201240486 、六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種熱致發聲裝置,尤其涉及一種基於石墨 烯的熱致發聲裝置及應用該熱致發聲裝置的電子裝置。 ^ [0002] 【先前技#ί】 熱致發聲裝置一般由信號輸入裝置和發聲元件組成,通 過信號輸入裝置輸入信號到該發聲元件,進而發出聲音 。熱致發聲裝置為發聲裝置中的一種,其為基於熱聲效 〇 〇 應的一種熱致發聲裝置,請參見文獻“The Thermo-phone”,EDWARD C. WENTE,Vol.XIX,No. 4, p333-345及 “On Some Thermal Effects of Elec-tric Currents”,William Henry Preece, Proceedings of the Royal Society of London, Vol. 30,p408-41 1 (1879-1881 )。其揭示一種熱致發 聲裝置,該熱致發聲裝置通過向一導體中通入交流電來 實現發聲。該導體具有較小的熱容(Heat capacity) ,較薄的厚度,且可將其内部產生的熱量迅速傳導給周 圍氣體介質的特點。當交流電通過導體時,隨交流電電 \ 流強度的變化,導體迅速升降溫,而和周圍氣體介質迅 速發生熱交換,促使周圍氣體介質分子運動,氣體介質 密度隨之發生變化,進而發出聲波。 [0003] 另外,H.D. Arnold 和 I.B. Crandall 在文獻 “The thermophone as a precision source of sound” ,Phys. Rev. 10,p22-38 (1917)中揭示了一種簡單 的熱致發聲裝置,其採用一鉑片作熱致發聲元件。受材 100112575 表單編號A0101 第3頁/共58頁 1002020944-0 201240486 料本身的限制,採用該鉑片作熱致發聲元件的熱致發聲 裝置時,其所產生的發聲頻率最高僅可達4千赫茲,且發 聲效率較低。 【發明内容】 [0004] 有鑒於此,確有必要提供一種發聲頻率高且發聲效果好 的熱致發聲裝置。 [0005] —種熱致發聲裝置,其包括一致熱裝置以及一熱致發聲 元件,該致熱裝置用於向該熱致發聲元件提供能量使該 熱致發聲元件產生熱量;其中,所述熱致發聲元件包括 一石墨烯膜。 [0006] 與先前技術相比較,本發明所提供的熱致發聲裝置具有 以下優點:其一,由於所述熱致發聲裝置中的熱致發聲 元件無需磁鐵等其他複雜結構,故該熱致發聲裝置的結 構較為簡單,有利於降低該熱致發聲裝置的成本。其三 ,由於石墨稀膜的厚度較薄,熱容較低,因此,其發聲 頻率較高且具有較高的發聲效率。 【實施方式】 [0007] 以下將結合附圖詳細說明本發明實施例提供的熱致發聲 裝置。以下各實施例中將相同的元部件使用相同的標號 表示。本發明實施例中所涉及的示意圖係為了使本實施 例得到更好的說明,對實施例本身並沒有限制作用。 [0008] 請參閱圖1及圖2,本發明第一實施例提供一種熱致發聲 裝置10,該熱致發聲裝置10包括一熱致發聲元件102及一 致熱裝置104。 100112575 表單編號A0101 第4頁/共58頁 1002020944-0 201240486 ’ ' [0009] 所述致熱裝置104用於向熱致發聲元件102提供能量,使 熱致發聲元件102產生熱量,發出聲音。本實施例中,致 熱裝置104向熱致發聲元件提供電能,使熱致發聲元件 102在焦耳熱的作用下產生熱量。該致熱裝置104包括一 第一電極104a及一第二電極104b。所述第一電極104a和 第二電極104b分別與該熱致發聲元件102電連接。本實施 例中,第一電極104a和第二電極104b分別設置於熱致發 聲元件102的表面,並與該熱致發聲元件102的兩個相對 的邊齊平。 Ο [0010] ο 該致熱裝置104中的第一電極104a和第二電極104b用於 向熱致發聲元件102提供電信號,使該熱致發聲元件102 產生焦耳熱,溫度升高,從而發出聲音。所述第一電極 104a與第二電極104b可為層狀(絲狀或帶狀)、棒狀、 條狀、塊狀或其他形狀,其橫截面的形狀可為圓型、方 型、梯形、三角形、多邊形或其他不規則形狀。該第一 電極104a與第二電極104b可通過黏結劑黏結的方式固定 於熱致發聲元件102的表面。而為防止熱致發聲元件102 的熱量被第一電極104a與第二電極104b過多吸收而影響 發聲效果,該第一電極104a及第二電極104b與熱致發聲 元件102的接觸面積較小為好,因此,該第一電極104a和 第二電極104b的形狀優選為絲狀或帶狀。該第一電極 104a與第二電極104b材料可選擇為金屬、導電膠、導電 漿料、銦錫氧化物(ITO)或奈米碳管等。 當第一電極104a和第二電極104b具有一定強度時,第一 電極104a和第二電極104b可以起到支撐該熱致發聲元件 100112575 表單編號A0101 第5頁/共58頁 1002020944-0 [0011] 201240486 102的作用。如將第—細叫第:咖⑽的兩端 分別固定在一個框架上,熱致發聲元件102設置在第一電 極ma和第二電極祕上,熱致發聲元件ι〇2通過第一 電極104a和第二電極〗〇4b懸空設置。 [0012] 本實施例中,第—電極1G4a與第二電極叫祕利用銀衆 通過印刷方式如絲網印刷形成於熱致發聲元件⑽ 狀銀電極。 “系 [0013] [0014] 100112575 該熱致發聲裝置1〇進-步包括-第-電極引線(圖未示 )及—第二電極引線(圖未示)’該第-電極引線與第 -電極引線分別與熱致發聲裝置1〇中的第一電極心和 第二電極1〇4b電連接,使該第一電極ma與該第—電極 引線電連接,使該第二電極1041)與該第二電極引線電連 接。所述熱致發聲裝置10通過該第一電極引線和第二電 極引線與外部電路電連接。 所述熱致發聲元件102包括一石墨稀膜,所述石墨稀膜為 一個二維結構的具有-定面積的膜結構。該石墨稀膜的 厚度為G.34奈米至10奈米。該石墨_包括至少—層石 墨婦。當石墨烯膜包括多層石墨稀時,該多層石墨歸曰可 以相互搭接形成石墨稀膜’以使石墨稀膜具有更大的面 積;或者該多層石墨烯可以相互疊加形成石墨稀膜,以 使石墨稀膜的厚度增加。優選地,該石墨_為_單層 石墨烯。料石墨烯為由減個碳原子通細2鍵雜化構 成的單層的二維平面結構。該石墨稀的厚度可以為單層 碳原子的厚度。石墨烯膜具有較高的透紐,單層的石 墨表單稀編Γ絲可料聰‘7%,因此m墨稀膜作為 表單編號A_ S 6頁/共58頁 100202094 201240486 Ο [0015]201240486, VI. Description of the Invention: [Technical Field] The present invention relates to a thermo-acoustic device, and more particularly to a graphene-based thermoacoustic device and an electronic device using the same. ^ [0002] [Previous Techniques] The thermo-acoustic device is generally composed of a signal input device and a sounding element, and a signal is input to the sound-emitting element through the signal input device to emit sound. The thermoacoustic device is one of the sounding devices, which is a thermoacoustic device based on thermoacoustic response, see the document "The Thermo-phone", EDWARD C. WENTE, Vol. XIX, No. 4, p333 -345 and "On Some Thermal Effects of Elec-tric Currents", William Henry Preece, Proceedings of the Royal Society of London, Vol. 30, p408-41 1 (1879-1881). It discloses a thermo-acoustic device that achieves sound by introducing an alternating current into a conductor. The conductor has a small heat capacity, a thin thickness, and the ability to rapidly transfer heat generated inside it to the surrounding gaseous medium. When the alternating current passes through the conductor, the conductor rapidly rises and falls with the change of the alternating current, and the heat exchange with the surrounding gas medium rapidly causes the surrounding gas medium to move, and the density of the gas medium changes accordingly, thereby generating sound waves. [0003] In addition, HD Arnold and IB Crandall disclose a simple thermoacoustic device using a platinum in the document "The thermophone as a precision source of sound", Phys. Rev. 10, p22-38 (1917). The sheet is used as a thermal sounding element. Receptaments 100112575 Form No. A0101 Page 3 / Total 58 pages 1002020944-0 201240486 The material itself is limited to the use of the platinum sheet as a thermo-acoustic component of the thermoacoustic component, which produces a frequency of up to 4,000 Hertz, and the vocal efficiency is low. SUMMARY OF THE INVENTION [0004] In view of the above, it is indeed necessary to provide a thermo-acoustic sounding device having a high sounding frequency and good sounding effect. [0005] A thermo-acoustic device comprising a uniform thermal device and a thermo-acoustic device for providing energy to the thermo-acoustic component to generate heat to the thermo-acoustic component; wherein the thermal The sound emitting element comprises a graphene film. [0006] Compared with the prior art, the thermoacoustic device provided by the present invention has the following advantages: First, since the thermo-acoustic element in the thermo-acoustic device does not require other complicated structures such as magnets, the thermo-acoustic sound is generated. The structure of the device is relatively simple, which is advantageous for reducing the cost of the thermo-acoustic device. Third, since the thin film of graphite is thinner and has a lower heat capacity, it has a higher sounding frequency and a higher sounding efficiency. [Embodiment] Hereinafter, a thermoacoustic sounding device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The same components are denoted by the same reference numerals in the following embodiments. The schematic diagrams involved in the embodiments of the present invention are not intended to limit the embodiments themselves in order to better illustrate the embodiments. Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a thermo-acoustic device 10 that includes a thermo-acoustic component 102 and a pyrogenic device 104. 100112575 Form No. A0101 Page 4 of 58 1002020944-0 201240486 ’ ' [0009] The heating device 104 is used to supply energy to the thermo-acoustic element 102, causing the thermo-acoustic element 102 to generate heat and emit sound. In this embodiment, the heating device 104 provides electrical energy to the thermally audible elements, causing the thermally audible elements 102 to generate heat under the action of Joule heat. The heating device 104 includes a first electrode 104a and a second electrode 104b. The first electrode 104a and the second electrode 104b are electrically connected to the thermo-acoustic element 102, respectively. In the present embodiment, the first electrode 104a and the second electrode 104b are respectively disposed on the surface of the thermoacoustic element 102 and are flush with the opposite sides of the thermoacoustic element 102.第一 [0010] The first electrode 104a and the second electrode 104b in the heating device 104 are used to provide an electrical signal to the thermo-acoustic element 102, causing the thermo-acoustic element 102 to generate Joule heat, and the temperature is raised to emit sound. The first electrode 104a and the second electrode 104b may be in the form of a layer (filament or strip), a rod, a strip, a block or other shapes, and the cross section may have a circular shape, a square shape, a trapezoidal shape, or the like. Triangle, polygon, or other irregular shape. The first electrode 104a and the second electrode 104b may be fixed to the surface of the thermoacoustic element 102 by adhesion of a bonding agent. In order to prevent the heat of the thermo-acoustic element 102 from being excessively absorbed by the first electrode 104a and the second electrode 104b to affect the sound-sounding effect, the contact area between the first electrode 104a and the second electrode 104b and the thermo-acoustic element 102 is small. Therefore, the shape of the first electrode 104a and the second electrode 104b is preferably a filament shape or a ribbon shape. The material of the first electrode 104a and the second electrode 104b may be selected from a metal, a conductive paste, a conductive paste, an indium tin oxide (ITO) or a carbon nanotube. When the first electrode 104a and the second electrode 104b have a certain intensity, the first electrode 104a and the second electrode 104b can support the thermoacoustic element 100112575 Form No. A0101 Page 5 / Total 58 Page 1002020944-0 [0011] The role of 201240486 102. If the two ends of the first caller: coffee (10) are respectively fixed on one frame, the thermo-acoustic element 102 is disposed on the first electrode ma and the second electrode, and the thermo-acoustic element ι〇2 passes through the first electrode 104a. And the second electrode 〗 〖4b is suspended. [0012] In the present embodiment, the first electrode 1G4a and the second electrode are formed on the thermo-acoustic element (10) silver electrode by a printing method such as screen printing. [0013] [0014] 100112575 The thermo-acoustic device 1 includes a --electrode lead (not shown) and a second electrode lead (not shown) - the first electrode lead and the first - The electrode lead is electrically connected to the first electrode core and the second electrode 1〇4b of the thermo-acoustic device 1〇, respectively, such that the first electrode ma is electrically connected to the first electrode lead, and the second electrode 1041) The second electrode lead is electrically connected. The thermo-acoustic device 10 is electrically connected to an external circuit through the first electrode lead and the second electrode lead. The thermo-acoustic element 102 includes a graphite thin film, and the graphite thin film is a two-dimensional structure having a constant-area film structure. The thickness of the graphite thin film is from G.34 nm to 10 nm. The graphite_ includes at least a layer of graphite. When the graphene film comprises a plurality of layers of graphite, The multi-layered graphite annihilation may be overlapped with each other to form a graphite thin film 'to make the graphite thin film have a larger area; or the multi-layered graphene may be superposed on each other to form a graphite thin film to increase the thickness of the graphite thin film. Preferably, The graphite _ is _ single layer graphene. The ruthene is a two-dimensional planar structure composed of a single carbon double-bonded hybrid with a carbon atom. The thickness of the graphite may be a single layer of carbon atoms. The graphene film has a high permeability, a single layer. The graphite form is thinly woven and can be '7%, so the m ink film is used as the form number A_S 6 pages/total 58 pages 100202094 201240486 Ο [0015]
