[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201242072A - Light emitting semiconductor device having multi-level substrate - Google Patents

Light emitting semiconductor device having multi-level substrate Download PDF

Info

Publication number
TW201242072A
TW201242072A TW101105328A TW101105328A TW201242072A TW 201242072 A TW201242072 A TW 201242072A TW 101105328 A TW101105328 A TW 101105328A TW 101105328 A TW101105328 A TW 101105328A TW 201242072 A TW201242072 A TW 201242072A
Authority
TW
Taiwan
Prior art keywords
region
height
lesd
dielectric layer
conductive layer
Prior art date
Application number
TW101105328A
Other languages
Chinese (zh)
Inventor
Philip Edwin Watson
Yarn Chee Poon
Ravi Palaniswamy
Jesudoss Arokiaraj
Alejandro Aldrin Agcaoili Ii Narag
Kim Leong Tan
Andrew John Ouderkirk
Douglas Scott Parker
Justine Anne Mooney
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW201242072A publication Critical patent/TW201242072A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Devices (AREA)

Abstract

Provided is a light emitting semiconductor device that includes a substrate having a first area having a first height and a second area having a second height different from the first height, wherein the first area supports at least a first light emitting semiconductor (LES) and the second area supports at least a second light emitting semiconductor (LES).

Description

201242072 六、發明說明: 本申請案主張對2011年2月18日申請之美國臨時專利申 請案第61/444,348號及2011年12月20曰申請之美國臨時專 利申4案第61/577,733號之優先權,其以引用的方式整體 併入本文中。 【先前技術】 省用發光半導體(LES)(包括發光二極體(LED)、雷射二 極體)及LES裝置(LESD)及含有LESD之封裝具有若干缺 點。尚功率LESD產生大量熱,該熱必須加以管理。lEsd 之熱官理包括因熱耗散及熱應力產生之問題,此係目前限 制發光二極體之性能之關鍵因素。 一般而言,LESD通常易於受到損害,該損害係由自裝 置内產生之熱、以及在外部照明應用中使用時來自陽光之 熱的累積造成。過量熱累積可造成LES裝置中所用之材料 (例如LESD之囊封劑)劣化。當將LESD附接至經常包括其 他電組件之向耐熱性基板(例如FR4撓性-電路壓層)時,熱 耗散問題大大增加。 另外,習用LESD及封裝往往較厚,此限制其在低形狀 因數應用中之使用。因此,業内仍需要改良撓性1^81)及 封裝之設計以改良其熱耗散性質、以及允許其以低形狀因 數使用。 【發明内容】 本發明之至少一個態樣經由穩健之撓性LESd構造為當 月’』及未來尚功率LESD構造提供成本有效之熱管理解決方 162438.doc 201242072 案。高功率LESD陣列之操作需要耗散大量熱之能力。根 據本發明之至少一個實施例,可藉由將LESD整合至具有 撓眭介電層之系統中來管理熱耗散,其中將LESD設置於 介電層之一主表面上且將導熱材料設置於介電層之第二主 表面上,或她鄰於其。為實現良好熱管理,可將[£8〇佈 置於距導熱層之不同距離處,此基於(例如)其熱耗散需 求。此係藉由控制介於每一類型LESD與導熱層之間之絕 緣(介電)層之厚度來實現。 在本發明之至少一個實施例中,為達成一或多個lesd 相對於傳導材料之期望佈置,對介電層之各區域實施至一 或多個期望厚度之受控蝕刻。 包括大區域或小腔之凹入區域可經蝕刻或可藉由包括微 複製之其他適宜方法來形成。出於本發明之目的,凹入區 域可呈僅可安置一或幾個LESD之小腔、或可安置複數個 LESD之大凹陷之形式。 在一些實施例中,當至少一個LESD位於凹入部中且一 者未位於凹入部中時,或當將LESD安置於不同深度之凹 入部中時’安置一些LESD之凹入區域之產生可使毗鄰 LESD之間之絕緣(介電)材料之量增加。由於絕緣材料之此 增加’因此LESD可經安置以在X及γ方向上比其若位於同 一平面表面上之情況更接近。 在一些實施例中,介電層之蝕刻提供產生具有傾斜側壁 之凹入區域之額外優點,該等傾斜側壁可塗佈有反射材料 以提供增強之光效率。另外,在一些實施例中,由於 162438.doc 201242072 以下’故本發明之 此使得其極適於低 ’可將焊料保持於 LESD之至少一部分位於介電層之表面 撓性LESD具有低於標準leSD之剖面, 开> 狀因數應用。此外,在一些實施例中 凹入區域中,且該等實施方案避免焊料在其經受晶粒附接 之焊料回流製程時散佈。 之照明系統為特 發光半導體裝置 ,具有不同於該 本發明之至少一個態樣係以包括以下 徵:光學採集系統;具有第一高度之第一 (LESD) ’該第—LESD面向光學採集系統 第一南度之第二高度之第二發光半導體裝置(lesd),該第 二LESD面向光學採㈣統;及基板。該基板具有第一區 域及第二區域,其中該第—區域至少支撑該第—USD且 該第二區域至少支撐該第二LESD,且該第一區域具有不 同於該第二區域之第二區域高度之第一區域高度。 本發明之至少一個態樣係以包括以下之照明總成為特 徵.具有第一高度之第一發光半導體裝置(LESD)、具有不 同於第同度之第二面度之第二發光半導體裝置(LESD)、 及具有第一區域及第二區域之介電層。該第一區域至少支 撐該第一LESD且該第二區域至少支撐該第二LESD。該第 一區域具有不同於該第二區域之第二區域高度之第一區域 问度,以使得該第一LESD及該第二LESD具有大體上平面 發射表面。 本發明之至少一個態樣係以包括以下步驟之方法為特 徵:提供光學採集系統;提供具有第一及第二主表面以及 具有第一高度之第一區域之基板;在該第一主表面上產生 162438.doc 201242072 至少-個凹人之第H以使得該第二區域具有小於該 第-高度之第二高度;及將至少一個發光半導體安置於: 向該光學採集系統之該等第一及第二區域之每一者上。、 本發明之至少一個態樣係以包括以下之物件為特徵:具 有第一及第二主表面之撓性介電層,該第_主表面具有至 少-個具有第-高度之第一區域及至少—個具有不同於該 第一咼度之第二高度之第二區域,其中該第一區域至少支 撐一個第一發光半導體裝置(LESD)且該第二區域至少支撐 一個第二發光半導體裝置(LESD);及於該介電層之該第一 主表面上之第一傳導層。 本發明之至少一個態樣係以製造撓性發光裝置之方法為 特徵,該方法包括以下步驟:提供具有第一及第二主表面 以及具有第一高度之第一區域之撓性介電材料;在該第一 主表面上產生至少一個凹入之第二區域,該第二區域具有 小於5亥第一南度之苐二高度;在該介電材料之該第一主表 面上產生傳導層·,及將至少一個LESD安置於該等第一及 第二區域中之每一者上。 如本申請案中所用: 「LES」意指發光半導體’包括發光二極體及雷射二極 體; LESD」意指發光半導體裝置,包括發光二極體裝置 及雷射二極體裝置。LESD可係裸LES晶粒構造、經完全封 裝之LES構造、或包含多於裸晶粒、但少於完全LES封裝 之所有組件的中間LES構造,以使得術語LES與LESD可在 162438.doc 201242072 * 一些情形中互換使用且係指不同LES構造中之— 有或全 部; 術語「撓性LES裝置」或「撓性LESD」通常係指含有裸 晶粒發光半導體、經封裝之LES構造、或中間Les構造之 • 撓性物件; • 目於介電層之「高度」及「厚度」it常係指某—區域中 之介電層之垂直尺寸; 關於介電層中之凹入區域之「深度」通常係指介電層中 之該凹入區域(即’不存在材料)之垂直尺寸; 「腔」意指僅可安置一或幾個LESD之凹入區域;且 「凹陷」意指可安置複數個LESD之大凹入區域。 本I明之上文總結並非意欲闡述本發明之每一所揭干實 施例或每一實施方案。以下圖及詳細說明更具體地例示說 明性實施例。 【實施方式】 將附圖併入本說明書中並構成其一部分,並與該說明一 起解釋本發明之優點及原則。 在以下說明中,參照隨附圖式組,該等圖式構成其說明 之一部分且以圖解說明方式顯示若干具體實施例。應瞭 • 解,可涵蓋其他實施例且其可在不背離本發明之範圍或精 神的情況下實施。因此,以下詳細說明不應視為具有限制 意義。 除非另有指示,否則本說明書及申請專利範圍中所用之 表不特徵大小、量及物理性質之所有數值在所有情況下皆 162438.doc 201242072 應理解為由術語「約」修飾。因此,除非指示相反之情 形γ否則上述說明書及隨附申請專利範圍令所列之數值參 二々值其可視熟習此項技術者利用本文所揭示之教 示°式圖獲得之期望性質而改變。藉由端點所使用之數值範 圍包括屬於該範圍内之所有數值(例如,1至5包括1、1.5、 2·75 3、3‘80、4及5)及屬於該範圍内之任一範圍。 除非另有說明,否則術語「塗佈(「c〇at,」「c〇ating,」 coated’」)」及諸如此類並不限於特定類型之施加方 法,例如噴塗、浸塗、滿版塗佈等,且可指藉由任一適宜 於所述材料之方法沈積之材料,包括諸如氣相沈積方法等 沈積方法 '鍍覆方法、塗佈方法等。 照明總成經常包括具有不同顏色之LESD,其中不同顏 色LESD可具有不同高度。例如,RGB(即紅色、藍色及綠 色)LESD通常經組合以產生白光。藍色及綠色LESD有時係 由相同材料系統製得且從而具有類似尺寸,而紅色LeSD 經常係由不同材料系統製得且具有與藍色或綠色lESE)之 尺寸不同之尺寸。 經常期望多個LESD具有大體上平面發射表面,如圖1A 及1B中所圖解說明。圖丄八及1B提供具有不同組態之照明 總成之說明性射線追縱圖。圖1A圖解說明照明總成 100A,其包括兩個LESD 110A及120A及光學採集系統 150。該兩個LESD 110A及120A具有不同發射表面。如區 域140A中所圖解說明,自LESD 110A(其距光學採集系統 150比距LESD 120A遠)發射之一部分光線未由光學採集系 162438.doc 201242072 統150採集。圖1B圖解說明照明總成ι00Β,其包括兩個201242072 VI. INSTRUCTIONS: This application claims U.S. Provisional Patent Application No. 61/444,348, filed on Feb. 18, 2011, and U.S. Provisional Patent Application No. 61/577,733, filed on December 20, 2011. Priority is hereby incorporated by reference in its entirety. [Prior Art] The use of a light-emitting semiconductor (LES) (including a light-emitting diode (LED), a laser diode) and a LES device (LESD) and a package containing a LESD has several drawbacks. The power LESD generates a lot of heat that must be managed. The heat management of lEsd includes problems due to heat dissipation and thermal stress, which are currently the key factors limiting the performance of light-emitting diodes. In general, LESDs are generally susceptible to damage resulting from the heat generated within the device and the accumulation of heat from sunlight when used in external lighting applications. Excessive heat buildup can cause degradation of the materials used in the LES device, such as the LESD encapsulant. When the LESD is attached to a heat resistant substrate (e.g., FR4 flexible-circuit laminate) that often includes other electrical components, the heat dissipation problem is greatly increased. In addition, conventional LESDs and packages tend to be thicker, which limits their use in low form factor applications. Therefore, there is still a need in the industry to improve the flexibility of the design and packaging design to improve its heat dissipation properties and allow it to be used with low form factor. SUMMARY OF THE INVENTION At least one aspect of the present invention provides a cost effective thermal management solution via the robust flexible LESd for the current month' and future power LESD constructions 162438.doc 201242072. The operation of high power LESD arrays requires the ability to dissipate a large amount of heat. In accordance with at least one embodiment of the present invention, heat dissipation can be managed by integrating the LESD into a system having a flexible dielectric layer, wherein the LESD is disposed on one of the major surfaces of the dielectric layer and the thermally conductive material is disposed on On the second major surface of the dielectric layer, or she is adjacent to it. For good thermal management, [£8〇) can be placed at different distances from the thermal layer, based on, for example, its heat dissipation requirements. This is accomplished by controlling the thickness of the insulating (dielectric) layer between each type of LESD and the thermally conductive layer. In at least one embodiment of the invention, controlled regions of one or more desired thicknesses are applied to regions of the dielectric layer in order to achieve a desired arrangement of one or more lesd relative to the conductive material. The recessed areas comprising large areas or small cavities may be etched or may be formed by other suitable methods including microreplication. For the purposes of the present invention, the recessed area may be in the form of a small cavity in which only one or a few LESDs may be placed, or a large recess in which a plurality of LESDs may be placed. In some embodiments, when at least one LESD is located in the recess and one is not located in the recess, or when the LESD is placed in a recess of a different depth, the generation of a recessed area in which some of the LEDS are placed may be adjacent The amount of insulating (dielectric) material between LESDs increases. This increases in insulating material' so the LESD can be placed closer in the X and gamma directions than if it were on the same planar surface. In some embodiments, the etching of the dielectric layer provides the additional advantage of creating recessed regions having sloped sidewalls that may be coated with a reflective material to provide enhanced light efficiency. Additionally, in some embodiments, due to 162438.doc 201242072 the following 'so the present invention makes it extremely suitable for low', the solder can be held in at least a portion of the LESD at the surface of the dielectric layer. The flexible LESD has a lower than standard leSD. Profile, open > shape factor application. Moreover, in some embodiments recessed regions, and such embodiments avoid solder spreading as it undergoes a solder reflow process for die attach. The illumination system is a special light emitting semiconductor device having at least one aspect different from the present invention to include the following: an optical acquisition system; having a first height (LESD) 'the first-LESD facing optical acquisition system a second light-emitting semiconductor device (lesd) having a second height of south, the second LESD facing the optical system; and a substrate. The substrate has a first region and a second region, wherein the first region supports at least the first USD and the second region supports at least the second LESD, and the first region has a second region different from the second region The height of the first area of height. At least one aspect of the present invention is characterized by including illumination of a first light emitting semiconductor device (LESD) having a first height, and a second light emitting semiconductor device having a second degree different from the first degree (LESD) And a dielectric layer having a first region and a second region. The first region supports at least the first LESD and the second region supports at least the second LESD. The first region has a first regional extent different from the height of the second region of the second region such that the first LESD and the second LESD have a substantially planar emitting surface. At least one aspect of the invention features a method comprising: providing an optical acquisition system; providing a substrate having first and second major surfaces and a first region having a first height; on the first major surface Generating 162438.doc 201242072 at least a recessed person's H such that the second region has a second height less than the first height; and placing at least one light emitting semiconductor on: the first and to the optical acquisition system On each of the second areas. At least one aspect of the present invention features an article comprising: a flexible dielectric layer having first and second major surfaces, the first major surface having at least one first region having a first height and At least one second region having a second height different from the first temperature, wherein the first region supports at least one first light emitting semiconductor device (LESD) and the second region supports at least one second light emitting semiconductor device ( LESD); and a first conductive layer on the first major surface of the dielectric layer. At least one aspect of the present invention features a method of fabricating a flexible light emitting device, the method comprising the steps of: providing a flexible dielectric material having first and second major surfaces and a first region having a first height; Forming at least one recessed second region on the first major surface, the second region having a second height less than 5 Hz; generating a conductive layer on the first major surface of the dielectric material And placing at least one LESD on each of the first and second regions. As used in this application: "LES" means a light-emitting semiconductor 'including a light-emitting diode and a laser diode; LESD" means a light-emitting semiconductor device including a light-emitting diode device and a laser diode device. The LESD may be a bare LES die construction, a fully encapsulated LES construction, or an intermediate LES configuration containing more than bare die, but less than all components of a full LES package, such that the terms LES and LESD are available at 162438.doc 201242072 * Used interchangeably in some cases and refers to different LES configurations - either or all; the term "flexible LES device" or "flexible LESD" generally refers to a bare-die light-emitting semiconductor, encapsulated LES structure, or intermediate Les construction • Flexible objects; • The “height” and “thickness” of the dielectric layer often refer to the vertical dimension of the dielectric layer in a certain region; the depth of the concave region in the dielectric layer Generally refers to the vertical dimension of the recessed area in the dielectric layer (ie, 'no material present'); "cavity" means that only one or a few recessed areas of the LESD can be placed; and "recessed" means can be placed A large recessed area of a plurality of LESDs. The above summary of the present disclosure is not intended to describe each of the disclosed embodiments or embodiments. The following figures and detailed description more particularly exemplify illustrative embodiments. [Embodiment] The drawings are incorporated in and constitute a part of the specification, and the advantages and principles of the invention are explained in conjunction with the description. In the following description, reference is made to the accompanying drawings in the claims Other embodiments are contemplated and may be practiced without departing from the scope or spirit of the invention. Therefore, the following detailed description should not be considered limiting. Unless otherwise indicated, all numerical values, such as size, quantity, and physical properties, used in the specification and claims are in all cases 162 438.doc 201242072 is understood to be modified by the term "about." Accordingly, unless indicated to the contrary gamma, the numerical values set forth in the above specification and the accompanying claims are intended to be modified by those skilled in the art using the teachings disclosed herein. The range of values used by the endpoints includes all values within the range (eg, 1 to 5 including 1, 1.5, 2·75 3, 3'80, 4, and 5) and any range within the range . Unless otherwise stated, the term ""c〇at," "c〇ating," coated'") and the like are not limited to a particular type of application, such as spraying, dip coating, full-coating, etc. And may refer to a material deposited by any method suitable for the material, including a deposition method such as a vapor deposition method, a plating method, a coating method, and the like. Lighting assemblies often include LESDs having different colors, wherein different color LESDs can have different heights. For example, RGB (i.e., red, blue, and green) LESDs are typically combined to produce white light. Blue and green LESDs are sometimes made from the same material system and thus have similar dimensions, while red LeSD is often made from different material systems and has dimensions different from those of blue or green lESE). It is often desirable for a plurality of LESDs to have a substantially planar emitting surface, as illustrated in Figures 1A and 1B. Figures 及8 and 1B provide illustrative ray tracing diagrams for lighting assemblies with different configurations. FIG. 1A illustrates a lighting assembly 100A that includes two LESDs 110A and 120A and an optical acquisition system 150. The two LESDs 110A and 120A have different emitting surfaces. As illustrated in region 140A, a portion of the light emitted from LESD 110A (which is further from optical acquisition system 150 than from LESD 120A) is not acquired by optical acquisition system 162438.doc 201242072. Figure 1B illustrates a lighting assembly ι00Β, which includes two

LESD 110B及120B及光學採集系統150。該兩個LESD 110B 及120B具有本質上平面發射表面。如區域mob中所圖解 說明’自LESD 110B發射之一小部分光線未由光學採集系LESD 110B and 120B and optical acquisition system 150. The two LESDs 110B and 120B have an essentially planar emitting surface. As illustrated in the area mob, 'a small portion of the light emitted from the LESD 110B is not used by the optical acquisition system.

