[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201249529A - Nanofiltration membrane - Google Patents

Nanofiltration membrane Download PDF

Info

Publication number
TW201249529A
TW201249529A TW101104214A TW101104214A TW201249529A TW 201249529 A TW201249529 A TW 201249529A TW 101104214 A TW101104214 A TW 101104214A TW 101104214 A TW101104214 A TW 101104214A TW 201249529 A TW201249529 A TW 201249529A
Authority
TW
Taiwan
Prior art keywords
polymer particles
membrane
nanofiltration membrane
polymer
nanofiltration
Prior art date
Application number
TW101104214A
Other languages
Chinese (zh)
Inventor
Martin Mechelhoff
Thomas Frueh
Christopher Kohl
Original Assignee
Lanxess Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland Gmbh filed Critical Lanxess Deutschland Gmbh
Publication of TW201249529A publication Critical patent/TW201249529A/en

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to a nanofiltration membrane having a porous support membrane, the surface of the support membrane being coated with polymer particles which are prepared by emulsion polymerization and which have an average particle diameter of less than 70 nm, preferably between 30-60 nm, more preferably between 40 - 50 nm.

Description

201249529 六、發明說明: 【發明所屬之技術領域】 本發明關於具有多孔支撐膜的奈米過濾薄膜,用 於生產這種膜的方法、及其用途。 【先前技術】 在化學產業、食品產業、飲料產業、電子產業和 製藥產業,例如使用用於分離固體/液體混合物和液體 的膜。在環境技術的背景下,該等膜還用於純化廢水 以及生產飲用水。 從本領域已知多種膜分離技術。它們包括微濾、 超濾以及奈米濾,以及還有逆滲透。該等技術可以歸 類為機械分離法。該等分離機制由不同的膜結構支 配。該等結構藉由直徑小於有待分離的顆粒的直徑的 膜孔來進行分離。 除了空間位阻效應外,在使用奈米過濾薄膜和逆 滲透膜的分離中的另一關鍵機制係溶液中離子的靜 電相互作用或部分離解的烴類與相應帶電基團在水 溶液的膜表面上的靜電相互作用。這種相互作用分別 允許分離兩種具有類似大小顆粒半徑但是電荷或官 能度不同的物質。類似地,在具有相應小孔的膜的情 況下,例如用於奈米濾或逆滲透,分離例如可以基於 溶液中存在的物質擴散通過滲透膜的趨勢的差異。 201249529 用於在壓力下處理液體的已知方法係微濾、超濾 和奈米遽。奈米濾、、超濾、和微過濾、薄膜的孔徑大約係 0.001 μιη 至 10·0 μιη。 為了表徵膜,通常採用關於一物質的截留R。 [%] W(進料)-w(滲透物), W(進料) 其中W係一特定物質的質量分數。 截留描述了在滲透物(來自拉丁文“permeare”= 通過)中的一分離的物質相對於在進料中的濃度的百 分比分數。它不僅取決於溫度而且還取決於跨膜壓或 流速以及起始溶液的濃度。滲餘物(來自拉丁文 “retenere”=保留)構成了有待分離的物質的浪度,與 進料相比這個濃度增加。 這示出了當評定一膜的分離特性時的難度。通常 由截留(cut-off)分子連同流速可得到膜的粗分類。 這個截留與對於其該膜具有至少90%的截留的莫耳 質量係同義的,並且可以是非常不同的,特別是在奈 米濾範圍内,取決於有待分離的物質的分子構造。奈 米過濾薄膜的截留典型地是&lt; 1500 g/mol。超過濾薄 膜典型地具有〈約150000 g/mol的截留。 同樣已知的是基於有機聚合物的膜,它們用於在 分子水平的分離,如氣體的分離,例如以及還有全蒸 發法和/或水蒸氣滲透。然而該等聚合物膜的一缺點係 它們的短壽命,這係由於聚合物膜對於溶劑的敏感 201249529 溶劑破壞了膜材料或引起它溶脹。此外, σ物獏的相對低溫度耐受性提出了 —問題。㈢通聚 陶竟膜亦頻繁地被使用,它們具有相對長的壽 命,因為根據它們的構成’它們對於有機化合物、酸 或鹼係非常大惰性的並且此外它們具有比聚合物材 料更大的溫度耐受性。因此,它們還可以用於化學操 作中的分離任務,如在蒸汽滲透中。該等種類的陶瓷 獏/、型地疋藉由溶膠-凝膠法或藉由浸塗法來生產 的’以這樣-方絲紐上生產具有料厚度和孔徑 的陶究層的多層系統’其中執行實際分離任務的頂層 具有最小的孔並且被構造為是盡可能薄的。由於陶瓷 ^料的低彈性,陶賴對於機械負荷是敏感的,並且 谷易破裂。與聚合物膜相反,為了製造節省空間的捲 繞模組,它們不能被卷起。 一通书可以說明的是’對於所有已知的膜合成法, 一主要,題係崎確和-致的方式控制對分離活性 孔形狀的設置,並且因此產生非常窄的孔 X對於寬的pH範圍和眾多應用,由非常寬泛種類 ^ t 5物製成的聚合物膜能以相肖有利的成本獲 ::2在Ϊ多數情況下缺乏對有機溶劑的耐受性, 抖。非常高和/或非常低的ΡΗ水平下同樣缺乏耐受 曰外’在高於80〇c下的持久溫度穩定性幾乎不 疋 徵雖然存在針對改進聚合物膜的該等特性的 201249529 多種方法’通常情況是沒有滿足以上該等要求中的一 種。此外,在非常高的溫度下,大多數聚合物係可塑 地變形的。這導致了當該等膜在非常高的溫度下在壓 力下操作時,它們壓緊在一起。這種壓緊引起了一膜 的孔微結構完全壓緊,由此在對於過濾的耐受性方面 產生了急劇增加。因此引起了在流動方面的降低。常 規聚合物材料的另一缺點係針對有機溶劑和油類的 差的耐受性,以及油類對聚合物的增塑作用。這不利 地影響了該等膜的分離能力。 膜技術在液體混合物的分離中相當重要。在藉由 逆滲透從鹽水中回收飲用水中,並且在產物的分^純 化中,具體地,越來越多地使用超濾和奈米濾技術和 逆滲透膜。 總而言之,在薄膜方法中,將稀釋溶液濃縮並且 將有機溶劑、水溶液或鹽溶液分離出。因此,在濃縮 的並且可能低鹽含量的溶液令得到了有價值的化合 物或污染物化合物使得後續存貯、運輸、處置以及進 一步加工更加有成本效益。特別地在廢水處理中,膜 處理的目的係以無污染或僅僅輕微污染的形式回收 最大部分的體積之滲透物。濃縮的滲餘物能以更小的 成本和努力就有價值的剩餘化合物而言進行分離純 化,或能以這種濃縮的形式更加成本有效地處置,例 如像藉由燃燒。 膜技術領域包括非常寬泛種類的不同方法。因 此,同樣存在不同的膜以及該等膜的不同的技術設 201249529 計。技術上相關的膜分離技術主要作為錯流過,來操 作。由於高流速和特定的膜量構造,高切變率旨在降 低膜沾汙並且降低濃度極化。 可商購的奈米過濾薄膜係藉由相介面冷凝而製 成的複合臈,如在US 5,049,167中所述。然而該等已 知的膜係非常昂貴的並且不便於生產、僅在具有昂貴 意義(cost implications)的安全措施中是可生產的, 因為致癌的二胺以及高反應性的丙烯醯氯係所使用 的反應物的例子。這種膜可以具有多種構型,例如處 於平膜式模組、盒式模組、螺旋捲繞式模組或空纖維 式模組的形式。 此外,商用的過濾薄膜通常可以僅在高達大約 80°C下的過程溫度中使用。 【發明内容】 +因此本發明的目的係提供一種高性能奈米過濾 薄膜,其基於合適的表面修飾而展示出高的熱負荷承 受能力、在有機和無機溶液中以及還有在高和低的pH 水平下的良好的穩定性以及此外還有良好的分離特 性。本發明的另一目的係提供一方法,用這種方法有 可能對於所討論的膜產生確定的孔徑。 從現有技術可付知,聚合物顆粒可以放置在具有 相對寬的孔徑分佈的多孔基質上,為的是得到具^相 辦窄的孔徑分佈的複合膜。在顆粒之間的空腔形成了 201249529 孔,可以用該等孔從液體進行分離。以這種方式得到 的複合膜例如可以用作超濾和微過濾薄膜。 因此,為了達到這個目的,提供了一具有在開始 時指明的形式的奈米過濾薄膜,其中該支撐膜的表面 塗覆有聚合物顆粒,該等聚合物顆粒係藉由乳液聚合 製成的並且具有&lt; 70 nm的平均粒徑,優選在30 nm 到65 nm之間,更優選在40 nm到50 nm之間。 在此在一膜的過濾品質(例如由截留來表徵)與 該過濾薄膜的構造之間作出了區分。 以下對於奈米過濾薄膜的參考係使用在S 100 nm 的粒徑範圍内的聚合物顆粒用於生產此類膜。術語 “奈米過濾薄膜”對於它的分離特性不具有任何含意。 分離效果、分離特性和分離行為作為同義詞使 用。分離效果係藉由上述截留來定義的。 聚合物顆粒和奈米顆粒在此作為同義詞使用。 使用藉由乳液聚合製成的並且具有&lt;70 nm、優選 在30 nm到65 nm之間、更優選在40 nm到50 nm之 間的平均粒徑的聚合物顆粒提供了優於其他聚合物 顆粒的多種優點,因為該等聚合物顆粒的化學和物理 特性(如顆粒大小、顆粒形態、溶脹行為、催化活性、 硬度、尺寸穩定性、轴性、表面能、抗老化性以及衝 擊韌性)可以被調節。這一方面係藉由生產方法、更 具體地籍由聚合物方法來實現的,並且還藉由選擇合 適的基礎單體,另一方面係藉由選擇合適的官能團來 實現的,在聚合物顆粒中該等官能團的濃度和佔有範 201249529 圍可以在寬限度内定製或調節。 因此該分離活性膜係使用藉由乳液聚合製成的 並且具有&lt; 70 nm、優選在30 nm到65 nm之間、更優 選在40 nm到50 nm之間的平均粒徑的聚合物顆粒產 生的膜,還稱為本發明的奈米過濾薄膜的聚合物層。 藉由乳液聚合更具體地是指一本身已知的並且 在其中使用的反應介質通常是水的方法,其中所使用 的單體在存在或不存在乳化劑和自由基形成物質下 被聚合,形成通常水性的聚合物膠乳。(除其它之外 參見 R0mpp Lexikon der Chemie,Volume 2,10th Edition, 1997; P. A. Lovell, M. S. El-Aasser, Emulsion Polymerization and Emulsion Polymers, John Wiley &amp; Sons, ISBN: 0 471 96746 7; H. Gerrens, Fortschr. Hochpolym.Forsch. 1,234 (1959))。與懸浮聚合或分 散聚合不同’乳液聚合通常產生相對精細的顆粒,這 允許了在分離活性層中更小的空隙直徑以及由此的 更小的孔徑。粒徑小於500 nm的顆粒通常是不能藉 由懸浮聚合或分散聚合得到的,並且因此該等顆粒對 於本專利申請書的目的通常是不適合的。 出人意料地’發現由於選擇確定的聚合物顆粒, 不再存在任何需要來使用附加的熱或化學手段來穩 定本發明的奈米過濾薄膜。 單體的選擇被用於調節聚合物顆粒的玻璃轉移 溫度以及玻璃轉移的寬度。聚合物顆粒的玻璃轉移溫 度(Tg)和玻螭轉移的寬度(ATg)係藉由差示掃描 201249529 熱量法(DSC)來確定的,優選如以下所述。為了確 疋Tg和ATg ’進行了兩個冷卻/加熱循環。在第二個熱 循環中確定了 Ts和△&amp;。在來自Perkin-Elmer的樣品 支^標準紹舟皿)中,該測定使用大約10-12 mg 的選疋的聚合物顆粒。第-個D S C彳盾環储由用液氮 首先將樣本冷卻到-l〇〇°C並且然後將其以20 K/min ,速率加熱到+150%而進行的。第二個DSC循環係 藉由一旦達到+15〇〇C的樣品溫度時將樣品立即冷卻 來開始的。在第二個加熱循環中,如在第一個循環中 那樣再次將樣本加熱到+15〇C)C&gt;在第二個循環中的加 熱速率又是20 K/min。在第二個加熱過程的Dsc曲 線上以圖解形式確定Tg和ΔΑ。為此目的,將三條直 線放在該DSC曲線上。將第一條線放在DSC曲線的 ,於Tg的部分上,將第二條線放在該曲線經過Tg的 二支上,具有拐點,並且將第三條線放在DSC曲線的 同於Tg的位置上。以這種方式,得到了具有兩個交 又點的二條直線。這兩個交叉點中的每一個都藉由一 特徵溫度來標記。玻璃轉移溫度&amp;係作為這兩個溫度 的平均值獲得,並且玻轉移的寬度A係從這兩個 溫度之間的差而獲得。 該等聚合物顆粒優選具有-85°C到150°C、更優 選_75°C到UyC ’非常優選_7〇。〇到9〇〇c的玻璃轉 移溫度(Tg)。 、對於根據本發明使用的聚合物顆粒的玻璃轉移 /m度的寬度優選是大於5°c,更優選大於1〇〇C。 201249529 藉由乳液聚合製備的聚合物顆粒優選是橡膠狀 的0 橡膠狀聚合物顆粒優選是基於共軛二烯(例如像 丁二稀、異戊二烯、2-氣丁二烯以及2,3-二氯丁二 稀)、乙酸乙烯酯、苯乙烯或其衍生物、2-乙烯吡啶 以及4-乙烯吡啶、丙烯腈、丙烯醯胺、曱基丙烯醯胺、 四氣乙烯、偏二氟乙烯、六氟丙烯、以及含有雙鍵的 經基的、環氧的、胺基的、羰基的以及酮類的化合物 的那些。 優選的單體或單體組合包括以下各項:丁二烯、 異戊二烯、丙烯腈、苯乙烯、α-曱基苯乙烯、氯丁二 烯、2,3-二氣丁二烯、丙烯酸丁酯、丙烯酸2_乙基己 醋、甲基丙烯酸羥基乙酯、甲基丙烯酸縮水甘油酯、 丙稀酸、雙丙酮丙烯醯胺、四氟乙稀、偏二氟乙烯以 及六敗丙稀。 “基於’’在此是指該等聚合物顆粒按重量計優選由 大於60%、更優選大於70%、非常優選大於90%的程 度的所述的單體組成。 該等聚合物顆粒可以是交聯的或非交聯的。該等 聚合物顆粒可以更具體地是基於均聚物或無規共聚 物的顆粒。術語均聚物或無規共聚物對於熟習該項技 術者是已知的並且例如在 Vollmert,Polymer Chemistry, Springer 1973 中進行了 說明。 201249529 作為包括官能團的橡膠狀交聯的或非交聯的聚 合物顆粒的聚合物基礎,更具體地可以是以下各項: BR: 聚丁二烯, ABR: 丁二烯/丙烯酸Ci·4烷基酯共聚物, IR: 聚異戍二烯, SBR: 無規苯乙烯-丁二烯共聚物’具有苯乙烯含 里按重量計1 _60%、優選5-50%。 FKM: 氟化橡膠, ACM: 丙烯酸酯橡膠, nbr: 聚丁二烯-丙烯腈共聚物,具有丙烯腈含量 按重量計5-60%、優選10-60%, CR: 聚氣丁二烯, EAM: 乙烯/丙烯酸酯共聚物 EVM: 乙烯/乙酸乙烯酯共聚物。 其他優選的聚合物顆粒係熱塑性的並且基於甲 基丙烯酸酯、更具體地甲基丙烯酸曱酯、苯乙烯、α· 甲基苯乙烯以及丙烯腈。 該等聚合物顆粒優選具有近似球形的幾何形狀。 根據本發明使用的聚合物顆粒具有小於70 nm、 優選在30 nm到65 nm之間、更優選在40 nm到50 nm 之間的平均粒經。 平均粒彳生係藉由超速離心法使用來自乳液聚合 的聚合物顆粒的水㈣乳來確定的。該方法得出粒徑 的平均值(考慮任何團聚體)(H. G. Miiller(1996)膠 12 201249529 體聚合物科學(Colloid Polymer Science ) 267: 1113-1116 和 W. Scholtan,Η· Lange (1972) Kolloid-Zu. Z.聚合物(Polymere) 250: 782)。該超速離心法具 有的優點係:表徵了全部粒徑分佈,並且不同的平均 數(如數均和重均)可以從該分佈曲線計算。根據本 發明使用的平均直徑數指的是重均。有可能使用直徑 數如、d5〇以及dS()。該等數指的是按重量以%計分 別按重量計10%、50%和80%的顆粒具有小於相應的 數值的直徑。 藉由動態光散射的直徑確定係在膠乳上進行 的。常規的鐳射係在633 nm (紅光)和在532 nm (綠 光)下操作的那些。動態光散射產生了對於粒徑分佈 曲線的平均值。根據本發明使用的平均直徑數與這 平均值有關。 5 m 〜,队來σ木取侑,具肀藉由改變 反應物以及還有乳化舰度、引發劑濃度、有機相邀 水相的液體關、親水單體與疏水單體的比例、六^ =的量值、聚合溫度等來在—寬的直徑範圍内= 在聚合反應之後,藉由真空蒸顧或藉由用過 汽氣提來處理膠乳’為的是去除揮發分、更具體地^ 反應的單體。 離純 所製備的聚合物顆粒不需要任何另外的分 化,例如藉由凝結法。 201249529 在一優選實施方式中,藉由乳液聚合製備的並且 根據本發明使用的聚合物顆粒係至少部分交聯的。 藉由乳液聚合製備的聚合物顆粒的交聯係優選 藉由在聚合反應中加入多官能單體來實現的,例如藉201249529 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a nanofiltration membrane having a porous support membrane, a method for producing such a membrane, and uses thereof. [Prior Art] In the chemical industry, the food industry, the beverage industry, the electronics industry, and the pharmaceutical industry, for example, a membrane for separating a solid/liquid mixture and a liquid is used. In the context of environmental technology, these membranes are also used to purify wastewater and produce potable water. A variety of membrane separation techniques are known in the art. They include microfiltration, ultrafiltration, and nanofiltration, as well as reverse osmosis. These techniques can be classified as mechanical separation methods. These separation mechanisms are governed by different membrane structures. The structures are separated by membrane pores having a diameter smaller than the diameter of the particles to be separated. In addition to the steric hindrance effect, another key mechanism in the separation between the nanofiltration membrane and the reverse osmosis membrane is the electrostatic interaction of the ions in the solution or the separation of the decomposed hydrocarbons and the corresponding charged groups on the membrane surface of the aqueous solution. Electrostatic interaction. This interaction allows for the separation of two species having similarly sized particle radii but different charge or official abilities. Similarly, in the case of a membrane having corresponding pores, such as for nanofiltration or reverse osmosis, separation may be based, for example, on the difference in the tendency of substances present in the solution to diffuse through the membrane. 201249529 Known methods for treating liquids under pressure are microfiltration, ultrafiltration and nanopellets. For nanofiltration, ultrafiltration, and microfiltration, the pore size of the membrane is approximately 0.001 μηη to 10·0 μιη. In order to characterize the membrane, a cut-off R for a substance is usually employed. [%] W (feed) - w (permeate), W (feed) where W is the mass fraction of a particular substance. Interception describes the percentage of the concentration of a separated material in the permeate (from the Latin "permeare" = pass) relative to the concentration in the feed. It depends not only on the temperature but also on the transmembrane pressure or flow rate and the concentration of the starting solution. The retentate (from the Latin "retenere" = retention) constitutes the wave of the substance to be separated, which is increased compared to the feed. This shows the difficulty in assessing the separation characteristics of a film. The crude classification of the membrane is typically obtained from cut-off molecules along with the flow rate. This entrapment is synonymous with a molar mass system having at least 90% entrapment for its membrane, and can be very different, particularly within the nanofiltration range, depending on the molecular configuration of the material to be separated. The retention of the nanofiltration membrane is typically &lt; 1500 g/mol. Ultrafiltration membranes typically have a cutoff of <about 150,000 g/mol. Also known are organic polymer based membranes which are used for separation at the molecular level, such as gas separation, for example and also for full evaporation and/or water vapor permeation. However, a disadvantage of such polymeric films is their short lifetime due to the sensitivity of the polymeric film to solvents. 201249529 The solvent destroys the film material or causes it to swell. In addition, the relatively low temperature tolerance of σ species poses a problem. (iii) Polymeric ceramic membranes are also frequently used, they have a relatively long life because, depending on their composition, they are very inert to organic compounds, acids or bases and in addition they have a greater temperature than polymeric materials. Tolerance. Therefore, they can also be used for separation tasks in chemical operations, such as in steam infiltration. These types of ceramic crucibles/type crucibles are produced by a sol-gel method or by dip coating method to produce a multi-layered system of ceramic layers having a material thickness and pore size on such a square wire. The top layer that performs the actual separation task has the smallest holes and is constructed to be as thin as possible. Due to the low elasticity of the ceramic material, Tao Lai is sensitive to mechanical loads and the valley is easily broken. In contrast to polymer films, in order to make space-saving wound modules, they cannot be rolled up. A book can explain that 'for all known membrane synthesis methods, one main, the problem is to determine the shape of the separation active pores, and thus produce a very narrow pore X for a wide pH range. And for many applications, polymer membranes made from a very wide variety of materials can be obtained at a very favorable cost: 2 in most cases lacking tolerance to organic solvents, shaking. Very high and/or very low enthalpy levels are also lacking tolerance. 