I 201237828 六、發明說明: 【發明所屬之技術領域】 [0001]所述技術一般關於顯示裝置。尤其,所述技術一般關於 可撓性顯示裝置及製造其之方法。 [先前技術] [麵]顯示裝置市場已經透過引入平面顯示器(flat panei display,FPD)而改變’該顯示器輕易地實現了大面積 以及展現出減少的重量和厚度。舉例而言,於多種的Fpd 0 當中’有機發光一極體(organic light emitting diode,0LED)顯示器由於其自我發光的特性(亦即不需 要光源)而展現出減少的厚度和重量。 [0003] 因為傳統的FPD可能包括玻璃基板,所以其可撓性有所減 少,並且在應用上有所受限。再者,傳統的FPD可能在其 基板上包括薄膜電晶體以做控制。 [0004] 本節所揭露的上述資訊僅為了增進了解所述技術的背景 ,因此本節可能包含對所屬技術領域具有通常知識者而 〇 言並不構成該國已知之先前技術的資訊。 【發明内容】 [0005] 因為已經努力做到所述的科技以提供製造可撓性顯示裝 置的方法,所以當可撓性基板和載體基板分開時可以避 免薄膜電晶體受損,並且如此可以減少處理成本以允許 大面積情形下做快速脫離。 [0006] 範例性具體態樣提供製造可撓性顯示裝置的方法,其包 括:形成熱產生器於載想基板上;形成可撓性基板於熱 100115132 表單编號Α0101 第3頁/共38頁 1003293565-0 201237828 … 產生器上;形成薄膜電晶體於可撓性基板上;形成連接 於薄膜電晶體的發光元件;以及藉由施加熱至可撓性基 板而從熱產生器分開可撓性基板,其中施加熱包括以熱 產生器來產生熱。 [0007] 形成可撓性基板可以包括形成單層於熱產生器上。 [0008] 從熱產生器分開可撓性基板可以包括施加熱而於熱產生 器和可撓性基板之間提供介面溫度,該溫度大於可撓性 基板的熔點。 [0009] 形成可撓性基板可以包括形成具有初始厚度的可撓性基 板,並且形成熱產生器包括形成傳送熱到可撓性基板的 熱產生器。 [0010] 形成可橈性基板可以包括:形成犧牲層於熱產生器上; 形成避免水氣滲透層於犧牲層上;以及形成主體層於避 免水氣滲透層上。 [0011] 從熱產生器分開犧牲層可以包括施加熱而於熱產生器和 犧牲層之間提供介面溫度,該温度大於犧牲層的熔點。 [0012] 可撓性顯示裝置可以藉由上述方法所製造,其可撓性基 板的外部具有範圍從大約1奈米到大約15奈米的均方根粗 糙度。 [0013] 範例性具體態樣提供另一種製造可撓性顯示裝置的方法 ,其包括:形成熱產生器於載體基板上,該熱產生器包 括具有預定電阻的傳導材料;形成可撓性基板於熱產生 器上;形成包括薄膜電晶體的驅動電路於可撓性基板上 100115132 表單編號A0101 第4頁/共38頁 1003293565-0 201237828 [0014] [0015] :形成發光元件和包 ^.A 匕封構件於驅動電路上;藉由施加電 '、、、產生器而產生焦斗熱,所#生的焦耳熱施加於可 撓性基板狀熱產^分開可撓性基板。/ 形成熱產生器可以包括於載體基板上沉積金屬和金屬氧 化物當中至少-者至均勻厚度。 產生 <、、、耳熱可以包括施加具有脈衝波形的電壓至熱產生 器。 剛^成可撓性基板可以包括形成單層於熱產生器上 ,使得 單層接觸熱產生n的預定部分被熱產生器的焦耳熱所分 解。 [0017] 可撓性基板可以包括聚亞醯胺、聚碳酸酯、聚丙烯酸酯 、聚鍵亞酿胺、聚醚颯、聚對笨二甲酸乙酯、聚萘酸乙 酯當中至少一者。 [0018] 產生焦耳熱可以包括加熱熱產生器到大約30〇〇C到大約 900°C的溫度。 [0019] 形成可撓性基板可以包括形成具有初始厚度的可撓性基 板’並且形成熱產生器包括形成傳送熱到可撓性基板的 熱產生器。 [0020] 形成可撓性基板可以包括:形成犧牲層於熱產生器上; 形成避免水氣滲透層於犧牲層上;以及形成主體層於避 免水氣滲透層上。 [0021] 犧牲層可以形成得比主體層還薄,而至少部分的犧牲層 被熱產生器的焦耳熱所分解,如此則避免水氣滲透層和 100115132 表單編號A0101 第5頁/共38頁 1003293565-0 201237828 主體層從熱產生器分開。 [0022] 犧牲層可以由聚亞酿胺、聚碳酸奮令每丙婦酸醋、聚醚 亞醯胺、聚醚颯、聚對笨二甲酸乙酯、聚萘酸乙酯當中 至少一者所形成。 [0023] 熱產生器的焦耳加熱溫度可以是在大約3 0 0 °C到大約9 0 0 °C的範圍裡。 [0024] 藉由上述方法所製造之一種可撓性顯示裝置,其可撓性 基板的外部具有大約1奈米到大約15奈米的均方根粗糖度 〇 【實施方式】 [〇〇25] 下文將參考所附圖式來更完整地描述範例性具體態樣; 然而’它們可以具像為不同的形式,並且不應解讀成受 限於在此所列的具體態樣。反而是提供這些具體態樣, 如此則本揭示將會是透徹而完全的,並且將完整地傳達 本發明的範圍裡給熟於此技藝者。 [0026] 於圖式,層和區域的尺寸可能有所誇大以清楚示範。也 將了解當某層(或元件)是指在另一層或基板「上」時,它 可以直接在另一層或基板上’或者也可以存在著中介層 。此外,也將了解當某層是指在二層「之間」時,它可以 是二層之間的唯一層,或者也可以存在著一或更多個中 介層。全篇相同的參考數字是指相同的元件。 [0027] 圖1示範根據範例性具體態樣之製造可撓性顯示襞置的方 法流程圖。參見圖1,製造可撓性顯示裝置的方法可以包 括:形成熱產生器於載體基板上(操作S10);形成可撓性 100115132 表單編號A0101 第6頁/共38頁 1003293565-0 201237828 基板於熱產生器上(操作s2〇);形成薄膜電晶體(thin him transktor ’ TFT)於可撓枉基板上(操作s3〇); 形成發光元件和包封構件(操作S4G);以及藉由使用熱產 生器所產生的熱而從熱產生器和載體基板分開可挽性基 板(操作S50)。 [0028] 圖2A到圖2E示範圖!所示之製造可撓性顯示農置的第—方 法階段載面圖,而®2F示範@2D的部分立體圖。現在將 Ο [0029] 參考圖1和’〜2F來敘述根據第-範例性具體態樣之製 造可撓性顯示裝置的方法。 參見圖2A,於操作S10,可以製備載體基板11〇,並且熱 產生器120可以形成於載體基板11〇上。載體基板11〇可 以是玻璃基板以做為硬的絕緣基板。熱產生器12〇於預定 的條件下產生熱。熱產生器120可以形成於载體基板11() 上以發揮表面加熱構件的功能。 [0030] Ο 參見圖2B ’於操作S20,可挽性.基板21〇可:以形成於(學 如直接於)熱產生器120上。舉例而言,可撓性基板21〇可 以是塑膠膜,並且可以藉由披覆液態聚合材料於(譬如直 接於)熱產生器120上再熱硬化所披覆的液態聚合材料而 製造。舉例而言’可撓性基板210可以由聚亞醯胺、聚碳 酸酯、聚丙烯酸酯、聚醚亞醯胺、聚醚颯、聚對苯二甲 酸乙酯、聚萘酸乙酯當中至少一者所形成。舉例而言, 聚亞醯胺可以用於大於45(TC的製程溫度,藉此使可撓性 基板21 〇上之薄臈電晶趙於製造期間的劣化減到最少。 [0031] 注意關於可撓性基板210,其係由塑膠膜所做成,而可以 100115132 表單碥號A0101 第7頁/共38頁 1003293565-0 201237828 被熱所’考曲或延伸’但可能難以於可撓性基板210上形成 以薄膜電晶體、發光元件和/或導線所建構的精確缚膜 圖案因此’因為可撓性基板210可以形成於載體基板 n〇上,所以栽體基板110可以提供可撓性基板210於後 續製程期間(譬如薄膜電晶體形成於可撓性基板210上的 期間)足夠的支持。 [0032] [0033] [0034] 可撓性基板21〇可以用單層來建構,並且可以形成於熱產 生器12G上以接觸熱產生器m。舉例而言,因為可挽性 基板210可以小於熱產生器12(),所以熱產生器12〇的邊 緣可从伸超過可撓性基板210,譬如沿著可撓性基板 210的整個周邊。 參見圖2C ’於操作S3Q,阻障層22()可以形成於可挽性基 板210上,並且包括薄膜電晶體的驅動電路230可以形成 於阻障層22G上’譬如轉層220可以是在可撓性基板 210和驅動電路230之間。為了便於示範,驅動電路230 於圖2C簡單地顯示為單層,譬如真正—動電路可以包 括多個薄膜電晶體和多個電容^多條導線可以形成於 可撓性基板21〇上。 如圖2C所進—步示範’於操作S4G,發光元件24()可以形 成於驅動電路23G上,並且包封構件咖可以形成於發光 το件240上。發光讀24()可以包括多個有機發光元件。 發光元件24G可以由驅動電路挪所控制,並且可以根據 驅動訊號來發光而顯示影像。為了容易敘述,圖2C把發 光元件240簡化為單層。 100115132 表單編號A0101 第8頁/共38頁 1003293565-0 201237828 [0035] [0036] Ο [0037] [0038]I 201237828 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] [0001] The technology is generally related to a display device. In particular, the techniques are generally directed to flexible display devices and methods of making the same. [Prior Art] [Face] The display device market has been changed by introducing a flat panel display (FPD). The display easily realizes a large area and exhibits reduced weight and thickness. For example, in a variety of Fpd 0 'organic light emitting diode (OLED) displays exhibit reduced thickness and weight due to their self-illuminating properties (i.e., no light source required). [0003] Since a conventional FPD may include a glass substrate, its flexibility is reduced and limited in application. Furthermore, conventional FPDs may include thin film transistors on their substrates for control. [0004] The above information disclosed in this section is only for enhancement of the understanding of the background of the technology, and therefore this section may contain information that is common to those skilled in the art and does not constitute prior art known in the art. SUMMARY OF THE INVENTION [0005] Since efforts have been made to provide the technology to provide a method of manufacturing a flexible display device, damage to the thin film transistor can be avoided when the flexible substrate and the carrier substrate are separated, and thus can be reduced Processing costs to allow for rapid detachment in large areas. [0006] An exemplary aspect provides a method of fabricating a flexible display device comprising: forming a heat generator on a substrate; forming a flexible substrate in heat 100115132 Form No. 1010101 Page 3 of 38 1003293565-0 201237828 ... on the generator; forming a thin film transistor on the flexible substrate; forming a light emitting element connected to the thin film transistor; and separating the flexible substrate from the heat generator by applying heat to the flexible substrate Where the application of heat includes the use of a heat generator to generate heat. Forming the flexible substrate can include forming a single layer on the heat generator. Separating the flexible substrate from the heat generator can include applying heat to provide an interface temperature between the heat generator and the flexible substrate that is greater than a melting point of the flexible substrate. Forming the flexible substrate can include forming a flexible substrate having an initial thickness, and forming the heat generator includes forming a heat generator that transfers heat to the flexible substrate. [0010] Forming the sizable substrate may include: forming a sacrificial layer on the heat generator; forming a water permeable layer to avoid the sacrificial layer; and forming the body layer on the moisture permeable layer. [0011] Separating the sacrificial layer from the heat generator can include applying heat to provide an interface temperature between the heat generator and the sacrificial layer that is greater than a melting point of the sacrificial layer. [0012] A flexible display device can be manufactured by the above method, the outer portion of the flexible substrate having a root mean square roughness ranging from about 1 nm to about 15 nm. [0013] An exemplary embodiment provides another method of fabricating