統150採集。未由光學採集系統150採集之來自lesd 11〇B 之光線比例小於來自圖1A中LESD 11 〇A之未採集之光線比 例。本發明之方法及系統係關於具有多層基板以支撐複數 個具有不同高度之LESD之照明總成,其中該照明總成提 供該複數個LESD之本質上平面發射表面。照明總成經常 包括接收由LESD生成之光之光學採集系統。對於該等實 施方案而言,具有本質上平面發射表面之照明總成可提供 較高光功率,此乃因該光學採集系統所採集之光多於具有 位於距採集系統之不同距離處之發射表面之照明總成。 在具有採集光學器件之照明總成之一些實施例中,若基 板支撐複數個具有不同高度之LESD,則基板可係多層級 的,以使得複數個LESD中之至少兩者具有自哪〇之發射 表面至採集光學器件之發射表面之大體上相同光程長度。 例如對於對較短波長光具有較高折射率之採集光學器件 而言,較I波長LESD可經佈置於比較短波長丄咖距採集 光學器件猶遠處。利用該等實施方案,可在很大程度上校 正照明系統之色像差。 此外,可視LESD之熱生成來調整基板厚度及/或腔表面 區域以達成較好熱耗散。與LESD相關之本發明實施例之 優點包括:撓性LESD提供優良熱耗散(高功率lesd所必需 J62438.doc 201242072 之品質);可將撓性LESD以陣列形式接線於單一撓性且絕 緣層上;可使所得撓性LESD彎曲呈簡單或複合曲線;且 使用具有LESD之撓性層減少與習用次安裝座有關之成 本0 挽性LES裝置之實例性貫施例係圖解說明於圖2a中,其 顯示具有第一主表面13、與第一主表面13相對之第二主表 面14及至少一個凹入區域10之介電層12。將LESD %定位 於凹入區域10内。凹入區域10之底板及視情況壁可塗佈有 傳導材料18,傳導材料18可由與傳導層19相同之材料或與 傳導層19不同之材料製得,且可與傳導層19同時沈積。凹 入區域10可具有任一適宜形狀,例如圓形、橢圓形、矩 形、蛇形、通道、格柵(即,形成由重疊通道之連續圖案 隔開之大或小介電層島)等。在其他實施例中,傳導材料 1 8可支撐額外層,例如反射塗層。反射塗層可係具有增強 之反射性之金、銀、鋁、固有反射介電材料、或有色材 料。將傳導層19定位於介電層12之第一主表面13上且將傳 導層20疋位於介電層12之第二主表面μ上,如圖2A中所顯 示。傳導層19可部分或完全覆蓋第一主表面13。傳導材料 可係任一適宜材料,但通常係銅。在一些實施例中,傳導 層19及20中之一或兩者包括導電電路。將lesd 24定位於 傳導特徵16上,傳導特徵16可係傳導層19之一部分或包括 於介電層12之第一主表面上之額外材料’例如反射塗層。 藉由定位於傳導特徵16下面之部分介電層12使[£3〇 24與 LESD 26及傳導層20絕緣,在一些情形中傳導特徵16可係 162438.doc 201242072 電隔離傳導特徵。 在每一咖下面之部分介電層界定介於測(及任何插 入層或材料)與介電層之第二表面上之傳導層之間的距 離。此距離影響由顧生成之熱穿過介電層耗散至介電 -之第一表面上之導熱層。介電層可係撓性介電層或剛性 介電層。剛性介電層可包括-或多種材料,例如,陶究、 FR4 PCB板或諸如此類。撓性介電層可包括—或多種挽性 非傳導材料’例如,聚合物材料、聚酿亞胺、聚醋、聚環 统酸醋、液晶聚合物、鐵電材料(即,Β,鈦酸鋇)、 SrTi〇2鈦酸錄或諸如此類。傳導層可包括—或多種傳導材 料’例如’銅、半導體(即’石夕、鍺、氮化鎵、碑化鎵)、 陶竞(即,碳化矽)、碳(即,石墨 '類鑽石碳)、透明傳導 材料(即’銦錫氧化物、錄鋅氧化物等)或諸如此類在本 發明之至少-些實施例中,撓性介電層之適宜最大厚度係 約1〇微米至約100微采。凹入區域下面之撓性介電層之較 佳厚度係約i微米至約1〇微米。通常’腔可深於凹陷,此 乃因腔之底部處較小大小之薄介電層所導致的結構及機械 問題少於大區域之薄介電層。 若存在具有一個以上深度之凹入區域,則深度可相差任 適且里’但通常將相差約1 〇%至約5〇%。在本發明之至 少一些實施例中,LESD 26生成的熱多於lESD 24生成的 熱。例如,LESD 26可係藍色或綠色led且LESD 24可係 紅色LED。藉由將較熱LESD安置於凹入區域1〇中,由 LESD 26生成之熱穿過介電層行進至傳導層2〇之距離較 162438.doc 201242072 短,且因此由其生成之熱可更快傳遞至散熱器。同時藉 由將生成的熱少於LESD 26生成的熱之lESd 24安置於距 傳導層20較大距離處,由LESD 26生成且在χ方向及γ方向 上沿傳導層20行進之熱不太可能到達LESD 24並消極地影 響其操作及功能。 亦可控制凹入區域中之傳導材料之量以進一步影響熱管 理。可用傳導材料將凹入區域(尤其腔)填滿至1〇〇%。在一 些貫施例中’此係較佳的,但凹入區域更通常經填充約 10%至約95%滿。例如,若腔為5〇微米深,則在一些實施 例中,傳導材料較佳為5 〇微米深,但傳導材料之深度更通 常可係約45微米或更小。通常,凹入區域中所含有之傳導 材料愈多,自LESD之熱傳遞愈好。 圖2B圖解說明圖2A之比較LESD裝置,其中將LESD 24 及26疋位於具有相同深度之凹入區域1〇中。凹入區域之 底板及視情況壁可塗佈有傳導材料丨8。在圖2B中,由 LESD 26生成之熱可藉由以下來到達LESd 24 :先在Z方向 上向下行進穿過介於定位有LESr) 26之凹入區域1〇之底部 至傳導層20之間之絕緣層材料薄層;隨後在χ方向上沿傳 導層20行進;且最後再一次在z方向上向上行進穿過介於 傳導層20與定位有LESD 24之凹入區域1〇之底部之間的絕 緣層材料薄層。在圖2B中,藉由介於兩個凹入區域丨〇之間 之"電層厚區域減緩此一熱傳遞。然而,介於凹入區域之 間具有此厚區域佔據撓性LESD上之表面區域且將減少在 給定區域中可安置之LESD之數量。 162438.doc 12 201242072 如藉由比較圖2A及2B可看出,藉由將LESD 24及26安置 於介電層12上之不同高度處,LESD可經定位以彼此在X及 Y方向上比圖2B中更接近,而介於LESD之間仍維持顯著量 之絕緣材料(介電層)。在本發明之至少一些實施例中,(1) 第一高度與第二高度間之差異與(2)第一及第二區域中 LESD之間距的比率可係任一適宜比率,但通常係在約1:1 至約1:10之範圍内。此外,在一些實施例中,可調節一或 多個凹入區域之深度,以使得LESD 24及LESD 26具有大 體上平面發射表面。 圖3圖解說明照明系統3 0 0之實例性實施例。照明系統 300可包括基板310、第一發光半導體裝置(LESD) 320、第 二發光半導體裝置(LESD) 330及可選光學採集系統39〇。 第一 LESD 320具有第一高度且第二LESD 330具有不同於 §亥第一咼度之第二高度。第一 LESD 320及第二LESD 330 可面向光學採集系統390。光學採集系統390具有面向 LESD之光進入主表面391及光發射主表面392。基板31〇具 有第一主表面312及與第一主表面312相對之第二主表面 314。第一主表面312面向光學採集系統390。基板31〇可包 括至少支撐第一 LESD 320之第一區域370及至少支樓第二 LESD 330之第二區域380。第一區域370具有第一區域高度 A ’其可藉由介於第一區域370之表面與基板31〇之第二主 表面314之間之距離來指示。類似地,第二區域38〇具有第 二區域高度私’其可藉由介於第二區域38〇之表面與基板 3 10之苐一主表面3 14之間之距離來指示。在一些實施例 162438.doc •13· 201242072 中,第一區域高度仏不同於第二區域高度此,以使得第一 LESD 320及第二LESD 330具有大體上平面發射表面。在 一些實施方案中,第一及第二區域高度之差異可與第一 LESD 320及第二LESD 330之高度的差異大體上相同。在 包括光學採集系統之照明系統3〇〇之一些實施例中,第一 LESD 320之發射表面及第二LESD 33〇之發射表面處於距 光學採集系統390大體上相同的距離處。光學採集系統可 包括任一採集光學器件,例如,透鏡、積分桿、拋物面反 射鏡、囊封劑或諸如此類。在一些其他實施例中,第一區 域高度沁不同於第二區域高度馬,以使得第一 LEsd 32〇 及第二LESD 330具有自光學採集系統39〇之光發射主表面 392之大體上相同光程長度。 在一些實施例中,基板310可包括介電層34()。在一些其 他實施例中,基板310可包括於第一主表面312處之傳導層 350。視情況,基板310可包括於基板31〇之第二主表面314 處之另一傳導層360。在特定實施例中,介電層34〇係經設 計以於第一區域370處具有第一介電層高度乃仏且於第二區 域380處具有第二介電層高度乃沁,第—介電層高度ο%不 同於第二介電層咼度,如圖3中所圖解說明。在一些實 施方案中,第一與第一介電層高度之間之差異可與第一 LESD 320與第二LESD 330之間之高度差異大體上相同, 以實現第一及第二LESD之大體上平面發射表面。 圖4A至4F圖解說明照明總成400之數個實例性組態。照System 150 collection. The proportion of light from lesd 11〇B that is not collected by optical acquisition system 150 is less than the ratio of uncollected light from LESD 11 〇A in Figure 1A. The method and system of the present invention pertains to an illumination assembly having a multi-layer substrate to support a plurality of LESDs having different heights, wherein the illumination assembly provides an essentially planar emission surface of the plurality of LESDs. Lighting assemblies often include an optical acquisition system that receives light generated by the LESD. For such embodiments, an illumination assembly having an essentially planar emitting surface can provide higher optical power because the optical acquisition system collects more light than has an emitting surface located at a different distance from the acquisition system. Lighting assembly. In some embodiments of the illumination assembly having acquisition optics, if the substrate supports a plurality of LESDs having different heights, the substrate can be multi-level so that at least two of the plurality of LESDs have their own emission The surface is substantially the same optical path length as the emission surface of the acquisition optics. For example, for acquisition optics having a higher index of refraction for shorter wavelength light, the I-wavelength LESD can be placed farther away than the shorter wavelength chirped acquisition optics. With these embodiments, the chromatic aberration of the illumination system can be largely corrected. In addition, the heat generation of the LESD can be used to adjust the substrate thickness and/or cavity surface area for better heat dissipation. Advantages of embodiments of the invention associated with LESD include: flexible LESD provides excellent heat dissipation (quality of J62438.doc 201242072 required for high power lesd); flexible LESD can be wired in a single flexible and insulating layer The resulting flexible LESD can be bent in a simple or composite curve; and an exemplary embodiment of a flexible LAY with a LESD for reducing the cost associated with a conventional submount is illustrated in Figure 2a. It shows a dielectric layer 12 having a first major surface 13, a second major surface 14 opposite the first major surface 13, and at least one recessed region 10. The LESD % is positioned within the recessed area 10. The bottom plate and the apparent wall of the recessed region 10 may be coated with a conductive material 18 which may be made of the same material as the conductive layer 19 or a material different from the conductive layer 19 and which may be deposited simultaneously with the conductive layer 19. The recessed regions 10 can have any suitable shape, such as circular, elliptical, rectangular, serpentine, channel, grid (i.e., large or small dielectric islands formed by successive patterns of overlapping channels), and the like. In other embodiments, the conductive material 18 can support additional layers, such as reflective coatings. The reflective coating can be a gold, silver, aluminum, intrinsically reflective dielectric material, or a colored material with enhanced reflectivity. The conductive layer 19 is positioned on the first major surface 13 of the dielectric layer 12 and the conductive layer 20 is positioned on the second major surface μ of the dielectric layer 12, as shown in Figure 2A. The conductive layer 19 may partially or completely cover the first major surface 13. The conductive material can be any suitable material, but is usually copper. In some embodiments, one or both of conductive layers 19 and 20 comprise conductive circuitry. The lesd 24 is positioned on a conductive feature 16 which may be part of the conductive layer 19 or an additional material such as a reflective coating included on the first major surface of the dielectric layer 12. [£3〇24 is insulated from LESD 26 and conductive layer 20 by a portion of dielectric layer 12 positioned beneath conductive feature 16, and in some cases conductive feature 16 may be electrically isolated conductive features 162438.doc 201242072. A portion of the dielectric layer under each coffee defines the distance between the test (and any intervening layers or materials) and the conductive layer on the second surface of the dielectric layer. This distance affects the heat transfer layer that is dissipated through the dielectric layer through the dielectric layer to the first surface of the dielectric. The dielectric layer can be a flexible dielectric layer or a rigid dielectric layer. The rigid dielectric layer can include - or a variety of materials, such as ceramics, FR4 PCB boards, or the like. The flexible dielectric layer may comprise - or a plurality of tractable non-conductive materials 'eg, polymeric materials, polyaminin, polyester, polycyclic vinegar, liquid crystal polymers, ferroelectric materials (ie, barium, titanic acid)钡), SrTi〇2 titanate or the like. The conductive layer may include - or a plurality of conductive materials 'eg 'copper, semiconductor (ie 'Shi Xi, 锗, gallium nitride, gallium gallium), Tao Jing (ie, tantalum carbide), carbon (ie, graphite 'class diamond carbon ), a transparent conductive material (ie, 'indium tin oxide, zinc oxide, etc.) or the like. In at least some embodiments of the invention, the suitable maximum thickness of the flexible dielectric layer is from about 1 micron to about 100 micro. Mining. The preferred thickness of the flexible dielectric layer beneath the recessed regions is from about 1 micron to about 1 micron. Typically, the cavity can be deeper than the recess, which is due to the thinner dielectric layer at the bottom of the cavity resulting in less structural and mechanical problems than the thin dielectric layer of the large area. If there are recessed areas having more than one depth, the depths may be any difference and may be 'but will typically differ by about 1% to about 5%. In at least some embodiments of the invention, the LESD 26 generates more heat than the lESD 24 generates heat. For example, LESD 26 can be blue or green led and LESD 24 can be a red LED. By placing the hotter LESD in the recessed region 1 ,, the heat generated by the LESD 26 travels through the dielectric layer to the conductive layer 2〇 is shorter than 162438.doc 201242072, and thus the heat generated therefrom can be further Pass to the radiator quickly. At the same time, by placing the generated heat 1ESd 24 less than the heat generated by the LESD 26 at a large distance from the conductive layer 20, the heat generated by the LESD 26 and traveling along the conductive layer 20 in the x-direction and the gamma direction is unlikely. Arrive at LESD 24 and negatively affect its operation and functionality. The amount of conductive material in the recessed area can also be controlled to further affect thermal management. The recessed area (especially the cavity) can be filled to 1% by using a conductive material. In some embodiments, this is preferred, but the recessed areas are more typically filled from about 10% to about 95% full. For example, if the cavity is 5 microns deep, in some embodiments, the conductive material is preferably 5 microns deep, but the depth of the conductive material is typically about 45 microns or less. Generally, the more conductive material is contained in the recessed area, the better the heat transfer from the LESD. 2B illustrates the comparative LESD apparatus of FIG. 2A in which the LESDs 24 and 26 are located in recessed areas 1〇 having the same depth. The bottom plate and the conditional wall of the recessed area may be coated with a conductive material 丨8. In FIG. 2B, the heat generated by the LESD 26 can be reached by LESd 24 by first traveling down the Z direction through the bottom of the recessed region 1〇 where the LESr 26 is positioned to the conductive layer 20. a thin layer of insulating material; subsequently traveling along the conductive layer 20 in the x-direction; and finally again traveling upward in the z-direction through the bottom of the conductive layer 20 and the recessed region 1 where the LESD 24 is positioned. A thin layer of insulating material between. In Figure 2B, this heat transfer is mitigated by the "electrical layer thickness region between the two recessed regions. However, having this thick region between the recessed regions occupies the surface area on the flexible LESD and will reduce the number of LESDs that can be placed in a given area. 162438.doc 12 201242072 As can be seen by comparing Figures 2A and 2B, by placing the LESDs 24 and 26 at different heights on the dielectric layer 12, the LESDs can be positioned to map each other in the X and Y directions. The 2B is closer, and a significant amount of insulating material (dielectric layer) is maintained between the LESDs. In at least some embodiments of the invention, (1) the difference between the first height and the second height and (2) the ratio of the distance between the LEDSs in the first and second regions may be any suitable ratio, but usually in From about 1:1 to about 1:10. Moreover, in some embodiments, the depth of one or more recessed regions can be adjusted such that LESD 24 and LESD 26 have a generally upper planar emitting surface. FIG. 3 illustrates an exemplary embodiment of a lighting system 300. The illumination system 300 can include a substrate 310, a first light emitting semiconductor device (LESD) 320, a second light emitting semiconductor device (LESD) 330, and an optional optical acquisition system 39A. The first LESD 320 has a first height and the second LESD 330 has a second height that is different from the first degree of §. The first LESD 320 and the second LESD 330 can face the optical acquisition system 390. Optical acquisition system 390 has LESD-directed light entering major surface 391 and light emitting major surface 392. The substrate 31 has a first major surface 312 and a second major surface 314 opposite the first major surface 312. The first major surface 312 faces the optical acquisition system 390. The substrate 31A can include at least a first region 370 supporting the first LESD 320 and a second region 380 of at least the second LESD 330 of the branch. The first region 370 has a first region height A' which can be indicated by the distance between the surface of the first region 370 and the second major surface 314 of the substrate 31〇. Similarly, the second region 38A has a second region that is highly private' which can be indicated by the distance between the surface of the second region 38〇 and the first major surface 314 of the substrate 310. In some embodiments 162438.doc • 13· 201242072, the first region height 仏 is different from the second region height such that the first LESD 320 and the second LESD 330 have substantially planar emission surfaces. In some embodiments, the difference in height between the first and second regions can be substantially the same as the difference in height between the first LESD 320 and the second LESD 330. In some embodiments of the illumination system 3 including the optical acquisition system, the emission surface of the first LESD 320 and the emission surface of the second LESD 33 are at substantially the same distance from the optical acquisition system 390. The optical acquisition system can include any acquisition optics such as lenses, integrating rods, parabolic mirrors, encapsulants, or the like. In some other embodiments, the first region height 沁 is different from the second region height horse such that the first LEsd 32 〇 and the second LESD 330 have substantially the same light from the light emitting major surface 392 of the optical acquisition system 39 〇 Length of the process. In some embodiments, substrate 310 can include a dielectric layer 34(). In some other embodiments, substrate 310 can include conductive layer 350 at first major surface 312. The substrate 310 can be included in another conductive layer 360 at the second major surface 314 of the substrate 31, as appropriate. In a particular embodiment, the dielectric layer 34 is designed to have a first dielectric layer height at the first region 370 and a second dielectric layer height at the second region 380. The electrical layer height ο% is different from the second dielectric layer twist, as illustrated in FIG. In some embodiments, the difference between the first and first dielectric layer heights can be substantially the same as the height difference between the first LESD 320 and the second LESD 330 to achieve substantially the first and second LESDs. Plane emitting surface. 4A through 4F illustrate several example configurations of the lighting assembly 400. Photo

