[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201246560A - A method for forming a bifacial thin film photovoltaic cell and a thin film solar device - Google Patents

A method for forming a bifacial thin film photovoltaic cell and a thin film solar device Download PDF

Info

Publication number
TW201246560A
TW201246560A TW101108612A TW101108612A TW201246560A TW 201246560 A TW201246560 A TW 201246560A TW 101108612 A TW101108612 A TW 101108612A TW 101108612 A TW101108612 A TW 101108612A TW 201246560 A TW201246560 A TW 201246560A
Authority
TW
Taiwan
Prior art keywords
layer
interface
absorber
anode
electric field
Prior art date
Application number
TW101108612A
Other languages
Chinese (zh)
Inventor
Ashish Tandon
Fred Mikulec
Original Assignee
Stion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/049,190 external-priority patent/US20110220198A1/en
Application filed by Stion Corp filed Critical Stion Corp
Publication of TW201246560A publication Critical patent/TW201246560A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A method for forming a bifacial thin film photovoltaic cell includes providing a glass substrate having a surface region covered by an intermediate layer and forming a thin film photovoltaic cell on the surface region. Additionally, the thin film photovoltaic cell includes an anode overlying the intermediate layer, an absorber over the anode, and a window layer and cathode over the absorber mediated by a buffer layer. The anode comprises an aluminum doped zinc oxide (AZO) layer forming a first interface with the intermediate layer and a second interface with the absorber. The AZO layer is configured to induce Fermi level pinning at the first interface and a strain field from the first interface to the second interface.

Description

201246560 … 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明總體上涉及光伏裝置和製造方法。更具體地說, 本發明提供了一種用於雙面薄膜光伏電池的方法和裝置 結構。本發明的實施方式包括一種用於形成雙面薄膜光 伏裝置的方法,該方法利用費米能級釘紮(Fermi level pinning)以及陽極中的應變場來改變内電場以 便提高電池效率。本發明的一個應用是將應變的AZO層用 作PV吸收器與陽極層之間的介面以用於增強空穴聚集。201246560 ... 6. Description of the Invention: [Technical Field of the Invention] [0001] The present invention generally relates to a photovoltaic device and a manufacturing method. More specifically, the present invention provides a method and apparatus structure for a double-sided thin film photovoltaic cell. Embodiments of the present invention include a method for forming a double-sided film photovoltaic device that utilizes Fermi level pinning and strain fields in the anode to change the internal electric field to improve cell efficiency. One application of the invention is to use a strained AZO layer as the interface between the PV absorber and the anode layer for enhanced hole collection.