a flexible display device, comprising: forming a heat generator on a carrier substrate, the heat generator comprising a conductive material having a predetermined electrical resistance; forming a flexible substrate On the heat generator; forming a driving circuit including a thin film transistor on the flexible substrate 100115132 Form No. A0101 Page 4 / 38 pages 1003293565-0 201237828 [0015] [Formation of light-emitting elements and packages ^.A 匕The sealing member is mounted on the driving circuit; the heat of the coke is generated by applying an electric current, and the generator is applied to the flexible substrate to separate the flexible substrate. Forming the heat generator may include depositing at least a uniform thickness of the metal and the metal oxide on the carrier substrate. Generating <,,, ear heat may include applying a voltage having a pulse waveform to the heat generator. Forming the flexible substrate may include forming a single layer on the heat generator such that a predetermined portion of the single layer contact heat generation n is decomposed by the Joule heat of the heat generator. [0017] The flexible substrate may include at least one of polyamine, polycarbonate, polyacrylate, polybromite, polyether oxime, poly(p-ethylidene), and polyethylene naphthalate. [0018] Producing Joule heat may include heating the heat generator to a temperature of from about 30 ° C to about 900 ° C. [0019] Forming the flexible substrate may include forming a flexible substrate having an initial thickness and forming the heat generator includes forming a heat generator that transfers heat to the flexible substrate. [0020] Forming the flexible substrate may include: forming a sacrificial layer on the heat generator; forming a water vapor permeable layer on the sacrificial layer; and forming the body layer on the water vapor permeable layer. [0021] The sacrificial layer may be formed thinner than the bulk layer, and at least a portion of the sacrificial layer is decomposed by the Joule heat of the heat generator, thus avoiding the water vapor permeable layer and 100115132 Form No. A0101 Page 5 of 38 1003293565 -0 201237828 The main body is separated from the heat generator. [0022] The sacrificial layer may be composed of at least one of polystyrene, polycarbonate, peracetate, polyether amide, polyether oxime, poly(p-ethyl benzoate), and polybutyl naphthalate. form. [0023] The Joule heating temperature of the heat generator may be in the range of about 300 ° C to about 9000 ° C. [0024] A flexible display device manufactured by the above method, wherein the outer portion of the flexible substrate has a root mean square coarseness of about 1 nm to about 15 nm. [Embodiment] [〇〇25] The exemplary embodiments are described more fully hereinafter with reference to the accompanying drawings, in which <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Rather, these specific aspects are provided so that this disclosure will be thorough and complete, and will be fully disclosed in the scope of the invention. [0026] In the drawings, the dimensions of layers and regions may be exaggerated for clarity. It will also be appreciated that when a layer (or component) is referred to as being "on" another layer or substrate, it can be directly on the other layer or substrate, or an intervening layer may be present. In addition, it will also be understood that when a layer refers to "between" layers, it can be the only layer between the two layers, or one or more intermediate layers can exist. The same reference numerals are used throughout the drawings to refer to the same elements. [0027] FIG. 1 illustrates a method flow diagram for fabricating a flexible display device in accordance with an exemplary embodiment. Referring to FIG. 1, a method of manufacturing a flexible display device may include: forming a heat generator on a carrier substrate (operation S10); forming a flexible 100115132 Form No. A0101 Page 6 / 38 pages 1003293565-0 201237828 Substrate in heat On the generator (operation s2〇); forming a thin film transistor (TFT) on the flexible substrate (operation s3〇); forming a light-emitting element and an encapsulation member (operation S4G); and generating by using heat The heat generated by the device separates the slidable substrate from the heat generator and the carrier substrate (operation S50). [0028] FIG. 2A to FIG. 2E are exemplary views! The manufacturing flexibility shown shows the first-stage phase map of the farm, while the ®2F demonstrates a partial perspective of @2D. Now, a method of manufacturing a flexible display device according to a first exemplary embodiment will be described with reference to Figs. 1 and 〜2F. Referring to Fig. 2A, a carrier substrate 11A may be prepared in operation S10, and a heat generator 120 may be formed on the carrier substrate 11A. The carrier substrate 11A may be a glass substrate as a hard insulating substrate. The heat generator 12 generates heat under predetermined conditions. The heat generator 120 may be formed on the carrier substrate 11 () to function as a surface heating member. [0030] Referring to FIG. 2B', in operation S20, the substrate 21 can be formed to be formed on (directly) the heat generator 120. For example, the flexible substrate 21 can be a plastic film and can be fabricated by coating a liquid polymeric material on (e.g., directly on) the heat generator 120 and then thermally hardening the coated liquid polymeric material. For example, the flexible substrate 210 may be at least one of polytheneamine, polycarbonate, polyacrylate, polyether amide, polyether oxime, polyethylene terephthalate, and polyethyl naphthalate. Formed by the people. For example, polymethyleneamine can be used at process temperatures greater than 45 (TC), thereby minimizing degradation during thin manufacturing of the flexible substrate 21 on the flexible substrate 21. [0031] Note that The flexible substrate 210 is made of a plastic film, and may be 100115132 Form No. A0101 Page 7 / 38 pages 1003293565-0 201237828 by the heat 'test or extend' but may be difficult to the flexible substrate 210 Forming a precise film-bonding pattern constructed by a thin film transistor, a light-emitting element, and/or a wire. Therefore, since the flexible substrate 210 can be formed on the carrier substrate n, the carrier substrate 110 can provide the flexible substrate 210. The subsequent process (such as during the formation of the thin film transistor on the flexible substrate 210) is sufficiently supported. [0033] The flexible substrate 21 can be constructed with a single layer and can be formed in heat. The generator 12G is placed in contact with the heat generator m. For example, since the switchable substrate 210 can be smaller than the heat generator 12(), the edge of the heat generator 12 can extend beyond the flexible substrate 210, such as along The flexible substrate 210 Referring to FIG. 2C', in operation S3Q, a barrier layer 22() may be formed on the switchable substrate 210, and a driving circuit 230 including a thin film transistor may be formed on the barrier layer 22G. For example, the layer 220 may be Between the flexible substrate 210 and the driving circuit 230. For convenience of demonstration, the driving circuit 230 is simply shown as a single layer in FIG. 2C, for example, the real-dynamic circuit may include a plurality of thin film transistors and a plurality of capacitors The wire may be formed on the flexible substrate 21A. As shown in Fig. 2C, in the operation S4G, the light-emitting element 24() may be formed on the driving circuit 23G, and the encapsulating member may be formed on the light-emitting member 240. The illuminating reading 24() may include a plurality of organic illuminating elements. The illuminating element 24G may be controlled by the driving circuit and may display an image according to the driving signal. For ease of description, FIG. 2C simplifies the illuminating element 240 into a single 100115132 Form No. A0101 Page 8 of 38 1003293565-0 201237828 [0036] [0038] [0038]