明總成400可包括基板410、第一LESD 420、第二LESD 162438.doc 14 201242072 430。第一LESD 420之高度可不同於第二LESD 43〇之高 度。基板410包括第一主表面412及與第一主表面412相對 之第二主表面414。基板410可包括至少支撐第一1^3〇42〇 之第一區域470及至少支撐第二LESD 43〇之第二區域48〇。 第一區域高度可與第二區域高度不同,以使得第一 lesd 420及第二LESD 430具有大體上平面發射表面。基板41〇可 包括介電層440及傳導層450。視情況,基板41〇可包括第 二傳導層460。在圖4A中所圖解說明之實例性實施例中, 第一區域高度及第二區域高度之差異係藉由第一區域47〇 及第二區域480處之介電層440之不同厚度來獲得。 如圖4B中所圖解說明,在照明總成4〇〇之實例性實施例 中,傳導層450係經設計以於第一區域47〇處具有第一傳導 層高度且於第二區域480處具有第二傳導層高度<:/^, 第一傳導層高度不同於第二傳導層高度。傳導層高度可理 解為每一LESD下面、或介於LESD與介電層之間之導體之 高度。第一傳導層高度CA與第二傳導層高度之間之 差異可與第一LESD 420及第二LESD 430之高度之間之差 異大體上相同。 圖4C圖解說明具有一個凹入之支撐區域之照明總成*⑽ 之實例性實施例。基板41〇之第一區域47〇係處於與基板 410之第一主表面412相同之位準處。基板41〇之第二區域 480係凹入的。介電層44〇於第一區域47〇處具有第一介電 層高度乃坞且於第二區域48〇處具有苐二介電層高度乃的。 第一介電層高度不同於第二介電層高度公馬,以使得 162438.doc -15- 201242072 LESD 420及LESD 430具有本質上平面發射表面。圖4D圖 解說明照明總成400之另一實例性實施例,其中於第二區 域480處完全蝕刻介電層440。傳導層450具有不同於第二 傳導層高度CT/2之第一傳導層高度C7//,以抵消第一 LESD 420及第二LESD 430之高度之差異及介電層厚度之差異。 圖4E圖解說明照明總成400之再一實例性實施例,其中 於第一區域470及第二區域480兩處皆完全蝕刻介電層 440。傳導層450可具有不同於第二傳導層高度CT/2之第一 傳導層高度CT/7,以抵消第一 LESD 420及第二LESD 430之 高度之差異。在一些實施方案中,可施加第一光微影製程 以產生大體上相同厚度之兩個區域。隨後,可遮蔽第一區 域470且可施加第二光微影製程以於第二區域480處產生傳 導材料之額外層。 圖4F圖解說明照明總成400之再一實例性實施例,其中 將具有不同厚度之傳導材料455設置於第一區域470及第二 區域480中。傳導材料455可係(例如)傳導膏、焊料或諸如 此類。在一些實施方案中,傳導材料455可具有不同厚度 以支撐恰當高度之第一LESD 420及第二LESD 430。 圖5A圖解說明LES裝置500A之實例性實施例,其中將 LESD 524及526安置於為具有不同深度之小腔之毗鄰凹入 區域510中。LESD裝置500A包括傳導層519、介電層512及 第二傳導層520。在此實施例中,凹入區域係固持個別 LESD之腔。如同圖2A中所圖解說明之實施例一樣,此允 許將生成較高熱之LESD 526安置於具有第二高度之介 162438.doc -16- 201242072 電層512之第一主表面513之一部分上,LESD 526經安置緊 密靠近第二傳導層520,而藉由將1^3〇 524安置於具有第 一同度(其大於該第二高度)之介電層512之第一主表面 513之一部分上來使LESD 524與由LESD 526生成之熱仍保 持絕緣。在本發明之至少一些實施例中,第二高度乃沁係 比第一高度D/^小約1〇%與約9〇%之間。 圖5B圖解說明LES裝置5〇〇B之實例性實施例,其中將 LESD 524安置於傳導層519之傳導特徵上,傳導層519係處 於介電層512之最大厚度處之介電層512之第一主表面513 的邓为上,而將LESD 526定位於凹入區域5i〇中之傳導 特徵上,凹入區域51〇係可定位多個LESD之凹陷。此一凹 陷可如介電層512之全寬一樣寬且亦可沿介電層512之長度 延伸,以使得凹入區域在介電層之高度上有效地階梯變 化。在其他實施例中,可存在多個散置有大的非凹入區域 之凹陷510。 圖6A圖解說明LES裝置600A之另一實例性實施例,其中 存在不同高度及不同大小之凹入區域。LESD 600A可包括 介電層612、部分或完全覆蓋第一主表面613之傳導層619 及視情況部分或完全覆蓋第二主表面614之傳導層62〇。在 此實施例中,將LESD 624安置於第一高度乃仏處之傳導層 619之傳導特徵上,第一高度乃仏係處於介電層612之最大 厚度處。將LESD 626定位於凹入區域6i〇c中第三高度乃//3 處之介電層612之第一主表面613之一部分上的傳導特徵 上’凹入區域610C為小腔,且將LESD 628定位於凹入區 162438.doc •17· 201242072 域610L中第二高度乃沁處之介電層612之第一主表面6i3之 一部分上的傳導特徵上,凹入區域610L係可定位多個 LESD之凹陷。在凹入區域61〇L下面之部分介電層612之高 度小於介電層612之最大高度’但大於在凹入區域 610C下面之部分介電層612之高度£>私。此中間高度^沁可 適於(例如)所生成熱之位準介於LESD 624與626之間之 LED。在本發明之一些實施例中,該第二高度係比該第一 高度小約10%與約90%之間且該第三高度係比該第二高度 小約10%與約90%之間。 圖6B圖解說明與圖6A中所圖解說明之LES裝置600A類似 的LES裝置600B之實例性實施例之透視圖。wleSD 624安 置於介電層612之第一主表面613上之傳導層619之傳導特 徵上。將LESD 62 8安置於凹入區域61 0L内之傳導特徵 上。將LESD 626安置於凹入區域610C内之傳導特徵上, 凹入區域610C係在凹入區域610L之表面中形成之腔。傳導 層619包含跨越介電層612之第一主表面之電路,該第一主 表面包括凹入區域610L之表面。以此方式,可將許多 LESD連接至撓性LESD之電路。在一些實施方案中,可調 節凹入區域之高度,以使得至少一些包括於LESD裝置中 之LESD具有相對於彼此大體上平面發射表面。 如圖6B中所顯示,在一些實施例中,LESD 624、626及 628中之一或多者可線接合至包含傳導層19之導電電路。 傳導層620較佳導熱且視情況導電。在一些實施例中,傳 導層620包含導電電路。在一些實施例中,將鈍化或接合 162438.doc -18- 201242072 層定位於LESD 624、626及628下面,以有利於將LESD 624、626及628中之一或多者接合至下伏層。 圖7A及7B圖解說明具有積分桿及四個具有於不同位準 處之發射表面之LESD之照明總成700的實施例。圖7A係照 明總成700之側視圖且圖7B係照明總成700之透視圖。照明 總成700包括LESD 710(圖7A中未顯示)、LESD 715、LESD 720(圖7A中未顯示)、LESD 725及充當採集光學器件之積 分桿730。積分桿730具有採集來自LESD之光之進入表面 73 5及輸出光之離開表面73 7(圖7B中未顯示)。LESD 715具 有四個LESD中最接近於積分桿之發射表面且LESD 720具 有四個LESD中距積分桿最遠之發射表面。在實例性實施 方案中,LESD 715係高度為225 um之紅色LED ; LESD 710及725係高度為170 um之綠色LED ; LESD 720係高度為 100 um之藍色LED ;所有四個LESD皆具有0.25 W輸出功 率;積分桿730係5 mm長,其具有2 mmX2 mm進入表面 735及2 mm X 3 mm離開表面737 ;且將積分桿730安置於距 頂部表面LESD 715(即,面向積分桿730之表面)0.1 mm 處。進入積分桿中之光功率係0.83353 W且自積分桿輸出 之光功率係0.82955 W。 作為對比,圖8A及8B圖解說明其光學組件與圖7A及7B 中所圖解說明之照明總成中者相同之實施例照明總成,但 四個LESD具有在共同平面上之發射表面。圖8A係照明總 成800之側視圖且圖8B係照明總成800之透視圖。在具有與 上文實例相同之組件之實例性實施方案中,其中將積分桿 162438.doc -19- 201242072 730安置於距四個LESD之發射表面0.1 mm處,進入積分桿 之光功率係0.903 W且自積分桿輸出之光功率係0.89856 W。如此實例中所證實,LESD具有大體上平面發射表面 (相對於彼此)之照明總成可提供之光功率高於LESD具有於 不同高度(相對於採集光學器件或光學器件)處之發射表面 之照明總成。 本發明之至少一個實施例提供使用經部分蝕刻介電層之 撓性LESD陣列構造。於介電層中將凹入區域蝕刻至期望 深度。凹入區域可具有以任一適宜方式(例如塗佈、氣相 沈積、鍍覆等)沈積於其中之傳導材料,但通常使用電鍍 覆或無電鍍覆來鍍覆傳導材料。通常使用已知晶粒接合方 法(例如共晶、焊料(包括用於倒裝晶片安裝之焊料凸塊)、 黏著劑、熔融接合或其他接合方法)將LESD直接或間接附 接至傳導材料。 本發明之適宜介電層包括聚酯、聚碳酸酯、液晶聚合物 及聚醢亞胺。聚醯亞胺較佳。適宜聚醯亞胺包括彼等可以 以下商標名稱購得者·· KAPTON,可自DuPont, Wilmington,Delaware睛得;APICAL,可自 Kaneka Texas 公司,Pasadena, Texas購得;SKC Kolon PI,可自 SKC Kolon PI公司,Anyang,South Korea購得;及UPILEX及 UPISEL,可自 Ube-Nitto Industries,Tokyo,Japan貝冓得。最 佳者係可以商標名UPILEX S、UPILEX SN及UPISEL VT購 得之聚醯亞胺,所有皆可自Ube-Nitto Industries, Tokyo, Japan購得。該等聚醯亞胺係自諸如聯苯四曱酸二酐 162438.doc -20- 201242072 (BPDA)及苯二胺(PDA)等單體製得。 可使用任-適宜方法(例如,化學蝕刻、電衆蝕刻 '聚 焦離子束姓刻、雷射剝姓、微複製、壓紋及射出模製)在 介電層中形成凹人區域。在―些實施例中,化學㈣可較 佳。可使用任-適錢刻劑且其可視介電層材料而改變。 適宜蝕刻劑可包括鹼金屬鹽,例如氫氧化鉀;鹼金屬鹽與 增溶劑(例如胺)及醇(例如乙二醇)中之一或兩者。適用於 本發明一些實施例之化學蝕刻劑包括氫氧化鉀(k〇h)、乙 醇胺及乙二醇㈣冑’例如彼等更詳細闡述於美國專利公 開案第2007-0120089-Α1號中者,該案件以引用方式併入 本文中。適用於本發明一些實施例之其他化學蝕刻劑包括 ΚΟΗ及甘胺酸蝕刻劑,例如彼等更詳細闡述於共同待決之 美國時專利申s青案第61/409791號中者,該案件以引用 方式併入本文中。在蝕刻後’可用鹼性KOH/高錳酸鉀 (PPM)洛液(例如’約〇7 wt%至約丨〇 〖OH及約3 wt〇/o KMn〇4之溶液)處理介電層。 在本發明之至少一個實施例中’ UPISEL VT介電層係形 成本發明介電層之適宜起始材料,尤其是若藉由化學蝕刻 來形成凹入區域》UPISEL· VT係由包含UPILEX S之核心層 及包含熱塑性聚醯亞胺(TPPI)之薄外部層構造。可使用諸 如K〇H/乙醇胺/乙二醇等任一適宜化學物質蝕刻UPISEL ντ ’如美國專利公開案第2007_0120089_A1號中更詳細闡 述。利用此蝕刻劑,UPILEX S之疏水性質及較高模數可 藉由溶解機制產生蝕刻,此產生極光滑之凹入區域之側 162438.doc -21 - 201242072 壁。由於此蝕刻劑調配物蝕刻迅速,故可在凹入區域到達 第二TPPI層之前停止蝕刻。隨後,可利用包含約0.7 wt% 至約1.0 wt% KOH及約3 wt% ΚΜη04之KOH/高錳酸鉀 (PPM)溶液(其並非TPPI層之有效蝕刻劑)來實施後續蝕 刻,以移除UPILEX S核心之殘餘薄層,從而在經钮刻凹 入區域之底部留下薄TPPI層。 用於I虫刻UPISEL VT之另一適宜触刻劑化學物質係在共 同待決之美國臨時專利申請案第61/409791號中更詳細闡 述之KOH/甘胺酸化學物質^ KOH及甘胺酸蝕刻劑極適於 蝕刻UPISEL VT’此乃因其提供緩慢且受控蝕刻,此使控 制經钮刻凹入區域之底部之介電材料的厚度成為可能β 如先前所提及’作為化學姓刻之替代方案,可藉由電浆 蝕刻、聚焦離子束蝕刻、雷射剝蝕、壓紋、微複製、射出 模製及其他適宜方法在介電層中形成凹入區域。利用該等 形成凹入區域之方法,側壁通常具有(例如)至多9〇。之較陡 角度,但若使用壓紋、微複製或射出模製方法,則幾乎可 形成任一期望角度之側壁。 可藉由任一適宜方法(例如多程蝕刻或灰階蝕刻)在本發 明介電層中形成具有不同深度之凹入區域。例如,為使用 多程製程,用第一光阻劑材料塗佈介電層。將第—光阻劑 圖案化並顯影以暴露欲姓刻以形赤I右笼一逛电> —The Ming assembly 400 can include a substrate 410, a first LESD 420, and a second LESD 162438.doc 14 201242072 430. The height of the first LESD 420 may be different from the height of the second LESD 43. Substrate 410 includes a first major surface 412 and a second major surface 414 opposite first major surface 412. The substrate 410 may include a first region 470 supporting at least the first 1⁄4〇42〇 and a second region 48〇 supporting at least the second LESD 43〇. The first region height may be different from the second region height such that the first lesd 420 and the second LESD 430 have a substantially planar emitting surface. The substrate 41A may include a dielectric layer 440 and a conductive layer 450. The substrate 41A may include a second conductive layer 460, as appropriate. In the exemplary embodiment illustrated in FIG. 4A, the difference in height between the first region and the height of the second region is obtained by different thicknesses of the dielectric layer 440 at the first region 47A and the second region 480. As illustrated in FIG. 4B, in an exemplary embodiment of the illumination assembly 4, the conductive layer 450 is designed to have a first conductive layer height at the first region 47〇 and a second region 480 at the second region 480 The second conductive layer height <: / ^, the first conductive layer height is different from the second conductive layer height. The height of the conductive layer can be understood as the height of the conductor below each LESD or between the LESD and the dielectric layer. The difference between the height of the first conductive layer CA and the height of the second conductive layer may be substantially the same as the difference between the heights of the first LESD 420 and the second LESD 430. 4C illustrates an exemplary embodiment of a lighting assembly*(10) having a recessed support region. The first region 47 of the substrate 41 is at the same level as the first major surface 412 of the substrate 410. The second region 480 of the substrate 41 is recessed. The dielectric layer 44 has a first dielectric layer height at the first region 47〇 and a second dielectric layer height at the second region 48〇. The first dielectric layer height is different from the second dielectric layer height of the stallion such that 162438.doc -15-201242072 LESD 420 and LESD 430 have an essentially planar emitting surface. 4D illustrates another exemplary embodiment of an illumination assembly 400 in which the dielectric layer 440 is completely etched at the second region 480. The conductive layer 450 has a first conductive layer height C7// different from the second conductive layer height CT/2 to offset the difference in height between the first LESD 420 and the second LESD 430 and the difference in dielectric layer thickness. 4E illustrates yet another exemplary embodiment of illumination assembly 400 in which dielectric layer 440 is completely etched at both first region 470 and second region 480. The conductive layer 450 can have a first conductive layer height CT/7 that is different from the second conductive layer height CT/2 to offset the difference in height between the first LESD 420 and the second LESD 430. In some embodiments, a first photolithography process can be applied to create two regions of substantially the same thickness. Subsequently, the first region 470 can be masked and a second photolithography process can be applied to create an additional layer of conductive material at the second region 480. 4F illustrates yet another exemplary embodiment of a lighting assembly 400 in which conductive material 455 having different thicknesses is disposed in first region 470 and second region 480. Conductive material 455 can be, for example, a conductive paste, solder, or the like. In some embodiments, the conductive material 455 can have different thicknesses to support the first LESD 420 and the second LESD 430 of the appropriate height. Figure 5A illustrates an exemplary embodiment of a LES device 500A in which LESDs 524 and 526 are disposed in adjacent recessed regions 510 that are small cavities of different depths. The LESD device 500A includes a conductive layer 519, a dielectric layer 512, and a second conductive layer 520. In this embodiment, the recessed area holds the cavity of the individual LESD. As with the embodiment illustrated in FIG. 2A, this allows the LESD 526 that generates the higher heat to be placed on a portion of the first major surface 513 having the second level 162438.doc -16 - 201242072 electrical layer 512, LESD 526 is disposed in close proximity to the second conductive layer 520, and is disposed by placing 1^3〇 524 on a portion of the first major surface 513 of the dielectric layer 512 having a first degree of homogeneity greater than the second height. The LESD 524 remains insulated from the heat generated by the LESD 526. In at least some embodiments of the invention, the second height is between about 1% and about 9% less than the first height D/^. 5B illustrates an exemplary embodiment of a LES device 5B in which the LESD 524 is disposed on a conductive feature of the conductive layer 519, and the conductive layer 519 is at the dielectric layer 512 at the maximum thickness of the dielectric layer 512. The Deng surface of a major surface 513 is positioned, and the LESD 526 is positioned on the conductive features in the recessed area 5i, and the recessed area 51 can position the recesses of the plurality of LESDs. The recess can be as wide as the full width of the dielectric layer 512 and can also extend along the length of the dielectric layer 512 such that the recessed regions effectively stepwise change at the level of the dielectric layer. In other embodiments, there may be a plurality of recesses 510 interspersed with large non-recessed regions. Figure 6A illustrates another exemplary embodiment of a LES device 600A in which recessed regions of different heights and sizes are present. The LESD 600A can include a dielectric layer 612, a conductive layer 619 that partially or completely covers the first major surface 613, and a conductive layer 62 that partially or completely covers the second major surface 614. In this embodiment, the LESD 624 is placed over the conductive features of the conductive layer 619 at a first height, the first height being at the maximum thickness of the dielectric layer 612. The LESD 626 is positioned on the conductive feature on a portion of the first major surface 613 of the dielectric layer 612 at a third height in the recessed region 6i 〇c, the recessed region 610C is a small cavity, and the LESD is 628 is positioned in the recessed area 162438.doc • 17· 201242072 The second height in the field 610L is a conductive feature on a portion of the first major surface 6i3 of the dielectric layer 612 where the recessed region 610L can be positioned The depression of LESD. The height of the portion of the dielectric layer 612 below the recessed region 61A is less than the maximum height of the dielectric layer 612 but greater than the height of the portion of the dielectric layer 612 below the recessed region 610C. This intermediate height can be adapted, for example, to an LED having a level of heat generated between LESD 624 and 626. In some embodiments of the invention, the second height is between about 10% and about 90% less than the first height and the third height is between about 10% and about 90% less than the second height . Figure 6B illustrates a perspective view of an exemplary embodiment of a LES device 600B similar to the LES device 600A illustrated in Figure 6A. The wleSD 624 is disposed on the conductive characteristics of the conductive layer 619 on the first major surface 613 of the dielectric layer 612. The LESD 62 8 is placed over the conductive features within the recessed area 61 0L. The LESD 626 is disposed on a conductive feature within the recessed region 610C that is a cavity formed in the surface of the recessed region 610L. Conductive layer 619 includes circuitry that spans a first major surface of dielectric layer 612, the first major surface including a surface of recessed region 610L. In this way, many LESDs can be connected to the circuitry of the flexible LESD. In some embodiments, the height of the recessed regions can be adjusted such that at least some of the LESDs included in the LESD device have a substantially planar emitting surface relative to each other. As shown in FIG. 6B, in some embodiments, one or more of LESDs 624, 626, and 628 can be wire bonded to a conductive circuit comprising conductive layer 19. Conductive layer 620 is preferably thermally conductive and electrically conductive as appropriate. In some embodiments, the conductive layer 620 includes conductive circuitry. In some embodiments, passivation or bonding 162438.doc -18-201242072 layers are positioned below LESD 624, 626, and 628 to facilitate bonding one or more of LESD 624, 626, and 628 to the underlying layer. Figures 7A and 7B illustrate an embodiment of an illumination assembly 700 having an integrating rod and four LESDs having emitting surfaces at different levels. Figure 7A is a side view of illumination assembly 700 and Figure 7B is a perspective view of illumination assembly 700. The illumination assembly 700 includes a LESD 710 (not shown in Figure 7A), a LESD 715, a LESD 720 (not shown in Figure 7A), a LESD 725, and an integrating rod 730 that acts as a collection optics. The integrating rod 730 has an entry surface 73 5 for collecting light from the LESD and an exit surface 73 7 (not shown in Fig. 7B) for outputting light. The LESD 715 has the emission surface closest to the integrating rod of the four LESDs and the LESD 720 has the emission surface furthest from the integrating rod in the four LESDs. In an exemplary embodiment, LESD 715 is a red LED with a height of 225 um; LESD 710 and 725 are green LEDs with a height of 170 um; LESD 720 is a blue LED with a height of 100 um; all four LESDs have 0.25 W output power; the integrating rod 730 is 5 mm long with a 2 mm X 2 mm entry surface 735 and a 2 mm X 3 mm exit surface 737; and the integrating rod 730 is placed at the top surface LESD 715 (ie, facing the integrating rod 730) Surface) 0.1 mm. The optical power entering the integrating rod is 0.83353 W and the optical power output from the integrating rod is 0.82955 W. In contrast, Figures 8A and 8B illustrate an embodiment illumination assembly having optical components identical to those of the illumination assemblies illustrated in Figures 7A and 7B, but with four LESDs having emission surfaces on a common plane. Figure 8A is a side view of illumination assembly 800 and Figure 8B is a perspective view of illumination assembly 800. In an exemplary embodiment having the same components as the above examples, wherein the integrating rod 162438.doc -19-201242072 730 is placed 0.1 mm from the emitting surface of the four LESDs, the optical power of the integrating rod is 0.903 W. And the optical power output from the integrator rod is 0.89856 W. As demonstrated in such examples, the illumination assembly of the LESD having substantially planar emitting surfaces (relative to each other) can provide higher illumination power than the LESD has an emission surface at different heights (relative to the acquisition optics or optics) Assembly. At least one embodiment of the present invention provides a flexible LESD array configuration using a partially etched dielectric layer. The recessed regions are etched to a desired depth in the dielectric layer. The recessed regions may have a conductive material deposited therein in any suitable manner (e.g., coating, vapor deposition, plating, etc.), but the conductive material is typically plated using electroplating or electroless plating. The LESD is typically attached directly or indirectly to the conductive material using known die bonding methods such as eutectic, solder (including solder bumps for flip chip mounting), adhesives, fusion bonding, or other bonding methods. Suitable dielectric layers of the present invention include polyesters, polycarbonates, liquid crystal polymers, and polyimines. Polyimine is preferred. Suitable polyimines include those available under the trade names KAPTON, available from DuPont, Wilmington, Delaware; APICAL, available from Kaneka Texas, Pasadena, Texas; SKC Kolon PI, available from SKC Kolon PI, purchased from Anyang, South Korea; and UPILEX and UPISEL, available from Ube-Nitto Industries, Tokyo, Japan. The most preferred are the polyimines available under the trade names UPILEX S, UPILEX SN and UPISEL VT, all available from Ube-Nitto Industries, Tokyo, Japan. These polyimines are prepared from monomers such as biphenyl tetraruthenic dianhydride 162438.doc -20- 201242072 (BPDA) and phenylenediamine (PDA). The indentation region can be formed in the dielectric layer using any suitable method (e.g., chemical etching, plasma etching, spotlighting, laser stripping, microreplication, embossing, and injection molding). In some embodiments, Chemistry (4) may be preferred. Any-money engraving agent can be used and its visible dielectric layer material can be varied. Suitable etchants may include alkali metal salts such as potassium hydroxide; one or both of an alkali metal salt with a solubilizing agent (e.g., an amine) and an alcohol (e.g., ethylene glycol). Chemical etchants suitable for use in some embodiments of the invention include potassium hydroxide (k〇h), ethanolamine, and ethylene glycol (tetra) 胄', such as those described in more detail in U.S. Patent Publication No. 2007-0120089-Α1, This case is incorporated herein by reference. Other chemical etchants suitable for use in some embodiments of the present invention include bismuth and glycine etchants, such as those described in more detail in co-pending U.S. Patent Application Serial No. 61/409,791, the The citations are incorporated herein by reference. The dielectric layer can be treated with an alkaline KOH/potassium permanganate (PPM) solution (e.g., a solution of about 7 wt% to about OH OH and about 3 wt 〇 / o KMn 〇 4) after etching. In at least one embodiment of the invention, the 'UPISEL VT dielectric layer forms a suitable starting material for the dielectric layer of the present invention, especially if the recessed region is formed by chemical etching." UPISEL. VT is comprised of UPILEX S. The core layer and a thin outer layer structure comprising a thermoplastic polyimine (TPPI). UPISEL ντ can be etched using any suitable chemical such as K〇H/ethanolamine/ethylene glycol, as described in more detail in U.S. Patent Publication No. 2007_0120089_A1. With this etchant, the hydrophobic nature of the UPILEX S and the higher modulus can be etched by the dissolution mechanism, which produces the side of the extremely smooth recessed region 162438.doc -21 - 201242072 wall. Since the etchant formulation etches quickly, the etch can be stopped before the recessed regions reach the second TPPI layer. Subsequently, a subsequent etch can be performed using a KOH/potassium permanganate (PPM) solution comprising about 0.7 wt% to about 1.0 wt% KOH and about 3 wt% ΚΜη04, which is not an effective etchant for the TPPI layer, to remove The residual thin layer of the UPILEX S core leaves a thin TPPI layer at the bottom of the buttoned recessed area. Another suitable etchant chemistry for use in the singular UPISEL VT is the KOH/glycine chemical KOH and glycine acid as described in more detail in co-pending U.S. Provisional Patent Application Serial No. 61/409,791. The etchant is extremely suitable for etching UPISEL VT's because it provides a slow and controlled etch which makes it possible to control the thickness of the dielectric material at the bottom of the recessed region of the button. As previously mentioned, 'as a chemical surname' Alternatively, recessed regions may be formed in the dielectric layer by plasma etching, focused ion beam etching, laser ablation, embossing, microreplication, injection molding, and other suitable methods. With these methods of forming the recessed regions, the sidewalls typically have, for example, at most 9 turns. At steeper angles, if embossing, microreplication, or injection molding is used, the sidewalls of any desired angle can be formed. The recessed regions having different depths can be formed in the dielectric layer of the present invention by any suitable method, such as multi-pass etching or grayscale etching. For example, to use a multi-pass process, the dielectric layer is coated with a first photoresist material. The first photoresist is patterned and developed to expose the desired shape to the shape of the red cage.

