201231924 六、發明說明: 【發明所屬之技術領域】 本發明子技術領域, 定位方法、位置収錢、地及定位系统。 【先前技術】 習知之慣性導航系統包合 L 3 一航位推算(Dead201231924 VI. Description of the invention: [Technical field to which the invention pertains] The technical field of the invention, the positioning method, the location collecting money, the ground and the positioning system. [Prior Art] The conventional inertial navigation system includes L 3 a dead reckoning (Dead
Reck〇ning,DR)系統,取系統透過 如,一陀螺儀以及4程計)獲取-物體的-運動軌跡資 訊,並根據運動軌跡資訊計算出物體的位置與方向以而, 由於陀螺儀和里程計可能產生誤差,因此會減少所計算出 物體的位置與方向的準確度。 【發明内容】 本毛月要解决的技術問題在於提供-種物體定位方 法位置冲算系統、地圖系統以及定位系統,以提高所計 算出物體的位_方向的準確度。 祕技術問題’本發明提供—種物體定位方 法已3根據所計算出該物體的一方向和儲存在一資料 1 + 多個方向’以在該資料庫中的該多個路 •k中搜索出;Mm第—方向匹配路段;根據所計算出該物體 的位置和。亥多個第一方向匹配路段的多個位置,以在該 201231924 ^固第〜方向匹配路段中搜索出至少—第—位置匹配路 、根據。亥至少-第一位置匹配路段,對該物體定位。 發明進-步提供了 一種地圖系統,包含:一記憶體, 儲存至少-電腦可執行指令;—地圖資訊儲存單元,儲存 包含f個路段的多個位置f訊和多個方向資訊的一資料 庫’ 了處理單元’與該記憶體和該地圖資訊儲存單元相連 接’以執彳τ該電腦可執行齡,並根據所計算出一物體的 =向和倚存在該資料庫中的多個路段的多個方向資訊在 4貝料庫中搜索出多段方向匹配路段,並且根據所計算出 該物體的的—位置和該多段方向匹配路段中的-位置資訊 在該多段方向匹配路段中搜索出至少一位置匹配路段,以 對該物體定位。 本發明進一步提供了一種位置計算系統,包含:一介 面,接收表示至少一第一位置匹配路段的一資訊;以及一 處理器,與該介面相連接,並根據該至少一第一位置匹配 路段Φς:供表示該物體的—位置的一資訊,其中,該至少一 第一位置匹配路段根據所計算出該物體的一位置和多個第 一方向匹配路段中的多個位置,以在該多個第一方向匹配 路段中所搜索找出的,該多個第一方向匹配路段是根據所 计舁出該物體的一方向和儲存在一資料庫中的多個路段的 多個方向,以在該資料庫中搜索找出的。 201231924 本發明進-步提供了-種定位系統,包含:一地圖系 統;以及-位置計算系統,計算—物體的—位置和一方向, 並將所計异出的該位置和該方向與該地圖祕中的一電子 地圖的-路段貢訊相比較,其巾該地圖线㈣電子地圖 的多個路段帽擇-匹配參考路段,並基於舰配參考路 Ί又修正所計异出的該位置和該方向。 與現有技術相比,本發明提供的物體定位方法、位置 汁异系統、地圖系統以及定位系統,是根據所計算出物體 的位置與方向在資料庫中搜索出多個方向匹配路段,根據 所计算出物體的位置和搜索到的多個方向匹配路段,以得 到至少一位置匹配路段,根據至少一位置匹配路段修正所 汁算出物體的位置與方向,進而提高了物體定位的準確度。 以下結合附圖和具體實施例對本發明的技術方案進行 詳細的說明,以使本發明的特性和優點更為明顯。 【實施方式】 以下將對本發明的實施例給出詳細的說明。雖然本發 明將結合實施例進行_ ’但應理解這並非意指將本發明 限定於這些實施例。相反地,本發明意在涵蓋由後附申請 專利範圍所界定的本發明精神和範_所定義的各種變 化、修改和均等物。 此外,在以下對本發明的詳細描述中,闡明大量的具 201231924 體、·田即以提供針對本發明的全面理解。然而,本技術領域 中具有通常知識者應理解,沒有這些具體細節,本發明同 樣可以實施。在其他實例中,對於習知方法、流程、元件 和電路未作詳細描述,以便於凸顯本發明之主旨。 在-實施例中,本發明提供了一種物體定位系統。定 位系統可以计异出物體的位置和方向,並將所計算出的位 置和方向與電子地圖上的路段資訊相比較,以在電子地圖 的夕個路^又中選擇出匹配參考路段,並基於匹配參考路段 修正所計算出物體的位置與方向。 圖1為本發明一實施例定位系統100的示意圖,定位 系統100可以是但不限於一慣性導航系統/全球定位系統 (Inertial Navigation System/Global Positioning System » INS/GPS)。定位系統100可包含一地圖系統102和一位置 計算系統112。位置計算系統112可以計算一物體(例如, 交通工具)的一位置。其中,位置計算系統112可以接收 來自衛星(未在圖中顯示)的一 GPS信號並且根據Gps 信號計算物體的當前位置。當GPS信號較弱或無法被接收 時’位置計算系統112亦可以根據物體的初始位置和物體 的運動執跡計算出物體的當前位置。此外,位置計算系統 可以根據來自地圖系統1〇2的參考資訊修正所計算出 物體的位置與方向。在一實施例中’地圖系統102儲存包 7 201231924 含有—路段資訊的一導航地圖。舉例說明,導航地圖包含 錢道路,每條道路被分成多段,其中,道路上的每—段 (簡%為路段)皆具有特定的方向和位置。地圖系統1〇2 可以儲存導航地圖中路段的方向資訊與位置資訊。地圖系 、洗搬可以從位置計算系統112接收所計算出物體的位置 或已L正物體的位置,並在導般地圖上顯示物體的位置。 地圖系統1()2還可以在導航地圖中進行搜索以獲取到參考 資訊,並為位置計算系統112提供參考資訊。 更具體地說’在-實施例中,地圖系統1〇2包含一地 圖資訊儲存單元104、一處理單元刚和-記憶體108。地 圖資訊儲存單幻04儲存了包含導航地圖資訊(例如,路 段的位置資訊和方向資訊)的資料庫(以下稱為地圖資訊 資料庫);記憶體108儲存電腦可執行指令(例如,電腦可 讀指令);處理單元106執行電腦可執行軟體(例如,電腦 可讀指令),使得處理單元1G6根據所計算出之物體方向 〇CAL和儲存在地圖資訊資料庫中的路段方 uRS,在地圖 資訊資料庫"臾索出多個方向匹配路段 (Orientation-Matched R0ad section,〇MR)(以下稱為户 個第一 OMR)。處理單元106可執行電腦可執行二 如,電腦可讀指令),使得處理單元1〇6根據‘二之: 體位置Pcal和多個OMR中之路段位置pReck〇ning, DR) system, which takes the information of the object-motion path through, for example, a gyroscope and a 4-way meter, and calculates the position and direction of the object based on the motion track information, due to the gyroscope and mileage. The meter may produce errors, thus reducing the accuracy of the position and orientation of the calculated object. SUMMARY OF THE INVENTION The technical problem to be solved by the present month is to provide an object positioning method position calculation system, a map system, and a positioning system to improve the accuracy of the position-direction of the calculated object. The technical problem of the present invention provides that the object positioning method has been searched out according to the calculated direction of the object and stored in a data 1 + multiple directions to search for the plurality of paths k in the database. ; Mm first - direction matching road segment; according to the calculated position and sum of the object. Multiple locations in the first direction match the plurality of locations of the road segment to search for at least the first-position matching path and the basis in the 201231924 solid-direction matching road segment. At least the first position matches the road segment to locate the object. The invention further provides a map system comprising: a memory, storing at least a computer executable instruction; a map information storage unit, storing a database of a plurality of position f signals and a plurality of direction information including f road segments 'The processing unit' is connected to the memory and the map information storage unit to perform the age of the computer executable, and according to the calculated = direction of an object and the plurality of road segments in the database The plurality of direction information searches for a plurality of direction matching road segments in the 4-bed library, and searches for at least one of the matching segments in the multi-segment direction according to the calculated position of the object and the position information in the matching segment of the plurality of segments. The position matches the road segment to locate the object. The present invention further provides a location calculation system, comprising: an interface for receiving information indicating at least one first location matching road segment; and a processor coupled to the interface and matching the road segment Φ according to the at least one first location a piece of information indicating a position of the object, wherein the at least one first position matching road segment matches a plurality of positions in the road segment according to the calculated position of the object