D 【先前技術】 [0002] 人類從最開始就已嘗試尋找利用能量的方法。能量呈現 的形式諸如石油化學、水力發電、核、風、生物量( biomass,生物質)、太陽能以及諸如木材和煤碳。在上 世紀,現代文明已依靠石油化學能量作為重要能源。石 油化學能量包括天然氣和石油。這包括通常用於為家庭 供熱和用作用於烹隹的燃料的諸如丁统和丙炫•的較輕形 U 式,也包括通常用於交通目的的汽油、柴油、和喷氣燃 料。石油化學的較重形式還可以在一些地方用於對家庭 供熱。不幸的是,石油化學燃料的供應是有限的,並且 基於地球上可獲得的量該供應實質上是固定的。另外, 隨著人們使用石油製品的量越來越多,所以其快速變為 稀缺資源。 [0003] 期望環境清潔的和可再生的能源。清潔能源的實例是水 力發電的電力。水力發電電力源自於由水壩產生的水流 驅動的發電機。清潔的和可再生的能源還包括風、波、 10110861#單編號應01 第3頁/共28頁 1013265466-0 201246560 生物量等。風車將風能轉換為更有用形式的能量,諸如 電。清潔能源的其他形式包括太陽能。 [0004] 太陽能技術總體上將來自太陽的電磁輻射轉換成其他有 用形式的能量。這些其他形式的能量包括熱能和電力。 對於電力應用,經常使用太陽能電池。雖然太陽能是環 境清潔的,並且已在一程度上獲得成功,但在其在全世 界廣泛應用之前還留有許多需要解決的限制。作為實例 ‘ ,一種類型的太陽能電池使用源自於半導體材料錠( ingot,棒)的晶體材料。這些晶體材料可以用於製造光 伏裝置,該光伏裝置包括將電磁輻射轉換為電力的光伏 和光二極體裝置。但是,·晶體材料通常較貴,並且難以 大規模製造。其他類型的太陽能電池使用“薄膜”技術 來形成光敏材料的薄膜以用於將電磁輻射轉換成電力。 對於在製造太陽能電池過程中使用薄膜技術,存在有相 似的限制。即,效率通常較低。另外,膜可靠性通常較 低,並且在傳統環境應用中不能長時間使用。通常,薄 膜難以通過機械方式彼此整體形成。這些傳統技術的這 些和其他限制能夠從整個說明書中找到,並且將在下面 更具體地描述。 [0005] 作為改進薄膜太陽能電池的效率的努力,用於在電池的 異質結處改進相對能帶排列的過程在提高太陽能電池的 最終性能中起到重要的作用。在選擇用於形成具有適合 的電場強度和方向的薄膜PV電池結(junction)介面的 材料和結構時存在多種製造難題。具體地說,吸收器與 陽極之間或者窗層與陰極之間通過相應介面的帶對直影 10110861^^ A〇101 第4頁/共28頁 1013265466-0 201246560 響載流子的收集致率以及電雷 的傳統技術中已經解決了 、舌 门題中的一些,但是名 種情形中傳統技街通常是不充分的。因此,期望且有改 進的方法和結構以便設計用於_光伏裝置的電池結介 面0 【發明内容】 [0006] ❹ 本發明提供了-種用於形成雙面薄膜光伏電池的方法。 該方法包括:提供具有被中間層覆蓋的表面區域的玻璃 基板、以及在表面區域上形成包膜光伏電池。薄膜光伏 電池包括覆篕所述中間層的陽極' 位於所述陽極上方的 吸收器。此外,電池包括位於所述吸收器上方窗層和陰 極,窗層和陰極之間具有緩衝層。陽極包括鋁摻雜的鋅 氧化物(ΑΖΟ)層,用於與中間層形成第一介面並且與 吸收器形成第二介面。ΑΖΟ構造為弓丨起第一介面處的費米 能級別釘紮和從第一介面到第;介面的應變%。 [0007] ❹ 在本發明的可替換的實施方式中,提供了利用用於陽極 吸收器介面的應變的ΑΖΟ層的薄勝太陽能裝置。該裝置包 括光學透明的基板以及覆蓋透明基板的中間層9此外, 該裝置包括陽極層,陽極層包括鋁摻雜的鋅氧化物(ΑΖΟ )層以便與中間層形成第一介面。該裝置還包括吸收器 ,吸收器包括具有Ρ-型摻雜劑的銅銦鎵聯硒化物以與ΑΖ0 層形成第二介面。此外,該裝襄包括缓衝層,在緩衝層 後跟隨有覆蓋吸收器的窗層。此外,該裝置包括覆蓋窗 層的陰極。在一個具體實施方式中,9玄裝置所利用的ΑΖΟ 層引起陽極層中的應變場以及第一*介面處的費米能級釘 10110861#單編號 Α_ 第5頁/共28貢 1013265466-0 201246560 紮以便改變第二介面處的内電場。 [0008] 本發明的一些實施方式提供了一種利用陽極中的應變和 介面處的費米能級釘紮的組合來改變陽極-吸收器介面周 圍的内電場的方法,以減小電場強度或者甚至翻轉内電 場的方向。減小的内電場強度使屏障下降以便更容易由 載流子空穴從吸收器隧穿過到達陽極。内電場在吸收器 與後電極之間的介面處的翻轉方向直接地幫助從P-型吸 收器通過n +型陽極的空穴聚集。 [0009] 中間層佈置在AZO層與基板的表面區域之間。AZO層與中 間層之間的晶格失配(lattice mismatch)使得陽極 中產生應變,該應變改變了陽極與吸收器之間的介面處 的電場。在AZO層與中間層之間或者AZO層與吸收器之間 的介面處,電子帶通過表面狀態被改變並且橫跨介面經 由費米能級釘紮而對準。費米能級釘紮和陽極中的應變 均能在後電極處使得内電場減小或者甚至翻轉方向,這 幫助空穴在後接觸處的聚集並且由此提高了電池效率。 【實施方式】 [0010] 本發明的實施方式提供了一種用於雙面薄膜光伏電池的 方法和裝置。本發明的實施方式包括用於在陽極層中利 用應變場以及介面費米能級釘紮形成雙面薄膜光伏裝置 的方法,以改變在陽極吸收器介面處的内電場從而提高 電池效率。提供了 一種將AZO層用作PV吸收器與陽極層之 間的介面的裝置,以便增強空穴聚集(hole collection) ° [0011] 圖1示出了根據本發明的實施方式在陽極吸收器介面處利 1013265466-0 第6頁/共28頁 201246560 用鋁摻雜的鋅氧化物層的薄膜光伏電池的圖。如圖所示 ’薄膜光伏(PV)電池形成在基板101上。通常,對於雙 面薄膜PV電池來說,為基板選擇例如納弼玻璃的透明材 料。在實施方式中,中間層105形成為覆蓋基板1〇1的表 面區域。中間層105是用於後電極(典型地是陽極)的基 層。在一具體實施方式中,中間層105可以用作屏障以防 止鈉元素從納鈣玻璃擴散到電極層中。 [0012] Ο 在另一具體實施方式中’中間層1〇5對於太陽光是光學透 明的’以方便從電池的後側進行吸收》中間層1〇5優選地 是透明的氧化物層,該氧化物層從氟摻雜的錫氡化物( TFO)、銦錫氧化& (ITO) '和二氡化發或者氮化石夕中 選擇的材料製成。在另一具體實施方式中,如果選擇可 傳導材料,則中間層105能夠成為電池1〇〇的後電極的一 部分’並且中間層構造為形成用於電池陽極的電接觸。 例如, 中間層1G5中可以包含透明傳導氧化物和/或金屬 ο (諸如鉬)的薄膜。此外 ,以用於通過使介面的一 ’中間層1〇5可以用作結構基層 侧設有在敢範_常數的晶 格來控制覆蓋其自身生長的層中的應變場。形成在其頂 部上的層可以基於晶格失配在應變下以可控制的方式护 成。 [0013] 如圖1所示,陽極層110形成為覆蓋中間層1〇5 實施方式中’陽極層110是鋁摻雜的鋅氧化物 。在一具體 (AZO)層 *單編號 10110861^ ,以便在AZO層11 〇與中間層105之間至少形成第—介面 107。鋁摻雜的鋅氧化物的膜是透明的並且是導電的 AZO的光學特性的特徵在於在可視區内具有高透射率並 A0101 第7頁/共28頁 1013265466-0 201246560 且對~12 /zm長的IR波長來說具有有用的透射率。AZ0層 110可以通過從由結合在ZnO中的2-4%的A1金屬(或者以 A1203的形式)組成的靶濺射而澱積。AZ0層110可以通 過RF或DC磁電管殿積,其中在約1-1〇 mtorr (毫托)的 壓力範圍的真空室中靶能量密度為約3 W/cm2或者更低, 氧氣和氬氣混合氣在真空室中流動。可替換地,ΑΖ0層可 以通過使用M0CVD的方法形成。在中間層1〇5上形成入20 層之後,用作η-型摻雜劑的鋁在以陽極中能夠具有從 5x1019 cm-3到lxl〇21 cm-3變化的原子能級。的 導電率(其作為體積電阻係數或作為片阻力測量)與沉 積特性和層厚度相關》 [00M]參照圖1,吸收器115形成為覆蓋AZ0層11D,使得在陽極 110與吸收器115之間至少形成第二介面112。電池1〇〇的 吸收器115是光伏材料的,典型地是p_型半導體膜。在一 特定的實施方式中,通過在氣體環境中熱處理前體層而 开々成吸收器115。例如,包括銅元素、銦元素、和/或姻_ 鎵元素的前體層可以利用濺射形成在基板的表面上。在 隨後的反應熱處理過程中,前體層能在包含碼化物物質 (species)、硫物質和氮物質等的爐管内在氣態環境中 被反應性地處理。當爐管被加熱時,在前體層中氣態砸 與銅-銦-鎵物質相作用。由於反應性熱處理,所以前體 層轉化為包含銅銦(鎵)聯硒化物(CIS/CIGS)化合物 的光伏膜疊層’該光伏膜疊層是p-型半導體並且用作用 於形成光伏電池的吸收器層。 [0015]關於用於形成薄膜太陽能電池的CIGS光伏膜疊層的熱處 10110861#單編號A〇101 帛8頁/共28頁 1013265466-0 201246560 理過程的更多詳細描述能夠在2009年5月14日由RobertD [Prior Art] [0002] Humans have tried to find ways to use energy from the very beginning. Energy is presented in the form of petrochemicals, hydroelectric power, nuclear, wind, biomass, solar energy, and such as wood and coal. In the last century, modern civilization has relied on petrochemical energy as an important source of energy. Petrochemical energy includes natural gas and petroleum. This includes the lighter U-types such as Ding and Chong, which are commonly used to heat homes and for use as fuel for cooking, as well as gasoline, diesel, and jet fuels commonly used for transportation purposes. The heavier form of petrochemistry can also be used to heat the home in some places. Unfortunately, the supply of petrochemical fuels is limited and the supply is essentially fixed based on the amount available on Earth. In addition, as people use more and more petroleum products, they quickly become scarce resources. [0003] Environmentally clean and renewable energy sources are desirable. An example of clean energy is hydroelectric power. Hydroelectric power is derived from generators driven by water flow generated by dams. Clean and renewable energy sources include wind, wave, 10110861# single number should be 01 page 3 / total 28 pages 1013265466-0 201246560 biomass and so on. Windmills convert wind energy into more useful forms of energy, such as electricity. Other forms of clean energy include solar energy. [0004] Solar technology generally converts electromagnetic radiation from the sun into other useful forms of energy. These other forms of energy include heat and electricity. For power applications, solar cells are often used. Although solar energy is environmentally clean and has been successful to a certain extent, there are many limitations that need to be addressed before it is widely used throughout the world. As an example, one type of solar cell uses a crystalline material derived from an ingot of a semiconductor material. These crystalline materials can be used to fabricate photovoltaic devices that include photovoltaic and photodiode devices that convert electromagnetic radiation into electrical power. However, crystalline materials are generally expensive and difficult to manufacture on a large scale. Other types of solar cells use "film" techniques to form a film of photosensitive material for converting electromagnetic radiation into electricity. There are similar limitations to the use of thin film technology in the manufacture of solar cells. That is, efficiency is usually low. In addition, membrane reliability is generally low and cannot be used for long periods of time in traditional environmental applications. Generally, it is difficult for the films to be integrally formed with each other by mechanical means. These and other limitations of these conventional techniques can be found throughout the specification and will be described in more detail below. [0005] As an effort to improve the efficiency of thin film solar cells, the process for improving the relative band alignment at the heterojunction of the cell plays an important role in improving the final performance of the solar cell. There are a number of manufacturing challenges in selecting materials and structures for forming a thin film PV cell junction interface with suitable electric field strength and orientation. Specifically, the collection rate of the carrier between the absorber and the anode or between the window layer and the cathode through the corresponding interface is 10110861^^ A〇101 4th/28 pages 1013265466-0 201246560 As well as the traditional techniques of electric mines, some of the tongue-and-shoot questions have been solved, but in the famous case, the traditional technology street is usually insufficient. Accordingly, it is desirable and advantageous to have a method and structure for designing a battery junction interface for a photovoltaic device. [Invention] [0006] The present invention provides a method for forming a double-sided thin film photovoltaic cell. The method includes providing a glass substrate having a surface region covered by an intermediate layer, and forming a coated photovoltaic cell on the surface region. The thin film photovoltaic cell includes an absorber overlying the anode of the intermediate