化並顯影以暴路欲姓刻以形成具有第二深度之 域之後’移除第一光 後使第一光阻劑圖案 二深度之凹入區域並 162438.doc -22- 201242072 =有第-深度之凹入區域之介電層之區域,故並不對 度之凹入[Τ凹入區域進—步钱刻。若期望具有第三深 •^凹入區域’則可重複該製程。 圖9八至9〇圖解說明亦可用於形成本發明凹 例性蝕刻製程之步驟。 °°域之貫 於用心 A圃从』不先阻劑材料910之層沈積 9Β顯-膜Μ""包覆於一側上之介電層920之每-側上。圖 光阻蓋介電層咖中將不進行敍刻之區域之各部分 先卜翁料9H)係交聯區域94〇,覆蓋介電層 (及第二)蝕刻步驟期間進行蝕刻之區域之各 本 料910係未交聯區域950,且覆 二刀先阻劑材 驟询p… ⑮盍"電層令將在第二蝕刻步 9::進侧之區域之各部分光阻劑係部分交聯區域 950中ΙΓ顯不’在第一顯影步驟之後,移除未交聯區域 ㈣中之光阻劑材料910’並部分移除或不移除部分交聯區 域_中之光阻劑材料91G。圖阳顯示韻刻介電層_中未 由光阻劑材料覆蓋之區域之第一化學钱刻步驟的結果。圖 9E顯示’在第二顯影步驟之後,移除部分交聯區域960之 殘餘部分中之光阻劑材料。圖9F顯示㈣介電層920 由光阻劑覆蓋之區域之第二化學蝕刻步驟的結果。此使得 進一步触刻區域95时在第一化學飯刻步驟中所姓刻之介 電層920’且使得藉由移除部分交聯區域_中之光阻劑材 料所暴露之介電層920開始㈣刻。圖顯示在移除交聯 區域中之光阻劑材料之後用傳導層㈣包覆於―側上 得介電層920。 可用傳導層包覆於介雷居夕_ ^ /p i -V' / . )丨电層之一側或兩侧上。若傳導層欲 I62438.doc •23· 201242072 形成電路’則可對其預圖案化,或可在製造挽性lesd之 製程期間對其圖案化。多層撓性基板(具有介電及傳導材 料之多個層)亦可用作基板。傳導層可係任—適宜材料, 但通常係銅。 若欲在介電層形成至期望厚度之後,將傳導層添加至其 一側或兩側,則此可藉由將金屬箔層壓至介電層來實現, 但更通常係藉由某個類型之金屬沈積製程來實現。 傳導特徵及電路可作為金屬沈積製程之一部分來形成。 例如,形成電路之標準半加成沈積方法可包括提供(通 常)CrOx、NiCr或NiCrOx之經氣相沈積黏結層,將通常(但 並非必需)包含與隨後鍍覆之金屬層相同之金屬的金屬晶 種層氣相沈積於其上,使用傳統光微影製程將光罩圖案化 於晶種層上,使用電鍍覆或無電鍍覆將傳導材料(任一適 宜材料,但通常係銅)鍍覆於晶種層之所暴露部分,剝離 光罩,及移除晶種層及黏結層之殘餘的現在所暴露部分。 可利用金、錫、銀等實施將接合LESD之傳導特徵之後 續鈍化,以有利於該接合。可使用任一適宜接合機制將個 別LESD接合至傳導特徵上。可採用不同類型之接合例 如共晶、倒裝晶片、熔融及黏著劑接合。LESD較佳具有 施加至其底部表面之鈍化層(通常係金/錫,但可係任一適 宜純化材料’例如諸如Au等金屬及諸如AuSn、AuGe、 AuSi等金屬間合金),以有利於將LESD接合至金鈍化之傳 導特徵。將LESD附接至傳導特徵所用之溫度通常係介於 約250 C與325 C之間,且對於共晶接合而言(對於Au/Sn* 162438.doc -24· 201242072 吕)最通常係約2 8 5亡。可藉由其他方法(例如有機晶粒附 接’例如使用銀環氧樹脂或焊接)黏著LESD。共晶接合視 為直接接合方法,而焊接視為間接接合方法。 在至少一個實施例中’介電基板及其上之銅層為lesd 提供薄的順應性支撐。可藉由(例如)將囊封材料施加於個 別LESD及在其上面或其内定位有lesd之凹入區域上、或 藉由將囊封劑施加於LESD陣列及周圍區域上來直接在撓 性層上封裝LESD。囊封劑較佳係透明(即具有超過94%、 較佳超過99%之透明度)模製化合物。在固化時’囊封劑可 視情況適於起透鏡之作用。聚矽氧及環氧樹脂係適宜囊封 化合物。囊封劑可進一步含有分佈於其中之光學擴散粒 子。適且模製化合物可自(例如)Shin Etsu Chemical有限公 司,Tokyo, Japan 及 NuSil Silic〇ne Techn〇l〇gy, SantaAnd developing the surface of the second depth after the path is formed by the storm. After removing the first light, the first photoresist pattern is recessed to the depth of the second photoresist pattern and 162438.doc -22- 201242072 = having the first The depth of the recessed area of the dielectric layer area, so it is not concave to the degree [Τ recessed into the area into the money engraved. The process can be repeated if it is desired to have a third deep recessed area. Figures 9 through 9A illustrate the steps that can also be used to form the recessive etch process of the present invention. The °° domain is applied to the layer of the first layer of the dielectric layer 920 on one side from the layer of the first layer of the dielectric layer 920. In the photoresist layer of the dielectric layer, the portions of the region that are not to be etched are 9H), the cross-linked regions are 94 〇, and the regions covered by the dielectric layer (and the second) are etched during the etching step. The material 910 is an uncrosslinked region 950, and the second-resistance resist material is inquired about the p... 15盍" the electric layer is to be in the portion of the second etching step 9:: the side of the photoresist portion of the portion In the cross-linking region 950, after the first developing step, the photoresist material 910' in the uncrosslinked region (4) is removed and the photoresist material in the partially cross-linked region is partially removed or not removed. 91G. Figure YANG shows the result of the first chemical engraving step of the region of the dielectric layer _ which is not covered by the photoresist material. Figure 9E shows that the photoresist material in the remaining portion of the partially crosslinked region 960 is removed after the second development step. Figure 9F shows the results of a second chemical etching step of (iv) the region of dielectric layer 920 covered by the photoresist. This causes the dielectric layer 920' surnamed in the first chemical cooking step to be further engraved in the region 95 and such that the dielectric layer 920 exposed by the photoresist material in the partially crosslinked region is removed. (four) engraved. The figure shows that the dielectric layer 920 is coated on the "side" with a conductive layer (4) after removing the photoresist material in the cross-linked region. The conductive layer may be coated on one side or both sides of the dielectric layer _ ^ /p i -V' / . If the conductive layer is to be patterned, it can be pre-patterned, or it can be patterned during the manufacturing process of the lemd. A multilayer flexible substrate (having multiple layers of dielectric and conductive materials) can also be used as the substrate. The conductive layer can be a suitable material, but is usually copper. If the conductive layer is to be added to one or both sides after the dielectric layer is formed to a desired thickness, this can be achieved by laminating the metal foil to the dielectric layer, but more usually by a certain type. The metal deposition process is implemented. Conductive features and circuitry can be formed as part of a metal deposition process. For example, a standard semi-additive deposition method for forming a circuit can include providing a vapor-deposited bonding layer of (usually) CrOx, NiCr, or NiCrOx, a metal that typically (but not necessarily) contains the same metal as the subsequently plated metal layer. The seed layer is vapor deposited thereon, the reticle is patterned on the seed layer using a conventional photolithography process, and the conductive material (any suitable material, but usually copper) is plated using electroplating or electroless plating. At the exposed portion of the seed layer, the reticle is stripped, and the exposed portions of the residual of the seed layer and the bonding layer are removed. The conductive features of the bonded LESD may be post-passivated using gold, tin, silver, etc. to facilitate the bonding. The individual LESDs can be bonded to the conductive features using any suitable bonding mechanism. Different types of joints such as eutectic, flip chip, melt and adhesive bonding can be used. The LESD preferably has a passivation layer applied to its bottom surface (usually gold/tin, but may be any suitable purification material such as a metal such as Au and an intermetallic alloy such as AuSn, AuGe, AuSi, etc.) to facilitate The LESD is bonded to the conductive features of the gold passivation. The temperature at which the LESD is attached to the conductive features is typically between about 250 C and 325 C, and for eutectic bonding (for Au/Sn* 162438.doc -24·201242072 Lv) the most common is about 2 8 5 died. The LESD can be adhered by other methods such as organic die attach, e.g., using silver epoxy or soldering. The eutectic bonding is regarded as a direct bonding method, and the soldering is regarded as an indirect bonding method. In at least one embodiment, the dielectric substrate and the copper layer thereon provide a thin compliant support for the lesd. The flexible layer can be directly applied, for example, by applying an encapsulating material to the individual LESD and to the recessed area on or in which the lesd is positioned, or by applying an encapsulant to the LESD array and surrounding area. Encapsulate the LESD. The encapsulant is preferably a transparent (i.e., having a transparency of more than 94%, preferably more than 99%) of the molding compound. The encapsulating agent can be adapted to function as a lens when cured. Polyoxymethylene and epoxy resins are suitable for encapsulating compounds. The encapsulant may further comprise optically diffusing particles distributed therein. Suitable molding compounds are available, for example, from Shin Etsu Chemical Co., Ltd., Tokyo, Japan and NuSil Silic〇ne Techn〇l〇gy, Santa

