[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201250334A - Liquid crystal filling apparatus - Google Patents

Liquid crystal filling apparatus Download PDF

Info

Publication number
TW201250334A
TW201250334A TW100120022A TW100120022A TW201250334A TW 201250334 A TW201250334 A TW 201250334A TW 100120022 A TW100120022 A TW 100120022A TW 100120022 A TW100120022 A TW 100120022A TW 201250334 A TW201250334 A TW 201250334A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
filling device
substrate
crystal filling
gas
Prior art date
Application number
TW100120022A
Other languages
Chinese (zh)
Other versions
TWI459074B (en
Inventor
Chung-Wei Chang
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW100120022A priority Critical patent/TWI459074B/en
Priority to CN2012103813654A priority patent/CN102967968A/en
Priority to CN201110220083.1A priority patent/CN102253539B/en
Publication of TW201250334A publication Critical patent/TW201250334A/en
Application granted granted Critical
Publication of TWI459074B publication Critical patent/TWI459074B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

A liquid crystal filling apparatus includes a liquid crystal drop dispenser and a rotating mechanism. The liquid crystal drop dispenser can drip liquid crystal onto a substrate. The rotating mechanism includes a rotating part and a motor. The motor can rotate the rotating part. The projection path of the dripping hole of the liquid crystal drop dispenser on the substrate passes through a solid of revolution obtained by rotating the rotating part.

Description

201250334 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種液晶填充裝置。 【先前技術】 傳統的液晶填充製程,必須先抽成真空,然後再將液 晶吸入兩片基板之間。但這項製程應用在大尺寸面板時, 往往遭遇到耗時過久的問題。舉32吋以上面板為例,應用 傳統製程需要5天以上的時間,這樣的製程時間明顯是不 具市場競爭力的。 液晶滴注技術(One Drop Fill ; ODF)是一項劃時代的 技術。這項技術是把液晶均勻地滴在基板表面,然後再貼 合另一片基板,因此不會因為尺寸變大而使得製程時間拉 長,即使大尺寸面板也只需要耗時幾分鐘。 但液晶滴注技術也不是完全沒有任何問題的,其中一 項亟待解決的問題就是滴下色暈(Drop Mura)的問題。傳統 上,解決滴下色暈的方法不外乎就是縮小滴下液晶的尺 寸。但受限於液晶泵浦的精度與穩定度,現今滴下液晶的 尺寸幾乎已經達到現有工藝水準的極限。因此,如何更進 一步地解決滴下色暈的問題,已經成為相關產業迫切需要 解決的問題之一。 【發明内容】 因此’本發明之一技術態樣是在提供一種液晶填充裝 201250334 置,用以解決以上先前技術所遭遇的困難。 根據本發明一實施方式,一種液晶填充裝置包含液晶 滴下機與旋轉機構。液晶滴下機用以對基板滴下液晶。旋 轉機構包含旋轉部與馬達。馬達用以驅動旋轉部旋轉,其 中液晶滴下機之液晶滴出口在基板上的垂直投影路徑穿過 旋轉部旋轉時所涵蓋的區域。 在本發明一或多個實施方式中,上述之旋轉部包含至 少一線材,此線材的一端與馬達的輸出軸連接。 在本發明一或多個實施方式中,上述之線材的形狀為 棒狀、槳狀、刀鋒狀或上述之任意組合。 在本發明一或多個實施方式中,當上述之馬達驅動線 材旋轉時,線材將繞馬達的輸出軸旋轉而形成錐面,液晶 滴下機之液晶滴出口在基板上的垂直投影路徑穿過錐面。 在本發明一或多個實施方式中,當上述之馬達驅動線 材旋轉時,線材與馬達之輸出軸之間的夾角為約90°〜170 〇 〇 在本發明一或多個實施方式中,當上述之馬達驅動線 材旋轉時,線材與馬達之輸出軸之間的夾角為約110°〜 150。。 在本發明一或多個實施方式中,上述之線材的截面積 為約 100〜100000000 μπι2。 在本發明一或多個實施方式中,上述之馬達的輸出軸 的轉速為約30〜60000 rpm。 在本發明一或多個實施方式中,上述之馬達的輸出轴 的轉速為約60〜60000 rpm。 201250334 的轉=::=:,,上述之馬達的心軸 馬達之輪*軸的’上述之線材的數量、 式·· 轉Ha訂機之液晶滴落頻率滿足下 1.5 <201250334 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a liquid crystal filling device. [Prior Art] A conventional liquid crystal filling process must first draw a vacuum and then suck the liquid crystal between the two substrates. However, when this process is applied to large-sized panels, it often encounters problems that take too long. Taking 32 吋 or more panels as an example, it takes more than 5 days to apply the traditional process. Such process time is obviously not competitive in the market. One Drop Fill (ODF) is an epoch-making technology. This technique allows the liquid crystal to be evenly dropped on the surface of the substrate and then attached to the other substrate, so that the process time is not lengthened because of the large size, and even a large-sized panel takes only a few minutes. However, the liquid crystal dropping technology is not without any problem at all. One of the problems to be solved is the problem of dropping the mist Mura. Traditionally, the solution to the drop of color halo is nothing more than reducing the size of the dropped liquid crystal. However, due to the accuracy and stability of liquid crystal pumping, the size of liquid crystal dropped today has almost reached the limit of the existing process level. Therefore, how to further solve the problem of dripping color halo has become one of the urgent problems that related industries need to solve. SUMMARY OF THE INVENTION Therefore, one aspect of the present invention provides a liquid crystal filling device 201250334 to solve the difficulties encountered in the prior art. According to an embodiment of the present invention, a liquid crystal filling apparatus includes a liquid crystal dripper and a rotating mechanism. The liquid crystal drip machine is used to drop the liquid crystal to the substrate. The rotating mechanism includes a rotating portion and a motor. The motor is used to drive the rotation of the rotating portion, wherein the vertical projection path of the liquid crystal drop outlet of the liquid crystal drip on the substrate passes through the area covered by the rotation of the rotating portion. In one or more embodiments of the present invention, the rotating portion includes at least one wire, and one end of the wire is connected to an output shaft of the motor. In one or more embodiments of the present invention, the wire material has a shape of a rod, a paddle, a blade, or any combination thereof. In one or more embodiments of the present invention, when the motor drive wire rotates, the wire will rotate around the output shaft of the motor to form a tapered surface, and the vertical projection path of the liquid crystal drop outlet of the liquid crystal dripper on the substrate passes through the cone. surface. In one or more embodiments of the present invention, when the motor drive wire is rotated, the angle between the wire and the output shaft of the motor is about 90° to 170 〇〇 in one or more embodiments of the present invention, when When the motor drive wire is rotated, the angle between the wire and the output shaft of the motor is about 110° 150 150. . In one or more embodiments of the present invention, the wire rod has a cross-sectional area of about 100 to 100,000,000 μm 2 . In one or more embodiments of the present invention, the rotational speed of the output shaft of the motor is about 30 to 60000 rpm. In one or more embodiments of the present invention, the rotational speed of the output shaft of the motor is about 60 to 60000 rpm. 201250334's turn =::=:,, the mandrel of the above motor, the wheel of the motor *the number of the above-mentioned wire, the formula · The liquid drop rate of the Ha-order machine satisfies the lower 1.5 <

Nr 么t ’N為線材的數量,R為馬達之 Dlc為液晶滴下機之液晶滴落頻率。 轉遑 在本發明—或多個實施方式中, 馬達之輸出軸的轉速錢a滴m 《線材的數置、 ㈣速與“滴下機之液晶滴落頻率滿足下 1 C ^ 1,5<~^<50Nr is the number of wires, and R is the Dg of the motor is the liquid crystal dripping frequency of the liquid crystal drip. Turning to the present invention - or a plurality of embodiments, the rotational speed of the output shaft of the motor, the amount of the wire, the number of wires, the speed of the liquid drop, and the liquid drop rate of the drip machine satisfy the following 1 C ^ 1,5 <~ ^<50