and the plurality of first directions, in the plurality of The plurality of first direction matching road segments are determined according to the search in the first direction matching road segment, and the plurality of the plurality of road segments stored in a database are in accordance with Search in the database to find out. 201231924 The present invention further provides a positioning system comprising: a map system; and a position calculation system, calculating - the position of the object and a direction, and calculating the location and the direction of the difference with the map In the secret map of an electronic map - the section of the tribute to the news, its towel map line (four) electronic map of multiple sections of the cap selection - matching reference section, and based on the ship matching reference path and correct the location of the calculated The direction. Compared with the prior art, the object positioning method, the positional juice difference system, the map system and the positioning system provided by the present invention search for a plurality of directions matching sections in the database according to the calculated position and direction of the object, according to the calculation The position of the object is matched with the searched plurality of directions to obtain at least one position matching road segment, and the position and direction of the calculated object are corrected according to at least one position matching road segment, thereby improving the accuracy of the object positioning. The technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments to make the features and advantages of the present invention more obvious. [Embodiment] Hereinafter, a detailed description will be given of an embodiment of the present invention. While the invention will be described in conjunction with the embodiments, it should be understood that this is not intended to limit the invention to the embodiments. On the contrary, the invention is intended to cover various modifications, modifications and equivalents of the invention as defined by the scope of the invention. In addition, in the following detailed description of the invention, reference to the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail in order to facilitate the invention. In an embodiment, the present invention provides an object positioning system. The positioning system can calculate the position and direction of the object, and compare the calculated position and direction with the link information on the electronic map to select the matching reference road in the evening of the electronic map, and based on Match the reference path to correct the position and direction of the object. 1 is a schematic diagram of a positioning system 100 according to an embodiment of the present invention. The positioning system 100 may be, but not limited to, an Inertial Navigation System/Global Positioning System (INS/GPS). Positioning system 100 can include a map system 102 and a location computing system 112. Location computing system 112 can calculate a location of an object (e.g., a vehicle). Wherein, the location calculation system 112 can receive a GPS signal from a satellite (not shown) and calculate the current location of the object based on the GPS signal. When the GPS signal is weak or unreceivable, the position calculation system 112 can also calculate the current position of the object based on the initial position of the object and the motion profile of the object. In addition, the position calculation system can correct the position and direction of the calculated object based on the reference information from the map system 1〇2. In one embodiment, the map system 102 stores a navigation map containing information on the road segment 7 201231924. For example, the navigation map contains money roads, and each road is divided into multiple sections, wherein each section (the simple section is a road section) has a specific direction and position. The map system 1〇2 can store the direction information and location information of the road segments in the navigation map. The map system, wash and wash can receive the position of the calculated object or the position of the L positive object from the position calculation system 112, and display the position of the object on the general map. The map system 1() 2 can also search in the navigation map to obtain reference information and provide reference information to the location calculation system 112. More specifically, in the embodiment, the map system 1〇2 includes a map information storage unit 104, a processing unit, and a memory 108. The map information storage single magic 04 stores a database containing navigation map information (for example, location information and direction information of the road section) (hereinafter referred to as a map information database); the memory 108 stores computer executable instructions (for example, computer readable The processing unit 106 executes a computer executable software (for example, computer readable instructions) such that the processing unit 1G6 is based on the calculated object direction 〇 CAL and the link segment uRS stored in the map information database, on the map information material. The library " retrieves the Orientation-Matched R0ad section (〇MR) (hereinafter referred to as the first OMR). The processing unit 106 can execute a computer executable (e.g., computer readable instructions) such that the processing unit 〇6 is based on the ‘two: the body position Pcal and the position of the road segment in the plurality of OMRs.