Barbara,California購得。若期望,則可在囊封之前將諸如 磷光體塗層等波長轉換材料沈積於LESD之頂部上。可在 囊封LESD之前視情況施加底填充材料。亦可將撓性lesd 封閉於防水/防風雨透明外罩中,該外罩可自任―適宜透 明聚合材料製得。 在本發明之至少―個實施例中,在介電基板層中形成一 或多個與圖5中者類似之腔結構,將LESD安置於腔中且 用覆蓋LESD之囊封劑填充腔。在本發明之至少―個實施 例中,囊封劑係透明之顏色轉換㈣,其可吸收自lesd 之LES發射之光並重新發射不同(通常較高)波長之光。例 如,含有黃色構光體之顏色轉換材料可用於囊封藍色 162438.doc •25· 201242072 LED,此允許產生白色光。在本發明之一些實施例中,可 調整腔側壁之斜率以在LESD周圍產生均勻厚度之顏色轉 換層’以提供均勻光轉換且較佳提供優異熱管理。在本發 明之至少一個實施例中’腔側壁之斜率係約5。至約9〇。本 發明之至少一個實施例的優點在於將LESd安置於腔中使 精確女置囊封劑成為可能,此乃因其可緊貼地含於腔中。 本發明之至少一個實施例的優點在於將lesd安置於腔之 中心中並用囊封劑填充腔由於可在LESD周圍產生囊封劑 之均勻層而產生均勻光轉換。在本發明之替代實施例中, 在將LESD安置於腔中之前將顏色轉換材料之層塗佈於腔 之底板上’來替代用顏色轉換材料囊封lESD。以此方 式,顏色轉換材料可吸收至少一些自LESD2LES發射之光 並重新發射不同(通常較高)波長之光。適宜顏色轉換材料 之實例係磷光體填充之囊封劑。此一囊封劑可藉由將黃色 磷光體(例如以商標名ISIPH〇R ssA6 i 2丨〇〇自Merck購得者) 與具有適宜黏著性質之適宜聚矽氧囊封劑混合來製得。在 一些實施例中,磷光體與聚矽氧黏著劑之重量比為75%可 係適宜的。在將囊封劑分配至腔中後,在一些實施例中, 其可藉由於8{rc下暴露於UV光中1小時來固化。 在本發明之至少一個實施例中,在介電基板層中形成與 彼等在圖5中所圖解說明者類似之腔結構。將為經完全封 裝之LES構造之LESD安置於腔中。lesd之主體駐存於腔 中’而接則線延伸至介電層之第—主表面上之接合塾。 在本發明之另—實施例中,經完全封裝之LES構造駐存於 162438.doc -26 - 201242072 介電層中之腔中。在此實施例中,將LESD直接表面安裝 至腔中之傳導材料。在此實施例中,兩個LESD觸點之接 合位置需要彼此電隔離。此可藉由(例如)在沈積於腔中之 傳導材料中產生間隙來實現。可適於在本發明實施例中使 用之經完全封裝之LES構造之類型的實例包括Golden DRAGON LED,可自 OSRAM Opto Semiconductors GmbH, Munich, Germany 購得;LUXION LED,可自 Philips Lumileds Lighting公司,San Jose,California, USA購得; 及 XLAMP LED,可自 Cree公司,Durham,North Carolina 購得。 在本發明之至少一些實施例中,介電層及介電層之第一 及第二表面之一或兩者上的銅層支撐並圍繞LESD,從而 提供穩健之撓性LESD。 可在批式製程或連續製程(例如經常用於製造撓性電路 之輥對輥製程)中製造本發明之撓性LESD。可以任一期望 圖案將LESD之陣列安置於撓性基板上。然後可視需要藉 由(例如)衝壓或藉由切割基板將LESD分割、例如單分成個 別LESD、LESD之條帶或LESD之陣列。因此,可運輸撓性 基板上之LESD之整個卷軸,而無需通常在載體帶之個別 袋中輸送個別LESD之傳統卷帶式過程。 在形成個別LESD、LESD之條帶或陣列之前或之後,可 藉由(例如)利用導熱黏著劑將介電層之第二主表面上之傳 導層附接至額外基板來將撓性LESD附接至額外基板。導 熱黏著劑可進一步有利於將熱傳遞離開LESD。或者,可Barbara, California purchased. If desired, a wavelength converting material such as a phosphor coating can be deposited on top of the LESD prior to encapsulation. The underfill material can be applied as appropriate prior to encapsulation of the LESD. The flexible lesd can also be enclosed in a waterproof/weatherproof transparent outer cover that can be made from any suitable transparent polymeric material. In at least one embodiment of the invention, one or more cavity structures similar to those of Figure 5 are formed in the dielectric substrate layer, the LESD is disposed in the cavity and the cavity is filled with an encapsulant covering the LESD. In at least one embodiment of the invention, the encapsulant is a transparent color shift (4) that absorbs light emitted from the LES of lesd and re-emits light of a different (usually higher) wavelength. For example, a color conversion material containing a yellow illuminant can be used to encapsulate blue 162438.doc •25· 201242072 LED, which allows white light to be produced. In some embodiments of the invention, the slope of the sidewall of the chamber can be adjusted to produce a uniform thickness of color conversion layer around the LESD to provide uniform light conversion and preferably provide superior thermal management. In at least one embodiment of the invention, the slope of the sidewall of the chamber is about five. It is about 9 miles. An advantage of at least one embodiment of the present invention is that the placement of the LESd in the cavity makes it possible to provide an accurate female encapsulant because it can be snugly contained within the cavity. An advantage of at least one embodiment of the present invention is that placing the lesd in the center of the cavity and filling the cavity with an encapsulant results in uniform light conversion due to the uniform layer of encapsulant that can be created around the LESD. In an alternative embodiment of the invention, a layer of color conversion material is applied to the bottom plate of the cavity prior to placement of the LESD in the cavity instead of encapsulating the LSD with a color conversion material. In this manner, the color conversion material can absorb at least some of the light emitted from the LESD2LES and re-emit light of a different (usually higher) wavelength. An example of a suitable color conversion material is a phosphor filled encapsulant. This encapsulant can be prepared by mixing a yellow phosphor (e.g., commercially available under the trade designation ISIPH(R) ssA6i2 from Merck) with a suitable polyoxyl encapsulant having suitable adhesion properties. In some embodiments, a weight ratio of phosphor to polyoxygen adhesive of 75% may be suitable. After dispensing the encapsulant into the cavity, in some embodiments, it can be cured by exposure to UV light for 1 hour at 8{rc. In at least one embodiment of the invention, a cavity structure similar to that illustrated in Figure 5 is formed in the dielectric substrate layer. The LESD constructed for the fully encapsulated LES is placed in the cavity. The body of lesd resides in the cavity and the wire extends to the junction on the first major surface of the dielectric layer. In another embodiment of the invention, the fully encapsulated LES structure resides in a cavity in the dielectric layer of 162438.doc -26 - 201242072. In this embodiment, the LESD is directly surface mounted to the conductive material in the cavity. In this embodiment, the joint locations of the two LESD contacts need to be electrically isolated from each other. This can be accomplished, for example, by creating a gap in the conductive material deposited in the cavity. Examples of types of fully encapsulated LES configurations that may be suitable for use in embodiments of the present invention include Golden DRAGON LEDs available from OSRAM Opto Semiconductors GmbH, Munich, Germany; LUXION LEDs from Philips Lumileds Lighting, San Available from Jose, California, USA; and XLAMP LEDs available from Cree, Durham, North Carolina. In at least some embodiments of the invention, the copper layer on one or both of the first and second surfaces of the dielectric layer and the dielectric layer supports and surrounds the LESD to provide a robust flexible LESD. The flexible LESD of the present invention can be fabricated in a batch process or in a continuous process, such as a roll-to-roll process often used to fabricate flexible circuits. The array of LESDs can be placed on a flexible substrate in any desired pattern. The LESD can then be split, for example, by stamping or by cutting the substrate, for example, into individual LESD, strips of LESD, or arrays of LESDs. Thus, the entire reel of the LESD on the flexible substrate can be transported without the need for a conventional tape-and-reel process that typically transports individual LESDs in individual pockets of the carrier strip. Prior to or after forming a strip or array of individual LESD, LESD, the flexible LESD can be attached by, for example, attaching a conductive layer on the second major surface of the dielectric layer to the additional substrate using a thermally conductive adhesive To additional substrates. The heat transfer adhesive can further facilitate heat transfer away from the LESD. Or can