[0039] 阻障層220可以由無機層和/或有機層所形成,或者可以 由堆疊的無機和有機層所形成。阻障層22〇抑制了不欲的 兀素(譬如渔氣或氧)經由可撓性基板21〇而滲透到發光元 件240,因為溼氣或氧可以劣化發光元件24〇和減少發光 元件240的壽命。 包封構件250可以由多層所形成。包封構件25〇可以由多 個有機層、多個無機層和/或多個交替堆疊的有機和無 機層所形成。無機層譬如可以包括氧化鋁和/或氧化矽 ’而有機層譬如可以包括環氧樹脂、丙稀酸醋和/或丙 烯酸胺基曱酸乙酯。 無機層避免外面的溼氣和氧滲透到發光元件謂。有機層 弱化了無機層的内應力或者填充了無機層的微小裂隙和 針孔。無機層和有機層的材料是範例性的而不限制於所 述材料,並且可以使用熟於此技藝者所知的多種無機層 和有機層。 包封構件250可以包圍$驅動電路咖的側面和發光元件 240的側面,如此則驅動電路23〇和發光元件24〇的側面 可以不暴露於外面。換言之,包封構件㈣可以接觸(譬 如直接接觸)阻障層220,而驅動電路23〇和發光元件24〇 位於其間。 參見圖2D’於操作S5G,熱產生器12()可以產生熱並且施 加產生的熱至可撓性基板21G。由於施加㈣結果,因為 可撓性基板210接觸熱產生器12〇的預定區域(亦即圖中的 底部區域)可以被熱能所分解,所以可撓性基板21〇可以 100115132 表單編號A0101 第9頁/共38頁 1003293565-0 201237828 [0040] [0041] [0042] 100115132 從熱產生器120和載體基板110分開(圖2E)。也就是說, 广因為熱產生器1 20可以發揮熱能來源的功能而接觸可撓性 基板210,譬如直接接觸可撓性基板21〇面對熱產生器 120的整個底部表面,所以熱產生器120的熱能可以直接 轉移到可撓性基板210而不用介質。 相對而言,如果載體基板上的可撓性基板是由雷射源所 加熱,譬如相對於範例性具體態樣的熱產生器120來看, 則雷射光束(譬如準分子雷射光束)可以從載體基板外的 區域經由載體基板而朝向可撓性基板來照射,以便傳送 熱能到可撓性基板。也就是說,因為雷射源可能相對於 載體基板而定位於外部,譬如超出載體基板背對可撓性 基板的底部表面’所以雷射源的雷射光束輸出會通過載 體基板的厚度以便抵達並聚焦於可撓性基板上,藉此傳 送熱能到可撓性基板。據此,相對於熱產生器1 2 0 (亦即 接觸可撓性基板210並且位在載體基板11〇和可撓性基板 210之結構内的熱源),在載體基板外部的雷射源則需要 介質(亦即載體基板)以便轉移能量。 舉例而言’熱產生器120可以用傳導層來建構,譬如可以 包括傳導層,而於電壓施加條件下造成焦耳加熱。然而 ,熱產生器120的組態及其產熱原理並不限於上述的例子 ’而可以應用其他的組態來立即產生熱以及熱分解*八 的可挽性基板210。 熱產生器120可以包括金屬或金屬氧化物。舉例4叩吕,熱 產生器120可以包括鉬(Mo)、鈦(Ti)、銅(Cu)、加,銀(Ag) 、鉻(Cr)當中至少一者做為金屬和/或氧化銦锡 表單編號A0101 第10頁/共38頁 1003293565-0 201237828 ndlUID tln 〇Xlde,ΙΤ0)、氧化銦鋅(indium zinc xide, . !ZO)〶中至少_者做為金屬氧化物。 [0043] Ο [0044] ❹ [0045] [0046] 參見隨’載體基板11Q和熱產生器m可以形成為且有 大於可撓性基板2H)的面積,如關熱產生器⑽的末 譬如熱產生H12()面對可撓性基板⑽的上表面而在熱產 生器120之二相對邊緣的部分)可以暴露於可撓性基板21〇 的外部。連接於外部電源供應器(未顯示)的二襯塾130可 以接觸熱產生器120的暴露末端以施加電壓(譬如具有脈 衝波形的電壓)至熱產生器12〇 〇 ' 熱產生器120的暴露末端和其上的二襯墊13〇可以沿著載 體基板110的方向(譬如沿著圖中的χ抽)而面對彼此並 且可以於截面方向形成為長棒狀,譬如襯塾13Q可以沿著 熱產生益120及其暴露末端的整個長度而沿著y軸來延伸 。據此,由於襯墊130接觸熱產生器120的相對末端,故 均勻電流於一方向上(譬如沿著圖中χ軸方向)流過載體基 板110的熱產生器120,藉此導致於熱產生器12〇中產生 焦耳熱。 熱產生器120根據電阻值和脈衝條件而在多種溫度下產生 熱,譬如熱產生器120可以產生大於1〇〇(rc的熱。熱產生 器120的溫度可以設定在以下範圍:適於控制熱以快速通 過可撓性基板210的預定部分,並且立即分解預定部分至 預定的熱穿透深度,而不影響形成於可撓性基板21()上的 驅動電路230和發光元件240。 舉例而言,熱產生器120於操作S50的加熱溫度可以設定 100115132 表單編號A0101 第11頁/共38頁 1003293565-0 201237828 在大約300°C到大約9〇〇。(:的範圍裡。當熱產生器12〇的 加熱溫度低於30(TC時,於可撓性基板21G之底部區域的. 熱分解可能會不均勻,譬如可能分解不足的材料,藉此 使得可撓性基板210難以分解。當熱產生器12〇的加熱溫 度高於900X:時,可撓性基板21〇可能會過熱,藉此造成 形成於可撓性基板210上的薄膜電晶體劣化。 [0047] 熱產生器120可以於載體基板110上形成均勻的厚度,以 於整個熱產生器120上產生均勻的焦耳熱。 [0048] 可以考慮可撓性基板210的熱穿透深度來控制施加於熱產 生器120之電壓的脈衝時間。當可撓性基板21〇的厚度為 大約10微米時,熱穿透深度可以小於大約1微米。於此情 況’可以把提供熱至可撓性基板21〇所造成之驅動電路 230和發光元件240的劣化實質降到最低。 [0049] 上述根據範例性具體態樣的分開過程可以稱為焦耳加熱 感應升離(Joule heating induced lift-off, JILO)過程。於使用jilo過程的本範例性具體態樣,焦 耳熱是藉由施加電壓至熱產生器120而產生。由於熱產生 器120接觸可撓性基板21〇的預定區域,故從熱產生器 120轉移到可撓性基板210之預定區域的焦耳熱會穿透可 撓性基板210到預定的深度,譬如之前所討論的,此係根 據電壓脈衝時間。因為可撓性基板210被熱穿透的部分( 譬如可撓性基板210和熱產生器120之間的整個接觸表面) 會分解,所以可撓性基板210從熱產生器120分開。分開 過程也可以在幾微秒(以s)内來進行於寬和/或大的基板 上’並且對可撓性基板210上的驅動電路230和發光元件 100115132 表單編號 A0101 第 12 頁/共 38 頁 1003293565-0 201237828 [0050] [0051] Ο [0052] Ο [0053] 240造成極少或沒有熱和/或機械損傷。 相對而言,當雷射光束用於分開過程時,驅動電路和發 光元件可能由於雷射的強度而受損,此乃由於可撓性基 板和上面形成的諸層非常薄,儘管控制雷射光束強度和 聚焦深度亦然。再者’使用雷射可能由於雷射系統的花 費而增加成本,並且可能由於可用的雷射光束數目有限 以及必須掃描雷射光束而增加製造時間。 圖3Α到圖3C示範圖1所示之製造可撓性顯示裝置的第二方 法階段戴面圖。現在將參考圖1和圖3A~3C來敘述根據第 二範例性具體態樣之製造可撓性顯示裝置的方法。 參見圖3A ’於操作S10,可以製備載體基板110,並且熱 產生器120可以採類似第一範例性具體態樣(圖2A)的方式 而形成於栽體基板110上。於操作S20,可撓性基板211 可以藉由依序沉積犧牲層21、避免水氣滲透層22、主體 層23於(譬如直接於)熱產生器ι2〇上而形戍於熱產生器 120上。換言之,可撓性基板211可以包括多層,亦即可 挽性基板211可以包括犧牲層21、避免水氣滲透層22、主 體層23 ^犧牲層21可以形成於(譬如直接於)熱產生器 120上以接觸熱產生器120。 犧牲層21和主體層23可以由與第一範例性具體態樣之可 挽性基板210相同的塑膠膜所做成,並且塑膠膜可以藉由 披覆液態聚合材料再熱硬化而製造。舉例而言,犧牲層 21可以形成為不如主體層23那麼厚,譬如犧牲層21的厚 度可以等於或大於可撓性基板210的熱穿透深度。主體層 100115132 表單編號A0101 第13頁/共38頁 1003293565-0 201237828 23可以形成為具有與第—範例性具體態樣之可挽性基板 210相同的厚度。 1 [0054] 避免水氣滲透層22可以包括鋁(A1)、鉬(14〇)、鈦(Τι)、 銅(Cu)、銀(Ag)、鉻(Cr)當中至少一者做為金屬層,並 且它可以經由賤鑛而形成。避免水氣渗透層22控制外面 I氣通過可撓性基板211而渗入發光元件24〇。也就是說 ,於第二範例性具體態樣,阻障層22〇和避免水氣滲透層 22皆抑制溼氣和氧滲入發光元件24〇,藉此增加阻擋溼氣 和氧的效率。 [0055] 如之刖參考圖2C所言,於操作83〇,阻障層22〇和驅動電 路230可以形成於可撓性基板211上。於操作84(),發光 元件240和包封構件250可以形成於驅動電路230上,其 對應於第一範例性具體態樣。 [0056] 參見圖3B和圖3C,於操作S50,電壓施加於熱產生器1 20 以產生焦耳熱。接觸熱產生器120之部分或全部的犧牲層 21可以被焦耳熱所熱分解,並且可撓性基板2Π的避免水 氣滲透層22可以從熱產生器120分開以完成可撓性顯示裝 置201。犧牲層21未被熱分解的部分可以保留或不保留在 避免水氣滲透層22的表面上。熱產生器120的電阻、加熱 溫度、脈衝條件對應於(亦即相同於)第一範例性具體態 樣》 [0057] 範例: [0058] 現在將要敘述製造根據第一範例性具體態樣之可撓性顯 示裝置的範例性過程以及熱傳導率的模擬結果。 100115132 表單編號 A0101 第 14 頁/共 38 頁 1003293565-0 201237828 [0059] 玻璃基板用於載體基板110,並且以單層鉬(M〇)所建構的 熱產生器120形成於玻璃基板上。零萝醯胺膜用於可撓性 基板210。聚亞醯胺膜是大約1〇微米厚,並且在高於35〇 。(:的溫度硬化。聚亞醯胺膜形成之後的過程則對應於一 般的0LED顯示器的製程。具有脈衝波形的電壓施加於熱 產生器120以進行熱傳導率模擬。 [0060] Ο 圖4顯示當電壓施加於熱產生器時所測量的熱分布模擬結 果。於圖4,「PI基板」是聚亞醯胺膜(亦即可撓性基板), 「傳導層」是熱產生器,而「玻璃」是做為載體基板的玻璃 基板。 [0061] 參見圖4,熱產生器的最大溫度是6q〇°C,並且聚亞醯胺 膜和熱產生器之間的介面溫度是45(rc,其高於聚亞醯胺 膜的熔點(360°C)。因此,由於部分的聚亞醯胺膜被熱所 分解’所以聚亞醯胺膜(亦即可撓性基板)從熱產生器分 開。 [0062] 圖5顯不可以從熱產生器和載體基板分離之可撓性顯示裝 置的照片。聚亞醯胺膜於此遶程期間所測量的熱穿透深 度乃小於〇. 5微米。因為熱穿透深度對整個聚亞醯胺膜的 比例非吊小,所以當焦耳加熱溫度高到足以溶化可撓性 基板時,驅動電路和發光元件沒有發生熱或機械損傷。 [0063] 圖6顯示上述根據第一範例性具體態樣之過程所完成的可 撓性顯不裝置20〇之可撓性基板21〇表面的掃描式電子顯 微鏡(scanning eiectr〇n micr〇sc〇py,sEM)照片, 而圖7~8顯示其原子力顯微鏡(at〇mic force micro- 100115132 表單編號Α0101 第15頁/共38頁 1003293565-0 201237828 scopy,AFM)照片。 [0064] [0065] [0066] [0067] 圖6到圖8所示的可撓性基板表面指出接解熱產生器120之 後藉由產生焦耳熱而從熱產生器120分開之可撓性基板的 外表面。於根據第二範例性具體態樣之可撓性顯示裝置 2〇1的情形,犧牲層21的表面也具有與圖6和圖7相同的特 性。圖6是放大了 130, 〇〇〇倍。 製備根據比較性範例的可撓性顯示裝置,亦即應用雷射 掃描過程來加熱可撓性基板,而圖9和圖10分別顯示根據 比較性範例的可撓性顯示裝置之可撓性基板表面的SEM照 片和AFM照片。圖9和圖10所示的可撓性基板表面代表接 觸載體基板之後藉由雷射光束而從載體基板分開之可撓 性基板的外表面。圖9是放大了 1 30, 000倍。 根據比較性範例的可撓性顯示裝置是以相同於根據本範 例性具體態樣之可撓性顯示裝置的過程而製造,例外之 處在於載體基板上形成的是可撓性基板而不是熱產生器 ’並且從載體基板的外部朝向可挽性基板來掃描雷射光 束以分開載體基板和可撓性基板。 參見圖6到圖8,關於根據第一範例性具體態樣之使用 JIL0過程的可撓性顯示裝置,可撓性基板乃實j見為具有 極均勻的表面而粗縫度小很多。此表面特性是由j I L〇過 程特性所造成,其中可撓性基板的整個表面藉由瞬間熱 分解而同時從載體基板分開。 關於根據本範例性具體態樣的可挽性顯示装置,可撓性 基板表面(譬如可撓性基板210的外部)的均方根(r〇〇t 100115132 表單編號A0101 第16頁/共38頁 1003293565-0 [0068] 201237828 mean squared,RMS)粗链度是在1奈米到15奈米範圍裡 。可撓性基板的RMS粗糙度受到許多因素而變化,例如可 撓性基板的類型、熱產生器電阻、加熱溫度、施加於熱 產生器的電壓脈衝時間,而通常為大於大約1奈米和小於 大約15奈米。圖7的AFM分析所測量之可撓性基板的RMS 粗糖度實質為大約2. 5奈米’而圖8的AFM分析所測量之可 撓性基板的RMS粗糙度實質為大約7. 5奈米。 [0069] 參見圖9和圖10,於根據比較性範例之使用雷射掃推過程 ^ 的可撓性顯示裝置,可撓性基板具有的RMS粗糙度乃大於 20奈米’其所實現的表面要比根據本範例性具體態樣的 可撓性基板來得更粗糙而較不均勻。圖10所示AFM表面所 測量之可撓性基板表面的RMS粗糙度實質為大約30奈米。 [〇〇7〇] 根據比較性範例之可撓性基板的表面特性乃相依於雷射 掃描特性,其中可徺性基板的熱分解深度並非固定不變 ,此乃因為當控制雷射光束強度和聚焦深度時,其精確 度有所受限,以及可撓性基板的表面是依序地(亦即部分 〇 地)於雷射掃描方向上熱分解。 [0071] 現在將敘述根據本範例性具體態樣的可撓性顯示裝置在 JILO過程之前和之後的薄膜電晶體特性改變。表1顯示 JILO過程進行之前所測量的薄膜電晶體特性,而圖11顯 示的圖形指出薄膜電晶體在JILO過程進行之前和之後的 轉移特性。 [0072] 表 1 [0073] I 速率 A開/關攻于 > 108 - — 100115132 表單編號A0101 第17頁/共38頁 ----—... 1003293565-0 201237828 P 乓以兩 ΒΓ,/..... _—--^_ 丨·*伍电璺U犬特) ~ 2. 9 電荷移動率(平方公分/伏特 90. 4 秒) s斜率(伏特/十) 0. 32 1開(微安培/微米) 3. 5 I關(微微安培) Τ Τ ϊ Μ 如 其 从.. 2. 7 ~_ I程之鈿薄膜電晶體的電荷移動率(从fΕΤ)測量 為90. 4平方公分/伏特秒,門檻電壓測量為_2 9伏特 而s斜率(亦即次門檻斜率)測量為〇. 32伏特/十 (V/decade)。JILO過程之後,如圖u所示,檢查發現 薄膜電晶體的門楹電壓和s斜率並未改變。上述結果顯示 JILO過程不會對薄膜電晶體的表現造成有意義的損傷。 剛圖12顯示的圖形是偏壓溫度應力(Mas ^寧如㈣ stress,BTS)測試結果,其指出薄膜電晶體在贝⑶過程 進打之後的轉移特性。BTS測試是在“=15伏特、6〇〇秒 、85 C的偏壓應力條件下進行。 [_參見圖12,相較於應力之前的情況,絲到在vds = 5. i 伏特和0.1伏特的偏壓應力條件下有〇1伏特的門裡電壓 移動。此數值類似於-般形成於玻璃基板上的低溫多晶 矽(low temperature p〇iy-siiic〇n,LTps)薄膜電 晶體。則JILO過程對薄臈電晶體的可靠度影響極小。 [0076]圖1 3A顯示的圖形指出薄膜電晶體在:11〇過程進行之後的 轉移特性,其顯示高汲極電流(high drain current, HDC)應力測試結果。圖13B顯示的圖形指出薄膜電晶體在 JILO過程進行之後的遲滞。 100115132 表單編號A0101 第18頁/共38頁 1003293565-0[0039] The barrier layer 220 may be formed of an inorganic layer and/or an organic layer, or may be formed of stacked inorganic and organic layers. The barrier layer 22 suppresses unwanted halogens (such as fish gas or oxygen) from penetrating into the light-emitting element 240 via the flexible substrate 21, because moisture or oxygen can degrade the light-emitting element 24 and reduce the light-emitting element 240. life. The encapsulation member 250 may be formed of a plurality of layers. The encapsulation member 25A may be formed of a plurality of organic layers, a plurality of inorganic layers, and/or a plurality of alternately stacked organic and inorganic layers. The inorganic layer may, for example, comprise alumina and/or yttrium oxide' and the organic layer may, for example, comprise an epoxy resin, acrylic acid vinegar and/or ethyl acrylate phthalate. The inorganic layer prevents external moisture and oxygen from penetrating into the light-emitting element. The organic layer weakens the internal stress of the inorganic layer or the micro-cracks and pinholes filled with the inorganic layer. The materials of the inorganic layer and the organic layer are exemplary and not limited to the materials, and various inorganic layers and organic layers known to those skilled in the art can be used. The encapsulation member 250 may surround the side of the drive circuit and the side of the light-emitting element 240 such that the sides of the drive circuit 23 and the light-emitting element 24 may not be exposed to the outside. In other words, the encapsulating member (4) can contact (e.g., directly contact) the barrier layer 220 with the driving circuit 23 and the light-emitting element 24 therebetween. Referring to Fig. 2D', in operation S5G, the heat generator 12() can generate heat and apply the generated heat to the flexible substrate 21G. As a result of the application of (4), since the predetermined area (i.e., the bottom area in the drawing) of the flexible substrate 210 contacting the heat generator 12A can be decomposed by thermal energy, the flexible substrate 21 can be 100115132. Form No. A0101 Page 9 / Total 38 pages 1003293565-0 201237828 [0042] 100115132 is separated from the heat generator 120 and the carrier substrate 110 (FIG. 2E). That is, it is widely used that the heat generator 120 can function as a source of thermal energy to contact the flexible substrate 210, such as directly contacting the flexible substrate 21, facing the entire bottom surface of the heat generator 120, so the heat generator 120 The thermal energy can be transferred directly to the flexible substrate 210 without the use of a medium. In contrast, if the flexible substrate on the carrier substrate is heated by a laser source, such as with respect to the heat generator 120 of the exemplary embodiment, the laser beam (such as a quasi-molecular laser beam) may The region outside the carrier substrate is irradiated toward the flexible substrate via the carrier substrate to transfer thermal energy to the flexible substrate. That is, since the laser source may be positioned externally with respect to the carrier substrate, such as beyond the bottom surface of the carrier substrate facing away from the flexible substrate, the laser beam output of the laser source will pass through the thickness of the carrier substrate to reach and Focusing on the flexible substrate thereby transferring thermal energy to the flexible substrate. Accordingly, a laser source external to the carrier substrate is required with respect to the heat generator 120 (i.e., the heat source contacting the flexible substrate 210 and located within the structure of the carrier substrate 11A and the flexible substrate 210). The medium (ie the carrier substrate) is used to transfer energy. For example, the heat generator 120 can be constructed with a conductive layer, such as a conductive layer, to cause Joule heating under voltage application conditions. However, the configuration of the heat generator 120 and its heat generating principle are not limited to the above examples, and other configurations can be applied to immediately generate heat and thermally decompose the eight-layer nevability substrate 210. Heat generator 120 can include a metal or metal oxide. For example, the heat generator 120 may include at least one of molybdenum (Mo), titanium (Ti), copper (Cu), addition, silver (Ag), and chromium (Cr) as metal and/or indium tin oxide. Form No. A0101 Page 10 of 38 1003293565-0 201237828 ndlUID tln 〇Xlde, ΙΤ0), indium zinc xide (. ZO) 至少 at least _ as a metal oxide. [0044] [0046] See the area where the carrier substrate 11Q and the heat generator m can be formed and larger than the flexible substrate 2H, such as the heat of the heat generator (10), such as heat. The portion where H12() faces the upper surface of the flexible substrate (10) at the opposite edges of the heat generator 120) may be exposed to the outside of the flexible substrate 21''. A second liner 130 coupled to an external power supply (not shown) may contact the exposed end of the thermal generator 120 to apply a voltage (such as a voltage having a pulsed waveform) to the exposed end of the thermal generator 12' heat generator 120. And the two pads 13 on it may face each other along the direction of the carrier substrate 110 (such as squeezing along the drawing) and may be formed into a long rod shape in the cross-sectional direction, such as the lining 13Q may be along the heat The entire length of the benefit 120 and its exposed ends is extended along the y-axis. Accordingly, since the pad 130 contacts the opposite ends of the heat generator 120, a uniform current flows in one direction (for example, in the z-axis direction of the drawing) through the heat generator 120 of the carrier substrate 110, thereby causing the heat generator Joule heat is generated in 12 inches. The heat generator 120 generates heat at a plurality of temperatures depending on the resistance value and the pulse condition, for example, the heat generator 120 can generate heat greater than 1 Torr (the heat of the heat generator 120 can be set in the following range: suitable for controlling heat The predetermined portion of the flexible substrate 210 is quickly passed, and the