layer located above the anode. In addition, the battery includes a window layer and a cathode above the absorber, and a buffer layer between the window layer and the cathode. The anode includes an aluminum doped zinc oxide (germanium) layer for forming a first interface with the intermediate layer and a second interface with the absorber. The ΑΖΟ is constructed such that the bow picks up the Fermi level at the first interface and the strain from the first interface to the first interface; [0007] In an alternative embodiment of the invention, a thin solar device utilizing a strained ruthenium layer for the anode absorber interface is provided. The device comprises an optically transparent substrate and an intermediate layer 9 covering the transparent substrate. Further, the device comprises an anode layer comprising an aluminum-doped zinc oxide (ΑΖΟ) layer to form a first interface with the intermediate layer. The apparatus also includes an absorber comprising a copper indium gallium diselenide having a bismuth-type dopant to form a second interface with the ΑΖ0 layer. In addition, the device includes a buffer layer followed by a window layer covering the absorber. In addition, the device includes a cathode that covers the window layer. In a specific embodiment, the ruthenium layer utilized by the 9-thin device causes a strain field in the anode layer and a Fermi level nail at the first* interface. 10110861#单号Α_第5页/共28贡1013265466-0 201246560 Tie to change the internal electric field at the second interface. Some embodiments of the present invention provide a method of utilizing a combination of strain in an anode and Fermi level pinning at an interface to change an internal electric field around an anode-absorber interface to reduce electric field strength or even Flip the direction of the internal electric field. The reduced internal electric field strength causes the barrier to drop to more easily tunnel from the absorber through the absorber to the anode. The direction of inversion of the internal electric field at the interface between the absorber and the back electrode directly assists in the accumulation of holes from the P-type absorber through the n+ type anode. [0009] The intermediate layer is disposed between the AZO layer and a surface region of the substrate. A lattice mismatch between the AZO layer and the intermediate layer causes strain in the anode which changes the electric field at the interface between the anode and the absorber. At the interface between the AZO layer and the intermediate layer or between the AZO layer and the absorber, the electronic tape is changed by the surface state and aligned across the interface by the Fermi level pinning. Both the Fermi level pinning and the strain in the anode enable the internal electric field to be reduced or even flipped at the back electrode, which aids in the accumulation of holes at the back contact and thereby increases cell efficiency. [Embodiment] [0010] Embodiments of the present invention provide a method and apparatus for a double-sided thin film photovoltaic cell. Embodiments of the present invention include methods for forming a double-sided thin film photovoltaic device using strain fields and interface Fermi level in an anode layer to alter the internal electric field at the anode absorber interface to improve cell efficiency. A device is provided for using an AZO layer as an interface between a PV absorber and an anode layer to enhance hole collection. [0011] FIG. 1 illustrates an anode absorber interface in accordance with an embodiment of the present invention. 1013265466-0 Page 6 of 28 201246560 A diagram of a thin film photovoltaic cell with an aluminum doped zinc oxide layer. As shown, a thin film photovoltaic (PV) cell is formed on the substrate 101. Generally, for a double-sided thin film PV cell, a transparent material such as nano-glass is selected for the substrate. In the embodiment, the intermediate layer 105 is formed to cover the surface area of the substrate 1〇1. The intermediate layer 105 is a base layer for a back electrode (typically an anode). In a specific embodiment, the intermediate layer 105 can act as a barrier to prevent sodium elements from diffusing from the nano-calcium glass into the electrode layer. [0012] 另一 In another embodiment, 'intermediate layer 1〇5 is optically transparent to sunlight' to facilitate absorption from the back side of the cell>> intermediate layer 1〇5 is preferably a transparent oxide layer, The oxide layer is made of a material selected from the group consisting of fluorine-doped tin antimonide (TFO), indium tin oxide & (ITO)', and bismuth or nitride. In another embodiment, if a conductive material is selected, the intermediate layer 105 can be part of the back electrode of the battery 1' and the intermediate layer is configured to form an electrical contact for the battery anode. For example, a thin film of transparent conductive oxide and/or metal ο (such as molybdenum) may be contained in the intermediate layer 1G5. Further, a strain field in a layer covering its own growth is controlled by allowing an intermediate layer 1 〇 5 of the interface to be used as a structural base layer side to provide a lattice of the constant. The layer formed on the top thereof can be protected in a controlled manner under strain based on lattice mismatch. As shown in FIG. 1, the anode layer 110 is formed to cover the intermediate layer 1〇5. In the embodiment, the anode layer 110 is an aluminum-doped zinc oxide. In a specific (AZO) layer * single number 10110861^, at least a first interface 107 is formed between the AZO layer 11 and the intermediate layer 105. The film of aluminum-doped zinc oxide is transparent and is electrically conductive. The optical properties of AZO are characterized by high transmittance in the visible region and A0101 page 7/28 pages 1013265466-0 201246560 and ~12 /zm It has a useful transmittance for long IR wavelengths. The AZ0 layer 110 can be deposited by sputtering from a target composed of 2-4% of A1 metal (or in the form of A1203) incorporated in ZnO. The AZ0 layer 110 can be integrated by RF or DC magnetrons, wherein the target energy density is about 3 W/cm2 or less in a vacuum chamber having a pressure range of about 1-1 〇 mtorr (mTorr), and oxygen and argon are mixed. The gas flows in the vacuum chamber. Alternatively, the ΑΖ0 layer can be formed by a method using M0CVD. After 20 layers are formed on the intermediate layer 1〇5, aluminum serving as an η-type dopant can have an atomic level varying from 5x1019 cm-3 to lxl〇21 cm-3 in the anode. Conductivity (which is measured as volume resistivity or as sheet resistance) is related to deposition characteristics and layer thickness. [00M] Referring to FIG. 1, the absorber 115 is formed to cover the AZ0 layer 11D such that between the anode 110 and the absorber 115 At least a second interface 112 is formed. The absorber 115 of the battery is of a photovoltaic material, typically a p-type semiconductor film. In a particular embodiment, the absorber 115 is opened by heat treating the precursor layer in a gaseous environment. For example, a precursor layer including a copper element, an indium element, and/or a gallium element may be formed on the surface of the substrate by sputtering. In the subsequent reaction heat treatment, the precursor layer can be reactively treated in a gaseous environment in a furnace tube containing a sample substance, a sulfur substance, and a nitrogen substance. When the furnace tube is heated, gaseous ruthenium interacts with the copper-indium-gallium species in the precursor layer. Due to the reactive heat treatment, the precursor layer is converted into a photovoltaic film stack comprising a copper indium (gallium) diselenide (CIS/CIGS) compound. The photovoltaic film stack is a p-type semiconductor and is used as an absorber for forming photovoltaic cells. Layer. [0015] Regarding the heat of the CIGS photovoltaic film laminate for forming a thin film solar cell 10110861# single number A 〇 101 帛 8 pages / total 28 pages 1013265466-0 201246560 More detailed description of the process can be in May 2009 14th by Robert