S 162438.doc -27- 201242072 用金屬或其他材料處理介電基板之第二主表面上之傳導 層,該等材料有利於傳導層黏著至額外基板。可視撓性 LESD之預期用途將其附接至任一期望基板。額外基板可 導熱及/或導電,或可係可導熱或不可導熱之半導體、陶 瓷或聚合物基板《例如,額外基板可係撓性金屬基板、剛 性金屬基板、散熱器、介電基板、電路板等。 若LESD係用於電路板上’則撓性LESD無論是呈經單 分、條帶還是陣列形式皆可直接附接至最終使用者之電路 板’從而消除對習用引線框架材料之需要。若LESd係用 作照明條帶’則撓性LESD可封閉於防水/防風雨透明外罩 中,如上文所述。 若LESD係呈條帶或陣列形式,則可將LESD電連接至條 帶或陣列中之其他LESD中之一或多者。亦可在將lesd分 割成撓性LESD之前,藉由(例如)使用直接晶圓接合或倒裝 晶片製程,將諸如齊納二極體(Zener diode)及肖特基二極 體(Schottky diode)等額外元件添加至撓性LESD之第一或 第二表面。亦可將該等元件電連接至LESD。 在本發明之至少一個實施例中,撓性LESD比習用單一 或多個LESD封裝薄’此乃因LESD位於介電層之表面下 方。此使本發明之撓性LESD用於具有嚴格體積限制之應 用(例如蜂巢式電話及相機閃光燈)中成為可能。例如,本 發明之撓性LESD可提供約0.7 mm至4 mm、且在一些實施 例中0.7 mm至2 mm之封裝輪廓,而習用LESD封裝輪廓通 常大於4 mm且係約4_ 8 mm至6.00 mm。此外,若期望,則 162438.doc •28- 201242072 可使本發月之繞性裝置撓曲或彎曲以容易地裝配至非線形 或非平面總成中。 在至少-個實施例中’介電層及其上之銅層為lesd提 薄的順應性支擇。在至少一個實施例中,總銅厚度小於 2〇0微米,較佳小於100微米,且最佳小於50微米。在至少 ·—個實施例中’介電層之厚度較佳係5峨米或更小。 實例 藉由以下實例闡釋本發明,但該等實例中所列舉之特定 材料及其里、以及其他條件及細節不應理解為過度限制本 發明。 蝕刻方法 製備蝕刻劑之通用程序包括先藉由混合將37 wt%氫氧化 鉀(KOH)溶解於水中,接著後續添加 3.5 wt%乙二醇及22 wt%乙醇胺。使用水性光阻劑(以商標名HM_4〇56自 Chemicals,japan購得)作為蝕刻遮罩使一側上包覆有3 銅層之50 μιη聚醯亞胺介電層的樣品(以商標名upisel_n 自 Ube-Nitto Kasei有限公司 industries,Tokyo, Japan靖得) 自PI側經受選擇性蝕刻。藉由定時來控制蝕刻以產生具有 塊體厚度(bulk thickness)之薄聚醯亞胺域,此花費約15分 鐘。 電路形成方法 先將20英吋(50.8 cm)寬乘以1〇 m長之一側上包覆有3 μπι 銅之50 μηι聚醯亞胺的樣品(以商標名UPISEL-N自Ube-Nitto Kasei有限公司 Industries,Tokyo,Japan購得)切割成 162438.doc -29- 201242072 13.4英吋(34.04 (^)寬。在自銅((:11)側移除18只111銅載體層 之後’藉由在兩側上層壓乾燥膜光阻劑(以商標名HM4〇56 自Hitachi Chemicals有限公司購得)並使用光微影製程在聚 醯亞胺側上產生經圖案化蝕刻遮罩而使樣品中之聚亞醯胺 域I薄至塊體厚度。然後使用上文所述钱刻方法使樣品經 受化學蝕刻製程約15分鐘,以在聚醯亞胺基板中產生經變 薄域,其具有約5 μπ1之塊體厚度、經變薄ρι位準處約5〇〇 μηι之宽度及原始PI位準處約7〇〇 之寬度(其過渡壁角度 係約25。至28。)。在自兩側移除光阻劑後,先藉由真空沈積 使樣品之所暴露PI表面經受厚度為2 11〇1至2〇 〇111之鉻黏結 層的引晶,然後藉由真空沈積將銅以約1〇〇 nm之厚度沈積 於黏結層上,從而形成傳導塗層。然後使傳導塗層經受電 鍍覆以使傳導性銅層累積至約3 μηι之最終厚度。此在?1介 電基板之經蝕刻變薄域中提供傳導塗層之結構。然後將光 阻劑施加於包覆銅(在一側上)且塗佈鋼(在另一側上)之介 電層的兩側上並藉由再配準光微影製程在兩側上圖案化。 將45 μιΏ銅電沈積至經蝕刻ρι側上薄電沈積鋼之所暴露部 刀及銅包覆側之所暴露部分上。然後在自經蝕刻ρι側移除 光阻劑後,移除3 μηι銅層之所暴露部分及鉻黏結層以在介 電基板上產生電路圖案。此在聚醯亞胺基板之經變薄域以 及厚聚醯亞胺域上產生厚度為45 μιη之傳導電極。 實例1 以下係在撓性基板上封裝LESD、具體而言利用有機晶 粒附接材料在換性介電基板之經變薄域上安裝藍色咖的 J62438.doc 201242072 實例。 使用上文所述電路-形成方法在撓性介電基板之經變薄 域上形成傳導電路。經變薄域具有約5 μιη之塊體厚度及約 45 μιη之經電鍍覆銅之傳導塗層。使用銀環氧有機晶粒附 接材料(自 Quantum Materials,San Diego, U.S.Α購得),將 Cree EZ 290 Gen II LED(以零件號CA460EZ290-S2100-2 自S 162438.doc -27- 201242072 The conductive layer on the second major surface of the dielectric substrate is treated with a metal or other material that facilitates adhesion of the conductive layer to the additional substrate. The intended use of the flexible flexible LESD attaches it to any desired substrate. The additional substrate may be thermally and/or electrically conductive, or may be a semiconductor, ceramic or polymer substrate that is thermally or non-conductive. For example, an additional substrate may be a flexible metal substrate, a rigid metal substrate, a heat sink, a dielectric substrate, a circuit board. Wait. If the LESD is used on a circuit board, then the flexible LESD can be attached directly to the end user's circuit board, either in single, strip or array form, thereby eliminating the need for conventional lead frame materials. If the LESd is used as a lighting strip' then the flexible LESD can be enclosed in a waterproof/weatherproof transparent enclosure as described above. If the LESD is in the form of a strip or array, the LESD can be electrically connected to one or more of the strips or other LESDs in the array. Zener diodes and Schottky diodes, such as Zener diodes and Schottky diodes, can also be used, for example, by using direct wafer bonding or flip chip processes, before dividing lesd into flexible LESDs. Additional elements are added to the first or second surface of the flexible LESD. The components can also be electrically connected to the LESD. In at least one embodiment of the invention, the flexible LESD is thinner than conventional single or multiple LESD packages because the LESD is below the surface of the dielectric layer. This makes it possible to use the flexible LESD of the present invention in applications with tight volume limitations, such as cellular phones and camera flashes. For example, the flexible LESD of the present invention can provide a package profile of about 0.7 mm to 4 mm, and in some embodiments 0.7 mm to 2 mm, while conventional LESD package profiles are typically greater than 4 mm and are about 4-8 mm to 6.00 mm. . In addition, if desired, 162438.doc •28- 201242072 allows the revolving device of this month to flex or bend for easy assembly into a non-linear or non-planar assembly. In at least one embodiment, the dielectric layer and the copper layer thereon are lesd thinning compliance. In at least one embodiment, the total copper thickness is less than 2 Å, and preferably less than 100 microns, and most preferably less than 50 microns. In at least one embodiment, the thickness of the dielectric layer is preferably 5 nanometers or less. EXAMPLES The present invention is illustrated by the following examples, which are not to be construed as limiting the invention. Etching Method A general procedure for preparing an etchant involves first dissolving 37 wt% potassium hydroxide (KOH) in water by mixing, followed by subsequent addition of 3.5 wt% ethylene glycol and 22 wt% ethanolamine. A water-based photoresist (available from Chemicals, Japan under the trade name HM_4〇56) was used as an etch mask to sample a 50 μm polyacrylonitrile dielectric layer coated with 3 copper layers on one side (under the trade name upisel_n) Since Ube-Nitto Kasei Co., Ltd., Industry, Tokyo, Japan, it has undergone selective etching from the PI side. The etching is controlled by timing to produce a thin polyimide phase having a bulk thickness, which takes about 15 minutes. The circuit was formed by multiplying a 20-inch (50.8 cm) wide by 1 μm long side of a sample coated with 3 μπι copper of 50 μηι polyimine (under the trade name UPISEL-N from Ube-Nitto Kasei). Ltd., purchased by Industries, Tokyo, Japan) cut into 162438.doc -29- 201242072 13.4 inches (34.04 (^) wide. After removing 18 111 copper carrier layers from the copper ((:11) side') A dry film photoresist (commercially available from Hitachi Chemicals Co., Ltd. under the trade name HM4〇56) was laminated on both sides and a patterned etch mask was created on the polyimide side using a photolithography process in the sample. The polyamidomine domain I is thin to the bulk thickness. The sample is then subjected to a chemical etching process for about 15 minutes using the engraving method described above to produce a thinned domain having about 5 μπ1 in the polyimide substrate. The thickness of the block, the width of the thinned ρι position is about 5〇〇μηι and the width of the original PI level is about 7〇〇 (the transition wall angle is about 25 to 28.). After the photoresist is removed, the exposed PI surface of the sample is subjected to a thickness of 2 11 〇 1 to 2 by vacuum deposition. The seeding of the chrome bonding layer of 111 is then deposited on the bonding layer by vacuum deposition at a thickness of about 1 〇〇 nm to form a conductive coating. The conductive coating is then subjected to electroplating to make a conductive copper layer. Accumulated to a final thickness of about 3 μηι. This provides a conductive coating structure in the etched thinned domain of the ?1 dielectric substrate. The photoresist is then applied to the clad copper (on one side) and coated with steel. On both sides of the dielectric layer (on the other side) and patterned on both sides by re-registration photolithography. Electrodeposition of 45 μm copper onto the thin electrodeposited steel on the etched side Exposing the exposed portion of the knife and the copper-clad side. Then, after removing the photoresist from the etched side, removing the exposed portion of the 3 μηι copper layer and the chrome bonding layer to create a circuit on the dielectric substrate A conductive electrode having a thickness of 45 μm is formed on the thinned domain of the polyimide substrate and the thick polyimide phase. Example 1 The following is to encapsulate the LESD on a flexible substrate, specifically using organic grains. The attachment material is mounted blue on the thinned domain of the flexible dielectric substrate J62438.doc 201242072 Example of a coffee. A conductive circuit is formed on a thinned domain of a flexible dielectric substrate using the circuit-forming method described above. The thinned domain has a bulk thickness of about 5 μηη and a thickness of about 45 μηη Copper-plated conductive coating. Using a silver epoxy organic die attach material (available from Quantum Materials, San Diego, US), Cree EZ 290 Gen II LED (part number CA460EZ290-S2100-2)

Cree公司,Durham,NC,U.S.A.購得)接合至傳導塗層,於 150°C下熱固化1小時。使用手動線接合器(以商標名4524d 自 Kulicke and Soffa Industries公司,Fort Washington, PA U.S.A.購得)並使用1密耳直徑之金線利用金接合墊將每一 LED線接合至介電基板之頂部表面上的傳導電路。使用以 型號EX4210R(電壓額定值42 V、電流額定值1〇 a)自Cree, Durham, NC, U.S.A. commercially available) bonded to a conductive coating and thermally cured at 150 ° C for 1 hour. A hand wire bonder (available from Kulicke and Soffa Industries, Inc., Fort Washington, PA USA under the trade designation 4524d) was used and each LED wire was bonded to the top of the dielectric substrate using a gold bond pad using a 1 mil diameter gold wire. Conductive circuit on the surface. Use model EX4210R (voltage rating 42 V, current rating 1〇 a) since

Thurlby Thandar Instruments有限公司(TTi),Huntingdon,Thurlby Thandar Instruments, Inc. (TTi), Huntingdon,