[0016] 熱致發聲元件的熱致發聲裝置可以為一透明的熱致發聲 裝置。由於石墨烯膜的厚度非常薄,因此具有較低的熱 容,其熱容可以小於2χ10_3焦耳每平方厘米開爾文,單 層石墨烯的熱容可以小於5. 57x1 (Γ4焦耳每平方厘米開爾 文。所述石墨烯膜為一自支撐結構,所述自支撐為石墨 烯膜不需要大面積的載體支撐,而只要相對兩邊提供支 撐力即能整體上懸空而保持自身膜狀狀態,即將該石墨 烯膜置於(或固定於)間隔一固定距離設置的兩個支撐 體上時,位於兩個支撐體之間的石墨烯膜能夠懸空保持 自身膜狀狀態。實驗表明,石墨烯並非一個百分之百的 光潔平整的二維膜,而係有大量的微觀起伏在單層石墨 烯的表面上,單層石墨烯正係借助這種方式來維持自身 的自支撐性及穩定性。 所述石墨烯膜的致備方法可以為化學氣相沉積法、LB法 或採用膠帶從定向石墨上撕取的方法。本實施例中,採 用化學氣相沉積法製備石墨烯膜。該石墨烯膜採用化學 氣相沉積法生長在一個金屬膜基底的表面。 所述熱致發聲元件102的工作介質不限,只需滿足其電阻 率大於所述熱致發聲元件102的電阻率即可。所述介質包 括氣態介質或液態介質。所述氣態介質可為空氣。所述 液態介質包括非電解質溶液、水及有機溶劑等中的一種 或多種。所述液態介質的電阻率大於0. 01歐姆·米,優選 地,所述液態介質為純淨水。純淨水的電導率可達到1. 5 xlO7歐姆·米,且其單位面積熱容也較大,可以傳導出熱 致發聲元件102產生的熱量,從而可對熱致發聲元件102 100112575 表單編號A0101 第7頁/共58頁 1002020944-0 201240486 進行散熱。本實施例中,所述介質為空氣。 ‘ [0017] 本實施例的熱致發聲裝置10可通過第一電極104a及第二 電極104b與外部電路電連接,而由此接入外部信號發聲 。由於熱致發聲元件102包括石墨烯膜,石墨烯膜具有較 小的單位面積熱容以及較大的散熱面積,在致熱裝置104 - 向熱致發聲元件102輸入信號後,所述熱致發聲元件102 可迅速升降溫,產生週期性的溫度變化,並和周圍介質 快速進行熱交換,使周圍介質的密度週期性地發生改變 ,進而發出聲音。簡而言之,本發明實施例的熱致發聲元 件102係藉由“電-熱-聲”的轉換來達到發聲。另外,利 用石墨烯膜的高透光度,該熱致發聲裝置10呈一透明熱 致發聲裝置。 [0018] 本實施例提供的熱致發聲裝置10的聲壓級大於50分貝每 瓦聲壓級,發聲頻率範圍為1赫茲至10萬赫茲(即 ΙΗζ-lOOkHz)。所述熱致發聲裝置在500赫茲-4萬赫茲 頻率範圍内的失真度可小於3%。 [0019] 請參閱圖3及圖4,本發明第二實施例提供一種熱致發聲 裝置20。本實施例所提供的熱致發聲裝置20與第一實施 例提供的熱致發聲裝置10的不同之處在於,本實施例中 的該熱致發聲裝置20進一步包括一基底208。所述熱致發 聲元件102設置於該基底208的表面。所述第一電極104a 和第二電極104b設置於該熱致發聲元件102的表面。該基 底208的形狀、尺寸及厚度均不限,該基底208的表面可 為平面或曲面。該基底208的材料不限,可以為具有一定 強度的硬性材料或柔性材料。優選地,該基底208的材料 100112575 表單編號A0101 第8頁/共58頁 1002020944-0 201240486 的電阻應大於該熱致發聲元件1 0 2的電阻,且具有較好的 絕熱和耐熱性能,從而防止該熱致發聲元件1 〇 2產生的熱 量過多的被該基底208吸收。具體地’所述絕緣材料可以 為戚璃、陶瓷、石英、金剛石、塑朦、樹脂或木質材料 〇 [0020] Ο 本實施例中,所述基底208包括至少一個孔208a。該孔 2〇8a的深度小於或等於所述基底208的厚度。當孔2〇8a 的深度小於基底208的厚度時,孔208a為一盲孔。當孔 2〇8a的深度等於基底208的厚度時,孔208a為一通孔。 所述孔208a的橫截面的形狀不限,可以為圓形、正方形 、長方形、三角形,多邊形、工字形、或者不規則圖形 。當該基底208包括複數個孔208a時,該複數個孔208a <均勻分佈、以一定規律分佈或隨機分佈於該基底208。 每相鄰兩個孔208a的間距不限,優選為100微米至3毫米 。本實施例中,所述基底包括複數個孔208a,該孔208a 為通孔,其橫截面為圓柱形,其均勻分佈於基底208。 Ο [0021] 該熱致發聲元件102設置於基底208的表面,並相對於基 底208上的孔208a懸空設置。本實施例中,由於該熱致發 聲元件102位於孔208a上方的部分懸空設置,該部分的熱 致發聲元件102兩面均與周圍介質接觸,增加了熱致發聲 元件102與周圍氣體或液體介質接觸的面積,並且,由於 該熱致發聲元件102另一部分與該基底208的表面直接接 觸,並通過該基底208支撐,故該熱致發聲元件1〇2不易 被破壞。 [0022] 請參見圖5,本發明第三實施例提供一種熱致發聲裝置30 100112575 表單編號A0101 第9頁/共58頁 1002020944-0 201240486 。本實施例所提供的熱致發聲裝置30與第二實施例提供 的熱致發聲裝置20的區別在於,本實施例中,該熱致發 聲裝置30的基底308包括至少一個槽308a,該槽308a設 置於基底308的一個表面308b。槽308a的深度小於基底 308的厚度。所述槽3 08a可以為一盲槽或一通槽。當槽 308a為一盲槽時,槽308a的長度小於基底308的兩個相 對的側面之間的距離。當槽308a為通槽時,槽308a的長 的等於基底308的兩個相對的側面之間的距離。所述槽 308a使該表面308b形成一凹凸不平的表面。該槽308a的 深度小於所述基底308的厚度,該槽308a的長度不限。該 槽308a在該基底308的表面308b上的形狀可為長方形、 弓形、多邊形、扁圓形或其他不規則形狀。請參閱圖5, 本實施例中,基底308上設置有複數個槽308a,該槽 308a為盲槽,該槽308a在基底308的表面308b上的形狀 為長方形。請參見圖6,該槽308a在其長度方向上的橫截 面為長方形,即,該槽308a為一長方體結構。請參閱圖7 ,該槽308a在其長度方向上的橫截面為三角形,即,該 槽308a為一三棱柱結構。當該基底308的表面308b具有 複數個盲槽時,該複數個盲槽可均勻分佈、以一定規律 分佈或隨機分佈於該基底308的表面3 08b。請參閱圖7, 相鄰兩個盲槽的槽間距可接近於0,即所述基底308與該 熱致發聲元件102接觸的區域為複數個線。可以理解,在 其他實施例中,通過改變該槽308a的形狀,該熱致發聲 元件102與該基底308接觸的區域為複數個點,即該熱致 發聲元件102與該基底308之間可為點接觸、線接觸或面 接觸。 100112575 表單編號A0101 第10頁/共58頁 1002020944-0 201240486 ' '[0023] 本實施例的熱致發聲装置30中,由於所述基底308包括至 少一槽308a ’該槽308a可以反射所述熱致發聲元件102 發出的聲波,從而增強所述熱致發聲裝置30在熱致發聲 元件102—側的發聲強度。當該相鄰的槽308a之間的距離 接近於0時,該基底308既能支撐該熱致發聲元件102,又 能使該熱致發聲元件1〇2具有與周圍介質接觸的最大表面 積。 [0024] Ο 可以理解’當該槽3〇8a的深度達到某一值時,通過該槽 308a反射的聲波會與原聲波產生疊加,從而引起相消干 涉,影響熱致發聲元件102的發聲效果。為避免這一現象 ,優選地,該槽3〇8a的深度小於等於丨〇毫米。另外,當 該槽308a的深度過小’通過基底308懸空設置的熱致發聲 元件102與基底308距離過近,不利於該熱致發聲元件 102的散熱。因此’優選地,該槽308a的深度大於等於 10微米。 [0025] Ο 請參見圖8及圖9 ’本發明第四實施例提供一種熱致發聲 裝置40。本實施例所提供的熱致發聲裝置40與第二實施 例提供的熱致發聲裝置20的區別在於,本實施例中,該 熱致發聲裝置的基底408為一網狀結構。所述基底408 包括複數個第一線狀結構408a及複數個第二線狀結構 408b。所述之線狀結構也可以為帶狀或者條狀的結構。 該複數個第一線狀結構408a與該複數個第二線狀結構 4〇8b相互交叉設置形成一網狀結構的基底408。所述複數 個第一線狀結構408a可以相互平行,也可以不相互平行 ,所述複數個第二線狀結構408b可以相互平行,也可以 100112575 表單編號A0101 第11頁/共58頁 1002020944-0 201240486 不相互平行,當複數個第一線狀結構4〇8a相互平行,且 複數個第二線狀結構408b相互平行時,具體地,所述複 數個第一線狀結構4 0 8 a的軸向均沿第一方向L1延伸,相 鄰的第一線狀結構408a之間的距離可以相等也可以不等 。相鄰的兩個第一線狀結構408a之間的距離不限,優選 地,其間距小於等於1厘米。本實施例中,該複數個第一 線狀結構408a之間等間距間隔設置,相鄰的兩個第一線 狀結構408a之間的距離為2厘米。所述複數個第二線狀結 構408b彼此間隔設置且其軸向均基本沿第二方向L2延伸 ,相鄰的第二線狀結構4〇8b之間的距離可以相等也可以 不等。相鄰的兩個第二線狀結構408b之間的距離不限, 優選地,其間距小於等於1厘米。第一方向L1與第二方向 L2形成一夾角α,α大於0度小於等於90度。本實施例中 ,第一方向L1和第二方向L2之間的夾角為90°。所述複數 個第一線狀結構408a與該複數個第二線狀結構408b交叉 設置的方式不限。本實施例中,第一線狀結構408a和第 二線狀結構408b相互編織形成一網狀結構。在另一實施 例中,所述複數個間隔設置的第二線狀結構408b接觸設 置於所述複數個第一線狀結構408a的同一側。該複數個 第二線狀結構408b與該複數個第一線狀結構408a的接觸 部可通過黏結劑固定設置,也可以通過焊接的方式固定 設置◊當第一線狀結構408a的熔點較低時,也可以通過 熱壓的方式將第二線狀結構408b與第一線狀結構408a固 定設置。 [0026] 所述基底4 0 8具有複數個網孔4 0 8 c。該複數個網孔4 0 8 c 100112575 表單編號A0101 第12頁/共58頁 1002020944-0 201240486 Ο [0027] 由相互交叉設置的所述複數個第一線狀結構408a以及複 數個第二線狀結構408b圍成。所述網孔408c為四邊形。 根據該複數個第一線狀結構408a和該複數個第二線狀結 構408b的交叉設置的角度不同,網孔408c可以為正方形 、長方形或菱形。網孔408c的大小由相鄰的兩個第一線 狀結構408a之間的距離和相鄰的兩個第二線狀結構408b 之間的距離決定。本實施例中,由於所述複數個第一線 狀結構408a與複數個第二線狀結構408b分別等間距平行 設置,且該複數個第一線狀結構408a與該複數個第二線 狀結構408b相互垂直,所以網孔408c為正方形,其邊長 為2厘米。 所述第一線狀結構408a的直徑不限,優選為1〇微米〜5毫 米。該第一線狀結構408a的材料由絕緣材料製成,該材 料包括纖維、塑膠、樹脂或矽膠等。所述第一線狀結構 408a可以為紡織材料,具體地,該第一線狀結構4〇8a可 以包括植物纖維、動物纖維、木纖維及礦物纖維中的_ 種或多種,如棉線、麻線、毛線、蠢絲線、尼龍線或教 論等。優選地,該絕緣材料應具有一定的耐熱性質和柔 性,如尼龍或聚酯等。另外,該第一線狀結構408a也可 為外表包有絕緣層的導電絲。該導電絲可以為金屬絲或 者奈米碳管線狀結構。所述金屬包括金屬單質或者合金 ,該單質金屬可以為铭、銅、鎮、鉬、金、鈦、錢、把 或铯等,該金屬合金可以為上述單質金屬任意組合的合 金。該絕緣層的材料可以為樹脂、塑膠、二氧化妙或金 屬氧化物等。本實施例中,該第一線狀結構408a為表面 100112575 表單編號A0101 第13頁/共58頁 1002020944-0 201240486 塗覆有二氧化矽的奈米碳管線狀結構,二氧化矽構成的 絕緣層將奈米碳管線狀結構包裹,從而構成該第一線狀 結構408a。 [0028] 所述第二線狀結構408b的結構和材料與第一線狀結構 408a的結構和材料相同。在同一實施例中,第二線狀結 構408b的結構和材料可以和第一線狀結構408a的結構和 材料相同,也可以不相同。本實施例中,第二線狀結構 408b為表面塗覆有絕緣層的奈米碳管線狀結構。 [0029] 所述奈米碳管線狀結構包括至少一根奈米碳管線,該奈 米碳管線包括複數個奈米碳管。該奈米碳管可以為單壁 奈米碳管、雙壁奈米碳管、多壁奈米碳管中的一種或幾 種。所述奈米碳管線可以為由複數個奈米碳管組成的純 結構。當奈米碳管線狀結構包括多根奈米碳管線時,該 多根奈米碳管線可以相互平行設置。當奈米碳管線狀結 構包括多根奈米碳管線時,該多根奈米碳管線可以相互 螺旋纏繞。奈米碳管線狀結構中的多根奈米碳管線也可 以通過黏結劑相互固定。 [0030] 所述奈米碳管線可以為非扭轉的奈米碳管線或扭轉的奈 米碳管線。請參閱圖10,該非扭轉的奈米碳管線包括複 數個沿奈米碳管線長度方向延伸並首尾相連的奈米碳管 。優選地,該非扭轉的奈米碳管線包括複數個奈米碳管 片段,該複數個奈米碳管片段之間通過凡得瓦力首尾相 連,每一奈米碳管片段包括複數個相互平行並通過凡得 瓦力緊密結合的奈米碳管。即,該非扭轉的奈米碳管線 包括複數個奈米碳管沿同一方向延伸。在延伸方向上的 100112575 表單編號A0101 第14頁/共58頁 1002020944-0 201240486 奈米碳管通過凡得瓦力相互連接。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳 管線長度不限,直徑為〇. 5奈米〜1〇〇微米。 [0031] Ο ο 所述扭轉的奈米碳管線為採用一機械力將所述非扭轉的 奈米碳管線沿相反方向扭轉獲得。請參閱圖U,該扭轉 的奈米碳管線包括複數個繞奈米碳管線軸向螺旋排列的 奈米碳管。優選地’該扭轉的奈米碳管線包括複數個奈 米碳管片段,該複數個奈米碳管片段之間通過凡得瓦力 首尾相連,每一奈米碳管片段包括複數個相互平行並通 過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管 線長度不限,直徑為〇.5奈米~ι〇〇微米。所述奈米碳管線 及其製備方法請參見范守善等人於民國“年丨丨月〇5曰申 5青的’於民國97年11月21日公告的第1303239號台灣公 告專利“一種奈米碳管繩及其製造方法”,專利權人: 鴻海精密工業股份有限公司,以及於民國98年7月21日公 告的第1312337號台灣公告專利“奈米碳管絲及其製作方 法,專利權人:鴻海精密工業股份有限公司。為節省 篇幅,僅引用於此,但上述申請所有技術揭露也應視為 本發明申請所揭露的一部分。 [0032] 本實施例所提供的熱致發聲裝置4〇採用網狀結構的基底 4〇8具有以下優點:其一,網狀結構包括複數個網孔,在 5、致發聲元件102提供支撐的同時,可以使熱致發聲元 〇2與周固介質具有較大的接觸面積。其二,網狀結構 的基底408可以具有較好的柔韌性因此,熱致發聲裝置 100112575 表單編號Α0101 第15頁/共58頁 1002020944-0 201240486 40具有較好的柔韌性。其三,當第一線狀結構408a或/和 第二線狀結構4 0 8 b包括塗覆有絕緣層的奈米碳管線狀結 構時,奈米碳管線狀結構可以具有較小的直徑,更進一 步增加了熱致發聲元件102與周圍介質的接觸面積;奈米 碳管線狀結構具有較小的密度,因此,熱致發聲裝置40 的質量可以較小;奈米碳管線狀結構具有較好的柔韌性 ,可以多次彎折而不被破壞,因此,該熱致發聲裝置40 可以具有更長的使用壽命。 [0033] 可以理解的,本實施例中的基底408的網狀結構也可以由 至少一根上述各種線狀結構編織而成。當基底408包括一 根線狀結構時,該一根線狀結構可以多次彎折交叉後形 成一網狀結構。 [0034] 請參見圖12,本發明第五實施例提供一種熱致發聲裝置 50。本實施例所提供的熱致發聲裝置50與第二實施例提 供的熱致發聲裝置的區別在於,本實施例中,該熱致發 聲裝置50的基底508為一奈米碳管複合結構。 [0035] 該奈米碳管複合結構包括一奈米碳管層及塗覆在該奈米 碳管層表面的絕緣材料層。所述奈米碳管層包括複數個 均勻分佈的奈米碳管。該奈米碳管可以為單壁奈米碳管 、雙壁奈米碳管、多壁奈米碳管中的一種或幾種。所述 奈米碳管層中的奈米碳管之間可以通過凡得瓦力緊密結 合。該奈米碳管層中的奈米碳管為無序或有序排列。這 裏的無序排列指奈米碳管的排列方向無規律,這裏的有 序排列指至少多數奈米碳管的排列方向具有一定規律。 具體地,當奈米碳管層包括無序排列的奈米碳管時,奈 100112575 表單編號A0101 第16頁/共58頁 1002020944-0 201240486 〇 [0036] 米碳管可以相互纏燒或者各向同性排列;當奈米_ 包括有序排列的奈米碳管時,奈米碳管沿—個方向或: 複數個方向擇優取向排列。該奈米碳管層的厚度不π 可以為G.5奈米〜1厘米,優選地,該奈米碳管層的心可 以糊微米]毫米。該奈米碳管層進一步包料數:微 孔’该微孔由奈米碳管之間的間隙形成。所述奈米碳技 層中的微孔的孔徑可以小於等於5〇微米。所述奈乎= 層可包括至少-層奈米碳管拉膜、奈求碳管絮化膜^ 米碳管碾壓膜。 τ 請參閱圖13,該奈米碳管拉膜包括複數個通過凡得瓦力 相互連接的奈米碳管。所述複數個奈来碳管基本沿同— 方向擇優取向排列。所述擇優取向係指在奈米碳管拉膜 中大多數奈米碳管的整體延伸方向基本朝同-方向。而 〇 且,所述大多數奈来碳管的整體延伸方向基本平行於奈 米碳管拉膜的表面°進-步地,所述奈米碳管拉膜中: 數奈米碳管麵過凡得瓦力首尾相連。具體地,所述奈 =碳管拉^基本朝同-方向延伸的大多數奈米碳管中 母不米碳*目。在延伸方向上相鄰的奈米碳管通過凡得 瓦力首尾相連。虽然,所述奈米碳管拉膜中存在少數隨 機排歹U碳管,這些奈米碳管不會對奈米碳管拉膜 中大^數不米碳★的整體取向排列構成明顯影響。所述 奈米礙管拉膜為-自支撐的膜。所述自支撲為奈米碳管 拉膜不㈤要大面積的栽體支撐而只要相對兩邊提供支 推力即能整體上懸“保持自身雜狀態,即將該奈米 碳S拉膜置於(或固定於)間隔—以距離設置的兩個 100112575 表單編號A0101 第17頁/共58頁 1002020944-0 201240486 支撐體上時,位於兩個支撐體之間的奈米碳管拉膜能夠 懸空保持自身膜狀狀態。所述自支撐主要通過奈米碳管 拉膜中存在連續的通過凡得瓦力首尾相連延伸排列的奈 米碳管而實現。 [0037] 所述奈米碳管拉膜的厚度可以為0.5奈米〜100微米,寬度 與長度不限,根據第二基體108的大小設定。所述奈米碳 管拉膜的具體結構及其製備方法請參見范守善等人於民 國96年2月12日申請的,於民國99年7月11日公告的第 1 3271 77號中國民國公告專利。為節省篇幅,僅引用於此 ,但所述申請所有技術揭露也應視為本發明申請技術揭 露的一部分。 [0038] 當奈米碳管層包括多層奈米碳管拉膜時,相鄰兩層奈米 碳管拉膜中的奈米碳管的延伸方向之間形成的交叉角度 不限。 [0039] 請參見圖14,所述奈米碳管絮化膜為通過一絮化方法形 成的奈米碳管膜。該奈米碳管絮化膜包括相互纏繞且均 勻分佈的奈米碳管。所述奈米碳管之間通過凡得瓦力相 互吸引、纏繞,形成網路狀結構。所述奈米碳管絮化膜 各向同性。所述奈米碳管絮化膜的長度和寬度不限。由 於在奈米碳管絮化膜中,奈米碳管相互纏繞,因此該奈 米碳管絮化膜具有很好的柔韌性,且為一自支撐結構, 可以彎曲折疊成任意形狀而不破裂。所述奈米碳管絮化 膜的面積及厚度均不限,厚度為1微米~1毫米。所述奈米 碳管絮化膜及其製備方法請參見范守善等人於民國96年5 月11日申請的,於民國97年11月16日公開的第 100112575 表單編號A0101 第18頁/共58頁 1002020944-0 201240486 200844041號台灣公開專利申請“奈米碳管薄膜的製備 方法”。為節省篇幅,僅引用於此,但上述申請所有技 術揭露也應視為本發明申請技術揭露的一部分。 [0040] 請參見圖15,所述奈米碳管碾壓膜包括均勻分佈的奈米 碳管,奈米碳管沿同一方向或不同方向擇優取向排列。 奈米碳管也可以係各向同性的。所述奈米碳管碾壓膜中 的奈米碳管相互部分交疊,並通過凡得瓦力相互吸引, Ο 緊密結合。所述奈米碳管碾壓膜中的奈米碳管與形成奈 米碳管陣列的生長基底的表面形成一夾角/5,其中,召 大於等於0度且小於等於15度。依據碾壓的方式不同,該 奈米碳管碾壓膜中的奈米碳管具有不同的排列形式。當 沿同一方向碾壓時,奈米碳管沿一固定方向擇優取向排 列。可以理解,當沿不同方向碾壓時,奈米碳管可沿複 數個方向擇優取向排列。該奈米碳管碾壓膜厚度不限, ο 優選為為1微米〜1毫米。該奈米碳管碾壓膜的面積不限, 由碾壓出膜的奈米碳管陣列的大小決定。當奈米碳管陣 列的尺寸較大時,可以碾壓制得較大面積的奈米碳管碾 壓膜。所述奈米碳管碾壓膜及其製備方法請參見范守善 等人於民國96年6月29日申請的,於民國99年12月21日 公告的第1334851號台灣公告專利“奈米碳管薄膜的製備 方法”。為節省篇幅,僅引用於此,但上述申請所有技 術揭露也應視為本發明申請技術揭露的一部分。 所述絕緣材料層位於奈米碳管層的表面,該絕緣材料層 的作用為使奈米碳管層與熱致發聲元件102相互絕緣。該 絕緣材料層僅分佈於奈米碳管層的表面,或者絕緣材料 100112575 表單編號Α0101 第19頁/共58頁 1002020944-0 [0041] 201240486 層包裹奈米碳管層中的每根奈米碳管。當絕緣材料層的 厚度較薄時,不會將奈米碳管層中的微孔堵塞,因此, έ亥奈米管複合結構包括複數個微孔。所述熱致發聲元 件1 02相對於該複數個微孔至少部分懸空設置。複數個微 孔使熱致發聲元件102與外界接觸面積較大。 [0042] [0043] 本實施例所提供的熱致發聲裝置5〇採用奈米碳管複合結 構作為基底508,具有以下優點:第一,奈米礙管複合結 構包括奈米碳管層和塗覆在奈米碳管層表面的絕緣材料 層,由於奈米碳管層可以由純的奈米碳管組成的結構, 因此,奈米碳管層的密度小,質量相對較輕,因此,熱 致發聲裝置50具有較小的質量’方便應用;第二,奈米 碳管層中的微孔係由奈米碳管之間的間隙構成,分佈均 勻,在絕緣材料層較薄的情況下,奈米碳管複合結構可 以保持該均勻分佈的微孔結構,因此,熱致發聲元件102 通過該基底508可以與外界空氣較均勻地接觸;第三,所 述奈米碳管層具有良好的柔勃性,可以多次彎折而不被 破壞,因此’奈米碳管複合結構具有較好的柔勃性’採 用奈米碳管複合結構作為基底508的熱致發聲裝置50為一 柔性的發聲裝置,可以設置成任何形狀不受限制。 清參見圖16及圖17,本發明第六實施例提供一種熱致發 聲裝置60,該熱致發聲裝置6〇包括一基底6〇8、一致熱裝 置104及一熱致發聲元件1〇2。該致熱裝置1〇4包括複數 個第一電極l〇4a及複數個第二電極1〇4b,所述複數個第 一電極104a和複數個第二電極1〇4b分別和熱致發聲元件 102電連接。 100112575 表單編號A0101 第20頁/共58頁 1002020944-0 201240486 [0044] 所述複數個第一電極l〇4a與複數個第二電極104b交替間 〇 隔設置於基底608。所述熱致發聲元件102設置於該複數 個第一電極104a與複數個第二電極104b上,使該複數個 第一電極104a與複數個第二電極1 04b位於基底6 08與熱 致發聲元件102之間,該熱致發聲元件102相對於基底 608部分懸空。即,複數個第一電極104a、複數個第二電 極104b、熱致發聲元件102以及基底608共同形成有複數 個間隙601,從而使該熱致發聲元件102與周圍空氣產生较 大的接觸面積。各個相鄰的第一電極l〇4a與第二電極 104b之間的距離可以相等也可以不相等。優選地,各個 相鄰的第一電極104a與第二電極l〇4b之間的距離相等 相鄰的第一電極104a與第二電極l〇4b之間的距離不限, 優選為10微米〜1厘米。 [0045] ❹ 所述基底608主要起承載第一電極l〇4a與第二電極丨 的作用。該基底608的形狀與大小不限’材料為絕緣柯料 或導電性差的材料。另外,該基底6〇8的材料應具有較好 的絕熱性能,從而防止該熱致發聲元件102產生的執量 該基底608吸收,而無法達到加熱周圍介質進而發聲 的目 的。在本實施例中,該基底608的材料可為破填、樹月匕 陶瓷等。本實施例中’所述基底6〇8為一正方形的破續板 ,其邊長為4. 5厘米,厚度為1毫米。 [0046] 該間隙601由一個第一電極l〇4a、一個第二電極1〇处盘 基底608定義,該間隙601的高度取決於第一電極1〇4與 第二電極104b的高度。在本實施例中,第一電極1〇4與 第二電極104b的高度範圍為1微米〜1厘米。優選地第' 100112575 表單編號A0101 第21頁/共58頁 1002020944-0 201240486 一電極104a和第二電極104b的高度為15微米。 [0047] 所述第一電極104a與第二電極104b可為層狀(絲狀或帶 狀)、棒狀、條狀、塊狀或其他形狀,其橫截面的形狀 可為圓型、方型、梯形、三角形、多邊形或其他不規則 形狀。