s x在多個OMR 201231924 中搜索出至少一位置匹配路段(Positi〇n Matched R〇ad section’PMR)(以下稱為多個第一 PMR);至少一 pMR 可以是指一段或多段PMR,並且可用來對物體進行定位。 在一實施例中,處理單元1〇6透過將所計算出之物體 方向〇CAL和儲存在地圖資訊資料庫中的每一路段方向〇rs 的差值與一方向偏移參數0REF進行比較,以搜索出多段 0MR。右所4算出的物體方向qgal和某條路段的路段方 向〇rs之間之差值0DIF小於方向偏移參數0ref,例如, eDIF=|〇CAL-〇RS|<eREF,那麼這條路段即為—段〇MR。處理 單元106還可透過將一距離參數值Dref與從所計算出之物 體位置Pcal到多段OMR中每一路段的距離進行比較,以 搜索出得到至少一段PMR。若從所計算出的物體位置PcAL 到一 I又OMR的距離小於距離參數值dref,那麼這段〇mr 是一段PMR。 在一實施例中,如果處理單元1〇6根據所計算出之物 體位置PCAL和多段OMR中路段的位置Prs,而未在多段 0MR中搜索出位置匹配路段PMR時,那麼處理單元1〇6 將距離參數值DREF增加到另一個值d’ref。處理單元1〇6 透過將距離參數值D,REF與從所計算出的位置Pcal到多段 0MR中每一路段的距離進行比較,以在多段〇MR中重新 搜索出至少一段PMR。舉例說明’距離參數值Dref可以 201231924 初始時設置為10公尺,如果處理單元1%在ι〇公尺内不 能找到任何PMR,處理單力1%將距離參數值¥增加 至30公尺、50公尺或70公尺等等,並且重複比較之動作 直至找到至少-段PMR。在—實施财,距離參數值、 有-個臨界值(例如,7〇公尺),如果處理單元廳在臨界 值内不能搜索到任何PMR ’那麼處理單a 1〇6將終止此搜 索;另-方面’如果搜索出到至少—段PMR,則地圖系統 1 〇 2為位置計算系統i i 2提供至少—段p黯的資訊。 在一實施例中,位置計算系統112包含一 Qps模組118 以及-處理器12G ’其中,處理器⑽包含—導航輔助模 組114和一航位推算(DR)模組116。如果Gps信號足夠強, GPS模組118可以根據Gps信號計算物體的位置;如果 GPS信號不夠強,貝,j DR模組116可以根據物體的初始位 置和運動軌跡計算物體的位置;導_助模組114可以修 正DR模組116所計算出的物體的位置。 舉例說明’ GPS模組118透過—天線124接收哪信 號’並根據GPS信號計算物體的位置。Gps模組ιΐ8為地 圖系統102提供物體的位置資訊,進而在導航地圖上顯示 物體的位置;GPS模組118可以為處理器12()提供物體的 位置資訊。處理器120中的DR模組116根據物體的初始 位置資訊(例如’ GPS模組118所提供的位置資訊或預先 201231924 儲存在DR模組116中的位 料管一 T ’位置貝旬並根據物體的運動軌 跡计异物體的位置P 复. 镦/、中運動軌跡包含物體的方向 邊化以及物體的行走距離, 軌跡可以透過運動感測 益叫例如,陀螺儀和里程計等)的獲取到;DR模纪 H6遇可讀據運純跡計算物體的縣方向 理器120相連接的一介面u 4 υ 了以週期性地接收來自地圖 系統Η)2的參考資訊,並將參考f訊傳輸給處理器⑽。 其中,參考資訊表示了顯示在導航地圖上的物體所處的參 考路段的參考方向〇ref和參考位置進—步地,處理 器12 0可以將所計算出的位置Pcal與參考位置進行比 較’將所計算出的方向%與參考方向〇REF進行比較; 如果所計算出的位置PeAL和參考位置%不匹配(例如, 所計算出的位置Pgal與參考位置Pref之間的距離大於預 設臨界值)’或者’如果所計算出的方向〇隱和參考方向 〇REF不匹配(例如’所計算出的方向〇cal與參考方向〇ref 的差值大於預設臨界值),則處理器12〇向地圖系統1〇2 請求至少一段PMR。 優點在於,處理器120透過介面11〇接收表示至少一 段PMR的資訊,並利用表示至少一段PMR的資訊修正所 計异出的方向〇CAL和所計算出的位置PCAL。 圖2為本發明一實施例提供的地圖200的部分結構示 201231924 意圖。圖2將結合圖1進行描述。如圖2所示,地圖· 包含:位置&和方向 〇丨、位置p2和方向〇2、位置p3和方向〇3、、位置p!i 和方向〇11’其中’位置在圖2中用圓點表示,方向在圖2 中用箭頭表圖2僅以U條路段作“娜說明,而本 發明實施例對路段的具體數目並不做限制。為描述方便起 見,將位置Ρκ和方向(\的路段稱為路段(Ρκ 〇κ) (Κ=1 2,·.·)。此外’PCAL表示DR模組116戶斤計算出Κ的物Κ體位置,’ 〇cal表示DR模組116所計算出的物體方白 在一實施例中,處理器120可以產生用以搜索地圖系 統1〇2的請求,請求包含有DR模組116戶斤計算出的方向 〇隱和位置PCAL。地圖系統102中的處理單元i 〇6根據此 請求將所計算出的方向〇CAL與每—個方向A、方向 02、…之間的差值與方向偏移參數θ_(例如,⑽)進 行比較,進而在地圖200中搜索以獲取第—〇MR。在圖2 所示之實施例中,若所計算出的方向%與方向〇ι、方 向〇2、方向〇3、方向〇4、方向〇5、方向〇6、方向〇9以 及方向〇1G的差值均小於60度,則第一 0MR包含路段(Ρι, 〇〇、路段(P2, 02)、路段(P3, 〇3)、路段(p4, 〇4)、路段仍,⑻、 路段(P6, 〇6)、路段(P9, 〇9)以及路段(p1〇, 〇1〇)。 處理單元106透過將從所計算出的位置匕从到第一Sx searches for at least one location matching segment (Positi〇n Matched R〇ad section 'PMR) in multiple OMR 201231924 (hereinafter referred to as multiple first PMRs); at least one pMR may refer to one or more segments of PMR and is available To position the object. In an embodiment, the processing unit 〇6 compares the calculated object direction 〇CAL with the difference of the direction 〇rs of each segment stored in the map information database with the one direction offset parameter 0REF, Search for multiple segments of 0MR. The difference between the object direction qgal calculated by the right 4 and the link direction 〇rs of a certain road segment is smaller than the direction offset parameter 0ref, for example, eDIF=|〇CAL-〇RS|<eREF, then the road segment is For - segment 〇 MR. The processing unit 106 can also search for at least one piece of PMR by comparing a distance parameter value Dref with the distance from the calculated object position Pcal to each of the plurality of OMR segments. If the distance from the calculated object position PcAL to an I and OMR is less than the distance parameter value dref, then this 〇mr is a piece of PMR. In an embodiment, if the processing unit 〇6 does not search for the position matching link PMR in the multi-segment 0MR according to the calculated object position PIDA and the position Prs of the segment in the multi-segment OMR, then the processing unit 1〇6 The distance parameter value DREF is increased to another value d'ref. The processing unit 〇6 re-searches at least one segment of the PMR in the multi-segment 〇MR by comparing the distance parameter values D, REF with the distance from the calculated position Pcal to each of the plurality of segments of the MR. For example, 'the distance parameter value Dref can be set to 10 meters at the beginning of 201231924. If the processing unit 1% can't find any PMR in the ι〇 meter, the processing single force 1% will increase the distance parameter value ¥ to 30 meters, 50 Metric or 70 meters, etc., and repeat the comparison until you find at least a segment of PMR. In the implementation of the financial, distance parameter value, there is a threshold (for example, 7 〇 meters), if the processing unit hall can not find any PMR within the critical value, then the processing order a 1 〇 6 will terminate the search; - Aspect 'If the search reaches at least the segment PMR, the map system 1 〇 2 provides at least the segment p黯 information for the location calculation system ii 2 . In one embodiment, location computing system 112 includes a Qps module 118 and a processor 12G' wherein the processor (10) includes a navigation aid module 114 and a dead reckoning (DR) module 116. If the GPS signal is strong enough, the GPS module 118 can calculate the position of the object according to the GPS signal; if the GPS signal is not strong enough, the j, j DR module 116 can calculate the position of the object according to the initial position and the motion trajectory of the object; Group 114 can correct the position of the object calculated by DR module 116. For example, 'GPS module 118 transmits - which signal is received by antenna 124' and calculates the position of the object based on the GPS signal. The Gps module ιΐ8 provides the location information of the object to the mapping system 102, thereby displaying the position of the object on the navigation map; the GPS module 118 can provide the processor 12() with the location information of the object. The DR module 116 in the processor 120 is based on the initial position information of the object (for