predetermined portion is immediately decomposed to a predetermined thermal penetration depth without affecting the driving circuit 230 and the light emitting element 240 formed on the flexible substrate 21 (). The heating temperature of the heat generator 120 at operation S50 can be set to 100115132 Form No. A0101 Page 11 / Total 38 Page 1003293565-0 201237828 In the range of about 300 ° C to about 9 〇〇 (:: when the heat generator 12 When the heating temperature of the crucible is lower than 30 (TC, in the bottom region of the flexible substrate 21G, thermal decomposition may be uneven, such as a material that may be decomposed, thereby making the flexible substrate 210 difficult to decompose. When heat is generated When the heating temperature of the device 12 is higher than 900X: the flexible substrate 21 may be overheated, thereby causing deterioration of the thin film transistor formed on the flexible substrate 210. [0047] The heat generator 120 may be loaded A uniform thickness is formed on the bulk substrate 110 to produce uniform Joule heat throughout the heat generator 120. [0048] The pulse of the voltage applied to the heat generator 120 can be controlled in consideration of the heat penetration depth of the flexible substrate 210. When the thickness of the flexible substrate 21 is about 10 μm, the thermal penetration depth may be less than about 1 μm. In this case, the driving circuit 230 and the light generated by providing heat to the flexible substrate 21 may be provided. The degradation of element 240 is substantially minimized. [0049] The above described separation process according to an exemplary aspect may be referred to as a Joule heating induced lift-off (JILO) process. This exemplary use of the jilo process is used. In a specific aspect, Joule heat is generated by applying a voltage to the heat generator 120. Since the heat generator 120 contacts a predetermined area of the flexible substrate 21A, the transfer from the heat generator 120 to the flexible substrate 210 is predetermined. The Joule heat of the region will penetrate the flexible substrate 210 to a predetermined depth, as previously discussed, depending on the voltage pulse time. Because the flexible substrate 210 is thermally penetrated ( For example, the entire contact surface between the flexible substrate 210 and the heat generator 120 may be decomposed, so the flexible substrate 210 is separated from the heat generator 120. The separation process may also be performed in a few microseconds (in s). On the wide and/or large substrate 'and on the drive substrate 230 and the light-emitting element 100115132 on the flexible substrate 210 Form No. A0101 Page 12 of 38 1003293565-0 201237828 [0050] [0052] Ο [0052] [0053] 240 causes little or no thermal and/or mechanical damage. In contrast, when a laser beam is used in the separation process, the driving circuit and the light-emitting element may be damaged due to the intensity of the laser, since the flexible substrate and the layers formed thereon are very thin, although the laser beam is controlled. The intensity and depth of focus are also the same. Furthermore, the use of lasers may increase costs due to the expense of the laser system and may increase manufacturing time due to the limited number of laser beams available and the necessity to scan the laser beam. 3A to 3C illustrate a second method stage of the manufacture of the flexible display device shown in Fig. 1. A method of manufacturing a flexible display device according to a second exemplary embodiment will now be described with reference to Figs. 1 and 3A to 3C. Referring to Fig. 3A', in operation S10, a carrier substrate 110 can be prepared, and the heat generator 120 can be formed on the carrier substrate 110 in a manner similar to the first exemplary embodiment (Fig. 2A). In operation S20, the flexible substrate 211 can be formed on the heat generator 120 by sequentially depositing the sacrificial layer 21, avoiding the water vapor permeation layer 22, and the body layer 23 on (for example, directly) the heat generator ι2. In other words, the flexible substrate 211 may include a plurality of layers, and the tractable substrate 211 may include a sacrificial layer 21, a water vapor permeable layer 22, and a body layer 23. The sacrificial layer 21 may be formed (eg, directly) from the heat generator 120. The heat generator 120 is contacted. The sacrificial layer 21 and the main body layer 23 may be made of the same plastic film as the first exemplary embodiment of the smable substrate 210, and the plastic film may be fabricated by reheating and coating the liquid polymer material. For example, the sacrificial layer 21 may be formed to be less thick than the body layer 23, such as the thickness of the sacrificial layer 21 may be equal to or greater than the heat penetration depth of the flexible substrate 210. The main body layer 100115132 Form No. A0101 Page 13 of 38 1003293565-0 201237828 23 can be formed to have the same thickness as the pliable substrate 210 of the first exemplary embodiment. [0054] The water vapor permeable layer 22 may include at least one of aluminum (A1), molybdenum (14 〇), titanium (Τι), copper (Cu), silver (Ag), and chromium (Cr) as a metal layer. And it can be formed via a tantalum ore. The water vapor permeation layer 22 is prevented from controlling the outside air, and the I gas permeates into the light emitting element 24 through the flexible substrate 211. That is, in the second exemplary embodiment, the barrier layer 22 and the moisture barrier layer 22 are both inhibited from infiltrating moisture and oxygen into the light-emitting element 24, thereby increasing the efficiency of blocking moisture and oxygen. [0055] As described above with reference to FIG. 2C, at operation 83, the barrier layer 22A and the driving circuit 230 may be formed on the flexible substrate 211. In operation 84(), the light emitting element 240 and the encapsulation member 250 may be formed on the drive circuit 230, which corresponds to the first exemplary embodiment. Referring to FIGS. 3B and 3C, at operation S50, a voltage is applied to the heat generator 1 20 to generate Joule heat. Part or all of the sacrificial layer 21 contacting the heat generator 120 may be thermally decomposed by Joule heat, and the moisture-repellent layer 22 of the flexible substrate 2 may be separated from the heat generator 120 to complete the flexible display device 201. The portion of the sacrificial layer 21 that is not thermally decomposed may or may not remain on the surface of the water vapor permeation layer 22 . The resistance, heating temperature, and pulse conditions of the heat generator 120 correspond to (i.e., are identical to) the first exemplary embodiment. [0057] Example [0058] The fabrication according to the first exemplary embodiment will now be described. An exemplary process of a flexible display device and a simulation of thermal conductivity. 