ULC D 曰’Γ為線材的數量,R為馬達之輸出軸的轉速, IX為液日日滴下機之液晶滴落頻率。 在本發明—或多個實施方式中,上述之 液晶滴落頻率為約5〜60滴/秒。 在本發明—或多個實施方式中,上述之旋轉部包含 面錐盤’斜面錐般的了音點連技民、去认丨± 機m、# b 連接馬達的輸㈣,且液晶滴下 機之液aa㈣口在基板上_直投料㈣過斜面錐盤。 ^本^明—❹個實施方式中,上述之斜面錐盤面對 液曰a滴下機的一面整面均為疏液表面。 在本發明—或多個實施方式中,上述之旋轉部包含複 數個引流尖端’這些引流尖端排列於斜面錐盤的底緣。 201250334 液面f述之斜*錐盤㈣ 在本發明一 液晶滴下機的一 160。 〇 或多個實施方式t,上狀斜面錐盤面對 面與馬達之輸出軸之間的夾角為約95。〜 上述之引流尖端的數 上述之馬達之輸出軸 上述之旋轉部包含複 在本發明一或多個實施方式中 量為約1〜50。 在本發明一或多個實施方式中 的轉速為約100〜60000 rpm。 在本發明—❹個實施方式巾,上狄_部包含 表面與複數個疏絲面,這些親絲面與疏液表 ,彼此父錯地排列於斜面錐盤面對液晶滴下機的—面,且 母一親液表面與每—疏絲面均呈帶狀而自斜面錐盤的頂 點延伸至斜面錐盤的底緣。 在本發明—或多個實施方式中,上述之斜面錐盤面對 液B曰滴下機的該面與馬達之輸出軸之_ 〜150。。 在本發明-或多個實施方式中,上述之斜面錐盤具有 鐘個凹槽’這些凹㈣列於斜面錐盤面對液晶滴下機的 :面」此外,這些凹槽於斜面錐盤之該面上形成複數個棱 線’廷些稜線均自斜面錐盤的頂料伸至斜面肺的底緣。 在本發明-或多個實施方式中’上述之旋轉部包含複 201250334 數個親液表面與複數個疏液表面,這些親液表面與疏液表 面彼此交錯地排列於斜面錐盤面對液晶滴下機的該面,且 每一親液表面與每一疏液表面均呈帶狀而自斜面錐盤的頂 點延伸至斜面錐盤的底緣。 在本發明一或多個實施方式中,任兩相鄰之親液表面 與疏液表面中間夾上述之稜線其中之一。 在本發明一或多個實施方式中,上述之斜面錐盤面對 液晶滴下機的該面整面均為疏液表面。 在本發明一或多個實施方式中,上述之斜面錐盤面對 液晶滴下機的該面與馬達之輸出軸之間的夾角為約100° 〜160〇 。 在本發明一或多個實施方式中,上述之斜面錐盤面對 液晶滴下機的該面與馬達之輸出軸之間的夾角為約110° 〜150。。 在本發明一或多個實施方式中,上述之稜線的數量為 約1〜20。 在本發明一或多個實施方式中,上述之旋轉部的底緣 與基板之間的距離為約1〜50 mm。 在本發明一或多個實施方式中,上述之液晶填充裝置 更包含靜電消除器,此靜電消除器用以消除基板與液晶上 的靜電。 在本發明一或多個實施方式中,上述之靜電消除器為 軟 X 射線源(soft X-ray source)、除靜電離子棒(Ionizer Bar) 或上述之任意組合。 在本發明一或多個實施方式中,上述之液晶填充裝置 7 201250334 更包含氣搶,此氣搶用以對基板上之液晶喷氣,使得液晶 流動,以擴大液晶在基板上的覆蓋面積。 在本發明一或多個實施方式中,上述之氣槍的喷頭至 基板的距離為約60〜5000 μπι。 在本發明一或多個實施方式中,上述之氣槍的喷頭至 基板的距離為約80〜3000 μπι。 在本發明一或多個實施方式中,上述之氣槍的喷頭至 基板的距離為約80〜2500 μπι。 在本發明一或多個實施方式中,上述之氣槍的氣壓為 約 0.04〜0.25 Mpa。 在本發明一或多個實施方式中,上述之氣搶的氣壓為 約 0.04〜0.15 Mpa。 在本發明一或多個實施方式中,上述之氣搶為潔淨乾 燥空氣搶、氮氣槍或上述之任意組合。 在本發明一或多個實施方式中,上述之氣槍所喷出的 氣體溫度為約25〜40°C。 在本發明一或多個實施方式中,上述之氣槍的喷頭為 線形。 在本發明一或多個實施方式中,上述之液晶填充裝置 更包含移動裝置,此移動裝置用以在氣槍喷氣時,使氣搶 相對於基板線性移動,藉此讓氣槍所喷出之氣體流掃過基 板的表面。 在本發明一或多個實施方式中,上述之氣搶的喷頭為 點形。 在本發明一或多個實施方式中,上述之液晶填充裝置 201250334 更包含移動裝置,此移動裝置用以在氣搶喷氣時,使氣槍 相對於基板線性來回晃動,藉此讓氣搶噴往基板之氣體 流,以基板上之液晶為中心,線性來回晃動。 在本發明一或多個實施方式中,上述之液晶填充裝置 更包含傾斜裝置,此傾斜裝置用以傾斜基板,使得基板與 水平面夾一預定角度。 在本發明一或多個實施方式中,上述之預定角度為約 5〇 〜20。。 在本發明一或多個實施方式中,上述之氣槍的氣壓為 約 0.03〜0.25 Mpa。 在本發明一或多個實施方式中,上述之氣槍的氣壓為 約 0.03〜0.15 Mpa。 在本發明一或多個實施方式中,上述之液晶填充裝置 更包含旋轉裝置,此旋轉裝置用以旋轉基板。 根據本發明另一實施方式,一種液晶填充裝置包含液 晶滴下機與氣搶。液晶滴下機用以對基板滴下液晶。氣槍 用以對基板上之液晶喷氣,使得液晶流動,以擴大液晶在 基板上的覆蓋面積。 上述之氣槍的喷頭至 上述之氣槍的喷頭至 上述之氣槍的噴頭至 上述之氣槍的氣壓為 在本發明一或多個實施方式中 基板的距離為約60〜5000 μιη。 在本發明一或多個實施方式中 基板的距離為約80〜3000 μπι。 在本發明一或多個實施方式中 基板的距離為約80〜2500 μιη。 在本發明一或多個實施方式中 201250334 約 0.04〜0.25 Mpa。 在本發明一或多個實施方式中,上述之氣槍的氣壓為 約 0.04〜0.15 Mpa。 在本發明一或多個實施方式中,上述之氣槍為潔淨乾 燥空氣搶、氮氣搶或上述之任意組合。 在本發明一或多個實施方式中,上述之氣槍所喷出的 氣體溫度為約25〜40°C。 在本發明一或多個實施方式中,上述之氣槍的喷頭為 線形。 在本發明一或多個實施方式中,上述之液晶填充裝置 更包含移動裝置,此移動裝置用以在氣搶噴氣時,使氣搶 相對於基板線性移動,藉此讓氣槍所喷出之氣體流掃過基 板的表面。 在本發明一或多個實施方式中,上述之氣搶的喷頭為 點形。 在本發明一或多個實施方式中,上述之液晶填充裝置 更包含移動裝置,此移動裝置用以在氣搶喷氣時,使氣搶 相對於基板線性來回晃動,藉此讓氣搶喷往基板之氣體 流,以基板上之液晶為中心,線性來回晃動。 在本發明一或多個實施方式中,上述之液晶滴下機用 以對基板滴下複數個液晶,且這些液晶彼此間隔一間距。 上述之氣體流線性來回晃動的振幅約達此間距的5 0 %〜 70%。 在本發明一或多個實施方式中,上述之液晶滴下機用 以對基板滴下複數個液晶,且這些液晶在基板上排列成陣 201250334 列。上述之氣體流線性來回晃動的方向為此陣列的行方向 或列方向。 在本發明一或多個實施方式中,上述之液晶滴下機用 以對基板滴下複數個液晶,且這些液晶在基板上排列成陣 列。上述之氣體流線性來回晃動的方向不為陣列的行方向 或列方向。 在本發明一或多個實施方式中,上述之液晶滴下機用 以對基板滴下複數個液晶,且這些液晶彼此間隔一間距, 此間距為約5〜25 mm。 在本發明一或多個實施方式中,上述之液晶滴下機所 滴下之液晶的單位重量為約0.3〜3 mg/滴。 在本發明一或多個實施方式中,上述之液晶填充裝置 更包含傾斜裝置,此傾斜裝置用以傾斜基板,使得基板與 水平面夾一預定角度。 在本發明一或多個實施方式中,上述之預定角度為約 5。〜20° 。 在本發明一或多個實施方式中,上述之氣搶的氣壓為 約 0.03〜0.25 Mpa。 在本發明一或多個實施方式中,上述之氣搶的氣壓為 約 0.03〜0.15 Mpa。 在本發明一或多個實施方式中,上述之液晶填充裝置 更包含旋轉裝置,此旋轉裝置用以旋轉基板。 在本發明一或多個實施方式中,上述之液晶填充裝置 更包含靜電消除器,此靜電消除器用以消除基板與液晶上 的靜電。 201250334 在本發明一或多個實施方式中,上述之靜電消除器為 軟X射線源(s〇ftx_ray _rce)、除靜電離子棒(IonizerBar) 或上述之任意組合。 别述本發明的實施方式,與已知先前技術相較有下列 優點: 、(j)旋轉機構能夠打亂滴下液晶的位置,並能縮小滴 下液日a的尺寸,因此可以有效改善滴下色暈的問題。 (2)氣搶能夠在基板對組前讓滴落在基板上液晶流 動、擴大液BB在基板上的覆蓋面積。這樣能夠減少在基 板對組時液晶擴散的距離,有助於改善滴下色晕的問題。 【實施方式】 1明起/ 揭露本發明之複數個實施方式,為明域 ^而,鱗解^貫務上的細節將在以下敘料—併說明。 些實務上的細節不應用以限制本發明。 也就疋說,在本發明部分實施方式中,這 是非必要的。此外,Α抨彳θ u得上的細即 槿诳元侔/… 式起見,一些習知慣用的結 構與凡件在圖式中將以簡單示意的方式繪示之。 第一-實施方式 第1圖綠示依照本發明第一實施方式之液晶 100的立體不意圖。如圖所示,—種液晶填充、、 含液晶滴下機U0與旋轉機構12〇。液晶滴下冑11〇用= 基板200滴下液晶300。旋轉機構12〇包含旋 ’ 線材叫與馬達121。馬達121用以驅動旋轉部=如線 201250334 材122)旋轉,其中液晶滴下機110之液晶滴出口在基板2〇〇 上的垂直投影路徑vp穿過旋轉部(例如:線材122)旋轉時 所涵蓋的區域。 在液晶300滴下的過程中,旋轉部(例如:線材122) 會打政液aB 300,使仵液晶300落在基板2〇〇上的位置更 為散亂’並同時使得液晶300的尺寸變小。如此一來,在 基板200對組時,液晶300需要擴散的距離就會變小。一 般而言,液晶300在基板200對組時需要擴散的距離越大, 滴下色暈的問題就會越嚴重。也就是說,液晶3〇〇在基板 200對組時的擴散距離變小,代表著滴下色暈的問題將會 獲得改善。 在本實施方式中,上述之旋轉部可包含至少一線材 122,此線材122的一端與馬達121的輸出軸z連接。上述 之線材122的形狀可為棒狀、槳狀、刀鋒狀或上述之任意 組合’材質可為例如氧化铭陶曼,截面積可為約1 〇〇〜 100000000 μηι2。應了解到,以上所舉之旋轉部的實施態樣 僅為例示’並非用以限制本發明’本發明所屬技術領域中 具有通常知識者,應視實際需要彈性選擇其實施方式。 應瞭解到,「約」係用以修飾任何可些微變化的數量, 但這種些微變化並不會改變其本質。舉例來說,「截面積可 為約100〜100000000 μϊη2」,此一描述除了代表線材122 的截面積確實介於100〜100000000 μηι2外,只要線材122 能夠打散液晶滴下機11〇所滴下的液晶3〇〇,線材122的 截面積亦可略大於100000000 μηι2或略小於1〇〇μπ12。此一 詞彙定義將在整份說明書及申請專利範圍中沿用,不再重 201250334 複贅述之。 當馬達121驅動線材122旋轉時,線材122將繞馬達 121的輸出軸I旋轉而形成錐面。液晶滴下機11()之液晶滴 出口在基板200上的垂直投影路徑VP將穿過錐面。如此 一來’在液晶300滴下時,高速旋轉的線材122將會打散 液晶300,使得液晶300的尺寸變小,位置也變散亂。 當馬達121驅動線材122旋轉時,線材122與馬達121 之輸出軸I之間的夾角0可以視實際情況調整。在本實施 方式中,上述之夾角<9可為約90。〜17〇°或110°〜150 〇 〇 在本實施方式中,上述之線材122的數量、馬達121 之輸出轴I的轉速與液晶滴下機H0之浪晶滴落頻率滿足 下式: 1.5ULC D 曰'Γ is the number of wires, R is the rotational speed of the motor's output shaft, and IX is the liquid crystal drip frequency of the liquid daily drip machine. In the present invention - or a plurality of embodiments, the liquid crystal dropping frequency described above is about 5 to 60 drops/second. In the present invention - or in the embodiment, the rotating portion comprises a face cone disk - a beveled cone-like sound point connecting the technician, the 丨 丨 machine m, # b connecting the motor to the motor (four), and the liquid crystal dripping machine The liquid aa (four) mouth on the substrate _ straight feed (four) over the beveled cone. ^本明明— In one embodiment, the entire surface of the beveled cone facing the liquid helium dropper is a lyophobic surface. In the present invention - or in the embodiments, the rotating portion includes a plurality of drainage tips - the drainage tips are arranged on the bottom edge of the bevel disk. 201250334 Liquid surface f oblique * cone disk (four) In the present invention, a liquid crystal dripping machine 160. 〇 or more embodiments t, the angle between the face-to-face bevel disk facing surface and the output shaft of the motor is about 95. ~ The number of the above-mentioned drainage tips The output shaft of the motor described above includes the rotation portion included in one or more embodiments of the present invention in an amount of about 1 to 50. The rotational speed in one or more embodiments of the present invention is about 100 to 60000 rpm. In the present invention - the embodiment of the towel, the upper portion contains a surface and a plurality of swarf surfaces, the parent silk surface and the lye table, the father is wrongly arranged in the face of the inclined cone facing the liquid crystal dripping machine, And the mother-lyophilic surface and each-silk surface are strip-shaped and extend from the apex of the beveled cone to the bottom edge of the beveled cone. In the present invention - or in various embodiments, the beveled cone is facing the surface of the liquid B dripping machine and the output shaft of the motor _ 150. . In the present invention, or in the embodiment, the beveled cone has a clock groove. The recesses (four) are listed on the face of the bevel disk facing the liquid crystal dripping machine. In addition, the grooves are in the bevel disk. A plurality of ridge lines are formed on the surface, and the ridge lines extend from the top material of the inclined cone to the bottom edge of the sloped lung. In the present invention, or in the embodiments, the rotating portion includes a plurality of lyophilic surfaces and a plurality of lyophobic surfaces, and the lyophilic surfaces and the lyophobic surfaces are alternately arranged on the beveled disk to face the liquid crystal dripping. The face of the machine, and each lyophilic surface and each lyophobic surface are strip-shaped and extend from the apex of the beveled cone to the bottom edge of the beveled disk. In one or more embodiments of the invention, any two adjacent lyophilic surfaces are interposed between the lyophilic surface and one of the ridge lines. In one or more embodiments of the present invention, the face of the beveled cone facing the liquid crystal dripper is a lyophobic surface. In one or more embodiments of the present invention, the angle between the face of the beveled cone facing the liquid crystal dripper and the output shaft of the motor is about 100° to 160〇. In one or more embodiments of the present invention, the angle between the face of the beveled cone facing the liquid crystal dripper and the output shaft of the motor is about 110° to 150°. . In one or more embodiments of the present invention, the number of the ridge lines is about 1 to 20. In one or more embodiments of the present invention, the distance between the bottom edge of the rotating portion and the substrate is about 1 to 50 mm. In one or more embodiments of the present invention, the liquid crystal filling device further includes a static eliminator for eliminating static electricity on the substrate and the liquid crystal. In one or more embodiments of the present invention, the static eliminator is a soft X-ray source, an Ionizer Bar, or any combination thereof. In one or more embodiments of the present invention, the liquid crystal filling device 7 201250334 further includes a gas smashing liquid for jetting liquid crystal on the substrate to cause the liquid crystal to flow to expand the coverage area of the liquid crystal on the substrate. In one or more embodiments of the present invention, the distance from the head of the air gun to the substrate is about 60 to 5000 μm. In one or more embodiments of the present invention, the distance from the head of the air gun to the substrate is about 80 to 3000 μm. In one or more embodiments of the present invention, the distance from the head of the air gun to the substrate is about 80 to 2500 μm. In one or more embodiments of the present invention, the air pressure of the air gun is about 0.04 to 0.25 Mpa. In one or more embodiments of the present invention, the gas pressure of the above gas is about 0.04 to 0.15 Mpa. In one or more embodiments of the present invention, the gas rush is a clean dry air blast, a nitrogen gun, or any combination thereof. In one or more embodiments of the present invention, the temperature of the gas ejected by the air gun is about 25 to 40 °C. In one or more embodiments of the present invention, the nozzle of the air gun described above is linear. In one or more embodiments of the present invention, the liquid crystal filling device further includes a moving device for linearly moving the gas grab relative to the substrate when the air gun is jetting, thereby allowing the gas stream to be ejected by the air gun. Sweep across the surface of the substrate. In one or more embodiments of the present invention, the gas grabbing head is