example, 'the position information provided by the GPS module 118 or the position of the bit tube T T′ stored in the DR module 116 in advance 201231924 and according to the object The position of the trajectory of the different object is P. The trajectory of the 镦/, medium trajectory includes the direction of the object and the distance traveled by the object, and the trajectory can be obtained through motion sensing, such as gyroscopes and odometers; The DR module H6 encounters a interface u 4 connected to the county direction processor 120 that can calculate the object by the pure track, periodically receives the reference information from the map system Η)2, and transmits the reference information to the reference information. Processor (10). Wherein, the reference information indicates that the reference direction 〇ref of the reference road segment on which the object displayed on the navigation map is located and the reference position are further advanced, and the processor 120 can compare the calculated position Pcal with the reference position. The calculated direction % is compared with the reference direction 〇 REF; if the calculated position PeAL and the reference position % do not match (for example, the distance between the calculated position Pgal and the reference position Pref is greater than a preset threshold) 'or' if the calculated direction ambiguity does not match the reference direction 〇REF (eg 'the difference between the calculated direction 〇cal and the reference direction 〇ref is greater than a preset threshold), then the processor 12 maps to the map System 1〇2 requests at least one PMR. The advantage is that the processor 120 receives the information indicating the at least one PMR through the interface 11 and corrects the calculated direction 〇CAL and the calculated position PCAL by using the information indicating the at least one piece of the PMR. FIG. 2 is a partial structural diagram of a map 200 according to an embodiment of the present invention. Figure 2 will be described in conjunction with Figure 1. As shown in Fig. 2, the map includes: position & and direction 〇丨, position p2 and direction 〇2, position p3 and direction 〇3, position p!i and direction 〇11' where 'the position is used in Fig. 2 The dot indicates that the direction is indicated by the arrow in FIG. 2, and only the U section is used for the description of the section. However, the embodiment of the present invention does not limit the specific number of the section. For the convenience of description, the position Ρ κ and the direction are used. (The section of \ is called the section (Ρκ 〇κ) (Κ=1 2,···). In addition, 'PCAL means that the DR module 116 is calculating the position of the object, ' 〇cal indicates the DR module 116. The calculated object is in an embodiment, the processor 120 can generate a request to search the map system 1〇2, and the request includes the direction and position PCAL calculated by the DR module 116. The processing unit i 1026 in 102 compares the calculated difference between the direction 〇CAL and each of the direction A, the direction 02, and the direction offset parameter θ_ (for example, (10)) according to the request, and further Searching in map 200 to obtain the first - 〇 MR. In the embodiment shown in Figure 2, if calculated The difference between % and direction 〇ι, direction 〇2, direction 〇3, direction 〇4, direction 〇5, direction 〇6, direction 〇9, and direction 〇1G are both less than 60 degrees, then the first 0MR contains the road segment (Ρι , 〇〇, section (P2, 02), section (P3, 〇 3), section (p4, 〇 4), section still, (8), section (P6, 〇 6), section (P9, 〇 9) and section ( P1〇, 〇1〇). The processing unit 106 transmits from the calculated position to the first
S 12 201231924 〇MR中每—路段的距離與距離參數值dref進行比較的方 式搜索出至少—段PMR。其中,轉參數值d卿可在初 始時設置,例如,10公尺。 若所叶异出的位置PCAL與所有的位置Pi、位置卩2、… 之間的距離均大於距離參數值DREF,則搜索不到任何 PMR,此時,處理單元106可以增加距離參數值DREF,例 如,將距離參數值DREF增加至30公尺。處理單元106在 第一 OMR中搜索出30公尺内的至少一段PMR。若搜索出 到至少一段P MR,則地圖系統丨〇 2為位置計算系統丨丨2提 供至少—段PMR的資訊;否則,處理單元1〇6再次增加 距離參數值DREF (例如,將距離參數值dref增加至50公 尺),處理單元1〇6可逐漸增加距離參數值dref直至搜索 出到至少一段PMR;然而’距離參數值DREF有一臨界值, 臨界值(例如,70公尺),若在臨界值内搜索出不到任何 PMR,處理單元1〇6則停止搜索出並可以產生指示搜索失 敗的輸出信號。 在一實施例中,當搜索出到至少一段PMR時’地圖系 統102為位置計算系統112提供一或多段PMR的資訊。處 理器120根據從所計算出之物體位置PCAL與至少一段PMR 中每一路段之間的距離以及根據至少一段PMR的路段總 數,從至少一段PMR中選擇一條匹配參考路段(Matched 13 201231924S 12 201231924 The distance between each road segment in the 〇MR is compared with the distance parameter value dref to search for at least the segment PMR. Among them, the parameter value d can be set at the beginning, for example, 10 meters. If the distance between the position PCAL and all the positions Pi, the position 卩2, ... is greater than the distance parameter value DREF, no PMR can be searched. At this time, the processing unit 106 can increase the distance parameter value DREF. For example, increase the distance parameter value DREF to 30 meters. Processing unit 106 searches for at least one segment of PMR within 30 meters in the first OMR. If at least one piece of P MR is searched, the map system 丨〇2 provides the location calculation system 丨丨2 with information of at least the segment PMR; otherwise, the processing unit 〇6 increases the distance parameter value DREF again (eg, the distance parameter value) The dref is increased to 50 meters), the processing unit 1〇6 can gradually increase the distance parameter value dref until the search for at least one piece of PMR; however, the 'distance parameter value DREF has a critical value, a critical value (for example, 70 meters), if Within the threshold, no PMR is searched, and processing unit 1〇6 stops searching and can generate an output signal indicating a search failure. In one embodiment, the map system 102 provides the location computing system 112 with information for one or more PMRs when searching for at least one segment of the PMR. The processor 120 selects a matching reference road segment from at least one segment of the PMR based on the distance from the calculated object position PLAL to each of the at least one segment of the PMR and the total number of segments according to the at least one segment of the PMR (Matched 13 201231924)