Wieting提交的名稱為“Method and System forWieting submitted the name "Method and System for

Selenization in Fabricating CIGS/CIS SolarSelenization in Fabricating CIGS/CIS Solar

Cells (在製造CIGS/CIS太陽能電池中用於硒化的方法 和系統)”的美國專利申請No. 61/178, 459中找到,該 美國專利申請被共同轉讓給聖約瑟市的St ionThe US Patent Application No. 61/178,459, which is commonly assigned to the St. Joseph City, is found in the United States Patent Application No. 61/178,459, which is incorporated herein by reference.

Corporation ’並且該美國專利中請通過引用結合於此 。在某些實施方式中,吸收器115可以由具有p-型摻雜劑 Ο 的鎘碲化合物半導體製成。當然,可以有其它變型、修 改、和替換物。例如,此處吸收器示出為單個結的結構 ’但是該吸收器可以可替換地形成在具有兩個或多個結 的電池中或者在具有兩個或多個結的電池中可變地重複 〇 [0016] Ο 在吸收器11 5上方,電池1〇〇包括窗層125。在一具體實 施方式中,窗層125與吸收器115之間可以插入有緩衝層 120。緩衝層120的電特性是n-型的,而窗層125的電特 性疋η +型。在一實施方式中,緩衝層12 〇可以使用化學 浴沉積(CBD)方法由鎘硫化物化合物製成。在另一實施 方式中,緩衝層可以使用M0CVD方法通過鋅氧化物製成。 取代濺射方法,使用M0CVD方法來形成鋅氧化物緩衝層, 從而可大大減小由濺射技術造成的對第二介面的可能的 結構性損壞。在優選的實施方式中,窗層125是具有比吸 收器115更薄的厚度的ΑΖ0層。在某些實施方式中,窗層 125可以被用於形成太陽能電池的陰極接觸。可替換地, 可以利用M0CVD方法增加由硼掺雜辞氧化物製成的附加層 10110861#單編號 Α0101 第9頁/共28頁 1013265466-0 201246560 ,以形成具有n+電特性的前端電接觸。 [0017] 為了構造薄膜太陽能電池,已經使用了雙面電池結構, 目的在於從吸收器的兩侧增強光子吸收。圖2是示出了橫 跨吸收器及其典型雙面結構的介面的的内電場的簡化圖 。在該結構中,陽極和陰極層均由具有η +電特性的A Z 0材 料製成,並且P-型吸收器夾置在其間。因為在平衡條件 下的結構構造和電特性,吸收器的兩個介面處的内電場 均可以具有從電接觸指向吸收器的方向。如圖2中所示, 具體地說,電場E3在後接觸點處指向p-型吸收器。這種 構造對於空穴的聚集是不傳導的。換句話說,E3的信號 是逆著空穴從吸收器到後接觸的傳輸的。在能量方面, 内電場的強度與堅固的能障相關聯以便空穴穿隧通過。 [0018] 圖3A是示出了雙面電池的異質結帶結構的簡化圖。其示 出了典型的雙面電池結構的價帶EV和傳導帶Ec,其中n + 透明氧化物作為後觸點,陽極接觸在左侧上並且陰極接 觸在右側上。圖3B是在雙面電池的陽極吸收器介面處的 帶結構的靠近的視圖。如圖所示,屏障存在於陽極-吸收 器介面處,使得電池必須依靠隧穿電流以便通過後觸點 使載流子空穴聚集。空穴通常不具有用於發射熱離子的 足夠能量。此處内電場通過指向吸收器而與空穴的隧穿 相對。沒有有效的載流子空穴的聚集,太陽能電池不能 產生足夠高的PV電流作為用於具有高效率的太陽能電池 的基礎。因此,需要使用機構來通過改變陽極中的内電 場來降低隧穿屏障或者甚至改變在陽極-吸收器介面處的 内電場的信號以説明隧穿電流。 單編號A_ 第10頁/共28頁 1013265466-0 201246560 [0019] Ο [0020] Ο 本發明提供了一種利用後電極結構改變内電場的方法, 後電極結構包括ΑΖ0材料,該材料覆蓋被首先佈置在(透 明)基板的表面區域上的中間層。該方法包括利用晶格 失配應變來改變橫跨陽極-吸收器介面的内電場。圖4是 不出包括具有失配晶格間隔的兩種材料的介面的應變膜 。如圖所不,當處於各個自然狀態中的具有不同晶格間 隔的兩種材料Α和Β被佈置在一起時,諸如通過在Α材料層 生長Β材料層來佈置在一起,兩個層均符合以達到使 Α+Β系統的自由能量減小的平衡熱力學狀態◊材料Β具有 晶格常數αΐ,晶格常數^^大於材料Α的晶格常數α〇。 材料Β將處於壓縮應力下以適應材小晶格,而後 者同時將處於拉伸應力下。在,層(其中-個處於壓 縮並且一個處於拉伸)中的每〜 ^個的應變可以直接地與 (αΐ - αΟ) / α0的值相關。 處於應力下的薄賴特性相對于、自_不受力的狀 態改變,能量帶對準、-子遷移率、少數載流 子的再結合速率、狀„度、_場等由於助的應變 而改變。通過適當地構造介面結構,上述物理特性的交 替可以根據介面結構而被控制。#供了用於構建基於 光伏結的多㈣麟基礎,這Μ 了㈣社陽能裝置 性能的要求。具體地說,根據本發明的實施方式,基於 薄膜的太陽能電池的《子聚集Μ可以通過使用陽極 中的應變而被提高’以減少用於從吸收器聚集空穴的隧 穿屏障。如圖3中所示,由傳導帶偏移(帶階吡― offset)破定的能障存在於陽核與魏器之間。期望的 第11頁/共28真 1〇1麵1产單編號A0101 1013265466-0 201246560 帶偏移可以在從0. 1 eV到0. 3 eV的範圍内。電池中的 多種材料之間的相對帶對準確定IV曲線的屬性以及進而 確定電池效率因素。帶的不連續性(特別是在傳導帶中 的那些不連續)導致電池IV曲線中的不規則或者“扭折 ”。在基於薄膜的太陽能電池中在異質結處的相對的帶 對準是在確定最終性能時的主要因素。在結處的場對於 電子和空穴在空間電荷區域中的分離是合理的。在准中 性區域中產生的載流子擴散到空間電荷區域的邊緣,在 該處載流子在内電場的影響下漂移。當陽極層中的應變 被改變以及由此内電場被改變時,在介面處的帶對準可 以被調整以有利於幫助載流子空穴的聚集。例如,可以 減小内電場,從而使得用於空穴隧穿的能障可被大大減 小。或者,内電場被朝向陽極翻轉到相對的方向,直接 地幫助載流子流。 [0021] 影響陽極-吸收器介面的材料和結構的選擇的另一影響包 括在介面處的費米能級釘紮的現象。釘紮的表面可以使 二極體(diode,整流子)降低並因而使電池的光伏回應 降低,以提改變電池的性能。大多數的半導體具有在化 學活性的表面處具有斷裂的懸掛鍵。在晶體勢能中的非 對稱斷裂使得形成用作再結合中心的中間空隙缺陷狀的 能量狀態。這些表面狀態可能是費米能級(取代本征載 流子級)位置中的確定因素。費米能級釘紮到達的範圍 由所述表面狀態的密度、它們獲取的橫截面和它們在能 量帶中的位置來確定。在膜疊層的順序形成過程中,由 於上層覆蓋下層,因此表面狀態大致地保持在介面處。 觀_#單編號A0101 第12頁/共28頁 1013265466-0 201246560 通過介面狀態的費米能級的釘紮使得橫跨介面的空間電 荷區域“冷;東” ’即’它預先確定從吸收器到陽極的帶 對準和彎曲,而不考慮橫跨介面任一層的摻雜級別。 [0022] 圖5是根據本發明的一個實施方式在陽極一吸收器介面處 通過陽極中的應變以及介面費米能級釘紮的結合作用的 改變的内電場的圖。如圖所示,在形成陽極層11〇 (及隨 後形成吸收層115)之前將中間層105佈置在基板1〇1上 。在某些實施方式中,中間層1〇5通過改變其中的内電場 而對於改進基於薄膜的雙面太陽能電池起到至少兩個作 用。中間層在n+半導體AZO層110與中間層1〇5之間形成 第一介面107。在第一介面處,兩個層中的任一層的斷裂 的化學鍵以及介面原子再構造使得形成介面狀態,這直 接地導致費米能級釘紮效應。此外,第一介面1〇7處的費 米能級釘紮108與第二介面112處(其位於AZO層110與之 後形成的吸收.器115之間)的費米能級釘紮111耦接。由 於在介面處的費米能級釘紮1〇8和111,用於空穴隧穿的 能障可以被調整以有利於提高載流子聚集效率同時減小 由光引起的電子-空穴的再結合。 [0023] 其次,形成在玻璃基板101上方的中間層105設定了用於 形成AZO層110的基層,該基層可以被利用以便比將AZO 層直接地佈置在玻璃基板101上方更好地控制在隨後形成 的AZO層110中的晶格失配應變。在一實施方式中,中間 層105的材料和厚度被用作工程參數,以便在AZO層110 内調整應變場。例如,中間層可以包括具有一(平均) 晶格常數(該晶格常數小於AZO層的晶格常數)的材料, A單煸號 10110861$ A0101 第13頁/共28頁 1013265466-0 201246560 以使覆篕AZQ層被控制為處於壓縮狀態。中間層可以包括 具有更大晶格常數的材料,以使覆蓋ΑΖ0層中的應變場可 以被轉換成拉伸特性。AZO層可以通過利用摻雜有銘的辞 或辞氧化物乾的濺射技術形成。可替換地,ΑΖ0層可以利 用MOCVD方法形成。AZ〇層11〇可以包括從5χΐ〇19 d3 至1J 1x1021 cm_3變化的重度摻雜人丨物質。 [0024] 圖6疋具有定向的圓柱形態的濺射AZO層的橫載面SEM圖像 ,其不出了通過濺射形成的鋅氧化物膜的特徵在於圓柱 开八t、圓柱結構的定向大致地垂直於基板,貫穿約6〇〇11111 的整個膜厚度。在原子結構方面,鋅氧化物(ZnO)或者 摻雜有Is的鋅氧化物(ZnG:A1)是纖維鋅礦結構(參見 圖7中的插圖)’其具有單元電池,該單元電池具有在( 1〇〇)平面中垂直於鋅原子層和氧原子層的細長c_軸線。 圖7還示出了具有支配[ 002 ]頂點的X-光衍射圖,其清楚 地指不圓桎形沿著c-轴線的定向。對於形成在中間層1〇5 上的ZnO或者AZ〇層11〇來說,c_轴線垂直於第一介面 107。定向的鋅氡化物薄膜顯示出最大的壓電效應這成 為有利的特性,其能被用於控制膜中的内電場的由應變 引起的改變。圖7的插圖還示出了處於壓力下的鋅氧化物 的單元電池,一個處於壓縮狀態並且一個處於拉伸狀態 。如圖所示’單元電池僅在U0G)平面中收縮或者擴張 ,並且由於c—轴線垂直於介面1〇7而相應地沿著卜軸線方 向延伸或者收縮。因此在211〇或者則層中的失配應變 在單元電池中直接地再對準其原子距離並且改變其本征 壓電特性,隨後使得AZ〇層中的内電場產生交替並且通過 第14頁/共28頁 10110861#單編號 ΑΟίοι 1013265466-0 201246560 第二介面到達諸如覆蓋ΑΖ0層的吸收器層的上薄膜。 [0025] 參照圖5,在特定的實施方式中,陽極110中的應變(其 由陽極層11 0與下方的中間層1 05之間的晶格失配引起) 與陽極層110和中間層105的第一介面107處的費米能級 釘紮的組合使得内電場在陽極110與吸收器11 5之間的第 二介面112處減小。在一實施方式中,通過應力和費米能 級釘紮的組合效應,橫跨第二介面107的内電場E3的強度 減小。在另一實施方式中,橫跨第二介面107的内電場E2 被翻轉信號以朝向陽極轉動其方向,而不是指向吸收器 。這些能夠大大改變隧穿屏障以便空穴從吸收器穿過到 達AZ0層和/或直接地幫助空穴流以通過後電極接觸提高 空穴:的聚集速率。作為組合效應的結果,基於薄膜的光 伏電池可以具有大大改進的光子-電子轉換效率,該轉換 提供了太陽能模組的效率。 [0026] 在可替換的實施方式中,陽極層的内電場可以通過改變 AZ0層内的第二介面附近的相關Zn和氧組分而改變。例如 ,當形成鋅氧化物或具體地說形成AZ0層時,可以減少或 增加在濺射工作氣體中的氧氣含量,以使濺射形成的ZnO 或者ΖηΟ:Α1可以是富辞或者是富氧的。在原子能級中, Zn原子平面中的Zn原子可以被過多的氧或者其它方式所 取代。這可以改變固有應變、壓電特性、介面能量狀態 和費米能級釘紮、以及最後的内電場。 [0027] 儘管使用特定的實施方式描述了本發明,但應該理解的 是,在不偏離限定在所附權利要求中的本發明的精神和 範圍的情況下,可對本發明中使用的方法進行多種改變 1011086#單編號厕01 第15頁/共28頁 1013265466-0 201246560 、修改和變型。例如,將ΑΖ0層用於後電接觸層被作為 例子示出。可使用其它透明傳導層來提高光伏轉換效率 ,所述其它透明傳導層可以以一種方式或者其它方式調 整以改變陽極-吸收器介面内電場以及隨後改變在後電觸 點處的載流子聚集。由於雙面光伏電池的本質,重要的 是通過一個或多個材料或結構參數控制介面内電場,以 提高電荷分離並且提高載流子在電池的前電極和後電極 處的聚集效率。此外,儘管上述實施方式已經應用到由 CdTe'或CIS和/或CIGS製成的且由ΑΖ0層覆蓋以用 於膜疊層中的前和後電接觸的吸收器中,但是具有單個 、兩個或多個結的其它基於薄膜的雙面太陽能電池也肯 定能從該實施方式中受益,而不偏離本文權利要求所描 述的發明。 【圖式簡單說明】 [0028] 圖1是示出了在陽極吸收器介面處利用鋁摻雜的辞氧化物 層的薄膜光伏電池的圖; [0029] 圖2是示出了橫跨吸收器及其典型雙面結構的介面的内電 場的圖, [0030] 圖3A是示出了雙面電池的異質結能量帶結構的圖; [0031] 圖3B是在雙面電池的陽極-吸收器介面處的能量帶結構的 更近的視圖; [0032] 圖4是示出包括具有失配晶格間隔的兩種材料的介面的應 變膜的圖; [0033] 圖5是根據本發明的一個實施方式通過陽極中的應變和介 麗刪^單編號A0101 1013265466-0 第16頁/共28頁 201246560 面費米能級釘紮的組合效應在陽極-吸收器介面處改變的 内電場的圖。 [0034] 圖6是示出具有圓柱形態的濺射AZO層的橫截面SEM的圖像 ;以及 [0035] 圖7是示出了具有纖維鋅礦結構的濺射辞氧化物層的X光 衍射樣式的圖,其示出了處於自然狀態和應力狀態的單 元電池。 【主要元件符號說明】Corporation' and the U.S. Patent is hereby incorporated by reference. In some embodiments, the absorber 115 can be made of a cadmium telluride compound semiconductor having a p-type dopant Ο. Of course, there can be other variations, modifications, and alternatives. For example, where the absorber is shown as a single junction structure 'but the absorber may alternatively be formed in a battery having two or more junctions or variably repeated in a battery having two or more junctions 〇[0016] 上方 Above the absorber 11 5, the battery 1 includes a window layer 125. In a specific embodiment, a buffer layer 120 can be inserted between the window layer 125 and the absorber 115. The electrical characteristics of the buffer layer 120 are n-type, and the electrical characteristics of the window layer 125 are η η + type. In one embodiment, the buffer layer 12 can be made from a cadmium sulfide compound using a chemical bath deposition (CBD) process. In another embodiment, the buffer layer can be made of zinc oxide using a MOCVD process. Instead of the sputtering method, the M0CVD method is used to form the zinc oxide buffer layer, so that possible structural damage to the second interface caused by the sputtering technique can be greatly reduced. In a preferred embodiment, the window layer 125 is a ΑΖ0 layer having a thinner thickness than the absorber 115. In certain embodiments, the window layer 125 can be used to form a cathode contact for a solar cell. Alternatively, an additional layer of 1010861# single number Α0101, page 9 / 28 pages 1013265466-0 201246560, made of boron doped oxide, may be added by the MOCVD method to form a front end electrical contact having n+ electrical characteristics. [0017] In order to construct a thin film solar cell, a double-sided battery structure has been used with the aim of enhancing photon absorption from both sides of the absorber. Figure 2 is a simplified diagram showing the internal electric field across the interface of the absorber