100115132 Form No. A0101 Page 14 of 38 1003293565-0 201237828 [0059] A glass substrate is used for the carrier substrate 110, and a heat generator 120 constructed of a single layer of molybdenum (M〇) is formed on the glass substrate. A ruthenium amide film is used for the flexible substrate 210. The polyamido film is about 1 〇 microns thick and is above 35 。. (The temperature hardening: The process after the formation of the polyimide film corresponds to the process of a general OLED display. A voltage having a pulse waveform is applied to the heat generator 120 for thermal conductivity simulation. [0060] Ο Figure 4 shows The heat distribution simulation result measured when a voltage is applied to the heat generator. In Fig. 4, the "PI substrate" is a polyimide film (that is, a flexible substrate), and the "conductive layer" is a heat generator, and "glass" It is a glass substrate as a carrier substrate. [0061] Referring to Figure 4, the maximum temperature of the heat generator is 6q 〇 ° C, and the interface temperature between the polyimide film and the heat generator is 45 (rc, It is higher than the melting point (360 ° C) of the polyimide film. Therefore, since a part of the polyimide film is decomposed by heat, the polyimide film (that is, the flexible substrate) is separated from the heat generator. [0062] Figure 5 shows a photograph of a flexible display device that can be separated from the heat generator and the carrier substrate. The depth of thermal penetration measured during the winding of the polyimide film is less than 0.5 microns. The ratio of thermal penetration depth to the entire polyamidamine film is not small. The drive circuit and the light-emitting element are not thermally or mechanically damaged when the Joule heating temperature is high enough to dissolve the flexible substrate. [0063] FIG. 6 shows the flexibility described above in accordance with the first exemplary embodiment. Scanning eiectr〇n micr〇sc〇py (sEM) photographs of the surface of the flexible substrate 21 of 20 显 are displayed, and FIGS. 7-8 show the atomic force microscope (at〇mic force micro- 100115132). Form No. 1010101 Page 15 of 38 1003293565-0 201237828 scopy, AFM) Photograph [0067] [0067] The flexible substrate surface shown in FIGS. 6 to 8 indicates the junction heat generator The outer surface of the flexible substrate separated from the heat generator 120 by the generation of Joule heat after 120. In the case of the flexible display device 2〇1 according to the second exemplary embodiment, the surface of the sacrificial layer 21 is also It has the same characteristics as those of Fig. 6 and Fig. 7. Fig. 6 is enlarged by 130, 〇〇〇. Preparation of a flexible display device according to a comparative example, that is, applying a laser scanning process to heat a flexible substrate, and Figure 9 and Figure 10 show the roots SEM photograph and AFM photograph of the surface of the flexible substrate of the flexible display device of the comparative example. The surface of the flexible substrate shown in FIGS. 9 and 10 represents the separation from the carrier substrate by the laser beam after contacting the carrier substrate The outer surface of the flexible substrate. Fig. 9 is enlarged by 130,000 times. The flexible display device according to the comparative example is the same process as the flexible display device according to the exemplary embodiment. Manufacturing, with the exception that a flexible substrate is formed on the carrier substrate instead of the heat generator' and the laser beam is scanned from the outside of the carrier substrate toward the slidable substrate to separate the carrier substrate and the flexible substrate. Referring to Figs. 6 through 8, with respect to the flexible display device using the JIL0 process according to the first exemplary embodiment, the flexible substrate is seen to have a very uniform surface and a large degree of sag. This surface characteristic is caused by the characteristics of the process, in which the entire surface of the flexible substrate is simultaneously separated from the carrier substrate by instantaneous thermal decomposition. Regarding the slidability display device according to the present exemplary embodiment, the root mean square of the surface of the flexible substrate (such as the outside of the flexible substrate 210) (r〇〇t 100115132 Form No. A0101 Page 16 of 38 1003293565-0 [0068] 201237828 mean squared, RMS) The thick chain is in the range of 1 nm to 15 nm. The RMS roughness of a flexible substrate varies by many factors, such as the type of flexible substrate, heat generator resistance, heating temperature, voltage pulse time applied to the heat generator, and is typically greater than about 1 nm and less. About 15 nm. The RMS roughness of the flexible substrate measured by the AFM analysis of Figure 8 is substantially about 7.5 nm. The RMS roughness of the flexible substrate measured by the AFM of Figure 8 is substantially about 7.5 nm. . Referring to FIG. 9 and FIG. 10, in the flexible display device using the laser scanning process according to the comparative example, the flexible substrate has an RMS roughness of more than 20 nm. It is rougher and less uniform than the flexible substrate according to this exemplary embodiment. The RMS roughness of the surface of the flexible substrate measured on the AFM surface shown in Figure 10 is substantially about 30 nm. [〇〇7〇] The surface characteristics of the flexible substrate according to the comparative example are dependent on the laser scanning characteristics, wherein the thermal decomposition depth of the flexible substrate is not fixed, because when controlling the intensity of the laser beam and When the depth of focus is limited, the accuracy is limited, and the surface of the flexible substrate is thermally decomposed sequentially (i.e., partially) in the laser scanning direction. The change in film transistor characteristics before and after the JILO process of the flexible display device according to the present exemplary embodiment will now be described. Table 1 shows the film transistor characteristics measured before the JILO process, and the graph shown in Figure 11 indicates the transfer characteristics of the film transistor before and after the JILO process. Table 1 [0073] I Rate A On/Off Attack > 108 - 100115132 Form No. A0101 Page 17 of 38-----... 1003293565-0 201237828 P Pong is two-pronged, /..... _—--^_ 丨·*Wu electric 璺 U-dog special) ~ 2. 9 charge mobility (square centimeters / volt 90. 4 seconds) s slope (volts / tens) 0. 32 1 Open (microamperes / micron) 3. 5 I off (picoamperes) Τ Τ ϊ Μ as it is from.. 2. 7 ~ _ I path of the film transistor charge mobility (from f ΕΤ) measured as 90. 4 square In centimeters per volt second, the threshold voltage is measured as _2 9 volts and the s slope (ie, the secondary threshold slope) is measured as 32 32 volts/ten (V/decade). After the JILO process, as shown in Figure u, it was found that the threshold voltage and s slope of the thin film transistor did not change. The above results show that the JILO process does not cause significant damage to the performance of the thin film transistor. The graph just shown in Fig. 12 is a test result of bias temperature stress (Mas ^ ̄如(4) stress, BTS), which indicates the transfer characteristics of the thin film transistor after the shell (3) process. The BTS test was performed under "15 volts, 6 sec, and 85 C bias stress conditions. [See Figure 12, compared to the condition before stress, the wire is at vds = 5. i volts and 0.1 volts. Under the bias stress condition, there is a gate voltage shift of 〇1 volt. This value is similar to a low temperature p〇iy-siiic〇n (LTps) thin film transistor formed on a glass substrate. The effect on the reliability of the thin germanium transistor is extremely small. [0076] The graph shown in Fig. 1A indicates the transfer characteristics of the thin film transistor after the 11 〇 process, which shows a high drain current (HDC) stress test. The graph shown in Fig. 13B indicates the hysteresis of the thin film transistor after the JILO process. 100115132 Form No. A0101 Page 18 of 38 1003293565-0