Reference Road section,MRR)。 舉例說明’所計算出的位置pCAL與位置&之間的距 離可能小於距離參數值dref,而所計算出的位置Pcal與位 置Pi、位置P2、位置P4、位置ps、位置P6、位置P9以及 位置PlO之間的距離可能大於距離參數值DREF,則相應地 只搜索出到一段PMR,即路段(P3, 〇3)。則導航輔助模組 114將路段(Ρ3, ο;)作為一段MRR,並將所計算出的位 置Pcal和所si*算出的方向〇CAL分別修正至位置&和方向 〇3。在一實施例中,DR模組116包含一暫存單元(圖中未 示)’暫存單元儲存當前所計算出物體的資訊,例如可為: 位置資訊和方向資訊。導航辅助模組114可擦除暫存單元 中當鈿所计算出物體的資訊,並且將表示位置ρ]和方白 〇3的資訊寫入暫存單元中。 再舉例說明,所計算出的位置PCAL與位置p3和位置 I之間的距離可能小於距離參數值Dref,而所計算出的位 置Pcal與位置Ρι、位置P2、位置&、位置&、位置p9以 及位置P丨〇之間的距離則可能大於距離參數值Dref,則相 應地搜索出兩段PMR,即路段(A,〇3)和路段(p5, 〇5)。 處理态120將物體位置pCAL與路段位置&之間之距離(例 如,IP3-PCAL|)與物體位置pCAL與路段位置J>5之間之距離 (例如’ |P5~PCAL|)進行比較,導航輔助模組114將距離所計Reference Road section, MRR). For example, the calculated distance between the position pCAL and the position & may be smaller than the distance parameter value dref, and the calculated position Pcal and the position Pi, the position P2, the position P4, the position ps, the position P6, the position P9, and The distance between the positions P10 may be greater than the distance parameter value DREF, and accordingly only a segment of the PMR, ie the road segment (P3, 〇3), is searched out. Then, the navigation assisting module 114 takes the link (Ρ3, ο;) as a piece of MRR, and corrects the calculated position Pcal and the direction 〇CAL calculated by the si* to the position & and the direction 〇3, respectively. In an embodiment, the DR module 116 includes a temporary storage unit (not shown). The temporary storage unit stores information about the currently calculated object, for example, location information and direction information. The navigation aid module 114 can erase the information of the object calculated by the unit in the temporary storage unit, and write information indicating the position ρ] and the square 〇3 into the temporary storage unit. By way of example, the calculated distance between the position PCAL and the position p3 and the position I may be smaller than the distance parameter value Dref, and the calculated position Pcal and position Ρι, position P2, position & position & position The distance between p9 and position P丨〇 may be greater than the distance parameter value Dref, and the two segments of PMR, namely the road segment (A, 〇 3) and the road segment (p5, 〇 5), are searched accordingly. The processing state 120 compares the distance between the object position pCAL and the segment position & (eg, IP3-PCAL|) and the distance between the object position pCAL and the segment position J> 5 (eg, ' |P5~PCAL|), The navigation aid module 114 calculates the distance
S 14 201231924 了出的位置peAL最近的路段作為—段聰,例如,路段 並根據已選定的罐尺修正所計算出的位置 和所計算出的方向oCAL。 個例子中,搜索出的PMR的數目可能大於兩 〇如在路段(1>3,〇3)的上方或下方可能有-條公路 橋。(未麵巾糾),且公路橋财向與料03接近,處 r 〇可检棄當刖接收到的PMR資訊;當時間超過預 »又間隔或者物體的行走距離超過預設距離時,處理器12〇 α、產生新的搜索請求,包含重新所計算出的物體方向 〇CAL和重新所計算出的物體位置p,cal。處理單元觸接 收新的搜索睛求並基於重新所計算出的物體方向〇,CAL在 地圖貧訊儲存單元1〇4的資料庫中搜索以獲取第二 OMR,其中,資料庫可為地圖2〇〇。處理單元ι〇6還基於 重新所計算出的位置P’cal在第三OMR中搜索至少一段 PMR (本發明實施例中的第二pMR);處理單元1〇6以上 述類似的方式執行搜索步驟。優點在於,由於定位系統1〇〇 可避免採用錯誤路段對所計算出之物體位置和方向進行修 JE,進而提高了所計算出之物體位置和方向的準確度。 圖3為本發明一實施例提供的位置計算系統112執行 的示例性方法300的流程圖。圖3將結合圖1進行描述。 在一實施例中,可以是位置計算系統112中的處理器12〇 15 201231924 執行流程圖300中的步驟,並向地圖系統1〇2發送搜索至 少一段PMR的請求,為描述方便,本發明實施例將搜索 至少一段PMR的請求稱為搜索請求。 在步驟302中,處理器120嘗試獲取物體的初始資訊; 其中’初始資訊包含物體的初始位置PINT和與初始位置 Pint相對應的初始時間tiNr物體的初始資訊可以預先儲存 在DR模組116或導航輔助模組U4中。在一實施例中, 當GPS模組118接收GPS信號時,GPS模組118為處理 器120產生物體的位置資訊,處理器120可以將GPS模組 118先前產生的位置資訊視為初始位置資訊,處理器120 也可以將DR模組116先前所計算出的物體位置資訊視為 初始位置資訊,處理器12〇還可以將導航輔助模組114先 前修正的物體位置資訊視為初始位置資訊。當處理器12〇 取得物體的初始位置資訊時,流程轉到步驟304 ;否則, 處理器120繼續嘗試獲取物體的初始資訊。 在步驟304中,處理器120將物體的行走距離與預設 距離參數值進行比較,預設距離參數值例如可以為10公 尺。具體而言,行走距離為初始位置Pint與當前所計算出 的位置PCAL之間的距離。如果物體的行走距離|Pcal-Pint| 大於預設距離參數值(例如’ 10公尺),處理器120則執 行步驟310 ;否則,流程轉到步驟306。 201231924 在步驟306中,處理器12〇計算物體的行走時間,具 體而。,行走時間係從初始時間tiNT到當前時間、收的時 間段。如果物體的行走時間丨tcuR_t丨超過預設時間參數(例 如,3分鐘),處理器120則執行步驟31〇 ;否則,流程 到步驟308。 & 如上所述,處理器m可以接收參考資訊,參考資訊 表示顯示在導航地圖上的物體所處的參考路段的參考方向 Oref和參考位置pREF。 在步驟308中,處理器12〇將物體的當前所計算出的 位置PCAL肖參考位置Pref進行比較,並將物 算出的方向%與參考扣%騎崎。舉舰^ 處理器m將當前所計算出的位置、與參考位置& 之間的雜與賊轉臨錢(例如,1G纽)進行比較,F 若距離|PREF-PCAL|大於預設距離臨界值,則當前所計算出 的位置PCAL與參考位i PREF不匹配。處理$ 12〇還將當前 所計算出的方向(W與參考方向〇卿之_方向差值跟 預設方向臨界值(例如,H)度)進行比較,若差值|〇ref_〇cal| 大於預設方向臨界值,則當前所計算出的方向0gal與參考 方向〇咖不匹酉己。若當前所計算出的位£ PCAL與參考位 置!>REFf或者當賴料“方向與參考方向 〇REF不匹配,處理H 12G則執行步驟31G ;否則,處理器 201231924 120重複執行步驟304。 在步驟310中,向地圖系統102發送搜索請求。 透過上述步驟可知,處理器120可以根據不同的預設 距離臨界值向地圖系統102發送搜索請求,處理器12〇也 可以在不同的時間間隔内向地圖糸統1 〇2發送搜索^•青東. 當所計算出物體的當前的資訊與參考資訊不匹配時,處理 器120還向地圖系統102發送搜索請求。 在一實施例中,地圖系統102接收來自處理器12〇的 搜索請求’並根據搜索請求為處理器12〇提供至少一段 PMR以修正所計算出物體當前的資訊。 圖4為本發明一實施例提供的地圖系統1〇2執行的示 例性方法400流程圖;圖4將結合圖丨和圖2所示之實施 例進行描述。在一實施例中,地圖系統1〇2執行流程圖4〇〇 中的步驟,進而為處理器120提供至少一 在步驟402中,地圖系統1〇2檢測來自一處理器12〇 的一搜索請求;當地圖系統102接收到搜索請求,地圖系 統102執行步驟4〇4 :否則,地圖系統1〇2重複執行步驟 402。 在步驟404中,由地圖系統1〇2在一地圖資訊儲存單 70 104的一資料庫中搜索多段OMR。 在步驟406中,地圖系統1〇2在多段0MR申搜索出S 14 201231924 The nearest road segment of the position peAL is taken as Duan Cong, for example, the road segment and the calculated position and the calculated direction oCAL are corrected according to the selected tank rule. In one example, the number of PMRs searched may be greater than two. For example, there may be a road bridge above or below the road segment (1 > 3, 〇 3). (No face towel correction), and the road bridge financial direction is close to material 03, where r 〇 can discard the PMR information received by the ;; when the time exceeds the pre-» interval or the walking distance of the object exceeds the preset distance, the processing The device 12〇α generates a new search request, including recalculating the calculated object direction 〇CAL and recalculating the calculated object position p,cal. The processing unit touches the new search target and based on the recalculated object direction 〇, the CAL searches in the database of the map poor storage unit 1〇4 to obtain the second