and its typical double-sided structure. In this structure, both the anode and cathode layers are made of AZ0 material having η + electrical characteristics, and a P-type absorber is sandwiched therebetween. Because of the structural configuration and electrical properties under equilibrium conditions, the internal electric field at both interfaces of the absorber can have a direction from the electrical contact to the absorber. As shown in Fig. 2, specifically, the electric field E3 is directed to the p-type absorber at the rear contact point. This configuration is not conductive to the accumulation of holes. In other words, the signal of E3 is transmitted against the hole from the absorber to the back contact. In terms of energy, the strength of the internal electric field is associated with a strong energy barrier so that holes pass through. [0018] FIG. 3A is a simplified diagram showing a heterojunction strip structure of a double-sided battery. It shows a valence band EV and a conduction band Ec of a typical double-sided battery structure in which n + transparent oxide is used as a rear contact, the anode contact is on the left side and the cathode is on the right side. Figure 3B is a close up view of the ribbon structure at the anode absorber interface of the double sided battery. As shown, the barrier is present at the anode-absorber interface such that the cell must rely on tunneling current to concentrate carrier holes through the back contact. The holes typically do not have sufficient energy for emitting thermions. Here, the electric field is directed to the absorber to oppose the tunneling of the holes. Without the accumulation of effective carrier holes, solar cells cannot produce a sufficiently high PV current as a basis for solar cells with high efficiency. Therefore, it is desirable to use a mechanism to reduce the tunneling barrier or even change the signal of the internal electric field at the anode-absorber interface by changing the internal electric field in the anode to account for the tunneling current. Single Number A_ Page 10 / Total 28 Page 1013265466-0 201246560 [0020] Ο The present invention provides a method of changing an internal electric field using a rear electrode structure, the back electrode structure comprising a ΑΖ0 material, the material covering being first arranged An intermediate layer on the surface area of the (transparent) substrate. The method includes utilizing lattice mismatch strain to vary the internal electric field across the anode-absorber interface. Figure 4 is a strained film showing an interface comprising two materials with mismatched lattice spacing. As shown in the figure, when two materials Α and 具有 having different lattice spacings in respective natural states are arranged together, such as by arranging the Β material layer in the enamel material layer, the two layers are matched. In order to achieve an equilibrium thermodynamic state in which the free energy of the Α+Β system is reduced, the material Β has a lattice constant αΐ, and the lattice constant ^^ is larger than the lattice constant α〇 of the material Α. The material Β will be under compressive stress to accommodate the small lattice of the material while the latter will be under tensile stress. At each of the layers (where - one is in compression and one in tension), the strain can be directly related to the value of (αΐ - αΟ) / α0. The thin-lying properties under stress are changed with respect to the state of self-involvement, energy band alignment, sub-mobility, recombination rate of minority carriers, shape, degree, _ field, etc. due to assisted strain By appropriately constructing the interface structure, the above-mentioned alternation of physical properties can be controlled according to the interface structure. # 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为In other words, according to an embodiment of the present invention, the "sub-aggregation enthalpy of a thin film-based solar cell can be improved by using strain in the anode" to reduce a tunneling barrier for collecting holes from the absorber. As shown, the energy barrier that is broken by the conduction band offset (with the order of the bp-offset) exists between the nucleus and the Wei apparatus. The desired page 11 / total 28 true 1 〇 1 surface 1 production order number A0101 1013265466- 0 201246560 The band offset can range from 0.1 eV to 0.3 eV. The relative band alignment between the various materials in the battery determines the properties of the IV curve and thus the battery efficiency factor. (especially in the conduction band Those discontinuities) cause irregularities or "kneading" in the IV curve of the battery. The relative band alignment at the heterojunction in a thin film-based solar cell is a major factor in determining the final performance. The field is reasonable for the separation of electrons and holes in the space charge region. The carriers generated in the quasi-neutral region diffuse to the edge of the space charge region where the carriers drift under the influence of the internal electric field. When the strain in the anode layer is changed and thus the internal electric field is changed, the band alignment at the interface can be adjusted to facilitate the accumulation of carrier holes. For example, the internal electric field can be reduced, thereby enabling The energy barrier for hole tunneling can be greatly reduced. Alternatively, the internal electric field is flipped in the opposite direction towards the anode, directly assisting the carrier flow. [0021] Selection of materials and structures that affect the anode-absorber interface Another effect includes the phenomenon of Fermi level pinning at the interface. The pinned surface can lower the diode (diode) and thus reduce the photovoltaic response of the battery. The performance of a variable cell. Most semiconductors have dangling bonds with breaks at chemically active surfaces. Asymmetric cleavage in the potential energy of the crystals results in the formation of an energy state of the intermediate void defect that acts as a recombination center. These surface states may Is a determining factor in the position of the Fermi level (instead of the intrinsic carrier class). The range of Fermi level pinning is determined by the density of the surface states, the cross sections they acquire and their position in the energy band. It is determined that during the sequential formation of the film laminate, since the upper layer covers the lower layer, the surface state is substantially maintained at the interface. View _#单编号 A0101 Page 12 / Total 28 Page 1013265466-0 201246560 Fee for interface state The pinning of the meter level causes the space charge region across the interface to be "cold; east" 'ie' which predetermines the alignment and bending of the strip from the absorber to the anode, regardless of the doping level across either layer of the interface. [0022] FIG. 5 is a graph of a modified internal electric field through a combination of strain in an anode and interface Fermi level pinning at an anode-absorber interface, in accordance with an embodiment of the present invention. As shown, the intermediate layer 105 is disposed on the substrate 1〇1 before the anode layer 11 is formed (and then the absorber layer 115 is formed). In some embodiments, the intermediate layer 1〇5 serves at least two functions for improving the thin film-based double-sided solar cell by changing the internal electric field therein. The intermediate layer forms a first interface 107 between the n+ semiconductor AZO layer 110 and the intermediate layer 1A5. At the first interface, the broken chemical bonds of any of the two layers and the reconstitution of the interface atoms result in an interface state which directly leads to the Fermi level pinning effect. In addition, the Fermi level pinning 108 at the first interface 1〇7 is coupled to the Fermi level pinning 111 at the second