該第一電極104a與第二電極104b可通過螺栓連接 或黏結劑黏結等方式固定於基底608。而為防止熱致發聲 元件102的熱量被第一電極104a與第二電極104b過多吸 收而影響發聲效果,該第一電極104a及第二電極104b與 熱致發聲元件102的接觸面積較小為好,因此,該第一電 極104a和第二電極104b的形狀優選為絲狀或帶狀。該第 一電極104a與第二電極104b材料可選擇為金屬、導電膠 、導電漿料、銦錫氧化物(ITO)、奈米碳管或碳纖維等 。當第一電極l〇4a或第二電極104b的材料為奈米碳管時 ,該第一電極104a或第二電極104b可以為一奈米碳管線 狀結構。該奈米碳管線狀結構的結構與第四實施例提供 的奈米碳管線狀結構相同。由於奈米碳管線狀結構中的 奈米碳管首尾相連,因此,奈米碳管線狀結構具有良好 的導電性,可以用作電極。 [0048] 該熱致發聲裝置60進一步包括一第一電極引線610及一第 二電極引線612,該第一電極引線610與第二電極引線 612分別與熱致發聲裝置60中的第一電極104a和第二電 極104b連接,使複數個第一電極104a分別與該第一電極 引線610電連接,使複數個第二電極104b分別與該第二電 極引線61 2電連接。所述熱致發聲裝置60通過該第一電極 引線610和第二電極引線612與外部電路電連接。這種連 100112575 表單編號A0101 第22頁/共58頁 1002020944-0 201240486 [0049] 〇 接方式可以使第-電極引線61〇和第二電極引線612之間 的熱致發聲元件102的方塊且大大減小,可以提高熱致 發聲元件102的發聲效率。 本實施例中,複數個第一電極1〇4a和複數個第二電極 104b可以起到支撐熱致發聲元件1〇2的作用,因此,基底 608並非必須的元件。當本實施例中的熱致發聲裝置6〇不 包括基底608時,第一電極l〇4a和第二電極i〇4b在使熱 致發聲元件102與外部電路電連接的同時,還可以保護和 支撐熱致發聲元件1〇2。 [0050] 本實施例中,第一電極l〇4a與第二電極i〇4b為用絲網印 刷方法形成的絲狀銀電極。第一電極1〇4a數量為四個, 第二電極104b數量為四個,該四個第一電極i〇4a與四個 第二電極104b交替且等間距設置於基底6〇8。每個第一電 極l〇4a與第二電極1〇4b的長度均為3厘米,高度為15微 米’相鄰的第一電極l〇4a與第二電極i〇4b之間的距離為 5毫米。 〇 [0051] 本實施例提供的熱致發聲裝置60中,熱致發聲元件102通 過複數個第一電極l〇4a和複數個第二電極104b懸空設置 ,增加了熱致發聲元件1〇2與周圍空氣的接觸面積,有利 於熱致發聲元件1〇2與周圍空氣熱交換,提高了發聲效率 0 [0052] 請參見圖18和圖19,本發明第七實施例提供一種熱致發 聲裝置70。該熱致發聲裝置7〇包括一基底608、一致熱裝 置104及一熱致發聲元件1〇2。該致熱裝置104包括複數 100112575 表單編號A0101 第23頁/共58頁 1002020944-0 201240486 個第一電極l〇4a及複數個第二電極104b,所述複數個第 一電極104a和複數個第二電極104b分別和熱致發聲元件 102電連接。該熱致發聲元件102包括一石墨烯膜。本實 施例所提供的熱致發聲裝置70與第六實施例所提供的熱 致發聲裝置60的結構基本相同,其區別在於,本實施例 中,相鄰的兩個第一電極104a和第二電極104b之間進一 步包括至少一個間隔元件714。 [0053] 所述間隔元件714與基底608可以為分離的元件,該間隔 元件714通過例如螺栓連接或黏結劑黏結等方式固定於基 底608。另外,該間隔元件714也可以與基底608 —體成 型》即間隔元件714的材料與基底608的材料相同。該間 隔元件714的形狀不限,可為球形、絲狀或帶狀結構。為 保持熱致發聲元件102具有良好的發聲效果,該間隔元件 714在支撐熱致發聲元件102的同時應與熱致發聲元件 102具有較小的接觸面積,優選為該間隔元件714與熱致 發聲元件102之間為點接觸或線接觸。 [0054] 在本實施例中,該間隔元件714的材料不限,可為玻璃、 陶曼或樹脂等的絕緣材料,也可為金屬、合金或銦錫氧 化物等的導電材料。當間隔元件714為導電材料時,其與 第一電極104a和第二電極104b電性絕緣,且,優選地, 間隔元件714與第一電極104a和第二電極104b平行。該 間隔元件714的高度不限,優選為10微米~1厘米。本實施 例中,該間隔元件714為採用絲網印刷方法形成的絲狀銀 ,該間隔元件714的高度與所述第一電極104a及第二電極 104b的高度相同,為20微米。間隔元件714與第一電極 100112575 表單編號A0101 第24頁/共58頁 1002020944-0 201240486 104a和第二電極l〇4b平行設置°由於間隔元件714的高 度與第一電極l〇4a和第二電極104b的高度相同,因此’ 所述熱致發聲元件1〇2位於同一平面。 [0055] Ο 所述熱致發聲元件102設置於間隔元件714、第一電極 104a及第二電極l〇4b。該熱致發聲元件102通過該間隔 元件714與基底608間隔設置,且與該基底608形成有一 空間701,該空間701係由所述第一電極104a或所述第二 電極104b、所述間隔元件714、基底608以及熱致發聲元 件102共同形成。進一步地,為防止熱致發聲元件1〇2產 生駐波’保持熱致發聲元件102良好的發聲效果,該熱致 發聲元件102與基底608之間的距離優選為10微米〜1厘米 。本實施例中,由於第一電極l〇4a、第二電極104b及間 隔元件714的高度為20微米,所述熱致發聲元件1〇2設置 於第一電極104a、第二電極l〇4b及間隔元件714,因此 ’該熱致發聲元件1〇2與基底608之間的距離為20微米。 [0056] Ο 可以理解,第一電極l〇4a和第二電極l〇4b對熱致發聲元 件102也有—定的支撐作用,但當第一電極l〇4a和第二電 極l〇4b之間的距離較大時,對熱致發聲元件1〇2的支撐效 果不佳,在第一電極1〇4a和第二電極1〇4b之間設置間隔 凡件714 ’可起到較好支撐熱致發聲元件1〇2的作用’使 熱致發聲元件102與基底608間隔設置並與基底608形成 有二間7〇1 ’從而保證熱致發聲元件1〇2具有良好的發 聲效果。 4參見圖2G ’本發明第人實施例提供—種熱致發聲裝置 100112575 。《亥熱致發聲裝置包括至少一個致熱裝置和複數個 表單編號 AG101 ^ 25 %/% 58 I 1002020944-0 [0057] 201240486 熱致發聲元件。所述複數個熱致發聲元件的情況包括兩 種:第一,該複數個熱致發聲元件的數量為至少兩個, 熱致發聲元件之間沒有相互接觸;第二,該複數個熱致 發聲元件的數里為一個,該熱致發聲元件設置於_具有 曲面的基底上,使其法線方向為複數個或者該熱致發聲 元件彎折後設置於不同的平面上。致熱裝置可以與熱致 發聲元件一一對應,也可以一個致熱裝置對應複數個熱 致發聲元件。該致熱裝置也可以為由對應所述複數個熱 致發聲元件的複數個部位組成的一整體結構。本實施例 中’該熱致發聲裝置80包括一第一致熱裝置804、一第二 致熱裝置806、一基底208、一第一熱致發聲元件8〇23及 一第二熱致發聲元件802b。 [0058] 所述基底208包括一第一表面(圖未標)及一第二表面( 圖未標)。所述基底208的形狀、尺寸及厚度均不限。所 述第一表面和第二表面可為平面、曲面或凹凸不平的表 面。第一表面和第二表面可以為相鄰的兩個表面,也可 以為相對的兩個表面。本實施例中,所述基底2〇8為一長 方體結構,第一表面和第二表面為兩個相對的表面。所 述基底208進一步包括複數個通孔208a,該通孔2〇8a貫 穿於第一表面和第二表面,從而使第一表面和第二表面 成為凹凸不平的表面。所述複數個通孔208a可以相互平 行設置。 [0059] 所述第一熱致發聲元件80 2a設置於基底208的第一表面上 ,並相對於該第一表面至少部分懸空設置。所述第二熱 致發聲元件802b設置於第二表面上,並相對於第二表面 100112575 表單編號A0101 第26頁/共58頁 1002020944-0 201240486 咕 至少部分懸空設置。所述第一熱致發聲元件802a為一石 墨烯膜。所述第二熱致發聲元件802b為一石墨烯膜或者 一奈米破管層。所述奈米礙管層的結構與第五實施例中 所揭示的奈米碳管層的結構相同。由於奈米碳管層包括 至少一廣奈米板官膜’奈米兔管層的厚度較小,具有較 小的單位面積熱谷’因此’奈米碳管層也可以作為熱致 發聲元件° [〇〇6〇]所述第〆致熱裝置804包括一第一電極l〇4a及一第二電極 〇 104b。所述第一電極104a和第二電極l〇4b分別與該第一 熱致發聲元件802a電連接。本實施例中,第一電極104a 和第二電極l〇4b分別設置於第一熱致發聲元件8〇2a的表 面,並與該第一熱致發聲元件802a的兩個相對的邊齊平 。所述第二致熱裝置8〇6包括一第一電極i〇4a及一第二電 極l〇4b。所述第一電極l〇4a和第二電極1〇4b分別與該第 二熱致發聲元件802b電連接。本實施例中,第一電極 104a和第二電極l〇4b分別設置於第二熱致發聲元件⑽肋 〇 的表面,並與該第一熱致發聲元件802a的兩個相對的邊 -ip* * [0061] 本實施例所提供的熱致發聲裝置8〇為雙面發聲裝置,通 過在兩個不同的表面上設置熱致發聲元件,可以使熱致 發聲元件所發出的聲音傳播範圍更大且更清晰。可以通 過控制致熱裝置選擇讓任何—個熱致發聲心發出聲音 ,或者同時:出聲音’使該熱致發聲装置的使用範圍更 加廣泛。進—步地,當—個熱致發聲元件出現故障時, 另-個熱致發聲元件可以繼續工作,提高了該熱致發聲 100112575 表單編號A0101 第27頁/共58頁 1002020944-0 201240486 裝置的使用壽命。 [0062] 請參見圖21,本發明第九實施例提供一種熱致發聲裝置 90。本實施例所提供的熱致發聲裝置90與第八實施例提 供的熱致發聲裝置80的結構的區別在於,本實施例所提 供的熱致發聲裝置90為一多面發聲裝置。 [0063] 本實施例中,所述基底908為一長方體結構,其包括四個 不同的表面,該四個不同的表面為凹凸不平的表面。所 述熱致發聲裝置90包括四個熱致發聲元件102,其中一個 熱致發聲元件102為一石墨烯膜,另外三個熱致發聲元件 102可以為石墨烯膜,也可以為奈米碳管層。 [0064] 每個致熱裝置104分別包括一個第一電極104a和一個第二 電極104b。第一電極104a和第二電極104b分別與一個熱 致發聲元件102電連接。 [0065] 本實施例所提供的熱致發聲裝置90可以實現向複數個方 向傳播聲音。 [0066] 請參見圖22,本發明第十實施例提供一種熱致發聲裝置 100。該熱致發聲裝置100包括一熱致發聲元件102、一 基底208及一致熱裝置1 004。所述熱致發聲元件102設置 於所述基底208。本實施例所提供的熱致發聲裝置100與 第二實施例提供的熱致發聲裝置20的結構的區別在於, 本實施例所提供的熱致發聲裝置100中,致熱裝置1004為 一雷射器,或其他電磁波信號發生裝置。從該致熱裝置 1 004發出的電磁波信號1 020傳遞至該熱致發聲元件102 ,該熱致發聲元件102發聲。 100112575 表單編號A0101 第28頁/共58頁 1002020944-0 201240486 .[0067]該致熱裝置1 004可正對該熱致發聲元件102設置。當致熱 裝置1 004為一雷射器時,當該基底2〇8為透明基板時,該 雷射器可對應於該基底20 8遠離該熱致發聲元件1〇2的表 面設置,從而使從雷射器發出的雷射穿過基底2〇8傳遞至 該熱致發聲元件102。另外,當該致熱裝置1〇〇4發出的係 一電磁波信號時,該電磁波信號可透過基底2〇8傳遞至該 熱致發聲元件1〇2,此時,該致熱裝置1004也可以對應於 該基底208遠離該熱致發聲元件1〇2的表面設置。 0 [0068] 本實施例的熱致發聲裝置100中,當熱致發聲元件1〇2受 到如雷射等電磁波的照射時,該熱致發聲元件丨〇2因吸收 電磁波的能量而受激發,並通過非輻射使吸收的光能全 部或部分轉變為熱。該熱致發聲元件1〇2溫度根據電磁波 信號1020頻率及強度的變化而變化,並和周圍的空氣或 其他氣體或液體介質進行迅速的熱交換,從而使其周圍 介質的溫度也產生等頻率的變化,造成周圍介質迅速的 膨脹和收縮,從而發出聲音。 〇 [0069]由於該熱致發聲裝置的工作原理為將一定形式的能量以 極快的速度轉換為熱量,並和周圍氣體或液體介質進行 快速的熱交換,從而使該介質膨脹及收縮,從而發出聲 音。可以理解,所述能量形式不局限於電能或光能,該 致熱裝置也不局限於上述實施例中的電極或電磁波信號 發生器,任何可以使該熱致發聲元件發熱,並按照音頻 變化加熱周圍介質的裝置均可看作一致熱裝置,並在本 發明保護範圍内。 [0070] 100112575 本發明中的石墨烯膜具有較好的韌性和機械強度,所以 表單編號A0101 第29頁/共58頁 1002020944-0 201240486 墨烯臈可方便地製成各種形狀和尺寸的熱致發聲裝置 。本發明的熱致發聲裝置不僅單獨可以作為揚聲器使用 ,也砰方便地應用於各種需要發聲裝置的電子裝置中。 該熱欵發聲裝置可以内置於電子裝置殼體中或者殼體外 表面,作為電子裝置的發聲單元。該熱致發聲裝置可以 取代電子裝置的傳統的發聲單元,也可以與傳統發聲單 几組合使用。該熱致發聲裝置可以與電子裝置的其他電 子疋件公用電源或公用處理器等。也可以通過有線或無 線的方式與電子裝置連接,有線的方式比如通過信號傳 輪線與電子裝置的USB介面結合,無線的方式比如通過藍 牙方式與電子裝置連接。該熱致發聲裝置也可以安裝或 集成在電子裝置的顯示幕上,作為電子裝置的發聲單元 。該電子裝置可以為音響、手機、MP3、MP4、遊戲機、 數碼相機、數碼攝像機、電視或電腦等。例如,當電子 裝置為手機時,由於本實施例提供的熱致發聲裝置為一 透明的結構,該熱致發聲裝置可以通過機械固定方式或 者黏結劑貼合在手機顯示幕的表面。當電子裝置為Mp3時 ,該熱致發聲裝置可以内置於MP3中,與MP3内部的電路 板電連接,當MP3通電時,該熱致發聲裝置可以發出聲音 〇 [0071] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟’以上所述者僅為本發明之較佳實施例 ,自不此以此限制本案之申請專利範圍。舉凡熟悉本荦 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 100112575 表單編號Α01-01 第30頁/共58頁 1002020944-0 201240486 【圖式簡單說明】 [0072] 圖1係本發明第一實施例提供的熱致發聲裝置的俯視圖。 [0073] 圖2係沿圖1中11 - 11線剖開的剖面圖。 [0074] 圖3係本發明第二實施例提供的熱致發聲裝置的俯視圖。 [0075] 圖4係沿圖3中IV-IV線剖開的剖面圖。 [0076] 圖5係本發明第三實施例提供的熱致發聲裝置的俯視圖。 [0077] 〇 圖6係第三實施例中一種情況下沿圖5中VI-VI線剖開的剖 面圖。 [0078] 圖7為第三實施例中另一種情況下沿圖5中VI-VI線剖開的 剖面圖。 [0079] 圖8係本發明第四實施例提供的熱致發聲裝置的俯視圖。 [0080] 圖9係沿圖8中IX-IX線剖開的剖面圖。 [0081] 圖10係圖8中熱致發聲裝置所採用的非扭轉的奈米碳管線 狀結構的掃描電鏡照片。 [0082] 圖11係圖8中熱致發聲裝置所採用的扭轉的奈米碳管線狀 結構的掃描電鏡照片。 [0083] 圖12係本發明第五實施例提供的採用表面塗有絕緣層的 奈米碳管層作為基底的熱致發聲裝置的侧視剖面圖。 [0084] 圖1 3係圖12中的奈米碳管層所採用的奈米碳管拉膜的掃 描電鏡照片。 [0085] 圖14係圖12中的奈米碳管層所採用的奈米碳管絮化膜的 100112575 掃描電鏡照片。 表單編號A0101 第31頁/共58頁 1002020944-0 201240486 [0086] 圖1 5係圖1 2中的奈米碳管層所採用的奈米碳管碾壓膜的 掃描電鏡照片。 [0087] [0088] [0089] [0090] [0091] [0092] [0093] [0094] [0095] [0096] [0097] [0098] [0099] 100112575 圖16係本發明第六實施例提供的熱致發聲裝置的俯視圖 〇 圖1 7係沿圖1 6中XV11 -XVII線剖開的剖面圖。 圖18係本發明第七實施例提供的熱致發聲裝置的俯視圖 〇 圖1 9係沿圖18中XIX-XIX線剖開的剖面圖。 圖2 0係本發明第八實施例提供的熱致發聲裝置的側視剖 面圖。 圖21係本發明第九實施例提供的熱致發聲裝置的側視剖 面圖。 圖22為本發明第十實施例提供的熱致發聲裝置的侧視圖 〇 【主要元件符號說明】 熱致發聲裝置:10 ; 20 ; 30 ; 40 ; 50 ; 60 ; 70 ; 80 ; 90 ; 100 熱致發聲元件:102 致熱裝置:104 ; 1004 第一電極:104a 第二電極:104b 基底:208 ; 308 ; 408 ; 508 ; 608 ; 908 表單編號A0101 第32頁/共58頁 1002020944-0 201240486 ‘ [0100]孔:208a [0101] 槽:308a [0102] 表面:308b [0103] 第一線狀結構:408a [0104] 第二線狀結構:408b [0105] 網孔:408c [0106] 間隙:601 [0107] 第一電極引線:610 [0108] 第二電極引線:612 [0109] 間隔元件:714 [0110] 第一熱致發聲元件:802a [0111] 第二熱致發聲元件:802b [0112] Ο 第一致熱裝置:804 [0113] 第二致熱裝置:806 [0114] 電磁波信號:1020 100112575 表單編號A0101 第33頁/共58頁 1002020944-0[0016] The thermoacoustic device of the thermoacoustic element can be a transparent thermoacoustic device. Since the thickness of the graphene film is very thin, it has a low heat capacity, and its heat capacity can be less than 2χ10_3 joules per square centimeter Kelvin, and the heat capacity of the single-layer graphene can be less than 5.57x1 (Γ4 joules per square centimeter Kelvin. The graphene film is a self-supporting structure, and the self-supporting graphene film does not require a large-area carrier support, and as long as the supporting force is provided on both sides, it can be suspended as a whole to maintain its own film state, that is, the graphene film. When placed on (or fixed to) two supports spaced apart by a fixed distance, the graphene film between the two supports can be suspended to maintain its own film state. Experiments show that graphene is not a 100% smooth and flat A two-dimensional film with a large number of microscopic undulations on the surface of a single-layer graphene, in which the single-layer graphene is maintained in such a way as to maintain its self-supportability and stability. The method may be a chemical vapor deposition method, an LB method or a method of tearing off the oriented graphite with a tape. In this embodiment, the method is prepared by chemical vapor deposition. The ocene film is grown on the surface of a metal film substrate by chemical vapor deposition. The working medium of the thermoacoustic element 102 is not limited, and only needs to satisfy a resistivity greater than that of the thermo-acoustic element 102. The resistivity is sufficient. The medium comprises a gaseous medium or a liquid medium. The gaseous medium may be air. The liquid medium includes one or more of a non-electrolyte solution, water, an organic solvent, etc. The resistance of the liquid medium The rate is greater than 0.01 ohm·m, preferably, the liquid medium is pure water. The conductivity of the purified water can reach 1.5. 5 x lO7 ohm·m, and the heat capacity per unit area is also large, which can conduct heat. The heat generated by the sounding element 102 can be used to dissipate heat from the thermoacoustic element 102 100112575 Form No. A0101, page 7 / page 58 1002020944-0 201240486. In the present embodiment, the medium is air. '[0017] The thermo-acoustic device 10 of the example can be electrically connected to an external circuit through the first electrode 104a and the second electrode 104b, thereby thereby receiving an external signal to sound. Since the thermo-acoustic element 102 includes a stone The olefin film, the graphene film has a small heat capacity per unit area and a large heat dissipation area, and after the heat generating device 104 inputs a signal to the thermo-acoustic element 102, the thermo-acoustic element 102 can rapidly rise and fall, generating Periodic temperature changes, and rapid heat exchange with the surrounding medium, the density of the surrounding medium is periodically changed, and then the sound is emitted. In short, the thermoacoustic element 102 of the embodiment of the present invention is powered by The conversion of the thermo-acoustic to achieve the sounding. In addition, the thermoacoustic device 10 is a transparent heat-sounding device by using the high transmittance of the graphene film. [0018] The thermo-acoustic device 10 provided in this embodiment The sound pressure level is greater than 50 decibels per watt of sound pressure level, and the vocal frequency range is from 1 Hz to 100,000 Hz (ie ΙΗζ-lOOkHz). The thermoacoustic device may have a distortion of less than 3% in the frequency range of 500 Hz to 10,000 Hz. Referring to FIG. 3 and FIG. 4, a second embodiment of the present invention provides a thermo-acoustic device 20. The thermo-acoustic device 20 of the present embodiment is different from the thermo-acoustic device 10 of the first embodiment in that the thermo-acoustic device 20 of the present embodiment further includes a substrate 208. The thermally audible element 102 is disposed on a surface of the substrate 208. The first electrode 104a and the second electrode 104b are disposed on a surface of the thermoacoustic element 102. The shape, size and thickness of the substrate 208 are not limited, and the surface of the substrate 208 may be a flat surface or a curved surface. The material of the substrate 208 is not limited and may be a hard material or a flexible material having a certain strength. Preferably, the material of the substrate 208 100112575 Form No. A0101 Page 8 / Total 58 pages 1002020944-0 201240486 The resistance should be greater than the resistance of the thermoacoustic element 102, and has better thermal and thermal resistance, thereby preventing Excessive heat generated by the thermoacoustic element 1 〇2 is absorbed by the substrate 208. Specifically, the insulating material may be glass, ceramic, quartz, diamond, plastic, resin or wood material. [0020] In the present embodiment, the substrate 208 includes at least one hole 208a. The depth of the hole 2〇8a is less than or equal to the thickness of the substrate 208. When the depth of the hole 2〇8a is smaller than the thickness of the substrate 208, the hole 208a is a blind hole. When the depth of the hole 2〇8a is equal to the thickness of the substrate 208, the hole 208a is a through hole. The shape of the cross section of the hole 208a is not limited and may be a circle, a square, a rectangle, a triangle, a polygon, an I-shape, or an irregular figure. When the substrate 208 includes a plurality of holes 208a, the plurality of holes 208a < Uniformly distributed, distributed in a regular pattern or randomly distributed on the substrate 208. The spacing of each adjacent two holes 208a is not limited, and is preferably from 100 micrometers to 3 millimeters. In this embodiment, the substrate includes a plurality of holes 208a, which are through holes having a cylindrical shape in cross section and uniformly distributed on the substrate 208. [0021] The thermoacoustic element 102 is disposed on the surface of the substrate 208 and is suspended relative to the aperture 208a in the base 208. In this embodiment, since the portion of the thermo-acoustic element 102 above the hole 208a is suspended, the portions of the thermo-acoustic element 102 are in contact with the surrounding medium, increasing the contact of the thermo-acoustic element 102 with the surrounding gas or liquid medium. The area of the thermo-acoustic element 102 is not easily broken because the other portion of the thermo-acoustic element 102 is in direct contact with the surface of the substrate 208 and supported by the substrate 208. [0022] Referring to FIG. 5, a third embodiment of the present invention provides a thermo-acoustic device 30 100112575 Form No. A0101 Page 9 of 58 1002020944-0 201240486. The difference between the thermo-acoustic device 30 provided in this embodiment and the thermo-acoustic device 20 provided in the second embodiment is that, in this embodiment, the base 308 of the thermo-acoustic device 30 includes at least one slot 308a, the slot 308a One surface 308b is disposed on the substrate 308. The depth of the groove 308a is smaller than the thickness of the substrate 308. The slot 308a may be a blind slot or a slot. When the slot 308a is a blind slot, the length of the slot 308a is less than the distance between the two opposing sides of the base 308. When the groove 308a is a through groove, the length of the groove 308a is equal to the distance between the two opposite sides of the substrate 308. The groove 308a causes the surface 308b to form an uneven surface. The depth of the groove 308a is smaller than the thickness of the substrate 308, and the length of the groove 308a is not limited. The shape of the groove 308a on the surface 308b of the substrate 308 may be rectangular, arcuate, polygonal, oblate, or other irregular shape. Referring to FIG. 5, in the embodiment, the substrate 308 is provided with a plurality of grooves 308a. The grooves 308a are blind grooves, and the groove 308a has a rectangular shape on the surface 308b of the substrate 308. Referring to Fig. 6, the groove 308a has a rectangular cross section in the longitudinal direction thereof, that is, the groove 308a has a rectangular parallelepiped structure. Referring to Fig. 7, the groove 308a has a triangular cross section in its longitudinal direction, i.e., the groove 308a has a triangular prism structure. When the surface 308b of the substrate 308 has a plurality of blind grooves, the plurality of blind grooves may be uniformly distributed, distributed in a regular pattern or randomly distributed on the surface 308b of the substrate 308. Referring to FIG. 7, the groove pitch of two adjacent blind grooves may be close to zero, that is, the area where the substrate 308 is in contact with the thermo-acoustic element 102 is a plurality of lines. It can be understood that in other embodiments, by changing the shape of the groove 308a, the area where the thermo-acoustic element 102 contacts the substrate 308 is a plurality of points, that is, between the thermo-acoustic element 102 and the substrate 308. Point contact, line contact or face contact. 100112575 Form No. A0101 Page 10 of 58 1002020944-0 201240486 ' '[0023] In the thermo-acoustic device 30 of the present embodiment, since the substrate 308 includes at least one groove 308a 'the groove 308a can reflect the heat The sound waves emitted by the acoustic element 102 are caused to enhance the vocal intensity of the thermoacoustic device 30 on the side of the thermoacoustic element 102. When the distance between the adjacent grooves 308a is close to zero, the substrate 308 can support both the thermoacoustic element 102 and the maximum surface area of the thermoacoustic element 1〇2 in contact with the surrounding medium. [0024] Ο It can be understood that when the depth of the groove 3〇8a reaches a certain value, the sound wave reflected by the groove 308a is superimposed with the original sound wave, thereby causing destructive interference, affecting the sounding effect of the thermo-acoustic element 102. . To avoid this, it is preferable that the depth of the groove 3〇8a is less than or equal to 丨〇 mm. In addition, when the depth of the groove 308a is too small, the thermally audible element 102 suspended by the substrate 308 is too close to the substrate 308, which is disadvantageous for heat dissipation of the thermoacoustic element 102. Therefore, preferably, the depth of the groove 308a is 10 μm or more. Ο Referring to FIG. 8 and FIG. 9 'A fourth embodiment of the present invention provides a thermo-acoustic device 40. The difference between the thermo-acoustic device 40 provided in this embodiment and the thermo-acoustic device 20 provided in the second embodiment is that, in the embodiment, the substrate 408 of the thermo-acoustic device is a mesh structure. The substrate 408 includes a plurality of first linear structures 408a and a plurality of second linear structures 408b. The linear structure may also be a strip or strip structure. The plurality of first linear structures 408a and the plurality of second linear structures 4〇8b are disposed to intersect each other to form a base 408 having a mesh structure. The plurality of first linear structures 408a may or may not be parallel to each other, and the plurality of second linear structures 408b may be parallel to each other, or may be 100112575 Form No. A0101 Page 11 / Total 58 Pages 1002020944-0 201240486 are not parallel to each other, when the plurality of first linear structures 4〇8a are parallel to each other, and the plurality of second linear structures 408b are parallel to each other, specifically, the axes of the plurality of first linear structures 4 0 8 a The directions of the extensions are all along the first direction L1, and the distances between the adjacent first linear structures 408a may be equal or unequal. The distance between the adjacent two first linear structures 408a is not limited, and preferably, the pitch is 1 cm or less. In this embodiment, the plurality of first linear structures 408a are equally spaced apart, and the distance between the adjacent two first linear structures 408a is 2 cm. The plurality of second linear structures 408b are spaced apart from each other and extend substantially in the second direction L2 in the axial direction, and the distance between the adjacent second linear structures 4〇8b may be equal or unequal. The distance between the adjacent two second linear structures 408b is not limited, and preferably, the pitch is less than or equal to 1 cm. The first direction L1 forms an angle α with the second direction L2, and α is greater than 0 degrees and less than or equal to 90 degrees. In this embodiment, the angle between the first direction L1 and the second direction L2 is 90°. The manner in which the plurality of first linear structures 408a are disposed to intersect the plurality of second linear structures 408b is not limited. In this embodiment, the first linear structure 408a and the second linear structure 408b are woven together to form a mesh structure. In another embodiment, the plurality of spaced apart second linear structures 408b are disposed on the same side of the plurality of first linear structures 408a. The contact portion of the plurality of second linear structures 408b and the plurality of first linear structures 408a may be fixedly disposed by a bonding agent, or may be fixedly disposed by soldering. When the melting point of the first linear structure 408a is low, The second linear structure 408b and the first linear structure 408a may also be fixedly disposed by hot pressing. [0026] The substrate 408 has a plurality of cells 4 0 8 c. The plurality of cells 4 0 8 c 100112575 Form No. A0101 Page 12 / Total 58 pages 1002020944-0 201240486 Ο [0027] The plurality of first linear structures 408a and a plurality of second lines are disposed by crossing each other Structure 408b is enclosed. The mesh 408c is quadrangular. The mesh 408c may be square, rectangular or diamond-shaped depending on the angle at which the intersection of the plurality of first linear structures 408a and the plurality of second linear structures 408b are disposed. The size of the mesh 408c is determined by the distance between the adjacent two first linear structures 408a and the distance between the adjacent two second linear structures 408b. In this embodiment, the plurality of first linear structures 408a and the plurality of second linear structures 408b are disposed in parallel at equal intervals, and the plurality of first linear structures 408a and the plurality of second linear structures are The 408b are perpendicular to each other, so the mesh 408c is square and has a side length of 2 cm. The diameter of the first linear structure 408a is not limited, and is preferably 1 μm to 5 mm. The material of the first linear structure 408a is made of an insulating material including fibers, plastics, resins or silicones. The first linear structure 408a may be a textile material. Specifically, the first linear structure 4〇8a may include one or more kinds of plant fibers, animal fibers, wood fibers, and mineral fibers, such as cotton and twine. , wool, stupid silk, nylon thread or teaching. Preferably, the insulating material should have a certain heat resistance and flexibility such as nylon or polyester. Alternatively, the first linear structure 408a may be a conductive wire having an insulating layer on its outer surface. The conductive filaments may be wire or nanocarbon line-like structures. The metal includes a metal element or an alloy, and the elemental metal may be ingot, copper, town, molybdenum, gold, titanium, money, palladium or ruthenium, etc., and the metal alloy may be an alloy of any combination of the above elemental metals. The material of the insulating layer may be a resin, a plastic, a dioxin or a metal oxide. In this embodiment, the first linear structure 408a is a surface 100112575 Form No. A0101 Page 13 / 58 pages 1002020944-0 201240486 A carbon nanotube-like structure coated with cerium oxide, an insulating layer composed of cerium oxide The nanocarbon line-like structure is wrapped to constitute the first linear structure 408a. [0028] The structure and material of the second linear structure 408b are the same as those of the first linear structure 408a. In the same embodiment, the structure and material of the second linear structure 408b may be the same as or different from the structure and material of the first linear structure 408a. In this embodiment, the second linear structure 408b is a nanocarbon line-like structure whose surface is coated with an insulating layer. [0029] The nanocarbon line-like structure includes at least one nanocarbon line including a plurality of carbon nanotubes. The carbon nanotubes may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, or a multi-walled carbon nanotube. The nanocarbon line may be a pure structure composed of a plurality of carbon nanotubes. When the nanocarbon line-like structure includes a plurality of nanocarbon lines, the plurality of nanocarbon lines may be disposed in parallel with each other. When the nanocarbon line-like structure includes a plurality of nanocarbon lines, the plurality of nanocarbon lines may be spirally wound with each other. The plurality of carbon nanotubes in the nanocarbon line-like structure can also be fixed to each other by a binder. [0030] The nanocarbon line may be a non-twisted nano carbon line or a twisted carbon carbon line. Referring to Fig. 10, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending along the length of the nanocarbon pipeline and connected end to end. Preferably, the non-twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by van der Waals, and each of the carbon nanotube segments comprises a plurality of mutually parallel and A carbon nanotube that is tightly bonded by van der Waals. That is, the non-twisted nanocarbon line includes a plurality of carbon nanotubes extending in the same direction. 100112575 in the direction of extension Form No. A0101 Page 14 of 58 1002020944-0 201240486 Carbon nanotubes are connected to each other by van der Waals force. The carbon nanotube segments have any length, thickness, uniformity, and shape. The length of the non-twisted nanocarbon line is not limited, and the diameter is 〇5 nm to 1 〇〇 micrometer. [0031] The twisted nanocarbon line is obtained by twisting the non-twisted nanocarbon line in the opposite direction using a mechanical force. Referring to Figure U, the twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged in an axial spiral arrangement around a carbon nanotube. Preferably, the twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by van der Waals, and each of the carbon nanotube segments comprises a plurality of mutually parallel and A carbon nanotube that is tightly bonded by van der Waals. The carbon nanotube segments have any length, thickness, uniformity, and shape. The twisted carbon nanotube wire is not limited in length and has a diameter of 〇.5 nm to ι〇〇μm. The nano carbon pipeline and its preparation method can be found in Fan Shoushan et al. in the Republic of China, "Year of the Year, 5, 5, 5, and 5," in Taiwan, November 1, 1997, No. 1303239, Taiwan Announced Patent "A Nano Carbon tube rope and its manufacturing method", the patentee: Hon Hai Precision Industry Co., Ltd., and Taiwan No. 1312337 announced on July 21, 1998, the Taiwan Announced Patent "Nano Carbon Tube and Its Manufacturing Method, Patent Right Person: Hon Hai Precision Industry Co., Ltd. In order to save space, only the above is cited, but all the technical disclosures of the above application should also be considered as part of the disclosure of the present application. [0032] The thermal sound generating device 4 provided in this embodiment adopts a mesh structure of the substrate 4 8 having the following advantages: First, the mesh structure includes a plurality of meshes, and at 5, the sound emitting element 102 provides support. At the same time, the thermo-acoustic element 〇2 can have a large contact area with the peripheral solid medium. Second, the base 408 of the mesh structure can have better flexibility. Therefore, the thermoacoustic device 100112575 Form No. 1010101 Page 15 of 58 1002020944-0 201240486 40 has good flexibility. Third, when the first linear structure 408a or/and the second linear structure 408b includes a nanocarbon line-like structure coated with an insulating layer, the nanocarbon line-like structure may have a smaller diameter. The contact area of the thermo-acoustic element 102 with the surrounding medium is further increased; the nanocarbon line-like structure has a smaller density, and therefore, the mass of the thermo-acoustic device 40 can be smaller; the nano-carbon line structure is better The flexibility can be bent multiple times without being damaged, and therefore, the thermo-acoustic device 40 can have a longer service life. [0033] It can be understood that the mesh structure of the substrate 408 in this embodiment can also be woven by at least one of the above various linear structures. When the substrate 408 includes a linear structure, the one linear structure can be bent and folded to form a mesh structure. Referring to FIG. 12, a fifth embodiment of the present invention provides a thermo-acoustic device 50. The difference between the thermo-acoustic device 50 provided in this embodiment and the thermo-acoustic device provided in the second embodiment is that, in the embodiment, the substrate 508 of the thermo-acoustic device 50 is a carbon nanotube composite structure. [0035] The carbon nanotube composite structure includes a carbon nanotube layer and a layer of insulating material coated on the surface of the carbon nanotube layer. The carbon nanotube layer includes a plurality of uniformly distributed carbon nanotubes. The carbon nanotube may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The carbon nanotubes in the carbon nanotube layer can be tightly bonded by van der Waals force. The carbon nanotubes in the carbon nanotube layer are disordered or ordered. The disordered arrangement here means that the arrangement direction of the carbon nanotubes is irregular, and the ordering arrangement here means that at least most of the arrangement of the carbon nanotubes has a certain regularity. Specifically, when the carbon nanotube layer includes a disordered arrangement of carbon nanotubes, Nai 10012575 Form No. A0101 Page 16 / 58 pages 1002020944-0 201240486 〇 [0036] The carbon nanotubes can be entangled or entangled with each other Isotropic arrangement; when the nanometer _ includes the ordered arrangement of carbon nanotubes, the carbon nanotubes are arranged in a preferred orientation along one direction or in a plurality of directions. The thickness of the carbon nanotube layer may be not more than π of G. 5 nm to 1 cm. Preferably, the core of the carbon nanotube layer may be micron] mm. The carbon nanotube layer is further coated with a number of micropores. The micropores are formed by a gap between the carbon nanotubes. The pore size of the micropores in the nanocarbon layer may be 5 μm or less. The layer can include at least a layer of carbon nanotube film, a carbon tube film, and a carbon nanotube film. τ Referring to Fig. 13, the carbon nanotube film comprises a plurality of carbon nanotubes connected to each other by van der Waals force. The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction. The preferred orientation means that the overall extension direction of most of the carbon nanotubes in the carbon nanotube film is substantially in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film, and the carbon nanotube film is: Van der Waals is connected end to end. Specifically, the carbon nanotubes of the carbon nanotubes are substantially in the same direction as the carbon nanotubes of the majority of the carbon nanotubes. The adjacent carbon nanotubes in the extending direction are connected end to end by the van der Waals force. Although there are a few random U-tubes in the carbon nanotube film, these carbon nanotubes do not significantly affect the overall orientation of the nano-carbon film in the carbon nanotube film. The nano tube is a self-supporting film. The self-supporting flutter is a carbon nanotube film that does not (5) require a large area of the support of the support, and as long as the support thrust is provided on both sides, the suspension can be maintained as a whole, and the nano carbon S film is placed ( Or fixed to the interval - two distances set by distance 100112575 Form No. A0101 Page 17 / Total 58 pages 1002020944-0 201240486 On the support, the carbon nanotube film between the two supports can be suspended to keep itself Membrane state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end-to-end extension of the van der Waals force in the carbon nanotube film. [0037] The thickness of the carbon nanotube film It can be from 0.5 nm to 100 μm, and the width and length are not limited, and it is set according to the size of the second substrate 108. The specific structure of the carbon nanotube film and its preparation method can be found in Fan Shoushan et al. In the case of the application for the 12th, the Republic of China announced the patent No. 1 3271 77 of the Republic of China on July 11, 1999. To save space, only the above is cited, but all the technical disclosures of the application should also be regarded as the technical disclosure of the present application. a part of [0038] When the carbon nanotube layer comprises a plurality of layers of carbon nanotube film, the angle of intersection formed between the extending directions of the carbon nanotubes in the adjacent two layers of carbon nanotube film is not limited. Referring to Fig. 14, the carbon nanotube flocculation membrane is a carbon nanotube membrane formed by a flocculation method, and the carbon nanotube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed. The carbon nanotubes are mutually attracted and entangled by van der Waals to form a network structure. The carbon nanotube film is isotropic. The length and width of the carbon nanotube film are not limited. Because the carbon nanotubes are intertwined in the carbon nanotube flocculation membrane, the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure, which can be bent and folded into any shape without The area and thickness of the carbon nanotube flocculation membrane are not limited, and the thickness is 1 micrometer to 1 millimeter. The carbon nanotube flocculation membrane and the preparation method thereof can be found in Fan Shoushan et al. Application No. 100112575 published on November 16th, 1997. Form No. A0101 Page 18 of 58 Page 1002020944-0 201240486 200844041 Taiwan Provisional Patent Application "Preparation of Nano Carbon Tube Films". To save space, only the above is cited, but all the technical disclosures of the above application should also be considered as part of the disclosure of the present application. 0040] Referring to Fig. 15, the carbon nanotube rolled film comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are arranged in the same direction or in different directions. The carbon nanotubes can also be isotropic. The carbon nanotubes in the carbon nanotube film are partially overlapped with each other and are attracted to each other by van der Waals force, and the Ο is tightly bonded. The carbon nanotubes in the carbon nanotube film are The surface of the growth substrate forming the carbon nanotube array forms an included angle of 5, wherein the sum is greater than or equal to 0 degrees and less than or equal to 15 degrees. The carbon nanotubes in the carbon nanotube rolled film have different arrangements depending on the manner of rolling. When rolled in the same direction, the carbon nanotubes are arranged in a preferred orientation along a fixed orientation. It will be appreciated that the carbon nanotubes may be arranged in a preferred orientation along a plurality of directions when rolled in different directions. The thickness of the carbon nanotube rolled film is not limited, and is preferably 1 μm to 1 mm. The area of the carbon nanotube rolled film is not limited, and is determined by the size of the carbon nanotube array that is rolled out of the film. When the size of the carbon nanotube array is large, a large area of the carbon nanotube rolled film can be crushed. The carbon nanotube rolling film and its preparation method can be found in Fan Shoushan et al., which was filed on June 29, 1996, and announced on December 21, 1999 in Taiwan No. 1334851, Taiwan Announced Patent "Nano Carbon Tube" Method for preparing a film". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the technology of the present application. The insulating material layer is located on the surface of the carbon nanotube layer, and the insulating material layer functions to insulate the carbon nanotube layer from the thermoacoustic element 102. The layer of insulating material is only distributed on the surface of the carbon nanotube layer, or the insulating material 100112575 Form No. 1010101 Page 19 of 581002020944-0 [0041] Each of the nanocarbons in the layer of carbon nanotubes tube. When the thickness of the insulating material layer is thin, the micropores in the carbon nanotube layer are not blocked, and therefore, the composite structure includes a plurality of micropores. The thermally-sounding element 102 is at least partially suspended relative to the plurality of micro-holes. The plurality of micropores provide a large contact area of the thermoacoustic element 102 with the outside. [0043] The thermo-acoustic device 5〇 provided by the embodiment adopts a carbon nanotube composite structure as the substrate 508, and has the following advantages: First, the nano-tube composite structure includes a carbon nanotube layer and a coating. The insulating material layer covering the surface of the carbon nanotube layer, because the carbon nanotube layer can be composed of a pure carbon nanotube, the carbon nanotube layer has a small density and a relatively low quality, therefore, the heat The sound generating device 50 has a small mass 'convenient application; secondly, the microporous layer in the carbon nanotube layer is composed of a gap between the carbon nanotubes, and the distribution is uniform, and in the case where the insulating material layer is thin, The carbon nanotube composite structure can maintain the uniformly distributed microporous structure, and therefore, the thermo-acoustic element 102 can be more uniformly contacted with the outside air through the substrate 508; third, the carbon nanotube layer has a good flexibility Sex, can be bent many times without being destroyed, so 'the carbon nanotube composite structure has better flexibility.' The thermo-acoustic device 50 using the carbon nanotube composite structure as the substrate 508 is a flexible sounding device. Can be set Any shape is not limited. Referring to Figures 16 and 17, a sixth embodiment of the present invention provides a thermo-acoustic device 60 that includes a substrate 6〇8, a uniform thermal device 104, and a thermo-acoustic component 1〇2. The heating device 1〇4 includes a plurality of first electrodes 104a and a plurality of second electrodes 1〇4b, and the plurality of first electrodes 104a and the plurality of second electrodes 1〇4b and the thermo-acoustic element 102, respectively Electrical connection. 100112575 Form No. A0101 Page 20 of 58 1002020944-0 201240486 [0044] The plurality of first electrodes 104a and a plurality of second electrodes 104b are alternately disposed on the substrate 608. The thermo-acoustic element 102 is disposed on the plurality of first electrodes 104a and the plurality of second electrodes 104b, such that the plurality of first electrodes 104a and the plurality of second electrodes 104b are located on the substrate 608 and the thermo-acoustic components Between 102, the thermally audible element 102 is partially suspended relative to the substrate 608. That is, the plurality of first electrodes 104a, the plurality of second electrodes 104b, the thermally audible elements 102, and the substrate 608 are collectively formed with a plurality of gaps 601, thereby causing the thermally audible elements 102 to have a relatively large contact area with the surrounding air. The distance between each of the adjacent first electrodes 104a and 2b may be equal or unequal. Preferably, the distance between each adjacent first electrode 104a and the second electrode 104b is equal to the distance between the adjacent first electrode 104a and the second electrode 104b, preferably 10 micrometers to 1 cm. [0045] The substrate 608 mainly functions to carry the first electrode 104a and the second electrode. The shape and size of the substrate 608 are not limited to materials which are insulating materials or materials having poor electrical conductivity. In addition, the material of the substrate 6〇8 should have better thermal insulation properties, thereby preventing the heat generated by the thermoacoustic element 102 from being absorbed by the substrate 608, and failing to achieve the purpose of heating the surrounding medium and then vocalizing. In this embodiment, the material of the substrate 608 may be a broken fill, a tree, or the like. 5厘米的厚度为1毫米。 In the present embodiment, the substrate 6〇8 is a square frangible plate having a side length of 4.5 cm and a thickness of 1 mm. The gap 601 is defined by a first electrode 104a, a second electrode 1〇, and the height of the gap 601 depends on the heights of the first electrode 1〇4 and the second electrode 104b. In the present embodiment, the height of the first electrode 1〇4 and the second electrode 104b ranges from 1 μm to 1 cm. Preferably, '100112575 Form No. A0101 Page 21 of 58 1002020944-0 201240486 The height of one electrode 104a and the second electrode 104b is 15 microns. [0047] The first electrode 104a and the second electrode 104b may be layered (filament or strip), rod, strip, block or other shape, and the cross section may be round or square. , trapezoids, triangles, polygons, or other irregular shapes. The first electrode 104a and the second electrode 104b may be fixed to the substrate 608 by bolting or bonding of a bonding agent or the like. In order to prevent the heat of the thermo-acoustic element 102 from being excessively absorbed by the first electrode 104a and the second electrode 104b, the contact area of the first electrode 104a and the second electrode 104b with the thermo-acoustic element 102 is small. Therefore, the shape of the first electrode 104a and the second electrode 104b is preferably a filament shape or a ribbon shape. The material of the first electrode 104a and the second electrode 104b may be selected from a metal, a conductive paste, a conductive paste, indium tin oxide (ITO), a carbon nanotube or a carbon fiber. When the material of the first electrode 104a or the second electrode 104b is a carbon nanotube, the first electrode 104a or the second electrode 104b may have a nanocarbon line structure. The structure of the nanocarbon line-like structure is the same as that of the nanocarbon line-like structure provided in the fourth embodiment. Since the carbon nanotubes in the nanocarbon line-like structure are connected end to end, the nanocarbon line-like structure has good electrical conductivity and can be used as an electrode. [0048] The thermo-acoustic device 60 further includes a first electrode lead 610 and a second electrode lead 612, and the first electrode lead 610 and the second electrode lead 612 are respectively associated with the first electrode 104a of the thermo-acoustic device 60. The second electrode 104b is connected to the second electrode 104b, and the plurality of first electrodes 104a are electrically connected to the first electrode lead 610, and the plurality of second electrodes 104b are electrically connected to the second electrode lead 61 2, respectively. The thermoacoustic device 60 is electrically connected to an external circuit through the first electrode lead 610 and the second electrode lead 612. Such a connection 100112575 Form No. A0101 Page 22/58 page 1002020944-0 201240486 [0049] The splicing method can make the block of the thermally audible element 102 between the first electrode lead 61 〇 and the second electrode lead 612 and greatly By reducing, the sounding efficiency of the thermoacoustic element 102 can be improved. In this embodiment, the plurality of first electrodes 1〇4a and the plurality of second electrodes 104b can function to support the thermoacoustic elements 1〇2, and therefore, the substrate 608 is not an essential element. When the thermo-acoustic device 6 in the present embodiment does not include the substrate 608, the first electrode 104a and the second electrode i〇4b can also protect the thermo-acoustic element 102 while being electrically connected to an external circuit. Supports the thermoacoustic element 1〇2. In the embodiment, the first electrode 104a and the second electrode i4b are filamentary silver electrodes formed by a screen printing method. The number of the first electrodes 1〇4a is four, and the number of the second electrodes 104b is four, and the four first electrodes i〇4a and the four second electrodes 104b are alternately and equally spaced from the substrate 6〇8. Each of the first electrode 104a and the second electrode 1〇4b has a length of 3 cm and a height of 15 μm. The distance between the adjacent first electrode 104a and the second electrode i〇4b is 5 mm. . [0051] In the thermo-acoustic device 60 provided in this embodiment, the thermo-acoustic element 102 is suspended by a plurality of first electrodes 104a and a plurality of second electrodes 104b, and the thermo-acoustic component 1〇2 is added. The contact area of the surrounding air facilitates heat exchange between the thermo-acoustic element 1〇2 and the surrounding air, improving the vocalization efficiency. [0052] Referring to FIG. 18 and FIG. 19, a seventh embodiment of the present invention provides a thermo-acoustic sounding device 70. . The thermal sounding device 7A includes a substrate 608, a uniform thermal device 104, and a thermoacoustic element 1〇2. The heating device 104 includes a plurality of 100112575 form numbers A0101, 23 pages, 58 pages, 1002020944-0 201240486 first electrodes 10a4a and a plurality of second electrodes 104b, the plurality of first electrodes 104a and a plurality of second The electrodes 104b are electrically connected to the thermo-acoustic elements 102, respectively. The thermoacoustic element 102 includes a graphene film. The thermo-acoustic device 70 provided in this embodiment has substantially the same structure as the thermo-acoustic device 60 provided in the sixth embodiment, except that in the present embodiment, two adjacent first electrodes 104a and second are provided. At least one spacer element 714 is further included between the electrodes 104b. [0053] The spacer element 714 and the substrate 608 can be separate components that are secured to the substrate 608 by, for example, bolting or adhesive bonding. Alternatively, the spacer element 714 can be formed integrally with the substrate 608, i.e., the material of the spacer element 714 is the same as the material of the substrate 608. The spacer element 714 is not limited in shape and may be in the form of a sphere, a filament or a ribbon. In order to maintain the thermal sounding element 102 with a good vocalization effect, the spacer element 714 should have a smaller contact area with the thermally audible element 102 while supporting the thermoacoustic element 102, preferably the spacer element 714 and the thermal vocalization The elements 102 are in point or line contact. In the present embodiment, the material of the spacer member 714 is not limited, and may be an insulating material such as glass, terracotta or resin, or a conductive material such as a metal, an alloy or an indium tin oxide. When the spacer element 714 is a conductive material, it is electrically insulated from the first electrode 104a and the second electrode 104b, and, preferably, the spacer element 714 is parallel to the first electrode 104a and the second electrode 104b. The height of the spacer element 714 is not limited, and is preferably 10 micrometers to 1 centimeter. In the present embodiment, the spacer member 714 is a filament-like silver formed by a screen printing method, and the height of the spacer member 714 is the same as the height of the first electrode 104a and the second electrode 104b, and is 20 μm. The spacer element 714 is disposed in parallel with the first electrode 100112575 form number A0101 page 24/58 page 1002020944-0 201240486 104a and the second electrode 10b4 due to the height of the spacer element 714 and the first electrode 104a and the second electrode The height of 104b is the same, so the thermo-acoustic elements 1〇2 are located on the same plane. [0055] The thermo-acoustic element 102 is disposed on the spacer element 714, the first electrode 104a, and the second electrode 104b. The thermoacoustic element 102 is spaced apart from the substrate 608 by the spacer element 714, and forms a space 701 with the substrate 608, the space 701 being the first electrode 104a or the second electrode 104b, the spacer element 714, substrate 608 and thermally audible element 102 are formed together. Further, in order to prevent the thermoacoustic element 1〇2 from generating a standing wave' to maintain a good sounding effect of the thermoacoustic element 102, the distance between the thermoacoustic element 102 and the substrate 608 is preferably 10 μm to 1 cm. In this embodiment, since the heights of the first electrode 104a, the second electrode 104b, and the spacer element 714 are 20 micrometers, the thermoacoustic element 1〇2 is disposed on the first electrode 104a and the second electrode 104b and The spacer element 714, thus the distance between the thermoacoustic element 1〇2 and the substrate 608 is 20 microns. [0056] It can be understood that the first electrode 104a and the second electrode 104b also have a certain supporting effect on the thermo-acoustic element 102, but between the first electrode 104a and the second electrode 104b When the distance is large, the support effect on the thermo-acoustic element 1 〇 2 is not good, and the spacer 714 ′ is provided between the first electrode 1 〇 4 a and the second electrode 1 〇 4 b to provide better support for heat. The function of the sounding element 1〇2 is such that the thermo-acoustic element 102 is spaced from the substrate 608 and forms two spaces 〇1' with the substrate 608 to ensure that the thermo-acoustic element 1〇2 has a good vocalization effect. 4 See Fig. 2G' The first embodiment of the present invention provides a thermoacoustic device 100112575. The Hi-fi sounding device includes at least one heating device and a plurality of form numbers AG101^25%/% 58 I 1002020944-0 [0057] 201240486 Thermal sounding elements. The plurality of thermo-acoustic elements include two types: first, the number of the plurality of thermo-acoustic elements is at least two, and the thermo-acoustic elements are not in contact with each other; and second, the plurality of thermal-induced sounds The number of components is one, and the thermo-acoustic component is disposed on a substrate having a curved surface such that a plurality of normal directions are formed or the thermo-acoustic components are bent and disposed on different planes. The heating means may correspond to the thermo-acoustic elements one-to-one, or one heating means may correspond to a plurality of thermo-acoustic elements. The heating means may also be a unitary structure consisting of a plurality of portions corresponding to the plurality of thermally audible elements. In the present embodiment, the thermo-acoustic device 80 includes a first heating device 804, a second heating device 806, a substrate 208, a first thermo-acoustic component 8〇23, and a second thermo-acoustic component. 802b. [0058] The substrate 208 includes a first surface (not labeled) and a second surface (not labeled). The shape, size and thickness of the substrate 208 are not limited. The first surface and the second surface may be flat, curved or uneven surfaces. The first surface and the second surface may be adjacent two surfaces or may be opposite surfaces. In this embodiment, the substrate 2〇8 is a rectangular parallelepiped structure, and the first surface and the second surface are two opposite surfaces. The substrate 208 further includes a plurality of through holes 208a penetrating the first surface and the second surface such that the first surface and the second surface become uneven surfaces. The plurality of through holes 208a may be disposed in parallel with each other. [0059] The first thermo-acoustic component 80 2a is disposed on the first surface of the substrate 208 and is at least partially suspended relative to the first surface. The second thermal sounding element 802b is disposed on the second surface and is at least partially suspended relative to the second surface 100112575 Form No. A0101 Page 26 of 58 1002020944-0 201240486 咕. The first thermo-acoustic element 802a is a graphene film. The second thermoacoustic element 802b is a graphene film or a nano tube breaking layer. The structure of the nano-tube layer is the same as that of the carbon nanotube layer disclosed in the fifth embodiment. Since the carbon nanotube layer comprises at least one wide nano-plate, the thickness of the nano-tube layer is smaller and has a smaller heat per unit area. Therefore, the carbon nanotube layer can also be used as a thermo-acoustic element. [〆6〇] The second heating device 804 includes a first electrode 104a and a second electrode 104b. The first electrode 104a and the second electrode 104b are electrically connected to the first thermo-acoustic element 802a, respectively. In this embodiment, the first electrode 104a and the second electrode 104b are respectively disposed on the surface of the first thermo-acoustic element 8〇2a and are flush with the opposite sides of the first thermo-acoustic element 802a. The second heating device 8A includes a first electrode i4a and a second electrode 10b. The first electrode 104a and the second electrode 1b4b are electrically connected to the second thermo-acoustic element 802b, respectively. In this embodiment, the first electrode 104a and the second electrode 104b are respectively disposed on the surface of the rib of the second thermoacoustic element (10), and opposite sides of the first thermo-acoustic element 802a-ip* [0061] The thermo-acoustic device 8 provided in this embodiment is a double-sided sounding device, and the sound-transmitting range emitted by the thermo-acoustic element can be made larger by providing a thermo-acoustic element on two different surfaces. And more clearly. It is possible to control the heating device to make any of the heat-producing sounds sound, or at the same time: the sound 'to make the heat-sounding device more widely used. Further, when a thermo-acoustic component fails, another thermo-acoustic component can continue to work, improving the thermal-induced sound 100112575 Form No. A0101 Page 27 of 58 page 1002020944-0 201240486 device Service life. Referring to FIG. 21, a ninth embodiment of the present invention provides a thermo-acoustic sounding device 90. The thermo-acoustic device 90 of the present embodiment is different from the structure of the thermo-acoustic device 80 of the eighth embodiment in that the thermo-acoustic device 90 provided in this embodiment is a multi-faceted sound-emitting device. [0063] In this embodiment, the substrate 908 is a rectangular parallelepiped structure including four different surfaces, which are rugged surfaces. The thermo-acoustic device 90 includes four thermo-acoustic elements 102, one of which is a graphene film, and the other three of the thermo-acoustic elements 102 may be a graphene film or a carbon nanotube. Floor. [0064] Each of the heating devices 104 includes a first electrode 104a and a second electrode 104b, respectively. The first electrode 104a and the second electrode 104b are electrically connected to a thermo-acoustic element 102, respectively. [0065] The thermo-acoustic device 90 provided in this embodiment can realize the propagation of sound in a plurality of directions. Referring to FIG. 22, a tenth embodiment of the present invention provides a thermo-acoustic device 100. The thermoacoustic device 100 includes a thermo-acoustic component 102, a substrate 208, and a uniform thermal device 1 004. The thermally audible element 102 is disposed on the substrate 208. The difference between the structure of the thermo-acoustic device 100 provided in this embodiment and the thermo-acoustic device 20 provided in the second embodiment is that in the thermo-acoustic device 100 provided in the embodiment, the heating device 1004 is a laser. , or other electromagnetic wave signal generating device. The electromagnetic wave signal 1 020 emitted from the heating device 1 004 is transmitted to the thermo-acoustic element 102, and the thermo-acoustic element 102 sounds. 100112575 Form No. A0101 Page 28 of 58 1002020944-0 201240486. [0067] The heating device 1 004 can be placed in the thermoacoustic element 102. When the heating device 1 004 is a laser, when the substrate 2 〇 8 is a transparent substrate, the laser device can be disposed corresponding to the surface of the substrate 208 away from the thermo-acoustic element 1 〇 2, thereby A laser beam emitted from the laser is transmitted through the substrate 2 to 8 to the thermoacoustic element 102. In addition, when the electromagnetic device 1 〇〇 4 emits an electromagnetic wave signal, the electromagnetic wave signal can be transmitted to the thermo-acoustic element 1 〇 2 through the substrate 2 , 8 , and at this time, the heating device 1004 can also correspond to The substrate 208 is disposed away from the surface of the thermo-acoustic element 1〇2. In the thermoacoustic device 100 of the present embodiment, when the thermoacoustic element 1〇2 is irradiated with electromagnetic waves such as a laser, the thermoacoustic element 丨〇2 is excited by absorbing the energy of the electromagnetic wave, [0068] The absorbed light energy is converted into heat in whole or in part by non-radiation. The temperature of the thermoacoustic element 1 〇 2 varies according to the frequency and intensity of the electromagnetic wave signal 1020, and is rapidly exchanged with the surrounding air or other gas or liquid medium, so that the temperature of the surrounding medium also generates an equal frequency. The change causes the surrounding medium to expand and contract rapidly, thereby making a sound. 〇[0069] Since the thermal sound generating device works by converting a certain form of energy into heat at a very fast rate and performing rapid heat exchange with the surrounding gas or liquid medium, the medium expands and contracts, thereby Make noise. It can be understood that the energy form is not limited to electric energy or light energy, and the heating device is not limited to the electrode or electromagnetic wave signal generator in the above embodiment, and any of the thermo-acoustic elements can be heated and heated according to audio changes. The means of surrounding medium can be considered as a consistent thermal device and is within the scope of the present invention. [0070] 100112575 The graphene film of the present invention has good toughness and mechanical strength, so the form number A0101 page 29/58 page 1002020944-0 201240486 can be conveniently made into heat of various shapes and sizes. Sound device. The thermoacoustic device of the present invention can be used not only as a speaker alone but also conveniently in various electronic devices requiring a sounding device. The thermal squealing device can be built in the housing of the electronic device or on the outer surface of the housing as a sounding unit of the electronic device. The thermoacoustic device can replace the traditional sounding unit of the electronic device, and can also be used in combination with a conventional sounding single. The thermoacoustic device can be used in conjunction with other electronic components of the electronic device or a utility processor or the like. It can also be connected to the electronic device through a wired or wireless method, such as a signal transmission line and a USB interface of the electronic device, and a wireless method such as a blue tooth connection with the electronic device. The thermoacoustic device can also be mounted or integrated on the display screen of the electronic device as a sounding unit of the electronic device. The electronic device can be an audio, a mobile phone, an MP3, an MP4, a game console, a digital camera, a digital video camera, a television or a computer. For example, when the electronic device is a mobile phone, since the thermo-acoustic device provided by the embodiment is a transparent structure, the thermo-acoustic device can be attached to the surface of the display screen of the mobile phone by mechanical fixing or adhesive. When the electronic device is Mp3, the thermo-acoustic device can be built in the MP3 and electrically connected to the circuit board inside the MP3. When the MP3 is powered on, the thermo-acoustic device can emit sound. [0071] In summary, this It has clearly stated that it has met the requirements of the invention patent and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention is not limited thereto. Equivalent modifications or variations made by those skilled in the art of the present invention in light of the spirit of the present invention are intended to be included within the scope of the following claims. 100112575 Form No. Α01-01 Page 30 of 58 1002020944-0 201240486 [Simple Description of the Drawings] [0072] Fig. 1 is a plan view of a thermo-acoustic device according to a first embodiment of the present invention. 2 is a cross-sectional view taken along line 11 - 11 of FIG. 1. 3 is a top plan view of a thermo-acoustic device according to a second embodiment of the present invention. 4 is a cross-sectional view taken along line IV-IV of FIG. 3. 5 is a top plan view of a thermo-acoustic device according to a third embodiment of the present invention. [ Fig. 6] Fig. 6 is a cross-sectional view taken along line VI-VI of Fig. 5 in a case of the third embodiment. Figure 7 is a cross-sectional view taken along line VI-VI of Figure 5 in another case of the third embodiment. 8 is a top plan view of a thermo-acoustic device according to a fourth embodiment of the present invention. 9 is a cross-sectional view taken along line IX-IX of FIG. 8. [0081] FIG. 10 is a scanning electron micrograph of a non-twisted nanocarbon line-like structure employed in the thermoacoustic device of FIG. [0082] FIG. 11 is a scanning electron micrograph of a twisted nanocarbon line-like structure employed in the thermoacoustic device of FIG. 12 is a side cross-sectional view showing a thermoacoustic device using a carbon nanotube layer coated with an insulating layer as a substrate according to a fifth embodiment of the present invention. [0084] FIG. 1 is a scanning electron micrograph of a carbon nanotube film taken by the carbon nanotube layer of FIG. [0085] FIG. 14 is a 100112575 scanning electron micrograph of a carbon nanotube flocculation film used in the carbon nanotube layer of FIG. Form No. A0101 Page 31 of 58 1002020944-0 201240486 [0086] FIG. 1 is a scanning electron micrograph of a carbon nanotube rolled film used in the carbon nanotube layer of FIG. [0088] [0091] [0093] [0099] [0099] [0099] FIG. 16 is a sixth embodiment of the present invention. A top view of the thermo-acoustic device is shown in cross section taken along the line XV11-XVII in Fig. 16. Figure 18 is a plan view of a thermoacoustic device according to a seventh embodiment of the present invention. Figure 9 is a cross-sectional view taken along line XIX-XIX of Figure 18. Figure 20 is a side cross-sectional view showing a thermoacoustic device according to an eighth embodiment of the present invention. Figure 21 is a side cross-sectional view showing a thermoacoustic device according to a ninth embodiment of the present invention. Figure 22 is a side view of a thermoacoustic device according to a tenth embodiment of the present invention. [Main component symbol description] Thermoacoustic device: 10; 20; 30; 40; 50; 60; 70; 80; 90; Sounding element: 102 Heating device: 104; 1004 First electrode: 104a Second electrode: 104b Substrate: 208; 308; 408; 508; 608; 908 Form number A0101 Page 32 of 58 page 1002020944-0 201240486 ' [0100] Hole: 208a [0101] Slot: 308a [0102] Surface: 308b [0103] First line structure: 408a [0104] Second line structure: 408b [0105] Mesh: 408c [0106] Gap: 601 [0107] First electrode lead: 610 [0108] Second electrode lead: 612 [0109] Spacer element: 714 [0110] First thermo-acoustic element: 802a [0111] Second thermo-acoustic element: 802b [0112] ] Ο First heat device: 804 [0113] Second heat device: 806 [0114] Electromagnetic wave signal: 1020 100112575 Form number A0101 Page 33 / Total 58 pages 1002020944-0