OMR, wherein the database can be the map 2〇 Hey. The processing unit ι6 also searches for a minimum of one PMR (the second pMR in the embodiment of the present invention) in the third OMR based on the recalculated position P'cal; the processing unit 〇6 performs the search step in a similar manner as described above . The advantage is that the positioning system 1 避免 can avoid the use of the wrong road segment to repair the calculated position and direction of the object, thereby improving the accuracy of the calculated object position and direction. FIG. 3 is a flow diagram of an exemplary method 300 performed by location computing system 112, in accordance with an embodiment of the present invention. Figure 3 will be described in conjunction with Figure 1. In an embodiment, the processor 12 〇 15 201231924 in the location calculation system 112 may perform the steps in the flowchart 300 and send a request to the map system 1 搜索 2 to search for at least one PMR. For ease of description, the present invention is implemented. A request to search for at least one piece of PMR is referred to as a search request. In step 302, the processor 120 attempts to acquire initial information of the object; wherein 'the initial information includes the initial position PINT of the object and the initial information of the initial time tiNr object corresponding to the initial position Pint may be pre-stored in the DR module 116 or navigation Auxiliary module U4. In an embodiment, when the GPS module 118 receives the GPS signal, the GPS module 118 generates the location information of the object for the processor 120, and the processor 120 can treat the location information previously generated by the GPS module 118 as the initial location information. The processor 120 may also treat the object position information previously calculated by the DR module 116 as the initial position information, and the processor 12 may also treat the object position information previously corrected by the navigation assisting module 114 as the initial position information. When the processor 12 取得 retrieves the initial position information of the object, the flow proceeds to step 304; otherwise, the processor 120 continues to attempt to acquire the initial information of the object. In step 304, the processor 120 compares the walking distance of the object with a preset distance parameter value, which may be, for example, 10 meters. Specifically, the walking distance is the distance between the initial position Pint and the currently calculated position PCAL. If the walking distance |Pcal-Pint| of the object is greater than the preset distance parameter value (e.g., ' 10 meters), the processor 120 executes step 310; otherwise, the flow proceeds to step 306. 201231924 In step 306, processor 12 calculates the travel time of the object, specifically. The walking time is from the initial time tiNT to the current time and the time period of receipt. If the travel time 丨tcuR_t丨 of the object exceeds the preset time parameter (e.g., 3 minutes), the processor 120 executes step 31; otherwise, the flow proceeds to step 308. & As described above, the processor m can receive reference information indicating the reference direction Oref and the reference position pREF of the reference section on which the object displayed on the navigation map is located. In step 308, the processor 12 比较 compares the currently calculated position PCAL 参考 reference position Pref of the object, and calculates the direction % of the object and the reference deduction. The ship ^ processor m compares the currently calculated position with the reference position & and the thief transfer money (for example, 1G button), F if the distance | PREF-PCAL| is greater than the preset distance limit The value, the currently calculated position PCAL does not match the reference bit i PREF. Processing $12〇 also compares the currently calculated direction (W and the reference direction 〇 _ direction difference value with the preset direction threshold value (for example, H) degree), if the difference |〇ref_〇cal| If the threshold value is greater than the preset direction, the currently calculated direction 0gal is not comparable to the reference direction. If the currently calculated bit is PCAL and the reference position! > REFf or when the "direction does not match the reference direction 〇 REF, the process proceeds to step 31G if H 12G is processed; otherwise, the processor 201231924 120 repeats step 304. In step 310, a search request is sent to the map system 102. The above steps show that the processor 120 can send a search request to the map system 102 according to different preset distance thresholds, and the processor 12 can also send a search to the map system 1 〇2 at different time intervals. The processor 120 also sends a search request to the map system 102 when the current information of the calculated object does not match the reference information. In an embodiment, the map system 102 receives the search request from the processor 12' and according to the search request. The processor 12 is provided with at least one piece of PMR to correct the current information of the calculated object. FIG. 4 is a flowchart of an exemplary method 400 performed by the map system 1〇2 according to an embodiment of the present invention; FIG. The embodiment shown in Figure 2 is described. In one embodiment, the map system 102 performs the steps in flowchart 4, which in turn provides the processor 120 with Less than one in step 402, map system 1 检测 2 detects a search request from a processor 12 ;; local map system 102 receives the search request, map system 102 performs step 4 〇 4: otherwise, map system 1 〇 2 repeats Step 402 is performed. In step 404, the multi-segment OMR is searched by a map system 1〇2 in a database of the map information storage list 70 104. In step 406, the map system 1〇2 searches in the multi-segment 0MR application.
18 201231924 至少一段PMR;如果搜索出至少一段PMR’則執行步驟 408。 在步驟408中,地圖系統102為位置計算系統η〕提 供至少一段PMR的方向資訊和位置資訊;進一步地,地 圖系統102可以按照類似於圖丨和圖2所示實施例中描述 的方式搜索出多段OMR和搜索出至少一段?以11,進而為 位置計算系統112提供至少一段PMR的方向資訊和位置資 訊0 圖5為本發明又一實施例提供的位置計算系統丨12執 行的示例性方法的流程圖。目5將結合_丨和圖2進 行描述。在-實施例中’位置計算系统i 12執行流程圖5〇〇 中的步驟’進而對所計算出物體的位置%和所計算出的 方向〇CAL進行修正。 在步驟502巾’處理器120接收來自地圖系統1〇2的 至少一段PMR的資訊,並檢查匹配路段的個數(例如 PMR中的路段個數)是否大於零且小於三;如果匹配路段 的個數大於零且小於三,流程轉到步驟5〇 . 货則’流裎 在步驟504中,處理器120在至少一段崎中選擇— 段咖處理器120按照類似於圖2所示實施例中描: 方式執行選擇步驟。 '、 19 201231924 在步驟506中,處理器120根據所計算出物體的方向 〇CAL的變化模式設置方向偏移臨界值Θτη,並根據所計算 出物體的位置PcAL的變化模式設置距離臨界值更二 體地說’如果所計算出的方向〇cal在預定時間間隔内的變 化增加,處理器120增加方向偏移臨界值Θτη :舉例說明, 如果物體在預定時關隔内轉了—個大於3Q度且小於⑽ 度的彎’那麼方向偏移臨界值Θτη可被設為15《,如果物 體在預S時間間隔内轉了 —個大於6()度的彎,那麼方向偏 移臨界值ΘΤΗ可被設為2〇度。此外,物體可以在路上直線 行走,例如,物體在預定時間間隔内的轉彎角度小於如 度’當物體在路上直線行走時,如果物體的直線行走距離 增加,那麼處理g 120增加距離臨界值Dth ;舉例說明, 如果物體的直線行走距離大於4G公尺刻、於15()公尺,那 麼距離臨界值dth被設置為5G公尺,如絲體的直線行走 距離大於150公尺’那麼距離臨界值Dth被設置為7〇公尺。 在乂驟508中’處理器12〇確定從所計算出物體的位 置PCAL到MMR的參考位置Pref的距離D⑽是否在第一 距離範圍内,例如’小於距離臨界值DTH ;此外,處理器 120還確&所算出物體的方向qgal^mmr的參考方向 oREF的差值θ·是否在第—方向偏移範圍内,例如,從3 度到方向偏移臨界值 θ™。如果距離〇CRS在第一距離範圍 20 201231924 :且=差值θ,在—方向偏移範圍内,那麼處理器120 1〇,否則,處理器120執行步驟516。 在/驟510中,導航輔助模叙U4修正所計算出的方 參考方向0ref,例如,將參考方向〇廳的資訊 寫她116中_所計算出的方向CW的資訊。 在步驟512中’處理器12〇確定距離d⑽是否在第二 ㈣㈣内’例如’從5公尺到距離臨界值DTH,並且確 疋差值eDIF是否在第二方向偏移範_,例如,小於方向 偏移臨界值Θτη。如果Μ η 如吐 戈果距離DCRS在第二距離範圍内且差值 eDIF在二方向偏移範圍内,那麼處理㈣ 否則,處理器m執行步驟516。 ^ 14, 在步驟5M中,導航辅助模組m修正所計算出的位 置PCAL至參考位置Pref,例如,將參考位置1^的資訊寫 入dr模組116中以覆蓋所計算出的位置、的資訊。 在一實施例中’處理器12G可以並行執行步驟奪步 ,510和步驟512•步驟514,當然本發明實施例對於處理 盗120在修正所計算出的方向〇cAL與所計算出的位置〜 時並無嚴格的先後順序。 在步驟5i6中,處理器120確定當前儲存在抓模組 116中的物體的位置和方向是否正確。舉例說明,如果參 考位置PREF和當前儲存的物體位置之間❹巨離D⑽小於 21 201231924 預定臨界值,例如,10公尺,且參考方向Oref和當前儲 存的物體方向的差值eDIF小於預定臨界值,例如,10度, 那麼當前儲存的物體的位置和方向資訊為正確。如果當前 儲存的物體的資訊為正確,那麼流程轉到步驟518 ;否則, 流程結束。 在步驟518中’位置計算系統112更新起點標誌。更 具體地說,位置計算系統112根據當前儲存在DR模組116 中的物體資訊命令地圖系統102更新顯示在導航地圖上之 物體位置。位置計算系統112還可以用當前儲存的資訊代 替先前獲得的物體的初始資訊。 圖6為本發明一實施例提供的定位系統100執行的示 例性方法600的流程圖。圖6將結合圖1、圖2、圖3、圖 4和圖5所示之實施例進行描述。 在步驟602中’定位系統1〇〇根據所計算出之物體方 向〇cal和儲存在地圖資訊儲存單元104的資料庫中的路段 方向0RS以在資料庫中搜索多段〇MR。 在步驟604中,定位系統1〇〇根據所計算出之物體位 置Pcal和多段OMR中路段的位置pRS以在多段〇MR中搜 索出至少一段PMR。 在步驟606中,定位系統1〇〇利用至少一段PMR對物 體進行定位。18 201231924 At least one piece of PMR; if at least one piece of PMR' is searched, step 408 is performed. In step 408, the map system 102 provides direction information and location information for at least one piece of PMR for the location calculation system η]; further, the map system 102 can search out in a manner similar to that described in the embodiment of FIG. Multi-segment OMR and search for at least one segment? The direction information and location information of at least one piece of PMR is provided at 11, and further to the location calculation system 112. FIG. 5 is a flow diagram of an exemplary method performed by the location calculation system 丨12 provided by yet another embodiment of the present invention. Item 5 will be described in conjunction with _丨 and Figure 2. In the embodiment, the position calculating system i 12 performs the step ' in the flowchart 5' to further correct the calculated position % of the object and the calculated direction 〇 CAL. At step 502, the processor 120 receives information from at least one segment of the PMR of the map system 〇2, and checks whether the number of matching segments (eg, the number of segments in the PMR) is greater than zero and less than three; if the segments are matched The number is greater than zero and less than three, and the flow proceeds to step 5〇. The goods are flowed in step 504, and the processor 120 selects in at least one segment of the segment—the segment processor 120 is described in an embodiment similar to that shown in FIG. : The way to perform the selection step. ', 19 201231924 In step 506, the processor 120 sets the direction offset threshold Θτη according to the change pattern of the calculated direction 〇CAL of the object, and sets the distance threshold according to the change pattern of the calculated position PcAL of the object. Specifically, if the calculated change in direction 〇cal increases within a predetermined time interval, processor 120 increases the direction offset threshold Θτη : for example, if the object is rotated within the predetermined interval - a greater than 3Q degrees And the bend less than (10) degrees, then the direction offset threshold Θτη can be set to 15", if the object is rotated in the pre-S time interval - a bend greater than 6 () degrees, then the direction offset threshold ΘΤΗ can be Set to 2 degrees. In addition, the object can walk straight on the road, for example, the turning angle of the object in the predetermined time interval is less than the degree 'when the object is walking straight on the road, if the straight walking distance of the object increases, the processing g 120 increases the distance threshold Dth; For example, if the straight-line travel distance of the object is greater than 4G metric, at 15 () meters, then the distance threshold dth is set to 5G meters, if the linear travel distance of the filament is greater than 150 meters, then the distance threshold Dth is set to 7 inches. In step 508, the processor 12 determines whether the distance D(10) from the position PCAL of the calculated object to the reference position Pref of the MMR is within the first distance range, such as 'less than the distance threshold DTH; further, the processor 120 further It is determined whether the difference θ· of the reference direction oREF of the direction qgal^mmr of the calculated object is within the range of the first direction offset, for example, the threshold value θTM from 3 degrees to the direction. If the distance 〇CRS is within the first distance range 20 201231924 : and = the difference θ, within the - direction offset range, then the processor 