Cambridgeshire,United Kingdom購得之電源測試總成。 LED在點免時係免藍色且總成顯示捷性。 實例2 以下係在撓性基板上封裝LESD、具體而言利用間接晶 粒接合在撓性介電基板之經變薄域上安裝藍色LED的另一 實例。 使用上文所述電路-形成方法在撓性介電基板之經變薄 域上形成傳導電路。經變薄域具有約5 μπ1之塊體厚度及約 45 μηι之經電鍍覆銅之傳導塗層。在[ED與傳導塗層之間 使用焊料將Cree EZ 290 Gen II LED(以零件號 CA460EZ290-S2100-2 自 Cree公司,Durham,NC,U.S.A.購 162438.doc 31- 201242072 得)接合至傳導塗層。使用手動線接合器(以商標名4524D 自 Kulicke and Soffa Industries公司,Fort Washington,PA, U.S.A.購得)並利用!密耳直徑之金線經由金接合墊將每一 LED線接合至介電基板之頂部表面上的傳導電路。使用以 型號EX4210R(電壓額定值42 V、電流額定值10 A)自 Thurlby Thandar Instruments有限公司(TTi),Huntingdon, Cambridgeshire,United Kingdom 購得之電源測試總成。 LED在點亮時係亮藍色且總成顯示撓性。 實例性實施例 1 · 一種照明系統,其包含: 光學採集系統, 第一發光半導體裝置(LESD),其具有第一高度,該第— LESD面向該光學採集系統, 第二發光半導體裝置(LESD) ’其具有不同於該第一高度 之第二高度’該第二LESD面向該光學採集系統, 基板,其具有第一區域及第二區域,該第一區域至少支 樓該第一 LESD且該第二區域至少支撐該第二lESd,且該 第一區域具有不同於該第二區域之第二區域高度之第一區 域尚度’以使得第一 LESD之發射表面及第二LESD之發射 表面處於距遺光學知集系統大體上相同之距離處。 2. 如贯施例1之照明系統’其中該光學採集系統包含透 鏡。 3. 如實施例1之照明系統,其中該光學採集系統包含積分 桿。 162438.doc •32- 201242072 4. 如實施例1之照明系統,其中該基板包含導體層,該導 體層於該第一區域處具有第一導體層高度且於該第二區域 處具有第二導體層高度,該第一導體層高度不同於該第二 導體層高度。 5. 如貫施例1之知、明系統,其中該基板包含介電層,該介 電層係經設計以於該第一區域處具有第一介電層高度且於 β亥第二區域處具有第二介電層高度,該第一介電層高度不 同於該第二介電層高度。 6·如實施例5之照明系統,其中該介電層包含聚醯亞胺核 心及在該核心之一側上之熱塑性聚醯亞胺層。 7 _如貫施例1之照明系統,其中該發光半導體裝置係中間 發光半導體構造。 8. 如實施例1之照明系統,其中該發光半導體裝置係經囊 封之發光半導體構造。 9. 如實施例1之照明系統,其中該第一區域及該第二區域 中之至少一者係凹入區域。 1 〇.如實施例9之照明系統,其中該凹入區域係腔。 11.如實施例10之照明系統’其中該腔填充有磷光體填充 之囊封劑。 12· —種照明總成,其包含: 第一發光半導體襞置(LESD),其具有第一高度, 第二發光半導體裝置(LESD) ’其具有不同於該第一高度 之第二高度, 介電層’其具有第一區域及第二區域,該第一區域至少 I62438.doc • 33· 201242072 支撐該第一LESD且該第二區域至少支撐該第:LESD,且 该第一區域具有不同於該第二區域之第二區域高度之第一 區域高度,以使得該第一LESD及該第二LESD具有大體上 平面發射表面。 13 ·如實施例12之照明總成,其進一步包含: 光學採集系統,其面向該第一 LESD及該第二LESD。 M·如實施例13之照明總成,其中該光學採集系統包含透 鏡。 如實施例13之照明總成,其中該光學採集系統包含積 分桿3 16. 如實施例12之照明總成,其進一步包含: 在該介電層之頂部上之導體層,該導體層於該第一區域 處具有第一導體層高度且於該第二區域處具有第二導體層 高度,且該第一導體層高度不同於該第二導體層高度。 17. 如實施例12之照明總成’其中該發光半導體裝置係中 間發光半導體構造。 1 8·如實施例12之照明總成’其中該發光半導體裝置係經 囊封之發光半導體構造。 19. 如實施例12之照明總成,其中該介電層包含聚醯亞胺 核心及在該核心之一側上之熱塑性聚醯亞胺層。 20. 如實施例12之照明總成’其中該第一區域及該第二區 域中之至少一者係凹入區域。 21. 如實施例20之照明總成,其中該凹入區域係腔。 22. 如實施例21之照明總成’其中該腔填充有磷光體填充 162438.doc • 34- 201242072 之囊封劑。 23. —種方法,其包含: 提供光學採集系統; 高度之第一區 提供具有第一及第二主表面以及具有第— 域之基板; 在該第-主表面上產生至少一個凹入之第二區域,以使 得該第二區域具有小於該第一高度之第二高产及 a將至少—個發光半導體安置㈣向該光學^系統之該 等第一及第二區域中之每一者上。 24.如實施例23之方法,其中該基板包含介電層 25·如實施例24之方法,其中該基板進— 層之頂部上之傳導層。 步包含在該介電 26·如實施例25之方法,其甲該傳導層包含電路。 27. 如實施例23之方法,其中藉由選自由化學㈣、電榮 姓刻、聚焦離子束關及雷射剝❹成之群之方法在該介 電層之該第一主表面中產生該第二區域。 28. 如實施例23之方法,其中利用包含氣氧化卸、乙醇胺 及乙二醇之蝕刻劑溶液來化學蝕刻該至少—個凹入之第二 區域。 29_如實施例28之方法,其中藉由包含驗性高錳酸鉀之敍 刻劑溶液來進一步蝕刻該至少一個凹入之第二區域。 30.如實施例23之方法,其中利用包含氫氧化卸及甘胺酸 之蝕刻劑溶液來化學蝕刻該至少一個凹入之第二區域。 3!·如實施例23之方法,其中藉由包含驗性高^ 162438.doc -35- 201242072 刻劑岭液來進一步蝕刻該至少一個凹入之第二區域。 32. —種物件,其包含: 撓性介電層,其且右笛 a ^ ± ± 头八有第一及第一主表面,該第—主表面 具有至> 個具有第一高度之第一區域及至少—個具有不 5 第呵度之第二高度之第二區域,其中該第一區域 至少支擇-個第—發光半導體裝置(LESD)且該第二區域至 少支撐一個第二發光半導體裝置(LESD);及在該介電層之 該第一主表面上之第一傳導層。 33. 如實施例32之物件,其中該第一高度大於該第二高 度。 34. 如實施例33之物件,其中該第一高度係該介電層之最 大高度。 35. 如實施例33之物件,其中該第二高度係藉由自該第一 主表面移除材料來形成。 3 6·如實施例32至34中任一實施例之物件,其中該第二 LESD生成的熱多於該第一 LESD生成的熱。 37.如實施例32之物件,其中該第—高度及該第二高度皆 小於該撓性介電層之最大高度且該第二高度小於該第一高 度。 38_如實施例32之物件,其中該第二區域係凹入區域。 3 9 ·如實施例3 8之物件,其中該凹入區域係腔。 40. 如實施例32之物件,其中該等第一及第二區域皆係為 腔之凹入區域。 41. 如實施例32之物件,其中第一高度與第二高度之間之 162438.doc •36· 201242072 差異與該等第-及第二區域中該等LESD之間距的比率係 約1:1至約1:1 〇。 42. 如實施例32之物件,其中該第—區域係為凹陷之凹入 區域且該第二區域係為腔之凹入區域。 43. 如實施例32之物件,其進一步包含至少—個第三區 域’其具有小於該等第一及第二高度之第三高《,該第三 區域支樓第三發光半導體裝置。 44. 如實施例32之物件,其中在操作期間該第二發光半導 體裝置產生的熱多於該第-發光半導體裝置產生的熱。 45. 如實施例32之物件,其令在操作期間該第三發光半導 體裝置產生的熱多於該等第一及第二發光半導體裝置產生 的熱。 46. 如實施例32之物件,其中該第二高度比該第一高度小 約10%與約90%之間。 47. 如實施例32之物件,其中該第二高度比該第一高度小 約腦與約90%之間且該第三高度比該第二高度小約1〇% 與約90%之間。 48. 如實施例32之物件 面具有傳導層。 49. 如實施例48之物件 上之該傳導層包含電路 50. 如實施例32之物件,其中該換性介電層包含聚酿亞胺 核心及在該核心之-或^側上之熱塑性聚醯亞胺層。 51. 如實施例32之物件,其中該發光半導體裝置係m 其中該介電層之該第二主表面上 其中在該介電層之該第二主表面 162438.doc •37· 201242072 LES構造。 52.如實施例32之物件’其中該發光半導體裝置係中間 LES構造。 5 3.如實施例3 2之物件,其中該發光半導體裝置係經完全 封裝之LES構造。 5 4.如實施例3 2之物件,其中該腔填充有碟光體填充之囊 封劑。 55. —種方法,其包含: 提供具有第一及第二主表面以及具有第一高度之第一區 域之撓性介電層; 在該第一主表面上產生至少一個凹入之第二區域,該第 二區域具有小於該第一高度之第二高度; 在該介電層之該第一主表面上產生傳導層;及 將至少一個LES安置於該等第一及第二區域中之每一者 上。 一步包含在該第一主表面上 ,§玄第二區域具有小於該等 5 6 _如實施例5 5之方法,其進 產生至少一個凹入之第三區域 第一及第二高度之第三高度。 57.如實施例55之方法,其中在該介電層之該第一主表面 上之該傳導層包含電路。 5 8 ·如實施例5 5之方法,並推_丰a入——人而α 丹選一步包含在該介電層之該二 主表面上產生傳導層。 59.如實施例58之方法,其中在該介電層之該第二主表面 上之該傳導層包含電路。 162438.doc •38· 201242072 60.如實施例55之方法,其中藉由選自由化學蝕刻、電漿 钮刻、聚焦離子束蚀刻及雷射剝飯組成之群之方法在今介 電層之該第一主表面中產生該第二區域。 61•如實施例55之方法,其中利用包含氫氧化鉀(k〇h)、 乙醇胺(ΜΕΑ)及乙二醇(MEG)之蝕刻劑溶液來化學蝕刻該 至少一個凹入之第二區域。 62.如實施例61之方法,其中藉由包含鹼性高錳酸鉀之蝕 刻劑溶液來進一步触刻該至少一個凹入之第二區域。 63 ·如貫施例5 5之方法,其中利用包含K〇H及甘胺酸之蝕 刻劑溶液來化學蝕刻該至少一個凹入之第二區域。 64. 如貫施例63之方法,其中藉由包含鹼性高猛酸鉀之钮 刻劑溶液來進一步姓刻該至少一個凹入之第二區域。 65. —種照明系統,其包含: 光學採集系統’其具有光進入主表面及與該光進入主表 面相對之光發射表面, 第一發光半導體裝置(LESD),其具有第一高度,該第一 LESD面向該光學採集系統之該光進入主表面, 第二發光半導體裝置(LESD),其具有不同於該第一高度 之第一咼度’該第二LESD面向該光學採集系統之該光進 入主表面,及 基板’其具有第一區域及第二區域’該第一區域至少支 樓該第一 LESD且該第二區域至少支撐該第二lESd,且該 第一區域具有不同於該第二區域之第二區域高度之第一區 域南度。 162438.doc -39- 201242072 66. 如實施例65之照明系統’其中該第一區域高度不同於 該第二區域高度,以使得該第一LESD之發射表面及該第 二LESD之發射表面處於距該光學採集系統之該光進入主 表面大體上相同之距離處。 67. 如實施例65之照明系統’其中該第一區域高度不同於 該第二區域高度,以使得該第一 LESD之該發射表面及第 二LESD之該發射表面處於距該光學採集系統之該光發射 主表面大體上相同之光程長度處。 雖然本文係出於闡述較佳實施例之目的闡釋並闡述具體 實施例,但熟習此項技術者應瞭解,可使用各種各樣替代 及/或等效之實施方案來代替所顯示並闡述之具體實施 例,此並不背離本發明之範圍。本申請案意欲涵蓋本文所 論述之較佳實施例之任何修改形式或變化形式。因此,本 發明明確地意欲僅由申請專利範圍及其等效物限制。 【圖式簡單說明】 圖1A及1B提供具有不同組態之照明總成之說明性射線 追縱圖; 圖2A圖解說明撓性LES裝置之實例性實施例; 圖2B圖解說明圖2A之比較LESD裝置; 圖3圖解說明照明系統之實例性實施例之示意性剖視 圖; 圖4A-4F圖解說明照明總成之數個實例性組態之示意性 剖視圖; 圖5A及5B繪示LES裝置之實例性實施例之示意性剖視 162438.doc • 40 201242072 圖; 圖6A圖解說明LES裝置之另一實例性實施例之示意性剖 視圖; 圖6B圖解說明與圖6A中所圖解說明之LES裝置類似之 LES裝置之實例性實施例的示意性透視圖; 圖7A及7B圖解說明具有積分桿及四個具有於不同位準 處之發射表面之LESD之照明總成的實施例。圖7A係側視 圖且圖7B係照明總成之透視圖; 圖8A及8B圖解說明其光學組件與圖7A及7B中所圖解說 明之照明總成中者相同之實施例照明總成,但四個lesd 具有本質上+面發射表面。圖8A係照明總成之側視圖 且圖8B係其透視圖;且 圖9A至9G圖解却昍 圆解說明亦可用於形成本發明之凹入區域之 實例性蝕刻製程之步驟。 【主要元件符號說明】 10 凹入區域 12 介電層 13 第—主表面 14 第二主表面 16 傳導特徵 18 傳導材料 19 傳導層 20 傳導層 24 發光半導體裝置 162438.doc £ -41 . 201242072 26 發光半導體裝置 100A 照明總成 100B 照明總成 110A 發光半導體裝置 1 10B 發光半導體裝置 120A 發光半導體裝置 120B 發光半導體裝置 140A 區域 140B 區域 150 光學採集系統 300 照明系統 310 基板 3 12 第一主表面 314 第二主表面 320 第一發光半導體裝置 330 第二發光半導體裝置 340 介電層 350 傳導層 360 傳導層 370 第一區域 380 第二區域 390 光學採集系統 391 光進入主表面 392 光發射主表面 162438.doc •42- 201242072 400 照明總成 410 基板 412 第一主表面 414 第二主表面 420 第一發光半導體裝置 430 第二發光半導體裝置 440 介電層 450 傳導層 455 傳導材料 460 第二傳導層 470 第一區域 480 第二區域 500A 發光半導體裝置 500B 發光半導體裝置 510 凹入區域 512 介電層 513 第一主表面 519 傳導層 520 第二傳導層 524 發光半導體裝置 526 發光半導體裝置 600A 發光半導體裝置 600B 發光半導體裝置 610C 凹區域 162438.doc •43- 201242072 610L 凹入區域 612 介電層 613 第一主表面 614 第二主表面 619 傳導層 620 傳導層 624 發光半導體裝置 626 發光半導體裝置 628 發光半導體裝置 700 照明總成 710 發光半導體裝置 715 發光半導體裝置 720 發光半導體裝置 725 發光半導體裝置 730 積分桿 735 進入表面 737 離開表面 800 照明總成 910 光阻劑材料 920 介電層 930 傳導膜/傳導層 940 父聯區域 950 未父聯區域 960 部分交聯區域 162438.doc • 44·A power test assembly purchased by Cambridgeshire, United Kingdom. The LED is free of blue when the point is free and the assembly shows agility. Example 2 The following is another example of mounting a LESD on a flexible substrate, in particular using a direct grain bond to mount a blue LED on a thinned domain of a flexible dielectric substrate. A conductive circuit is formed on the thinned domain of the flexible dielectric substrate using the circuit-forming method described above. The thinned domain has a bulk thickness of about 5 μπ1 and a copper-coated conductive coating of about 45 μm. Bonding Cree EZ 290 Gen II LED (part number CA460EZ290-S2100-2 from Cree, Durham, NC, USA, 162438.doc 31-201242072) to the conductive coating using [solder between the ED and the conductive coating) . Use a manual wire bonder (available under the trade name 4524D from Kulicke and Soffa Industries, Fort Washington, PA, U.S.A.) and utilize it! The mil diameter gold wire bonds each LED wire to a conductive circuit on the top surface of the dielectric substrate via a gold bond pad. A power test assembly commercially available from Thurlby Thandar Instruments, Inc. (TTi), Huntingdon, Cambridgeshire, United Kingdom, using model EX4210R (voltage rating 42 V, current rating 10 A). The LED is bright blue when illuminated and the assembly shows flexibility. Example Embodiment 1 An illumination system comprising: an optical acquisition system, a first light emitting semiconductor device (LESD) having a first height, the first LESD facing the optical acquisition system, and a second light emitting semiconductor device (LESD) 'Having a second height different from the first height', the second LESD facing the optical acquisition system, the substrate having a first region and a second region, the first region having at least the first LESD and the first The second region supports at least the second lESd, and the first region has a first region degree ' different from the height of the second region of the second region such that the emission surface of the first LESD and the emission surface of the second LESD are at a distance The optical optical collection system is at substantially the same distance. 2. The illumination system of embodiment 1 wherein the optical acquisition system comprises a lens. 3. The illumination system of embodiment 1, wherein the optical acquisition system comprises an integrating rod. 4. The illumination system of embodiment 1, wherein the substrate comprises a conductor layer having a first conductor layer height at the first region and a second conductor at the second region The height of the layer, the height of the first conductor layer is different from the height of the second conductor layer. 5. The system of claim 1, wherein the substrate comprises a dielectric layer, the dielectric layer being designed to have a first dielectric layer height at the first region and at a second region of β There is a second dielectric layer height, the first dielectric layer height being different from the second dielectric layer height. 6. The illumination system of embodiment 5 wherein the dielectric layer comprises a polyimide core and a thermoplastic polyimide layer on one side of the core. The illumination system of embodiment 1, wherein the light emitting semiconductor device is an intermediate light emitting semiconductor structure. 8. The illumination system of embodiment 1, wherein the light emitting semiconductor device is an encapsulated light emitting semiconductor construction. 9. The illumination system of embodiment 1, wherein at least one of the first region and the second region is a recessed region. 1 . The illumination system of embodiment 9, wherein the recessed region is a cavity. 11. The illumination system of embodiment 10 wherein the cavity is filled with a phosphor filled encapsulant. 12. A lighting assembly comprising: a first light emitting semiconductor device (LESD) having a first height, a second light emitting semiconductor device (LESD) having a second height different from the first height, The electrical layer 'has a first region and a second region, the first region supporting at least the first LESD and the second region supporting the first:LESD, and the first region has a different The first region height of the second region of the second region is such that the first LESD and the second LESD have a substantially planar emitting surface. 13. The illumination assembly of embodiment 12, further comprising: an optical acquisition system facing the first LESD and the second LESD. M. The illumination assembly of embodiment 13, wherein the optical acquisition system comprises a lens. The illumination assembly of embodiment 13, wherein the optical acquisition system comprises an integrating rod 3 16. The illumination assembly of embodiment 12, further comprising: a conductor layer on top of the dielectric layer, the conductor layer The first region has a first conductor layer height and a second conductor layer height at the second region, and the first conductor layer height is different from the second conductor layer height. 17. The illumination assembly of embodiment 12 wherein the light emitting semiconductor device is an intermediate light emitting semiconductor construction. 18. The illumination assembly of embodiment 12 wherein the light emitting semiconductor device is an encapsulated light emitting semiconductor construction. 19. The illumination assembly of embodiment 12, wherein the dielectric layer comprises a polyimide core and a thermoplastic polyimide layer on one side of the core. 20. The illumination assembly of embodiment 12 wherein at least one of the first region and the second region is a recessed region. 21. The illumination assembly of embodiment 20, wherein the recessed region is a lumen. 22. The illumination assembly of embodiment 21 wherein the cavity is filled with a phosphor filling 162438.doc • 34-201242072 encapsulant. 23. A method, comprising: providing an optical acquisition system; a first region of height providing a substrate having first and second major surfaces and having a first domain; generating at least one recessed surface on the first major surface The second region is such that the second region has a second high yield less than the first height and a is disposed at least one of the light emitting semiconductors (4) to each of the first and second regions of the optical system. 24. The method of embodiment 23, wherein the substrate comprises a dielectric layer. 25. The method of embodiment 24, wherein the substrate is a conductive layer on top of the layer. A step is included in the dielectric. 26. The method of embodiment 25, wherein the conductive layer comprises circuitry. 27. The method of embodiment 23, wherein the first major surface of the dielectric layer is produced by a method selected from the group consisting of chemical (4), electro-optic, focused ion beam, and laser stripping Second area. 28. The method of embodiment 23, wherein the at least one recessed second region is chemically etched using an etchant solution comprising a gas oxidizing off, ethanolamine, and ethylene glycol. The method of embodiment 28, wherein the at least one recessed second region is further etched by a neutralizing agent solution comprising an indicating potassium permanganate. 30. The method of embodiment 23, wherein the at least one recessed second region is chemically etched using an etchant solution comprising a hydroxide desorbing and glycine. 3. The method of embodiment 23, wherein the at least one recessed second region is further etched by including an inspective high 162438.doc -35 - 201242072 engraved linger solution. 32. An object comprising: a flexible dielectric layer, and a right flute a ^ ± ± a head eight having a first and first major surface, the first major surface having a first to a height of > a region and at least one second region having a second height that is not 5 degrees, wherein the first region supports at least one of the first light emitting semiconductor devices (LESD) and the second region supports at least one second light emitting a semiconductor device (LESD); and a first conductive layer on the first major surface of the dielectric layer. 33. The article of embodiment 32, wherein the first height is greater than the second height. 34. The article of embodiment 33, wherein the first height is a maximum height of the dielectric layer. 35. The article of embodiment 33, wherein the second height is formed by removing material from the first major surface. The object of any one of embodiments 32 to 34, wherein the second LESD generates more heat than the first LESD generates heat. 37. The article of embodiment 32, wherein the first height and the second height are both less than a maximum height of the flexible dielectric layer and the second height is less than the first height. 38. The article of embodiment 32, wherein the second region is a recessed region. 3. The article of embodiment 38, wherein the recessed region is a lumen. 40. The article of embodiment 32, wherein the first and second regions are recessed regions of the cavity. 41. The article of embodiment 32, wherein the ratio of the difference between the first height and the second height is 162 438.doc • 36 · 201242072 and the distance between the LEDs in the first and second regions is about 1:1. To about 1:1 〇. 42. The article of embodiment 32, wherein the first region is a recessed recessed region and the second region is a recessed region of the cavity. 43. The article of embodiment 32, further comprising at least a third region' having a third higher than the first and second heights, the third region of the third light emitting semiconductor device. 44. The article of embodiment 32, wherein the second illuminating semiconductor device generates more heat during operation than the heat generated by the first illuminating semiconductor device. 45. The article of embodiment 32, wherein the third luminescent semiconductor device generates more heat during operation than the first and second illuminating semiconductor devices. 46. The article of embodiment 32, wherein the second height is between about 10% and about 90% less than the first height. 47. The article of embodiment 32, wherein the second height is between about 90% less than the first height and the third height is between about 1% and about 90% less than the second height. 48. The article surface of embodiment 32 having a conductive layer. 49. The conductive layer of the article of embodiment 48 comprising the circuit 50. The article of embodiment 32, wherein the flexible dielectric layer comprises a polyimide core and a thermoplastic polymer on the side of the core A layer of quinone imine. 51. The article of embodiment 32, wherein the light emitting semiconductor device is m wherein the second major surface of the dielectric layer is configured on the second major surface of the dielectric layer 162438.doc • 37· 201242072 LES. 52. The article of embodiment 32 wherein the light emitting semiconductor device is an intermediate LES configuration. 5. The article of embodiment 32 wherein the light emitting semiconductor device is in a fully encapsulated LES configuration. 5. The article of embodiment 32 wherein the cavity is filled with a disc filled encapsulant. 55. A method, comprising: providing a flexible dielectric layer having first and second major surfaces and a first region having a first height; generating at least one recessed second region on the first major surface The second region has a second height less than the first height; a conductive layer is formed on the first major surface of the dielectric layer; and at least one LES is disposed in each of the first and second regions One. One step is included on the first major surface, and the second region has a smaller than the fifth method. The method of the fifth embodiment is to generate at least one recessed third region first and second third. height. 57. The method of embodiment 55 wherein the conductive layer on the first major surface of the dielectric layer comprises circuitry. 5 8 - The method of Embodiment 5 5, and the step of introducing a conductive layer on the two major surfaces of the dielectric layer. 59. The method of embodiment 58, wherein the conductive layer on the second major surface of the dielectric layer comprises circuitry. The method of embodiment 55, wherein the method is selected from the group consisting of chemical etching, plasma button etching, focused ion beam etching, and laser stripping in the present dielectric layer. The second region is created in the first major surface. 61. The method of embodiment 55, wherein the at least one recessed second region is chemically etched using an etchant solution comprising potassium hydroxide (k〇h), ethanolamine (ΜΕΑ), and ethylene glycol (MEG). 62. The method of embodiment 61, wherein the at least one recessed second region is further engraved by an etchant solution comprising an alkaline potassium permanganate. 63. The method of embodiment 5, wherein the at least one recessed second region is chemically etched using an etchant solution comprising K〇H and glycine. 64. The method of embodiment 63, wherein the at least one recessed second region is further surnamed by a buttoning agent solution comprising an alkaline potassium permanganate. 65. An illumination system comprising: an optical acquisition system having a light entering a major surface and a light emitting surface opposite the light entering the major surface, a first light emitting semiconductor device (LESD) having a first height, the first A light of the LESD facing the optical acquisition system enters a major surface, a second light emitting semiconductor device (LESD) having a first intensity different from the first height 'the second LESD facing the light entry of the optical acquisition system a main surface, and a substrate having a first region and a second region, the first region having at least the first LESD and the second region supporting at least the second lESd, and the first region having a different second The first region of the second region of the region is south. 162438.doc -39- 201242072 66. The illumination system of embodiment 65 wherein the first region height is different from the second region height such that an emission surface of the first LESD and an emission surface of the second LESD are at a distance The light from the optical acquisition system enters the main surface at substantially the same distance. 67. The illumination system of embodiment 65 wherein the first region height is different from the second region height such that the emission surface of the first LESD and the emission surface of the second LESD are located from the optical acquisition system The light emitting main surface is substantially the same length of the optical path. While the invention has been illustrated and described with respect to the preferred embodiments of the preferred embodiments of the preferred embodiments, The examples do not depart from the scope of the invention. This application is intended to cover any adaptations or variations of the preferred embodiments discussed herein. Therefore, the invention is intended to be limited only by the scope of the claims and their equivalents. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 1B provide illustrative ray trace diagrams of illumination assemblies having different configurations; FIG. 2A illustrates an exemplary embodiment of a flexible LES device; FIG. 2B illustrates a comparison LESD of FIG. 2A. Figure 3 illustrates a schematic cross-sectional view of an exemplary embodiment of a lighting system; Figures 4A-4F illustrate schematic cross-sectional views of several example configurations of a lighting assembly; Figures 5A and 5B illustrate an example of a LES device Schematic cross-section of an embodiment 162438.doc • 40 201242072 FIG. 6A illustrates a schematic cross-sectional view of another exemplary embodiment of a LES device; FIG. 6B illustrates a LES similar to the LES device illustrated in FIG. 6A A schematic perspective view of an exemplary embodiment of a device; Figures 7A and 7B illustrate an embodiment of an illumination assembly having an integrating rod and four LESDs having emitting surfaces at different levels. Figure 7A is a side view and Figure 7B is a perspective view of the illumination assembly; Figures 8A and 8B illustrate an embodiment illumination assembly having optical components identical to those of the illumination assemblies illustrated in Figures 7A and 7B, but four Each lesd has an essentially + face emitting surface. Figure 8A is a side view of the illumination assembly and Figure 8B is a perspective view thereof; and Figures 9A through 9G illustrate the steps that may be used to form an exemplary etching process for the recessed regions of the present invention. [Main component symbol description] 10 recessed region 12 dielectric layer 13 first main surface 14 second main surface 16 conductive feature 18 conductive material 19 conductive layer 20 conductive layer 24 light emitting semiconductor device 162438.doc £ -41 . 201242072 26 Semiconductor device 100A illumination assembly 100B illumination assembly 110A illumination semiconductor device 1 10B illumination semiconductor device 120A illumination semiconductor device 120B illumination semiconductor device 140A region 140B region 150 optical acquisition system 300 illumination system 310 substrate 3 12 first major surface 314 second main Surface 320 First Light Emitting Semiconductor Device 330 Second Light Emitting Semiconductor Device 340 Dielectric Layer 350 Conducting Layer 360 Conducting Layer 370 First Area 380 Second Area 390 Optical Acquisition System 391 Light Entering Main Surface 392 Light Emitting Main Surface 162438.doc • 42 - 201242072 400 illumination assembly 410 substrate 412 first major surface 414 second major surface 420 first light emitting semiconductor device 430 second light emitting semiconductor device 440 dielectric layer 450 conductive layer 455 conductive material 460 second conductive layer 470 first region 480 second Region 500A Light Emitting Semiconductor Device 500B Light Emitting Semiconductor Device 510 Recessed Region 512 Dielectric Layer 513 First Main Surface 519 Conducting Layer 520 Second Conducting Layer 524 Light Emitting Semiconductor Device 526 Light Emitting Semiconductor Device 600A Light Emitting Semiconductor Device 600B Light Emitting Semiconductor Device 610C Concave Region 162438 .doc • 43- 201242072 610L recessed area 612 dielectric layer 613 first major surface 614 second major surface 619 conductive layer 620 conductive layer 624 light emitting semiconductor device 626 light emitting semiconductor device 628 light emitting semiconductor device 700 lighting assembly 710 light emitting semiconductor device 715 illuminating semiconductor device 720 illuminating semiconductor device 725 illuminating semiconductor device 730 integrating rod 735 entering surface 737 leaving surface 800 illuminating assembly 910 photoresist material 920 dielectric layer 930 conductive film / conductive layer 940 parent unit area 950 non-parent area 960 Partially cross-linked area 162438.doc • 44·

