 2, the electrophoretic display (1) of the embodiment is similar to the electrophoretic display 1 (8) of the conventional embodiment, and the difference is that the active device 112a of the present embodiment further includes an inorganic protective layer pv2, and is inorganic. The protective layer PV2 is disposed between the rich 11 oxide-protected PV1 and the channel layer ii^c. In the present embodiment, the material of the inorganic protective layer pv2 is yttrium nitride, ytterbium oxide or yttrium oxynitride. As can be seen from FIG. 2, in order to t-connect the gate U2d盥苎 electrode 114 of the active device U2a, the rich-wei protective layer ρνι, the inorganic protective layer PV2 and the organic protective layer PV3 are formed with, for example, a contact window w2, and the halogen is formed. The electrode 114 is electrically connected to the active device 112 through the contact window W2. It is to be noted that in other possible embodiments, the aforementioned active element 112a may have only the inorganic protective layer pv2, but does not have the organic protective layer pv3 disposed on the fluorene-rich protective layer PV1. In other words, in the production of the aforementioned silk element 112a, the production of the organic protective layer PV3 can be omitted. 3 is a schematic cross-sectional view of an electrophoretic display according to a third embodiment of the present invention. Referring to FIG. 3, the electrophoretic display of the present embodiment is similar to the electrophoretic display 1GG of the first embodiment. The difference between the two is that the active oxide layer ρνι in the active t1 112b of the embodiment is It is distributed only over a partial region X of the channel layer 112C that is not covered by the source 112S and the drain 112D. In addition, the halogen electrode 114 is electrically connected to the Yang 4U2b__D through the contact formed in the organic protective layer 201251027^. The electrophoretic age of the fourth embodiment is similar to that of the electro-icy display of the cross-sectional sound example. The richness of the active component 112c is that the present embodiment layer PV2' is only distributed in the source lus ^ Part of the area of the inorganic protective layer 112C is again: the outer raft = the incomplete mD electrical connection of the covered. The contact window W4 and the wire element mc are rich in the active component mountain of the present invention = less than or equal to 70% _bao: = the active component 112 of the present invention is at the same time as V1 and therefore leakage current). H good electrical characteristics (ie, the lower light experiment example Figure 5B picture of the wavelength protection layer of the material protection layer, and the conversion of the oxide protective layer of the electrophoretic display "ί in the wavelength range of 300 too; = map 5A, Changshi eve oxide protective layer, rich. Oxidation: _〇 == wear = ===^- nitrous oxide ((10) for the gas pit (SlH4) and nitrous oxide (the gas flow ratio of Ming 201251027 For example, if the gas flow ratio of the stencil and the oxidized gas (N2〇) is greater than or equal to L8, the penetration rate of the oxide protective layer ρνι can be controlled below 7G%. For example, the gas flow rate of 曱 曱(siH4) is 497 _, - nitrous oxide _) is 276 seem or less. Next, referring to FIG. 5B, the relationship curve A represents electrophoresis with a protective layer of cerium-rich oxide. The wavelength versus transmittance curve of the display (as shown in Figure 2), and the relationship curve B represents the wavelength-transmission curve of the electrophoretic display without the cerium-rich oxide protective layer. From the relationship curves A, B The antimony oxide protective layer can greatly reduce the transmittance of the active device array substrate 11 In detail, the average penetration of the active device array substrate 11 () is reduced from about 4.4% to about 1%. Although the invention has been disclosed in the preferred embodiments as above, it is not intended to limit the invention, The skilled artisan can make some modifications and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of the present invention is defined by the scope of the appended claims. 1 is a cross-sectional view of an electrophoretic display according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing an electrophoretic display according to a second embodiment of the present invention. FIG. 3 is an electrophoretic display according to a third embodiment of the present invention. Figure 4 is a cross-sectional view of an electrophoretic display according to a fourth embodiment of the present invention. FIG. 5A is a two-relationship curve of a cerium-rich oxide protective chip; a transmittance relationship diagram. Does not have a rich 矽-rich oxide wavelength-transmission curve. Electrophoretic display of oxide protective layer 2 [Main component symbol description] Electric ice display active components 100, 100a, l〇〇b, 100c: 1 10: active device array substrate 112, 112a, 112b, 112c: 112G: gate 112C. channel layer 112S: source 112D: drain 114: halogen electrode 120. electrophoretic display film 122: conductive layer 124: dielectric layer 124a Microcup 126: electrophoretic display medium 126a: electrophoresis liquid 126b. charged particle GI: gate insulating layer 12 201251027 PVl, PV1': cerium-rich oxide protective layer PV2, PV2': inorganic protective layer PV3: organic protective layer W1, W2, W3, W4: contact window X: partial area 13