'Permanent temperature stability above 80 〇c is almost unremarkable. Although there are many methods for improving these properties of polymer membranes 201249529' Usually, one of the above requirements is not met. Moreover, at very high temperatures, most polymers are plastically deformable. This results in the films being pressed together when they are operated under pressure at very high temperatures. This compaction causes the pore microstructure of the membrane to be fully compressed, thereby causing a sharp increase in resistance to filtration. This causes a reduction in flow. Another disadvantage of conventional polymeric materials is the poor tolerance to organic solvents and oils, as well as the plasticizing action of oils on polymers. This adversely affects the separation ability of the membranes. Membrane technology is quite important in the separation of liquid mixtures. In the recovery of drinking water from brine by reverse osmosis, and in the purification of the product, in particular, ultrafiltration and nanofiltration techniques and reverse osmosis membranes are increasingly used. In summary, in the thin film method, the diluted solution is concentrated and the organic solvent, aqueous solution or salt solution is separated. Thus, concentrated and potentially low salt solutions result in valuable compounds or contaminant compounds that make subsequent storage, transportation, disposal, and further processing more cost effective. Particularly in wastewater treatment, the purpose of membrane treatment is to recover the largest portion of the permeate in a form that is free of contamination or only slightly contaminated. The concentrated retentate can be separated and purified at a lower cost and effort to replenish the remaining compound, or can be disposed more cost effectively in this concentrated form, such as by burning. The field of membrane technology includes a wide variety of different methods. Therefore, there are also different membranes and different technical designs for these membranes. Technically relevant membrane separation techniques operate primarily as a cross-flow. Due to the high flow rate and specific membrane volume configuration, the high shear rate is intended to reduce membrane fouling and reduce concentration polarization. Commercially available nanofiltration membranes are composite crucibles formed by phase interface condensation as described in U.S. Patent 5,049,167. However, such known membrane systems are very expensive and inconvenient to produce, and are only produced in safety measures with cost implications because of the use of carcinogenic diamines and highly reactive acrylonitrile chlorides. An example of a reactant. The film can have a variety of configurations, such as in the form of a flat film module, a box module, a spiral wound module, or an empty fiber module. In addition, commercial filtration membranes can generally be used only at process temperatures up to about 80 °C. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a high performance nanofiltration membrane that exhibits high thermal load carrying capacity, in organic and inorganic solutions, and also in high and low based on suitable surface modification. Good stability at pH level and in addition good separation characteristics. Another object of the invention is to provide a method by which it is possible to produce a defined pore size for the membrane in question. It is known from the prior art that the polymer particles can be placed on a porous substrate having a relatively wide pore size distribution in order to obtain a composite membrane having a narrow pore size distribution. The cavity between the particles forms a 201249529 hole that can be separated from the liquid by the holes. The composite film obtained in this manner can be used, for example, as an ultrafiltration and microfiltration membrane. Therefore, in order to achieve this object, there is provided a nanofiltration membrane having the form indicated at the beginning, wherein the surface of the support membrane is coated with polymer particles which are produced by emulsion polymerization and It has an average particle diameter of &lt; 70 nm, preferably between 30 nm and 65 nm, more preferably between 40 nm and 50 nm. Here, a distinction is made between the filtration quality of a membrane (e.g., characterized by entrapment) and the construction of the filtration membrane. The following reference frames for nanofiltration membranes use polymer particles in the particle size range of S 100 nm for the production of such membranes. The term "nanofiltration membrane" does not have any meaning for its separation characteristics. Separation effects, separation characteristics, and separation behavior are used as synonyms. The separation effect is defined by the above-described entrapment. Polymer particles and nanoparticles are used synonymously herein. The use of polymer particles made by emulsion polymerization and having an average particle size of &lt;70 nm, preferably between 30 nm and 65 nm, more preferably between 40 nm and 50 nm, provides superior to other polymers The various advantages of the particles, because the chemical and physical properties of the polymer particles (such as particle size, particle morphology, swelling behavior, catalytic activity, hardness, dimensional stability, axial properties, surface energy, ageing resistance, and impact toughness) can Adjusted. This aspect is achieved by a production process, more specifically by a polymer process, and also by selecting a suitable base monomer, and on the other hand by selecting a suitable functional group, in the polymer particles. The concentration and occupancy of these functional groups can be customized or adjusted within a wide range. Therefore, the separation active film is produced using polymer particles which are produced by emulsion polymerization and have an average particle diameter of &lt; 70 nm, preferably between 30 nm and 65 nm, more preferably between 40 nm and 50 nm. The membrane is also referred to as the polymer layer of the nanofiltration membrane of the present invention. By emulsion polymerization it is more particularly meant a process which is known per se and which is generally used in the reaction medium in which the monomers used are polymerized in the presence or absence of emulsifiers and radical-forming substances. Usually an aqueous polymer latex. (See, among other things, R0mpp Lexikon der Chemie, Volume 2, 10th Edition, 1997; PA Lovell, MS El-Aasser, Emulsion Polymerization and Emulsion Polymers, John Wiley &amp; Sons, ISBN: 0 471 96746 7; H. Gerrens, Fortschr. Hochpolym. Forsch. 1,234 (1959)). Unlike suspension polymerization or dispersion polymerization, emulsion polymerization typically produces relatively fine particles which allow for a smaller void diameter and thus a smaller pore size in the separation of the active layers. Particles having a particle size of less than 500 nm are generally not obtainable by suspension polymerization or dispersion polymerization, and thus such particles are generally unsuitable for the purposes of this patent application. Surprisingly, it has been found that due to the selection of the determined polymer particles, there is no longer any need to use additional thermal or chemical means to stabilize the nanofiltration membrane of the present invention. The choice of monomer is used to adjust the glass transition temperature of the polymer particles as well as the width of the glass transfer. The glass transition temperature (Tg) of the polymer particles and the width (ATg) of the glass transition are determined by differential scanning 201249529 calorimetry (DSC), preferably as described below. Two cooling/heating cycles were performed to confirm Tg and ATg'. Ts and Δ&amp; were determined in the second thermal cycle. In the sample from Perkin-Elmer, the assay used approximately 10-12 mg of selected polymer particles. The first D S C shield ring was stored by first cooling the sample to -10 ° C with liquid nitrogen and then heating it to +150% at a rate of 20 K/min. The second DSC cycle begins by cooling the sample as soon as the sample temperature of +15 〇〇C is reached. In the second heating cycle, the sample was again heated to +15 〇C) C as in the first cycle. The heating rate in the second cycle was again 20 K/min. Tg and ΔΑ are determined graphically on the Dsc curve of the second heating process. For this purpose, three straight lines are placed on the DSC curve. Place the first line on the DSC curve, on the Tg portion, place the second line on the curve through the two branches of Tg, with an inflection point, and place the third line on the same Tg as the DSC curve. The location. In this way, two straight lines with two intersections are obtained. Each of these two intersections is marked by a characteristic temperature. The glass transition temperature &amp; is obtained as the average of these two temperatures, and the width A of the glass transition is obtained from the difference between these two temperatures. The polymer particles preferably have a temperature of from -85 ° C to 150 ° C, more preferably from -75 ° C to UyC ' very preferably _7 〇. 〇 to the glass transition temperature (Tg) of 9〇〇c. The width of the glass transfer /m degree of the polymer particles used in accordance with the invention is preferably greater than 5 ° C, more preferably greater than 1 ° C. 201249529 The polymer particles prepared by emulsion polymerization are preferably rubbery. The rubbery polymer particles are preferably based on conjugated dienes (for example, butyl dichloride, isoprene, 2-butadiene and 2, 3). -dichlorobutane dilute), vinyl acetate, styrene or its derivatives, 2-vinylpyridine and 4-vinylpyridine, acrylonitrile, acrylamide, mercaptopropenamide, tetraethylene, vinylidene fluoride And hexafluoropropylene, and those of the trans-group, epoxy, amine, carbonyl and ketone compounds containing a double bond. Preferred monomers or combinations of monomers include the following: butadiene, isoprene, acrylonitrile, styrene, alpha-mercaptostyrene, chloroprene, 2,3-dioxadiene, Butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl methacrylate, glycidyl methacrylate, acrylic acid, diacetone acrylamide, tetrafluoroethylene, vinylidene fluoride and hexamethacrylate . "Based on" is meant herein that the polymer particles preferably comprise, by weight, more than 60%, more preferably more than 70%, and most preferably more than 90% by weight of said monomers. Crosslinked or non-crosslinked. These polymeric particles may more particularly be particles based on homopolymers or random copolymers. The term homopolymer or random copolymer is known to those skilled in the art. And is described, for example, in Vollmert, Polymer Chemistry, Springer 1973. 201249529 As a polymer base of rubbery crosslinked or non-crosslinked polymer particles comprising functional groups, more specifically the following: BR: poly Butadiene, ABR: Butadiene/Ci·4 alkyl acrylate copolymer, IR: Polyisodecadiene, SBR: Random styrene-butadiene copolymer 'with styrene content by weight 1 _60%, preferably 5-50% FKM: fluorinated rubber, ACM: acrylate rubber, nbr: polybutadiene-acrylonitrile copolymer, having an acrylonitrile content of 5-60%, preferably 10-60% by weight , CR: polybutadiene, EAM: ethylene /Acrylate copolymer EVM: Ethylene/vinyl acetate copolymer. Other preferred polymer particles are thermoplastic and based on methacrylate, more specifically decyl methacrylate, styrene, alpha methyl styrene and Acrylonitrile. The polymer particles preferably have an approximately spherical geometry. The polymer particles used according to the invention have a particle size of less than 70 nm, preferably between 30 nm and 65 nm, more preferably between 40 nm and 50 nm. The average granules are determined by ultracentrifugation using water (iv) milk from emulsion polymerized polymer particles. This method gives the average of the particle size (considering any agglomerates) (HG Miiller (1996) ) Gel 12 201249529 Colloid Polymer Science 267: 1113-1116 and W. Scholtan, Η Lange (1972) Kolloid-Zu. Z. Polymer (Polymere 250: 782). The ultracentrifugation method has The advantage is that all particle size distributions are characterized, and different average numbers (such as number average and weight average) can be calculated from the distribution curve. The average diameter number used according to the invention refers to the weight average It is possible to use the number of diameters such as d5 〇 and dS(). These numbers refer to particles having 10%, 50% and 80% by weight, respectively, by weight, having a diameter smaller than the corresponding value. The diameter of the light scattering is determined to be on the latex. Conventional laser systems operate at 633 nm (red light) and at 532 nm (green light). Dynamic light scattering produces an average of the particle size distribution curves. The average number of diameters used in accordance with the present invention is related to this average. 5 m ~, the team comes to σ wood to take 侑, with the change of reactants and also the emulsification degree, the concentration of the initiator, the liquid phase of the organic phase, the ratio of hydrophilic monomer to hydrophobic monomer, six ^ The amount of =, the polymerization temperature, etc., in the range of - wide diameter = after the polymerization, the latex is treated by vacuum evaporation or by stripping with steam, in order to remove volatiles, more specifically ^ The monomer of the reaction. The polymer particles prepared from the pure form do not require any additional differentiation, for example by coagulation. 201249529 In a preferred embodiment, the polymer particles prepared by emulsion polymerization and used in accordance with the invention are at least partially crosslinked. The crosslinking of the polymer particles prepared by emulsion polymerization is preferably achieved by adding a polyfunctional monomer to the polymerization reaction, for example,