in the shape of a dot. In one or more embodiments of the present invention, the liquid crystal filling device 201250334 further includes a moving device for linearly oscillating the air gun relative to the substrate during the air blast, thereby allowing the gas to be sprayed onto the substrate. The gas flow is centered on the liquid crystal on the substrate and linearly oscillates back and forth. In one or more embodiments of the present invention, the liquid crystal filling device further includes a tilting device for tilting the substrate such that the substrate is at a predetermined angle to the horizontal plane. In one or more embodiments of the present invention, the predetermined angle is about 5 〜 20-20. . In one or more embodiments of the present invention, the air pressure of the air gun is about 0.03 to 0.25 Mpa. In one or more embodiments of the present invention, the air pressure of the air gun is about 0.03 to 0.15 MPa. In one or more embodiments of the present invention, the liquid crystal filling device further includes a rotating device for rotating the substrate. According to another embodiment of the present invention, a liquid crystal filling apparatus includes a liquid crystal dropping machine and a gas grab. The liquid crystal drip machine is used to drop the liquid crystal to the substrate. The air gun is used to jet the liquid crystal on the substrate to cause the liquid crystal to flow to expand the coverage area of the liquid crystal on the substrate. The gas pressure from the nozzle of the air gun to the nozzle of the air gun to the air gun of the air gun to the air gun is a distance of about 60 to 5000 μm in one or more embodiments of the present invention. In one or more embodiments of the invention, the distance of the substrate is about 80 to 3000 μm. In one or more embodiments of the invention, the distance of the substrate is about 80 to 2500 μm. In one or more embodiments of the invention, 201250334 is approximately 0.04 to 0.25 Mpa. In one or more embodiments of the present invention, the air pressure of the air gun is about 0.04 to 0.15 MPa. In one or more embodiments of the present invention, the air gun described above is a clean dry air grab, a nitrogen snatch, or any combination thereof. In one or more embodiments of the present invention, the temperature of the gas ejected by the air gun is about 25 to 40 °C. In one or more embodiments of the present invention, the nozzle of the air gun described above is linear. In one or more embodiments of the present invention, the liquid crystal filling device further includes a moving device for linearly moving the gas grab relative to the substrate during the air jet, thereby allowing the gas to be ejected by the air gun. The flow sweeps across the surface of the substrate. In one or more embodiments of the present invention, the gas grabbing head is in the shape of a dot. In one or more embodiments of the present invention, the liquid crystal filling device further includes a moving device for pulsing the gas to and from the substrate linearly during the air blasting, thereby allowing the gas to be sprayed onto the substrate. The gas flow is centered on the liquid crystal on the substrate and linearly oscillates back and forth. In one or more embodiments of the present invention, the liquid crystal dripper described above is used to drop a plurality of liquid crystals onto a substrate, and the liquid crystals are spaced apart from each other by a pitch. The above-mentioned gas flow linearly oscillates at an amplitude of about 50% to 70% of the pitch. In one or more embodiments of the present invention, the liquid crystal dropping device described above is used to drop a plurality of liquid crystals on a substrate, and the liquid crystals are arranged on the substrate in a row of 201250334. The direction in which the above gas flow is linearly oscillated back and forth is the row direction or column direction of the array. In one or more embodiments of the present invention, the liquid crystal dripper is used to drop a plurality of liquid crystals onto a substrate, and the liquid crystals are arranged in an array on the substrate. The direction in which the gas flow described above linearly oscillates back and forth is not in the row direction or column direction of the array. In one or more embodiments of the present invention, the liquid crystal dripper is configured to drop a plurality of liquid crystals on a substrate, and the liquid crystals are spaced apart from each other by a pitch of about 5 to 25 mm. In one or more embodiments of the present invention, the liquid crystal dropped by the liquid crystal dripping machine has a basis weight of about 0.3 to 3 mg per drop. In one or more embodiments of the present invention, the liquid crystal filling device further includes a tilting device for tilting the substrate such that the substrate is at a predetermined angle to the horizontal plane. In one or more embodiments of the invention, the predetermined angle is about five. ~20°. In one or more embodiments of the present invention, the gas pressure of the above gas is about 0.03 to 0.25 Mpa. In one or more embodiments of the present invention, the gas pressure of the above gas is about 0.03 to 0.15 Mpa. In one or more embodiments of the present invention, the liquid crystal filling device further includes a rotating device for rotating the substrate. In one or more embodiments of the present invention, the liquid crystal filling device further includes a static eliminator for eliminating static electricity on the substrate and the liquid crystal. 201250334 In one or more embodiments of the present invention, the static eliminator is a soft X-ray source (s〇ftx_ray_rce), a static ion bar (IonizerBar), or any combination thereof. The embodiments of the present invention have the following advantages as compared with the prior art: (j) The rotating mechanism can disturb the position where the liquid crystal is dropped, and can reduce the size of the dripping liquid day a, thereby effectively improving the dripping color halo The problem. (2) The air grab can allow the liquid crystal to drip on the substrate before the substrate is paired, and expand the coverage area of the liquid BB on the substrate. This can reduce the distance that the liquid crystal diffuses when the substrate is paired, which helps to improve the problem of dripping color halos. [Embodiment] 1 The various embodiments of the present invention are disclosed and disclosed, and the details of the scalar solution will be described below. These practical details are not intended to limit the invention. That is to say, in some embodiments of the present invention, this is not necessary. In addition, Α抨彳θ u is a fine 即 侔 ... ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 First Embodiments Fig. 1 is a perspective view showing a liquid crystal 100 according to a first embodiment of the present invention. As shown in the figure, a liquid crystal filling, a liquid crystal dripping machine U0 and a rotating mechanism 12A are provided. Liquid crystal dropping 胄11〇 = The liquid crystal 300 is dropped on the substrate 200. The rotating mechanism 12A includes a rotary wire and a motor 121. The motor 121 is used to drive the rotation of the rotating portion = as the line 201250334 material 122), wherein the vertical projection path vp of the liquid crystal drop outlet of the liquid crystal dripper 110 on the substrate 2 is covered by the rotation of the rotating portion (for example, the wire 122). Area. During the dropping of the liquid crystal 300, the rotating portion (for example, the wire 122) will hit the government liquid aB 300, so that the position where the liquid crystal 300 falls on the substrate 2 is more scattered' and at the same time the size of the liquid crystal 300 is made smaller. . As a result, when the substrate 200 is paired, the distance over which the liquid crystal 300 needs to be diffused becomes small. In general, the greater the distance that the liquid crystal 300 needs to diffuse when the substrate 200 is paired, the more serious the problem of dropping the halo. That is to say, the diffusion distance of the liquid crystal 3 〇〇 when the substrate 200 is paired becomes small, and the problem that the dripping color halo is improved will be improved. In the present embodiment, the rotating portion may include at least one wire 122, and one end of the wire 122 is connected to the output shaft z of the motor 121. The shape of the wire 122 described above may be a rod shape, a paddle shape, a blade shape or any combination of the above. The material may be, for example, oxidized Munt Tauman, and the cross-sectional area may be about 1 〇〇 to 100,000,000 μηι2. It is to be understood that the above-described embodiments of the rotating portion are merely exemplary and are not intended to limit the present invention. Those having ordinary knowledge in the technical field to which the present invention pertains should be flexibly selected according to actual needs. It should be understood that "about" is used to modify the amount of any slight change, but such slight changes do not change its essence. For example, "the cross-sectional area may be about 100~100000000 μϊη2". This description is except that the cross-sectional area of the wire 122 is indeed between 100 and 100000000 μηι2, as long as the wire 122 can break the liquid crystal dropped by the liquid crystal drip machine 11 3〇〇, the cross-sectional area of the wire 122 may also be slightly larger than 100000000 μηι2 or slightly less than 1〇〇μπ12. This definition of vocabulary will be used throughout the specification and patent application, and will not be repeated in 201250334. When the motor 121 drives the wire 122 to rotate, the wire 122 will rotate about the output axis I of the motor 121 to form a tapered surface. The vertical projection path VP of the liquid crystal drop outlet of the liquid crystal dripper 11 () on the substrate 200 will pass through the tapered surface. As a result, when the liquid crystal 300 is dropped, the wire 122 which is rotated at a high speed will scatter the liquid crystal 300, so that the size of the liquid crystal 300 becomes small and the position becomes scattered. When the motor 121 drives the wire 122 to rotate, the angle 0 between the wire 122 and the output shaft I of the motor 121 can be adjusted as the case may be. In the present embodiment, the above-mentioned angle <9 may be about 90. 〜17〇° or 110°~150 〇 〇 In the present embodiment, the number of the above-mentioned wires 122, the number of revolutions of the output shaft I of the motor 121, and the wave falling frequency of the liquid crystal dripper H0 satisfy the following formula: 1.5

