[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201244930A - New solar concentration devices - Google Patents

New solar concentration devices Download PDF

Info

Publication number
TW201244930A
TW201244930A TW101102053A TW101102053A TW201244930A TW 201244930 A TW201244930 A TW 201244930A TW 101102053 A TW101102053 A TW 101102053A TW 101102053 A TW101102053 A TW 101102053A TW 201244930 A TW201244930 A TW 201244930A
Authority
TW
Taiwan
Prior art keywords
layer
weight
film
solar
carrier
Prior art date
Application number
TW101102053A
Other languages
Chinese (zh)
Inventor
Jochen Ackermann
Uwe Numrich
Grant B Lafontaine
Michael Thomas Pasierb
Andrew J Baumler
Original Assignee
Evonik Roehm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm Gmbh filed Critical Evonik Roehm Gmbh
Publication of TW201244930A publication Critical patent/TW201244930A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention relates to laminated solar concentration devices and to the production thereof from polymeric materials. The inventive solar concentration devices can be employed in photovoltaic systems or in solar thermal energy systems. The inventive solar concentration devices comprise Fresnel lenses and enable the efficient concentration of solar radiation onto objects such as solar cells or absorber units, irrespective of the geometry thereof. This relates, for example, to the area of a high-performance solar cell as used in concentrated photovoltaics (CPV), and equally to absorbers which are used in concentrated solar thermal energy systems (CSP). The invention in particular relates to the use of an UV-and weathering-stabilizer package for said laminated solar concentration devices, for improving optical lifetime and weathering resistance, and for preventing delamination. The invention further relates to a surface finish relevant to scratch resistance, antisoil properties, anti-reflection properties and chemicals resistance of the solar concentration device.

Description

201244930 六、發明說明: 【發明所屬之技術領域】 本發明係關於層合之太陽能集中裝置及關於由聚合型 材料製造彼。本發明之太陽能集中裝置可用於光伏打系統 或用於太陽熱能系統。 本發明之太陽能集中裝置包含夫瑞乃鏡片且能有效率 地將太陽輻射集中在諸如太陽能電池或吸收器單元之物體 上’不管該物體形狀爲何。這是關於例如在經集中之光伏 打裝置(CPV )中所用之高效能太陽能電池領域及同樣地 關於在經集中之太陽熱能系統(CSP )中所用之吸收器。 本發明特別關於UV及風化安定劑包裝物在用於該層 合之太陽能集中裝置、在用於改良光學裝置使用壽命及耐 風化性及在用於防止剝離的用途。本發明另外關於一種與 該太陽能集中裝置之耐刮性、防污性、抗反射性及耐化學 性相關的表面後處理。 【先前技術】 夫瑞乃鏡片在1 800年代已經出現且已用在背投電視 (projection TVs )、投影機、汽車前照燈、燈塔及類似 物件中。近來,夫瑞乃鏡片已用於將太陽能聚焦在將能量 轉換成電能之光伏打太陽能接收器上。 爲改良含有浮凸光學元件之膜的性質諸如剛性、耐風 化性及耐磨性,需要將該浮凸膜層合至載體膜(support film )。一般,薄的載體膜足以應付大部分的目標。然而 -5- 201244930 ,當將夫瑞乃鏡片用在太陽能集中器時,需要將該夫瑞乃 膜層合至厚片基底上以增加該夫瑞乃鏡片之剛性,以致彼 可容易地被安裝在該太陽能集中器中。 已建議熱層合作用作爲製作層合之夫瑞乃鏡片的較佳 方法。可以利用薄膜進行離線熱層合作用,但對於類似夫 瑞乃膜之厚膜是有問題的。這是因爲將夫瑞乃膜熱黏合至 厚片是需要大量的熱且此熱一般會破壞光學結構。 利用浮凸膜及薄的載體膜良好地進行如在美國專利 5,94 5,042及美國專利6,375,776中所揭示之線上層合方法 。專利’042特別地揭示:該等浮凸膜具有在10至100微 米範圍內之厚度且該載體膜厚度通常是在35至150微米 範圍內。 厚的浮凸片諸如具有丙烯酸系基底之夫瑞乃鏡片之線 上製造已揭示在Benz之美國專利5,656,209中。Benz’209 專利描述一種製造長條型夫瑞乃鏡片的方法,其使用經設 計以供共擠出高黏度模塑化合物及低黏度模塑化合物之三 滾筒拋光圓柱(stack )。此專利整體倂入本文中。雖然 Benz ‘209專利提供一種製造夫瑞乃鏡片之線上方法,藉 由此方法所製造之鏡片已發現邊緣較不銳利。 另一方面 WO 2009/ 1 2 1 7 0 8描述一種將含有浮凸光學 結構之膜熱層合至聚合物片而不破壞該浮凸結構整體性的 方法β 雖然在先前技藝中大部分之方法專注於夫瑞乃鏡片結 構之層合方法及品質,但尙未發現改良光學壽命及耐風化 -6- 201244930 性及防止剝離之充分解決方式。 問題 本發明之目的是要提供新穎之太陽能集中裝置,其係 用於伴隨使用光伏打裝置(CPV )或伴隨使用太陽熱能( CSP )的系統中。應避免或至少最小化如上述之已知的太 陽能集中裝置之缺點。 該新的集中器應較佳具有至少10年之壽命,及與該 先前技藝相比,對環境影響之改良的安定性。在特定問題 中,在沙漠條件下使用期限應至少2 0年。 本發明之另一目的是要提供一種極簡單之製造方法, 其與先前技藝相比,可用較不昂貴、更節能、簡單且快速 方式進行,且需要較不複雜之物流。 未明確陳述之另外的目的由以下之說明、申請專利範 圍及實例顯明。 解決方式 令人驚訝地,現已發現:在層合之夫瑞乃鏡片之載體 層中及/或在施加至層合的夫瑞乃鏡片的UV防護用層中, 特殊UV防護用包裝物之使用有助於避免所述之現有集中 器設計的缺點。 如在本發明之申請專利範圍、說明及實例中進一步定 義之本發明之層合的太陽能集中裝置以及本發明之太陽能 裝置顯出改良的耐風化性。 201244930 本發明之太陽能集中裝置的機械性在整個使用期間是 極良好的,亦即在使用期間分子量之降低被最小化且聚合 層之衝擊改良劑的降解或損失被最小化或避免。 本發明之層合的太陽能集中裝置顯現出極良好之耐熱 性,此有助於改良本發明之太陽能裝置的效率。 與如美國專利5,656,209中所揭示之共擠出的夫瑞乃 鏡片相比,夫瑞乃結構之表面品質是更好的以致進一步改 良依本發明之裝置的效率。 另外,本發明之新穎的集中器具有以下性質,將之性 質組合時比先前技藝有利,特別是在光學性質方面:本發 明之集中器的成分是具有特別中性色彩的(col our-neutral )且在水份影麴下不變得渾濁。該集中器另外顯現出優越 之耐風化性及,在隨意之後處理的情況中,例如對所有商 業清潔組成物顯現出極良好之耐化學性。這些方面對於維 持長時間之太陽能集中作用也是有貢獻的。爲要促進清潔 ,表面可具有防污性。此外,表面隨意地是耐磨性及/或 耐刮性的。 本發明之方法使本發明之夫瑞乃鏡片能連續製造且在 本發明之層合物的層結構或厚度方面是極具彈性的。結果 ,已達成明顯的經濟優點。 本發明之主題因此是經UV防護之層合太陽能集中裝 置,其特徵在於由太陽光源觀之,係包含至少以下各層: -聚合型載體層(3 ) -聚合型膜(1),其具有包含形成一或多個夫瑞乃鏡 -8- 201244930 片之浮凸光學結構的第一表面且具有直接地或經由黏合層 (2)黏合至該聚合物層(3)之第二表面’ 其中 該載體層(3 )包含至少一種UV吸收劑及至少一種 UV安定劑, 及/或其中 將包含至少一種UV吸收劑及至少一種UV安定劑之 UV防護用聚合物層(5 )直接地或經由黏合層(4 )黏合 至載體層(3)之面向光源的表面。 本發明之另外的具體例是太陽能裝置,其特徵在於彼 是一種包含至少一個依照本發明之太陽能集中裝置及至少 —個太陽能電池的CPV元件,或彼是一種包含至少一個 依照本發明之太陽能集中裝置及至少一個熱吸收器單元的 CSP元件。 最後,本發明係關於使用經UV防護之層合的太陽能 集中裝置以製造太陽能裝置諸如CSP或CPV裝置。 在更詳細地描述本發明之前,定義重要之用詞。 下文中“聚合物層”及”層”包括以聚合物爲底質之板、 片、膜、塗層系統或塗層。此種層原則上可具有1微米至 2公分之厚度。 (甲基)丙烯酸酯一詞涵蓋丙烯酸酯以及甲基丙烯酸 酯以及二者之混合物。 【發明內容】 -9- 201244930 本發明之集中器可具有0.5毫米至50毫米,較包 毫米至25毫米,更佳地2至20毫米及特別地3毫米 毫米之總厚度。 依照本發明之較佳的太陽能集中器詳細描述於下 時參考圖1。 聚合型膜(1 ) 含有浮凸夫瑞乃鏡片結構之聚合型膜在此技藝中 知的,例如彼係描述於美國專利 5,6 5 6,2 09、 01/196000及WO 2010/097263中,所有這些整體倂入 作爲參考。合適的膜也是在商業上可取得的,例如 3 M C 〇 r p。 不管聚合型膜之製造方法爲何,對材料並無特別 ,雖然該聚合型膜(1)必須具有浮凸結構之夫瑞乃 及足夠之透明度。因此,包含聚(甲基)丙嫌酸酯、 酸酯、環烯烴聚合物、聚苯乙烯、聚偏二氟乙烯、聚 甲酸酯類或其混合物或共聚物的聚合型膜(1)是較 。特佳是由如 WO 20 1 0/0972 63中所述之聚合物製成 合型膜(1 )。 膜(1 )之夫瑞乃鏡片結構較佳是正方形或長方 但也可以具有任何其他所要之形狀。在另一較佳變化 ,膜(1)構造成長條形夫瑞乃鏡片,其中圖形在該 長度上是連續的。雖然對於該膜之厚度不特別加以限 彼較佳可以在0.01至10毫米,較佳地0.02 5至2毫 i地1 至10 ,同 是習 WO 本文 得自 限制 鏡片 聚碳 胺基 佳的 之聚 形, 型中 膜之 制, 米, -10- 201244930 更佳地0.025至1毫米,特佳地0,05至 ,極特佳地〇·1至0.5毫米或5至0.9毫 (1 )也可以由排成格子圖形之大約4”至 正方形的個別鏡片組成(參見圖2 ) ^ 聚合型膜(1)可包含添加劑,較佳 衝擊改良劑、U V吸收劑、U V安定劑、離 添加劑以改良熔體流動或耐化學性及防裂 劑在此技藝中是已知的。 該聚合型膜(1)之第一表面(亦即 構之表面)較佳形成本發明之太陽能集中 爲獲得極良好之結果’特佳的是:該第一 他氣體(例如惰性氣體)接觸。因此特ί 裝置中的該第一表面與該太陽能電池之間 中的該第一表面與該熱吸收劑單元之間, 或黏合層結合至該第一表面。 聚合型載體層(3) 載體層(3)是由高透明之(共)聚 物之掺合物製成。彼較佳以片形式施加。 含聚酯類(較佳地聚對苯二甲酸伸乙酯或 酸酯類、聚苯乙烯類、苯乙烯共聚物、氟 基)丙烧酸醋類。特佳的是ΡΜΜΑ或氟聚 物是例如聚偏二氟乙烯(PVDF )。特別 下述之用於UV防護用層(5)之ΡΜΜΑ 0.75毫米範圍內 米。該聚合型膜 3 6”><4”至3 6”之 是食用安定劑、 型劑、潤滑劑或 紋性。此種添加 含有浮凸光學結 裝置的外表面。 表面與空氣或其 爸的是:在 CPV ,或在CSP裝置 沒有另外的塑膠 合物或不同聚合 較佳之聚合物包 PETG)、聚碳 聚合物及聚(甲 合物’該氟聚合 地’可以使用如 或PVDF聚合物 -11 - 201244930 載體層(3)可以是不同聚合物之單層或多 用於多層系統之一實例是由聚甲基丙烯酸甲酯( 及聚偏二氟乙烯(PVDF )層組成之系統。在該 中,個別的添加劑係均勻散佈及/或在一或多個 間互相分開。 載體層(3 )可包含添加劑(較佳地以改良 風化安定性)及/或熱安定劑。若不結合至特殊 明人認爲:UV輻射使丙烯鏈打開。然而,若在; 護之載體層(3 )中鏈打開,則熱安定劑停止或 鏈之“拉開”。因此,特佳地,使用UV防護用層 或在載體層(3 )中僅含熱安定劑及/或不含UV 這提供更經濟及有效的系統。適合之熱安定劑在 是已知的。 較佳地,該載體層(3 )包含衝擊改良劑, 丙烯酸丁酯爲底質之衝擊改良劑。此外,可以使 之用於該UV防護用層(5 )的衝擊改良劑。已 添加至載體層(3 )時,此種改良劑可明顯地降從 及層(3)之熱層合物的翹曲發生。若不結合至 ,膜(1)之基質聚合物樹脂可包含衝擊改良劑 低膜之脆度且促進捲繞在滾筒上。若該載體層( 質聚合物不具有衝擊改良劑,則彼具有與該膜不 脹係數。在該載體層(3)冷卻的同時,層(3) )收縮成不同的最後大小,造成翹曲。將衝擊改 層系統。 PMMA ) 多層系統 這些層之 如下述之 理論,發 陘UV防 最小化該 (5 )及 / 安定劑。 此技藝中 特別是以 用如下述 發現:當 έ 膜(1 ) 特定理論 ,其可降 :3 )之基 同的熱膨 及膜(1 良劑導至 -12- 201244930 該載體層(3)基底會減少在膜(1)及層(3)之間的熱 膨脹係數差,且因此明顯地減少翹曲。 不管組成爲何,高透明載體層(3 )較佳具有在0.1 毫米至50毫米範圍內,較佳在〇.5至25毫米範圍內,更 佳在1至20毫米範圍內,特佳在2至20毫米範圍內且極 特佳在2至10毫米及2至7毫米範圍內之總厚度。 高透明聚合物層之厚度在關於具有需要更大厚度之較 大鏡片的整合鏡片尺寸上是重要的(除非提供另外之載體 系統)。此確保合適之剛度以在風負荷、雪負荷或其本身 重量下,由於聚合物蠕變使鏡片偏斜。鏡片之偏斜會使該 鏡片與太陽能接收器之距離改變。這將不良地影響該系統 效率,因差的光聚焦。另外,鏡片厚度必須足夠以致該鏡 片具有充分的衝擊強度以抵抗冰雹之破壞。 安定劑包裝物(光安定劑) 本發明之層合的太陽能集中裝置是被包含至少一種 UV吸收劑及至少一種UV安定劑之特殊UV防護用包裝物 所UV防護。該包裝物可添加至載體層(3)及/或包含該 UV防護用包裝物之UV防護用層(5)可被使用以覆蓋載 體層(3 )。 依照本發明之經UV防護之太陽能集中裝置的特別構 成成分是該UV防護用包裝物,其對於該集中器之長的使 用壽命及對該集中器之風化安定性有貢獻。更特別地,依 照本發明所製造之層合的太陽能集中裝置對於其與先前技 -13- 201244930 藝相比之經明顯改良的UV安定性及相關之較長的使用壽 命是顯著的。本發明之材料因此可以在具有特別長之曰照 時間及特別強烈之太陽輻射的位址上(例如在美國西南部 或沙哈拉中),在至少15年(甚至較佳至少20年,更佳 至少25年)之極長時間內用在太陽能集中器中。 光安定劑是習知的且例如被詳細描述於Hans Zweifel, Plastics Additives Handbook, Hanser Verlag, 5th Edition, 200 1,p. 141 ff。光安定劑據了解是包含UV吸收劑、UV 安定劑及自由基清除劑。 UV吸收劑例如可以衍生自經取代之二苯甲酮類、水 楊酸酯類、肉桂酸酯類、草醯替苯胺類、苯並噁嗪酮類、 羥基苯基苯並三唑類、三嗪類或丙二酸亞苄酯之群組中。 UV安定劑/自由基清除劑之熟知代表係由位阻胺類( 位阻胺光安定劑,HALS)之群組所提供。 該UV防護用包裝物之個別的添加劑在本發明之太陽 能集中裝置的一或多層間可以均勻地散佈及/或互相分開 〇 可被使用之典型 UV吸收劑是可內聚合( intrapolymerizable)之 UV 吸收劑,其含有在 290 至 370 奈米波長範圍內具有高吸收度之基團。較佳是UV吸收度 (以5毫米厚度之〇.〇〇2重量%之氯仿溶液層形式(分光 品質))爲至少10%的單體。適合之化合物的實例是2-羥 基二苯甲酮之衍生物、羥基乙醯苯酮之衍生物、氰基-召, 汐-聯苯基之衍生物、羥基苯酸酯之衍生物、草醯替苯胺 -14- 201244930 之衍生物、對-胺基苯酸酯之衍生物、或6,8-二烷基-4-氧 代-5-苯並二氫吡喃基之衍生物。在這些單體中所含且能自 由基聚合之烯系不飽和基團較佳是丙烯基、甲基丙烯基、 烯丙基或乙烯基。 適合之單體的實例是:甲基丙烯酸2-(氰基-β,β·聯苯 基丙烯醯氧基)乙酯-1、2-(2’-羥基-3’-甲基丙烯醯胺基 甲基- 5’-辛基苯基)苯並三嗖、2-羥基-4- (2-羥基-3-甲基 丙嫌酶氧I基)丙氧基—苯甲嗣Λ 2-(α -氛基·β,β -聯苯基丙 烯醯氧基)乙基-2-甲基丙烯醯胺、2-羥基-4-甲基丙烯醯 氧基二苯甲酮、2-羥基-4-丙烯醯氧基乙基氧基二苯甲酮' Ν- (4-甲基丙烯醯基酹)-Ν’-(2-乙基苯基)草醯胺、4-乙基-α-氰基-β-苯基肉桂酸乙酯、2- (2-羥基-5-乙烯基苯 基)-2-苯並三唑。 在本發明之太陽能集中裝置之層中UV吸收用單體之 所選的比例有利地可以是夠高,以致箔層吸收至少98%之 波長爲290至3 70奈米的入射UV輻射。爲此所需之濃度 依照層厚度且依照單體之有效性而定。彼以用於製備該層 之單體重量計通常是0·1重量%至2重量%。 可共聚合之UV吸收劑具有不移動的缺點。在風化過 程中,曝於UV光及風化之上層中,UV吸收劑逐漸被消 耗,但未使用之UV吸收劑不能擴散以取代彼,因爲分子 已固定成該聚合物之構成成分,且該層未受UV輻射及風 化之侵襲的防護。 相反地,不可共聚合之UV吸收劑的使用使該UV吸 -15- 201244930 收劑能隨之移動至表面。然而同時,需要避免移動的UV 吸收劑在加工(例如擠出)期間從塑膠成形品中滲出。因 此,在此較佳是使用非揮發性光安定劑。揮發性可以依照 DIN ISO 1 1 3 5 8利用TGA之重量損失測定。在此較佳是光 安定劑,其當用20 °C/分鐘之加熱速度在空氣中對純物質 進行此測試時,在240 °C以上,較佳地在270 °C以上且特 佳地高於30(TC之溫度下顯現出2%之重量損失。 在本發明之較佳具體例中,該UV防護用包裝物包含 至少二種以下成分: A) 苯並三唑型UV吸收劑, B) 三嗪型UV吸收劑, C) UV安定劑,較佳是HALS化合物。 成份A)及B)可以個別物質或混合物形式被使用。 在本發明之層合物中必須包含至少一種UV吸收劑成份。 成分C)是需要包含在本發明之層合物中。 成份A :苯並三唑型之UV吸收劑 可被使用之苯並三唑型之UV吸收劑的實例是2- (2_ 羥基-5-甲基苯基)苯並三唑、2-[2-羥基-3,5·二(α,α-二甲 基苄基)苯基]苯並三唑、2- (2 -羥基-3,5 -二-第三丁基苯 基)苯並三唑、2· (2·羥基-3,5· 丁基-5-甲基苯基)-5-氯 苯並三唑、2- (2-羥基-3, 5-二-第三丁基苯基)-5-氯苯並 三唑、2-(2-羥基-3, 5-二-第三戊基苯基)苯並三唑、2-( 2-羥基-5-第三丁基苯基)苯並三唑、2- (2-羥基-3·第二丁 -16- 201244930 基-5-第三丁基苯基)苯並三唑、及2- (2-羥基-5-第三辛 基苯基)苯並三唑、酚、2,2’-亞甲基雙[6- (2H-苯並三 唑-2-基)-4-(1,1,3,3-四甲基丁基)]。 苯並三唑型UV吸收劑之用量以製備各層所用之單體 的重量計是〇 · 1重量%至1 〇重量%,較佳地〇 . 2重量%至6 重量%且極特佳地0.5重量%至4重量%。也可能使用不同 之苯並三唑型UV吸收劑之混合物。 成份B :三嗪型UV吸收劑 再者,也可以使用三嗪類諸如2-(4,6-二苯基-1,3,5-三嗪-2-基)-5-己基氧基酚作爲混合物中之UV安定劑。 該三嗪類之用量以製備各層所用之單體的重量計是 0.0重量%至5重量%,較佳地0. 1重量%至5重量%,特 佳地0.2重量%至3重量%且極特佳地0.5重量%至3重量 %且特佳地0.5重量%至2重量%。也可能使用不同三嗪類 之混合物。 成份C : UV安定劑 在此可提及之自由基清除劑/UV安定劑之實例是已知 是HALS (位阻胺光安定劑)的位阻胺類。彼可用來抑制 塗料及塑膠中(特別是在聚烯烴塑膠中)之老化現象( Kunststoffe, 74(1 984) 1 0, pp. 620-62 3; Farbe + Lack,201244930 VI. OBJECTS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to laminated solar energy concentration devices and to the manufacture of materials from polymeric materials. The solar concentration device of the present invention can be used in photovoltaic systems or in solar thermal systems. The solar concentration device of the present invention comprises a Fresnel lens and is capable of efficiently concentrating solar radiation on an object such as a solar cell or absorber unit, regardless of the shape of the object. This is for the field of high performance solar cells used, for example, in concentrated photovoltaic devices (CPV) and likewise for absorbers used in concentrated solar thermal systems (CSP). More particularly, the present invention relates to the use of UV and weathering stabilizer packages for use in solar concentrators for use in the lamination, for improving the service life and weatherability of optical devices, and for preventing peeling. The invention further relates to a surface post treatment associated with scratch resistance, stain resistance, antireflection and chemical resistance of the solar concentration device. [Prior Art] Freyn lenses have appeared in the 1880s and have been used in projection TVs, projectors, car headlights, lighthouses and the like. Recently, Fresnel lenses have been used to focus solar energy on photovoltaic solar receivers that convert energy into electrical energy. In order to improve the properties of the film containing the embossed optical element such as rigidity, weathering resistance and abrasion resistance, it is necessary to laminate the embossed film to a support film. In general, a thin carrier film is sufficient for most of the targets. However, in addition to the use of the Fresnel lens in a solar concentrator, it is necessary to laminate the Fresnel film onto the slab substrate to increase the rigidity of the Fresnel lens so that it can be easily installed. In the solar concentrator. Hot layer cooperation has been suggested as a preferred method of making laminated Fresnel lenses. Thin film can be used for off-line thermal layer cooperation, but it is problematic for thick films like Fresnel. This is because the thermal bonding of the Fresnel film to the slab requires a large amount of heat and this heat generally destroys the optical structure. The in-line lamination process as disclosed in U.S. Patent No. 5,94,042, and U.S. Patent No. 6,375,776, is incorporated herein by reference. Patent '042 specifically discloses that the embossed films have a thickness in the range of 10 to 100 microns and the carrier film thickness is typically in the range of 35 to 150 microns. A thick embossing sheet, such as the one having the acrylic substrate, is manufactured in U.S. Patent No. 5,656,209, issued to Benz. The Benz' 209 patent describes a method of making a long strip type Fresnel lens using a three barrel polishing cylinder designed to coextrude a high viscosity molding compound and a low viscosity molding compound. This patent is incorporated herein in its entirety. Although the Benz ‘209 patent provides an in-line method of making Fresnel lenses, lenses made by this method have been found to be less sharp. WO 2009/1 2 1 7 0 8 describes a method of thermally laminating a film comprising a relief optical structure to a polymer sheet without destroying the integrity of the relief structure, although most of the methods in the prior art Focusing on the lamination method and quality of the Fresnel lens structure, but not finding a solution to improve the optical life and weathering resistance-6-201244930 and prevent stripping. Problem The object of the present invention is to provide a novel solar concentration device for use in a system that is accompanied by the use of photovoltaic devices (CPV) or concomitant use of solar thermal energy (CSP). The disadvantages of known solar energy concentration devices as described above should be avoided or at least minimized. The new concentrator should preferably have a life of at least 10 years and an improved stability to the environmental impact as compared to the prior art. In certain problems, the period of use in desert conditions should be at least 20 years. Another object of the present invention is to provide an extremely simple manufacturing method that can be carried out in a less expensive, more energy efficient, simpler and faster manner than prior art and requires less complex logistics. Additional objects not expressly stated are set forth in the following description, claims, and examples. Solution It has surprisingly been found that in the carrier layer of the laminated virgin lens and/or in the UV protective layer applied to the laminated virgin lens, the special UV protective packaging Uses help to avoid the disadvantages of the existing concentrator designs described. The laminated solar concentration device of the present invention, as further defined in the scope, description and examples of the present invention, and the solar device of the present invention exhibit improved weathering resistance. 201244930 The mechanical properties of the solar concentration device of the present invention are extremely good throughout use, i.e., the reduction in molecular weight during use is minimized and the degradation or loss of the impact modifier of the polymeric layer is minimized or avoided. The laminated solar concentration device of the present invention exhibits extremely good heat resistance, which contributes to the improvement of the efficiency of the solar device of the present invention. The surface quality of the Frei structure is better than that of the co-extruded Frei lens as disclosed in U.S. Patent No. 5,656,209, to further improve the efficiency of the apparatus according to the present invention. In addition, the novel concentrator of the present invention has the following properties, which are advantageous in combination with prior art, particularly in terms of optical properties: the composition of the concentrator of the present invention is col our-neutral And it does not become cloudy under the influence of water. The concentrator additionally exhibits superior weathering resistance and, in the case of random post-treatment, for example, exhibits excellent chemical resistance to all commercial cleaning compositions. These aspects also contribute to the long-term concentration of solar energy. In order to promote cleaning, the surface may have antifouling properties. Further, the surface is optionally abrasion resistant and/or scratch resistant. The method of the present invention enables the Fresnel lens of the present invention to be continuously produced and is extremely elastic in terms of the layer structure or thickness of the laminate of the present invention. As a result, significant economic advantages have been achieved. The subject of the invention is therefore a UV-protected laminated solar concentration device characterized by a solar light source comprising at least the following layers: a polymeric carrier layer (3) - a polymeric film (1), which comprises Forming a first surface of one or more of the embossed optical structures of the Fresnel-8-201244930 sheet and having a second surface of the polymer layer (3) bonded directly or via an adhesive layer (2) The carrier layer (3) comprises at least one UV absorber and at least one UV stabilizer, and/or wherein the UV protective polymer layer (5) comprising at least one UV absorber and at least one UV stabilizer is directly or via a bond The layer (4) is bonded to the surface of the carrier layer (3) facing the light source. A further embodiment of the invention is a solar device, characterized in that it is a CPV element comprising at least one solar concentration device according to the invention and at least one solar cell, or a solar concentration comprising at least one solar cell according to the invention The device and the CSP component of the at least one heat absorber unit. Finally, the invention relates to the use of UV-protected laminated solar concentration devices for the manufacture of solar devices such as CSP or CPV devices. Before describing the invention in more detail, important terms are defined. Hereinafter, "polymer layer" and "layer" include a polymer-based board, sheet, film, coating system or coating. Such a layer may in principle have a thickness of from 1 micron to 2 cm. The term (meth) acrylate encompasses acrylates as well as methacrylates and mixtures of the two. SUMMARY OF THE INVENTION -9-201244930 The concentrator of the present invention may have a total thickness of from 0.5 mm to 50 mm, more than from mm to 25 mm, more preferably from 2 to 20 mm, and particularly from 3 mm mm. A preferred solar concentrator in accordance with the present invention is described in detail below with reference to FIG. Polymeric Membranes (1) Polymeric films comprising embossed Fresnel lens structures are known in the art, for example, as described in U.S. Patent Nos. 5,6, 5,209, 01/19,6000 and WO 2010/097263. All of these overall intrusions are used as a reference. Suitable membranes are also commercially available, for example 3 M C 〇 r p. Regardless of the method of producing the polymeric film, there is no particular material, although the polymeric film (1) must have a embossed structure and sufficient transparency. Therefore, a polymeric film (1) comprising a poly(methyl)propionic acid ester, an acid ester, a cycloolefin polymer, polystyrene, polyvinylidene fluoride, a polyformate or a mixture or copolymer thereof is . It is particularly preferred to form a composite film (1) from a polymer as described in WO 20 1 0/0972 63. The lens structure of the film (1) is preferably square or rectangular but may have any other desired shape. In another preferred variation, the film (1) is constructed to grow a strip-shaped Fresnel lens wherein the pattern is continuous over the length. Although the thickness of the film is not particularly limited, it may preferably be from 0.01 to 10 mm, preferably from 0.02 to 2 milliliters, from 1 to 10, which is preferably obtained from a limited lens polycarboamine group. Polymorphic, medium-medium film, m, -10- 201244930 more preferably 0.025 to 1 mm, particularly preferably 0,05 to, very good 〇 · 1 to 0.5 mm or 5 to 0.9 mA (1 ) It can be composed of individual lenses of about 4" to square arranged in a grid pattern (see Figure 2). ^ The polymeric film (1) can contain additives, preferably impact modifiers, UV absorbers, UV stabilizers, and additives. Melt flow or chemical resistance and anti-cracking agents are known in the art. The first surface (i.e., the surface of the structure) of the polymeric film (1) preferably forms the solar concentration of the present invention to achieve excellent The result 'is particularly good: the first gas (e.g., inert gas) is in contact. Therefore, between the first surface and the heat absorbent unit between the first surface and the solar cell in the device , or an adhesive layer is bonded to the first surface. Polymeric carrier layer (3) The bulk layer (3) is made of a blend of highly transparent (co)polymers. It is preferably applied in the form of a sheet. Containing polyesters (preferably polyethylene terephthalate or esters, Polystyrene, styrene copolymer, fluorine-based propylene sulphuric acid vinegar. Particularly preferred is hydrazine or a fluoropolymer such as polyvinylidene fluoride (PVDF), particularly for the UV protective layer ( 5) The rice is in the range of 0.75 mm. The polymeric film 3 6" > 4" to 3 6" is an edible stabilizer, a formulation, a lubricant or a smear. This addition contains the outer surface of the embossed optical junction device. The surface and air or its dad are: in CPV, or in the CSP device without additional plastic compound or different polymerized polymer package PETG), polycarbon polymer and poly(methide 'the fluorine polymerized' can The use of, for example, or PVDF polymer-11 - 201244930 carrier layer (3) can be a single layer of different polymers or one of the multi-layer systems used is an example of polymethyl methacrylate (and polyvinylidene fluoride (PVDF) layer) a system of compositions in which individual additives are uniformly dispersed and/or separated from one another. The carrier layer (3) may comprise additives (preferably to improve weathering stability) and/or thermal stabilizers. If it is not combined with a special person, it is believed that: UV radiation causes the propylene chain to open. However, if the chain is opened in the carrier layer (3), the thermal stabilizer stops or the chain is "pulled open". Preferably, the use of a UV protective layer or the inclusion of a thermal stabilizer in the carrier layer (3) and/or the absence of UV provides a more economical and efficient system. Suitable thermal stabilizers are known. The carrier layer (3) comprises an impact modifier, propylene Butyl ester is a substrate impact modifier. In addition, it can be used for the impact modifier of the UV protective layer (5). When added to the carrier layer (3), the modifier can be significantly reduced from The warpage of the thermal laminate of layer (3) occurs. If not bonded, the matrix polymer resin of film (1) may contain the brittleness of the impact modifier low film and facilitate winding on the drum. (The polymer does not have an impact modifier, and it has a coefficient of non-expansion with the film. While the carrier layer (3) is cooled, the layer (3) shrinks to a different final size, causing warpage. Layer system. PMMA) Multilayer systems These layers have the following theory, and the UV protection against minimization of the (5) and / stabilizers. This technique is particularly found in the following: when the membrane (1) is specific, It can reduce: 3) the same thermal expansion film (1 good agent leads to -12- 201244930) the carrier layer (3) substrate will reduce the difference in thermal expansion coefficient between the film (1) and the layer (3), And thus significantly reduce the warpage. Regardless of the composition, the highly transparent carrier layer (3) preferably has a In the range of mm to 50 mm, preferably in the range of 〇.5 to 25 mm, more preferably in the range of 1 to 20 mm, particularly preferably in the range of 2 to 20 mm and very preferably in the range of 2 to 10 mm and 2 to The total thickness in the range of 7 mm. The thickness of the highly transparent polymer layer is important in terms of the integrated lens size for larger lenses that require a greater thickness (unless an additional carrier system is provided). This ensures a suitable stiffness to Wind load, snow load or its own weight, the lens is deflected due to polymer creep. The deflection of the lens will change the distance between the lens and the solar receiver. This will adversely affect the efficiency of the system due to poor light. Focus. In addition, the thickness of the lens must be sufficient so that the lens has sufficient impact strength to resist the damage of the hail. Stabilizer package (light stabilizer) The laminated solar concentration device of the present invention is UV protected by a special UV protective package comprising at least one UV absorber and at least one UV stabilizer. The wrapper may be added to the carrier layer (3) and/or the UV protective layer (5) comprising the UV protective wrapper may be used to cover the carrier layer (3). A particularly constituent component of the UV-protected solar concentration device according to the present invention is the UV protective package which contributes to the long service life of the concentrator and the weathering stability of the concentrator. More particularly, the laminated solar concentration devices made in accordance with the present invention are significantly improved for their significantly improved UV stability and associated long service life compared to the prior art. The material of the present invention can therefore be used at sites with particularly long exposure times and particularly intense solar radiation (for example in the southwestern United States or in the Shaharra) for at least 15 years (even better at least 20 years, more Good for at least 25 years) used in solar concentrators for a very long time. Light stabilizers are well known and described, for example, in Hans Zweifel, Plastics Additives Handbook, Hanser Verlag, 5th Edition, 200 1, p. 141 ff. Light stabilizers are known to contain UV absorbers, UV stabilizers, and free radical scavengers. The UV absorber may be derived, for example, from substituted benzophenones, salicylates, cinnamates, oxalic anilides, benzoxazinones, hydroxyphenylbenzotriazoles, and the like. In the group of azines or benzylidene malonate. A well-known representative of UV stabilizers/radical scavengers is provided by a group of hindered amines (hindered amine light stabilizers, HALS). The individual additives of the UV protective packaging can be evenly dispersed and/or separated from each other within one or more layers of the solar concentration device of the present invention. Typical UV absorbers that can be used are intrapolymerizable UV absorption. An agent containing a group having a high absorbance in the wavelength range of 290 to 370 nm. Preferably, the UV absorbance (in the form of a layer of chloroform solution (spectral quality) of 5 mm thickness 〇〇 重量 2 wt%) is at least 10%. Examples of suitable compounds are derivatives of 2-hydroxybenzophenone, derivatives of hydroxyacetophenone, cyano-calli, derivatives of quinone-biphenyl, derivatives of hydroxybenzoate, grass mites a derivative of aniline-14-201244930, a derivative of p-aminobenzoate, or a derivative of 6,8-dialkyl-4-oxo-5-chroman. The ethylenically unsaturated group contained in these monomers and capable of being freely polymerized is preferably a propenyl group, a methacryl group, an allyl group or a vinyl group. Examples of suitable monomers are: 2-(cyano-β,β·biphenylpropenyloxy)ethyl methacrylate-1, 2-(2'-hydroxy-3'-methacrylamide Methyl-5'-octylphenyl)benzotriazine, 2-hydroxy-4-(2-hydroxy-3-methylpropaneoxyl I)propoxy-benzhydryl 2-( α-Akyl·β,β-biphenylpropenyloxy)ethyl-2-methylpropenylamine, 2-hydroxy-4-methylpropenyloxybenzophenone, 2-hydroxy-4 - propylene methoxyethyl oxybenzophenone ' Ν - (4-methyl propylene fluorenyl) - Ν '- (2-ethylphenyl) oxazamide, 4-ethyl-α-cyanide Ethyl-β-phenylcinnamate, 2-(2-hydroxy-5-vinylphenyl)-2-benzotriazole. The selected ratio of UV absorbing monomers in the layer of the solar concentration device of the present invention may advantageously be sufficiently high that the foil layer absorbs at least 98% of incident UV radiation having a wavelength of from 290 to 3 70 nm. The concentration required for this purpose depends on the layer thickness and on the effectiveness of the monomer. It is usually from 0.1 to 2% by weight based on the weight of the monomer used to prepare the layer. The copolymerizable UV absorber has the disadvantage of not moving. During the weathering process, exposed to UV light and weathered upper layer, the UV absorber is gradually consumed, but the unused UV absorber cannot diffuse to replace it because the molecule has been fixed into the constituent of the polymer, and the layer Protection from UV radiation and weathering. Conversely, the use of a non-copolymerizable UV absorber allows the UV absorbing -15-201244930 to move to the surface. At the same time, however, it is desirable to avoid the migration of the moving UV absorber from the plastic molded article during processing (e.g., extrusion). Therefore, it is preferred to use a non-volatile light stabilizer here. Volatile can be determined by weight loss of TGA in accordance with DIN ISO 1 1 3 5 8 . Here, a light stabilizer is preferably used when the test is carried out on pure substances in air at a heating rate of 20 ° C/min, above 240 ° C, preferably above 270 ° C and particularly preferably. A weight loss of 2% is exhibited at a temperature of 30 (TC). In a preferred embodiment of the invention, the UV protective package comprises at least two of the following components: A) Benzotriazole type UV absorber, B a triazine type UV absorber, C) a UV stabilizer, preferably a HALS compound. Ingredients A) and B) can be used in the form of individual substances or mixtures. At least one UV absorber component must be included in the laminate of the present invention. Component C) is required to be included in the laminate of the present invention. Ingredient A: A benzotriazole-type UV absorber can be used. Examples of the benzotriazole-type UV absorber are 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-[2 -hydroxy-3,5·bis(α,α-dimethylbenzyl)phenyl]benzotriazole, 2-(2-hydroxy-3,5-di-t-butylphenyl)benzotriene Azole, 2·(2·hydroxy-3,5·butyl-5-methylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3, 5-di-t-butylbenzene 5-)Chlorobenzotriazole, 2-(2-hydroxy-3,5-di-t-pentylphenyl)benzotriazole, 2-(2-hydroxy-5-t-butylbenzene Benzotriazole, 2-(2-hydroxy-3.second butyl-16-201244930 yl-5-t-butylphenyl)benzotriazole, and 2-(2-hydroxy-5- Trioctylphenyl)benzotriazole, phenol, 2,2'-methylenebis[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetra Methyl butyl)]. The benzotriazole type UV absorber is used in an amount of from 1% by weight to 1% by weight, based on the weight of the monomers used for the preparation of the layers, preferably from 2% by weight to 6% by weight and very preferably 0.5% by weight. Weight% to 4% by weight. It is also possible to use a mixture of different benzotriazole type UV absorbers. Ingredient B: Triazine-type UV absorbers Further, triazines such as 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexyloxyphenol can also be used. As a UV stabilizer in the mixture. The triazines are used in an amount of from 0.0% by weight to 5% by weight, preferably from 0.1% by weight to 5% by weight, particularly preferably from 0.2% by weight to 3% by weight, based on the weight of the monomers used to prepare the layers. It is particularly preferably from 0.5% by weight to 3% by weight and particularly preferably from 0.5% by weight to 2% by weight. It is also possible to use mixtures of different triazines. Ingredient C: UV stabilizer An example of a radical scavenger/UV stabilizer which may be mentioned herein is a hindered amine known as HALS (Hindered Amine Light Stabilizer). It can be used to inhibit the aging of paints and plastics (especially in polyolefin plastics) (Kunststoffe, 74 (1 984) 1 0, pp. 620-62 3; Farbe + Lack,

Volume 96,9/1990,ρρ· 689-693)。在該 HALS 中所含之 四甲基哌啶基是安定效果的因素。此類化合物在該哌啶之 -17- 201244930 氮上可不具有取代基或在哌啶之氮上可被烷基或醯基取代 。該位阻胺類在該UV區中不吸收。彼清除已經形成之自 由基,但該UV吸收劑不能完成此項工作。具有安定效果 且也以混合物形式被使用之HALS化合物的實例是:雙( 2,2,6,6-四甲基-4-哌啶基)癸二酸酯、8-乙醯基-3-十二烷 基- 7,7,9,9-四甲基-1,3,8-三氮雜螺(4,5)-癸-2,5-二酮、 雙(2,2,6,6 -四甲基-4-哌啶基)丁二酸酯、聚(N-召-羥基 乙基-2,2,6,6-四甲基-4-羥基哌啶丁二酸酯)或雙(N-甲 基-2,2,6,6-四甲基-4-哌啶基)癸二酸酯。 該HALS化合物之用量以製備各層所用之單體的重量 計是〇.〇重量%至5重量%,較佳地0.1重量%至5重量% ,特佳地0.1重量%至3重量%,且極特佳地0.2重量%至 2重量%。也可能使用不同HALS化合物之混合物。 再者,其他可用之輔安定劑是上述之HALS化合物、 亞硫酸氫鹽(諸如亞硫酸氫鈉)、及位阻酚類 '及亞磷酸 鹽類。 與“太陽熱能用途”相關之太陽輻射的波長光譜範圍是 3 00奈米至25 00奈米。然而應濾出低於400奈米,特別地 低於375奈米範圍者以延長該集中器之使用壽命,以致保 留3 75奈米或400奈米至2500奈米之“有效波長範圍”。 依照本發明所用之UV吸收劑及UV安定劑之混合物顯現 出安定而長期活躍之涵蓋廣波長光譜( 3 00奈米-400奈米 )的UV防護作用。 特佳的是:本發明之層合物包含UV防護用層(5 ) -18- 201244930 形式之uv防護用包裝物。本發明人已發現:鑑於本發明 之太陽能集中裝置之使用期間避免分別使各聚合物層之分 子量降低(亦即衝擊改良劑從個別聚合層放出)最小化, 此構造是特別有利的。 與將該UV防護用包裝物添加至載體層(3)的替代 型相比,此替代型之另一優點是:達成相同效果所需之 UV吸收劑及安定劑的量是較低的,因爲層(5 )經常比層 (3 )薄。 對於可作爲UV防護用層(5)之膜的合適的UV防護 作用可在例如WO 2007/073952(Evonik R0hm)發現或分別 在 DE 10 2007 029 263 A1 或 WO 2007/0 74138 中更詳細地 描述。所有該等文件整體倂入作爲參考。 UV防護用層(5 ) 較佳之UV防護用層(5 )係由透明之單層或多層( 多次層)塑膠箔片組成,該塑膠薄片包含在個別情況中皆 於至少一次層中的聚(甲基)丙烯酸甲酯(PMMA )或聚 (甲基)丙烯酸甲酯(PMMA )及聚偏二氟乙烯(PVDF) ,或在至少一次層中之混合物型的PMMA及PVDF。 UV防護用層(5)可較佳具有在10至250微米範圍 內,更佳地在40至120微米範圍內及特佳地在50至90 微米範圍內之厚度。 該UV安定用包裝物以外’該層(5)的特佳成分是 如下述之以PMMA爲底質之塑膠及PVDF聚合物: -19- 201244930 聚甲基丙烯酸甲酯塑膠通常是藉由包含甲基丙烯酸甲 酯之混合物的自由基聚合作用獲得。這些混合物通常包含 以單體重量計至少4 0重量% ’較佳地至少6 0重量%及特 佳地至少8 0重量%之甲基丙烯酸甲酯。 這些用於製造聚甲基丙烯酸甲酯的混合物也可包含其 他可與甲基丙烯酸甲酯共聚合之(甲基)丙烯酸酯類。( 甲基)丙烯酸酯類之表示方式包含甲基丙烯酸酯類及丙烯 酸酯類及二者之混合物。這些單體是習知的。其特別是衍 生自飽和醇類之(甲基)丙烯酸酯類例如丙烯酸甲酯、( 甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯 酸正丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸異 丁酯、(甲基)丙烯酸戊酯 '及(甲基)丙烯酸2-乙基己 酯;以及衍生自不飽和醇類之(甲基)丙烯酸酯類例如( 甲基)丙烯酸油酯、(甲基)丙烯酸2·丙烯酯、(甲基) 丙烯酸烯丙酯、(甲基)丙烯酸乙烯酯:以及(甲基)丙 烯酸芳酯,諸如(甲基)丙烯酸苄酯或(甲基)丙烯酸苯 酯,在各情況中在此之芳基可以是未取代的或可以具有最 多4個取代基;(甲基)丙烯酸環烷酯諸如(甲基)丙烯 酸3 -乙烯基環己酯、(甲基)丙烯酸fg酯;(甲基)丙烯 酸羥烷酯諸如(甲基)丙烯酸3-羥丙酯、(甲基)丙烯酸 3,4-二羥丁酯、(甲基)丙烯酸2-羥乙酯、(甲基)丙烯 酸2-羥丙酯;二(甲基)丙烯酸二醇酯諸如(甲基)丙烯 酸1,4-丁二醇酯;醚醇類之(甲基)丙烯酸酯類例如(甲 基)丙烯酸四氫2-呋喃甲酯、(甲基)丙烯酸乙烯基氧基 -20- 201244930 乙氧乙酯;甲基丙烯酸之醯胺類及腈類例如N- (3. 胺基丙基)(甲基)丙烯醯胺、N-(二乙基膦基) )丙烯醯胺、1-甲基丙烯醯基醯胺基-2-甲基-2-丙 硫之甲基丙烯酸酯類諸如(甲基)丙烯酸乙基亞磺 酯、(甲基)丙烯酸4-硫氰酸基丁酯、(甲基)丙 基磺醯基乙酯、(甲基)丙烯酸硫氰酸基甲酯、( 丙烯酸甲基亞磺醯基甲酯、雙((甲基)丙烯醯氧 )硫醚;多官能之(甲基)丙烯酸酯類諸如三(甲 烯酸三羥甲基丙烷酯。 聚合反應通常藉由已知之自由基起始劑起始。 起始劑特別是精於此技藝之人士習知的偶氮起始 AIBN及1,1-偶氮雙環己腈,及過氧化合物諸如甲 酮過氧化物、乙醯基丙酮過氧化物、二月桂基過氧 2-乙基過氧己酸第三丁酯、酮過氧化物、甲基異丁 氧化物、環己酮過氧化物、二苯醯基過氧化物、過 酸第三丁酯、碳酸第三丁基過氧基異丙酯、2,5-雙 基己醯基過氧基)-2,5-二甲基己烷、2-乙基過氧基 三丁酯、3,5,5-三甲基過氧基己酸第三丁酯、二枯 化物、1,1-雙(第三丁基過氧基)環己烷、1,1-雙 丁基過氧基)-3,3,5-三甲基環己烷、枯基氫過氧化 三丁基氫過氧化物、過氧二碳酸雙(4-第三丁基環 、二或多個上述化合物相互之混合物及上述混合物 提及但同樣可形成自由基之化合物的混合物。 待聚合之組成物不僅可包含上述之(甲基)丙 •二甲基 (甲基 醇;含 醯基乙 烯酸乙 甲基) 基乙基 基)丙 較佳之 劑例如 基乙基 化物、 基酮過 氧基苯 (2-乙 己酸第 基過氧 (第三 物、第 己酯) 與尙未 烯酸酯 -21 - 201244930 類,也可包含其他可與甲基丙烯酸甲酯及與上述(甲基) 丙烯酸酯類共聚合之不飽和單體。這些特別是1-烯類諸如 1-己烯、1-庚烯;支鏈型烯類諸如乙烯基環己烷、3,3-二 甲基-1-丙嫌、3·甲基-1- —異丁嫌、4 -甲基-1-戊嫌;丙嫌 腈;乙烯酯類諸如乙酸乙烯酯;苯乙烯、在側鏈上具有烷 基取代基之經取代的苯乙烯類(諸如d -甲基苯乙烯及α-乙基苯乙烯)、在環上具有烷基取代基之經取代的苯乙烯 類(諸如乙烯基甲苯及對-甲基苯乙烯)、鹵化之苯乙烯 類(諸如單氯苯乙烯類、二氯苯乙烯類、三溴苯乙烯類、 四溴苯乙烯類):雜環乙烯基化合物諸如2·乙烯基吡啶、 3·乙烯基吡啶、2-甲基-5-乙烯基吡啶、3-乙基-4-乙烯基吡 啶、2,3-二甲基-5-乙烯基吡啶、乙烯基嘧啶、乙烯基哌啶 、9-乙烯基咔唑、3-乙烯基咔唑、4-乙烯基咔唑、1-乙烯 基咪唑、2-甲基-1-乙烯基咪唑、Ν-乙烯基吡咯烷酮、2-乙 烯基吡咯烷酮、Ν·乙烯基吡咯啶、3-乙烯基吡咯啶、Ν-乙 烯基己內醯胺、Ν-乙烯基丁內醯胺、乙烯基氧雜環戊烷、 乙烯基呋喃、乙烯基噻吩、乙烯基硫雜環戊烷、乙烯基噻 唑類、及氫化之乙烯基噻唑類、乙烯基噁唑類及氫化之乙 烯基噁唑類:乙烯基醚類及異戊二烯基醚類;順丁烯二酸 衍生物諸如順丁烯二酸酐、甲基順丁烯二酸酐、順丁烯二 醯亞胺、甲基順丁烯二醯亞胺;及二烯類諸如二乙烯基苯 〇 這些共單體之一般用量以單體重量計是〇重量%至60 重量%,較佳地〇重量%至4 0重量%,且特佳地0重量% -22- 201244930 至20重量%,且該化合物在此可單獨地或以混合物形式被 使用》 另外較佳是一種箔,其係使用一種藉由具有以下物質 作爲可聚合成份的組成物的聚合作用可得的聚(甲基)丙 烯酸酯: a)50重量%至99.9重量%之甲基丙烯酸甲酯, b.0.1重量%至<50重量%之具有衍生自C1-C4醇之酯 基團的丙烯酸酯, C.0重量%至10重量%之可與單體a.及b.共聚合之單 體。 另外較佳是一種箔,其係使用一種藉由具有以下物質 作爲可聚合成份的組成物的聚合作用可得的聚(甲基)丙 烯酸酯: a. 78重量%至92重量%之甲基丙烯酸甲酯, b. 8重量%至12重量%之具有衍生自C1_C4醇之酯基 團的丙烯酸酯, c. O重量%至10重量%之可與單體a.及b.共聚合之單 體。 令人驚訝地,已發現:在8至12重量%範圍內之共丙 烯酸酯(coacrylate)比例之使用,較佳地使用該量之丙 烯酸正丁酯,將該箔之固有安定性顯著地提升超過迄今已 知之程度。因此這尙未能容易地預測。隨著所選之共丙烯 酸酯比例增加,該箔之安定性也增加。另外,超過限定値 之增加反而是不利的,因爲過多比例之共丙烯酸酯並沒有 -23- 201244930 任何顯著增加之裂痕抑制作用。 該聚合物之鏈長度可以藉由在分子量調整劑之存在下 單體混合物的聚合作用調節,特別實例是已知用於此目的 的硫醇類例如正丁基硫醇、正十二烷基硫醇、2-氫硫基乙 醇、或2-乙基己基硫基乙二醇酯、或季戊四醇四硫基乙二 醇酯;該分子量調整劑之一般用量以單體混合物計是0.05 至5重量%,較佳是0.1至2重量%且特佳是0.2至1重量 % (參考例如 H. Rauch-Puntigam,Th. Viilker, “Acryl- und Methacrylverbindungen” [“Acrylic and Methacrylic Compounds’’], Springer, Heidelberg, 1 9 6 7; Houben-Weyl, Methoden der organischen Chemie, [Methods of Organic Chemistry], V o 1. XIV /1 , page 66, Georg Thieme, Heidelberg, 1961, 或 Kirk-Othmer, Encyclopedia of Chemical Technology, Vo 1. 1,pages 2 9 6 et seq ., J. Wiley, New York, 1 9 7 8 )。 該聚(甲基)丙烯酸酯較佳已藉由使用衝擊改良劑而 具有耐衝擊性。 在一較佳變化型中,衝擊改良劑之量以箔(5 )中之 聚(甲基)丙烯酸酯及衝擊改良劑的整體計是1重量%至 5 0重量%。 在另一較佳變化型中,在箔(5)中該經衝擊改良的 聚(甲基)丙烯酸酯塑膠係由20重量%至80重量% (較 佳地30重量%至70重量% )之聚(甲基)丙烯酸酯基質 及80重量%至20重量% (較佳地70重量%至30重量% ) -24- 201244930 之平均粒徑1 〇至1 50奈米(例如使用超離心方法測量) 的彈料粒子組成。 該聚(甲基)丙烯酸酯及該衝擊改良劑較佳是衍生自 核殼聚合物,其中該殼在隨後之箔(5)中形成由聚合物 組成之基質。 分散在該聚(甲基)丙烯酸酯基質中的彈料粒子較佳 具有核心,其使用軟彈料相且使用黏至該軟彈料相之硬相 〇 經衝擊改良之聚(甲基)丙烯酸酯塑膠(imPMMA ) 係由某一比例之基質聚合物(其係從至少80重量%之甲基 丙烯酸甲酯單元以及視需要之〇重量%至20重量%之可與 甲基丙烯酸甲酯共聚合之單體所聚合)以及某一比例之衝 擊改良劑組成,其係以經交聯之聚(甲基)丙烯酸酯類爲 底質且分散在該基質中。 該基質聚合物特別地是由80重量%至1 00重量% (較 佳地90重量%至9 9.5重量%)之能自由基聚合之甲基丙烯 酸甲酯單元及視需要之0重量%至20重量% (較佳地0.5 重量%至1 2重量% )之能自由基聚合的另外共單體(例如 (甲基)丙烯酸烷酯,特別是丙烯酸甲酯、丙烯酸 乙酯或丙烯酸丁酯)組成。隨著該基質聚合物之分子量增 加,該UV防護用箔之耐風化性也改良。 在本發明之特定具體例中,該箔特徵在於該聚(甲基 )丙烯酸酯之重量平均分子量Mw 280 〇〇〇克/莫耳,其係 利用凝膠滲透層析法(GPC )測定。該聚(甲基)丙烯酸 -25- 201244930 酯之重量平均分子量Mw2120 0 00克/莫耳,其同樣地係 利用凝膠滲透層析法(GPC)測定。爲本發明之目的,可· 能獲得具有甚至更大之耐風化性的箱,若該聚(甲基)丙 烯酸酯之重量平均分子量Mw 2 140 000克/莫耳,其係和j 用凝膠滲透層析法(GPC )測定。該基質之平均(重量平 均)分子量Mw通常是在80 000克/莫耳至200 〇〇〇克/莫 耳範圍內(Mw係利用凝膠滲透層析法,參考聚甲基丙稀 酸甲酯作爲校正標準物而測定,正如全部之M w測定係在 該基質PMMA上進行)。然而,從包含具有在80 〇〇〇克/ 莫耳至180 000克/莫耳範圍內(較佳在1〇8 000克/莫耳 至1 80 000克/莫耳範圍內,更佳在1 22 000克/莫耳至180 〇〇〇克/莫耳範圍內,在各別情況中係利用針對PMMA校 正標準物之GPC所測定的)的平均(重量平均)分子量 Mw的基質聚合物的箔可以獲得特別良好之耐風化性。除 了該GPC方法之外,用於測定分子量Mw的其他方法是 光散射方法(參見例如 H. F. Mark et al.,Encyclopedia of Polymer Science and Engineering, 2nd Edition, V o 1. 10, pages 1 et seq·,J. Wiley, 1 989 )- 較佳是一種由85重量%至99.5重量%之甲基丙烯酸甲 酯及0.5重量%至15重量%之丙烯酸甲酯組成之共聚物, 其在合適情況中具有0-12重量%之隨意比例的丙烯酸丁酯 ,各份量在此係以1 00重量%之該可聚合成份計。特別有 利的共聚物是那些可藉由90重量%至99.5重量%之甲基丙 烯酸甲酯及〇·5重量%至1〇重量%之丙烯酸甲酯之共聚合 -26- 201244930 獲得者,其在合適情況中具有0重量%至1 〇重量%之隨意 比例的丙烯酸丁酯,其中各份量係以100重量%之該可聚 合成份計。更佳的共聚物是那些可藉由92.5重量%至97.5 重量%之甲基丙烯酸甲酯及2.5重量%至7.5重量%之丙烯 酸甲酯之共聚合獲得者,其在合適情況中具有〇重量。/。至 7重量%之隨意比例的丙烯酸丁酯,其中各份量係以1〇〇 重量%之該可聚合成份計。維卡(Vic at)軟化點VSP( ISO 306-B50)可以在至少90°C,較佳在95°C至112°C之 範圍中。 衝擊改良劑及基質聚合物可以在擠出機中以熔體狀態 混合以獲得經衝擊改良之聚甲基丙烯酸酯模塑組成物。所 排出之材料通常首先被切成九粒。這些另外利用擠出或射 出成形處理以獲得模塑物諸如片、箔或射出成形零件。 在箔(5)中之聚甲基丙烯酸酯基質包含衝擊改良劑 ,其例如可以是具有二或三殼型結構之核殻型聚合物,較 佳是使用二殻型衝擊改良劑。 用於聚甲基丙烯酸酯塑膠之衝擊改良劑是習知的。 EP-A 0 1 1 3 924、EP-A 0 522 3 5 1、EP-A 0 465 049 及 EP-A 0 683 028描述例如經衝擊改良之聚甲基丙烯酸酯模塑 組成物之製備及結構。 在該聚甲基丙烯酸酯基質中含有1重量%至35重量% ,較佳地2重量%至20重量%,特佳地3重量%至1 5重量 %,特別地5重量%至1 2重量%之衝擊改良劑’其是由經 交聯之聚合物粒子組成之彈料相。該衝擊改良劑係以本質 -27- 201244930 上已知的方法,藉由珠粒聚合作用或乳液聚合作用獲得° 在最簡單之情況中,所含之材料是利用珠粒聚合作用 所得之經交聯的粒子,其平均粒子尺寸是在10奈米至150 奈米,較佳地20奈米至100奈米,特別地30奈米至90 奈米範圍內。這些通常由以下物質組成:至少40重量% ( 較佳地50重量%至70重量% )之甲基丙烯酸甲酯,20重 量%至4 0重量% (較佳地2 5重量%至3 5重量% )之丙烯 酸丁酯,及0.1重量%至2重量% (較佳地0.5重量%至1 重量% )之交聯用單體(例如多官能(甲基)丙烯酸酯, 例如甲基丙烯酸烯丙酯)及在合適情況中之其他的單體( 例如〇重量%至1 〇重量%,較佳地〇. 5重量%至5重量%之 甲基丙烯酸烷酯,諸如丙烯酸乙酯或甲基丙烯酸丁 酯,較佳是丙烯酸甲酯,或其他烯系可聚合單體,例如苯 乙烯)^ 較佳之衝擊改良劑是可具有二或三層核殼結構且係藉 由乳液聚合作用獲得的聚合物粒子(參見例如ΕΡ·A 0 1 1 3 924、ΕΡ· A 0 522 3 5 1、EP-A 0 465 049 及 EP-A 0 68 3 028 )。然而,本發明需要在以下範圍內之適合粒子尺寸的這 些乳液聚合物:10奈米至150奈米,較佳地20奈米至 120奈米,特佳地50奈米至100奈米。 具有一核心及二殼之三層或三相結構可以被製造如下 。最內部(硬)之殼可以是例如基本上由甲基丙烯酸甲酯 、小比例之共單體(例如丙烯酸乙酯)、小比例之交聯劑 (例如甲基丙烯酸烯丙酯)組成《中間(軟)之殼可以是 -28- 201244930 例如由丙烯酸丁酯及,在合適情況中,苯乙烯組成,同時 在最外部(硬)之殼基本上是與該基質聚合物相同,因此 對該基質產生相容性及良好連結。在該衝擊改良劑中 烯酸丁酯之比例對於該衝擊改良作用是有決定性的且較{圭 是在20重量%至40重量%範圍內,特佳地在25重量%至 3 5重量%範圍內。 特別對於箔之製造而言,較佳但不限於使用原則上由 EP 0 52 8 1 96 A1得知之系統,其是一種由以下物質組成 之經衝擊改良的二相聚合物: al ) 10重量%至95重量%之玻璃轉換溫度Tmg在70 °C以上的黏合的硬相,其係由aU )及al2)組成: al 1 )以al計,80重量%至100重量%之甲基丙 烯酸甲酯及 al2 ) 0重量%至20重量%之一或多種能自由基聚 合之其他烯系不飽和單體,以及 a2 ) 90重量%至5重量%之玻璃轉換溫度Tmg低於-10 °C之訪相’其分散於該硬相中且係由a2l ) 、a22)及a23 )組成: a21 )以a2計,50重量%至9 9.5重量%之丙烯酸 Κ10烷酯, a22) 0.5重量%至5重量%之具有二或多個能自 由基聚合的烯系不飽和基團的交聯用單體,及 a23)在合適情況中,其他能自由基聚合之煤系 不飽和單體, -29- 201244930 其中至少1 5重量%之該硬相al )共價鍵結至該韌相 a2 ) » 該二相衝擊改良劑可以藉由水中之二階段乳液聚合反 應製造,例如在DE-A 38 42 796中描述的。在第一階段中 ,該韌相a2 )被製造且係由至少50重量% (較佳多於80 重量%)之丙烯酸低碳烷酯組成,因此使這相具有低於-1 〇 °C之玻璃轉換溫度。所用之交聯用單體a22 )包含二醇類 之(甲基)丙烯酸酯類(例如二甲基丙烯酸乙二醇酯或二 甲基丙烯酸1,4-丁二醇酯),具有二個乙烯基或烯丙基之 芳族化合物(例如二乙烯基苯)或其他具有二個能自由基 聚合之烯系不飽和基團的交聯劑(例如甲基丙烯酸烯丙酯 )作爲接枝劑(graft-linking agent)。可被舉例提及且具 有三或更多之能自由基聚合的不飽和基團(例如烯丙基或 (甲基)丙烯基)的交聯劑是三聚氰酸三烯丙酯、三丙烯 酸三羥甲基醇丙烷酯及三甲基丙烯酸三羥甲基丙烷酯、及 四丙烯酸季戊四醇酯、及四甲基丙烯酸季戊四醇酯。就此 而論,美國專利4,513,118給予其他實例。 能自由基聚合且在a23)提及之烯系不飽和單體可以 是例如丙烯酸或甲基丙烯酸或具有1至20個碳原子但未 在以上提及之其烷酯,且在此之烷基可以是直鏈狀、支鏈 狀或環狀。另外,a23)可包含另外之能自由基聚合且能 與該丙烯酸烷酯類a2 1)共聚合之脂族共單體。然而企圖 排除顯著比例之芳族共單體(諸如苯乙烯、α-甲基苯乙烯 或乙烯基甲苯),因爲彼導致模塑組成物之無用的性質, -30- 201244930 特別是在風化時。 當該韌相在第一階段被製造時,必須謹慎留意粒子尺 寸之設定及其多分散性。該韌相之粒子尺寸在此基本上依 照該乳化劑之濃度而定。粒子尺寸有利地可藉由晶種乳膠 之使用而控制。使用以該水相計〇. 1 5至1 . 0重量%之乳化 劑濃度獲得下述粒子:其平均(重量平均)粒子尺寸低於 130奈米,較佳低於70奈米,且其粒子尺寸多分散性P8〇 低於0.5 ( P8〇是由超離心所測定之粒子尺寸分佈的累積評 估所決定;關係式爲:Ρ8 0= [(Γ9〇-Γΐ〇)/Γ5〇]-1,其中 Γι〇、Γ50 、r9Q =平均累積的粒子半徑,其是大於10、50、90%之粒 子半徑且小於90、50、10%之粒子半徑的値),較佳低於 〇. 2。這特別適用於陰離子型乳化劑,實例是該特別較佳 之烷氧化及硫酸化之鏈烷類。所用之聚合起始劑之實例是 以該水相計0.0 1重量%至0.5重量%之鹼金屬過氧硫酸氫 鹽或過氧硫酸氫銨,且該聚合反應係在20至100 °C之溫度 下起始。較佳是在20至80°C之溫度下使用氧化還原系統 ,實例是由0.01重量%至0.05重量%之有機氫過氧化物及 0.05至0J5重量%之羥甲基亞磺酸鈉組成之混合物。 該硬相a 1 )(其至少1 5重量%已共價鍵結至該韌相 a2 ))之玻璃轉換溫度是至少70t且此相可單獨由甲基丙 烯酸甲酯組成。最多20重量%之一或多種能自由基聚合的 其他烯系不飽和單體可被包含在該硬相中作爲共單體al2 ),且在此所用之(甲基)丙烯酸烷酯(較佳是具有1至 4個碳原子之丙烯酸烷酯)的量是使該玻璃轉換溫度不低 -31 - 201244930 於上述之玻璃轉換溫度。 該硬相a 1 )之聚合同樣地在第二階段中在 —般之輔劑(例如也用於該韌相a2 )之聚合者 UV防護用箔(5)也可包含PVDF聚合物 明之目的的PVDF聚合物是聚偏二氟乙烯,這 明、半結晶之熱塑性氟塑膠》聚偏二氟乙烯之 偏二氟乙烯,其利用特定觸媒被反應(聚合) 溫度受控制之條件下在高純度水中獲得聚偏二 二氟乙烯轉而例如可由做爲原料之氟化氫及甲 由做爲先質之氯二氟乙烷獲得。爲本發明之目 藉由使用任何商業級 PVDF,可能極成功。 Arkema所製造之Kynar®級、由Dyneon所製造 以及由Solvay所製造之Solef®級。 藉由在本發明之箔中使用在聚(甲基)丙 偏二氟乙烯比率爲1: 0.01至1: l(w/w)的 範圍內的PMMA/PVDF混合物,連同本發明之 及UV吸收劑包裝物,可以獲得極高效能之風 (5 ) 〇 在一較佳變化型中,本發明之層(5 )是: 低成本之變化型特徵在於在單一層中之PMM A 掺合物。 這些具體例在作爲風化防護用之單層箔( 特別令人感興趣。另外較佳是修正型,其中該 含比率爲1: 0.15至1: 0.40( w/w)的聚(甲 乳液中使用 )進行。 。用於本發 些通常是透 基本單元是 以在壓力及 氟乙烯。偏 基氯仿,經 的,原則上 這些是由 之 Dyneon® 稀酸酯及聚 本發明用量 UV安定劑 化防護用箔 單層范。此 及PVDF的 5 )方面極 箔(5 )包 基)丙烯酸 -32- 201244930 酯及聚偏二氟乙烯之混合物,該比率較佳是1:0.15至1 :0.3 0 ( w/w ) 0 在另一變化型中,本發明之箔(5)是多層箔。這意 思是彼具有多於一個次層,且至少二次層在各別次層之組 成上是彼此不同的。因此一層可包含PMMA,且另一層可 包含P V D F。本發明也包含所有可推想的組合,且例如一 層可包含由PMMA/PVDF組成之掺合物,同時該複合材料 之第二層可僅包含PMMA或僅包含PVDF。藉由添加由不 同材料所組成之另外的層,也可以另外合適地調整性質。 特徵在於該箔包含至少二次層(其至少一者是由聚( 甲基)丙烯酸酯組成且其至少另一者是由聚偏二氟乙烯組 成)的具體例對於風化防護用之多層箔而言是極特別令人 感興趣的。另外較佳之箔是由二次層組成的箔,其一是聚 (甲基)丙烯酸(甲)酯層且另一是聚偏二氟乙烯層。 所提及之由多於一次層組成的箔複合材料可藉由本質 已知之箔製造方法獲得。在一較佳具體例中,該複合材料 可藉由共擠出獲得。然而,層合方法也是可想到的,例如 有或沒有使用黏合促進劑。 其他較佳之箔複合材料是其中二層皆包含掺合物者, 以提高互相的黏合。例如,Ρ Μ Μ A外層可包含次要比例之 PVDF以確保黏合至純PVDF層。 可以製造具有任何想要厚度之單一膜或具有多於一次 層之膜形式的U V防護用層(5 )。在此決定性之因素總 是該外膜的高透明性與優越的耐風化性的結合,以及與給 * 33 - 201244930 予該基底之極高度的風化防護作用的結合。 經由本質已知之方法製造單層或多層外膜,實例是經 由平膜塑膜之擠出、吹膜擠出或溶液澆鑄。 表面防護用層(7 ) 表面防護用層(7 )較佳可以被施加以作爲表面塗層 (7 )。在本發明之背景中”表面塗層”一詞據了解是經施 加以減低表面刮傷及/或改良耐磨性及/或作爲防污塗層及/ 或作爲具有抗反射性之塗層的塗層的集合用詞。抗反射性 因此增加整體光透射。 爲改良耐刮性或耐磨性,可以使用聚矽氧烷類,諸如 得自 SDC Technologies Inc.之 CRYSTALCOATtm MP-100 ,皆得自 Momentive Performance Materials 之 AS 4 0 0-SHP 401或UVHC3000K。這些塗層調合物例如利用滾筒塗 覆、刮刀塗覆或流動塗覆而施加至該集中器之高透明聚合 物層表面。防污塗層之更精確細節可在文獻中發現或對於 精於此技藝之人士是已知的。 黏合層 隨意地,黏合層可以存在於本發明之層合物的個別層 之間。更準確地,黏合層可存在於 •在該聚合型膜(1)及載體層(3)之間=>黏合層( 2 ) 及/或 •在載體層(3 )及UV防護用層(5 )之間=>黏合層 -34- 201244930 (4) 及/或 •在UV防護用層(5 )及表面防護用層(7 )之間 黏合層(6 ) 及/或 •在多層之層(3 )及/或(5 )之個別層之間。 用於此目的之黏合系統鑑於其組成從待利用黏合劑互 相結合之二層的黏合性質決定。此外,該黏合系統應對長 期效能有貢獻,且防止相鄰層之不良的交互作用。 在某些情況中,光學性質也是極重要的。黏合層必須 是高度透明的。適合之實例特別是丙烯酸酯黏合劑。 特別佳的是本發明之層合物,其中不具有黏合層(2 ),亦即其中聚合型膜(1 )及載體層(3 )係經熱層合。 此種層合物之製造被描述於WO 2009/1 2 1 708中,其整體 倂入作爲參考。該方法包含以下步驟:提供膜(1 )其具 有包含形成一或多個夫瑞乃鏡片之浮凸光學結構的第一表 面及相對之第二表面;將該膜(1)導至一對層合滾筒之 咬合點;將載體層(3)或經UV防護之載體層或載體層 (3)及UV防護用層(5)之層合物或載體層(3)及UV 防護用層(5)之共擠出體送至該咬合點,企圖被黏合至 層(1)之層(3)之表面的表面溫度足能使聚合物片及該 膜之間熱黏合;及使該聚合物片層合至該膜之第二表面。 該方法不需要黏合劑或另外之熱。在膜本身之外有最 少之另外污染源。所需之另外的設備在製造上相對簡單且 -35- 201244930 不昂貴。 該方法之細節現在將被描述,同時參考圖3及4。 參考該圖’且起初參考圖3’顯示槪略圖示以說明在 將浮凸膜(1)層合至聚合物片(3)時所牽涉之方法及設 備。如在該圖示中利用顯示工作流向之箭頭丨0 〇所顯示的 ’將聚合物片(3)及膜(1)送入二壓延滾筒(1〇)及( 11)之咬合點(12) ’且互相黏合。二壓延滾筒是冷的硬 金屬滾筒。 如圖4中所示的,膜(1 )具有含浮凸夫瑞乃結構的 第一表面(16)及待層合至聚合物片(3)的第二表面( 15)。膜(1)可用任何已知方法造成浮凸且在層合之前 是在室溫下。膜(1)也可從商業來源獲得。參考回圖3, 在一具體例中,膜(1)在滾筒(8)中提供且經過一或多 個導引滾筒(9)被送入咬合點(12)。據了解:如圖3 所示的,膜(I)可用與圖3中所示者不同角度送入咬合 點(1 2 ),諸如藉由補償(offsetting )導引滾筒(9‘)。 在本發明之一具體例中,聚合物片(3)係由一般之 片擠出方法製備。並且,當該片仍是熱且柔軟時,將彼送 入咬合點(12)以與膜(1)之表面(15)(圖4)緊密接 觸。咬合點(12)上聚合物片(3)之溫度對於層合成功 是重要的。若表面溫度太低,則將不會有黏合。若表面溫 度太高,則膜(1)之光學結構將受破壞。據了解:聚合 物片(3)具有足以確保片(3)及膜(1)之間的熱黏合 的表面溫度,但同時保持膜(1 )之光學結構的完整性》 -36- 201244930 對於3毫米之PMM A聚合物片(3)而言,在操作點上之 例示的表面溫度是在約120°C至約175°C且較佳地140°C至 1 6 0 °C範圍內。 在膜(1)與聚合物片(3)於咬合點(12)緊密接觸 之後’熱黏合發生且膜(1)層合至片(3)。在該層合期 間無需外來的熱。熱黏合所需之熱藉由來自片(3)之內 部熱提供。在該層合方法期間,膜(1)之表面溫度保持 在其玻璃轉換溫度以下以防止光學結構之扭曲。 在層合之後,該層合物被導至冷卻區(14),其包含 多個冷卻滾筒。在該層合物冷卻至室溫(一般是2 2 °C )之 後,成品在終點被切割,諸如藉由飛鋸機(flying saw ) ο 在另一較佳選擇中,本發明之層合物包含黏合層(2 ),較佳之黏合劑是溶劑膠結劑。特別地,具有高的氯化 溶劑含量的調和物可具有加工優點,因低的可燃性及快速 擴散入該丙烯酸樹脂層。另外,如在現有技術狀態中已知 之以丙烯酸酯爲底質之黏合劑是較佳的。特佳之作爲黏合 劑者是二氯甲烷或商業上由Evonik R0hm GmbH獲得之商 品名爲ACRIFIX®的膠結劑或由IPS獲得之產品Weld-On® 及其他製造商的相當的產品。 可用於塗層(2) 、(4)或(6)之一的其他黏合劑 可以依照待互相黏合之基材且藉由加諸於該黏合層之透明 性的嚴格要求而選擇。對於PMMA與PET之結合物而言 ,熔體黏合劑是較佳的。此種熔體黏合劑之實例是乙烯- -37- 201244930 乙酸乙烯酯熱熔體(EVA熱熔體)或丙烯酸酯-乙烯熱熔 體》丙烯酸酯-乙烯熱熔體是較佳的。 PET膜、或聚酯或聚烯烴膜可以利用2K-PU黏合劑, 藉由例如以EVA或丙烯酸酯-乙烯爲底質之熔體黏合劑互 相結合。 其他適合黏合劑在此技藝中是已知的。 黏合層可具有1至100微米及較佳地2至80微米之 厚度。 製備本發明之層合物的方法是精於此技藝之人士習知 的。製造該複合材料之方法實例是層合及/或(共)擠出 塗覆。較佳之選擇是: I) 將UV防護用層(5)及載體層(3)共擠出,接著 如上述加熱地或藉由使用黏合層(2)將聚合型膜(1)層 合至載體層(3 )背面 II) 隨意地藉由使用黏合層(4)將載體層(3)及 UV防護用層(5)共擠出,接著如上述加熱地或藉由使用 黏合層(2)將聚合型膜(Π層合至載體層(3)背面 ΠΙ )在形成或不形成黏合層(2 )之情況下將聚合型 膜(1)層合至載體層(3),接著在形成或不形成黏合層 (4 )之情況下將UV防護用層(5 )層合至載體層(3 ) 之面向光源的面, IV )在形成或不形成黏合層(2 )之情況下將包含至 少一種UV吸收劑及至少一種UV安定劑的載體層(3 )及 聚合型膜(1)層合,較佳地在隨後不與層(4)及(5) -38- 201244930 層合。 可以藉由已知技術施加表面塗層,亦即層(7 )及隨 意之(6 )。 依照本發明所製造之經UV防護之層合的太陽能集中 裝置較佳被用來作爲槽型集中器,其將光束聚焦於太陽能 電池或熱吸收劑單元。結果,本發明涵蓋一種包含至少一 個依照本發明之太陽能集中裝置及至少一個太陽能電池的 CPV元件以及—種包含至少一個依照本發明之太陽能集中 裝置及至少一個熱吸收器單元的CSP元件。 依照本發明之經UV防護之層合的太陽能集中裝置之 製造太陽能裝置(特別是CSP或CPV裝置)的用途也是 本發明之主題。 【貫施方式】 實例1 具有多個環形夫瑞乃鏡片之浮凸圖形的經改良的丙烯 酸系膜(1)在沒有黏合層(2)之情況下被層合至半熔化 之丙嫌酸系聚合物片(3)。該膜(1)是Minneapolis MN 之3M公司的產品。該浮凸膜被提供在滾筒上且從該滾筒 送入一對壓延滾筒之咬合點。使用一般之片擠出方法形成 該聚合物片(3)。正與該膜(1)層合的該丙烯酸系片( 3)是3毫米厚且在層合點上具有148 °C至15(TC之表面溫 度。調節該對壓延滾筒間的間隙以提供足夠之壓力以確保 所施加之膜在操作點上與該丙烯酸系膜有完整的接觸。重 -39- 201244930 要的是將該浮凸表面溫度保持在低於其玻璃轉換點以維持 該浮凸圖形之清晰度。最後之滾筒及曳離滾筒速度比率維 持於0.980至1.00的比率,以在該片(3)及膜(1)之層 合物冷卻至室溫時使該浮凸夫瑞乃鏡片不致變形。 實例2 方法與實例1中所揭示的相同,除了使連續長條夫瑞 乃圖形浮凸成形在該膜(1 )中,該膜(1 )待施加至所形 成之片。 實例3 使用厚56微米之PMMA箔(5 ),其係由以下物質組 成 a) 87.85重量%之由依照EP 0 528 196之二相衝擊改 良劑組成之聚合物,其整體組成是Volume 96, 9/1990, ρρ· 689-693). The tetramethylpiperidinyl group contained in the HALS is a factor of stability. Such compounds may have no substituents on the -17-201244930 nitrogen of the piperidine or may be substituted with an alkyl or thiol group on the nitrogen of the piperidine. The hindered amine does not absorb in the UV region. He cleared the free radical that had been formed, but the UV absorber could not do the job. An example of a HALS compound which has a stabilizing effect and is also used in the form of a mixture is: bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, 8-ethylindenyl-3- Dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro(4,5)-indole-2,5-dione, bis(2,2,6, 6-tetramethyl-4-piperidinyl) succinate, poly(N-callo-hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxypiperidine succinate) or Bis(N-methyl-2,2,6,6-tetramethyl-4-piperidinyl) sebacate. The HALS compound is used in an amount of from 5% by weight to 5% by weight, preferably from 0.1% by weight to 5% by weight, particularly preferably from 0.1% by weight to 3% by weight, based on the weight of the monomers used to prepare the layers. Particularly preferably from 0.2% by weight to 2% by weight. It is also possible to use mixtures of different HALS compounds. Further, other useful stabilizers are the above-mentioned HALS compounds, bisulfites (such as sodium hydrogen sulfite), and hindered phenols ' and phosphites. The wavelength range of the solar radiation associated with "solar heat energy use" is from 300 nm to 25 000 nm. However, those below 400 nm, especially below 375 nm, should be filtered to extend the life of the concentrator so as to retain an "effective wavelength range" of 3 75 nm or 400 nm to 2500 nm. The mixture of UV absorber and UV stabilizer used in accordance with the present invention exhibits a stable and long-lived UV protection covering a wide wavelength spectrum (300 nm - 400 nm). It is particularly preferred that the laminate of the present invention comprises a UV protective wrap in the form of a UV protective layer (5) -18-201244930. The inventors have found that this configuration is particularly advantageous in view of avoiding the minimization of the molecular weight of each polymer layer (i.e., the release of the impact modifier from the individual polymeric layers) during use of the solar concentration device of the present invention. Another advantage of this alternative is that the amount of UV absorber and stabilizer required to achieve the same effect is lower compared to the alternative of adding the UV protective wrap to the carrier layer (3) because Layer (5) is often thinner than layer (3). Suitable UV protection for a film which can be used as a layer for UV protection (5) can be found in, for example, WO 2007/073952 (Evonik R0hm) or in more detail in DE 10 2007 029 263 A1 or WO 2007/0 74138, respectively. . All such documents are incorporated by reference in their entirety. UV protective layer (5) The preferred UV protective layer (5) consists of a transparent single layer or multiple layers (multiple layers) of plastic foil, which in each case are aggregated in at least one layer in individual cases. Methyl (meth)acrylate (PMMA) or poly(methyl) methacrylate (PMMA) and polyvinylidene fluoride (PVDF), or a mixture of PMMA and PVDF in at least one layer. The UV protective layer (5) may preferably have a thickness in the range of 10 to 250 μm, more preferably in the range of 40 to 120 μm, and particularly preferably in the range of 50 to 90 μm. In addition to the packaging for UV stabilization, the special component of this layer (5) is a PMMA-based plastic and PVDF polymer as follows: -19- 201244930 Polymethyl methacrylate plastic usually consists of The free radical polymerization of a mixture of methyl acrylates is obtained. These mixtures generally comprise at least 40% by weight, preferably at least 60% by weight and particularly preferably at least 80% by weight, based on the weight of the monomers, of methyl methacrylate. These mixtures for the manufacture of polymethyl methacrylate may also comprise other (meth) acrylates which are copolymerizable with methyl methacrylate. The means for expressing (meth) acrylates include methacrylates and acrylates, and mixtures of the two. These monomers are conventional. It is especially a (meth) acrylate derived from a saturated alcohol such as methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, (methyl) Tert-butyl acrylate, isobutyl (meth)acrylate, amyl (meth)acrylate and 2-ethylhexyl (meth)acrylate; and (meth)acrylate derived from unsaturated alcohols Such as (meth) acrylate, (meth) acrylate, methacrylate, (meth) acrylate, vinyl (meth) acrylate: and (meth) acrylate, such as (methyl Benzyl acrylate or phenyl (meth) acrylate, in each case the aryl group here may be unsubstituted or may have up to 4 substituents; cycloalkyl (meth) acrylate such as (meth) acrylate 3-vinylcyclohexyl ester, (meth)acrylic acid fg ester; (meth)acrylic acid hydroxyalkyl ester such as 3-hydroxypropyl (meth)acrylate, 3,4-dihydroxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, (meth)acrylic acid 2-hydroxypropyl ester; di(meth)acrylic acid glycol ester such as 1,4-butylene glycol (meth)acrylate; (meth)acrylates of ether alcohols such as tetrahydro 2(meth)acrylate -furanmethyl ester, (meth)acrylic acid vinyloxy-20-201244930 ethoxyethyl ester; methacrylic acid decylamines and nitriles such as N-(3.aminopropyl)(methyl) propylene oxime Amine, N-(diethylphosphino)propene decylamine, 1-methylpropenyl decylamino-2-methyl-2-propane methacrylate such as ethyl (meth) acrylate Sulfonate, 4-thiocyanatobutyl (meth)acrylate, (meth)propylsulfonylethyl ester, thiocyanate methyl (meth)acrylate, (methylsulfinyl methacrylate) Methyl ester, bis((meth) propylene oxime) thioether; polyfunctional (meth) acrylates such as tris (methol) trimethylolpropane. Polymerization usually starts with known free radicals Starting agent, especially azo starting AIBN and 1,1-azobiscyclohexane nitrile, and peroxy compounds such as methyl ketone peroxide, B, which are well known to those skilled in the art Acetone peroxide, dibutyl laurate peroxy 2-ethylperoxyhexanoate, ketone peroxide, methyl isobutyl oxide, cyclohexanone peroxide, diphenyl sulfonium peroxide , peracid tert-butyl ester, tert-butylperoxy isopropyl carbonate, 2,5-bisylhexyl peroxy)-2,5-dimethylhexane, 2-ethylperoxy Tributyl acrylate, 3,5,5-trimethylperoxyhexanoic acid tert-butyl ester, di-salt, 1,1-bis(t-butylperoxy)cyclohexane, 1,1- Dibutylperoxy)-3,3,5-trimethylcyclohexane, cumylhydroperoxide tributyl hydroperoxide, peroxydicarbonate bis(4-tert-butylcyclo, di or a mixture of a plurality of the above compounds and a mixture of the above mentioned but also capable of forming a radical. The composition to be polymerized may include not only the above (meth) propyl dimethyl (methyl alcohol; fluorenyl group) Ethyl ethyl ethethyl propyl acrylate preferred agents such as ethethyl hydride, ketone peroxybenzene (2-ethylhexanoic acid peroxy (third, hexyl ester) and decenoic acid Ester-21 - 201244930 class, May comprise other unsaturated monomer copolymerizable with the methyl methacrylate and the (meth) acrylates described above. These are especially 1-alkenes such as 1-hexene, 1-heptene; branched olefins such as vinylcyclohexane, 3,3-dimethyl-1-propanoid, 3·methyl-1- - isobutyl, 4 - methyl-1-pentane; acridine; vinyl esters such as vinyl acetate; styrene, substituted styrenes having an alkyl substituent in the side chain (such as d - Methylstyrene and α-ethylstyrene), substituted styrenes having an alkyl substituent on the ring (such as vinyl toluene and p-methylstyrene), halogenated styrenes (such as a single Chlorostyrene, dichlorostyrene, tribromostyrene, tetrabromostyrene): heterocyclic vinyl compounds such as 2·vinylpyridine, 3·vinylpyridine, 2-methyl-5-ethylene Pyridine, 3-ethyl-4-vinylpyridine, 2,3-dimethyl-5-vinylpyridine, vinylpyrimidine, vinylpiperidine, 9-vinylcarbazole, 3-vinylcarbazole , 4-vinylcarbazole, 1-vinylimidazole, 2-methyl-1-vinylimidazole, fluorene-vinylpyrrolidone, 2-vinylpyrrolidone, anthracene vinylpyrrolidine, 3-vinylpyrrolidine Ν-ethylene Caprolactam, fluorene-vinyl butyrolactam, vinyl oxolane, vinyl furan, vinyl thiophene, vinyl thiolane, vinyl thiazole, and hydrogenated vinyl thiazole , vinyl oxazoles and hydrogenated vinyl oxazoles: vinyl ethers and isoprene ethers; maleic acid derivatives such as maleic anhydride, methyl maleic anhydride, The common amount of maleimide, methyl maleimide, and diene such as divinylphenylhydrazine is from 〇% by weight to 60% by weight based on the weight of the monomer. Preferably, the weight is up to 40% by weight, and particularly preferably 0% by weight -22 to 201244930 to 20% by weight, and the compound can be used herein either singly or as a mixture. Further preferably a foil, A poly(meth)acrylate obtainable by polymerization of a composition having the following as a polymerizable component: a) 50% by weight to 99.9% by weight of methyl methacrylate, b. 0.1% by weight to < 50% by weight of an acrylate having an ester group derived from a C1-C4 alcohol, and C. 0% by weight to 10% by weight of a monomer copolymerizable with the monomers a. and b. Further preferred is a foil which is a poly(meth)acrylate obtainable by polymerization of a composition having the following as a polymerizable component: a. 78% by weight to 92% by weight of methacrylic acid Methyl ester, b. 8 to 12% by weight of an acrylate having an ester group derived from a C1_C4 alcohol, c. 0% by weight to 10% by weight of a monomer copolymerizable with the monomers a. and b. . Surprisingly, it has been found that the use of a proportion of coacrylate in the range of from 8 to 12% by weight, preferably using this amount of n-butyl acrylate, significantly increases the inherent stability of the foil over The extent known so far. So this is not easy to predict. As the proportion of the selected co-acrylate increases, the stability of the foil also increases. In addition, an increase above the defined enthalpy is disadvantageous because an excessive proportion of the co-acrylate does not have any significantly increased crack inhibition by -23-201244930. The chain length of the polymer can be adjusted by polymerization of the monomer mixture in the presence of a molecular weight regulator, and particular examples are thiols known for this purpose such as n-butyl mercaptan, n-dodecyl sulfide. Alcohol, 2-hydrogenthioethanol, or 2-ethylhexylthioethylene glycol ester, or pentaerythritol tetrathioethylene glycol ester; the molecular weight modifier is generally used in an amount of 0.05 to 5% by weight based on the monomer mixture Preferably, it is 0.1 to 2% by weight and particularly preferably 0.2 to 1% by weight (refer to, for example, H. Rauch-Puntigam, Th. Viilker, "Acryl- und Methacrylverbindungen" ["Acrylic and Methacrylic Compounds"), Springer, Heidelberg , 1 9 6 7; Houben-Weyl, Methoden der organischen Chemie, [Methods of Organic Chemistry], V o 1. XIV /1 , page 66, Georg Thieme, Heidelberg, 1961, or Kirk-Othmer, Encyclopedia of Chemical Technology, Vo 1. 1, pages 2 9 6 et seq ., J. Wiley, New York, 1 9 7 8 ). The poly(meth) acrylate is preferably impact resistant by using an impact modifier. In a preferred variation, the impact modifier The total amount of the poly(meth)acrylate and the impact modifier in the foil (5) is from 1% by weight to 50% by weight. In another preferred variant, the impact is improved in the foil (5). The poly(meth)acrylate plastic is composed of 20% by weight to 80% by weight (preferably 30% by weight to 70% by weight) of the poly(meth) acrylate matrix and 80% by weight to 20% by weight (preferably 70% to 30% by weight) -24- 201244930 The average particle size of 1 〇 to 150 nm (for example, measured by ultracentrifugation method) of the granule particles. The poly(meth) acrylate and the impact improvement Preferably, the agent is derived from a core-shell polymer, wherein the shell forms a matrix composed of a polymer in a subsequent foil (5). The binder particles dispersed in the poly(meth)acrylate matrix preferably have a core , using a soft elastomer phase and using a hard phase modified to a soft elastomer phase, the impact modified poly(meth)acrylate plastic (imPMMA) is based on a certain proportion of matrix polymer (which is from at least 80 % by weight of methyl methacrylate unit and, if desired, % by weight to 20% by weight of a monomer copolymerizable with methyl methacrylate) and a certain proportion of impact modifier consisting of crosslinked poly(meth)acrylates as a substrate and dispersed in In the matrix. The matrix polymer is in particular from 80% by weight to 100% by weight (preferably 90% by weight to 99.5% by weight) of free-radically polymerizable methyl methacrylate units and optionally from 0% by weight to 20% % by weight (preferably 0.5% to 12% by weight) of free radically polymerizable additional comonomers (for example alkyl (meth)acrylates, in particular methyl acrylate, ethyl acrylate or butyl acrylate) . As the molecular weight of the matrix polymer increases, the weathering resistance of the UV protective foil is also improved. In a particular embodiment of the invention, the foil is characterized by a weight average molecular weight of the poly(meth)acrylate Mw 280 g/mole as determined by gel permeation chromatography (GPC). The poly(meth)acrylic acid -25-201244930 ester had a weight average molecular weight of Mw 2120 00 g/mole, which was similarly determined by gel permeation chromatography (GPC). For the purpose of the present invention, it is possible to obtain a tank having even greater weather resistance, and if the weight average molecular weight of the poly(meth)acrylate is Mw 2 140 000 g/mole, Determination by osmotic chromatography (GPC). The average (weight average) molecular weight Mw of the matrix is usually in the range of 80 000 g/mol to 200 g/m (the Mw system utilizes gel permeation chromatography, reference polymethyl methacrylate As a calibration standard, as the entire M w assay is performed on the matrix PMMA). However, the inclusion has a range of from 80 gram/mole to 180 000 gram/mole (preferably in the range of 1 〇8 000 gram/mole to 1800 gram/mol, more preferably 1 Foil of matrix polymer having an average (weight average) molecular weight Mw in the range of 22 000 g/mol to 180 g/mole, in each case determined by GPC for PMMA calibration standards) A particularly good weathering resistance can be obtained. In addition to the GPC method, other methods for determining the molecular weight Mw are light scattering methods (see, for example, HF Mark et al., Encyclopedia of Polymer Science and Engineering, 2nd Edition, V o 1. 10, pages 1 et seq., J. Wiley, 1 989 )- is preferably a copolymer consisting of from 85% by weight to 99.5% by weight of methyl methacrylate and from 0.5% by weight to 15% by weight of methyl acrylate, which has 0 where appropriate -12% by weight of butyl acrylate in an arbitrary ratio, each of which is based on 100% by weight of the polymerizable component. Particularly advantageous copolymers are those obtainable by copolymerization of -26-201244930 of 90% by weight to 99.5% by weight of methyl methacrylate and 5% by weight to 1% by weight of methyl acrylate. Suitably, butyl acrylate having an optional ratio of from 0% by weight to 1% by weight, based on 100% by weight of the polymerizable component. More preferred copolymers are those obtainable by copolymerization of from 92.5 wt% to 97.5% by weight of methyl methacrylate and from 2.5% by weight to 7.5% by weight of methyl acrylate, which have a niobium weight where appropriate. /. To 7% by weight of butyl acrylate in an arbitrary ratio, wherein each part is based on 1% by weight of the polymerizable component. The Vic at softening point VSP (ISO 306-B50) may be in the range of at least 90 ° C, preferably 95 ° C to 112 ° C. The impact modifier and the matrix polymer may be mixed in a melt state in an extruder to obtain an impact-modified polymethacrylate molding composition. The material that is discharged is usually first cut into nine pieces. These additionally utilize extrusion or injection forming processes to obtain moldings such as sheets, foils or injection molded parts. The polymethacrylate matrix in the foil (5) contains an impact modifier which may, for example, be a core-shell polymer having a two- or three-shell structure, preferably a two-shell impact modifier. Impact modifiers for polymethacrylate plastics are conventional. EP-A 0 1 1 3 924, EP-A 0 522 3 5 1 , EP-A 0 465 049 and EP-A 0 683 028 describe the preparation and structure of, for example, impact-modified polymethacrylate molding compositions . In the polymethacrylate matrix, it contains from 1% by weight to 35% by weight, preferably from 2% by weight to 20% by weight, particularly preferably from 3% by weight to 15% by weight, in particular from 5% by weight to 12% by weight % impact modifier' which is an elastomer phase composed of crosslinked polymer particles. The impact modifier is obtained by bead polymerization or emulsion polymerization in a manner known from the essence of -27-201244930. In the simplest case, the material contained is the cross-linking obtained by the bead polymerization. The associated particles have an average particle size in the range of from 10 nm to 150 nm, preferably from 20 nm to 100 nm, particularly from 30 nm to 90 nm. These usually consist of at least 40% by weight (preferably 50% to 70% by weight) of methyl methacrylate, 20% to 40% by weight (preferably 25 to 35% by weight). %) butyl acrylate, and 0.1% by weight to 2% by weight (preferably 0.5% by weight to 1% by weight) of a crosslinking monomer (for example, a polyfunctional (meth) acrylate such as methacrylic acid acryl Ester) and, if appropriate, other monomers (for example from 〇% by weight to 1% by weight, preferably from 5% to 5% by weight of alkyl methacrylate, such as ethyl acrylate or methacrylic acid) Butyl ester, preferably methyl acrylate, or other ethylenically polymerizable monomer, such as styrene). A preferred impact modifier is a polymer which can have two or three core-shell structures and is obtained by emulsion polymerization. Particles (see for example ΕΡ·A 0 1 1 3 924, ΕΡ· A 0 522 3 5 1 , EP-A 0 465 049 and EP-A 0 68 3 028 ). However, the present invention requires such emulsion polymers of suitable particle size within the range of from 10 nm to 150 nm, preferably from 20 nm to 120 nm, and particularly preferably from 50 nm to 100 nm. A three-layer or three-phase structure having a core and a two-shell can be manufactured as follows. The innermost (hard) shell may be, for example, substantially composed of methyl methacrylate, a small proportion of a comonomer (such as ethyl acrylate), a small proportion of a cross-linking agent (such as allyl methacrylate). The (soft) shell may be -28-201244930, for example composed of butyl acrylate and, where appropriate, styrene, while the outermost (hard) shell is substantially identical to the matrix polymer, thus the matrix Produce compatibility and good linkage. The proportion of butyl acrylate in the impact modifier is decisive for the impact modification and is in the range of from 20% to 40% by weight, particularly preferably from 25% to 5% by weight. Inside. In particular for the manufacture of foils, it is preferably, but not limited to, the use of a system known in principle from EP 0 52 8 1 96 A1, which is an impact-modified two-phase polymer consisting of: al) 10% by weight 95% by weight of a glass transition temperature Tmg of a bonded hard phase above 70 ° C, which consists of aU) and al2): al 1 ) 80% to 100% by weight of methyl methacrylate in terms of a And al2) 0% by weight to 20% by weight of one or more other ethylenically unsaturated monomers capable of radical polymerization, and a2) 90% by weight to 5% by weight of the glass transition temperature Tmg is lower than -10 °C Phase 'which is dispersed in the hard phase and consists of a2l), a22) and a23): a21) 50% by weight to 99.5% by weight of decyl acrylate 10, a22) 0.5% by weight to 5 weights % of a crosslinking monomer having two or more radically polymerizable ethylenically unsaturated groups, and a23), where appropriate, other radically polymerizable coal-based unsaturated monomers, -29-201244930 Wherein at least 15% by weight of the hard phase a) is covalently bonded to the tough phase a2) » the two-phase impact modifier can It is produced by a two-stage emulsion polymerization reaction in water, for example as described in DE-A 38 42 796. In the first stage, the tough phase a2) is made and consists of at least 50% by weight (preferably more than 80% by weight) of the lower alkyl acrylate, thus giving this phase less than -1 〇 °C Glass transition temperature. The crosslinking monomer a22) used comprises a glycol (meth) acrylate (for example, ethylene glycol dimethacrylate or 1,4-butylene glycol dimethacrylate) having two ethylene groups. a base or allyl aromatic compound (for example, divinylbenzene) or another crosslinking agent having two radically polymerizable ethylenically unsaturated groups (for example, allyl methacrylate) as a grafting agent ( Graft-linking agent). A crosslinking agent which may be mentioned by way of example and which has three or more radically polymerizable unsaturated groups (for example, allyl or (meth)acrylyl) is triallyl cyanurate, triacrylic acid Trimethylolpropane ester and trimethylolpropane trimethacrylate, pentaerythritol tetraacrylate, and pentaerythritol tetramethacrylate. In this connection, U.S. Patent 4,513,118 gives other examples. The ethylenically unsaturated monomer which can be radically polymerized and mentioned in a23) may be, for example, acrylic acid or methacrylic acid or an alkyl ester having 1 to 20 carbon atoms but not mentioned above, and an alkyl group herein. It may be linear, branched or cyclic. Further, a23) may contain another aliphatic comonomer capable of radical polymerization and copolymerizable with the alkyl acrylate a2 1). However, attempts have been made to exclude significant proportions of aromatic comonomers (such as styrene, alpha-methylstyrene or vinyltoluene) because of the useless nature of the molding composition, -30-201244930, especially during weathering. When the tough phase is fabricated in the first stage, care must be taken to set the particle size and its polydispersity. The particle size of the tough phase is here substantially determined by the concentration of the emulsifier. The particle size is advantageously controlled by the use of seed latex. Using the emulsifier concentration of 11.5 to 1.0% by weight of the aqueous phase, the following particles are obtained: the average (weight average) particle size is less than 130 nm, preferably less than 70 nm, and the particles thereof The size polydispersity P8 〇 is less than 0.5 (P8〇 is determined by the cumulative evaluation of the particle size distribution measured by ultracentrifugation; the relationship is: Ρ8 0=[(Γ9〇-Γΐ〇)/Γ5〇]-1, Where Γι〇, Γ50, r9Q = average cumulative particle radius, which is greater than 10, 50, 90% of the particle radius and less than 90, 50, 10% of the particle radius ,), preferably less than 〇. This applies in particular to anionic emulsifiers, an example of which is a particularly preferred alkoxylated and sulfated alkane. Examples of the polymerization initiator to be used are from 0.01% by weight to 0.5% by weight of the alkali metal peroxodisulfate or ammonium peroxodisulfate, and the polymerization is carried out at a temperature of from 20 to 100 °C. Start below. Preferably, the redox system is used at a temperature of from 20 to 80 ° C, and an example is a mixture of from 0.01% by weight to 0.05% by weight of the organic hydroperoxide and from 0.05 to 0.001 % by weight of sodium hydroxymethanesulfinate. . The glass transition temperature of the hard phase a 1 ) (at least 15 wt% of which has been covalently bonded to the tough phase a2 )) is at least 70 t and this phase may consist solely of methyl methacrylate. Up to 20% by weight of one or more other ethylenically unsaturated monomers capable of free radical polymerization may be included in the hard phase as the comonomer al2), and the alkyl (meth)acrylate used herein is preferred. The amount of the alkyl acrylate having 1 to 4 carbon atoms is such that the glass transition temperature is not low -31 - 201244930 at the glass transition temperature described above. The polymerization of the hard phase a 1 ) is likewise in the second stage. In the second stage, the polymerizer UV protective foil (5), which is also used for the auxiliary agent (for example also for the tough phase a2), may also comprise the purpose of PVDF polymer. PVDF polymer is polyvinylidene fluoride, which is a semi-crystalline thermoplastic fluoroplastic, polyvinylidene fluoride-based vinylidene fluoride, which is reacted under specific conditions (polymerization) under controlled conditions in high purity. Polyvinylidene fluoride is obtained in water and can be obtained, for example, from hydrogen fluoride as a raw material and chlorodifluoroethane as a precursor. For the purposes of the present invention, it may be extremely successful to use any commercial grade PVDF. Arkema's Kynar® grade, manufactured by Dyneon and manufactured by Solvay, Solef® grade. By using a PMMA/PVDF mixture in the range of 1:0.01 to 1:1 (w/w) of the poly(methyl)vinylidene fluoride in the foil of the present invention, together with the UV absorption of the present invention The agent package provides a very high performance wind (5). In a preferred variant, the layer (5) of the invention is: A low cost variant characterized by a PMM A blend in a single layer. These specific examples are used as a single layer foil for weathering protection (particularly interesting. Further preferred is a modified type in which the ratio is 1:0.15 to 1:0.40 (w/w). ). Used in the present invention, usually the basic unit is based on pressure and vinyl fluoride. Partial chloroform, in principle, these are Dyneon® dilute esters and poly-invented UV stabilizers. A single layer of foil is used. This is a mixture of 55% of the PVDF (5) base of acrylic acid-32-201244930 ester and polyvinylidene fluoride. The ratio is preferably 1:0.15 to 1:0.30 ( w/w ) 0 In another variation, the foil (5) of the present invention is a multilayer foil. This means that there are more than one sub-layer, and at least the second layer is different from each other in the composition of the sub-layers. Thus one layer may contain PMMA and the other layer may contain P V D F. The invention also encompasses all conceivable combinations, and for example a layer may comprise a blend of PMMA/PVDF, while the second layer of the composite may comprise only PMMA or only PVDF. The properties can also be suitably adjusted by adding additional layers composed of different materials. Characterized in that the foil comprises at least one secondary layer (at least one of which is composed of poly(meth)acrylate and at least one of which is composed of polyvinylidene fluoride), a specific example of a multi-layer foil for weathering protection The words are extremely interesting. Further preferred foils are foils composed of secondary layers, one of which is a layer of poly(meth)acrylate and the other of which is a layer of polyvinylidene fluoride. The foil composites mentioned which consist of more than one layer can be obtained by a foil manufacturing method known per se. In a preferred embodiment, the composite material can be obtained by coextrusion. However, lamination methods are also conceivable, such as with or without the use of adhesion promoters. Other preferred foil composites are those in which both layers contain blends to enhance mutual bonding. For example, the outer layer of Ρ Μ Μ A may contain a secondary proportion of PVDF to ensure adhesion to the pure PVDF layer. It is possible to manufacture a U V protective layer (5) having a single film of any desired thickness or a film form having more than one layer. The decisive factor here is always the combination of the high transparency of the outer film and the superior weathering resistance, as well as the extremely high degree of weathering protection given to the substrate by *33 - 201244930. The monolayer or multilayer outer film is produced by a method known per se, examples being extrusion through a flat film, blown film extrusion or solution casting. Surface protection layer (7) The surface protection layer (7) is preferably applied as a surface coating (7). The term "surface coating" in the context of the present invention is understood to be applied to reduce surface scratching and/or improve abrasion resistance and/or as an antifouling coating and/or as a coating having antireflective properties. The collection of coatings is used. Antireflective properties thus increase overall light transmission. To improve scratch resistance or abrasion resistance, polyoxyalkylenes such as CRYSTALCOATtm MP-100 from SDC Technologies Inc., all available from Momentive Performance Materials AS 4 0 0-SHP 401 or UVHC 3000K can be used. These coating compositions are applied to the surface of the highly transparent polymer layer of the concentrator, for example by roller coating, knife coating or flow coating. More precise details of the antifouling coating can be found in the literature or are known to those skilled in the art. Adhesive Layer Optionally, an adhesive layer may be present between the individual layers of the laminate of the present invention. More precisely, the adhesive layer may be present between the polymeric film (1) and the carrier layer (3) = > adhesive layer ( 2 ) and / or • in the carrier layer ( 3 ) and the UV protective layer ( 5) Between => Adhesive layer -34- 201244930 (4) and / or • Adhesive layer (6) between the UV protective layer (5) and the surface protective layer (7) and / or • in multiple layers Between the individual layers of layers (3) and/or (5). The bonding system used for this purpose is determined in view of its composition from the bonding properties of the two layers to be bonded to each other. In addition, the bonding system should contribute to long-term performance and prevent undesirable interactions between adjacent layers. In some cases, optical properties are also extremely important. The adhesive layer must be highly transparent. Suitable examples are in particular acrylate binders. Particularly preferred is the laminate of the present invention in which there is no adhesive layer (2), that is, wherein the polymeric film (1) and the carrier layer (3) are thermally laminated. The manufacture of such laminates is described in WO 2009/1 2 1 708, the entire disclosure of which is incorporated herein by reference. The method comprises the steps of: providing a film (1) having a first surface comprising an embossed optical structure forming one or more Fresnel lenses and an opposite second surface; guiding the film (1) to a pair of layers The occlusion point of the roller; the carrier layer (3) or the UV-protected carrier layer or carrier layer (3) and the UV protective layer (5) laminate or carrier layer (3) and the UV protective layer (5) The coextrudate is delivered to the bite point, and the surface temperature of the surface of the layer (3) attempted to be bonded to the layer (1) is sufficient to thermally bond the polymer sheet and the film; and the polymer sheet is bonded Lamination to the second surface of the film. This method does not require a binder or additional heat. There is at least one additional source of contamination outside the membrane itself. The additional equipment required is relatively simple to manufacture and is not expensive -35-201244930. The details of this method will now be described with reference to Figures 3 and 4. Referring to the figure' and initially to Fig. 3', a schematic representation is shown to illustrate the method and apparatus involved in laminating the embossed film (1) to the polymer sheet (3). As shown in the figure, the display of the working flow direction arrow 〇0 〇 shows the 'polymer sheet (3) and film (1) into the two calendering rolls (1〇) and (11) the bite point (12) 'And stick to each other. The second calendering drum is a cold hard metal drum. As shown in Fig. 4, the film (1) has a first surface (16) having an embossed frei structure and a second surface (15) to be laminated to the polymer sheet (3). The film (1) can be embossed by any known method and at room temperature before lamination. Membrane (1) is also available from commercial sources. Referring back to Figure 3, in one embodiment, the membrane (1) is provided in the drum (8) and fed into the bite point (12) via one or more guide rollers (9). It is understood that, as shown in Fig. 3, the membrane (I) can be fed into the occlusion point (12) at a different angle than that shown in Fig. 3, such as by offsetting the guide roller (9'). In one embodiment of the invention, the polymer sheet (3) is prepared by a conventional sheet extrusion process. Also, when the sheet is still hot and soft, it is fed into the bite point (12) to be in close contact with the surface (15) of the film (1) (Fig. 4). The temperature of the polymer sheet (3) on the nip point (12) is important for successful lamination. If the surface temperature is too low, there will be no adhesion. If the surface temperature is too high, the optical structure of the film (1) will be destroyed. It is understood that the polymer sheet (3) has a surface temperature sufficient to ensure thermal bonding between the sheet (3) and the film (1), while maintaining the integrity of the optical structure of the film (1) - 36 - 201244930 for 3 For the PMM A polymer sheet (3) of millimeters, the exemplified surface temperature at the operating point is in the range of from about 120 ° C to about 175 ° C and preferably from 140 ° C to 160 ° C. After the film (1) is in intimate contact with the polymer sheet (3) at the nip point (12), 'thermal bonding occurs and the film (1) is laminated to the sheet (3). No external heat is required during this lamination. The heat required for thermal bonding is provided by heat from the inside of the sheet (3). During the lamination process, the surface temperature of the film (1) is maintained below its glass transition temperature to prevent distortion of the optical structure. After lamination, the laminate is directed to a cooling zone (14) which contains a plurality of cooling drums. After the laminate is cooled to room temperature (typically 2 2 ° C), the finished product is cut at the end, such as by a flying saw. In another preferred alternative, the laminate of the present invention The adhesive layer (2) is included, and the preferred adhesive is a solvent cement. In particular, a blend having a high chlorinated solvent content can have processing advantages due to low flammability and rapid diffusion into the acrylic resin layer. Further, an acrylate-based adhesive as known in the state of the art is preferred. Particularly preferred as the binder are methylene chloride or a commercial product commercially available from Evonik R0hm GmbH under the trade name ACRIFIX® or a product obtained by IPS, Weld-On® and other manufacturers. Other adhesives which can be used for one of the coatings (2), (4) or (6) can be selected in accordance with the substrate to be bonded to each other and by the strict requirements imposed on the transparency of the adhesive layer. For binders of PMMA and PET, a melt binder is preferred. An example of such a melt binder is ethylene--37-201244930 vinyl acetate hot melt (EVA hot melt) or acrylate-ethylene hot melt acrylate-ethylene hot melt is preferred. The PET film, or polyester or polyolefin film, may be bonded to each other by a 2K-PU adhesive by, for example, a melt adhesive based on EVA or an acrylate-ethylene substrate. Other suitable binders are known in the art. The adhesive layer may have a thickness of from 1 to 100 μm and preferably from 2 to 80 μm. Methods of preparing the laminates of the present invention are well known to those skilled in the art. An example of a method of making the composite is lamination and/or (co) extrusion coating. Preferred choices are: I) co-extruding the UV protective layer (5) and the carrier layer (3), followed by laminating the polymeric film (1) to the carrier as described above by heating or by using an adhesive layer (2) Layer (3) Backside II) Optionally coextruding the carrier layer (3) and the UV protective layer (5) by using an adhesive layer (4), followed by heating as described above or by using an adhesive layer (2) The polymeric film (Π laminated to the back side of the carrier layer (3)) laminates the polymeric film (1) to the carrier layer (3) with or without the formation of the adhesive layer (2), followed by formation or absence In the case of forming the adhesive layer (4), the UV protective layer (5) is laminated to the surface of the carrier layer (3) facing the light source, IV) will comprise at least one of the layers with or without the formation of the adhesive layer (2) The carrier layer (3) of the UV absorber and the at least one UV stabilizer and the layered film (1) are laminated, preferably without subsequently laminating with the layers (4) and (5) -38 to 201244930. The surface coating, i.e., layer (7) and (6), can be applied by known techniques. A UV-protected laminated solar concentration device made in accordance with the present invention is preferably used as a trough concentrator that focuses a beam of light onto a solar cell or heat absorbent unit. As a result, the invention encompasses a CPV component comprising at least one solar concentration device according to the invention and at least one solar cell, and a CSP component comprising at least one solar concentration device according to the invention and at least one heat absorber unit. The use of a UV-protected laminated solar concentration device in accordance with the present invention for the manufacture of solar devices, particularly CSP or CPV devices, is also the subject of the present invention. [Example of Application] Example 1 A modified acrylic film (1) having a plurality of embossed lenses of a ring-shaped Fresnel lens is laminated to a semi-molten acrylic acid in the absence of an adhesive layer (2) Polymer sheet (3). The film (1) is a product of 3M Company of Minneapolis MN. The embossed film is provided on the drum and fed from the drum into a nip point of a pair of calender rolls. The polymer sheet (3) was formed using a general sheet extrusion method. The acrylic sheet (3) being laminated with the film (1) is 3 mm thick and has a surface temperature of 148 ° C to 15 (TC) at the lamination point. Adjusting the gap between the pair of calender rolls to provide sufficient Pressure to ensure that the applied film is in full contact with the acrylic film at the point of operation. Weight -39 - 201244930 is to maintain the raised surface temperature below its glass transition point to maintain the relief pattern Sharpness. The final drum and drag roller speed ratio is maintained at a ratio of 0.980 to 1.00 to cause the embossed frei lens when the laminate of the sheet (3) and the film (1) is cooled to room temperature. No deformation. Example 2 The method was the same as that disclosed in Example 1, except that a continuous long strip pattern embossing was formed in the film (1), and the film (1) was to be applied to the formed sheet. A 56 micron thick PMMA foil (5) is used which consists of a) 87.85 wt% of a polymer consisting of a two phase impact modifier according to EP 0 528 196, the overall composition of which is

61.35重量%之MMA 37.1重量%之丙烯酸丁酯 0.36重量。/。之丙烯酸乙酯 0.66重量%之甲基丙烯酸烯丙酯 0 · 5 3重量%之十二烷基硫醇,以上述單體計, b) 10 重量%之由 R5hm GmbH 所得之 PLEXIGLAS® 7H, c ) 1.0重量。/。之Tinuvin 3 60 (由Ciba SC所得之以苯 並三唑爲底質之UV吸收劑) -40- 201244930 0.75重量%之CGX UVA 006 (由Ciba SC所得之以三 嗪爲底質之uv吸收劑) 〇.4重量%之(^1丨11133301>1)119 且此混合物係利用一般方法擠出以獲得UV防護用箔 (5 ) ° 然後將該箔(5 )層合至實例1及2之產物且所得之 產物被測試。該產物比一般之夫瑞乃鏡片顯出改良的風化 行爲。 【圖式簡單說明】 圖1顯示本發明之層合的太陽能集中裝置的不同層。 圖2是依照本發明之一具體例的層合的夫瑞乃膜的前 視圖。 圖3是顯示在層合浮凸膜及聚合物片時所牽涉之方法 及設備的槪略圖示。 圖4是圖1之部分設備的槪略放大剖面圖。 【主要元件符號說明】 1:聚合型膜、2:黏合層、3:載體層、4:黏合層、 5: UV防護用層、6:黏合層、7:表面防護用層、8:滾 筒、9:導引滾筒、9’:導引滚筒、1〇:壓延滾筒、11·· 壓延滾筒、12:咬合點、14:冷卻區、15:表面、16:第 —表面、1 0 0 :工作流向 -41 -61.35 wt% of MMA 37.1 wt% butyl acrylate 0.36 wt. /. Ethyl acrylate 0.66 wt% allyl methacrylate 0 · 53 wt% of dodecyl mercaptan, based on the above monomers, b) 10 wt% of PLEXIGLAS® 7H, c obtained by R5hm GmbH ) 1.0 weight. /. Tinuvin 3 60 (benzotriazole-based UV absorber obtained from Ciba SC) -40- 201244930 0.75 wt% CGX UVA 006 (triazine-based uv absorber obtained from Ciba SC) 4. 4% by weight (^1丨11133301>1)119 and the mixture was extruded by a general method to obtain a UV protective foil (5) ° and then the foil (5) was laminated to Examples 1 and 2. The product was obtained and the resulting product was tested. This product exhibits improved weathering behavior over conventional Fresnel lenses. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows different layers of a laminated solar concentration device of the present invention. Fig. 2 is a front elevational view of a laminated Fresnel film in accordance with an embodiment of the present invention. Fig. 3 is a schematic view showing a method and apparatus involved in laminating a embossed film and a polymer sheet. Figure 4 is a schematic enlarged cross-sectional view of a portion of the apparatus of Figure 1. [Description of main components] 1: Polymer film, 2: adhesive layer, 3: carrier layer, 4: adhesive layer, 5: UV protective layer, 6: adhesive layer, 7: surface protective layer, 8: roller, 9: guide roller, 9': guide roller, 1 turn: calender roll, 11·· calender roll, 12: bite point, 14: cooling zone, 15: surface, 16: surface-surface, 1 0 0: work Flow to -41 -

Claims (1)

201244930 七、申請專利範圍: 1.—種經UV防護之層合太陽能集中裝置,該裝置 特徵在於,由太陽光源觀之’該裝置係包含至少以下各層 -聚合型載體層(3) -聚合型膜(1),其具有包含形成一或多個夫瑞乃( Fresnel )鏡片之浮凸光學結構的第一表面且具有直接地或 經由黏合層(2)黏合至該聚合物層(3)之第二表面, 其中 該載體層(3 )包含至少一種UV吸收劑及至少一種 UV安定劑, 及/或其中 將包含至少一種UV吸收劑及至少一種UV安定劑之 UV防護用聚合物層(5)直接地或經由黏合層(4)黏合 至載體層(3)之面向光源的表面。 2 ·如申請專利範圍第1項之經UV防護之層合太陽 能集中裝置’其中該裝置包含另外之聚合物表面防護用層 (7),其直接地或經由黏合層(6)黏合至UV防護用層 (5)之面向光源的表面,或直接地或經由黏合劑黏合至 載體層(3)之面向光源的表面,且其具有防污性及/或耐 刮性及/或耐磨改良性及/或抗反射性。 3. —種製造如申請專利範圍第1或2項之經UV防 護之層合太陽能集中裝置的方法,其特徵在於包含以下步 驟· -42- 201244930 將載體層(3 )及UV防護用層(5 )共擠出 形成或不形成黏合層(2 )之情況下將聚合型膜( 至載體層(3)之背面,或 在形成或不形成黏合層(4 )之情況下,經白 合作用層合載體層(3)及UV防護用層(5) ,ί 成或不形成黏合層(2)之情況下,將聚合型膜( 至載體層(3)之背面,或 在形成或不形成黏合層(2 )之情況下,層名 (3)及聚合型膜(ί),接著在形成或不形成黏 )之情況下,將UV防護用層(5)層合至載體( 向光源的表面,或 在形成或不形成黏合層(2)之情況下,層名 少一種UV吸收劑及至少一種UV安定劑之載體層 聚合型膜(1 )。 4.如申請專利範圍第3項之方法,其中在載 )與聚合型膜(1)之間的層合物係在沒有黏合I 下形成且該方法包含以下步驟: -提供具有一個含有浮凸光學結構的第一表3 之第二表面的膜(1 ); -將該膜(1)導引至一對層合滾筒的咬合點; •將載體層(3 )或經UV防護之載體層(3 ) Έ (3)及UV防護層(5)之層合物或載體層〇); 護層(5)之共擠出體送至該咬合點,該載體層( 圖黏合至膜(1)之表面的表面溫度足以使該載體 1接著在 1 )層合 3擠出層 I著在形 1 )層合 Γ載體層 合層(4 3 )之面 Γ包含至 (3)及 體層(3 ί之情況 ί及相對 ^載體層 3: UV 防 3 )之意 層(3 ) -43- 201244930 與該聚合型膜(η之間能熱黏合;及 •將該載體層(3)層合至該聚合型膜(1)之第二表 面。 5 ·如申請專利範圍第1或2項之經UV防護之層合 太陽能集中裝置或如申請專利範圍第3或4項之方法,其 中 聚合型膜(1)包含附加之正方形或長方形夫瑞乃鏡 片圖形,或 聚合型膜(1 )包含排列成格子圖形之正方形個別夫 瑞乃鏡片矩陣,或 將該膜(1)構成爲線性夫瑞乃鏡片,其中該圖形在 該膜長度上是連續的,及/或 該聚合型膜(1)之第一表面形成該太陽能集中裝置 之外表面,較佳地該第一表面與空氣或其他氣體(例如惰 性氣體)接觸。 6 .如先則申請專利範圍中任一項之經U V防護之層 合太陽能集中裝置或方法,其中該黏合層(2)是溶劑膠 結劑’較佳是一種高濃度之氯化溶劑的調和物》 7.如先前申請專利範圍中任一項之經U V防護之層 合太陽能集中裝置或方法,其中 聚合型膜(1)係由選自聚(甲基)丙烯酸酯、聚碳 酸酯、環烯烴聚合物、聚苯乙烯、聚偏二氟乙烯、聚胺基 甲酸酯類、或其混合物或共聚物之聚合物組成,及/或 載體層(3)是以聚碳酸酯、聚苯乙烯、苯乙烯共聚 -44- 201244930 物、聚酯(較佳是聚對苯二甲酸伸乙酯或PETG )、氟聚 合物及/或PMMA爲底質之膜或薄片及/或PMMA/PVDF二 層膜或薄片及/或由PMMA/PVDF掺合物製成之膜或薄片 ,及/或UV防護用層(5)係由透明的單或多層(多次層 )塑膠箔組成,該塑膠箔在每種情況中係包含聚(甲基) 丙烯酸甲酯或聚(甲基)丙烯酸甲酯及聚偏二氟乙烯於至 少一次層中或包含聚(甲基)丙烯酸甲酯及聚偏二氟乙烯 於混合物中於至少一次層。 8. 如先前申請專利範圍中任一項之經UV防護之層 合太陽能集中裝置或方法,其中 該載體層(3)及/或該UV防護用層(5)包含由至少 一種三嗪組成或由至少一種苯並三唑組成之U V吸收劑混 合物’及包含至少一種HALS化合物或多種HALS化合物 之混合物的UV安定劑。 9. 如申請專利範圍第8項之經UV防護之層合太陽 能集中裝置或方法,其中UV安定劑及UV吸收劑之混合 物係由以下含量組成,每一含量係以製備個別層所用之單 體重量計: 0 · 1重量%至1 0重量。/。,較佳地〇. 5重量%至4重量% 之苯並三唑型UV吸收劑, 0 · 1重量%至5重量% ’較佳地〇 . 5重量%至3重量% 之三嗪型UV吸收劑,及 〇 · 1重量%至5重量%,較佳地〇 . 2重量%至2重量% 之HALS型UV安定劑。 -45- 201244930 I 〇.如先前申請專利範圍中任一項之經UV防護之層 合太陽能集中裝置或方法,其中 該UV防護用層係由重量比爲1: 〇〇1至〇3: 1 ’較佳爲1: 0.1至0.4: 1之聚(甲基)丙烯酸酯及聚偏 二氟乙烯組成,且包含UV安定劑及UV吸收劑,或 該UV防護用層(5)包含二次層(sublayer),一次 層爲由聚(甲基)丙烯酸酯組成之次層且另一次層爲由聚 偏二氟乙烯組成之次層。 II ·如先前申請專利範圍中任一項之經UV防護之層 合太陽能集中裝置或方法,其中 該聚合型膜(1)厚度在0.01至10毫米,較佳地 0.025至2毫米,更佳地0.025至1毫米,特佳地0.05至 0.75毫米,極特佳地〇.〗至〇.5毫米或5至0.9毫米範圍 內,及/或 該載體薄片(3)厚度在0.1至50毫米,較佳地0.5 至25毫米,更佳地1至20毫米,特佳地2至20毫米, 極特佳地2至1〇毫米或2至7毫米範圍內,及/或 該聚合型UV防護用層(5)膜厚度在10至250微米 範圍內’更佳地在40至120微米範圍內且特佳地在50至 90微米範圍內。 1 2 ·如先前申請專利範圍中任一項之經UV防護之層 合太陽能集中裝置或方法,其中 該載體層(3)包含至少一種熱安定劑。 13· 一種太陽能裝置,其特徵在於 -46 - 201244930 彼是包含至少一種如申請專利範圍第1至2項或5至 1 2項中任一項的太陽能集中裝置及至少一種太陽能電池的 CPV元件,或 彼是包含至少一種如申請專利範圍第1至2項或5至 12項中任一項的太陽能集中裝置及至少一種熱吸收元件的 CSP元件。 14.—種太陽能裝置,其特徵在於不含有黏合至聚合 型膜(1)之第一表面上的塑膠或黏合層。 1 5 · —種如先前申請專利範圍中任一項之經UV防護 之層合的太陽能集中裝置的用途,其係用於製造太陽能熱 裝置,特別是CSP裝置,或用於製造光伏打裝置,特別是 CPV裝置。 -47-201244930 VII. Patent application scope: 1. A UV-protected laminated solar energy concentrating device characterized in that the device comprises at least the following layers - a polymeric carrier layer (3) - a polymeric type a film (1) having a first surface comprising embossed optical structures forming one or more Fresnel lenses and having a bond to the polymer layer (3) either directly or via an adhesive layer (2) a second surface, wherein the carrier layer (3) comprises at least one UV absorber and at least one UV stabilizer, and/or a UV protective polymer layer comprising at least one UV absorber and at least one UV stabilizer (5) Adhesive to the surface of the carrier layer (3) facing the light source, either directly or via an adhesive layer (4). 2) A UV-protected laminated solar concentration device as claimed in claim 1 wherein the device comprises an additional polymeric surface protection layer (7) bonded directly or via an adhesive layer (6) to UV protection Using the surface of the layer (5) facing the light source, or directly or via an adhesive, to the surface of the carrier layer (3) facing the light source, and which has antifouling and/or scratch resistance and/or wear resistance improvement And / or anti-reflective. 3. A method of manufacturing a UV-protected laminated solar concentration device according to claim 1 or 2, characterized in that it comprises the following steps: -42 - 201244930, carrier layer (3) and UV protective layer ( 5) Co-extrusion with or without the formation of the adhesive layer (2), the polymeric film (to the back side of the carrier layer (3), or with or without the formation of the adhesive layer (4), by white cooperation The laminated carrier layer (3) and the UV protective layer (5), with or without the formation of the adhesive layer (2), the polymeric film (to the back side of the carrier layer (3), or formed or not formed In the case of the adhesive layer (2), the layer name (3) and the polymeric film (ί), followed by the formation or absence of adhesion, the UV protective layer (5) is laminated to the carrier (to the light source) The surface layer, or in the case of forming or not forming the adhesive layer (2), the carrier layer polymerization type film (1) having a layer name less than one UV absorber and at least one UV stabilizer. 4. As claimed in claim 3 a method in which a laminate between a carrier and a polymeric film (1) is formed without adhesion I and the method package The following steps: - providing a film (1) having a second surface of the first sheet 3 having an embossed optical structure; - guiding the film (1) to a nip point of a pair of laminating rolls; (3) or a UV-protected carrier layer (3) Έ (3) and a laminate or carrier layer of the UV protective layer (5); the coextrudate of the sheath (5) is sent to the nip point, The carrier layer (the surface temperature of the carrier adhered to the surface of the film (1) is sufficient for the carrier 1 to be subsequently 1) to laminate the 3 extruded layer I on the surface of the laminated laminate carrier layer (43). Γ 至 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与 与The carrier layer (3) is laminated to the second surface of the polymeric film (1). 5. The UV-protected laminated solar concentration device of claim 1 or 2 or as claimed in claim 3 Or the method of item 4, wherein the polymeric film (1) comprises an additional square or rectangular Fresnel lens pattern, or the polymeric film (1) comprises squares arranged in a lattice pattern Forming a single Fresnel lens matrix, or forming the film (1) as a linear Fresnel lens, wherein the pattern is continuous over the length of the film, and/or the first surface of the polymeric film (1) is formed The outer surface of the solar concentrating device, preferably the first surface is in contact with air or other gas (e.g., an inert gas). 6. The UV-protected laminated solar concentrator of any of the patent applications or The method wherein the adhesive layer (2) is a solvent cementing agent, preferably a blend of a high concentration of a chlorinated solvent. 7. A UV-protected laminated solar concentration device according to any one of the preceding claims. a method wherein the polymeric film (1) is selected from the group consisting of poly(meth)acrylates, polycarbonates, cycloolefin polymers, polystyrene, polyvinylidene fluoride, polyurethanes, or mixtures thereof Or the polymer composition of the copolymer, and/or the carrier layer (3) is a polycarbonate, polystyrene, styrene copolymer-44-201244930, polyester (preferably polyethylene terephthalate or PETG), fluoropolymer and/or PM MA is a film or sheet of a substrate and/or a PMMA/PVDF two-layer film or sheet and/or a film or sheet made of a PMMA/PVDF blend, and/or a UV protective layer (5) is transparent Single or multi-layer (multiple layers) of plastic foil, which in each case comprises poly(methyl) methacrylate or poly(methyl) methacrylate and polyvinylidene fluoride in at least one layer Or comprising poly(methyl) methacrylate and polyvinylidene fluoride in the mixture in at least one layer. 8. A UV-protected laminated solar concentration device or method according to any of the preceding claims, wherein the carrier layer (3) and/or the UV protective layer (5) comprises or consists of at least one triazine or A UV absorber mixture comprising at least one benzotriazole and a UV stabilizer comprising at least one HALS compound or a mixture of HALS compounds. 9. The UV-protected laminated solar concentration device or method of claim 8, wherein the mixture of the UV stabilizer and the UV absorber is composed of the following contents, each of which is a monomer used to prepare the individual layers. Weight: 0 · 1% by weight to 10% by weight. /. Preferably, 5% to 4% by weight of a benzotriazole type UV absorber, from 0 to 1% by weight to 5% by weight, preferably from 5% by weight to 3% by weight of a triazine-type UV Absorbent, and 〇·1% by weight to 5% by weight, preferably 2. 2% by weight to 2% by weight of HALS type UV stabilizer. - 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 'preferably 1: 0.1 to 0.4: 1 composed of poly(meth) acrylate and polyvinylidene fluoride, and comprising a UV stabilizer and a UV absorber, or the UV protective layer (5) comprises a secondary layer (sublayer), the primary layer is a sublayer composed of poly(meth) acrylate and the other layer is a sublayer composed of polyvinylidene fluoride. A UV-protected laminated solar concentration device or method according to any of the preceding claims, wherein the polymeric film (1) has a thickness of from 0.01 to 10 mm, preferably from 0.025 to 2 mm, more preferably 0.025 to 1 mm, particularly preferably 0.05 to 0.75 mm, very excellently 〇. 至至〇.5 mm or 5 to 0.9 mm, and/or the carrier sheet (3) has a thickness of 0.1 to 50 mm, Preferably 0.5 to 25 mm, more preferably 1 to 20 mm, particularly preferably 2 to 20 mm, very preferably 2 to 1 mm or 2 to 7 mm, and/or the polymeric UV protective layer (5) The film thickness is in the range of 10 to 250 μm, more preferably in the range of 40 to 120 μm and particularly preferably in the range of 50 to 90 μm. A UV-protected laminated solar concentration device or method according to any of the preceding claims, wherein the carrier layer (3) comprises at least one thermal stabilizer. A solar device, characterized in that -46 - 201244930 is a CPV element comprising at least one solar concentration device according to any one of claims 1 to 2 or 5 to 12 and at least one solar cell, Or a CSP element comprising at least one solar concentration device and at least one heat absorbing element according to any one of claims 1 to 2 or 5 to 12. 14. A solar device characterized in that it does not contain a plastic or adhesive layer bonded to the first surface of the polymeric film (1). a use of a UV-protected laminated solar concentration device according to any one of the preceding claims, for the manufacture of a solar thermal device, in particular a CSP device, or for the manufacture of a photovoltaic device, Especially CPV devices. -47-
TW101102053A 2011-01-28 2012-01-18 New solar concentration devices TW201244930A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161437170P 2011-01-28 2011-01-28
EP11015249 2011-01-28

Publications (1)

Publication Number Publication Date
TW201244930A true TW201244930A (en) 2012-11-16

Family

ID=48094188

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102053A TW201244930A (en) 2011-01-28 2012-01-18 New solar concentration devices

Country Status (1)

Country Link
TW (1) TW201244930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739363A (en) * 2018-07-18 2020-01-31 李武 solar power generation road surface assembly
TWI753955B (en) * 2016-10-12 2022-02-01 日產化學工業股份有限公司 Light-resistant hard coating material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI753955B (en) * 2016-10-12 2022-02-01 日產化學工業股份有限公司 Light-resistant hard coating material
CN110739363A (en) * 2018-07-18 2020-01-31 李武 solar power generation road surface assembly

Similar Documents

Publication Publication Date Title
US20130306127A1 (en) New solar concentration devices
TW200920770A (en) PMMA/PVDF foil with particularly high weathering resistance and high UV-protective action
TWI373487B (en) Pmma film with particularly high weathering resistance and high uv protection effect
EP3055357A1 (en) Fluorinated composition containing a uv absorber and use of same as a transparent protective layer
US20130059139A1 (en) Transparent, weather-resistant barrier film having an improved barrier effect and scratch resistance properties
EP2412523A1 (en) Flexible film made of fluorinated polymer
TW201043461A (en) Transparent, weathering-resistant barrier film, production by lamination, extrusion lamination or extrusion coating
JP2013501251A (en) Solar mirror film composite having particularly high weather resistance and UV resistance
CA2762599A1 (en) Transparent, weathering-resistant barrier foil, production thereof by means of lamination, extrusion lamination or extrusion coating
FR2966158A1 (en) FILM BASED ON FLUORINATED POLYMER FOR PHOTOVOLTAIC APPLICATION
WO2015092282A1 (en) Uninflammable pvdf film that is resistant to tearing at low temperatures
TW201634279A (en) Transparent sheet for solar cell, transparent backsheet for solar cell, and solar cell module
TW201244930A (en) New solar concentration devices
CN106062587A (en) Durable solar mirror film with asymmetric construction
JP2022509284A (en) Acrylic foil with improved UV protection properties
FR2982796A1 (en) Manufacturing fluorinated film useful for protecting back sheet of photovoltaic panel, comprises coextruding fluorinated film with layer of nonfluorinated polymer with mineral loads, and then delaminating layer of nonfluorinated polymer