由加入具有至少兩個、優選2到4個、可共聚的c=C 雙鍵的化合物,如二異丙烯基苯、二乙烯基苯、二乙 婦越、一乙埽基碱、鄰苯二甲酸二婦丙醋、氰尿酸三 烯丙酯、異氰尿酸三烯丙酯、1,2-聚丁二烯、n,N,·間 伸笨基馬來醯亞胺、2,4-甲伸苯基雙(馬來醯亞胺)、偏 苯二酸三烯丙酯、甲基丙烯酸縮水甘油酯、以下物質 的多羥的丙烯酸酯類以及曱基丙烯酸酯類(優選2_ 至4-元的)C2至C10醇類,如乙二醇、丙·ι,2_二醇、 丁二醇、己二醇、具有2到20個、優選2到8個氧 乙稀單元的聚乙二醇、新戊二醇、雙盼A、甘油、三 Μ甲基丙烧、新戊四醇、山梨醇;以及還有脂肪族二 醇和多元醇與馬來酸、富馬酸、和/或衣康酸的不飽和 聚醋類。 該等聚合物顆粒可以在乳液聚合中直接交聯,如 藉由與具有交聯活性的多官能化合物的共聚反應,或 藉由如以下所述的後續交聯。在乳液聚合過程中的直 接交聯係優選的。優選的多官能共聚單體係具有至少 兩個、優選2到4個可共聚的oc:雙鍵的化合物,例 如二異丙烯基苯、二乙烯基苯、二乙烯醚、二乙烯基 颯、鄰苯二甲酸二烯丙酯、氰尿酸三烯丙酯、異氰尿 201249529 酸三稀丙醋、1,2-聚丁二稀、N,N’-間-伸苯基馬來醯亞 胺、2,4-甲伸苯基雙(馬來醯亞胺)、和/或偏笨三酸三 烯丙酯。另外考慮的是以下物質的丙烯酸酯類和曱基 丙烯酸酯類:脂肪胺類、環氧化物和多元的優選的是 二至四元C2-C10醇類,諸如乙二醇、丙-1,2-二醇、 丁二醇、己二醇、具有從2至20、優選從2至8個氧 乙烯單位的聚乙二醇,新戊二醇、雙酚A、甘油、三 經甲基丙烷、新戊四醇、山梨糖醇;以及還有由脂肪 族的二醇以及多元醇類與馬來酸、富馬酸、和/或衣康 酸的不飽和聚酯類。 在乳液聚合過程中的交聯還可以藉由繼續聚合 反應到高轉化來進行或在單體進料過程中藉由與高 内轉換的聚合物反應來進行。一替代的可能性係在不 存在鏈轉移調節劑下進行乳液聚合。 為了交聯在乳液聚合後未交聯的或僅僅輕度交 聯的聚合物顆粒,最好使用在乳液聚合中得到的膠 乳0 適合的具有交聯活性的化學品的例子包括有機 過氧化物,例如過氧化二異丙苯、三級丁基過氧化異 Γί、雙(三級丁基過氧異丙基)笨、二三級丁基過氧 ^、2,5_二曱基己燒办二氣過氧化物、2,5·二甲基 ίH過氧化物、過氧化二祕、雙(2,4_ 基i過氧化物、過苯曱酸三級丁醋、以及還 有夕種有機錢化麵,例如錢二訂腈、以及偶 15 201249529 氮二環己腈,以及還有二酼基和多巯基化合物,例如 二疏基乙烷、1,6-二髄基己烷、1,3,5-三髄基三嗪、以 及酼基封端的聚硫橡膠,例如雙氣乙基甲醛 (bischloroethylformal)與多硫化鈉的疏基封端反應 的產物。 用於進行後交聯的最佳溫度當然取決於交聯劑 的反應性並且可以任選地在升高的壓力下在從室溫 到大約180°C的溫度下進行(在此方面,參照 Houben-Weyl, Methoden der organischen Chemie,4th Edition,Volume 14/2, page 848)。特別優選的交聯劑 係過氧化物。 將含有C=C雙鍵的橡膠交聯以形成聚合物顆粒 還可以在分散體或在乳液中進行,伴隨C=C雙鍵藉由 肼(或任選地,其他氫化劑,例如有機金屬氫化物絡 合物)的同時的、部分的、任選地完全氫化,如在 US 5,302,696 或 US 5,442,009 中戶斤述。 在後交聯之前、過程中或之後,有可能藉由凝聚 作用任選地進行顆粒擴大。 根據本發明使用的交聯的聚合物顆粒有利地具 有在23°C的曱笨中不溶的部分(凝膠含量),該部 分為按重量計至少大約70%、更優選按重量計至少大 約80%、更優選按重量計90%、甚至更優選按重量計 至少大約98%。這種不溶於曱苯的部分係在曱苯中在 23%下測定的。在這種測定中,將250 mg聚合物顆 16 201249529 粒在25 ml的曱苯中藉由在23°C搖動24小時進行膨 脹。以20000 rpm離心後,將該不溶部分進行分離並 且乾燥。該凝膠含量係以該乾燥殘餘物與初始質量的 比率來獲得,並且按重量百分比來表達。 所使用的交聯的聚合物顆粒還有利地具有在甲 苯中在23°C下小於大約80、更優選小於60、仍然更 優選小於40的膨脹指數。因此,聚合物顆粒的溶脹 指數(Qi)可以優選在1 -20與1 - 10之間。該溶脹 指數係從在曱苯中在23°C下溶脹24小時的含有溶劑 的聚合物顆粒的重量(以20000 rpm離心之後)以及 乾燥聚合物顆粒的重量來計算的:By the addition of a compound having at least two, preferably 2 to 4, copolymerizable c=C double bonds, such as diisopropenylbenzene, divinylbenzene, diethion, monoethylidene, ortho-benzene Diethyl propyl vinegar, triallyl cyanurate, triallyl isocyanurate, 1,2-polybutadiene, n, N, · stupid base maleimide, 2,4-A Phenyl bis(maleimide), triallyl phthalate, glycidyl methacrylate, polyhydroxy acrylates of the following materials, and mercapto acrylates (preferably 2 to 4-membered) C2 to C10 alcohols such as ethylene glycol, propanol, 2-diol, butanediol, hexanediol, polyethylene glycol having 2 to 20, preferably 2 to 8, oxyethylene units , neopentyl glycol, bicinch A, glycerol, triterpene methylpropanol, pentaerythritol, sorbitol; and also aliphatic diols and polyols with maleic acid, fumaric acid, and/or itacon Acidic unsaturated polyacetate. The polymer particles may be directly crosslinked in the emulsion polymerization, such as by copolymerization with a polyfunctional compound having crosslinking activity, or by subsequent crosslinking as described below. Direct cross-linking during emulsion polymerization is preferred. Preferred polyfunctional comonomer systems have at least two, preferably 2 to 4, copolymerizable oc: double bond compounds such as diisopropenylbenzene, divinylbenzene, divinyl ether, divinyl fluorene, ortho Diallyl phthalate, triallyl cyanurate, isocyanurate 201249529 acid trilute propyl vinegar, 1,2-polybutylene dilute, N,N'-m-phenyl-maleimide, 2,4-Methylphenyl bis(maleimide), and/or triallyl trimethacrylate. Also contemplated are acrylates and mercapto acrylates of the following materials: aliphatic amines, epoxides and polybasic, preferably two to four membered C2-C10 alcohols, such as ethylene glycol, propane-1,2 -diol, butanediol, hexanediol, polyethylene glycol having from 2 to 20, preferably from 2 to 8 oxyethylene units, neopentyl glycol, bisphenol A, glycerol, trimethylpropanol, Pentaerythritol, sorbitol; and also unsaturated polyesters derived from aliphatic diols and polyols with maleic acid, fumaric acid, and/or itaconic acid. Crosslinking during the emulsion polymerization can also be carried out by continuing the polymerization to high conversion or by reacting with the highly internally converted polymer during the monomer feed. An alternative possibility is to carry out the emulsion polymerization in the absence of a chain transfer regulator. In order to crosslink the polymer particles which are not crosslinked or only slightly crosslinked after the emulsion polymerization, it is preferred to use the latex obtained in the emulsion polymerization. Examples of suitable chemicals having crosslinking activity include organic peroxides, For example, dicumyl peroxide, tertiary butyl peroxy oxime, bis (tertiary butyl peroxyisopropyl) stupid, di- or tertiary butyl peroxy^, 2,5-didecyl hexene Dioxane, 2,5· dimethyl ίH peroxide, bismuth peroxide, bis (2,4 yl i peroxide, benzoic acid tertiary vinegar, and organic money) The noodles, such as the money nitrile nitrile, and the even 15 201249529 nitrogen dicyclohexanenitrile, and also the dinonyl and polydecyl compounds, such as dibenzylethane, 1,6-dimercaptohexane, 1,3 , 5-trimercaptotriazine, and thiol-terminated polysulfide rubber, such as the product of a sulphur-terminated reaction of bischloroethylformal with sodium polysulfide. Optimum temperature for post-crosslinking It is of course dependent on the reactivity of the crosslinker and can optionally be carried out at elevated pressures from room temperature to about 180 ° C ( In this respect, reference is made to Houben-Weyl, Methoden der organischen Chemie, 4th Edition, Volume 14/2, page 848. A particularly preferred crosslinking agent is a peroxide. The rubber containing C=C double bonds is crosslinked to form a polymerization. The particles may also be carried out in a dispersion or in an emulsion, with a C=C double bond by hydrazine (or optionally, other hydrogenating agents, such as organometallic hydride complexes) simultaneously, partially, optionally Fully hydrogenated, as described in US 5,302,696 or US 5,442,009. It is possible to optionally carry out particle expansion by coacervation before, during or after postcrosslinking. Crosslinked polymers used in accordance with the invention The granules advantageously have a portion (gel content) which is insoluble at 23 ° C, which is at least about 70% by weight, more preferably at least about 80% by weight, more preferably 90% by weight, Even more preferably at least about 98% by weight. This insoluble benzene-based fraction is determined at 23% in toluene. In this assay, 250 mg of polymer 16 201249529 is granulated at 25 ml. In benzene by shaking at 23 ° C The expansion was carried out for 24 hours. After centrifugation at 20000 rpm, the insoluble portion was separated and dried. The gel content was obtained as a ratio of the dry residue to the initial mass, and expressed as a percentage by weight. The polymer particles also advantageously have an expansion index in toluene of less than about 80, more preferably less than 60, still more preferably less than 40 at 23 ° C. Thus, the swelling index (Qi) of the polymer particles may preferably be at 1 - Between 20 and 1 - 10. The swelling index was calculated from the weight of the solvent-containing polymer particles (after centrifugation at 20,000 rpm) which was swollen in toluene at 23 ° C for 24 hours, and the weight of the dried polymer particles:

Qi=聚合物顆粒的濕重/聚合物顆粒的乾重。 為了確定膨脹指數,使250 mg的聚合物顆粒在 25 ml曱苯中在振動下溶脹24小時。藉由離心作用將 該凝膠回收並且稱重然後在70°C下乾燥至恒重並且 再次稱重。 該支撐膜優選由一無機或有機材料組成。 此外,支撐膜有利的是化學上和/或機械上穩定 的。它係pH-穩定的並且還在有機溶劑例如像醛類、 酮類、一元醇和多元醇、苯衍生物、_代烴、醚類、 酯類、羧酸類、環烴類、胺類、醯胺類、内醯胺類、 内酯類、亞砜類、烷類以及烯類中。 優選地選擇一種在以下溶劑中在化學上是穩定 的支撐膜:丙酮、曱苯、苯、水、四氫呋喃、二曱基 17 201249529 甲醯胺、二甲基亞砜、N-甲基吡咯烷酮、N-乙基吡咯 烷酮、吡啶、曱醇、乙醇、丙醇、異丙醇、丁醇、異 丁醇、戊烧、己烧、庚烧、辛烧、壬烧、癸烧、曱基 乙基酮、二乙醚、二氯甲烷、四氯乙烷、四氣化碳、 甲基三級丁基乙醚、氯苯、二氣苯、三氣苯、硝基苯、 乙酸乙S旨、環己烧。 已經發現本發明的奈米過濾薄膜具體地在10-14和/或1 - 4的pH範圍内也是穩定的。 此外對於應用該膜,有用的是該支撐膜由一在室 溫下並且在典型的應用過程溫度下是溫度穩定的材 料組成。同樣可以設想50°C到200°C、更優選70°C 與150°C之間以及還有80°C到120°C的溫度敏感性。 作為無機的可滲透支撐膜,例如有可能使用非紡 織的玻璃微纖維織物、非紡織的金屬織物、密集紡織 的玻璃微纖維織物或紡織的金屬織物,以及還有紡織 的或非紡織的陶瓷或碳纖維織物。熟習該項技術者清 楚的是,在此還有可能使用所有其他已知的、優選柔 性的具有相應大小的開孔或開口的材料作為支撐材 料。還可以使用陶兗複合材料,如由例如選自A〖2〇3、 氧化鈦、氧化锆或氧化矽的一種氧化物製成的無機支 撐材料。該無機支撐膜優選還特徵為一選自陶瓷、 SiC、Si3N4、碳、玻璃、金屬或半金屬的材料。此外, 具有足夠的和化學和熱學穩定性的有機聚合物材料 有可能用作支撐膜,如聚醯亞胺、聚四氟乙烯、聚偏 201249529 二氟乙烯、聚醚醯亞胺、聚醚酮、聚醚醚酮、聚醚砜、 聚苯並咪唑、聚醯胺。 該支撐膜優選具有小於500 nm的孔徑。特別優 選的是它們具有小於100 nm、並且非常優選小於50 nm的孔徑。 該支撐膜的孔徑優選是小於聚合物顆粒的平均 直徑的。 該支撐膜的厚度優選是5 μπι到100 μιη、更優選 從20 μηι到80 μπι、非常優選從30 μιη到60 μιη。 藉由乳液聚合製備的聚合物顆粒優選是藉由在 聚合反應中加入多官能單體而至少部分功能化的。在 此背景下,該等多官能單體可以選自下組,該組由以 下各項組成:具有至少兩個、優選從2至4個可共聚 的C=C雙鍵的化合物,例如,二異丙烯基苯、二乙烯 基苯、二乙烯醚、二乙烯基砜、鄰苯二曱酸二烯丙酯、 氰脈酸三烯丙酯、異氰尿酸三烯丙酯、1,2-聚丁二稀、 Ν,Ν’-間伸苯基馬來醯亞胺、2,4-曱伸苯基雙(馬來醯亞 胺)、偏苯三酸三烯丙酯、以下物質的丙烯酸酯類以及 曱基丙烯酸酯類:脂肪族胺類、環氧化物和多元的優 選的是二至四元的C2-C10醇類,如聚乙二醇、1,2-丙二醇、丁二醇、己二醇、具有2到20個、優選2 到8個氧乙烯單元的聚乙二醇、新戊二醇、雙酚A、 甘油、三經曱基丙烧、新戊四醇、山梨醇,以及還有 脂肪族二醇和多元醇與馬來酸、富馬酸、和/或衣康酸 的不飽和聚酯類。 19 201249529 本發明的奈米過濾薄膜的分離活性層優選具有 至少一個單層的聚合物顆粒,該等聚合物顆粒具有的 平均粒徑為&lt; 70 nm、優選在30 nm與65 nm之間、更 優選在40 nm與50 nm之間。 本發明的奈米過濾薄膜的一優選的實施方式具 有一厚度為0.1 μιη至20 μιη的分離活性層,其中多 個聚合物顆粒層的位於彼此上面。 該分離活性層的厚度優選是不大於支撐膜的厚 度。 、 另一發明係用於本發明的奈米過濾薄膜的生產 方法’其中將藉由乳液聚合製備的聚合物顆粒的分散 體(膠乳)施加到該支撐膜上,並且在該支撐膜上形 成一聚合物層(分離活性層)。 已經確定所使用的分散體大體上是非常單分散 的即根據動態光散射法,95.4。/。的聚合物顆粒存在 於一大小等級中,偏差為± 7 nm。 該方法優選是連續進行的。 s亥水性分散體優選包括具有&lt; 70 nm、優選在30 、,與65 nm之間、更優選在4〇 nm與50 nm之間的 2均直徑的聚合物顆粒’並且在聚合之後的乾橡膠含 里係至少20%、優選至少25%、更優選至少30°/。,基 於該聚合物的總體積。 基於該聚合物的總體積,不大於65%的乾橡膠含 量的膠乳濃度對於該生產同樣是可得到的。 20 201249529 乾橡膠含量如以下來確定:乾橡膠含量係使用一 鹵素濕度測量儀器例如像Mettler Toledo鹵素濕度分 析儀HG63來確定的。在此,將一膠乳在140°C的溫 度下乾燥並且經受連續稱重。當重量損失小於1 mg/50 sec時,認為測量到達終點。 基於該聚合物的總體積,聚合之後的乾橡膠含量 優選是不大於65%。 優選將具有聚合物顆粒的膠乳藉由一喷嘴施加 到該支撐膜上。 在一下游步驟中,將以此方式形成的奈米過濾薄 膜乾燥。對於如此形成的奈米過濾薄膜可以想像的是 另外交聯的,其中聚合物顆粒連接到彼此上和/或其結 果係連接到該支撐膜上。通常採用化學的(共價的和 /或離子的)以及還有物理的交聯模式,由電磁的(例 如UV )、熱的和/或放射性的韓射引發。可以使用所 有常規的交聯助劑。 其結果係,孔徑仍然進一步降低並且過濾特性被 改進。 另一發明係使用藉由乳液聚合製備的聚合物顆 粒用於生產一奈米過濾薄膜,該等聚合物顆粒具有的 平均粒徑為&lt; 70 nm、優選在30 nm與65 nm之間、更 優選在40 nm與50 nm之間。 另一發明係使用用於食品產業、化學產業和生物 化學產業的奈米過濾薄膜。該列表係不受限制的。 21 201249529 【實施方式】 以卞使用實例更詳細地說明本發明。 實例: 製備聚合物顆粒類型〗和2 使用以下反應物製備聚合物顆粒。在表1中,配 方成分係基於按重量計100份的單體混合物。 單體 來自朗盛德國有限責任公司(Lanxess Deutschland GmbH)的丁二烯(99%形式,非穩定的) 來自德國莫克公司(Merck KgaA )的丙稀腈(99% 形式,用氫醌一曱醚穩定的) 3) 來自Chemie Handels GmbH的KMF實驗室的苯乙 烯(98%形式) 4) 來自阿爾德林公司(Aldrich)的三曱基丙烯酸三羥 曱基丙烷酯(96%形式);產品號24684-0;(縮寫: TMPTMA ) 5) 曱基丙稀酸經基乙g旨(97%來自Arcos公司;縮寫: HEMA) 乳化劑 6) 岐化的樹脂酸(縮寫為RS)-作為起始於所使 用量的 Dresinate® 835 (Abieta Chemie GmbH 公司; D—86358 Gersthofen)的游離酸進行計算 22 201249529 所使用的Dresinate® 835批次的特徵在於它的固 體含量以及還有以鈉鹽、游離酸、以及中性體形式存 在的乳化劑組分。 固體含量根據 Maron,S. H·; Madow,B. P.; Borneman,E所公佈的說明書進行確定:“有效的等重 量的一些松香酸以及皂類”(The effective equivalent weights of some rosin acids and soaps),橡膠老化 (Rubber Age) ,1952,四月,71-72。 由所使用的Dresinate® 835批次的三等分樣品測 定的平均值係按重量計71 %的固體含量。 以鈉鹽的形式以及以游離酸的形式存在的乳化 劑部分係藉由根據以下描述的方法的滴定分析法來 測定的:Maron, S. H” Ulevitch,I. N.,Elder, Μ. E. “脂 肪以及松香酸、皂及其混合物”(Fatty and Rosin Acids, Soaps,and Their Mixtures),分析化學(Analytical Chemistry),Vol. 21,6, 691-695。 為了該測定(在一實例中),將1.213 g的Qi = wet weight of polymer particles / dry weight of polymer particles. To determine the expansion index, 250 mg of polymer particles were swollen under vibration for 24 hours in 25 ml of toluene. The gel was recovered by centrifugation and weighed and then dried to constant weight at 70 ° C and weighed again. The support film is preferably composed of an inorganic or organic material. Furthermore, the support film is advantageously chemically and/or mechanically stable. It is pH-stable and is also in organic solvents such as aldehydes, ketones, monohydric and polyhydric alcohols, benzene derivatives, hydrocarbons, ethers, esters, carboxylic acids, cyclic hydrocarbons, amines, guanamines. Among the classes, intrinsic amines, lactones, sulfoxides, alkanes and alkenes. Preferably, a support film which is chemically stable in the following solvents is selected: acetone, toluene, benzene, water, tetrahydrofuran, dimercapto 17 201249529 formamide, dimethyl sulfoxide, N-methylpyrrolidone, N -ethylpyrrolidone, pyridine, decyl alcohol, ethanol, propanol, isopropanol, butanol, isobutanol, pentane, hexane, gamma, cinnabar, teriyaki, terpene, decyl ethyl ketone, Diethyl ether, dichloromethane, tetrachloroethane, tetra-carbonized carbon, methyl tertiary butyl ether, chlorobenzene, di-benzene, tri-benzene, nitrobenzene, acetic acid, and hexene. It has been found that the nanofiltration membrane of the present invention is also particularly stable in the pH range of 10-14 and/or 1-4. Further, for the application of the film, it is useful that the support film is composed of a material which is temperature-stable at room temperature and at a typical application process temperature. Temperature sensitivities between 50 ° C and 200 ° C, more preferably between 70 ° C and 150 ° C and also between 80 ° C and 120 ° C are also conceivable. As inorganic permeable support films, it is for example possible to use non-woven glass microfiber fabrics, non-woven metal fabrics, densely woven glass microfiber fabrics or woven metal fabrics, as well as woven or non-woven ceramics or Carbon fiber fabric. It is clear to those skilled in the art that it is also possible here to use all other known, preferably flexible, materials of correspondingly sized openings or openings as support material. It is also possible to use a ceramic-ceramic composite material such as an inorganic support material made of, for example, an oxide selected from the group consisting of A?2?, titanium oxide, zirconium oxide or cerium oxide. The inorganic support film is preferably also characterized by a material selected from the group consisting of ceramic, SiC, Si3N4, carbon, glass, metal or semi-metal. In addition, organic polymer materials with sufficient chemical and thermal stability are likely to be used as support films, such as polyimine, polytetrafluoroethylene, polybiathral 201249529 difluoroethylene, polyetherimine, polyetherketone , polyetheretherketone, polyethersulfone, polybenzimidazole, polyamine. The support film preferably has a pore size of less than 500 nm. It is especially preferred that they have a pore size of less than 100 nm, and very preferably less than 50 nm. The pore diameter of the support film is preferably smaller than the average diameter of the polymer particles. The thickness of the support film is preferably from 5 μm to 100 μm, more preferably from 20 μm to 80 μm, and very preferably from 30 μm to 60 μm. The polymer particles prepared by emulsion polymerization are preferably at least partially functionalized by the addition of a polyfunctional monomer in the polymerization. In this context, the polyfunctional monomers may be selected from the group consisting of compounds having at least two, preferably from 2 to 4, copolymerizable C=C double bonds, for example, two. Isopropenylbenzene, divinylbenzene, divinyl ether, divinyl sulfone, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, 1,2-poly Butadiene, anthracene, anthracene---phenyl-phenyleneimine, 2,4-anthracene-phenylene (maleimide), triallyl trimellitate, acrylates of the following substances Classes and mercapto acrylates: aliphatic amines, epoxides and polybasic are preferably two to four membered C2-C10 alcohols, such as polyethylene glycol, 1,2-propanediol, butanediol, a diol, polyethylene glycol having 2 to 20, preferably 2 to 8 oxyethylene units, neopentyl glycol, bisphenol A, glycerin, tri-propyl mercapto, neopentyl alcohol, sorbitol, and There are also aliphatic diols and unsaturated polyesters of polyhydric alcohols with maleic acid, fumaric acid, and/or itaconic acid. 19 201249529 The separation active layer of the nanofiltration membrane of the present invention preferably has at least one monolayer of polymer particles having an average particle diameter of &lt; 70 nm, preferably between 30 nm and 65 nm, More preferably between 40 nm and 50 nm. A preferred embodiment of the nanofiltration membrane of the present invention has a separation active layer having a thickness of from 0.1 μm to 20 μm, wherein a plurality of polymer particle layers are located on each other. The thickness of the separation active layer is preferably not more than the thickness of the support film. Another invention is a method for producing a nanofiltration membrane of the present invention, wherein a dispersion (latex) of polymer particles prepared by emulsion polymerization is applied to the support film, and a support film is formed on the support film. Polymer layer (separating the active layer). It has been determined that the dispersion used is substantially very monodisperse, i.e. according to dynamic light scattering, 95.4. /. The polymer particles are present in a size scale with a deviation of ± 7 nm. The method is preferably carried out continuously. The aqueous dispersion of shai preferably comprises 2 average diameter polymer particles having &lt; 70 nm, preferably between 30, and 65 nm, more preferably between 4 〇 nm and 50 nm and dried after polymerization The rubber content is at least 20%, preferably at least 25%, more preferably at least 30°/. Based on the total volume of the polymer. Based on the total volume of the polymer, a latex concentration of not more than 65% of the dry rubber content is also available for this production. 20 201249529 The dry rubber content is determined as follows: The dry rubber content is determined using a halogen humidity measuring instrument such as the Mettler Toledo Halogen Humidity Analyzer HG63. Here, a latex was dried at a temperature of 140 ° C and subjected to continuous weighing. When the weight loss is less than 1 mg/50 sec, the measurement is considered to have reached the end point. The dry rubber content after the polymerization is preferably not more than 65% based on the total volume of the polymer. Preferably, the latex having the polymer particles is applied to the support film by a nozzle. In a downstream step, the nanofiltration membrane formed in this manner is dried. It is conceivable for the nanofiltration membrane thus formed to be additionally crosslinked, wherein the polymer particles are attached to each other and/or their results are attached to the support membrane. Chemical (covalent and/or ionic) and also physical cross-linking modes are typically employed, initiated by electromagnetic (e.g., UV), thermal, and/or radioactive Korean shots. All conventional crosslinking aids can be used. As a result, the pore diameter is still further lowered and the filtration characteristics are improved. Another invention uses polymer particles prepared by emulsion polymerization for producing a nanofiltration membrane having an average particle diameter of &lt; 70 nm, preferably between 30 nm and 65 nm, more It is preferably between 40 nm and 50 nm. Another invention uses nanofiltration membranes for the food, chemical, and biochemical industries. This list is not limited. 21 201249529 [Embodiment] The present invention will be described in more detail by way of examples of use. EXAMPLES: Preparation of Polymer Particle Types and 2 Polymer particles were prepared using the following reactants. In Table 1, the formulation ingredients are based on 100 parts by weight of the monomer mixture. Monomer from butadiene from Germany (Lanxess Deutschland GmbH) (99% form, unstabilized) Azironitrile from Merck KgaA (99% form, with hydroquinone) Ether-stable) 3) Styrene (98% form) from KMF Laboratories of Chemie Handels GmbH 4) Trihydroxydecylpropane acrylate (96% form) from Aldrich; product No. 24684-0; (abbreviation: TMPTMA) 5) Mercaptopropionic acid via base group (97% from Arcos; abbreviation: HEMA) emulsifier 6) Deuterated resin acid (abbreviated as RS) - as Calculation of the free acid starting from the amount of Dresinate® 835 (Abieta Chemie GmbH; D-86358 Gersthofen) 22 201249529 The Dresinate® 835 batch used is characterized by its solids content and also with sodium salt, free An emulsifier component in the form of an acid, as well as a neutral form. The solid content is determined according to the instructions published by Maron, S. H.; Madow, BP; Borneman, E: "The effective equivalent weights of some rosin acids and soaps", Rubber Age, 1952, April, 71-72. The average value determined from the three aliquots of the Dresinate® 835 batch used was 71% solids by weight. The emulsifier fraction in the form of the sodium salt and in the form of the free acid is determined by titration analysis according to the method described below: Maron, S. H" Ulevitch, IN, Elder, Μ. E. "Fat And rosin acid, soap and mixtures thereof" (Fatty and Rosin Acids, Soaps, and Their Mixtures), Analytical Chemistry, Vol. 21, 6, 691-695. For this assay (in an example), 1.213 g