201237828 LD077J 於圖13A,HDC應力條件為VgS = -l5伏特、Vds = _2〇伏特 、60秒。從圖13A的結果判定薄膜電晶體的魏性在默 應力之後沒有改變。同時’於®13B,mG過程之後的門 植電壓移動實質為0.2伏特,其極類似^般㈣ps薄膜 電晶體。 [_ n職絲發現減本_料職樣的爪〇技術 不影響薄膜電晶體的.表現和可靠度,並且它適合大量生 產。參見圖u和圖15,現在將敘述可撓性顯示裝置的内 Ο 部組態。 [0079] 例 圖14顯示可撓性顯示裝置的像素組態佈局圖,關15顯 不可撓性顯㈣置關於圖14之線a_a的截面圖。圖咐 圖15顯示-種0LED顯示器做為可撓性顯示裝置的詳細範 _參錢U和㈣,減第―_財輯形成的可撓性 顯示裝置200可以包括多個像素,其各具有驅動電路230 和有機發光元件240。驅動電路23〇包括切換薄膜電晶體 I驅動«電晶㈣、電容器5G。閘極線61乃提供於 可撓隹基板210的-方向上,並且資料線62和共同電力線 63以絕緣方式跨過閘極線61。 剛圖14示範的像素具有二_電晶㈣㈣以及電容㈣ 。再者,可撓性顯示裝置2_每個像素可以具有三個或 更少個薄膜電日日體以及二個或更多個電容器,並且可以 進-步具有額外的導線以用於各式各樣的組態。 [0082]切換薄膜電晶體3G包括切換半導體層31、婦閘極32、 100115132 表單編號A0101 第19頁/共38頁 1003293565-0 201237828 切換源極33、切換汲極34。驅動薄膜電晶體4〇包括驅動 半尊f層41、堪動閘極42、驅動源極43、驅動汲極44。 底部閘極結構的薄膜電晶體和圖1 5所示之頂部閘極結構 的薄膜電晶體都可以用於薄膜電晶體。 [0083] [0084] [0085] [0086] 電容器50包括一對電容板51和52,其間則配置了層間絕 緣層64。於此例,層間絕緣層64是以介電材料所形成。 電容是由充入電容器50的電荷以及電容板5丨和52之間的 電壓所決定。 有機發光元件240包括像素電極25、形成於像素電極25上 的有機發射層26、形成於有機發射層26上的共同電極27 。像素電極25可以是電洞注射電極,並且共同電極27可 以是電子注射電極。視驅動可撓性顯示裝置2〇〇的方法而 定,反過來也是可允許的。電洞和電子從像素電極25和 共同電極27注入有機發射層26。當激子(亦即注入的電洞 和電子相結合)從激發態進入基態時遂發光。 反射電極用於像素電極25,並且透明或半透明電極用於 共同電極27 ;於此情況,有機發光元件24〇發光至包封 構件250。透明或半透明電極用於像素電極25,並且反射 電極用於共同電極27 ;於此情況,有機發光元件240把 光送至可撓性基板210。 使用切換薄膜電晶體30做為選擇發光像素的切換器。切 換閘極32連接於閘極線61。切換源極33連接於資料線 。切換汲極34配置成與切換源極33分開並且連接於一電 容板51。 100115132 表單編號A0101 第2〇頁/共38頁 1003293565-0 201237828 [0087J 驅數^ 之相電晶⑽施加用於有機發光元件24Q的所選像素 機發射層2_藥動電力到像素電極25。驅動閑極42 和^於電容板5卜後者連接於切換祕34。驅動源賴 另電各板52連接於共同電力線63。驅動汲極44經由 鵠孔而連接於有機發光元件240的像素電極25。 ^所述的組態’切換薄膜電晶體30是由施加於閘極線 的閘極電壓所操作,以把施加於資料線62的資料電壓 傳送到驅動薄膜電晶體4〇。對應於從共同電力線63施加 ^奥動溥膜電晶體40的共同電壓以及切換薄膜電晶體3〇 所傳送的資料電壓之間差異的電壓則儲存於電容器5〇, 並且斯應於儲存於電容器50之電壓的電流則流到有機發 光*元件240以發光。 [〇〇89]根據範例性具體態樣,載體基板和可撓性基板可以在譬 如幾微秒(es)的短時間内輕易分開,並且可以不對可撓 吐基板上的薄膜電晶體和發光元件造成熱和/或機械損 傷°此分開技術適合以大量生產來製造寬面積的可撓性 顯示裝置。再者,可撓性顯示裝置可以使用既有的製造 系统來製造,藉此避免了提供新製造系統的困難和成本 [〇〇9〇] 在此已經揭示了範例性具體態樣;雖然採用了特定詞彙 ,俚是使用它們是要僅以一般性和敘述性的意味來解讀 ,而無限制的目的。據此,熟於此技藝者將會理解可以 在形式和細節上做出多樣的改變,而不偏離底下申請專 範園所列出之本發明的範圍裡。 【圖式簡單說明】 100115132 表單編號Αοιοι 第21頁/共38頁 i 201237828 [0091] 藉由參考所附圖式來詳細敘述範例性具體態樣,上面和 其他的特色與優點對於此技藝中具一般技術者而言已變 得更明顯,其中: [0092] 圖1示範根據範例性具體態樣之製造可撓性顯示裝置的方 法流程圖。 [0093] 圖2A到圖2E示範根據範例性具體態樣之製造可撓性顯示 裝置的方法階段截面圖。 [0094] 圖2F示範圖2D的部分立體圖。 [0095] 圖3 A到圖3 C示範根據另一範例性具體態樣之製造可撓性 顯示裝置的方法階段截面圖。 [0096] 圖4示範當電壓施加於熱產生器時所測量的熱分布模擬結 果。 [0097] 圖5示範可以從熱產生器和載體基板分離之可撓性顯示裝 置的照片。 [0098] 圖6示範根據範例性具體態樣的可撓性顯示裝置之可撓性 基板表面的掃描式電子顯微鏡(SEM)照片。 [0099] 圖7和圖8示範根據範例性具體態樣的可撓性顯示裝置之 可撓性基板表面的原子力顯微鏡(AFM)照片。 [0100] 圖9示範應用雷射掃描過程之比較性範例的可撓性顯示裝 置之可撓性基板表面的SEM照片。 [0101] 圖10示範應用雷射掃描過程之比較性範例的可撓性顯示 裝置之可撓性基板表面的AFM照片。 100115132 表單編號A0101 第22頁/共38頁 1003293565-0 201237828 LUIU^J 圖11示範薄膜電晶體在焦耳加熱感應升離(JILO)過程之 前/之後的轉—務膝牲圖形。_ [0103] 圖12示範薄膜電晶體根據偏壓溫度應力(BTS)測試而在 JIL0過程之後的轉移特性圖形。 [0104] 圖1 3A示範薄膜電晶體根據高汲極電流(HDC)應力測試而 在JIL0過程之後的轉移特性圖形。 [0105] 圖13B示範薄膜電晶體在JIL0過程之後的遲滯圖形。 ^ [0106] 圖14示範可撓性顯示裝置的像素組態佈局。 C) [0107] 圖15示範沿著圖14之線A - A的截面圖。 【主要元件符號說明】 [0108] 21 犧牲層 [0109] 22 避免水氣滲透層 [0110] 23 主體層 [0111] 25 像素電極 [0112] 26 有機發射層 [0113] 27 共同電極 [0114] 30 切換薄膜電晶體 [0115] 31 切換半導體層 [0116] 32 切換閘極 [0117] 33 切換源極 [0118] 34 切換汲極 表單編號A0101 100115132 第23頁/共38頁 1003293565-0 201237828 [0119] 40 , 驅動薄膜電晶體 [0120] 41 ‘ 驅動半導體層 [0121] 42 , 驅動閘極 [0122] 43 驅動源極 [0123] 44 駆動汲極 [0124] 50 電容器 [0125] 51、 52電容板 [0126] 61 閘極線 [0127] 62 資料線 [0128] 63 共同電力線 [0129] 64 層間絕緣層 [0130] 110 載體基板 [0131] 120 熱產生器 [0132] 130 襯墊 [0133] 200 可撓性顯示裝置 [0134] 201 可撓性顯示裝置 [0135] 210 可撓性基板 [0136] 211 可撓性基板 [0137] 220 1阻障層 1003293565-0 100115132 表單編號A0101 第24頁/共38頁 201237828 L0138J 230 [0139] 240 [0140] 250 [0141] S10 Ο 驅動電路 發光元件 包封構件 S50操作 100115132 表單編號Α0101 第25頁/共38頁 1003293565-0201237828 LD077J In Figure 13A, the HDC stress condition is VgS = -l5 volts, Vds = _2 volts, 60 seconds. From the results of Fig. 13A, it was judged that the ductility of the thin film transistor did not change after the silent stress. At the same time, the gate voltage after the '13L, mG process shifts to substantially 0.2 volts, which is very similar to a (four) ps thin film transistor. [_ n Jobs found that the reduction of the _ material role of the Xenopus technology does not affect the performance and reliability of the film transistor, and it is suitable for mass production. Referring to Figures u and 15, the internal configuration of the flexible display device will now be described. [0079] Example FIG. 14 shows a pixel configuration layout diagram of a flexible display device, and a cross-sectional view of the line a_a of FIG. 14 is shown. FIG. 15 shows a detailed description of the OLED display as a flexible display device, and the flexible display device 200 formed by subtracting the first ___ may have a plurality of pixels each having a drive The circuit 230 and the organic light emitting element 240. The driving circuit 23A includes switching thin film transistors I to drive «electro-crystal (4), capacitor 5G. The gate line 61 is provided in the - direction of the flexible germanium substrate 210, and the data line 62 and the common power line 63 are insulated across the gate line 61. The pixel just shown in Fig. 14 has two electron crystals (four) (four) and a capacitance (four). Furthermore, the flexible display device 2_ may have three or fewer thin film electric solar bodies and two or more capacitors per pixel, and may further have additional wires for various types. Sample configuration. The switching thin film transistor 3G includes a switching semiconductor layer 31, a female gate 32, and a 100115132. Form No. A0101 Page 19 of 38 1003293565-0 201237828 Switching the source 33 and switching the drain 34. The driving thin film transistor 4 includes a driving half-fade layer 41, a movable gate 42, a driving source 43, and a driving drain 44. Both the thin film transistor of the bottom gate structure and the thin film transistor of the top gate structure shown in Fig. 15 can be used for the thin film transistor. [0082] The capacitor 50 includes a pair of capacitor plates 51 and 52 with an interlayer insulating layer 64 disposed therebetween. In this example, the interlayer insulating layer 64 is formed of a dielectric material. The capacitance is determined by the charge charged in the capacitor 50 and the voltage between the capacitor plates 5A and 52. The organic light emitting element 240 includes a pixel electrode 25, an organic emission