NRNR

Ar 或者更具體地滿足下式 其中,N為線材122的數量,R為馬達121之輸出軸I 的轉速,DLC為液晶滴下機11〇之液晶滴落頻率。 線材122的數量可依實際情況(例如:液晶300的黏度) 調整,一般來說只要在一條以上即可。由上式可知,線材 122的數量與馬達121之輸出軸1的轉速相關,線材I22 的數量越多,馬達121之輸出軸1的轉速就可以越低。 此外,當線材122的數量為多個時,這些線材122的 201250334 尺寸可以是相同的,也可以是不同的。本發明所屬技術領 域中具有通常知識者,應視實際需要彈性調整線材122的 尺寸。 馬達121之輸出軸I的轉速可視線材122的數量多寡 調整。在本實施方A中’ U1之輸出車由!的轉速可為 約 30〜60000 i*pm、60〜60000 rpm 或 3〇〇〜3〇〇〇〇 rpm。 液晶滴下機110之液晶滴落頻率可視實際情況調整。 一般而言,液晶滴下機110之液晶滴落頻率為約5〜60滴/ 秒,即300〜3,600滴/分。 在本實施方式中,旋轉部的底緣(亦即,線材122的末 端)與基板200之間的距離DS可視實際情況調整。一般來 說,此一距離DS可為約1〜50 mm或5〜30 mm。 第二實施方式 第2圖繪示依照本發明第二實施方式之液晶填充裝置 100的立體示意圖。本實施方式與第一實施方式的不同點 在於:本實施方式之旋轉部包含斜面錐盤123,此斜面錐 盤123的頂點連接馬達121的輸出轴I。液晶滴下機11 〇之 液晶滴出口在基板200上的垂直投影路徑VP穿過斜面錐 盤123。如此一來’在液晶300滴下的過程中,液晶300 會先落在斜面錐盤123面對液晶滴下機11〇的一面。然後, 液晶300會在斜面錐盤123上滾動並細化,最後散亂地甩 落在基板200上。 在本實施方式中,斜面錐盤123面對液晶滴下機11〇 的該面與馬達121之輸出軸I之間的夾角0可以視實際情 15 201250334 況=在本實施方式t,上述之夾角θ可為約95 或 110 〜150。。 土述之斜面錐盤123的材質可為例如氧化紹陶究。岸 二解卜以上所舉之斜面錐盤123的材質僅為例示,並非 本發明所屬技術領域中具有通常知識 者應視實際需要彈性選擇斜面錐盤123的材質。 太眚之輸出轴1的轉速亦可視實際情況調整。在 6000 馬達121之輸出軸1的轉速可為約_〜 60000 rpm 〇 至於其他相關的結構與製程參數,均與 相同,因此不再重複贅述之。 、e ^ 第三實施方式 第3圖緣示依照本發明第三實施方式之液晶填充裝置 100的立體示意圖。本實施方式與第二實施方式的不㈣ 在於:本實施方式之斜面雜123在其㈣下機11Q 的一面整面均為疏液表面126。Ar or more specifically satisfies the following formula, where N is the number of wires 122, R is the number of revolutions of the output shaft I of the motor 121, and DLC is the liquid crystal drip frequency of the liquid crystal drip machine 11〇. The number of the wires 122 can be adjusted according to actual conditions (for example, the viscosity of the liquid crystal 300), and generally only one or more. As can be seen from the above equation, the number of wires 122 is related to the rotational speed of the output shaft 1 of the motor 121. The greater the number of wires I22, the lower the rotational speed of the output shaft 1 of the motor 121 can be. Further, when the number of the wires 122 is plural, the size of the 201250334 of the wires 122 may be the same or different. Those skilled in the art to which the present invention pertains should flexibly adjust the size of the wire 122 as needed. The number of revolutions of the output shaft I of the motor 121 can be adjusted depending on the number of wires 122. In the present embodiment A, the U1 output car is! The rotational speed can be about 30 to 60000 i*pm, 60 to 60000 rpm or 3 〇〇 to 3 rpm. The liquid crystal dripping frequency of the liquid crystal dripper 110 can be adjusted according to actual conditions. In general, the liquid crystal dripping machine 110 has a liquid crystal dropping frequency of about 5 to 60 drops/second, that is, 300 to 3,600 drops/min. In the present embodiment, the distance DS between the bottom edge of the rotating portion (i.e., the end of the wire 122) and the substrate 200 can be adjusted as the case may be. In general, this distance DS can be about 1 to 50 mm or 5 to 30 mm. Second Embodiment FIG. 2 is a perspective view showing a liquid crystal filling apparatus 100 according to a second embodiment of the present invention. The present embodiment is different from the first embodiment in that the rotating portion of the present embodiment includes a beveled conical disk 123 whose apex is connected to the output shaft I of the motor 121. The vertical projection path VP of the liquid crystal drip nozzle 11 on the substrate 200 passes through the beveled conical disk 123. As a result, during the dropping of the liquid crystal 300, the liquid crystal 300 first falls on the side of the beveled disk 123 facing the liquid crystal dripping machine 11 . Then, the liquid crystal 300 is rolled and refined on the beveled disk 123, and finally scattered on the substrate 200 in a scattered manner. In the present embodiment, the angle 0 between the face of the bevel disk 123 facing the liquid crystal dripping machine 11〇 and the output shaft I of the motor 121 can be regarded as the actual situation 15 201250334. In the present embodiment t, the above-mentioned angle θ Can be about 95 or 110 to 150. . The material of the beveled cone 123 of the earth can be, for example, oxidized. The material of the beveled conical disc 123 mentioned above is merely an example, and it is not the material of the general knowledge in the technical field of the present invention that the material of the beveled conical disc 123 should be elastically selected according to actual needs. The speed of the output shaft 1 of the sun is also adjusted according to the actual situation. The output shaft 1 of the 6000 motor 121 can be rotated at about _~60000 rpm. 〇 As for other related structures and process parameters, the same is true, and therefore will not be repeated. e ^ Third Embodiment FIG. 3 is a perspective view showing a liquid crystal filling apparatus 100 according to a third embodiment of the present invention. The fourth embodiment does not (four): the slant surface 123 of the present embodiment is a lyophobic surface 126 on one surface of the (four) lower machine 11Q.