Claims (1)

201242072 七、申請專利範圍: 1. 一種照明系統,其包含: 光學採集系統,其具有光進入主表面及與該光進入主 表面相對之光發射表面, 第一發光半導體裝置(LESD),其具有第—高度,該第 一 LESD面向該光學採集系統之該光進入主表面, 第二發光半導體裝置(LESD),其具有不同於該第一高 度之第一咼度,忒第一 LESD面向該光學採集系統之該光 進入主表面,及 基板,其具有第一區域及第二區域,該第一區域至少 支撑D玄第一 LESD且該第二區域至少支樓該第二[ΜΙ), 且該第一區域具有不同於該第二區域之第二區域高度之 第一區域高度。 2. 如請求項1之照明系統,其中該第一區域高度不同於該 第二區域高度,以使得該第一 LESD之該發射表面及該第 二LESD之該發射表面處於距該光學採集系統之該光進入 主表面大體上相同之距離處。 3·如請求項1之照明系統,其中該第一區域高度不同於該 第二區域高度,以使得該第一 LESD之該發射表面及第二 LESD之該發射表面處於距該光學採集系統之該光發射主 表面大體上相同之光程長度處。 4. 如請求項i之照明系統,其中該光學採集系統包含透 鏡。 5. 如請求項1之照明系統,其中該光學採集系統包含積分 162438.doc 201242072 桿。 6. 如請求们之照明系統,&中該基板包含傳導層,該傳 導層於該第-區域處具有第一傳導層高度且於該第二區 域處具有第二傳導層高度’該第一傳導層高度不同於該 第二傳導層高度。 7. 如5月求項i之照日月系统,其中該基板包含介電層,該介 電層係經設計以於該第—區域處具有第—介電層高度且 於該第二區域處具有第二介電層高纟’該第一介電層高 度不同於該第二介電層高度。 8. 如凊求項i之照明系統,其中該發光半導體裝置係申間 發光半導體構造。 9·如β求項i之照明系統’其中該發光半導體裝置係經囊 封之發光半導體構造。 10.如請求们之照明系統,其中該第一區域及該第二區域 中之至少一者係凹入區域。 U·如請求項10之照明系統,其中該凹入區域係腔。 12· 士》月求項i i之照明系統,其中該腔填充有麟光體填充之 囊封劑》 13. —種照明總成,其包含: 第一發光半導體裝置(LESD),其具有第一高度, 第二發光半導體裝置(LESD),其具有不同於該第一高 度之第二高度,及 "電層,其具有第一區域及第二區域,該第一區域至 少支撐該第一 LESD且該第二區域至少支禮該第二 I62438.doc 201242072 LESD,且該第一區域具有不同於該第二區域之第二區域 尚度之第一區域高度,以使得該第_ LESD及該第二 LESD具有大體上平面發射表面。 14. 如請求項13之照明總成,其進一步包含: 光學採集系統,其面向該第一LESD及該第二[ESD。 15. 如請求項14之照明總成,其中該光學採集系統包含透 鏡。 16. 如請求項14之照明總成,其中該光學採集系統包含積分 桿。 17. 如請求項13之照明總成,其進一步包含: 在該介電層之頂部上之傳導層,該傳導層於該第一區 域處具有第一傳導層高度且於該第二區域處具有第二傳 導層高度,且該第一傳導層高度不同於該第二傳導層高 度。 18. 如請求項丨3之照明總成’其中該發光半導體裝置係中間 發光半導體構造。 19·如請求項13之照明總成,其中該發光半導體裝置係經囊 封之發光半導體構造。 20. 如請求項13之照明總成,其中該介電層包含聚醯亞胺核 心及在該核心之一側上之熱塑性聚醯亞胺層。 21. 如請求項13之照明總成,其中該第一區域及該第二區域 中之至少一者係凹入區域。 22. 如請求項21之照明總成,其中該凹入區域係腔。 23. 如請求項22之照明總成,其中該腔填充有磷光體填充之 162438.doc 201242072 囊封劑》 24. —種方法,其包含: 提供光學採集系統; 提供具有第一及第二主表面以及具有第一高度之第 區域之基板; 在該第一主表面上產生至少一個凹入之第二區域,以 使得該第二區域具有小於該第一高度之第二高度;及 將至少一個發光半導體安置於面向該光學^采^系統之 該等第一及第二區域中之每一者上。 25_如請求項24之方法,其中該基板包含介電層。 2 6 ·如凊求項2 5之方法,其中马·其拓彳佳 . 丹Τ»哀基板進一步包含在該介電層 之頂部上之傳導層。 27. 如請求項26之方法’其中該傳導層包含電路 28. —種物件,其包含: 挽性介電層,其具有第一及第二主表面,該第一主表 面具有至少—個具有第-高度之第-區域及至少一個且 有不同於該第—高度之第二高度之第二區域,其中該第 一區域至少支樓—個第—發光半導體裝置(LESD)且該第 f區域至少支撐-個第二發光半導體裝置(LESD);及在 °亥”電層之°亥第-主表面上之第-傳導層。 29. 如請求項28之物件, 30. 如請求項28之物件, 表面移除材料來形$ 31. 如請求項28之物件, 其中該第一高度大於該第二高度。 其中該第二高度係藉由自該第一主 〇 其中該第二LESD生成的熱多於該第 I62438.doc 201242072 一 LESD生成的熱。 32. 如請求項28之物件,其中該第一高度與第二高度間之差 異與該等第一及第二區域中該等LESD之間距的比率係約 1:1 至約 1:10。 33. 如請求項28之物件,其中該第一區域係為凹陷之凹入區 域且3亥第二區域係為腔之凹入區域。 34. 如請求項28之物件,其中該介電層之該第二主表面上面 具有傳導層。 3 5· 種方法,其包含: 提供具有第一及第二主表面以及具有第一高度之第一 區域之撓性介電層; 在該第一主表面上產生至少一個凹入之第二區域,該 第二區域具有小於該第一高度之第二高度; 在该介電層之該第一主表面上產生傳導層;及 將至少一個LES安置於該等第一及第二區域中之 者上。 36. 37. 如吻求項35之方法,其中在該介電層之該第一主表面上 之該傳導層包含電路。 士明求項35之方法,其進一步包含在該介電層之該第二 主表面上產生傳導層。 162438.doc201242072 VII. Patent application scope: 1. An illumination system comprising: an optical acquisition system having light entering a main surface and a light emitting surface opposite to the light entering the main surface, a first light emitting semiconductor device (LESD) having a first height, the light of the first LESD facing the optical acquisition system entering the main surface, a second light emitting semiconductor device (LESD) having a first twist different from the first height, the first LESD facing the optical The light of the acquisition system enters the main surface, and the substrate has a first area and a second area, the first area supporting at least a D first first LESD and the second area at least a second floor of the branch, and the second area The first region has a first region height that is different from the height of the second region of the second region. 2. The illumination system of claim 1, wherein the first region height is different from the second region height such that the emission surface of the first LESD and the emission surface of the second LESD are located from the optical acquisition system The light enters the main surface at substantially the same distance. 3. The illumination system of claim 1, wherein the first region height is different from the second region height such that the emission surface of the first LESD and the emission surface of the second LESD are located from the optical collection system The light emitting main surface is substantially the same length of the optical path. 4. The illumination system of claim i, wherein the optical acquisition system comprises a lens. 5. The illumination system of claim 1, wherein the optical acquisition system comprises an integral 162438.doc 201242072 pole. 6. The illumination system of the requester, wherein the substrate comprises a conductive layer having a first conductive layer height at the first region and a second conductive layer height at the second region. The height of the conductive layer is different from the height of the second conductive layer. 7. The solar system of claim i, wherein the substrate comprises a dielectric layer, the dielectric layer being designed to have a first dielectric layer height at the first region and at the second region Having a second dielectric layer high 纟 'the first dielectric layer height is different from the second dielectric layer height. 8. The illumination system of claim i, wherein the light emitting semiconductor device is an inter-semiconductor semiconductor structure. 9. An illumination system as in the item i, wherein the light-emitting semiconductor device is encapsulated by a light-emitting semiconductor. 10. A lighting system as claimed, wherein at least one of the first region and the second region is a recessed region. U. The illumination system of claim 10, wherein the recessed region is a cavity. 12. The illumination system of the item ii, wherein the cavity is filled with a lining-filled encapsulant. 13. A lighting assembly comprising: a first illuminating semiconductor device (LESD) having a first a second light emitting semiconductor device (LESD) having a second height different from the first height, and an electrical layer having a first region and a second region, the first region supporting at least the first LESD And the second area at least the second I62438.doc 201242072 LESD, and the first area has a first area height different from the second area of the second area, so that the first LESD and the first The two LESDs have a substantially planar emitting surface. 14. The illumination assembly of claim 13, further comprising: an optical acquisition system facing the first LESD and the second [ESD. 15. The illumination assembly of claim 14, wherein the optical acquisition system comprises a lens. 16. The illumination assembly of claim 14, wherein the optical acquisition system comprises an integrating rod. 17. The illumination assembly of claim 13, further comprising: a conductive layer on top of the dielectric layer, the conductive layer having a first conductive layer height at the first region and having a second region at the second region The second conductive layer is of a height, and the first conductive layer height is different from the second conductive layer height. 18. The illumination assembly of claim 3, wherein the light emitting semiconductor device is an intermediate light emitting semiconductor structure. 19. The illumination assembly of claim 13, wherein the light emitting semiconductor device is an encapsulated light emitting semiconductor construction. 20. The illumination assembly of claim 13, wherein the dielectric layer comprises a polyimide core and a thermoplastic polyimide layer on one side of the core. 21. The illumination assembly of claim 13, wherein at least one of the first region and the second region is a recessed region. 22. The illumination assembly of claim 21, wherein the recessed region is a lumen. 23. The illumination assembly of claim 22, wherein the cavity is filled with a phosphor filled 162438.doc 201242072 encapsulant. 24. A method comprising: providing an optical acquisition system; providing first and second mains a surface and a substrate having a first region of a first height; generating at least one recessed second region on the first major surface such that the second region has a second height less than the first height; and at least one A light emitting semiconductor is disposed on each of the first and second regions facing the optical system. The method of claim 24, wherein the substrate comprises a dielectric layer. 2 6 The method of claim 2, wherein the substrate is further provided with a conductive layer on top of the dielectric layer. 27. The method of claim 26, wherein the conductive layer comprises circuitry 28. The article comprises: a drawable dielectric layer having first and second major surfaces, the first major surface having at least one a first region of the first height and a second region having at least one second height different from the first height, wherein the first region is at least a branch-first light-emitting semiconductor device (LESD) and the f-region Supporting at least one second light emitting semiconductor device (LESD); and a first conductive layer on the first surface of the upper surface of the electrical layer. 29. The object of claim 28, 30. The object, the surface removal material is shaped to be $31. The object of claim 28, wherein the first height is greater than the second height, wherein the second height is generated by the first LED from the second LESD More than the heat generated by the LESD of the first I62438.doc 201242072. 32. The object of claim 28, wherein the difference between the first height and the second height is the same as the LESD in the first and second regions The ratio of the spacing is from about 1:1 to about 1:10. 33. An object, wherein the first region is a recessed recessed region and the third region is a recessed region of the cavity. 34. The object of claim 28, wherein the second major surface of the dielectric layer has a conductive layer. The method of: providing a flexible dielectric layer having first and second major surfaces and a first region having a first height; generating at least one recess on the first major surface a second region having a second height less than the first height; a conductive layer being formed on the first major surface of the dielectric layer; and at least one LES disposed in the first and second regions 36. 37. The method of claim 35, wherein the conductive layer on the first major surface of the dielectric layer comprises circuitry. The method of claim 35, further comprising A conductive layer is formed on the second major surface of the dielectric layer. 162438.doc
TW101105328A 2011-02-18 2012-02-17 Light emitting semiconductor device having multi-level substrate TW201242072A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161444348P 2011-02-18 2011-02-18
US201161577733P 2011-12-20 2011-12-20

Publications (1)

Publication Number Publication Date
TW201242072A true TW201242072A (en) 2012-10-16

Family

ID=46673145

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101105328A TW201242072A (en) 2011-02-18 2012-02-17 Light emitting semiconductor device having multi-level substrate

Country Status (2)

Country Link
TW (1) TW201242072A (en)
WO (1) WO2012112666A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485844B (en) * 2013-05-02 2015-05-21 Lextar Electronics Corp Light emitting diode module

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909063B2 (en) 2010-11-03 2018-03-06 3M Innovative Properties Company Polymer etchant and method of using same
WO2012061183A2 (en) 2010-11-03 2012-05-10 3M Innovative Properties Company Flexible led device for thermal management and method of making
KR20130143061A (en) 2010-11-03 2013-12-30 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Flexible led device with wire bond free die
US9716061B2 (en) 2011-02-18 2017-07-25 3M Innovative Properties Company Flexible light emitting semiconductor device
US9236547B2 (en) 2011-08-17 2016-01-12 3M Innovative Properties Company Two part flexible light emitting semiconductor device
TW201344976A (en) * 2012-04-23 2013-11-01 You-Tian Wang Manufacturing method of LED circuit board containing bowl-shape concave cup
KR101997251B1 (en) * 2012-12-10 2019-10-01 엘지이노텍 주식회사 Light emitting device array module and lighting system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598767B2 (en) * 2003-07-30 2010-12-15 パナソニック株式会社 Semiconductor light emitting device, light emitting module, and lighting device
US20050116235A1 (en) * 2003-12-02 2005-06-02 Schultz John C. Illumination assembly
US7806560B2 (en) * 2007-01-31 2010-10-05 3M Innovative Properties Company LED illumination assembly with compliant foil construction
US7560785B2 (en) * 2007-04-27 2009-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having multiple fin heights

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485844B (en) * 2013-05-02 2015-05-21 Lextar Electronics Corp Light emitting diode module

Also Published As

Publication number Publication date
WO2012112666A3 (en) 2012-11-22
WO2012112666A2 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
US9674938B2 (en) Flexible LED device for thermal management
KR101931395B1 (en) Flexible light emitting semiconductor device
TW201242072A (en) Light emitting semiconductor device having multi-level substrate
US9482416B2 (en) Flexible light emitting semiconductor device having a three dimensional structure
US9564568B2 (en) Flexible LED device with wire bond free die
US8350283B2 (en) Semiconductor light emitting device and method for manufacturing same
KR101191488B1 (en) Optical semiconductor device and method for manufacturing same
TWI378554B (en) Optoelectronic headlight, its manufacturing method and light-emitting diode chip
WO2012061184A1 (en) Flexible led device and method of making
US8569787B2 (en) Light source apparatus using semiconductor light emitting device
TW201242073A (en) Flexible light emitting semiconductor device having thin dielectric substrate
TW201316574A (en) Two part flexible light emitting semiconductor device
JP2011035082A (en) Optical semiconductor device, and method for manufacturing the same
US20130240918A1 (en) Electrolytically coated optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
US10692843B2 (en) Flexible light emitting semiconductor device with large area conduit
JP5338543B2 (en) Optical semiconductor device and manufacturing method thereof
TW201438297A (en) Light emitting semiconductor device and substrate thereof
JP5796649B2 (en) Optical semiconductor device and manufacturing method thereof
JP2015133524A (en) Optical semiconductor device and manufacturing method of the same