layer 26 formed on the pixel electrode 25, and a common electrode 27 formed on the organic emission layer 26. The pixel electrode 25 may be a hole injection electrode, and the common electrode 27 may be an electron injection electrode. Depending on the method of driving the flexible display device 2, the reverse is also permissible. A hole and electrons are injected from the pixel electrode 25 and the common electrode 27 into the organic emission layer 26. When an exciton (that is, an injected hole and an electron combines) enters the ground state from an excited state, luminescence is emitted. A reflective electrode is used for the pixel electrode 25, and a transparent or semi-transparent electrode is used for the common electrode 27; in this case, the organic light-emitting element 24 emits light to the encapsulation member 250. A transparent or semi-transparent electrode is used for the pixel electrode 25, and a reflective electrode is used for the common electrode 27; in this case, the organic light-emitting element 240 sends light to the flexible substrate 210. The switching thin film transistor 30 is used as a switch for selecting illuminating pixels. The switching gate 32 is connected to the gate line 61. The switching source 33 is connected to the data line. The switching gate 34 is configured to be separated from the switching source 33 and connected to a capacitor board 51. 100115132 Form No. A0101 Page 2 of 38 1003293565-0 201237828 [0087J The phase of the electric crystal (10) is applied to the selected pixel emitter layer 2 of the organic light-emitting element 24Q to the pixel electrode 25. The drive idler 42 and the capacitor plate 5 are connected to the switch secret 34. The driving source is connected to the common power line 63. The driving drain 44 is connected to the pixel electrode 25 of the organic light emitting element 240 via a pupil. The described configuration 'switching thin film transistor 30 is operated by a gate voltage applied to the gate line to transfer the data voltage applied to the data line 62 to the driving thin film transistor 4'. The voltage corresponding to the difference between the common voltage applied from the common power line 63 and the data voltage transmitted by the switching thin film transistor 3 is stored in the capacitor 5〇, and is stored in the capacitor 50. The current of the voltage flows to the organic light emitting element 240 to emit light. [〇〇89] According to an exemplary embodiment, the carrier substrate and the flexible substrate can be easily separated in a short time such as a few microseconds (es), and the thin film transistor and the light-emitting element on the flexible substrate can be omitted. Causes thermal and/or mechanical damage. This separate technique is suitable for mass production of wide area flexible display devices. Furthermore, the flexible display device can be manufactured using an existing manufacturing system, thereby avoiding the difficulty and cost of providing a new manufacturing system [〇〇9〇] Example specific aspects have been disclosed herein; For specific vocabulary, the use of them is to be interpreted only in a general and narrative sense, without limitation. Accordingly, those skilled in the art will understand that various changes in form and detail can be made without departing from the scope of the invention as set forth in the application. [Simple Description of the Drawings] 100115132 Form Number Αοιοι Page 21 of 38 i 201237828 [0091] Exemplary aspects are described in detail with reference to the drawings, the above and other features and advantages are It has become more apparent to a person skilled in the art, wherein: [0092] FIG. 1 illustrates a flow chart of a method of fabricating a flexible display device in accordance with an exemplary embodiment. 2A through 2E illustrate a cross-sectional view of a method of fabricating a flexible display device in accordance with an exemplary embodiment. [0094] FIG. 2F illustrates a partial perspective view of FIG. 2D. 3A through 3C illustrate cross-sectional views of a method of fabricating a flexible display device in accordance with another exemplary embodiment. [0096] FIG. 4 illustrates a thermal distribution simulation result measured when a voltage is applied to a heat generator. [0097] FIG. 5 illustrates a photograph of a flexible display device that can be separated from a heat generator and a carrier substrate. [0098] FIG. 6 illustrates a scanning electron microscope (SEM) photograph of a flexible substrate surface of a flexible display device according to an exemplary embodiment. 7 and 8 illustrate atomic force microscope (AFM) photographs of a flexible substrate surface of a flexible display device according to an exemplary embodiment. [0100] FIG. 9 illustrates an SEM photograph of a flexible substrate surface of a flexible display device to which a comparative example of a laser scanning process is applied. [0101] FIG. 10 exemplifies an AFM photograph of a flexible substrate surface of a flexible display device to which a comparative example of a laser scanning process is applied. 100115132 Form No. A0101 Page 22 of 38 1003293565-0 201237828 LUIU^J Figure 11 shows the pattern of the film transistor before/after the Joule heating induced lift-off (JILO) process. [0103] FIG. 12 illustrates a transfer characteristic pattern of a thin film transistor after a JIL0 process according to a bias temperature stress (BTS) test. [0104] FIG. 1 is a graph showing the transfer characteristics of the thin film transistor after the JIL0 process according to the high-thin current (HDC) stress test. [0105] FIG. 13B illustrates a hysteresis pattern of a thin film transistor after a JIL0 process. [0106] FIG. 14 illustrates a pixel configuration layout of a flexible display device. C) [0107] FIG. 15 illustrates a cross-sectional view along line A-A of FIG. [Main component symbol description] [0108] 21 Sacrificial layer [0109] 22 Avoid water vapor permeation layer [0110] 23 Body layer [0111] 25 pixel electrode [0112] 26 Organic emission layer [0113] 27 Common electrode [0114] 30 Switching the thin film transistor [0115] 31 Switching the semiconductor layer [0116] 32 Switching the gate [0117] 33 Switching the source [0118] 34 Switching the gate form number A0101 100115132 Page 23 of 38 1003293565-0 201237828 [0119] 40, drive thin film transistor [0120] 41 'drive semiconductor layer [0121] 42 , drive gate [0122] 43 drive source [0123] 44 flip buck [0124] 50 capacitor [0125] 51, 52 capacitor plate [ 0126] 61 gate line [0127] 62 data line [0128] 63 common power line [0129] 64 interlayer insulation layer [0130] 110 carrier substrate [0131] 120 heat generator [0132] 130 pad [0133] 200 flexible Display device [0134] 201 flexible display device [0135] 210 flexible substrate [0136] 211 flexible substrate [0137] 220 1 barrier layer 1003293565-0 100115132 Form No. A0101 Page 24 of 38 201237828 L0138J 230 [0139] 240 [0140] 250 [0141] S10 Ο Drive circuit Light-emitting element Encapsulation member S50 operation 100115132 Form number Α0101 Page 25 of 38 1003293565-0