BaBa

J 在本文中,「疏液表面」一詞應定義為:「能夠讓液E 在其上擁有大於90。接觸角的表面」。才目對地,「親液表面 -詞狀液晶在其上擁有小於9G。接觸角的 表面」。此-詞彙定義將在整份說明書及申請專利範圍中沿 用,不再重複贅述之。 至於其他相_結構與製程參數,均與第二實施方式 相同,因此不再重複贅述之。 201250334 第四實施方式 第4圖繪示依照本發明第四實施方式之液晶填充裝置 100的立體示意圖。本實施方式與第二實施方式的不同點 在於:本實施方式之旋轉部(例如:斜面錐盤123)包含複數 個引流尖端124,這些引流尖端124排列於斜面錐盤123 的底緣,使得在液晶300滴下的過程中,液晶300能夠順 著引流尖端124甩落在基板200上。 在本實施方式中,上述之引流尖端124的數量可以是 一個以上,或約1〜50。應了解到,以上所舉之引流尖端 124的數量僅為例示,並非用以限制本發明,本發明所屬 技術領域中具有通常知識者,應視實際需要彈性選擇引流 尖端124的數量。 此外,當引流尖端124的數量為多個時,這些引流尖 端124的尺寸可以是相同的,也可以是不同的。本發明所 屬技術領域中具有通常知識者,應視實際需要彈性調整引 流尖端124的尺寸。 至於其他相關的結構與製程參數,均與第二實施方式 相同,因此不再重複贅述之。 第五實施方式 第5圖繪示依照本發明第五實施方式之液晶填充裝置 100的立體示意圖。本實施方式與第四實施方式的不同點 在於:本實施方式之斜面錐盤123在其面對液晶滴下機110 的一面整面均為疏液表面126。 至於其他相關的結構與製程參數,均與第四實施方式 201250334 相同,因此不再重複贅述之。 JL六實施^± 第6圖繪示依照本發明第六實施方式之液晶填充裝置 1〇〇、的立,示意圖。本實施方式與第二實施方式的不同點 在於、.本實施方式之旋轉部(例如:斜面錐盤⑵)包含複數 ^親液表面125與魏個疏絲面126。這魏液表面⑵ /、夜表面126彼此父錯地排列於斜面錐盤I】]面對液曰 二機呈二的―*’且每,表面125與每-疏液Ϊ: 6均呈▼狀而自斜面錐盤123的頂點延伸至斜面錐盤 的底緣。 在相同的條件下,液晶3〇〇從斜面錐盤123向外甩落 的距離會隨著斜面錐盤123的表面特性而有所不同,親液 ^面125因為液曰曰曰3〇〇較不易,因此向外甩落的距離 疏液表面126則較遠。有鑑於此,本實施方式係在 126 ^盤123上排列彼此交錯的親液表面125與疏液表面 ,错此更增加液晶30〇甩落在基板2〇〇上的散亂程度。 至於其他相關的結構與製程參數,均與第二實施方式 相同,因此不再重複贅述之。 " 第7圖繪示依照本發明第七實施方式之液晶填充裝置 在於的立體示意圖。本實施方式與第二實施方式的不同點 、言此.本實施方式之斜面錐盤123具有複數個凹槽127, 每些凹槽127排列於斜面錐盤123㈣液晶滴下機11〇的 18 201250334 一面。此外,這些凹槽127於斜面錐盤123之該面上形成 複數個稜線129,這些棱線129均自斜面錐盤123的頂點 延伸至斜面錐盤123的底緣。如此一來,在液晶300滴下 的過程中,旋轉中的斜面錐盤123及其棱線129會打散液 晶300,使得液晶300落在基板200上的位置更為散亂。 應了解到,雖然第7圖將凹槽127繪示呈V溝形式, 但此並不限制本發明,實際上凹槽127的形式也可以是半 圓溝、波浪溝、橢圓溝、曲面溝或上述之任意組合。本發 明所屬技術領域中具有通常知識者,應視實際需要彈性選 擇凹槽127的實施方式。 在本實施方式中,斜面錐盤123面對液晶滴下機110 的該面與馬達121之輸出軸I之間的夾角0可以視實際情 況調整。在本實施方式中,上述之夾角0可為約100°〜 160。或 110。〜150。。 在本實施方式中,斜面錐盤123上之稜線129的數量 亦可依實際情況調整。在本實施方式中,上述之棱線129 的數量可為約1〜20。 至於其他相關的結構與製程參數,均與第二實施方式 相同,因此不再重複贅述之。 第八實施方式 第8圖繪示依照本發明第八實施方式之液晶填充裝置 100的立體示意圖。本實施方式與第七實施方式的不同點 在於:本實施方式之旋轉部(例如:斜面錐盤123)包含複數 個親液表面125與複數個疏液表面126,這些親液表面125 19 201250334 與疏液表面126彼此交錯地排列於斜面錐盤123面對液晶 滴下機110的一面,且每一親液表面125與每一疏液表面 126均呈帶狀而自斜面錐盤123的頂點延伸至斜面錐盤123 的底緣。 誠如第六實施方式中的相關敘述所述,由於親液表面 125與疏液表面126會影響液晶300向外甩落的距離,因 此本實施方式係在斜面錐盤123上排列彼此交錯的親液表 面125與疏液表面126,藉此更增加液晶300甩落在基板 200上的散亂程度。 在本實施方式中,親液表面125與疏液表面126的排 列方式可以是分列於稜線129的兩侧。也就是說,任兩相 鄰之親液表面125與疏液表面126的中間會夾著一條稜線 129。 至於其他相關的結構與製程參數,均與第七實施方式 相同,因此不再重複贅述之。 第九實施方式 第9圖繪示依照本發明第九實施方式之液晶填充裝置 100的立體示意圖。本實施方式與第八實施方式的不同點 在於:本實施方式之斜面錐盤123在其面對液晶滴下機110 的一面整面均為疏液表面126。 至於其他相關的結構與製程參數,均與第八實施方式 相同,因此不再重複贅述之。 另外,第六實施方式至第九實施方式中,皆可依照設 計的需求在旋轉部(例如:斜面錐盤123)上增加複數個引流 20 201250334 尖端124,这些引流尖端124排列於斜面錐盤123的底緣, 使得在液晶300滴下的過程中,液晶3〇〇能夠順著引流尖 端124甩落在基板200上。 在本實施方式中’上述之引流尖端124的數量可以是 -個以上’或❸1〜50。應了解到,以上所舉之引流尖端 124的數量僅為例示,並非用以限制本發明,本發明所屬 技術領域巾具有通常知識者,應視實際需要彈性選擇引流 尖端124的數量。 此外,當引流尖端124的數量為多個時,這些引流尖 端124的尺寸可以是相同的,也可以是不同的。本發明所 屬技術領域中具有通常知識者,應視實際需要彈性調整引 流尖端124的尺寸。 第十實施方式 第10圖繪示依照本發明第十實施方式之液晶填充裝 置100的正視示意圖。第11圖繪示第1 〇圖之液晶填充裝 置100的侧視示意圖。如圖所示,本實施方式之液晶填充 裝置100除了可以有旋轉機構120來打散液晶外,尚可包 含靜電消除器130,此靜電消除器130可用以消除基板200 與液晶上的靜電。具體而言’上述之靜電消除器130可以 消除基板200上的靜電’並同時消除液晶從液晶滴下機110 分離與拍打所可能產生的靜電’以避免液晶與基板200接 觸時因靜電而產生滴下色暈。 在本實施方式中,上述之靜電消除器130可為軟X射 線源(soft X-ray source)、除靜電離子棒(Ionizer Bar)或上述 21 201250334 ==應了解到’以上所舉之靜電消除器13。的實 施態樣僅為例不,並非用以限制本 實 :域如常知識者,應視實二 =屬實:: 在數量配置上’雖然第1 〇圖检二 110會搭配一支靜電消除器130,但此並不、^aa滴下機 際上液晶滴下機11G與靜電消除器13G的數量配K以, -對-或多對-。本發明所屬技術領域 : ㈣罐Μ㈣_靜電消= 應了解到,雖然第10〜11圖所繪示之旋 的線材122態樣’但這並不代表只有線材122態樣的旋: 部才能安裝靜電消除器130’其他各種旋轉部的態樣二 如:第2〜9圖所繪示之旋轉部),也都可以安裝 器130。 于' 至於其他相關的結構與製程參數,均與第一〜第九^ 施方式相同,因此不再重複贅述之。 第十一實施方式 第12圖〜第16圖繪示依照本發明第十一實施方式之 液晶填充裝置的麵作示意圖。在本實施方式中,當液晶滴 下機110將液晶300滴落在基板200上後,製造者可選擇 使用氣搶140對基板200上之液晶300噴氣,使得液晶3〇〇 流動’以擴大液晶300在基板200上的覆蓋面積,藉此減 少液晶300在基板200對組時的擴散距離。一般而言,液 22 201250334 晶300在基板200對組時的擴散距離越大,滴下色暈的問 題就會越嚴重。也就是說’液晶3〇〇在基板2〇〇對組時的 擴散距離變小’代表著滴下色暈的問題將會獲得改善。以 下將搭配圖式,具體說明以上技術内容。 第12圖繪示將液晶300滴落在基板200上的立體示意 圖。如圖所示’本實施方式可先利用液晶滴下機11〇將液 晶300滴落在基板200上。在此步驟中,旋轉機構12〇(如 第1〜11圖所繪示)可以選擇安裝或不安裝。在部分實施方 式中’製造者可選擇安裝旋轉機構120,藉此徹底解決滴 下色暈的問題。但在另一部分的實施方式中,若不安裝旋 轉機構120也可以將滴下色暈的問題減輕到可以接受的程 度,旋轉機構120也可以選擇省略不安裝。 上述之液晶滴下機110所滴下之液晶300的尺寸可視 實際情況調整。在本實施方式中,液晶滴下機110所滴下 之液晶300的單位重量可為約0.3〜3 mg/滴。 第13圖繪示當液晶滴下機110將液晶300滴落在基板 200上時,應用靜電消除器130消除靜電的側視示意圖。 如圖所示,本實施方式之液晶填充裝置尚可包含靜電消除 器130,此靜電消除器130可用以消除基板200與液晶300 上的靜電。具體而言,上述之靜電消除器130可以消除基 板200上的靜電,並同時消除液晶300從液晶滴下機110 分離與拍打所可能產生的靜電,以避免液晶300與基板200 接觸時因靜電而產生滴下色暈。 在本實施方式t,上述之靜電消除器130可為軟X射 線源(soft X-ray source)、除靜電離子棒(Ionizer Bar)或上述 23 201250334 之任意組合。應了解钊 _解】以上所舉之靜電消除器130的實 她態樣僅為例示,並非用 領域中具㈣常^制本發明,本發明所屬技術 式。 識者’應視實際需要彈性選擇其實施方 第14圖續*示摩用备 ^ ^ A ^ 應用乳搶14〇對基板200上之液晶300喷 虱的立體示意圖。筮国故_ + —、 乐U圖繪不應用氣槍140對基板200上 ,日日3G0喷氣的側視示意圖。如圖所示,本實施方式之 :曰曰填充裝置尚可包含移動裝置15〇。當氣槍14〇的喷頭 4^為線糾’此移動裝置15()能夠在氣搶⑽喷氣時, 使氣搶140才目對於基板2〇〇線性移動(如箭頭lm所示),藉 此讓氣搶140所喷出之氣體流掃過基板的表面。 在本實施方式中,上述之氣搶140可為潔淨乾燥空氣 搶(Clean Dry Air Gun)、氮氣搶或上述之任意組合。亦即, 此氣搶140所噴出的氣體種類可為潔淨乾燥空氣(clean Dry Air ; CDA)、氮氣或上述之任意組合。應了解到,以 上所舉之氣槍140的實施態樣僅為例示,並非用以限制本 發明,本發明所屬技術領域中具有通常知識者,應視實際 需要彈性選擇其實施方式。 上述之氣槍140所喷出的氣體溫度可視實際情況調 整。在本實施方式中,氣槍140所噴出的氣體溫度可為約 25〜40°C。應了解到,此一氣體溫度範圍僅為例示,並非 用以限制本發明’本發明所屬技術領域中具有通常知識 者’在不影響製程的前提下,均可依實際需要調整之。 同樣地,上述之氣搶140的氣壓亦可視實際情況調 整。在本實施方式中’氣槍140的氣壓可為約〇.〇4〜0.25 24 201250334J In this paper, the term "lyophobic surface" shall be defined as: "capable of having liquid E having a surface greater than 90. contact angle" thereon. Only to the ground, "the lyophilic surface - the word liquid crystal has a surface of less than 9G. contact angle". This - vocabulary definition will be used throughout the specification and patent application, and will not be repeated. As for the other phase_structure and process parameters, they are the same as those of the second embodiment, and thus the description thereof will not be repeated. 201250334 Fourth Embodiment FIG. 4 is a perspective view showing a liquid crystal filling apparatus 100 according to a fourth embodiment of the present invention. The present embodiment is different from the second embodiment in that the rotating portion (for example, the bevel disk 123) of the present embodiment includes a plurality of drainage tips 124 which are arranged at the bottom edge of the bevel disk 123 so that During the dropping of the liquid crystal 300, the liquid crystal 300 can be dropped on the substrate 200 along the drain tip 124. In the present embodiment, the number of the drainage tips 124 may be one or more, or about 1 to 50. It should be understood that the number of the drainage tips 124 is merely illustrative and is not intended to limit the present invention. Those skilled in the art to which the present invention pertains should flexibly select the number of drainage tips 124 as needed. Further, when the number of the drainage tips 124 is plural, the sizes of the drainage tips 124 may be the same or different. Those of ordinary skill in the art to which the present invention pertains should flexibly adjust the size of the drainage tip 124 as needed. As for other related structures and process parameters, they are the same as those of the second embodiment, and thus the description thereof will not be repeated. Fifth Embodiment FIG. 5 is a perspective view showing a liquid crystal filling apparatus 100 according to a fifth embodiment of the present invention. The present embodiment is different from the fourth embodiment in that the bevel disk 123 of the present embodiment is a lyophobic surface 126 on the entire surface facing the liquid crystal dripper 110. As for other related structures and process parameters, they are the same as the fourth embodiment 201250334, and therefore will not be repeated. JL Sixth Embodiment^± FIG. 6 is a schematic view showing a liquid crystal filling device according to a sixth embodiment of the present invention. The present embodiment is different from the second embodiment in that the rotating portion (for example, the beveled disk (2)) of the present embodiment includes a plurality of lyophilic surfaces 125 and a swarf surface 126. The surface of the Wei fluid (2) /, the surface of the night surface 126 is arranged in the opposite direction of each other in the beveled cone disk I]] facing the liquid helium two machine is the second "*" and each surface 125 and each - liquid Ϊ: 6 are ▼ The apex of the beveled disc 123 extends to the bottom edge of the beveled disc. Under the same conditions, the distance that the liquid crystal 3〇〇 falls outward from the beveled conical disc 123 will vary with the surface characteristics of the beveled conical disk 123, and the lyophilic surface 125 will be compared with the liquid helium It is not easy, so the distance from the lyophobic surface 126 is farther away. In view of this, the present embodiment arranges the lyophilic surface 125 and the lyophobic surface which are staggered with each other on the 126^disk 123, which further increases the degree of scattering of the liquid crystal 30 on the substrate 2〇〇. As for other related structures and process parameters, they are the same as those of the second embodiment, and thus the description thereof will not be repeated. < Fig. 7 is a perspective view showing a liquid crystal filling apparatus according to a seventh embodiment of the present invention. The present embodiment differs from the second embodiment in that the beveled cone disk 123 of the present embodiment has a plurality of grooves 127, and each of the grooves 127 is arranged on the side of the beveled conical disk 123 (four) liquid crystal drip machine 11 2012 18 201250334 . Further, the grooves 127 form a plurality of ridge lines 129 on the face of the beveled disk 123, and these ridges 129 extend from the apex of the beveled disk 123 to the bottom edge of the beveled disk 123. As a result, during the dropping of the liquid crystal 300, the beveled cone 123 and its ridgeline 129 in rotation break up the liquid crystal 300, so that the position of the liquid crystal 300 on the substrate 200 is more disordered. It should be understood that although the figure 127 shows the groove 127 in the form of a V-groove, this does not limit the present invention. In fact, the groove 127 may be in the form of a semi-circular groove, a wave groove, an elliptical groove, a curved groove or the above. Any combination. Those having ordinary skill in the art to which the present invention pertains should flexibly select an embodiment of the recess 127 as needed. In the present embodiment, the angle 0 between the face of the bevel disk 123 facing the liquid crystal dripper 110 and the output shaft I of the motor 121 can be adjusted as the case may be. In the present embodiment, the above-mentioned angle 0 may be about 100 to 160. Or 110. ~150. . In the present embodiment, the number of ridge lines 129 on the bevel disk 123 can also be adjusted according to actual conditions. In the present embodiment, the number of the ridge lines 129 described above may be about 1 to 20. As for other related structures and process parameters, they are the same as those of the second embodiment, and thus the description thereof will not be repeated. Eighth Embodiment FIG. 8 is a perspective view showing a liquid crystal filling apparatus 100 according to an eighth embodiment of the present invention. The present embodiment is different from the seventh embodiment in that the rotating portion (for example, the bevel disk 123) of the present embodiment includes a plurality of lyophilic surfaces 125 and a plurality of lyophobic surfaces 126, and these lyophilic surfaces 125 19 201250334 and The lyophobic surfaces 126 are alternately arranged with each other on one side of the beveled cone 123 facing the liquid crystal dripper 110, and each of the lyophilic surface 125 and each lyophobic surface 126 are strip-shaped and extend from the apex of the beveled disk 123 to The bottom edge of the beveled disk 123. As described in the related description of the sixth embodiment, since the lyophilic surface 125 and the lyophobic surface 126 affect the distance at which the liquid crystal 300 falls outward, the present embodiment arranges the intertwined pros on the beveled disk 123. The liquid surface 125 and the lyophobic surface 126 thereby increase the degree of scattering of the liquid crystal 300 on the substrate 200. In the present embodiment, the arrangement of the lyophilic surface 125 and the lyophobic surface 126 may be arranged on both sides of the ridgeline 129. That is, a ridge 129 is sandwiched between any two adjacent lyophilic surfaces 125 and the lyophobic surface 126. As for the other related structures and process parameters, they are the same as those of the seventh embodiment, and thus the description thereof will not be repeated. Ninth Embodiment FIG. 9 is a perspective view showing a liquid crystal filling apparatus 100 according to a ninth embodiment of the present invention. The present embodiment is different from the eighth embodiment in that the bevel disk 123 of the present embodiment is a lyophobic surface 126 on the entire surface facing the liquid crystal drip machine 110. As for other related structures and process parameters, they are the same as those of the eighth embodiment, and thus the description thereof will not be repeated. In addition, in the sixth embodiment to the ninth embodiment, a plurality of drainage lines 20 201250334 tips 124 may be added to the rotating portion (for example, the bevel disk 123) according to the design requirements, and the drainage tips 124 are arranged on the bevel disk 123. The bottom edge allows the liquid crystal 3 to fall onto the substrate 200 along the drain tip 124 during the dropping of the liquid crystal 300. In the present embodiment, the number of the above-described drainage tips 124 may be - or more 'or ❸ 1 to 50. It should be understood that the number of the drainage tips 124 is merely illustrative and is not intended to limit the present invention. Those skilled in the art of the present invention have a general knowledge, and the number of the drainage tips 124 should be elastically selected according to actual needs. Further, when the number of the drainage tips 124 is plural, the sizes of the drainage tips 124 may be the same or different. Those of ordinary skill in the art to which the present invention pertains should flexibly adjust the size of the drainage tip 124 as needed. Tenth Embodiment FIG. 10 is a front elevational view showing a liquid crystal filling apparatus 100 according to a tenth embodiment of the present invention. Fig. 11 is a side elevational view showing the liquid crystal filling apparatus 100 of Fig. 1 . As shown in the figure, the liquid crystal filling device 100 of the present embodiment may include a static eliminator 130, which may be used to eliminate static electricity on the substrate 200 and the liquid crystal, in addition to the rotating mechanism 120 for dispersing the liquid crystal. Specifically, the above-mentioned static eliminator 130 can eliminate the static electricity on the substrate 200 and at the same time eliminate the static electricity that may be generated when the liquid crystal is separated and beaten from the liquid crystal dripping machine 110 to prevent the liquid crystal from being dripped with the substrate 200. gosh. In this embodiment, the static eliminator 130 may be a soft X-ray source, a static ion bar (Ionizer Bar) or the above 21 201250334 == should understand that the above mentioned static elimination 13. The implementation of the situation is only an example, not to limit the reality: the domain as usual knowledge, should be regarded as the real = true:: In the number configuration 'Although the first map check 110 will be matched with a static eliminator 130 However, this does not, ^aa drops the number of liquid crystal drip machine 11G and static eliminator 13G on the machine with K, - to - or many pairs -. The technical field to which the present invention pertains: (4) Cans (4)_Static elimination = It should be understood that although the wire 122 is illustrated in Figures 10 to 11 'but this does not mean that only the wire 122 can be rotated: The static eliminator 130' can be mounted to the other components of the various rotating portions, such as the rotating portions shown in FIGS. 2 to 9. As for the other related structures and process parameters, they are the same as the first to ninth modes, and therefore will not be repeated. Eleventh Embodiment FIG. 12 to FIG. 16 are views showing the surface of a liquid crystal filling apparatus according to an eleventh embodiment of the present invention. In the present embodiment, after the liquid crystal dripper 110 drops the liquid crystal 300 onto the substrate 200, the manufacturer may select to use the gas grab 140 to jet the liquid crystal 300 on the substrate 200 so that the liquid crystal 3 flows "to expand the liquid crystal 300. The coverage area on the substrate 200, thereby reducing the diffusion distance of the liquid crystal 300 when the substrate 200 is paired. In general, the greater the diffusion distance of the liquid 22 201250334 crystal 300 when the substrate 200 is in the group, the more serious the problem of dropping the halo. That is to say, the 'diffusion distance of the liquid crystal 3 〇〇 when the substrate 2 is 〇〇 paired' becomes a problem that the problem of dropping the halo will be improved. The following technical content will be specified in conjunction with the drawings. Fig. 12 is a perspective view showing the liquid crystal 300 dropped on the substrate 200. As shown in the figure, in the present embodiment, the liquid crystal 300 can be dropped onto the substrate 200 by using the liquid crystal dripping machine 11 first. In this step, the rotating mechanism 12 (as shown in Figs. 1 to 11) can be selected to be installed or not. In some embodiments, the manufacturer may choose to install the rotating mechanism 120, thereby completely solving the problem of dripping color halos. However, in another embodiment, the problem of dropping the halo can be reduced to an acceptable level without the rotation mechanism 120 being attached, and the rotating mechanism 120 can also be omitted. The size of the liquid crystal 300 dropped by the liquid crystal dripper 110 described above can be adjusted as appropriate. In the present embodiment, the liquid crystal 300 dropped by the liquid crystal dripper 110 may have a basis weight of about 0.3 to 3 mg per drop. Figure 13 is a side elevational view showing the application of the static eliminator 130 to eliminate static electricity when the liquid crystal dripper 110 drops the liquid crystal 300 onto the substrate 200. As shown in the figure, the liquid crystal filling device of the present embodiment may further include a static eliminator 130, which may be used to eliminate static electricity on the substrate 200 and the liquid crystal 300. Specifically, the static eliminator 130 can eliminate static electricity on the substrate 200 and simultaneously eliminate static electricity generated by the liquid crystal 300 from separating and tapping from the liquid crystal drip device 110 to prevent static electricity from being generated when the liquid crystal 300 is in contact with the substrate 200. Drop the color halo. In the present embodiment t, the static eliminator 130 may be a soft X-ray source, an Ionizer Bar, or any combination of the above 23 201250334. It should be understood that the above-described embodiment of the static eliminator 130 is merely an exemplification, and the present invention is not in the field of the invention. The savvy person should choose the implementer flexibly according to the actual needs. Figure 14 Continuation * Representation of the motor ^ ^ A ^ Apply the milk robbing 14 〇 to the liquid crystal 300 on the substrate 200.筮国故_ + —, 乐 U 图画 does not apply air gun 140 on the substrate 200, a side view of the 3G0 jet. As shown in the figure, in the present embodiment, the helium filling device may further include a mobile device 15A. When the air gun 14 〇 nozzle 4 is a wire ' ' this mobile device 15 () can be in the gas grab (10) air jet, so that the gas grab 140 to the substrate 2 〇〇 linear movement (as indicated by the arrow lm), thereby The gas stream ejected by the gas is swept over the surface of the substrate. In the present embodiment, the air grab 140 may be a Clean Dry Air Gun, a nitrogen blow, or any combination thereof. That is, the gas emitted by the gas grab 140 may be clean dry air (CDA), nitrogen, or any combination thereof. It should be understood that the embodiments of the air guns 140 are merely illustrative and are not intended to limit the present invention. Those skilled in the art to which the present invention pertains may be flexibly selected according to actual needs. The temperature of the gas ejected by the air gun 140 described above can be adjusted as the case may be. In the present embodiment, the temperature of the gas ejected by the air gun 140 may be about 25 to 40 °C. It should be understood that the temperature range of this gas is merely illustrative and is not intended to limit the present invention. Those having ordinary knowledge in the technical field of the present invention can be adjusted according to actual needs without affecting the process. Similarly, the above air pressure of the air grab 140 can also be adjusted according to the actual situation. In the present embodiment, the air pressure of the air gun 140 may be about 〇.〇4~0.25 24 201250334