interface 112, which is located between the AZO layer 110 and the absorber 115 formed thereafter. . Since the Fermi level pinning at the interface is 1〇8 and 111, the energy barrier for hole tunneling can be adjusted to improve the carrier aggregation efficiency while reducing the electron-hole caused by light. Combine again. [0023] Next, the intermediate layer 105 formed over the glass substrate 101 sets a base layer for forming the AZO layer 110, which can be utilized to better control the subsequent placement of the AZO layer directly over the glass substrate 101. Lattice mismatch strain in the formed AZO layer 110. In one embodiment, the material and thickness of the intermediate layer 105 is used as an engineering parameter to adjust the strain field within the AZO layer 110. For example, the intermediate layer may include a material having an (average) lattice constant (the lattice constant is smaller than the lattice constant of the AZO layer), A single nickname 10110861$ A0101 page 13 / total 28 pages 1013265466-0 201246560 to The overlay AZQ layer is controlled to be in a compressed state. The intermediate layer may include a material having a larger lattice constant such that the strain field covering the ΑΖ0 layer can be converted into tensile properties. The AZO layer can be formed by using a sputtering technique doped with a word or a dry oxide. Alternatively, the ΑΖ0 layer can be formed by the MOCVD method. The AZ layer 11〇 may include heavily doped human quinone species varying from 5χΐ〇19 d3 to 1J 1x1021 cm_3. [0024] FIG. 6 is a SEM image of a cross-sectional surface of a sputtered AZO layer having an oriented cylindrical state, which is characterized by a zinc oxide film formed by sputtering, characterized in that the cylindrical opening is eight t, and the orientation of the cylindrical structure is substantially The ground is perpendicular to the substrate and penetrates the entire film thickness of about 6〇〇11111. In terms of atomic structure, zinc oxide (ZnO) or zinc oxide doped with Is (ZnG: A1) is a wurtzite structure (see the inset in Fig. 7), which has a unit cell, and the unit cell has 1)) The elongated c_ axis perpendicular to the zinc atomic layer and the oxygen atomic layer in the plane. Figure 7 also shows an X-ray diffraction pattern with a dominant [002] apex, which clearly refers to the orientation of the non-circular shape along the c-axis. For the ZnO or AZ layer 11 形成 formed on the intermediate layer 1 〇 5, the c_ axis is perpendicular to the first interface 107. The oriented zinc telluride film exhibits the greatest piezoelectric effect which is an advantageous property that can be used to control strain-induced changes in the internal electric field in the film. The inset of Figure 7 also shows the unit cells of zinc oxide under pressure, one in a compressed state and one in a stretched state. As shown, the unit cell contracts or expands only in the U0G plane, and accordingly extends or contracts along the axis of the pad due to the c-axis being perpendicular to the interface 1〇7. Thus the mismatch strain in the 211 〇 or tier is directly realigned in the cell with its atomic distance and changes its intrinsic piezoelectric properties, which then causes the internal electric field in the AZ 〇 layer to alternate and pass page 14 / A total of 28 pages 10110861# single number ΑΟίοι 1013265466-0 201246560 The second interface reaches the upper film such as the absorber layer covering the ΑΖ0 layer. [0025] Referring to FIG. 5, in a particular embodiment, strain in the anode 110 (caused by lattice mismatch between the anode layer 110 and the underlying intermediate layer 105) is associated with the anode layer 110 and the intermediate layer 105. The combination of Fermi level pinning at the first interface 107 causes the internal electric field to decrease at the second interface 112 between the anode 110 and the absorber 11 5 . In one embodiment, the intensity of the internal electric field E3 across the second interface 107 is reduced by the combined effect of stress and Fermi level pinning. In another embodiment, the internal electric field E2 across the second interface 107 is flipped over to rotate its direction toward the anode rather than to the absorber. These can greatly alter the tunneling barrier so that holes pass from the absorber to the AZ0 layer and/or directly help the hole flow to increase the rate of aggregation of holes by the back electrode contact. As a result of the combined effect, thin film based photovoltaic cells can have greatly improved photon-to-electronic conversion efficiencies that provide efficiency for solar modules. In an alternative embodiment, the internal electric field of the anode layer can be varied by changing the associated Zn and oxygen components near the second interface within the AZ0 layer. For example, when a zinc oxide is formed or a layer of AZ0 is specifically formed, the oxygen content in the sputtering working gas can be reduced or increased so that the ZnO or Ζn: Α1 formed by sputtering can be rich or oxygen-rich. . In the atomic energy level, the Zn atom in the plane of the Zn atom can be replaced by excessive oxygen or other means. This can change the intrinsic strain, piezoelectric properties, interface energy state and Fermi level pinning, and the final internal electric field. [0027] While the invention has been described with respect to the embodiments of the present invention, it is understood that the various methods of the invention may be employed in various embodiments without departing from the spirit and scope of the invention. Change 1011086# Single Number Toilet 01 Page 15 / Total 28 Page 1013265466-0 201246560 , Modifications and variants. For example, the use of a ΑΖ0 layer for the post-contact layer is shown as an example. Other transparent conductive layers can be used to increase photovoltaic conversion efficiency, which can be adjusted in one way or another to change the electric field within the anode-absorber interface and subsequently change carrier aggregation at the post electrical contacts. Due to the nature of double-sided photovoltaic cells, it is important to control the electric field within the interface by one or more materials or structural parameters to increase charge separation and increase the efficiency of carrier aggregation at the front and back electrodes of the cell. Furthermore, although the above embodiments have been applied to absorbers made of CdTe' or CIS and/or CIGS and covered by a ΑΖ0 layer for front and back electrical contact in a film stack, they have a single, two Other film-based double-sided solar cells, or multiple junctions, may also benefit from this embodiment without departing from the invention described in the claims herein. BRIEF DESCRIPTION OF THE DRAWINGS [0028] FIG. 1 is a view showing a thin film photovoltaic cell using an aluminum-doped oxide layer at an anode absorber interface; [0029] FIG. 2 is a cross-over absorber FIG. 3A is a diagram showing a heterojunction energy band structure of a double-sided battery; [0031] FIG. 3B is an anode-absorber of a double-sided battery a closer view of the energy band structure at the interface; [0032] FIG. 4 is a diagram showing a strained film comprising an interface of two materials having a mismatched lattice spacing; [0033] FIG. 5 is a diagram in accordance with the present invention The embodiment shows a graph of the internal electric field that changes at the anode-absorber interface by the strain in the anode and the combined effect of the surface of the Fermi level pinning of the No. A0101 1013265466-0 page 16/28 page 201246560. 6 is an image showing a cross-sectional SEM of a sputtered AZO layer having a cylindrical state; and [0035] FIG. 7 is an X-ray diffraction showing a sputtered oxide layer having a wurtzite structure. A pattern of styles showing unit cells in a natural state and a stress state. [Main component symbol description]