Dresinate® 835( 71%形式)溶解在200 g蒸餾水和200 g蒸顧異丙醇的混合物中,加入過量的氫氧化鈉溶液 (5ml的0.5NNaOH),並且用0.5N鹽酸進行反滴 定。藉由電位法的pH測量來監測滴定的過程。滴定 曲線如在分析化學(Analytical Chemistry ),Vol. 21, 6, 691-695中所描述進行評估。 23 201249529 針對所使用的Dresinate® 835批次的三等分樣品 所獲得的平均值係如下: 總乳化劑含量: Na鹽: 游離酸: 2.70 mmol/g at 2.42 mmol/g 乾t 0.28 mmol/g 乾$ 借助於對於歧化的松香酸的Na鹽的莫耳質量 (324 g/mol)以及對於游離的歧化的松香酸的莫耳質 量(302 g/mol),計算使用的Dresinate® 835批次的 Na鹽、游離酸和未捕獲的部分的重量分數: 歧化的樹脂酸的鈉鹽: 按重量計78.4% 游離的歧化樹脂酸: 按重量計8.5% 未捕獲的部分(中性體)按重量計13.1% 在以下的配方中,對於聚合反應使用的 Dresinate® 835的量值被轉化成游離酸(縮寫為RA) 並且作為相對於100重量部分的單體的重量分數來表 達。在這種轉化中,沒有考慮中性體。 為了說明表1中表示的歧化的松香酸(RA)的量 值的轉化,基於使用的Dresinate 835®的量值’附上 以下表1 : 24 201249529 表1 :Dresinate® 835 (71% form) was dissolved in a mixture of 200 g of distilled water and 200 g of distilled isopropanol, an excess of sodium hydroxide solution (5 ml of 0.5 N NaOH) was added, and back-titrated with 0.5 N hydrochloric acid. The process of titration is monitored by pH measurement of the potentiometric method. The titration curve was evaluated as described in Analytical Chemistry, Vol. 21, 6, 691-695. 23 201249529 The average values obtained for the three aliquots of the Dresinate® 835 batch used are as follows: Total emulsifier content: Na salt: Free acid: 2.70 mmol/g at 2.42 mmol/g Dry t 0.28 mmol/g Dry $ by means of the molar mass (324 g/mol) of the Na salt of disproportionated rosin acid and the molar mass (302 g/mol) of the free disproportionated rosin acid, calculated using the Dresinate® 835 batch Weight fraction of Na salt, free acid and uncaptured fraction: Sodium salt of disproportionated resin acid: 78.4% by weight Free disproportionated resin acid: 8.5% by weight Uncaptured part (neutral) by weight 13.1% In the following formulation, the amount of Dresinate® 835 used for the polymerization was converted to the free acid (abbreviated as RA) and expressed as a weight fraction relative to the monomer of 100 parts by weight. In this transformation, the neutral body is not considered. To illustrate the conversion of the amount of disproportionated rosin acid (RA) shown in Table 1, based on the amount of Dresinate 835® used, 'attach the following Table 1: 24 201249529 Table 1:

Dresinate® 835 的 初始質量[g乾重] r —' — - 歧化的松香酸的計算量(無中 性體)[g乾重] 0.25 0.20 0.5 0.41 1.0 0.82 1.5 1.22 2.0 1.63 2.5 2.04 3.0 2.45 3.5 2.86 4.0 3.26 4.5 3.67 4.75 3.87 5.0 4.08 7)部分氫化的動物脂肪酸-縮寫為fa (來自科凝油脂 化學公司(CognisOleo Chemicals)的 Edenor®HtiCT N) 所使用的Edenor® HtiCT N批次的乳化劑含量以 及重均分子量借助以下方法藉由滴定分析進行確 定:Maron,S. H.,Ulevitch, I. N., Elder, Μ. E.: ‘‘脂肪以 及松香酸、皂及其混合物”(Fatty and Rosin Acids, Soaps, and Their Mixtures),分析化學(Analytical Chemistry) »Vol. 21, 6, 691-695; Maron, S. H.; Madow, s 25 201249529 B. P.; Borneman,E.: “有效的等重量的一些松香酸以 及皂類 ”(The effective equivalent weights of some rosin acids and soaps),橡膠老化(Rubber Age),(1952), 71 71-2)。在該滴定中(在一實例中),將1.5 g的 Edenor® HTiCT N溶解在200 g的蒸餾水與200 g的 蒸餾的異丙醇的一混合物中,加入15 ml過量的 NaOH (0.5 mol/1),並且使用〇·5 Μ的鹽酸進行反滴 定。 在這種情況下,對於所使用的三個等分部分的 Edenor® HTiCT Ν批次發現的平均值如下: 總乳化劑含量·· 3.637 mmol/g乾重 莫耳質董(游離酸):274.8 mg/mmol 在以下配方中,所使用的部分氫化的牛油脂肪酸 (作為可商購的)表達為“游離酸==fa’,。 對於設置表中報告的中和的程度所需的量值係 基於藉由滴疋分析法測定的所使用的Dresinate® 835 和Edenor® HTiCT N批次的不同組分的量值來計算 的。使用氫氧化鉀設置中和程度。 鏈轉移調節劑 〗來自雪佛龍菲利浦化學公司(chevr〇n phillipsInitial mass of Dresinate® 835 [g dry weight] r —' — - Calculated amount of disproportionated rosin acid (no neutral) [g dry weight] 0.25 0.20 0.5 0.41 1.0 0.82 1.5 1.22 2.0 1.63 2.5 2.04 3.0 2.45 3.5 2.86 4.0 3.26 4.5 3.67 4.75 3.87 5.0 4.08 7) Partially hydrogenated animal fatty acids - abbreviated as fa (from Edenor® HtiCT N from Cognis Oleo Chemicals) Emulor® HtiCT N batch emulsifier content and The weight average molecular weight is determined by titration analysis by the following methods: Maron, SH, Ulevitch, IN, Elder, Μ. E.: ''fat and rosin acid, soap and mixtures thereof' (Fatty and Rosin Acids, Soaps, and Their Mixtures), Analytical Chemistry » Vol. 21, 6, 691-695; Maron, SH; Madow, s 25 201249529 BP; Borneman, E.: “Efficient equal weight of some rosin acids and soaps” ( The effective equivalent weights of some rosin acids and soaps), Rubber Age, (1952), 71 71-2). In this titration (in one example), 1.5 g of Edenor® HTiCT N was dissolved in a mixture of 200 g of distilled water and 200 g of distilled isopropanol, 15 ml of excess NaOH (0.5 mol/1) was added, and back-titration was carried out using 〇·5 Μ hydrochloric acid. The average values found for the Edenor® HTiCT(R) batches of the three aliquots used are as follows: Total emulsifier content·· 3.637 mmol/g dry weight MoE Dong (free acid): 274.8 mg/mmol In the following formulation, the partially hydrogenated tallow fatty acid used (as commercially available) was expressed as "free acid == fa'. The amount required for the degree of neutralization reported in the setup table is based on the magnitude of the different components of the Dresinate® 835 and Edenor® HTiCT N batches determined by the Drip Analysis method. The degree of neutralization was set using potassium hydroxide. Chain Transfer Regulator 〖From Chevron Phillips Chemical Company (chevr〇n phillips

Chemical Company LP) (Sulfole® 120)的三級十二烷基 硫醇 在一帶有搜拌器的20升的高壓釜中藉由乳液聚 合製備了聚合物顆粒。對於聚合批次,使用具有 0.34 26 201249529 g的4_曱氧基笨齡(Arcos Organics,產品號 1一2_、1〇〇〇,99%)的4 3 kg單體。在各個實例中向該 向f爸中引入在表中所報告的總的乳化劑量和總的 水莖(減去·製備水性預混合溶液和烧氯過氧 化物溶液所要求的水的量_參見以下),連同所要求量 的乳化劑以及氫氧化鈉。 在調節反應混合物在15。(:下之後,對於每個列 出的聚合反應減’將5〇%新鮮製備的水性預混合溶 液(4%濃度)弓丨入到該高壓爸中。該等預混合溶液的 組成為: 0.284 g乙二胺四乙酸(Fluka,產品號, 0.238 g 硫酸鐵(II)* 7H2〇 (Riedd 如 Haen,產品號 12354 )(未計結晶水) W76gR〇ngalit c,甲醛-次硫酸鈉2水合物 (Merck-Schuchardt,產品號 8.〇6455 )(未計結晶水), 以及 0.874 g μ酸二鈉*12 h2〇( Acr〇s,產品號 2〇652〇〇1〇) (未計結晶水)。 為了啟動所列出的聚合反應,對於含有苯乙稀的 類型使用5 g對薄舱氫過氧化物並且對於含有丙稀 腈的類型使用L7 g對薄荷燒氫過氧化物(Trig〇n〇x ,來自Akz〇-Degussa),並且使之乳化在反應 β中I備的200 ml乳化劑溶液中。 田達到30%的轉化時,測量剩餘的5〇%的預混合 溶液。 27 201249529 藉由设定冷卻劑的量值以及冷卻劑的溫度,來管 理聚合反應過裎中的溫度方案,溫度範圍如下表所 示。 當達到高於85% (典型地9〇%到100%)的聚合 轉化時,藉由加入2.3 5 g二乙基羥胺的水溶液(DEHA, Aldrich,產品號03620)來停止該聚合反應。 揮發性組分的去除 揮發性組分係藉由在大氣壓下使之經受蒸汽蒸 餾來從膠乳中去除的。 以此方式製備的聚合物顆粒被用於本發明的奈 米過濾薄膜。 表2示出了所製備的聚合物顆粒的配方;所使用 的索引如下: 〇丁二稀(不穩定的) 2) 來自德國莫克公司(Merck KgaA )的丙烯腈(99% 形式,用氫醌一曱醚穩定的) 3) 苯乙彿(用1〇〇至150 ppm的4-三級丁基鄰笨二紛 穩定的) 4) 三甲基丙烯酸三羥曱基丙烷酯(96%形式,來自 Aldrich) 5) 甲基丙烯酸羥乙基酯(97%形式,來自Arc〇s) 6) 從所使用的Dresinates 835的量計算出的歧化的樹 脂酸的量(縮寫為RA) 7) 來自油化學品公司(Oleo Chemicals )的EdenorChemical Company LP) (Sulfole® 120) Terephthalic thiol The polymer granules were prepared by emulsion polymerization in a 20 liter autoclave with a stirrer. For the polymerization batch, 4 3 kg of monomer having 0.34 26 201249529 g of 4_曱oxylate (Arcos Organics, product No. 1-2-2, 1〇〇〇, 99%) was used. In each case, the total emulsifier and total water stalk reported in the table were introduced into the da da (reduced the amount of water required to prepare the aqueous premix solution and the chloral peroxide solution). The following), together with the required amount of emulsifier and sodium hydroxide. The reaction mixture was adjusted at 15. (After the next, for each listed polymerization minus '5 〇% freshly prepared aqueous premixed solution (4% concentration) was bowed into the high pressure dad. The composition of the premixed solution was: 0.284 g ethylenediaminetetraacetic acid (Fluka, product number, 0.238 g iron (II) sulfate * 7H2 〇 (Riedd such as Haen, product number 12354) (not counting crystal water) W76gR〇ngalit c, formaldehyde-sodium sulfoxylate 2 hydrate (Merck-Schuchardt, product No. 8. 〇6455) (without crystallization water), and 0.874 g of disodium sulphate*12 h2 〇 (Acr〇s, product number 2〇652〇〇1〇) (not counting crystal water) In order to initiate the listed polymerization, 5 g of thin tank hydroperoxide is used for the type containing styrene and L7 g is used for the burning of hydroperoxide (Trig〇n for the type containing acrylonitrile) 〇x from Akz〇-Degussa) and emulsified in 200 ml of emulsifier solution prepared in reaction β. When the field reaches 30% conversion, the remaining 5% premixed solution is measured. 27 201249529 Borrow The temperature in the polymerization reaction is managed by setting the amount of the coolant and the temperature of the coolant. The temperature range is shown in the table below. When a polymerization conversion of more than 85% (typically 9〇% to 100%) is reached, by adding an aqueous solution of 2.35 g of diethylhydroxylamine (DEHA, Aldrich, product number 03620) The polymerization reaction is stopped. The volatile component of the volatile component is removed from the latex by subjecting it to steam distillation at atmospheric pressure. The polymer particles prepared in this manner are used in the present invention. Meter filtration film. Table 2 shows the formulation of the prepared polymer particles; the index used is as follows: diced dilute (unstable) 2) acrylonitrile from Germany's Merck KgaA (99%) Form, stabilized with hydroquinone monohydric ether) 3) Phenyl bromide (consistent with 1 to 150 ppm of 4-tert-butyl butyl) 2) Trihydroxymercaptopropane trimethacrylate (96% form, from Aldrich) 5) Hydroxyethyl methacrylate (97% form, from Arc〇s) 6) Amount of disproportionated resin acid calculated from the amount of Dresinates 835 used (abbreviated RA 7) Edenor from Oil Chemicals (Oleo Chemicals)

HtiCT N (縮寫為 FA) 28 201249529 8)三級十二烷基硫醇(來自雪佛龍菲利浦化學公司 (Chevron Phillips)的 Sulfol® 120) 所製備的顆粒的特性列於表3中。 29 201249529 ^-隸 【%】 006 ΙΛ6 als 繁 οοε bolHtiCT N (abbreviated as FA) 28 201249529 8) The properties of the particles prepared by tertiary dodecyl mercaptan (Sulfol® 120 from Chevron Phillips) are listed in Table 3. 29 201249529 ^- Li [%] 006 ΙΛ6 als 繁 οοε bol

0&lt;N_SI0&lt;N_SI

oz—sl—I ^ a qdj 0 0£ oοε 【%】 s s aqdjoz—sl—I ^ a qdj 0 0£ oοε [%] s s aqdj

Vi + VH llTfVi + VH llTf

IlrfIlrf

Vi /s ^.00 ττε.8 卜 vb rf 2Vi /s ^.00 ττε.8 卜 vb rf 2

Tr 2 &lt;9 9.£ 9.εTr 2 &lt;9 9.£ 9.ε

(&lt; SH s.卜 【拿峒¥】 (寸s 1S1 (e隹 οοε (z S.08 oos(&lt; SH s. Bu [峒峒¥] (inch s 1S1 (e隹 οοε (z S.08 oos

SOI aqdjsaa -md « S2 sro :(N&lt; 驟M 睬龚 Φ64 ε&lt;SOI aqdjsaa -md « S2 sro :(N&lt; MM 睬 Gong Φ64 ε&lt;

粒徑 [nm] in \〇 VO 1 η ►γΗ 〇截蕤 1 | 20.0 1 酸值 [mg KOH 膠1 1 in 膨脹 指數 1/5 1 11.3 ! 凝膠含量 [按重量計 %] 00 〇\ 'sO ON 膠乳pH (去除單體後) 00 irj 金本' &lt;(rO ^ 0、&gt; 28.8 28.3 聚合物顆 粒類型 — (S 201249529 用聚合物顆粒類型1和聚合物顆粒類型2生產本發明的 奈米過濾薄膜 所使用的支撐臈係高度交聯的聚醯亞胺。使用一縫 隙模具,藉由珠粒塗覆法用類型1或2橡膠狀聚合物顆 粒的水分散體來塗覆該膜。以2 m/min的速度,將該支 樓膜傳送到該模口之下。模口與支撐膜的距離係 μιη。膠乳層的濕膜厚度估計是在3〇μιη,從而給出了對 於分離活性層的乾臈厚度係大約10 μπι。在室溫下在大 氣壓下乾燥大約30分鐘。生產了奈米過濾薄膜類型j (用類型1聚合物顆粒)和奈米過濾薄膜類型2 (用類 型2聚合物顆粒)。 在本發明的奈米過濾薄膜類型2的情況下,在乾燥 後額外地進行聚合物顆粒的交聯。所使用的交聯劑係 六亞甲基二異氰酸酯(HDI)。首先,將所有膜用 丙酉同並且然後用正己烷進行洗滌。然後將在正己烷中的 按重量計2%的HDI以及按重量計〇.2%的月桂酸二辛基 錫施加到該膜上。在25〇c下20分鐘的反應時間後,去 除反應溶液並且將該膜用丙酮洗滌。 過滤、特性的確定 本發明的奈米過濾薄膜的過濾特性使用一聚苯乙 稀低聚物模型系統在不同溶劑中進行測量。該低聚物具 有的分子量係在230 g/mol與11〇〇 g/mol之間。在通過 足夠大量的滲透物後,從滲餘物和滲透物取出樣品,並 且將對應的低聚物濃度藉由HPLC用色譜法測定。從每 個低聚物的生成的濃度,有可能確定它們通過膜的截留 以及因此分子量截留。 31 201249529 本發明的奈米過濾薄膜類型1的過濾特性 表4展示了對於被本發明的奈米過濾薄膜類型1截 留聚苯乙烯低聚物的值,其中該分離活性層係由類型1 聚合物顆粒組成的,該顆粒沒有被另外地交聯。所選擇 的溶劑係丙酮。苯乙稀低聚物的分離發生在25°C在30 巴下。流速被確定為是11 l/(m2h)。 表4 : 分子量 /g/mol 截留/% 236 21 295 38 395 56 495 67 595 74 685 81 795 83 895 87 995 90 因此,在此定義的測試系統中,本發明的奈米過濾 薄膜具有大約1000 g/mol的截留,因為在此測量的截留 係90%。該膜因此適合用於奈米濾。 本發明的奈米過濾薄膜類型2的過濾特性 表5包含對於被本發明的奈米過濾薄膜類型2截留 聚笨乙烯低聚物的值,其中該分離活性層係由類型2聚 32 201249529 合物顆粒組成的,該顆粒被1,6-六亞曱基二異氰酸酯另 外地交聯。在三種不同的溶劑(丙酮、四氫呋喃(thf) 和甲笨)中報告了對於過濾的值。在25〇C的溫度和3〇 巴的壓力下,測量了 7到丨丨1/(m2 h)的流速。 表5 : 分子量 /g/mol 溶劑:甲苯 截留/% 溶劑:THF 截留/% 溶劑:丙酮 截留/% 236 - 42 34 295 ------ 52 50 45 395 73 71 66 495 -~^ 82 79 76 595 88 85 84 _695 91 87 87 795 93 89 89 _895 95 89 91 995 96 90 92 1095 96 91 93 從在此所示的測量值明顯的是,在聚合物顆粒的交 聯後’該膜的截留係位於700 g/mol至800 g/mol,意味 著該臈可以用於奈米谑。該等數據僅輕微程度地依賴於 所選擇的溶劑。在所有使用的溶劑中,本發明的膜不顯 示出任何溶解跡象。 33 201249529 【圖式簡單說明】 無 【主要元件符號說明】 無 34Particle size [nm] in \〇VO 1 η ►γΗ 〇Bist 1 | 20.0 1 Acid value [mg KOH gel 1 1 in Expansion index 1/5 1 11.3 ! Gel content [% by weight] 00 〇\ ' sO ON latex pH (after monomer removal) 00 irj gold present ' &lt; (rO ^ 0, &gt; 28.8 28.3 polymer particle type - (S 201249529 Production of the invention with polymer particle type 1 and polymer particle type 2 The support lanthanide used in the nanofiltration membrane is a highly crosslinked polyimine. The membrane is coated with an aqueous dispersion of type 1 or 2 rubbery polymer particles by a bead coating method using a slit die. The film of the branch was transferred to the die at a speed of 2 m/min. The distance between the die and the support film was μιη. The wet film thickness of the latex layer was estimated to be 3 μm, thus giving The dry thickness of the separated active layer was about 10 μm. It was dried at atmospheric pressure for about 30 minutes at room temperature. A nanofiltration membrane type j (using type 1 polymer particles) and a nanofiltration membrane type 2 (using type) were produced. 2 polymer particles). In the case of the nanofiltration membrane type 2 of the present invention, The crosslinking of the polymer particles is additionally carried out after drying. The crosslinking agent used is hexamethylene diisocyanate (HDI). First, all the membranes are washed with propylene and then with n-hexane. 2% by weight of HDI in the alkane and 2% by weight of dioctyltin laurate were applied to the film. After a reaction time of 20 minutes at 25 ° C, the reaction solution was removed and the film was removed. Washing with acetone. Filtration, Characterization The filtration characteristics of the nanofiltration membrane of the present invention were measured in a different solvent using a polystyrene oligomer model system. The oligomer had a molecular weight of 230 g/mol. Between 11 〇〇g/mol. After passing a sufficiently large amount of permeate, the sample is taken from the retentate and permeate, and the corresponding oligomer concentration is determined by HPLC using HPLC. From each oligomerization The concentration of the generated substances makes it possible to determine their entrapment through the membrane and thus the molecular weight cut-off. 31 201249529 The filtration characteristics of the nanofiltration membrane type 1 of the present invention Table 4 shows the type 1 for the nanofiltration membrane of the present invention. The value of the polystyrene oligomer is retained, wherein the separation active layer is composed of type 1 polymer particles which are not additionally crosslinked. The solvent selected is acetone. Separation of the styrene oligomer occurs. The flow rate was determined to be 11 l/(m2h) at 25 ° C. Table 4: Molecular weight / g / mol Interception / % 236 21 295 38 395 56 495 67 595 74 685 81 795 83 895 87 995 90 Thus, in the test system defined herein, the nanofiltration membrane of the present invention has a cutoff of about 1000 g/mol because the cutoff measured here is 90%. This membrane is therefore suitable for use in nanofiltration. The filtration characteristics of the nanofiltration membrane type 2 of the present invention Table 5 contains values for the entrapped polystyrene oligomer of the nanofiltration membrane type 2 of the present invention, wherein the separation active layer is composed of the type 2 poly 32 201249529 In the case of particles, the particles are additionally crosslinked by 1,6-hexamethylene diisocyanate. Values for filtration were reported in three different solvents (acetone, tetrahydrofuran (thf), and stupid). The flow rate of 7 to 丨丨1/(m2 h) was measured at a temperature of 25 ° C and a pressure of 3 Torr. Table 5: Molecular Weight / g / mol Solvent: Toluene Interception /% Solvent: THF Retention /% Solvent: Acetone Interception /% 236 - 42 34 295 ------ 52 50 45 395 73 71 66 495 -~^ 82 79 76 595 88 85 84 _695 91 87 87 795 93 89 89 _895 95 89 91 995 96 90 92 1095 96 91 93 From the measurements shown here, it is obvious that the film is retained after cross-linking of the polymer particles. The system is located between 700 g/mol and 800 g/mol, which means that the ruthenium can be used for nano 谑. These data are only slightly dependent on the solvent chosen. The film of the present invention did not show any signs of dissolution in all solvents used. 33 201249529 [Simple description of the diagram] None [Key component symbol description] None 34

Claims (1)

201249529 七、申請專利範圍: 1. 一種具有多孔支撐膜之奈米過濾薄膜,其特徵在於 該支撐膜的表面塗覆有藉由乳液聚合製備的並且 具有小於70 nm、優選在30 - 65 nm之間、更優選 在40 - 50 nm之間的平均粒徑的聚合物顆粒。 2. 如申請專利範圍第1項之奈米過濾薄膜,其特徵在 於該支撐膜係由無機或有機材料組成。 3. 如申請專利範圍第2項之奈米過濾薄膜,其特徵在 於該支撐膜之孔徑係小於500 nm、優選小於100 nm並且更優選小於50 nm。 4. 如申請專利範圍第3項之奈米過濾渾膜,其特徵在 於該支撐膜之孔徑係小於該聚合物顆粒的平均粒 徑。 5. 如申請專利範圍第4項之奈米過濾薄膜,其特徵在 於該支稽膜的厚度係5到100 μηι,優選20到80 μιη 並且非常優選從30 μιη到60 μπι。 6. 如申請專利範圍第5項之奈米過濾薄膜,其特徵在 於該藉由乳液聚合製備的聚合物顆粒係橡膠狀。 7. 如申請專利範圍第6項之奈米過濾薄膜,其特徵在 於該等橡膠狀聚合物顆粒係基於共軛二烯,例如丁 二烯、異戊二烯、2-氯丁二烯以及2,3-二氯丁二烯, 乙酸乙烯酯、苯乙烯或其衍生物、2-乙烯吡啶以及 4-乙稀°比°定、丙烯腈、丙烯醯胺、曱基丙稀醯胺、 四氟乙烯、偏二氟乙烯、六氟丙烯、以及含有雙鍵 的羥基的、環氧的、胺基的、羧基的以及酮類的化 合物的顆粒。 35 201249529 8. 9. 10. 11. 範圍第7項之奈米過濾薄膜,其特徵在 到Μ 。5物顆粒具有-85°c到150。〇優選-750C :iio°c、更優選,。c至&quot;〇〇c的玻璃轉 (Tg)。 如申請專利範圍第8項之奈米過濾、薄膜,其特徵在 於3玄藉由錄聚合製備的聚合物顆粒係至少部分 交聯。 如:明專利範圍第9項之奈米過濾薄膜,其特徵在 於该释由乳液聚合製備的聚合物顆粒係藉由在聚 合反應中加入多官能單體而至少部分功能化者。 如申請專職圍第1G項之奈米聽賴,其特徵 在於’該等乡官能單體係選自由以下各項組成之群 組:具有至少兩個、優選從2至4個可共聚的C=c 雙鍵的化合物,例如,二異丙烯基苯、二乙烯基苯、 二乙烯醚、二乙烯基颯、鄰苯二曱酸二烯丙酯、氰 脲酸三烯丙酯、異氰尿酸三烯丙酯、1,2-聚丁二烯、 N,N’-間伸苯基馬來醯亞胺、2,4_甲伸苯基雙(馬來醯 亞胺)、偏苯三酸三烯丙酯,以下物質的丙烯酸酯 類以及曱基丙烯酸酯類、脂肪族胺類、環氧化物和 多元的優選的是二至四元的C2-C10醇類,如乙二 醇、丙-1,2-二醇、丁二醇、己二醇、具有2到2〇 個、優選2到8個氧乙烯單元的聚乙二醇、新戊二 醇、雙酚A、甘油、三羥甲基丙烷、.新戊四醇、山 梨醇,以及還有脂肪族二醇和多元醇與馬來酸、富 馬酸、和/或衣康酸的不飽和聚酯類。 36 201249529 •在項渡薄膜,其特徵 請專利範圍第:項之 刀缺重里计至少大約7〇%、更優選按 更:選於ί ΐ約8〇%、更優選按重量計90%、甚至 更優選按重篁計至少大約98%。 14. 項之奈米過㈣膜,其特徵 ΐ顆粒具有在甲笨中在23°c下小於 如I優選小於6〇、㈣更優選小於4 脹指數。 15. 利範圍第14項之奈米糊膜,其特徵 在於该不来過遽薄膜的層厚度具有至少一個單層 的聚口物雛,料聚合物麵具杨平均粒徑為 70 nm、優選在3〇 nm與65⑽之間、更優選在 4〇nm與50nm之間(分離活性層)。 16. 如申請專利範圍第15項之奈米過遽薄膜,其特徵 在於》亥刀離活性層具有〇丨μιη到2〇叫的層厚度。 17. 如申请專利範圍第16項之奈米過濾薄膜,其特徵 在於該分離活性層具有的厚度為不大於該支撐膜 的厚度。 、 ,用於生產#以上申請專利範圍中任一項之具 有=孔支撐臈的奈米過濾薄膜的方法,其特徵在於 將藉由乳液聚合製備的聚合物顆粒.的分散體(膠 礼)細用到該支撐膜上,並且在該支撐臈上形成一 聚合物層(分離活性層)。 37 18. 201249529 19. 如申請專利範圍第18項之方法,其特徵在於該方 法係連續進行。 20. 如申請專利範圍第19項之方法,其特徵在於該分 散體係單分散。 21. 如申請專利範圍第20項之方法,其特徵在於以該 聚合物的總體積為基準,該分散體包括具有小於 70 nm、優選在30 nm與60 nm之間、更優選在40 nm與50 nm之間的平均直徑的聚合物顆粒,在聚 合之後的乾橡膠含量係至少20%、優選至少25%、 更優選至少30%。 22. 如申請專利範圍第21項之方法,其特徵在於以該 聚合物的總體積為基準,在聚合之後的乾橡膠含量 係不大於65%。 23. 如申請專利範圍第22項之方法,其特徵在於該等 聚合物顆粒係藉由喷嘴來施加的。 24. 如申請專利範圍第23項之方法,其特徵在於該奈 米過濾薄膜係在下游步驟中乾燥的。 25. 如申請專利範圍第24項之方法,其特徵在於該奈 米過濾薄膜的分離活性層係另外交聯的。 26. —種藉由乳液聚合製備的並且具有小於70nm、優 選在30 - 60 nm之間、更優選在40 - 50 nm之間的 平均粒徑的聚合物顆粒用於生產如以上申請專利 範圍中任一項之奈米過濾薄膜之用途。 27. —種如以上申請專利範圍中任一項之奈米過濾薄 膜用於食品產業、化學產業或生物化學產業之用 途。 38 201249529 四、指定代表圖: (一) 本案指定代表圖為:第(無)圖。 (二) 本代表圖之元件符號簡單說明: 無 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 無201249529 VII. Patent application scope: 1. A nanofiltration membrane having a porous support membrane, characterized in that the surface of the support membrane is coated with emulsion polymerization and has a thickness of less than 70 nm, preferably 30 - 65 nm. More preferably, the polymer particles have an average particle diameter of between 40 and 50 nm. 2. The nanofiltration membrane of claim 1, wherein the support membrane is composed of an inorganic or organic material. 3. A nanofiltration membrane according to claim 2, characterized in that the pore size of the support membrane is less than 500 nm, preferably less than 100 nm and more preferably less than 50 nm. 4. The nanofiltration membrane of claim 3, wherein the pore size of the support membrane is less than the average particle diameter of the polymer particles. 5. The nanofiltration membrane of claim 4, wherein the thickness of the membrane is from 5 to 100 μm, preferably from 20 to 80 μm and very preferably from 30 μm to 60 μm. 6. The nanofiltration membrane of claim 5, wherein the polymer particles prepared by emulsion polymerization are rubbery. 7. The nanofiltration membrane of claim 6, wherein the rubbery polymer particles are based on a conjugated diene such as butadiene, isoprene, 2-chlorobutadiene and 2 , 3-dichlorobutadiene, vinyl acetate, styrene or its derivatives, 2-vinyl pyridine and 4-ethylene ratio, acrylonitrile, acrylamide, mercapto acrylamide, tetrafluoro Granules of ethylene, vinylidene fluoride, hexafluoropropylene, and hydroxyl-containing, epoxy, amine, carboxyl, and ketone compounds containing double bonds. 35 201249529 8. 9. 10. 11. The nanofiltration membrane of item 7 of the scope, characterized by Μ. The 5 particles have a temperature of -85 ° C to 150. 〇 is preferably -750C: iio °c, more preferably. c to &quot;〇〇c glass turn (Tg). The nanofiltration, film according to item 8 of the patent application, characterized in that the polymer particles prepared by the recording of the polymerization are at least partially crosslinked. A nanofiltration membrane according to item 9 of the patent scope, characterized in that the polymer particles prepared by emulsion polymerization are at least partially functionalized by the addition of a polyfunctional monomer in the polymerization reaction. For example, the application of the full-circle 1G item of nanometer hearing is characterized in that 'these township functional single systems are selected from the group consisting of: having at least two, preferably from 2 to 4 copolymerizable C= c double bond compound, for example, diisopropenylbenzene, divinylbenzene, divinyl ether, divinyl fluorene, diallyl phthalate, triallyl cyanurate, isocyanurate Allyl ester, 1,2-polybutadiene, N,N'-meta-phenyleneimine, 2,4-methylphenylene (maleimide), trimellitic acid Allyl esters, acrylates of the following materials, and mercapto acrylates, aliphatic amines, epoxides and polybasic are preferably two to four membered C2-C10 alcohols, such as ethylene glycol, propane-1 , 2-diol, butanediol, hexanediol, polyethylene glycol having 2 to 2, preferably 2 to 8 oxyethylene units, neopentyl glycol, bisphenol A, glycerol, trimethylol Propane, neopentyl alcohol, sorbitol, and also unsaturated polyesters of aliphatic diols and polyols with maleic acid, fumaric acid, and/or itaconic acid. 36 201249529 • In the Xiangdu film, the characteristics of the patent range: the knife weight loss is at least about 7〇%, more preferably, more: choose ί ΐ about 8〇%, more preferably 90% by weight, or even More preferably, it is at least about 98% by weight. 14. The nanometer (4) film characterized in that the ruthenium particles have a swelling index of less than 6 Å, (4), more preferably less than 4, at 23 ° C in the case. 15. The nano-paste film according to item 14 of the present invention, characterized in that the layer thickness of the non-pervious film has at least one monolayer of the polylayer, and the average particle size of the polymer mask is 70 nm, preferably Between 3 〇 nm and 65 (10), more preferably between 4 〇 nm and 50 nm (separating the active layer). 16. The nano-pass film according to claim 15 of the patent application, characterized in that the layer has a layer thickness of from ιμηη to 2 〇 from the active layer. 17. The nanofiltration membrane of claim 16, wherein the separation active layer has a thickness no greater than a thickness of the support film. And a method for producing a nanofiltration membrane having a pore support crucible according to any one of the above claims, characterized in that the dispersion of the polymer particles prepared by emulsion polymerization is fine. The support film is used, and a polymer layer (separation active layer) is formed on the support crucible. 37 18. 201249529 19. The method of claim 18, characterized in that the method is carried out continuously. 20. The method of claim 19, wherein the dispersion system is monodisperse. 21. The method of claim 20, characterized in that the dispersion comprises less than 70 nm, preferably between 30 nm and 60 nm, more preferably at 40 nm, based on the total volume of the polymer. The average diameter of the polymer particles between 50 nm has a dry rubber content after polymerization of at least 20%, preferably at least 25%, more preferably at least 30%. 22. The method of claim 21, wherein the dry rubber content after polymerization is not more than 65% based on the total volume of the polymer. 23. The method of claim 22, wherein the polymer particles are applied by a nozzle. 24. The method of claim 23, wherein the nanofiltration membrane is dried in a downstream step. 25. The method of claim 24, wherein the separation active layer of the nanofiltration membrane is additionally crosslinked. 26. Polymer particles prepared by emulsion polymerization and having an average particle size of less than 70 nm, preferably between 30 and 60 nm, more preferably between 40 and 50 nm, for production as in the scope of the above patent application The use of any of the nanofiltration membranes. 27. A nanofiltration membrane according to any one of the above claims, for use in the food, chemical or biochemical industries. 38 201249529 IV. Designated representative map: (1) The representative representative of the case is: (No). (2) A brief description of the symbol of the representative figure: None 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: None
TW101104214A 2011-02-10 2012-02-09 Nanofiltration membrane TW201249529A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11015394 2011-02-10

Publications (1)

Publication Number Publication Date
TW201249529A true TW201249529A (en) 2012-12-16

Family

ID=48139044

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101104214A TW201249529A (en) 2011-02-10 2012-02-09 Nanofiltration membrane

Country Status (1)

Country Link
TW (1) TW201249529A (en)

Similar Documents

Publication Publication Date Title
JP5909617B2 (en) Nanofiltration membrane
KR101946776B1 (en) Compositon for neural layer
TWI651334B (en) Fluoropolymer and film containing fluoropolymer (II)
JP4427291B2 (en) Continuous production method of functional membrane
TWI593725B (en) Hydrophilically modified fluorinated membrane (v)
KR101630208B1 (en) A preparation method of hydrophilic membrane and a hydrophilic membrane prepared by the same
US20160030894A1 (en) Resilient Anion Exchange Membranes Prepared By Polymerizing A Composition
KR102028584B1 (en) Fluoropolymers and membranes comprising fluoropolymers (i)
JP6421113B2 (en) Gas separation membrane and gas separation method
JP7292742B2 (en) Asymmetric composite membranes and modified substrates used in their preparation
TW201249529A (en) Nanofiltration membrane
Tong et al. Novel PVDF-g-NMA copolymer for fabricating the hydrophilic ultrafiltration membrane with good antifouling property
WO2014016347A1 (en) Nanofiltration membrane with a layer of polymer and oxide particles
JP2005082728A (en) Method for continuous production of functional membrane
US20070083001A1 (en) Method for the production of polymer powders from aqueous polymer dispersions
JP2018130671A (en) Surface-modified porous film and manufacturing method of the same
Ovando‐Medina et al. Synthesis of sulfonated poly (styrene‐co‐methyl methacrylate) by semicontinuous heterophase polymerization for filtration membranes
CN110869400A (en) Copolymers and terpolymers based on chlorotrifluoroethylene and vinyl chloride and use thereof
TW201813984A (en) Fluoropolymers and membranes comprising fluoropolymers (III)
CN111974322A (en) Polypyrrole porous hollow nano-microsphere and preparation method and application thereof
JPH11106593A (en) Polyisopropenyl acetate separation membrane