Mpa或0.04〜0.15 Mpa。應了解到,此一氣壓範圍僅為例 示,並非用以限制本發明。在實作時,氣搶14〇的氣壓應 依液晶300的黏度、基板200表面的親疏液性、基板2〇〇 表面的南低起伏結構與氣搶140的噴頭142與基板200之 間的距離DA等因素共同決定。 如第15圖所示’氣搶140的喷頭142與基板200之間 可間隔一距離DA ,此距離DA可視實際情況調整。在本實 施方式中’上述之距離DA可為約60〜5000 μπι、80〜3000 μηι或80〜2500 μηι。應了解到,此一距離範圍僅為例示, 並非用以限制本發明,本發明所屬技術領域中具有通常知 識者’在不影響製程的前提下,均可依實際需要調整之。 第16圖繪示在氣搶140喷過以後液晶3〇〇在基板200 上的狀態’其中實線表不在氣搶140喷過以後液晶300在 基板200上的覆蓋面積,虛線表示在氣槍14〇喷過以前液 晶300在基板200上的覆蓋面積。比較實線與虛線後可以 清楚地看到’在氣搶140喷過以後,液晶300在基板200 上的覆蓋面積確實擴大了,這代表著液晶300在基板200 對組時的擴散距離將會減少,有助於改善滴下色暈的問題。 •二i施方式 第Π圖繪示依照本發明第十二實施方式之液晶填充 裝置的操作示意圖。在本實施方式中,當氣搶140的喷頭 142為點形時,移動裝置15〇可以在氣搶14〇喷氣時,使 氣搶140相對於基板2〇〇線性來回晃動(如雙箭頭V所繪 示)’藉此讓氣搶140喷往基板200之氣體流,以基板200 25 201250334 上之液晶300為中心’線性來回晃動。 第18圖繪示氣搶140相對於基板2〇〇線性來回晃動的 方向。如圖所在未安裝旋轉機構的狀況下,#液晶滴 下機對基板200滴下複數個液晶3〇〇時,這些液晶3〇〇將 會在基板200上排列成陣列。上述之氣體流線性來回晃動 的方向可以為陣列的行方向(如雙箭頭vc所繪示)或列方 向(如雙箭頭VR所繪示)。此外,上述之氣體流線性來回晃 動的方向也可以是不為行方向或列方向的任意方向(如雙 箭頭VA所繪示)。 在本實施方式中,液晶3〇〇與液晶3〇〇之間可彼此間 h間距〇。上述之氟體流線性來回晃動的振幅可約達間 距G之5G%〜7G%。應了解到,此—振幅範圍僅為例示, 並非用以限制本發明,本發明所屬技術領域中具有通常知 識者’在*影響製程的前提下,均可依實⑨需要調整之。 上述之液晶300與液晶3〇〇之間的間距〇可視實際情 況调整。在本實施方式中,上述之間距G可為約5〜25 mm。 至於其他相關的結構與製程參數’均與第十一實施方 式相同,因此不再重複贅述之。 篇十二實施方 第19圖緣示依照本發明第十三實施方式之液晶填充 裝置的操作不意圖。如圖所示,除了使用第十-實施方式 及第十—實施方式所述之氣搶外,本實施方式尚可應用傾 斜裝置160來傾斜基板200,使得基板200與水平面WL 爽預疋角度0 ’藉此讓液晶300流動,以擴大液晶300 26 201250334 在基板200上的覆蓋面積。 基板200與水平面wl之間所夾的預定角度0可視實 際情況而定。在本實施方式中,上述之預定角度4可為約 5。〜20° 。 當有應用傾斜裝置160來傾斜基板200時,上述之氣 搶的氣壓可以略為調降。在本實施方式中,氣槍的氣壓可 為約0.03〜0.25 Mpa或〇,〇3〜0.15 Mpa。應了解到,此一 氣壓範圍僅為例示,並非用以限制本發明,本發明所屬技 術領域中具有通常知識者,在不影響製程的前提下,均可 依實際需要調整之。 至於其他相關的結構與製程參數,均與第十--第十 二實施方式相同,因此不再重複贅述之。 第十四實施方式 第20圖繪示依照本發明第十四實施方式之液晶填充 裝置的操作示意圖。本實施方式與第十三實施方式的不同 點在於:本實施方式係以旋轉裝置17〇來取代傾斜裝置 160。在使用時,碜轉裝置no可用來旋轉基板2〇〇,使得 基板200上的液晶300流動,藉此擴大液晶3〇〇在基板2〇〇 上的覆蓋面積。 至於其他相關的結構與製程參數,均與第十三實施方 式相同’因此不再重複贅述之。 應了解到,本發明以上所舉之各實施方式,除了可以 同時應用來解決滴下色暈的問題外,也可以各自獨立來解 27 201250334 決滴下色暈的問題。舉例來說,在本發明部分實施方式中, 液晶填充裝置可以只安裝第一〜第九實施方式所提到的旋 轉機構,而未安裝第十—十二實施方式所提到的氣搶。 而在本發明另一部分的實施方式中,液晶填充裝置也可以 只安裝第十一〜十二實施方式所提到的氣搶,而未安裝第 —第九實施方式所提到的旋轉機構。本發明所屬技術領 域中具有通常知識者,應視實際需要彈性選擇其實施方式。 此外,以上所舉之各製程參數都可能會受到實際製程 條件的影響,但只要在不影響其本質的前提下,都應該落 在本發明的保護範圍内。舉例來說,上述之氣搶的氣壓可 能會受到液晶黏度的影響,液晶的黏度越高,所需要的氣 搶氣壓也會越高。 因此,雖然本發明已以實施方式揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍内,當可作各種之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖繪示依照本發明第一實施方式之液晶填充裝置 的立體示意圖。 第2圖繪示依照本發明第二實施方式之液晶填充裝置 的立體示意圖。 第3圖繪示依照本發明第三實施方式之液晶填充裝置 的立體示意圖。 第4圖繪示依照本發明第四實施方式之液晶填充裝置 28 201250334 的立體示意圖。 第5圖繪示依照本發明第五實施方式之液晶填充裝置 的立體示意圖。 第6圖繪不依照本發明第六實施方式之液晶填充裝置 的立體示意圖。 第7圖繪不依照本發明第七實施方式之液晶填充裝置 的立體示意圖。 、 第8圖繪不依照本發明第八實施方式之液晶填充裝置 的立體示意圖。 ' 第9圖繪示依照本發明第九實施方式之液晶填充裝置 的立體示意圖。 第10圖繪示依照本發明第十實施方式之液晶填充裝 置的正視示意圖。 第11圖繪示第10圖之液晶填充裝置的側視示意圖。 第12圖〜第16圖繪示依照本發明第十一實施方式之 液晶填充裝置的操作示意圖。 第17圖〜第18圖繪示依照本發明第十二實施方式之 液晶填充裝置的操作示意圖。 .护罢ί/9圖綠不依照本發明第十三實施方式之液晶填充 裂置的操作示意圖。 =20圖紛不依照本發明第十四實施方式之液晶填充 裝置的操作示意圖。 【主要元件符號說明】 29 201250334 100 : 液晶填充裝置 110 : 液晶滴下機 120 : 旋轉機構 121 : 馬達 122 : 線材 123 : 斜面錐盤 124 : 引流尖端 125 : 親液表面 126 : 疏液表面 127 : 凹槽 129 : 稜線 130 : 靜電消除器 140 : 氣搶 142 : 喷頭 150 : 移動裝置 160 : 傾斜裝置 170 : 旋轉裝置 200 : 基板 300 : 液晶 DA : 距離 DS : 距離 G :間距 I :輸出軸 201250334 LM :箭頭 V :雙箭頭 VA :雙箭頭 VC :雙箭頭 VP :垂直投影路徑 VR :雙箭頭 WL :水平面 0 :夾角 0 :預定角度Mpa or 0.04~0.15 Mpa. It should be understood that this range of air pressures is merely exemplary and is not intended to limit the invention. In practice, the gas pressure of 14 〇 should be based on the viscosity of the liquid crystal 300, the lyophobicity of the surface of the substrate 200, the south-low undulating structure of the surface of the substrate 2, and the distance between the head 142 of the gas squirt 140 and the substrate 200. Factors such as DA are decided together. As shown in Fig. 15, the head 142 of the air grab 140 and the substrate 200 can be separated by a distance DA, which can be adjusted according to actual conditions. In the present embodiment, the distance DA described above may be about 60 to 5000 μm, 80 to 3000 μm, or 80 to 2500 μm. It should be understood that the distance range is merely illustrative and is not intended to limit the present invention. Those having ordinary knowledge in the technical field of the present invention can be adjusted according to actual needs without affecting the process. Fig. 16 is a view showing the state in which the liquid crystal 3 is on the substrate 200 after the gas blast 140 is sprayed. The solid line indicates the coverage area of the liquid crystal 300 on the substrate 200 after the gas blast 140 is sprayed, and the broken line indicates the air gun 14 〇. The coverage area of the liquid crystal 300 on the substrate 200 before the ejection. Comparing the solid line with the broken line, it can be clearly seen that the coverage area of the liquid crystal 300 on the substrate 200 is indeed enlarged after the gas blast 140 is sprayed, which means that the diffusion distance of the liquid crystal 300 in the pair of the substrate 200 will be reduced. It helps to improve the problem of dripping color halo. The second embodiment shows a schematic view of the operation of the liquid crystal filling apparatus according to the twelfth embodiment of the present invention. In the present embodiment, when the nozzle 142 of the air grab 140 is in the shape of a dot, the moving device 15 can oscillate the air grab 140 linearly back and forth with respect to the substrate 2 when the air grabs 14 jets (eg, double arrow V It is shown that 'the gas flow of the gas squirting 140 to the substrate 200 is swayed linearly around the liquid crystal 300 on the substrate 200 25 201250334. Fig. 18 is a view showing the direction in which the air grab 140 is linearly oscillated back and forth with respect to the substrate 2. When the liquid crystal drip machine drops a plurality of liquid crystals 3 to the substrate 200 in the case where the rotating mechanism is not mounted, the liquid crystals 3 will be arranged in an array on the substrate 200. The direction in which the gas flow is linearly oscillated back and forth may be the row direction of the array (as indicated by the double arrow vc) or the column direction (as indicated by the double arrow VR). Further, the direction in which the gas flow is linearly oscillated back and forth may be any direction not in the row direction or the column direction (as indicated by the double arrow VA). In the present embodiment, the liquid crystal 3〇〇 and the liquid crystal 3〇〇 may be spaced apart from each other by h. The amplitude of the above-mentioned fluent flow linear back and forth may be about 5 G% to 7 G% of the distance G. It should be understood that the amplitude range is merely exemplary and is not intended to limit the present invention, and those having ordinary knowledge in the technical field of the present invention can be adjusted according to the requirements of the actual process. The above-described spacing between the liquid crystal 300 and the liquid crystal 3〇〇 can be adjusted as the actual situation. In the present embodiment, the distance G may be about 5 to 25 mm. As for the other related structures and process parameters, the same as the eleventh embodiment, the description will not be repeated. [Twelfth Embodiment] Fig. 19 is a view showing the operation of the liquid crystal filling apparatus according to the thirteenth embodiment of the present invention. As shown in the figure, in addition to the gas grabs described in the tenth embodiment and the tenth embodiment, the tilting device 160 can be applied to tilt the substrate 200 so that the substrate 200 and the horizontal plane WL are at an angle of zero. 'This allows the liquid crystal 300 to flow to expand the coverage area of the liquid crystal 300 26 201250334 on the substrate 200. The predetermined angle 0 between the substrate 200 and the horizontal plane w1 may be determined depending on the actual situation. In the present embodiment, the predetermined angle 4 described above may be about 5. ~20°. When the tilting device 160 is applied to tilt the substrate 200, the above-mentioned gas pressure can be slightly lowered. In the present embodiment, the air pressure of the air gun may be about 0.03 to 0.25 Mpa or 〇, 〇3 to 0.15 Mpa. It should be understood that the present air pressure range is merely exemplary and is not intended to limit the present invention. Those having ordinary knowledge in the technical field of the present invention can be adjusted according to actual needs without affecting the process. As for other related structures and process parameters, they are the same as the tenth to twelfth embodiments, and thus the description thereof will not be repeated. Fourteenth Embodiment Fig. 20 is a view showing the operation of a liquid crystal filling apparatus in accordance with a fourteenth embodiment of the present invention. The present embodiment is different from the thirteenth embodiment in that the tilting device 160 is replaced by a rotating device 17A in the present embodiment. In use, the twisting device no can be used to rotate the substrate 2 to cause the liquid crystal 300 on the substrate 200 to flow, thereby expanding the coverage area of the liquid crystal 3 on the substrate 2A. As for other related structures and process parameters, they are the same as the thirteenth embodiment, and therefore will not be repeated. It should be understood that the above embodiments of the present invention can be applied to solve the problem of dripping color halo at the same time, and can also independently solve the problem of color halo under the 201250334 drop. For example, in some embodiments of the present invention, the liquid crystal filling device may mount only the rotating mechanism mentioned in the first to ninth embodiments, and the gas grab mentioned in the tenth to twelfth embodiments is not installed. In another embodiment of the present invention, the liquid crystal filling apparatus may be mounted only with the gas squeezing mentioned in the eleventh to twelfth embodiments, and the rotating mechanism mentioned in the ninth embodiment is not mounted. Those having ordinary knowledge in the technical field to which the present invention pertains should be flexibly selected according to actual needs. In addition, each of the above process parameters may be affected by the actual process conditions, but it should fall within the scope of the present invention as long as it does not affect its essence. For example, the above-mentioned gas pressure may be affected by the viscosity of the liquid crystal. The higher the viscosity of the liquid crystal, the higher the gas pressure required. Therefore, the present invention has been disclosed in the above embodiments, but it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing a liquid crystal filling apparatus according to a first embodiment of the present invention. Fig. 2 is a perspective view showing a liquid crystal filling apparatus according to a second embodiment of the present invention. Fig. 3 is a perspective view showing a liquid crystal filling apparatus according to a third embodiment of the present invention. 4 is a perspective view of a liquid crystal filling device 28 201250334 according to a fourth embodiment of the present invention. Fig. 5 is a perspective view showing a liquid crystal filling apparatus according to a fifth embodiment of the present invention. Fig. 6 is a perspective view showing a liquid crystal filling apparatus which is not in accordance with the sixth embodiment of the present invention. Fig. 7 is a perspective view showing a liquid crystal filling apparatus which is not in accordance with a seventh embodiment of the present invention. Fig. 8 is a perspective view showing a liquid crystal filling apparatus which is not in accordance with the eighth embodiment of the present invention. Fig. 9 is a perspective view showing a liquid crystal filling apparatus according to a ninth embodiment of the present invention. Figure 10 is a front elevational view showing a liquid crystal filling apparatus in accordance with a tenth embodiment of the present invention. Figure 11 is a side elevational view showing the liquid crystal filling device of Figure 10. Fig. 12 through Fig. 16 are views showing the operation of the liquid crystal filling apparatus in accordance with the eleventh embodiment of the present invention. 17 to 18 are views showing the operation of the liquid crystal filling apparatus in accordance with the twelfth embodiment of the present invention. The operation diagram of the liquid crystal filling crack according to the thirteenth embodiment of the present invention is not shown. Fig. 20 is a schematic view showing the operation of the liquid crystal filling apparatus in accordance with the fourteenth embodiment of the present invention. [Main component symbol description] 29 201250334 100 : Liquid crystal filling device 110 : Liquid crystal dripping machine 120 : Rotating mechanism 121 : Motor 122 : Wire 123 : Beveled conical disk 124 : Draining tip 125 : Hydrophilic surface 126 : Liquid repellency surface 127 : Concave Slot 129: ridge line 130: static eliminator 140: air rush 142: shower head 150: moving device 160: tilting device 170: rotating device 200: substrate 300: liquid crystal DA: distance DS: distance G: pitch I: output shaft 201250334 LM : arrow V: double arrow VA: double arrow VC: double arrow VP: vertical projection path VR: double arrow WL: horizontal plane 0: angle 0: predetermined angle