[0036] 101 基板 [0037] 105 中間層 [0038] 107 第一介面 [0039] 108 費米能級釘紮 [0040] 110 AZO層 [0041] 111 費米能級釘紮 [0042] 112 第二介面 [0043] 115 吸收器 [0044] 120 緩衝層 [0045] 125 窗層 10110861^A〇101 第17頁/共28頁 1013265466-0101 substrate [0037] 105 intermediate layer [0038] 107 first interface [0039] 108 Fermi level pinning [0040] 110 AZO layer [0041] 111 Fermi level pinning [0042] 112 second Interface [0043] 115 absorber [0044] 120 buffer layer [0045] 125 window layer 10110861 ^ A〇 101 page 17 / 28 pages 1013265466-0

Claims (1)

201246560 七、申請專利範圍: 1 .種用於开,成雙面溥膜光伏電池的方法所述方法包括· 提供具有被巾間層錢的表面區域的玻璃基板; 在所述表面區域上形成薄膜光伏電池,所述薄膜光伏電池 包括覆盍所述中間層的陽極、位於所述陽極上方的吸收器 、以綠於所述魏g上方的冑層和陰極,所述窗層和陰 極與所述吸收器之間具有緩衝層; 其中,所述陽極包括㉟摻雜的鋅氧化物(㈣)層以與所 述中間層形成第-介面並與所述吸收器形成第二介面,所 述ΑΖ0層構造為引起所述第一介面處的費米能級釘紫以及 從所述第-介面到所述第二介面的應變場。 2 .如申請專利範圍第i項所述的方法,其中,所述中間層包 括膜’所述膜由從氟摻雜的錫氧化物(TF〇)、銦錫氧化 物(IT0)、Si3N4、Si〇2、銷、及它們的組合中選擇的 材料製成。 3. 如申請專利範圍第i項所述的方法,其中,所述吸收器包 括由CdTe材料或銅銦鎵聯砸化物nGS材料製成的p_型半 導體層。 4. 如申請專利範圍第i項所述的方法,其中,所述層包 括從5xm9cm-3到lxl〇21 cffi —3變化的重度接雜的⑽ 質。 5. 如申請專利範圍第i項所述的方法,其中,所述第一介面 處的所述費米能級釘紮和從所述第一介面到所述第二介面 的所述應變%使得所述第二介面處的内電場強度減小。 6 .如申請專利範圍第5項所述的方法,其中,所述第二介面 10110861#單編號 A0101 第18頁/共28頁 1013265466-0 201246560 處的内電場強度的減小減小了用於橫跨所述第二介面從所 述吸收器到所述陽極的空穴隧穿的屏障。 7 .如申請專利範圍第1項所述的方法,其中,所述第一介面 處的所述費米能級釘紮和從所述第一介面到所述第二介面 的所述應變場使得所述第二介面處的内電場方向翻轉。 8 .如申請專利範圍第7項所述的方法,其中,所述第二介面 處的内電場方向的翻轉直接有助於在所述第二介面處從所 述吸收器到所述陽極的空穴的聚集。 9 .如申請專利範圍第1項所述的方法,其中,所述基板包括 納#5玻璃。 10.如申請專利範圍第1項所述的方法,其中,所述基板包括 可選的透明材料。 11 . 一種利用用於陽極-吸收器介面的應變ΑΖ0層的薄膜太陽 能裝置,所述裝置包括: 可選的透明基板; 覆蓋所述透明基板的中間層; 陽極層,包括與所述中間層形成第一介面的鋁摻雜的鋅氧 化物(ΑΖ0 )層; 吸收器,包括與所述ΑΖ0層形成第二介面的具有p-型摻雜 劑的銅銦鎵聯硒化物; 緩衝層,跟隨在所述緩衝層之後的是覆蓋所述吸收器的窗 層;以及 陰極層,覆蓋所述窗層; 其中,所述ΑΖ0層引起所述陽極層中的應變場以及所述第 一介面處的費米能級釘紮,用於改變所述第二介面處的内 電場。 1013265466-0 10110861#單編號A〇101 第19頁/共28頁 201246560 12 ‘如申請專利範圍第丨丨項所述的裝置,其中,所述可選的透 明基板包括納鈣玻璃。 13. 如申請專利範圍第u項所述的裝置,其中,所述中間層包 括膜’所述膜由從氟摻雜的錫氧化物(TF0)、鋼錫氧化 物(ITO)、Si3N4、Si02、鉬、及它們的組合中選擇的 材料製成。 14. 如申請專利範圍第η項所述的裝置,其中,所述AZ〇層包 括從5乂1019(:111-3到1\1021〇:111-3變化的重度摻雜的41物 質。 15 .如申請專利範圍第丨丨項所述的裝置,其中,所述陽極層中 的所述應變場和所述第一介面處的費米能級釘紮使得所述 第一介面處的内電場強度減小’以用於促進從所述吸收器 通過所述陽極層的空六聚集。 16 .如申請專利範圍第π項所述的裝置,其中,所述陽極層中 的所述應變場和所述第一介面處的費米能級釘紮使得所述 第一介面處的内電場方向翻轉,以用於促進從所述吸收器 通過所述陽極層的空穴聚集。 17 .如申請專利範圍第11項所述的裝置,其中,所述緩衝層包 括具有η-型摻雜劑的鎘硫化物。 18.如申請專利範圍第η項所述的裝置,其中,所述窗層包括 透明的傳導性氧化物,所述透明的傳導性氧化物包括鋁摻 雜的辞氧化物。 19 .如申請專利範圍第η項所述的裝置,其中,所述陰極層包 括重度鋁摻雜的鋅氧化物。 2〇 ·如申請專利範圍第η項所述的裝置,其中,所述吸收器包 括具有ρ-型摻雜劑的鎘碲化物。 1013265466-0 10110861#單編號A01〇l 第20頁/共28頁201246560 VII. Patent application scope: 1. A method for opening and forming a double-sided enamel film photovoltaic cell, the method comprising: providing a glass substrate having a surface area of the towel layer; forming a film on the surface region a photovoltaic cell comprising: an anode overlying the intermediate layer, an absorber above the anode, a ruthenium layer and a cathode above the Wei g, the window layer and the cathode Having a buffer layer between the absorbers; wherein the anode comprises a 35-doped zinc oxide ((4)) layer to form a first interface with the intermediate layer and a second interface with the absorber, the ΑΖ0 layer Constructed to cause a Fermi level nail violet at the first interface and a strain field from the first interface to the second interface. 2. The method of claim i, wherein the intermediate layer comprises a film comprising: fluorine-doped tin oxide (TF〇), indium tin oxide (IT0), Si3N4, Made of materials selected from Si〇2, pins, and combinations thereof. 3. The method of claim i, wherein the absorber comprises a p-type semiconductor layer made of a CdTe material or a copper indium gallium telluride nGS material. 4. The method of claim i, wherein the layer comprises a heavily doped (10) mass varying from 5xm9cm-3 to lxl〇21 cffi-3. 5. The method of claim i, wherein the Fermi level pinning at the first interface and the strain % from the first interface to the second interface are such The internal electric field strength at the second interface is reduced. 6. The method of claim 5, wherein the reduction of the internal electric field strength at the second interface 10110861#single number A0101 page 18/28 pages 1013265466-0 201246560 is reduced for A barrier that tunnels holes from the absorber to the anode across the second interface. The method of claim 1, wherein the Fermi level pinning at the first interface and the strain field from the first interface to the second interface are such that The direction of the internal electric field at the second interface is reversed. 8. The method of claim 7, wherein the inversion of the direction of the internal electric field at the second interface directly contributes to the empty space from the absorber to the anode at the second interface. The gathering of the points. 9. The method of claim 1, wherein the substrate comprises nano #5 glass. 10. The method of claim 1, wherein the substrate comprises an optional transparent material. 11. A thin film solar device utilizing a strain ΑΖ0 layer for an anode-absorber interface, the device comprising: an optional transparent substrate; an intermediate layer overlying the transparent substrate; an anode layer comprising: forming with the intermediate layer a first interface of an aluminum-doped zinc oxide (ITO) layer; an absorber comprising a copper-indium gallium diselenide having a p-type dopant formed with a second interface of the ΑΖ0 layer; a buffer layer, followed by Subsequent to the buffer layer is a window layer covering the absorber; and a cathode layer covering the window layer; wherein the ΑΖ0 layer causes a strain field in the anode layer and a fee at the first interface The meter level is used to change the internal electric field at the second interface. 1013265466-0 10110861#单单A〇101 Page 19 of 28 201246560 12 The apparatus of claim 2, wherein the optional transparent substrate comprises soda lime glass. 13. The device of claim 5, wherein the intermediate layer comprises a film 'the film is made of fluorine-doped tin oxide (TF0), steel tin oxide (ITO), Si3N4, SiO2. Made of materials selected from molybdenum, molybdenum, and combinations thereof. 14. The device of claim n, wherein the AZ layer comprises a heavily doped 41 species varying from 5乂1019 (:111-3 to 1\1021〇:111-3). The device of claim 2, wherein the strain field in the anode layer and the Fermi level pinning at the first interface cause an internal electric field at the first interface a reduction in strength </ RTI> for facilitating the vacancies from the absorber through the anode layer. The apparatus of claim π, wherein the strain field in the anode layer The Fermi level pinning at the first interface flips the direction of the internal electric field at the first interface for facilitating the accumulation of holes from the absorber through the anode layer. The device of claim 11, wherein the buffer layer comprises a cadmium sulfide having an n-type dopant. 18. The device of claim n, wherein the window layer comprises a transparent layer Conductive oxide, the transparent conductive oxide comprising aluminum doped oxygen The device of claim n, wherein the cathode layer comprises a heavy aluminum-doped zinc oxide. 2) The device of claim n, wherein The absorber comprises a cadmium telluride having a p-type dopant. 1013265466-0 10110861#单号A01〇l Page 20 of 28
TW101108612A 2011-03-16 2012-03-14 A method for forming a bifacial thin film photovoltaic cell and a thin film solar device TW201246560A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/049,190 US20110220198A1 (en) 2010-03-31 2011-03-16 Method and Device Utilizing Strained AZO Layer and Interfacial Fermi Level Pinning in Bifacial Thin Film PV Cells

Publications (1)

Publication Number Publication Date
TW201246560A true TW201246560A (en) 2012-11-16

Family

ID=46826958

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108612A TW201246560A (en) 2011-03-16 2012-03-14 A method for forming a bifacial thin film photovoltaic cell and a thin film solar device

Country Status (2)

Country Link
CN (1) CN102683482A (en)
TW (1) TW201246560A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951689B1 (en) * 1998-01-21 2005-10-04 Canon Kabushiki Kaisha Substrate with transparent conductive layer, and photovoltaic element
US6787692B2 (en) * 2000-10-31 2004-09-07 National Institute Of Advanced Industrial Science & Technology Solar cell substrate, thin-film solar cell, and multi-junction thin-film solar cell
US7235736B1 (en) * 2006-03-18 2007-06-26 Solyndra, Inc. Monolithic integration of cylindrical solar cells
US8134069B2 (en) * 2009-04-13 2012-03-13 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
JP2010282998A (en) * 2009-06-02 2010-12-16 Seiko Epson Corp Solar cell and method for manufacturing the same

Also Published As

Publication number Publication date
CN102683482A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US20110259395A1 (en) Single Junction CIGS/CIS Solar Module
JP6096790B2 (en) Conductive substrate for photovoltaic cells
CN113257940B (en) Laminated photovoltaic device and production method
TWM432144U (en) Structure and method for high efficiency cis/cigs-based tandem photovoltaic module
CN103907205A (en) Photoelectric conversion device and method for manufacturing same, and photoelectric conversion module
JP5873881B2 (en) Photovoltaic power generation apparatus and manufacturing method thereof.
CN101621084B (en) Chalcopyrite type semiconductor thin-film heterojunction solar cell based on N-shaped silicon
US20110240121A1 (en) Nanocrystalline Superlattice Solar Cell
CN102244111A (en) Thin film solar cell
CN202405277U (en) Thin film solar device employing strained AZO layer on anode - absorbent interface
CN102201480B (en) Cadmium telluride semiconductor thin-film heterojunction solar cell based on N-shaped silicon slice
CN115148838B (en) Solar cell, production method and photovoltaic module
Söderström et al. Low cost high energy yield solar module lines and its applications
CN101621085B (en) Chalcopyrite type semiconductor thin film heterojunction solar cell based on P-type silicon wafer
CN108172645A (en) A kind of CIGS/CdTe lamination solar cells and preparation method thereof
CN101707219B (en) Solar cell with intrinsic isolation structure and production method thereof
WO2011052646A1 (en) Photoelectric conversion device, photoelectric conversion module, and method for manufacturing photoelectric conversion device
CN102306678A (en) Thin film solar battery
CN109192798B (en) P-type monocrystalline silicon HIT photovoltaic cell and manufacturing method thereof
TW201246560A (en) A method for forming a bifacial thin film photovoltaic cell and a thin film solar device
CN102891204B (en) Sublayer configurated CdTe film solar battery with n-i-p structure
KR20110060412A (en) Solar cell and method of fabircating the same
US9349901B2 (en) Solar cell apparatus and method of fabricating the same
KR101305603B1 (en) Solar cell apparatus and method of fabricating the same
KR101628365B1 (en) Solar cell and method of fabricating the same