120 1 〇, otherwise, the processor 120 performs step 516. In/in step 510, the navigation aid module U4 corrects the calculated square reference direction 0ref, for example, the information of the reference direction hall is written into the information of the direction CW calculated by her 116. In step 512, the processor 12 determines whether the distance d(10) is within the second (four) (four) 'for example' from 5 meters to the distance threshold DTH, and determines whether the difference eDIF is offset in the second direction by, for example, less than The direction offset threshold Θτη. If Μη, such as the vogogo distance DCRS, is within the second distance range and the difference eDIF is within the two-way offset range, then processing (4) Otherwise, processor m performs step 516. ^14, in step 5M, the navigation aid module m corrects the calculated position PID to the reference position Pref, for example, writing information of the reference position 1^ into the dr module 116 to cover the calculated position. News. In an embodiment, the processor 12G may perform step capture 510 and step 512 • step 514 in parallel. Of course, the embodiment of the present invention corrects the calculated direction 〇cAL and the calculated position 〜 for the hacker 120. There is no strict sequence. In step 5i6, the processor 120 determines if the position and orientation of the object currently stored in the capture module 116 is correct. For example, if the reference position PREF and the currently stored object position are greater than D 2012, the predetermined threshold value is, for example, 10 meters, and the difference eDIF between the reference direction Oref and the currently stored object direction is less than a predetermined threshold. For example, 10 degrees, then the position and orientation information of the currently stored object is correct. If the information of the currently stored object is correct, then the flow proceeds to step 518; otherwise, the flow ends. In step 518, the position calculation system 112 updates the start point flag. More specifically, the location calculation system 112 commands the map system 102 to update the location of the object displayed on the navigation map based on the object information currently stored in the DR module 116. The location calculation system 112 can also replace the initial information of previously acquired objects with the currently stored information. FIG. 6 is a flowchart of an exemplary method 600 performed by the positioning system 100 according to an embodiment of the present invention. Figure 6 will be described in conjunction with the embodiment shown in Figures 1, 2, 3, 4 and 5. In step 602, the positioning system 1 searches for a plurality of segments of MR in the database based on the calculated object direction 〇cal and the segment direction 0RS stored in the database of the map information storage unit 104. In step 604, the positioning system 1 searches for at least one piece of PMR in the multi-segment 〇MR based on the calculated object position Pcal and the position pRS of the segment in the multi-segment OMR. In step 606, the positioning system 1 aligns the object with at least one segment of the PMR.
S 22 201231924 、體實〜方式和㈣料本發日狀常用實施例。 斤在不麟申#專利範®所界定的本發明精神和發明 範圍的前提下相有各朗補、修改和賴。本領域技術 u理解’本發财實際應財可減具體的環境和 工作要求在不背離發明準則的前提下在形式、結構、佈局、 彳材料、元件、元件及其它方面有所變化。因此,在 此彼路之實施例僅說明而非限制,本發明之範圍由後附申 請專利範其合法㈣物界定,而稀於此前之福述。 【圖式簡單說明】 圖1為本發明一實施例提供的定位系統的結構示意 圖; 圖2為本發明一實施例提供的地圖的部分結構示音 圖; 〜 圖3為本發明一實施例提供的位置計算系統執行的示 例性方法流程圖; 圖4為本發明一貫施例k供的地圖系統執行的示例性 方法流程圖; 圖5為本發明另一實施例提供的位置計算系統執行的 示例性方法流程圖;以及 圖6為本發明一實施例提供的定位系統執行的示例性 方法'流程圖。 23 201231924 【主要元件符號說明】 100 :定位系統 102 :地圖糸統 104 :地圖資訊儲存單元 106 :處理單元 108 :記憶體 110 :介面 112 :位置計算系統 114 :導航輔助模組 116 :航位推算(DR)模組 118 : GPS 模組 120 :處理器 122 :運動感測器 124 :天線 200 :地圖 300 :方法 302〜310 :步驟 400 :方法 402〜408 :步驟 500 :方法 502〜518 :步驟 P1〜P11 :位置 PCAL :位置 〇1〜〇1 1 :方向 〇CAL· :方向 24S 22 201231924, body-to-mode and (4) common examples of the present invention. In the premise of the spirit of the invention and the scope of the invention defined by the patent, the patents are subject to various amendments, modifications and remedies. The art in the art understands that the actual financial and operational requirements of the present invention may vary in form, structure, layout, materials, components, components and the like without departing from the inventive principles. Therefore, the embodiments of the present invention are merely illustrative and not limiting, and the scope of the present invention is defined by the appended patent application, which is abbreviated from the foregoing. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural diagram of a positioning system according to an embodiment of the present invention; FIG. 2 is a partial structural diagram of a map according to an embodiment of the present invention; FIG. 4 is a flowchart of an exemplary method performed by a map system provided by a consistent embodiment k of the present invention; FIG. 5 is an example of execution of a location calculation system according to another embodiment of the present invention; FIG. 6 is a flowchart of an exemplary method performed by a positioning system according to an embodiment of the present invention. 23 201231924 [Description of main component symbols] 100: Positioning system 102: Map system 104: Map information storage unit 106: Processing unit 108: Memory 110: Interface 112: Position calculation system 114: Navigation assistance module 116: Dead reckoning (DR) Module 118: GPS Module 120: Processor 122: Motion Detector 124: Antenna 200: Map 300: Method 302-310: Step 400: Method 402~408: Step 500: Method 502~518: Step P1~P11: Position PCAL: Position 〇1~〇1 1 : Direction 〇CAL· : Direction 24