Claims (1)

201250334 七、申請專利範圍: 1. 一種液晶填充裝置,包含: 一液晶滴下機,用以對一基板滴下至少一液晶;以及 一旋轉機構,包含: 一旋轉部;以及 一馬達,用以驅動該旋轉部旋轉,其中該液晶滴 下機之液晶滴出口在該基板上的垂直投影路徑穿過該 旋轉部旋轉時所涵蓋的區域。 2. 如請求項1所述之液晶填充裝置,其中該旋轉部包 含至少一線材,該線材的一端與該馬達的輸出軸連接。 3. 如請求項2所述之液晶填充裝置,其中該線材的形 狀為棒狀、槳狀、刀鋒狀或上述之任意組合。 4. 如請求項2所述之液晶填充裝置,其中當該馬達驅 動該線材旋轉時,該線材將繞該馬達的輸出軸旋轉而形成 一錐面,該液晶滴下機之液晶滴出口在該基板上的垂直投 影路徑穿過該錐面。 5. 如請求項2所述之液晶填充裝置,其中當該馬達驅 動該線材旋轉時,該線材與該馬達之輸出軸之間的夾角為 約 90。〜170。。 32 201250334 6. 如請求項2所述之液晶填充裝置,其中當該馬達驅 動該線材旋轉時,該線材與該馬達之輸出軸之間的夾角為 約 110。〜150。。 7. 如請求項2所述之液晶填充裝置,其中該線材的截 面積為約 100〜100000000 μιη2。 8. 如請求項2所述之液晶填充裝置,其中該馬達之輸 出轴的轉速為約30〜60000 rpm。 9. 如請求項2所述之液晶填充裝置,其中該馬達之輸 出軸的轉速為約60〜60000 rpm。 10. 如請求項2所述之液晶填充裝置,其中該馬達之 輸出軸的轉速為約300〜30000 rpm。 11. 如請求項2所述之液晶填充裝置,其中該線材的 數量、該馬達之輸出軸的轉速與該液晶滴下機之液晶滴落 頻率滿足下式: L5<! D[c 其中,N為該線材的數量,R為該馬達之輸出軸的轉 速,DLC為該液晶滴下機之液晶滴落頻率。 33 201250334 旦12.如請求項2所述之液晶填充裝置’其中該線材的 數量、該馬達之輸出軸的轉速與該液晶滴下機之液晶滴落 頻率滿足下式: ,,NR ^•5 <——< 5〇 Du: 其中,N為該線材的數量,R為該馬達之輸出軸的轉 速’ DLC為該液晶滴下機之液晶滴落頻率。 13. 、如請求項丨所述之液晶填充裝置,其中該液晶滴 下機之液晶滴落頻率為約5〜60滴/秒。 14. 如請求項丨所述之液晶填充裝置,其中該旋轉部 包含一斜面錐盤,該斜面錐盤的頂點連接該馬達的輸出 軸,且該液晶滴下機之液晶滴出口在該基板上的 路徑穿過該斜面錐盤。 ^〜 盤斜*雖 包含 16.如請求項14所述之液晶填充裝置,其中該旋轉部 緣 複數個5丨流尖端,排列於該斜面錐盤的底 17·如請求項16所述之液晶填 盤面對該液晶滴下機的—面整面均為疏液表面。斜面錐 34 201250334 18.如請求項16所述之液晶填充裝置,其中該斜面錐 面對該液晶滴下機的-面與該馬達之輸出軸之間的夹 為約95°〜160。。 I9.如請求項I6所述之液晶填充裝置,其中該斜面錐 盤面對該液晶滴下機的一面與該馬達之輸出軸之間的爽角 為約110°〜150。。 20_如明求項16所述之液晶填充裝置,其中該些引流 尖端的數量為約1〜5〇。 21.如明求項16所述之液晶填充裝置,其中該馬達之 輸出軸的轉速為約100〜60000 rpm。 勺人I2.如請求項14所述之液晶填充裝置,其中該旋轉部 數個親液表面與複數個疏液表面,該些親液表面與 疏液表面彼此交錯地排列於該斜面錐盤面對該液晶滴 面,且每一該些親液表面與每一該些疏液表面均 帶狀而自該斜面錐㈣頂點延伸至該斜面錐盤的底緣。 般而如請求項22所述之液晶填充裝置,其中該斜面錐 =對该液晶滴下機的該面與該馬達之輸出軸之間的夾角 马、,、勺 110 〜150。。 35 201250334 24. 如請求項14所述之液晶填充裝置,其中該斜面錐 盤具有複數個凹槽,該些凹槽排列於該斜面錐盤面對該液 晶滴下機的一面,且該些凹槽於該斜面錐盤之該面上形成 複數個稜線,該些棱線均自該斜面錐盤的頂點延伸至該斜 面錐盤的底緣。 25. 如請求項24所述之液晶填充裝置,其中該旋轉部 包含複數個親液表面與複數個疏液表面,該些親液表面與 該些疏液表面彼此交錯地排列於該斜面錐盤面對該液晶滴 下機的該面,且每一該些親液表面與每一該些疏液表面均 呈帶狀而自該斜面錐盤的頂點延伸至該斜面錐盤的底緣。 26. 如請求項25所述之液晶填充裝置,其中任兩相鄰 之該些親液表面與該些疏液表面中間夾該些稜線其中之 27. 如請求項24所述之液晶填充裝置,其中該斜面錐 盤面對該液晶滴下機的該面整面均為疏液表面。 28. 如請求項24所述之液晶填充裝置,其中該斜面錐 盤面對該液晶滴下機的該面與該馬達之輸出軸之間的夾角 為約100°〜160° 。 29. 如請求項24所述之液晶填充裝置,其中該斜面錐 36 201250334 盤面對該液晶滴下機的該面與該馬達之輸出軸之間的爽角 為約110°〜150° 。 30. 如請求項24所述之液晶填充裝置,其中該些稜線 的數量為約1〜20。 31. 如請求項1所述之液晶填充裝置,其中該旋轉部 的底緣與該基板之間的距離為約1〜50 mm。 32. 如請求項1所述之液晶填充裝置,更包含: 一靜電消除器,用以消除該基板與該液晶上的靜電。 33. 如請求項32所述之液晶填充裝置,其中該靜電消 除器為軟X射線源(soft X-ray source)、除靜電離子棒 (Ionizer Bar)或上述之任意組合。 34. 如請求項1所述之液晶填充裝置,更包含: 一氣搶,用以對該基板上之該液晶喷氣,使得該液晶 流動’以擴大該液晶在該基板上的覆盖面積。 35. 如請求項34所述之液晶填充裝置,其中該氣搶之 喷頭至該基板的距離為約60〜5000 μιη。 36. 如請求項34所述之液晶填充裝置,其中該氣搶之 37 201250334 喷頭至該基板的距離為約80〜3000 μιη。 37. 如請求項34所述之液晶填充裝置,其中該氣搶之 喷頭至該基板的距離為約80〜2500 μιη。 38. 如請求項34所述之液晶填充裝置,其中該氣槍之 氣壓為約0.04〜0.25 Mpa。 39. 如請求項34所述之液晶填充裝置,其中該氣搶之 氣壓為約0_04〜0.15 Mpa。 40. 如請求項34所述之液晶填充裝置,其中該氣搶為 潔淨乾燥空氣槍、氮氣搶或上述之任意組合。 41. 如請求項34所述之液晶填充裝置,其中該氣搶所 喷出的氣體溫度為約25〜40°C。 42. 如請求項34所述之液晶填充裝置,其中該氣槍之 ; 喷頭為線形。 » 43. 如請求項42所述之液晶填充裝置,更包含: 一移動裝置,用以在該氣搶喷氣時,使該氣搶相對於 該基板線性移動,藉此讓該氣搶所喷出之一氣體流掃過該 基板的表面。 38 201250334 44. 如請求項34所述之液晶填充裝置,其中該氣槍之 喷頭為點形。 45. 如請求項44所述之液晶填充裝置,更包含: 一移動裝置,用以在該氣槍喷氣時,使該氣搶相對於 該基板線性來回晃動,藉此讓該氣搶噴往該基板之一氣體 流,以該基板上之該液晶為中心,線性來回晃動。 46. 如請求項34所述之液晶填充裝置,更包含: 一傾斜裝置,用以傾斜該基板,使得該基板與一水平 面夾一預定角度。 47. 如請求項46所述之液晶填充裝置,其中該預定角 度為約5°〜20。。 48. 如請求項47所述之液晶填充裝置,其中該氣搶之 氣壓為約0.03〜0.25 Mpa。 49. 如請求項47所述之液晶填充裝置,其中該氣搶之 氣壓為約0.03〜0.15 Mpa。 50. 如請求項34所述之液晶填充裝置,更包含: 一旋轉裝置,用以旋轉該基板。 39 201250334 51. —種液晶填充裝置,包含: 一液晶滴下機,用以對一基板滴下至少一液晶;以及 一氣搶,用以對該基板上之該液晶喷氣,使得該液晶 流動,以擴大該液晶在該基板上的覆蓋面積。 52. 如請求項51所述之液晶填充裝置,其中該氣搶之 喷頭至該基板的距離為約60〜5000 μπι。 53_如請求項51所述之液晶填充裝置,其中該氣搶之 喷頭至該基板的距離為約80〜3000 μιη。 54. 如請求項51所述之液晶填充裝置,其中該氣搶之 喷頭至該基板的距離為約80〜2500 μιη。 55. 如請求項51所述之液晶填充裝置,其中該氣搶之 氣壓為約0.04〜0.25 Mpa。 56·如請求項51所述之液晶填充裝置,其中該氣搶之 氣壓為約0.04〜0.15 Mpa。 57.如請求項51所述之液晶填充裝置,其中該氣搶為 潔淨乾燥空氣槍、氮氣搶或上述之任意組合。 201250334 58. 如請求項51所述之液晶填充裝置,其中該氣槍所 噴出的氣體溫度為約25〜40°C。 59. 如請求項51所述之液晶填充裝置,其中該氣槍之 喷頭為線形。 60. 如請求項59所述之液晶填充裝置,更包含: 一移動裝置,用以在該氣搶喷氣時,使該氣搶相對於 該基板線性移動,藉此讓該氣槍所喷出之一氣體流掃過該 基板的表面。 61. 如請求項51所述之液晶填充裝置,其中該氣搶之 喷頭為點形。 62. 如請求項61所述之液晶填充裝置,更包含: 一移動裝置,用以在該氣槍喷氣時,使該氣搶相對於 該基板線性來回晃動,藉此讓該氣槍喷往該基板之一氣體 流,以該基板上之該液晶為中心,線性來回晃動。 63. 如請求項62所述之液晶填充裝置,其中該液晶滴 下機用以對該基板滴下複數個之該液晶,且該些液晶彼此 間隔一間距;以及 其中該氣體流線性來回晃動的振幅約達該間距之50% 〜70% 〇 41 201250334 64.如請求項62所述之液晶填充裝置,其中該液晶滴 賴基板滴下複數個之該液晶,且該些液晶在該 基扳上排列成一陣列;以及 其中該氣體流線性來回晃動的方向為該陣列的 或列方向。 ’其中該液晶滴 且該些液晶在該 65.如請求項62所述之液晶填充裝置 下機用以對該基板滴下複數個之該液晶, 基板上排列成一陣列;以及 其中該氣體 向或列方向。 流線性來回晃動的方向不為該陣列的行方 置’其中該液晶滴 ’且該些液晶彼此 66.如請求項51所述之液晶填充裝 下機用以對該基板滴下複數個之該液晶 間隔一間距,該間距為約5〜25 mm。 67. 如請求項51所述之液晶填充裝置,其中該液晶滴 下機所滴下之該液晶的單位重量為約0.3〜3 mg/滴。 68. 如請求項51所述之液晶填充裝置,更包含: 一傾斜裝置,用以傾斜該基板,使得該基板與一水平 面夾一預定角度。 /、 42 201250334 69.如請求項68所述之液晶填充裝置,其中該預定角 度為約5°〜20° 。 . 70.如請求項69所述之液晶填充裝置,其中該氣搶之 氣壓為約0.03〜0.25 Mpa。 71. 如請求項69所述之液晶填充裝置,其中該氣槍之 氣壓為約0.03〜0.15 Mpa。 72. 如請求項51所述之液晶填充裝置,更包含: 一旋轉裝置,用以旋轉該基板。 73. 如請求項51所述之液晶填充裝置,更包含: 一靜電消除器,用以消除該基板與該液晶上的靜電。 74. 如請求項73所述之液晶填充裝置,其中該靜電消 除器為軟X射線源(soft X-ray source)、除靜電離子棒 (Ionizer Bar)或上述之任意組合。 43201250334 VII. Patent application scope: 1. A liquid crystal filling device comprising: a liquid crystal dropping device for dropping at least one liquid crystal to a substrate; and a rotating mechanism comprising: a rotating portion; and a motor for driving the The rotating portion rotates, wherein a vertical projection path of the liquid crystal drop outlet of the liquid crystal dripper on the substrate passes through a region covered by the rotating portion. 2. The liquid crystal filling device of claim 1, wherein the rotating portion comprises at least one wire, one end of the wire being coupled to an output shaft of the motor. 3. The liquid crystal filling device of claim 2, wherein the wire has a shape of a rod, a paddle, a blade, or any combination thereof. 4. The liquid crystal filling device of claim 2, wherein when the motor drives the wire to rotate, the wire will rotate around the output shaft of the motor to form a tapered surface, and the liquid crystal drop outlet of the liquid crystal dripper is on the substrate The vertical projection path above passes through the cone. 5. The liquid crystal filling device of claim 2, wherein an angle between the wire and an output shaft of the motor is about 90 when the motor drives the wire to rotate. ~170. . The liquid crystal filling device of claim 2, wherein an angle between the wire and an output shaft of the motor is about 110 when the motor drives the wire to rotate. ~150. . 7. The liquid crystal filling device of claim 2, wherein the wire has a cross-sectional area of about 100 to 100,000,000 μm. 8. The liquid crystal filling device of claim 2, wherein the output shaft of the motor rotates at a speed of about 30 to 60000 rpm. 9. The liquid crystal filling device of claim 2, wherein the output shaft of the motor rotates at a speed of about 60 to 60000 rpm. 10. The liquid crystal filling device of claim 2, wherein the rotational speed of the output shaft of the motor is about 300 to 30000 rpm. 11. The liquid crystal filling device according to claim 2, wherein the number of the wires, the rotational speed of the output shaft of the motor, and the liquid crystal dripping frequency of the liquid crystal drip device satisfy the following formula: L5<! D[c wherein N is The number of the wires, R is the rotational speed of the output shaft of the motor, and DLC is the liquid crystal dripping frequency of the liquid crystal drip. The liquid crystal filling device of claim 2, wherein the number of the wires, the rotational speed of the output shaft of the motor, and the liquid crystal dripping frequency of the liquid crystal drip device satisfy the following formula: , NR ^•5 <;——< 5〇Du: where N is the number of wires and R is the rotational speed of the output shaft of the motor' DLC is the liquid crystal drip frequency of the liquid crystal drip. 13. The liquid crystal filling device of claim 1, wherein the liquid crystal dripper has a liquid crystal dropping frequency of about 5 to 60 drops/second. 14. The liquid crystal filling device of claim 1, wherein the rotating portion comprises a beveled cone, an apex of the beveled disk is connected to an output shaft of the motor, and a liquid crystal drop outlet of the liquid crystal drip is on the substrate The path passes through the beveled cone. The liquid crystal filling device of claim 14, wherein the rotating portion has a plurality of 5 turbulent tips arranged at the bottom of the beveled disk. The liquid crystal according to claim 16 The face of the liquid crystal dripping machine is lyophobic surface. The liquid crystal filling device of claim 16, wherein the beveled cone faces between the face of the liquid crystal drip machine and the output shaft of the motor by about 95 to 160. . The liquid crystal filling device of claim I, wherein the slope of the bevel disk facing the liquid crystal dripper and the output shaft of the motor is about 110° to 150°. . The liquid crystal filling device of claim 16, wherein the number of the drainage tips is about 1 to 5 Å. 21. The liquid crystal filling device of claim 16, wherein the motor has an output shaft having a rotational speed of about 100 to 60000 rpm. The liquid crystal filling device according to claim 14, wherein the rotating portion has a plurality of lyophilic surfaces and a plurality of lyophobic surfaces, and the lyophilic surface and the lyophobic surface are alternately arranged on the beveled surface of the bevel The liquid crystal droplet surface, and each of the lyophilic surfaces and each of the lyophobic surfaces are strip-shaped and extend from the apex of the beveled cone (4) to the bottom edge of the beveled cone. The liquid crystal filling device of claim 22, wherein the beveled cone is an angle between the face of the liquid crystal drip machine and the output shaft of the motor, and the spoons 110 to 150. . The liquid crystal filling device of claim 14, wherein the beveled cone has a plurality of grooves, and the grooves are arranged on a side of the bevel disk facing the liquid crystal dripping machine, and the grooves A plurality of ridge lines are formed on the face of the beveled disc, and the ridge lines extend from the apex of the beveled disc to the bottom edge of the beveled disc. 25. The liquid crystal filling device of claim 24, wherein the rotating portion comprises a plurality of lyophilic surfaces and a plurality of lyophobic surfaces, the lyophilic surfaces and the lyophobic surfaces being alternately arranged on the beveled cone Facing the face of the liquid crystal dripper, and each of the lyophilic surfaces and each of the lyophobic surfaces are strip-shaped and extend from the apex of the beveled cone to the bottom edge of the beveled cone. 26. The liquid crystal filling device of claim 25, wherein any two adjacent lyophilic surfaces and the lyophobic surface sandwich the ridge line. 27. The liquid crystal filling device according to claim 24, The face of the beveled cone facing the liquid crystal dripping machine is a lyophobic surface. 28. The liquid crystal filling device of claim 24, wherein an angle between the face of the beveled cone facing the liquid crystal dripper and the output shaft of the motor is between about 100 and 160 degrees. 29. The liquid crystal filling device of claim 24, wherein the beveled cone 36 201250334 has a refresh angle between the face of the liquid crystal dripper and the output shaft of the motor of about 110° to 150°. The liquid crystal filling device of claim 24, wherein the number of the ridge lines is about 1 to 20. The liquid crystal filling device of claim 1, wherein a distance between a bottom edge of the rotating portion and the substrate is about 1 to 50 mm. 32. The liquid crystal filling device of claim 1, further comprising: a static eliminator for eliminating static electricity on the substrate and the liquid crystal. 33. The liquid crystal filling device of claim 32, wherein the static eliminator is a soft X-ray source, an Ionizer Bar, or any combination thereof. 34. The liquid crystal filling device of claim 1, further comprising: a gas blasting for the liquid crystal jet on the substrate to cause the liquid crystal to flow to expand a coverage area of the liquid crystal on the substrate. The liquid crystal filling device of claim 34, wherein the distance from the nozzle to the substrate is about 60 to 5000 μm. 36. The liquid crystal filling device of claim 34, wherein the distance from the nozzle of the 2012 20120334 to the substrate is about 80 to 3000 μm. The liquid crystal filling device of claim 34, wherein the distance from the nozzle to the substrate is about 80 to 2500 μm. 38. The liquid crystal filling device of claim 34, wherein the air gun has a gas pressure of about 0.04 to 0.25 Mpa. 39. The liquid crystal filling device of claim 34, wherein the gas pressure is about 0_04 to 0.15 Mpa. 40. The liquid crystal filling device of claim 34, wherein the gas is a clean dry air gun, a nitrogen gas grab, or any combination thereof. The liquid crystal filling device of claim 34, wherein the gas ejected by the gas is about 25 to 40 °C. 42. The liquid crystal filling device of claim 34, wherein the air gun has a line shape. The liquid crystal filling device of claim 42, further comprising: a moving device for linearly moving the gas grab relative to the substrate during the gas jet, thereby allowing the gas to be ejected A gas stream sweeps across the surface of the substrate. The liquid crystal filling device of claim 34, wherein the air gun nozzle is in the shape of a dot. The liquid crystal filling device of claim 44, further comprising: a moving device for causing the gas to sway linearly back and forth with respect to the substrate when the air gun is jetted, thereby allowing the gas to be sprayed onto the substrate A gas stream is linearly oscillated back and forth centering on the liquid crystal on the substrate. 46. The liquid crystal filling device of claim 34, further comprising: a tilting device for tilting the substrate such that the substrate is at a predetermined angle to a horizontal plane. 47. The liquid crystal filling device of claim 46, wherein the predetermined angle is between about 5 and about 20. . 48. The liquid crystal filling device of claim 47, wherein the gas pressure is about 0.03 to 0.25 Mpa. 49. The liquid crystal filling device of claim 47, wherein the gas pressure is about 0.03 to 0.15 Mpa. 50. The liquid crystal filling device of claim 34, further comprising: a rotating device for rotating the substrate. 39 201250334 51. A liquid crystal filling device comprising: a liquid crystal dropping device for dropping at least one liquid crystal on a substrate; and a gas robbing for jetting the liquid crystal on the substrate to cause the liquid crystal to flow to expand the liquid crystal The coverage area of the liquid crystal on the substrate. The liquid crystal filling device of claim 51, wherein the distance from the nozzle to the substrate is about 60 to 5000 μm. The liquid crystal filling device of claim 51, wherein the distance from the nozzle to the substrate is about 80 to 3000 μm. 54. The liquid crystal filling device of claim 51, wherein the distance from the gas blasting nozzle to the substrate is about 80 to 2500 μm. The liquid crystal filling device of claim 51, wherein the gas pressure is about 0.04 to 0.25 Mpa. The liquid crystal filling device of claim 51, wherein the gas pressure is about 0.04 to 0.15 MPa. The liquid crystal filling device of claim 51, wherein the gas is a clean dry air gun, a nitrogen gas grab, or any combination thereof. The liquid crystal filling device of claim 51, wherein the temperature of the gas ejected by the air gun is about 25 to 40 °C. The liquid crystal filling device of claim 51, wherein the air gun nozzle is linear. 60. The liquid crystal filling device of claim 59, further comprising: a moving device for linearly moving the gas grab relative to the substrate during the gas jet, thereby allowing the air gun to eject one of the air guns A gas stream sweeps across the surface of the substrate. The liquid crystal filling device of claim 51, wherein the gas blasting nozzle is in the shape of a dot. 62. The liquid crystal filling device of claim 61, further comprising: a moving device for causing the gas to sway linearly back and forth with respect to the substrate when the air gun is jetted, thereby allowing the air gun to be sprayed onto the substrate A gas stream is linearly oscillated back and forth centering on the liquid crystal on the substrate. The liquid crystal filling device of claim 62, wherein the liquid crystal dropping device is configured to drop a plurality of the liquid crystals on the substrate, and the liquid crystals are spaced apart from each other; and wherein the gas flow linearly oscillates back and forth The liquid crystal filling device of claim 62, wherein the liquid crystal dripping substrate drops a plurality of the liquid crystals, and the liquid crystals are arranged on the base plate in a ratio of 50% to 70%. An array; and wherein the direction in which the gas stream oscillates linearly back and forth is the column or column direction of the array. Wherein the liquid crystal droplets and the liquid crystals are used in the liquid crystal filling apparatus of claim 62 to drop a plurality of the liquid crystals on the substrate, the substrates are arranged in an array; and wherein the gas is oriented or direction. The direction of the flow linear back and forth is not set to the row of the array, wherein the liquid crystal droplets and the liquid crystals are 66. The liquid crystal filling and loading machine of claim 51 is used to drop a plurality of the liquid crystals on the substrate. The spacing is between about 5 and 25 mm. 67. The liquid crystal filling device of claim 51, wherein the liquid crystal dropped by the liquid crystal dripper has a basis weight of about 0.3 to 3 mg per drop. 68. The liquid crystal filling device of claim 51, further comprising: a tilting device for tilting the substrate such that the substrate is at a predetermined angle to a horizontal plane. The liquid crystal filling device of claim 68, wherein the predetermined angle is about 5° to 20°. The liquid crystal filling device of claim 69, wherein the gas pressure is about 0.03 to 0.25 Mpa. The liquid crystal filling device of claim 69, wherein the air gun has a gas pressure of about 0.03 to 0.15 MPa. The liquid crystal filling device of claim 51, further comprising: a rotating device for rotating the substrate. The liquid crystal filling device of claim 51, further comprising: a static eliminator for eliminating static electricity on the substrate and the liquid crystal. The liquid crystal filling device of claim 73, wherein the static eliminator is a soft X-ray source, an Ionizer Bar, or any combination thereof. 43
TW100120022A 2011-06-08 2011-06-08 Liquid crystal filling apparatus TWI459074B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW100120022A TWI459074B (en) 2011-06-08 2011-06-08 Liquid crystal filling apparatus
CN2012103813654A CN102967968A (en) 2011-06-08 2011-07-26 liquid crystal filling device
CN201110220083.1A CN102253539B (en) 2011-06-08 2011-07-26 Liquid crystal filling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100120022A TWI459074B (en) 2011-06-08 2011-06-08 Liquid crystal filling apparatus

Publications (2)

Publication Number Publication Date
TW201250334A true TW201250334A (en) 2012-12-16
TWI459074B TWI459074B (en) 2014-11-01

Family

ID=44980884

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120022A TWI459074B (en) 2011-06-08 2011-06-08 Liquid crystal filling apparatus

Country Status (2)

Country Link
CN (2) CN102253539B (en)
TW (1) TWI459074B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238203A (en) * 2014-09-11 2014-12-24 京东方科技集团股份有限公司 Display panel bubble removal method and display panel bubble removal device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614899A (en) * 2015-03-02 2015-05-13 合肥京东方光电科技有限公司 Liquid crystal pouring method, device for dispersing liquid crystals and liquid crystal screen manufacturing equipment
CN104749810B (en) * 2015-04-15 2017-10-13 合肥鑫晟光电科技有限公司 The manufacture method and heater of liquid crystal panel
CN105487302B (en) * 2016-01-19 2017-11-24 京东方科技集团股份有限公司 A kind of liquid crystal coating unit and method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689199B2 (en) * 1992-04-13 1997-12-10 アユミ工業株式会社 Liquid crystal encapsulation method and liquid dispenser
JPH08171094A (en) * 1994-12-19 1996-07-02 Nippon Soken Inc Liquid crystal injecting method and liquid crystal injecting device to liquid crystal display device
JPH11109388A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Production of liquid crystal display device
JP2001174819A (en) * 1999-12-16 2001-06-29 Seiko Epson Corp Method of forming coating film, method of producing liquid crystal device and film forming device
JP2002341362A (en) * 2001-05-18 2002-11-27 Matsushita Electric Ind Co Ltd Method of manufacturing liquid crystal display panel and apparatus for manufacturing liquid crystal panel
JP2003245579A (en) * 2002-02-22 2003-09-02 Seiko Epson Corp Thin film forming device, thin film forming method, apparatus and method for manufacturing liquid crystal device, apparatus and method for manufacturing thin film structure, liquid crystal device, thin film structure, and electronic equipment
US7102726B2 (en) * 2002-03-15 2006-09-05 Lg. Philips Lcd Co., Ltd. System for fabricating liquid crystal display and method of fabricating liquid crystal display using the same
TWI242663B (en) * 2002-07-09 2005-11-01 Seiko Epson Corp Jetting method of liquid, jetting apparatus of liquid, production method of substrate for electro-optical apparatus and production method of electro-optical apparatus
JP2004103781A (en) * 2002-09-09 2004-04-02 Canon Inc Method and device for liquid coating
CN1890598A (en) * 2003-10-02 2007-01-03 瑞威欧公司 Liquid crystal cell assembly method and system
TWI274947B (en) * 2003-12-31 2007-03-01 Innolux Display Corp Apparatus and process for filling liquid crystal into LCD cell
US7667816B2 (en) * 2005-07-19 2010-02-23 Sharp Kabuhsiki Kaisha Liquid crystal drop fill device and a method for drop filling liquid crystal by the use of the device
JP4746456B2 (en) * 2006-03-20 2011-08-10 株式会社東芝 Droplet spray coating head module, droplet spray coating apparatus, and manufacturing method of coated body
CN101271233A (en) * 2007-03-21 2008-09-24 奇美电子股份有限公司 Display element and manufacturing and re-manufacturing method
KR100949126B1 (en) * 2008-01-22 2010-03-25 주식회사 탑 엔지니어링 Liquid crystal application method and liquid crystal applicator for manufacturing liquid crystal panel
JP2009198973A (en) * 2008-02-25 2009-09-03 Citizen Holdings Co Ltd Method for manufacturing liquid crystal cell and liquid crystal injection device
TWI377416B (en) * 2008-08-06 2012-11-21 Chunghwa Picture Tubes Ltd Method of filling liquid crystal
JP2010172868A (en) * 2009-02-02 2010-08-12 Shibaura Mechatronics Corp Apparatus and method for dropping liquid material
CN101510028B (en) * 2009-03-24 2010-09-22 友达光电股份有限公司 Liquid crystal spraying apparatus
CN101844123B (en) * 2009-03-27 2013-05-01 北京京东方光电科技有限公司 Liquid crystal dripping device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238203A (en) * 2014-09-11 2014-12-24 京东方科技集团股份有限公司 Display panel bubble removal method and display panel bubble removal device

Also Published As

Publication number Publication date
CN102967968A (en) 2013-03-13
TWI459074B (en) 2014-11-01
CN102253539B (en) 2014-04-16
CN102253539A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
US10279379B2 (en) Uniform fluid manifold for acoustic transducer
TW201250334A (en) Liquid crystal filling apparatus
US20200139262A1 (en) Bubble machine
JP2009530865A (en) Substrate cleaning method and apparatus
CN107683209B (en) Liquid discharge apparatus, Embosser and the method for manufacturing component
US20100163078A1 (en) Spinner and method of cleaning substrate using the spinner
TWI335244B (en)
JP2021177578A (en) Semiconductor wafer cleaner and cleaning method
JP6296819B2 (en) Liquid discharge head and liquid discharge apparatus
CN102224089B (en) Liquid-ejecting bearings for transport of glass sheets
JP2011123460A (en) Liquid crystal drop controller
JP2016219721A (en) Substrate processing apparatus
US9548221B2 (en) Method and apparatus for processing wafer-shaped articles
JP4005335B2 (en) Substrate processing equipment
CN105093578B (en) Light blockage coating device
JP2005277211A (en) Substrate processor
JPWO2023079632A5 (en)
KR101116137B1 (en) Method for spraying Liquid Crystal and LC dispenser employing the same
CN113675108A (en) Backing plate and method of fluid assembly
JPH09162097A (en) Chemical liquid nozzle
CN110396846B (en) Papermaking fiber dispersing equipment based on hydrodynamics
CN110164795A (en) Wet processing equipment and wafer wet processing method
JP2004066389A (en) Slicing method for ingot and wire saw cutting device
KR101644835B1 (en) Head apparatus and liqiud crystal dispenser having the same
CN116160773A (en) Ink jet head cleaning device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees