[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201236857A - Polymer-based composite materials and manufacturing method thereof - Google Patents

Polymer-based composite materials and manufacturing method thereof Download PDF

Info

Publication number
TW201236857A
TW201236857A TW100108056A TW100108056A TW201236857A TW 201236857 A TW201236857 A TW 201236857A TW 100108056 A TW100108056 A TW 100108056A TW 100108056 A TW100108056 A TW 100108056A TW 201236857 A TW201236857 A TW 201236857A
Authority
TW
Taiwan
Prior art keywords
metal powder
polymer
composite material
micron
nano
Prior art date
Application number
TW100108056A
Other languages
Chinese (zh)
Other versions
TWI429533B (en
Inventor
Hong Wang
yong-cun Zhou
Feng Xiang
ke-cheng Li
Ke Yu
hui-ru Chen
Original Assignee
Walsin Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Walsin Technology Corp filed Critical Walsin Technology Corp
Priority to TW100108056A priority Critical patent/TWI429533B/en
Publication of TW201236857A publication Critical patent/TW201236857A/en
Application granted granted Critical
Publication of TWI429533B publication Critical patent/TWI429533B/en

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a polymer-based composite material, which comprises: a substrate composed of polymer material; and, a reinforced material dispersed in the substrate, which contains micron-scale metal powder and nano-scale metal powder, and the metal powders are passivated in a passive state. The volume percentage occupied by the substrate is 50-90%, and the volume percentage occupied by the reinforced material is 10-50%, which are based on the overall volume. Thus, by introducing the reinforced material made by mixing micro-scale and nano-scale metal powders in a passive state with a suitable volume ratio into the substrate, the present invention may effectively enhance the thermal conductivity for the material and may still maintain the low dielectric loss property.

Description

201236857 六、發明說明: 【發明所屬之技術領域】 本發明係關於電子複合材料技術領域,尤指一種經過 鈍化後且具不同粒徑大小的金屬粒子摻雜於聚合物基材中 以提高熱導率的一種聚合物基複合材料。 【先前技術】 隨著微電子技術和印刷電路板組裝技術的高速發展, 加上輕薄短小以及多功能、高速化的產品需求,電子裝置 的元件勢必面臨内部空間狹小、不易散熱等問題,而使得 電子裝置操作時溫度升高而導致操作穩定度不佳,甚至降 低使用壽命,而盡可能於製程中使用具有良好導熱性質的 材料,則係為解決此類技術問題的管道之一。因此,開發 低介電損失、高導熱率的電子元件封裝材料成為當前學術 界與產業界的研發重點。 傳統的金屬材料雖具高導熱性,但因其抗腐蝕性差且 具導電性,因此在電子元件封裝技術的運用受到限制;而 廣泛使用於大功率混合積體電路令的陶瓷材料,如氮化鋁 (A1N)、氧化鋁(Ai2〇3)以及氧化鈹(Be〇),其雖具有相當高 的導熱性,但因其線膨脹係數與石夕不甚匹配、質地脆硬難 以加工、生產成本較高與加工溫度較高’而限制了陶瓷材 料的運用。 近年來,針對提高電子封裝材料的熱導率與介電性能 的研究逐漸增加’主要是以聚乙烯(p〇Iyethyiene,pE)、聚丙 稀(P〇iyPr_ene,PP)、聚四氟乙婦⑽灿训咖地化% PTFE)等高分子聚合物為基材’此類聚合物基材具有良好耐 201236857 化學腐蝕、機械加工成型性、電絕緣性能、抗疲勞性;但, 聚合物的導熱性能通常較金屬、陶瓷等差,因此於基材中 添加具有高導熱性的強化材,例如金屬、纖維或其他無機 材料等等,以提升複合材料的導熱性能。 然而,若為了提高熱導率而增加所添加之強化材的體 積比,經常使複合材料整體的機械性能與加工性能亦隨之 急劇降低;若所添加的強化材係為高導熱性且具導電性的 材料,則於提高熱導率的同時,亦會提高介電常數與增加 "電損耗,若所添加的強化材為高導熱性的絕緣材料,則 又難以達到理想的熱導率。普遍而言,依目前對於絕緣材 料之性質要求,現有技術缺少一種熱導率大於3 κ以 及低介電損耗的聚合物基複合材料,而經由文獻檢索,發 現到與本發明相關的參考文獻·· j. w Xu,c. p. w〇ng, 户Vol· 87’ p,0829〇7 (2〇〇5),主要是以表面經鈍化 的均一粒徑之鋁粉為強化材以提高複合材料之介電性能, 且其熱導率以及介電性並不理想。基於上述可見,此—技 術瓶頸相當亟需突破,以利相關產業上的運用。 【發明内容】 有鑒於現有技術以聚合物材料為基材的複合材料不易 製備出具有高導熱性的電子絕緣封裝材料,因此本發明之 各發明人係於西安交通大學電信學 子电1〇予心電子材料研究所致力 於電子材料之研究,而研發出一 I 人u ,, ,、有阿導熱性之聚合物 基複合材料,以突破現有技術之瓶頸。 為達到上述創作目的,本發 .M # ^ 尽發月楗供一種聚合物基複合 材枓,其包含有: 201236857 一基材’其係由聚合物材料所構成;以及一分散於該基 材中的強化材,其係包含有經鈍化處理的微米級金屬粉體 與奈米級金屬粉體,且基材所佔的體積百分比為5〇至 90% ’而強化材所佔的體積百分比為1〇至5〇%,以整體體 積為基礎。 較佳的,該強化材中,微米級金屬粉體與奈米級金屬粉 體的體積比為5:1至30:1。 較佳的’該強化材之微米級金屬粉體的粒徑為1微米 至20微米。 較佳的’ β強化材之奈采級金屬粉體的粒徑約為1 〇奈 米至100奈米。 較佳的’該強化材之微米級金屬粉體與奈米級金屬粉 體的表面均分別包覆有一氧化層,該氧化層係經由鈍化處 理所形成。 較佳的,該強化材係由包括選自於由鋁、鉻、錄、鐵、 鉬、鈷、鎢、钽、鈮以及其等之組合所構成的群組。 較佳的’該基材係選自於由聚偏二氟乙烯、聚偏二氟 乙稀-二氟J乙烯、聚乙稀、聚丙烯、聚丙稀甲基酸甲醋、聚 亞酿胺、環氧樹脂以及其等之組合所構成的群組。 本發明另提供一種如上所述之聚合物基複合材料的製 造方法,其步驟包含有: 提供經鈍化處理的微米級金屬粉體與奈米級金屬粉 體; 對經鈍化處理的微米級金屬粉體與奈米級金屬粉體進 行分散處理; 201236857 將分散處理後的微米級金屬粉體與奈米級金屬粉體依 一定的體積比例混合並形成一強化材; 提供一基材,該基材係由聚合物材料所構成;以及 將該強化材與該基材依一定的體積比例混合製備成— 聚合物基複合材料,且該聚合物基複合材料中,基材所佔 的體積百分比為50至90%,而強化材所佔的體積百分比為 10至50%,以整體體積為基礎。 較佳的,該強化材中,微米級金屬粉體與奈米級金屬 粉體的體積比為5:1至30:1。 較佳的,該強化材中,微米級金屬粉體的粒徑為1微 米至20微米。 μ 較佳的,該強化材中’奈米級金屬粉體的粒徑為ι〇太 米至1〇〇奈米。 ’τ' ,較佳的’在本發明之方法中,所述的提供經鈍化處理的 微米級金屬粉體與奈米級金屬粉體係包括: 提供一金屬; 將該金屬粉碎成微米級金屬粉體與奈米級金屬粉體;以 對碱米級金屬粉體與奈米級金屬 以取仵该等經鈍化處理的金屬粉體。 .亥鈍化處理係包括使微米級金屬粉體盥奈米 金屬粉體的表面形成一氧化層。 …、 法 車乂佳的,形成該氧化層的方法係可為由 強氧化劑氧化法及其他可替代之方法。 ”,、乳化 車乂佳的,形成該氧化層的方法係可為空氣加熱氧化 201236857 :境其級金屬粉體與奈米級金屬粉體置於-高溫 子-專金屬粉體進行乾燥一段時間。 的’該高溫環境之溫度係介於1〇〇。。至150。(:之間。 存5 W對該等金屬粉體進行乾燥的時間係介於1 8小 時至36小時之間。 ::的,形成該氧化層的方法係可為強氧化劑氧化 一、使用的強氧化劑為濃硫酸、硝酸、氣酸、碘酸、 二鉻酸鉀或過链酸鉀。 、該刀放處理包括將經鈍化處理的微米級金屬 =與以級金屬粉體置於—溶劑中,並加人分散劑而形 β浮办液而後對該.懸浮溶液進行超音波震盪處理一 段時間。 車’佳的該/合劑係為一有機溶劑,且該溶劑係可為無 水乙醇、丙酮、二甲基甲醯胺及其他可替代之方式。 較佳的,該有機溶劑係為無水乙醇,且該等呈鈍化態 的微米級金屬粉體與奈米級金屬粉體與無水乙醇的體積比 係為1:1。 較佳的,該分散劑係可為矽烷偶聯劑(silanecoupling agent)、酞酸酯偶聯劑 '矽酸酯偶聯劑及其它可替代之物 質。 較佳的,該分散劑係為矽烷偶聯劑,且其添加量為有 機溶劑體積的1至3 %。 較佳的,該超音波震盪處理所需的時間介於〇5小時至 3小時之間。 較佳的,該強化材係由選自於由鋁、鉻、鎳、鐵、紹、 201236857 鈷、鎢、鈕、鈮以及其等之組合所構成的群組。 較佳的,該聚合物材料係選自於聚偏二氟乙烯 [poly(vinylidene fluoride),PVDF]、聚偏二氟乙烯-三氟乙烯 [poly(vinylidene fluoride-trifluoroethylene)], P(VDF-TrFE)] > 聚乙稀(polyethylene, PE)、聚丙浠(polypropylene,PP)、聚 丙稀甲基酸甲 S旨[p〇ly(methyl methacrylate), PMMA]、聚亞 醯胺(polyimide,PI)、環氧樹脂(ep〇xy resin)以及其等之組合 所構成的群組。 較佳的,由該強化材與基材混合製成聚合物基複合材料 的方法係可為粉末共混法、溶液法、熱壓法或其他可替代之 方法。 综合以上所述,藉由不同粒徑大小的金屬粉體,分別 經過鈍化處理後混合成強化材並加入聚合物基材中,即可 製備出具有高熱導率的聚合物基複合材料,且仍能夠維持 一定程度的低介電損耗,以利於應用在電絕緣封裝材料 上’亦可應用於任何需要導熱絕緣的場合。此外,本發明 之方法的程序簡單、製造成本低,且操作參數便於控制, 無論是在實驗是小規模生產或是工業上的大規模生產皆能 夠實現本發明,確實具有其實用性。 【實施方式】 以下配合圖式及本發明 明本發明為達成預定創作目 之較佳實施例,進一步詳細 的所採取的技術手段。 說 請參閱圖1所示,士政 本發月之聚合物基複合材料 方法包括以下步驟: 提供—金屬;該金屬係 节了為紹、鉻、鎳、鐵、鉬 的製備 、姑、 201236857 鎢、钽、鈮或其他可替代之金屬材料。 將該金屬粉碎成微米級金屬粉體與奈米級金屬粉體; 該微米級金屬粉體的粒徑大小係、為1微米至20微米;該奈 米級金屬粉體的粒徑大小係約為1〇奈米至奈米。 對微米級金屬粉體與奈米級金屬粉體進行鈍化處理, 以使微米級與奈米級的金屬粉體均呈現純化態;所述之純 化處理係於該等金屬粉體表面形成一氧化層,其可藉由空 氣加熱氧化法、強氧化劑氧化法或其他可替代之方法而為 之,其中工氣加熱氧化法係將該等金屬粉體置於高溫環 境中乾燥一段時間後,於該等粉體的表面形成一層氧化 層;強氧化劑氧化法係利用強氧化劑如濃硫酸、硝酸、氣 酸、碘酸、二鉻酸鉀、過錳酸鉀或其他可替代之強氧化劑 與該等金屬粉體作用,而於該等粉體表面形成—氧化層。 對鈍化處理後的該等金屬粉體進行分散處理,以避免 該等鈍化金屬粉體產生團聚,而不利於後續製程;所述之 化學分散處理係將呈鈍化態的該等金屬粉體置於一溶劑中 並加入分散劑,形成一懸浮溶液,而後對該懸浮溶液進行 超音波震盪一段時間,以加強該等金屬粉體的分散效果, 並使分散劑均勻地包覆於該等鈍化金屬粉體表面。其中, 所述之溶劑係可為一有機溶劑,例如無水乙醇、丙酮、二 甲基甲醯胺或其他可替代之溶劑,於本發明之較佳實施例 中係使用無水乙醇作為溶劑,且該等金屬粉體與溶劑所混 合的體積比係可為1:1 :所述之分散劑係可為碎烧偶聯劑 (silane coupling agent)、酞酸酯偶聯劑、矽酸酯偶聯劑或其 他可替代之物質。 201236857 將經分散處理的微米級金屬粉體與奈米級金屬粉體依 一定的體積比例混合並形成一強化材;該體積比例係為5:i 至3 0:1之間。 提供一基材’該基材係由聚合物材料所構成,且該聚 。物材料係可為聚偏二氟乙烯[p〇ly(viny丨idene打⑽^七), pvdf]、聚偏二氟乙烯三氟乙烯[p〇ly(vi^iidene fluoride-trifluoroethylene), P(VDF-TrFE)]、聚乙烯 (polyethylene, PE)、聚丙浠(p〇iypr〇pylene,pp)、聚曱基丙 烯酸曱酯[poly(methyl methacrylate), PMMA]、聚亞醯胺 (polyimide,PI)、環氧樹脂(ep〇xy resin)或其他可替代之聚合 物所構成。 口 將該強化材與該基材依一定的體積比例混合並以適當 的製備方法製備出該聚合物基複合材料,其係可藉由粉末 共混法、溶液法或熱壓法為之;其中,基材所佔的體積百 为比係為50至90%,該強化材所佔的體積百分比為】〇至 50% 〇 以下列舉數個實施例用於示範本發明,這些實施例並 非以任何方式欲限制本發明的範圍,但用於指示如何實施 本發明的材料及方法。 實施例 一、本發明利用鋁金屬製備強化材的方法 本貫施例例示製備強化材的流程步驟,其主要利用具 有不同粒徑大小的鋁金屬粉體,經鈍化處理與化學分散處 理之後’依適當的比例混合製成鋁強化材。 201236857 1. 提供一鋁金屬材料,經x射線衍射光譜(x ray dlffracti°n,XRD)測試確定為純銘,不含任何雜質;將該紹 金屬材料粉碎成粒徑約為1微米至⑼微米的微米級銘粉體 以及粒徑約為50奈米的奈米級鋁粉體。 2. 取1〇 g粉碎後的微米級㈣體進行鈍化處理;該純 化處理係於12(rc下的有氧環境中乾燥24小時,使微米級 :粉體的表面形成一氧化層;而後藉由12〇目的篩網過篩, 得到一呈鈍化態的微米級鋁粉體。 3. 同步驟2.,得到一呈鈍化態的奈米級鋁粉體。 4. 將微米級鋁粉體與奈米級鋁粉體進行化學分散處 理,以阻止紹粉體產生團聚;該化學分散處理係將該等铭 粉體分別置於5 i 1〇 g的無水乙醇中,力口入石夕院偶聯劑並 且進行超音波震盪處理1小時,使該等鈍化態之鋁粉體的 表面皆均勻包覆一層石夕烧偶聯劑。 5. 經化學分散處理的該等鈍化態之鋁粉體分別依$:丨至 3〇: 1之間的體積比例進行混合,進而形成一鋁強化材。 二、本發明利用鋁金屬製備強化材並與PVDF基材混合 製成複合材料的製備方法 本實施例例示製備本發明之聚合物基複合材料的流程 步驟其主要利用具有不同粒徑大小的紹金屬粉體,經鈍 化處理與化學分散處理之後,依適當的比例混合製成紹強 化材,再與聚偏二氟乙烯(PVDF)為基材,將兩者依適當體 積比例混合並製成本發明之複合材料。 1&供一紹金屬材料’經X R D測s式痛定為純紹,不含 π 201236857 任何雜質;將該鋁金屬材料粉碎成粒徑約為1微米至20微 米的微米級鋁粉體以及粒徑約為5〇奈米的奈米級銘粉體。 2. 取l〇g粉碎後的微米級鋁粉體進行鈍化處理;該鈍化 處理係於120°C下的有氧環境中乾燥24小時,使微米級鋁 粉體的表面形成一氧化層;而後藉由丨2〇目的篩網過篩, 得到一呈純化態的微米級鋁粉體。 3. 同步驟2. ’得到一呈鈍化態的奈米級鋁粉體。 4 ·將微米級紹粉體與奈米級鋁粉體進行化學分散處 理,以阻止鋁粉體產生團聚;該化學分散處理係將該等鋁 叙體分別置於5至1 〇 g的無水乙醇中,加入矽烧偶聯劑並 且進行超音波震盪處理1小時,使該等鈍化態之鋁粉體的 表面皆均勻包覆一層矽烷偶聯劑。 5.經化學分散處理的該等鈍化態之鋁粉體分別依$: j、 、16:1、18:1、19:1、20:1、21:1、22:1、24]、30:1 的 體積比例進行混合,而得到十份不同體積比例組成的鋁強 化材。 6·提供一基材,且該基材係由聚偏二氟乙烯(pvDF)所 構成;將上述步驟5·所製備的每一份強化材以相同體積比 例分別與該基材混合,並置於雙螺桿擠出機中,於溫度為 1 8〇°C、轉速60 rpm的環境下進行混煉、擠出以及造粒等程 序’以形成一複合材料。 7·將經造粒後的該複合材料置入模具中,於平板硫化機 上於溫度200°C以及壓力為50 Mpa的環境下進行熱壓成 型,所需時間為25分鐘,經熱壓成型後即可得一由該等呈 純化態的銘粉體所製成之強化材以及PVdf基材所構成的 12 201236857 複合材料 三、本發明利用錦金屬製備強化材並且與聚偏二I乙 浠(PVDF)基材混合製成複合材料的製備方法 本實施例例示製備本發明之聚合物基複合材料的流程 步驟’其主要利用具有不同粒徑大小的錄金屬粉體,經鈍 化處理與化學分散處理之後’依適當的比例現合製成鎳強 化材’再與聚偏二氟乙稀(PVDF)為基材,將兩者依適當體 積比例混合並製成本發明之複合材料。 L提供一鎳金屬材料,經XRD測試確定為純鎳,不含 任何雜質;將該鎳金屬材料粉碎成粒徑約為(微米至2〇微 米的微米級鎳粉體以及粒徑約為5〇奈米的奈米級鎳粉體。 2. 取1〇 g粉碎後的微米級鎳粉體進行鈍化處理;該鈍 化處理係於12(rc下的有氧環境巾乾燥24小時使微米級 :粉體的表面形成-氧化層;而後藉由120目的篩網過篩, 得到一呈鈍化態的微米級鎳粉體。 3. 同T驟2.,得到一呈鈍化態的奈米級鎳粉體。 字微米級鎳粉體與奈米級鎳粉體進行化學分散處 、:P止鎳粉體產生團聚;該化學分散處理係將該等鎳 ;刀别置於5至iGg的無水乙醇中,加人石夕院偶聯劑並 =行超音波震i處理丨小時,使該等減態之鎳粉體的 面白均勻包覆一層矽烷偶聯劑。 匕予刀散處理的該等鈍化態之鎳粉體分別依5:1、 !〇:1 ' 16:1 > ίο., 1Λ ^.1、19:1、2〇]、21:1、22:1、24:1、3〇:1 的 體積比例進杆、飞人 丁忍5,而得到十份不同體積比例組成的強化 13 201236857 材。 6. 提供一基材,且該基材係 _ 宁田眾偏一齓乙烯(PVDF)所 構成;將上述步驟5.所製備的每一份鉾 ^ 仿螺強化材以相同體積 比例分別與該基材混合,並置於雙螺桿擠出機中,於溫度 為18〇°C、轉速6〇 rpm的環境下進行混煉、擠出以及造二 專程序’以形成一複合材料。 7. 將經造粒後的該複合材料置人模具中,於平板硫化機 上於溫度赋以及壓力為5〇 Mpa的環境下進行熱壓成 型,所需時間為25分鐘,經熱壓成型後即可得一由該等鈍 化態鎳粉體所製成之強化材以及PVDF基材所構成的複合 材料。 四、本發明之本發明利用鎳金屬製備強化材並且與 PMMA基材混合製成複合材料的製備方法 本實施例例示製備本發明之聚合物基複合材料的流程 步驟,其主要利用具有不同粒徑大小的鎳金屬粉體,經鈍 化處理與化學分散處理之後,依適當的比例混合製成鎳強 化材,再與聚甲基丙烯酸曱酯(PMMA)為基材,將兩者依適 冨體積比例混合並製成本發明之複合材料。 1·提供一鎳金屬材料,經XRD測試確定為純鎳,不含 任何雜質;將該錦金屬材料粉碎成粒徑約為1微米至2〇微 米的微米級鎳粉體以及粒徑約為50奈米的奈米級鎳粉體。 2.取1〇 g粉碎後的微米級鎳粉體進行鈍化處理;該鈍 化處理係於1 201下的有氧環境中乾燥24小時,使微米級 錄粉體的表面形成一氧化層;而後藉由120目的篩網過篩, 14 201236857 得到-呈鈍化態的微米級鎳粉體。 3.同步驟2.,得到—呈鈍化態的奈米級鎳粉體。 4:將微米級錄粉體與奈米級錄粉體進行化學分散處 理,以阻止錦伞方a㈤β …乃 生團聚;該化學分散處理係將該等鎳 粉體分別置於5黾^ §的…、水乙醇中,加入矽烷偶聯劑並 且進仃超音波震盪處理丨 牙使°亥荨鈍化態之鎳粉體的 表面皆均勻包覆一層矽烷偶聯劑。 5.經化學分散處理的該等鈍化態之錄粉體分別依η、 體積比例進行混人,而彡θ丨 Q而侍到十份不同體積比例組成的鎳強 化材。 .,、一基材,且該基材係由聚甲基丙烯酸甲酯 (PMMA)所構成;將上述步驟5•所製備的每—份錦強化材以 才同體積比例分別與該基材混合,並置於雙螺桿擠出機 中於/皿度為170C、轉速60 rpm的環境下進行混煉、擠 出以及造粒等程序,以形成一複合材料。 7·將經造粒後的該複合材料置人模具中,於平板硫化機 上於溫度20(TC以及壓力為5〇 Mpa的環境下進行熱壓成 型’所需時間為25分鐘,經熱壓成型後即可得—由該等鈍 化態錄粉體所製成之強化材以及聚f基丙稀酸曱_(ρΜΜΑ) 基材所構成的複合材料。 五、鋁強化材與PVDF基材所混合製成的聚合物基複合 材料之性質 如圖2所示,其係為鋁強化材與聚偏二氟乙烯(pvDF) 基材以1:1的體積比例所製成之聚合物基複合材料的電子 15 201236857 顯微掃描圖。其中該鋁強化材係由微米級鈍化鋁粉體與奈 米級鈍化鋁粉體以2 0:1的體積比例所混合製成。 如圖3所示,其係為不同鋁強化材分別與聚偏二氟乙烯 (PVDF)基材以1:1的體積比例所構成之複合材料的熱導率 測定結果圖。其中,橫軸表示該鋁強化材中,微米級鈍化 鋁粉體與奈米級鈍化鋁粉體所組成之體積比例。由此結果 可知,當紹強化材中的微米級鈍化鋁粉體與奈米級鈍化鋁 粉體以20:1的比例混合時,該鋁強化材的熱導率達到一最 大值’其係3.258 W/m · K。 如圖4所示’其係為不同鋁強化材分別與聚偏二氟乙 烯(PVDF)基材以1:1的體積比例所構成之複合材料的介電 損失測定結果圖’其中該鋁強化材係由微米級鈍化鋁粉體 與奈米級鈍化銘粉體依不同體積比例所組成。由此結果可 知’在不同的電場頻率之下’介電損耗(dielecMc 1〇ss,un δ) 隨著頻率增加而有升高之趨勢’但變化不大,其值係於〇〇2 至0.1 5之間,而當铭強化材中的微米級鈍化紹粉體與奈米 級鈍化鋁粉體以20:1的體積比例混合時,其於各電場頻率 下的介電損失較該等鋁粉體以其他體積比例混合者為低。 由上述可知,所製備之複合材料的熱導率又與強化材 中金屬粉體的粒徑大小、以及不同粒徑之金屬粉體的體積 比例有關’藉由不同粒徑大小之鈍化金屬粉體依適當的體 積比共同摻雜於聚合物基材内而製成的複合材料,確實能 夠具備高導熱性、低介電損失之性質,利於應用在電子封 裝材料的產業領域。 ^ 以上所述僅是本創作的較佳實施例而已,並非對本創作 16 201236857 有任何形式上的限制,雖然本創作已以較佳實施例揭露如 上’然而並非用以限定本創作,任何所屬技術領域中具有通 常知識者,在不脫離本創作技術方案的範圍内,當可利用上 述揭示的技術内容做出些許更動或修飾等同變^的等效實 施例,但凡是未脫離本創作技術方案的内容,依據本創作的 技術實質對以上實施例所做的任何簡單修改、等同變化與修 飾,均仍屬於本創作技術方案的範圍内。 【圖式簡單說明】 圖1為本發明之聚合物基複合材料之製造方法的流程 圖。 圖2為鋁強化材與聚偏二氟乙烯(pvDF)基材以u的 體積比例所製成之聚合物基複合材料的電子顯微掃描圖。 圖3為不同鋁強化材分別與聚偏二氟乙烯(pvDF)基材 以1.1的體積比例所構成之複合材料的熱導率測定結果圖。 圖4為不同鋁強化材分別與聚偏二氟乙烯(pvDF)基材 以1.1的體積比例所構成之複合材料的介電損失測定結果 圖。 【主要元件符號說明】 無 17201236857 VI. Description of the Invention: [Technical Field] The present invention relates to the field of electronic composite materials, and in particular to a passivated metal particle having different particle sizes and sizes doped in a polymer substrate to improve thermal conductivity. The rate of a polymer matrix composite. [Prior Art] With the rapid development of microelectronics technology and printed circuit board assembly technology, coupled with the demand for thin, short, and versatile, high-speed products, components of electronic devices are bound to face problems such as small internal space and difficulty in heat dissipation. When the temperature of the electronic device is increased, the operation stability is poor, or even the service life is lowered, and the use of a material having good thermal conductivity as much as possible in the process is one of the pipes for solving such technical problems. Therefore, the development of electronic component packaging materials with low dielectric loss and high thermal conductivity has become the focus of research and development in the current academic and industrial circles. Although the traditional metal materials have high thermal conductivity, they are limited in their application in electronic component packaging because of their poor corrosion resistance and electrical conductivity. They are widely used in high-power hybrid integrated circuit materials such as nitriding. Aluminum (A1N), alumina (Ai2〇3) and yttrium oxide (Be〇), although it has a relatively high thermal conductivity, but its linear expansion coefficient is not well matched with Shi Xi, the texture is brittle and hard to process, and the production cost Higher and higher processing temperatures limit the use of ceramic materials. In recent years, research on improving the thermal conductivity and dielectric properties of electronic packaging materials has been increasing' mainly by polyethylene (p〇Iyethyiene, pE), polypropylene (P〇iyPr_ene, PP), and polytetrafluoroethylene (10). "Changxun coffee"% PTFE) and other high molecular polymers as the substrate 'The polymer substrate has good resistance to 201236857 chemical corrosion, mechanical formability, electrical insulation properties, fatigue resistance; however, the thermal conductivity of the polymer Generally, it is inferior to metals and ceramics. Therefore, a reinforcing material having high thermal conductivity, such as metal, fiber or other inorganic materials, is added to the substrate to improve the thermal conductivity of the composite. However, if the volume ratio of the added reinforcing material is increased in order to increase the thermal conductivity, the mechanical properties and the processing properties of the composite material are often drastically reduced; if the added reinforcing material is highly thermally conductive and electrically conductive The material of the material increases the thermal conductivity and increases the dielectric constant and increases the electrical loss. If the added reinforcing material is a high thermal conductivity insulating material, it is difficult to achieve the desired thermal conductivity. In general, according to the current requirements for the properties of insulating materials, the prior art lacks a polymer-based composite material having a thermal conductivity greater than 3 κ and a low dielectric loss, and a reference to the present invention has been found through literature search. · j. w Xu, cp w〇ng, Hu, Vol. 87' p, 0829〇7 (2〇〇5), mainly based on the surface passivated uniform particle size of aluminum powder as a reinforcing material to improve the composite material Electrical properties, and its thermal conductivity and dielectric properties are not ideal. Based on the above, this technology bottleneck is in need of breakthroughs to facilitate the use of related industries. SUMMARY OF THE INVENTION In view of the prior art, a composite material based on a polymer material is difficult to prepare an electronic insulating packaging material having high thermal conductivity. Therefore, the inventors of the present invention are attached to the telecommunications student of Xi'an Jiaotong University. The Institute of Electronic Materials is committed to the research of electronic materials, and has developed a polymer-based composite material with a thermal conductivity to break through the bottleneck of the prior art. In order to achieve the above-mentioned creative purpose, the present invention provides a polymer-based composite material comprising: 201236857 a substrate which is composed of a polymer material; and a dispersion of the substrate The reinforcing material in the present invention comprises a passivated micron-sized metal powder and a nano-sized metal powder, and the volume percentage of the substrate is 5〇 to 90%′ and the volume percentage of the reinforcing material is 1〇 to 5〇%, based on the overall volume. Preferably, in the reinforcing material, the volume ratio of the micron-sized metal powder to the nano-sized metal powder is from 5:1 to 30:1. Preferably, the micron-sized metal powder of the reinforcing material has a particle diameter of from 1 μm to 20 μm. The preferred 'beta reinforcing material' has a particle size of from about 1 nanometer to about 100 nanometers. Preferably, the surface of the micron-sized metal powder and the nano-sized metal powder of the reinforcing material are respectively coated with an oxide layer which is formed by passivation treatment. Preferably, the reinforced material comprises a group selected from the group consisting of aluminum, chromium, chrome, iron, molybdenum, cobalt, tungsten, rhenium, ruthenium, and the like. Preferably, the substrate is selected from the group consisting of polyvinylidene fluoride, polyvinylidene fluoride-difluoroJ ethylene, polyethylene, polypropylene, polypropylene methyl acetonate, poly styrene, A group of epoxy resins and combinations thereof. The present invention further provides a method for producing a polymer-based composite material as described above, the method comprising the steps of: providing passivated micron-sized metal powder and nano-sized metal powder; and passivating micron-sized metal powder Dispersing treatment of the body and the nano-sized metal powder; 201236857 mixing the disperse-treated micron-sized metal powder with the nano-sized metal powder in a certain volume ratio to form a reinforcing material; providing a substrate, the substrate Is composed of a polymer material; and the reinforcing material is mixed with the substrate in a certain volume ratio to prepare a polymer-based composite material, and the volume percentage of the substrate in the polymer-based composite material is 50 Up to 90%, and the volume percentage of the reinforcing material is 10 to 50%, based on the overall volume. Preferably, in the reinforcing material, the volume ratio of the micron-sized metal powder to the nano-sized metal powder is 5:1 to 30:1. Preferably, in the reinforcing material, the micron-sized metal powder has a particle diameter of from 1 μm to 20 μm. Preferably, the particle size of the 'nano-grade metal powder in the reinforcing material is from 1 m to 1 nm. 'τ', preferably, in the method of the present invention, the providing passivated micron-sized metal powder and nano-sized metal powder system comprises: providing a metal; pulverizing the metal into a micron-sized metal powder The body and the nano-sized metal powder; the alkali-grade metal powder and the nano-grade metal are used to take the passivated metal powder. The passivation treatment comprises forming an oxide layer on the surface of the micron-sized metal powder tantalum metal powder. The method of forming the oxide layer may be a method of oxidizing by a strong oxidizing agent and other alternative methods. ",, the emulsified car is good, the method of forming the oxide layer can be air heating oxidation 201236857: the state-level metal powder and the nano-grade metal powder are placed in the - high temperature sub-special metal powder for drying for a period of time The temperature of the high temperature environment is between 1 〇〇 and 150. (Between: Between 5 W and 3 hours of drying of the metal powder is between 18 and 36 hours. The method for forming the oxide layer may be a strong oxidizing agent. The strong oxidizing agent used is concentrated sulfuric acid, nitric acid, gaseous acid, iodic acid, potassium dichromate or potassium peroxylate. The passivated micron-sized metal is placed in a solvent with a graded metal powder, and a dispersing agent is added to form a β-floating liquid, and then the suspension solution is ultrasonically oscillated for a period of time. The mixture is an organic solvent, and the solvent may be anhydrous ethanol, acetone, dimethylformamide, and other alternatives. Preferably, the organic solvent is anhydrous ethanol, and the monomers are passivated. Micron-sized metal powder and nano-sized metal powder The volume ratio of absolute ethanol is 1:1. Preferably, the dispersant may be a silane coupling agent, a phthalate coupling agent, a phthalate coupling agent, and other alternative materials. Preferably, the dispersing agent is a decane coupling agent and is added in an amount of 1 to 3% by volume of the organic solvent. Preferably, the time required for the ultrasonic vibration treatment is between 〇5 hours and 3 hours. Preferably, the reinforced material is selected from the group consisting of aluminum, chromium, nickel, iron, sho, 201236857 cobalt, tungsten, button, ruthenium, and the like. Preferably, the polymerization The material is selected from poly(vinylidene fluoride, PVDF), poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE)] Polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), polyimide (PI), epoxy resin a combination of ep〇xy resin) and combinations thereof, etc. Preferably, the reinforcing material is mixed with a substrate. The method of the composite material may be a powder blending method, a solution method, a hot pressing method or other alternative methods. In summary, the metal powders of different particle sizes are respectively subjected to passivation treatment and mixed. By forming a reinforcing material and adding it to a polymer substrate, a polymer-based composite material having high thermal conductivity can be prepared, and a certain degree of low dielectric loss can be maintained to facilitate application to an electrically insulating packaging material. Used in any application where thermal insulation is required. Further, the method of the present invention is simple in procedure, low in manufacturing cost, and easy to control in operating parameters, and can realize the present invention in experiments such as small-scale production or industrial mass production, and has practical utility. [Embodiment] Hereinafter, the present invention will be described in detail with reference to the drawings and the present invention in order to achieve a preferred embodiment of the present invention. Referring to Figure 1, the method of polymer-based composite material of Shizheng this month includes the following steps: providing - metal; the metal system is prepared, chrome, nickel, iron, molybdenum preparation, Gu, 201236857 tungsten , 钽, 铌 or other alternative metal materials. The metal is pulverized into a micron-sized metal powder and a nano-sized metal powder; the micron-sized metal powder has a particle size of 1 μm to 20 μm; and the size of the nano-sized metal powder is about It is 1 nanometer to nanometer. Passivating the micron-sized metal powder and the nano-sized metal powder so that the micron-sized and nano-sized metal powders are in a purified state; the purification treatment is formed on the surface of the metal powder to form an oxidation a layer, which may be obtained by an air heating oxidation method, a strong oxidizing agent oxidation method or other alternative methods, wherein the working gas heating oxidation method is to dry the metal powder in a high temperature environment for a period of time, The surface of the powder forms an oxide layer; the strong oxidant oxidation method utilizes strong oxidants such as concentrated sulfuric acid, nitric acid, qi acid, iodic acid, potassium dichromate, potassium permanganate or other alternative strong oxidants and such metals. The powder acts to form an oxide layer on the surface of the powder. Dispersing the passivated metal powders to avoid agglomeration of the passivated metal powders, which is unfavorable for subsequent processes; the chemical dispersion treatment places the metal powders in a passivated state a dispersant is added to a solvent to form a suspension solution, and then the suspension solution is ultrasonically oscillated for a period of time to enhance the dispersion effect of the metal powders, and the dispersant is uniformly coated on the passivated metal powder. Body surface. Wherein, the solvent may be an organic solvent such as absolute ethanol, acetone, dimethylformamide or other alternative solvent, and in the preferred embodiment of the invention, anhydrous ethanol is used as a solvent, and The volume ratio of the metal powder to the solvent may be 1:1: the dispersant may be a silane coupling agent, a phthalate coupling agent, a phthalate coupling agent. Or other alternative substances. 201236857 The dispersed micron-sized metal powder is mixed with the nano-sized metal powder in a certain volume ratio to form a reinforcing material; the volume ratio is between 5:i and 30:1. A substrate is provided which is composed of a polymeric material and which is polymerized. The material system may be polyvinylidene fluoride [p〇ly (viny丨idene) (10)^7), pvdf], polyvinylidene fluoride-trifluoroethylene [p〇ly (vi^iidene fluoride-trifluoroethylene), P ( VDF-TrFE)], polyethylene (PE), polypropylene (p〇iypr〇pylene, pp), poly(methyl methacrylate), PMMA, polyimide (PI) ), epoxy resin (ep〇xy resin) or other alternative polymers. The reinforced material is mixed with the substrate in a certain volume ratio and the polymer matrix composite material is prepared by a suitable preparation method, which can be obtained by a powder blending method, a solution method or a hot pressing method; The substrate occupies a volume ratio of 50 to 90%, and the volume percentage of the reinforced material is 〇 to 50%. 数 Several examples are exemplified below to illustrate the present invention, and these embodiments are not intended to Means are intended to limit the scope of the invention, but are intended to indicate how to practice the materials and methods of the invention. Embodiment 1 The method for preparing a reinforcing material by using aluminum metal in the present invention The present embodiment exemplifies a flow step of preparing a reinforcing material, which mainly utilizes aluminum metal powder having different particle sizes, after passivation treatment and chemical dispersion treatment Mix in an appropriate ratio to make an aluminum reinforced material. 201236857 1. Provide an aluminum metal material, which is determined by x-ray diffraction spectroscopy (x ray dlffracti°n, XRD) to be pure, without any impurities; the metal material is pulverized to a particle size of about 1 micron to (9) micron. The micron-sized powder and the nano-aluminum powder with a particle size of about 50 nm. 2. Pass 1 μg of the pulverized micron (four) body for passivation treatment; the purification treatment is dried in an aerobic environment at 12 rc for 24 hours to make the micron-scale: an oxide layer on the surface of the powder; Screened by a 12-mesh screen to obtain a micron-sized aluminum powder in a passivated state. 3. Same as step 2. to obtain a passivated nano-aluminum powder. 4. Micron-sized aluminum powder and The nano-sized aluminum powder is chemically dispersed to prevent agglomeration of the powder; the chemical dispersion treatment is to place the powders in 5 i 1 〇g of absolute ethanol, respectively, and force into the Shi Xiyuan The agent is mixed and subjected to ultrasonic vibration treatment for 1 hour, so that the surfaces of the aluminum powders in the passivated state are uniformly coated with a layer of Shihua burning coupling agent. 5. The aluminum powders of the passivated state which are chemically dispersed are respectively According to the volume ratio between $:丨 to 3〇:1, an aluminum reinforcing material is formed. Second, the method for preparing a composite material by using aluminum metal to prepare a reinforcing material and mixing with a PVDF substrate is the same. Illustrating the process steps for preparing the polymer matrix composite of the present invention After using passivation treatment and chemical dispersion treatment with different particle size and size, the mixture is prepared according to the appropriate ratio, and then the polyvinylidene fluoride (PVDF) is used as the substrate. Mixing and forming the composite material of the present invention in an appropriate volume ratio. 1& for a metal material of the singularity of X-ray, s-type pain is pure, without π 201236857 any impurities; the aluminum metal material is pulverized to a particle size of about 1 micron Micron-sized aluminum powder up to 20 microns and nano-sized powder with a particle size of about 5 nanometers. 2. Pass through the micron-sized aluminum powder after pulverization; the passivation treatment is based on 120 Drying in an aerobic environment at °C for 24 hours to form an oxide layer on the surface of the micron-sized aluminum powder; and then sieving through a sieve of 丨2 mesh to obtain a purified micron-sized aluminum powder. Same as step 2. 'Get a nano-aluminized powder of passivation state. 4 · Chemically disperse the micron-sized powder and the nano-aluminum powder to prevent agglomeration of the aluminum powder; the chemical dispersion The treatment system places the aluminum relics at 5 to 1 〇 g In the anhydrous ethanol, the simmering coupling agent is added and subjected to ultrasonic vibration treatment for 1 hour, so that the surfaces of the aluminum powders in the passivated state are uniformly coated with a layer of decane coupling agent. The passivated aluminum powder is mixed according to the volume ratio of $: j, , 16:1, 18:1, 19:1, 20:1, 21:1, 22:1, 24], and 30:1, respectively. Obtaining ten aluminum reinforcing materials of different volume ratios. 6. Providing a substrate composed of polyvinylidene fluoride (pvDF); each of the reinforcing materials prepared in the above step 5 The same volume ratio is mixed with the substrate, and placed in a twin-screw extruder, and the processes of kneading, extruding, and granulating are performed at a temperature of 18 ° C and a rotation speed of 60 rpm to form a composite. material. 7. The granulated composite material is placed in a mold, and hot pressed on a flat vulcanizing machine at a temperature of 200 ° C and a pressure of 50 MPa, and the time required is 25 minutes, which is subjected to hot press forming. After that, a reinforcing material made of the purified powder and a PVdf substrate can be obtained. 12 201236857 composite material 3. The present invention utilizes a ruthenium metal to prepare a reinforcing material and is combined with a polyimidazolium (PVDF) Substrate mixing method for preparing composite material This embodiment exemplifies a flow step of preparing the polymer matrix composite material of the present invention, which mainly utilizes recorded metal powders having different particle sizes, passivation treatment and chemical dispersion After the treatment, the nickel reinforcing material was prepared in an appropriate ratio and then polyvinylidene fluoride (PVDF) was used as a substrate, and the two were mixed in an appropriate volume ratio to prepare a composite material of the present invention. L provides a nickel metal material which is determined to be pure nickel by XRD test and does not contain any impurities; the nickel metal material is pulverized into micron-sized nickel powder having a particle diameter of about (micron to 2 〇 micron and a particle size of about 5 〇). Nano-scale nickel powder of nanometer 2. Pass 1 μg of pulverized micron-sized nickel powder for passivation treatment; the passivation treatment is carried out on an aerobic environmental towel at 12 rc for 24 hours to make micron-sized: powder The surface of the body forms an oxide layer; and then sieved through a 120 mesh screen to obtain a micron-sized nickel powder in a passivated state. 3. Same as T. 2. A passivated nano-sized nickel powder is obtained. The micron-sized nickel powder and the nano-sized nickel powder are chemically dispersed, and the P-stop nickel powder is agglomerated; the chemical dispersion treatment is to treat the nickel; the knife is placed in 5 to iGg of anhydrous ethanol, Adding the Shi Xiyuan coupling agent and measuring the ultrasonic wave for a few hours, the surface of the nickel powder is uniformly coated with a layer of decane coupling agent. The nickel powder is based on 5:1, !〇:1 ' 16:1 > ίο., 1Λ ^.1, 19:1, 2〇], 21:1, 22:1, 24:1, 3: 1 of The proportion of the rods, the flying man Ding Ren 5, and the ten different volume ratios of the reinforced 13 201236857 material. 6. Provide a substrate, and the substrate is _ Ningtian Zhongyiyiyi ethylene (PVDF); Each of the sputum-like snail-reinforced materials prepared in the above step 5. was separately mixed with the substrate in the same volume ratio, and placed in a twin-screw extruder at a temperature of 18 ° C and a rotation speed of 6 rpm. Mixing, extruding and manufacturing a special procedure to form a composite material. 7. The granulated composite material is placed in a mold, and the temperature is applied to a flat vulcanizing machine at a pressure of 5 〇Mpa. In the environment of hot press forming, the time required is 25 minutes, and a composite material composed of the passivated nickel powder and the PVDF substrate can be obtained by hot press forming. The present invention uses a nickel metal to prepare a reinforcing material and is mixed with a PMMA substrate to prepare a composite material. This embodiment exemplifies a flow step of preparing the polymer-based composite material of the present invention, which mainly utilizes different particle sizes. Nickel metal powder After being passivated and chemically dispersed, the nickel reinforcing material is mixed in an appropriate ratio, and then mixed with polymethyl methacrylate (PMMA) as a substrate, and the two are mixed in a volume ratio to form a composite of the present invention. 1. A nickel metal material is provided, which is determined to be pure nickel by XRD test and does not contain any impurities; the brocade metal material is pulverized into micron-sized nickel powder having a particle diameter of about 1 micrometer to 2 micrometers and a particle size of about It is a nanometer nickel powder of 50 nm. 2. Passivation of 1 μg of the pulverized micron-sized nickel powder; the passivation treatment is dried in an aerobic environment at 1 201 for 24 hours to make the micron-scale An oxide layer is formed on the surface of the recorded powder; and then sieved through a 120 mesh screen, 14 201236857 to obtain a micron-sized nickel powder in a passivated state. 3. In the same step 2., obtain a nano-sized nickel powder in a passivated state. 4: chemically dispersing the micron-sized powder and the nano-recorded powder to prevent agglomeration of the a (5) β-... the chemical dispersion treatment is to place the nickel powders at 5 黾 ^ §... In the water ethanol, a decane coupling agent is added, and the ultrasonic wave is oscillated to treat the cavities so that the surface of the nickel powder in the passivated state is uniformly coated with a layer of decane coupling agent. 5. The chemically dispersed processed powders of the passivated state are mixed according to the ratio of η and volume, respectively, and 彡θ丨 Q is served to ten nickel reinforcing materials of different volume ratios. a substrate, and the substrate is composed of polymethyl methacrylate (PMMA); each of the varnishes prepared in the above step 5 • is mixed with the substrate in a volume ratio The mixture was placed in a twin-screw extruder at a flow rate of 170 C and a rotation speed of 60 rpm to carry out a process such as kneading, extrusion, and granulation to form a composite material. 7. The granulated composite material is placed in a mold, and the time required for hot press forming at a temperature of 20 (TC and a pressure of 5 〇Mpa) on a flat vulcanizer is 25 minutes, and hot pressing After molding, it can be obtained as a composite material made of the passivated recording powder and a composite material of polyf-based bismuth acrylate 曱((ΜΜΑ) substrate. 5. Aluminum reinforced material and PVDF substrate The properties of the polymer-based composite material prepared by mixing are shown in Fig. 2, which is a polymer-based composite material prepared by using a 1:1 volume ratio of an aluminum reinforcing material and a polyvinylidene fluoride (pvDF) substrate. Electron 15 201236857 Microscopic scan image in which the aluminum reinforced material is made by mixing micron-sized passivated aluminum powder with nano-passivated aluminum powder in a volume ratio of 20:1. As shown in Fig. 3, It is a graph showing the thermal conductivity of a composite material composed of different aluminum reinforcing materials and a polyvinylidene fluoride (PVDF) substrate in a volume ratio of 1:1, wherein the horizontal axis represents the micron in the aluminum reinforcing material. The volume ratio of the passivated aluminum powder and the nano-passivated aluminum powder. When the micron-sized passivated aluminum powder and the nano-passivated aluminum powder in the reinforced material are mixed at a ratio of 20:1, the thermal conductivity of the aluminum reinforced material reaches a maximum value of 3.258 W/m · K. Figure 4 shows the results of dielectric loss measurement of a composite material composed of different aluminum reinforced materials and a polyvinylidene fluoride (PVDF) substrate in a volume ratio of 1:1. The material consists of micron-sized passivated aluminum powder and nano-passivated powder according to different volume ratios. The results show that 'under different electric field frequencies' dielectric loss (dielecMc 1〇ss, un δ) The frequency increases and there is a tendency to increase 'but the change is not large, the value is between 〇〇2 and 0.1 5, and the micron-pass passivated powder and the nano-passivated aluminum powder in the Ming reinforced material When the volume ratio of 20:1 is mixed, the dielectric loss at each electric field frequency is lower than that of the other aluminum powders mixed with other volume ratios. From the above, the thermal conductivity of the prepared composite material is enhanced and strengthened. The particle size of the metal powder in the material and the volume ratio of the metal powder of different particle sizes For example, a composite material prepared by uniformly doping a passivated metal powder of different particle sizes in a polymer matrix with a suitable volume ratio can indeed have high thermal conductivity and low dielectric loss properties, which is advantageous for It is used in the industrial field of electronic packaging materials. ^ The above description is only a preferred embodiment of the present invention, and does not have any form limitation on the present creation 16 201236857, although the present invention has been disclosed in the preferred embodiment as above. The equivalents of the above-disclosed technical means can be used to make some modifications or modifications to the equivalents, without departing from the scope of the present invention. Any simple modifications, equivalent changes and modifications made to the above embodiments in accordance with the technical essence of the present invention are still within the scope of the present technical solution. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a method of producing a polymer-based composite material of the present invention. Fig. 2 is an electron micrograph of a polymer-based composite material prepared by using an aluminum reinforcing material and a polyvinylidene fluoride (pvDF) substrate in a volume ratio of u. Fig. 3 is a graph showing the results of measuring the thermal conductivity of composite materials composed of different aluminum reinforced materials and polyvinylidene fluoride (pvDF) substrates in a volume ratio of 1.1. Fig. 4 is a graph showing the results of dielectric loss measurement of composite materials composed of different aluminum reinforced materials and polyvinylidene fluoride (pvDF) substrates in a volume ratio of 1.1. [Main component symbol description] None 17

Claims (1)

201236857 七、申請專利範圍: 1. 一種聚合物基複合材料,其包含有:一基材,其係由 聚合物材料所構成;以及一分散於該基材中的強化材,其 係包含有微米級金屬粉體與奈米級金屬粉體,且該等金屬 粉體均經鈍化處理而呈現鈍化態;且基材所佔的體積百分 比為50至90%,而強化材所佔的體積比為1〇至5〇%,以 整體體積為基礎。 2. 如申請專利範圍第丨項所述之聚合物基複合材料其 中該強化材中,微米級金屬粉體與奈米級金屬粉體的體積 比為5 :1至3 0:1。 3·如申請專利範圍第丨項所述之聚合物基複合材料,其 中該強化材之微米級金屬粉體的粒徑介於i微米至2〇微米 之間。 4.如申請專利範圍帛1項料之聚合物基複合材料,其 中該強化材之奈米級金屬粉體的粒徑介於1〇奈米至i⑻奈 米之間。 $ 5. 如申請專利範圍第i項所述之聚合物基複合材料,其 中該強化材之微米級金屬粉體與奈求級金屬粉體的表面均 分別包覆有-氧化層氧化層係經由鈍化處理所形成。 6. 如申請專利範圍第15_5項任—項所述之聚合物基複 合材料,纟中’該強化材係由包括選自於由鋁、鉻、鎳、 鐵、翻、銘、鎢、钮、銳以及其等之組合所構成的群組。 7·如申請專利範圍第1至5項任-項所述之聚合物基複 合材料’丨中該基材係選自於由聚偏二氟乙烯 乙稀-三氟乙烯、聚乙稀、聚丙稀、聚丙烯甲基酸甲醋、聚 18 201236857 亞酿胺、%氧樹脂以及其等之組合所構成的群組。 8·一種如申請專利範圍第1項所述之聚合物基複合材 料之製造方法,其係包括: 提供經鈍化處理的微米級金屬粉體與奈米級金屬粉 體; 對經鈍化處理的微米級金屬粉體與奈米級金屬粉體進 行分散處理; 將分散處理後的微米級金屬粉體與奈米級金屬粉體依 一定的體積比例混合並形成一強化材; 提供一基材,該基材係由聚合物材料所構成;以及 將該強化材與該基材依一定的體積比例混合製備成— 聚合物基複合材料,且該聚合物基複合材料中,基材所佔 的體積比為50至90% ’該強化材所佔的體積比為1 〇至 50%,以整體體積為基礎。 9. 如申請專利範圍第8項所述之聚合物基複合材料之 製造方法’其中提供經鈍化處理的微米級金屬粉體與奈米 級金屬粉體係包括: 提供一金屬; 將該金屬粉碎成微米級金屬粉體與奈米級金屬粉體;以 及 對微米級金屬粉體與奈米級金屬粉體進行鈍化處理,藉 以取得該等經鈍化處理的金屬粉體。 10. 如申請專利範圍第9項所述之聚合物基複合材料之 製造方法’其令該她化處理係包括使微米級金屬粉體與奈 米級金屬粉體的表面形成一氧化層。 201236857 η·如申請專利範圍第10項所述 之製造方法…形成該氧化層的複合材料 氧化法、強氧化劑氧化法及其等之組合所:由二氣加熱 12.如申請專利範圍第u項所 美群^ 夕锢#古、土 . ^ 心聚合物基複合材料 、…㈣ 該氧化層的方法係為空氣加教氧化 法、係將微米級金屬粉體與奈米級金屬 “ 環境,並對該等金屬粉體進行乾燥。 、间& 製二3、Γ申::利_ 8項所述之聚合物基複合材料之 麗二太、β亥分散處理包括將經斜化處理的微米級金 屬粉體與奈米級金屬粉體置於—溶劑中,並加人分散劑而 形成-懸浮溶液,錢對該料溶液進行超Μ震盪處理。 ^如中請專利範圍第13項所述之聚合物基複合㈣ 之“方法中該溶劑係為一有機溶劑,且該溶劑係選 自由無水乙醇、丙酮、^甲基甲醯胺及其等之組合所構成 的群組。 15·如申請專利範圍第14項所述之聚合物基複合材料 之製造方法’纟中該溶劑係為無水乙醇,且該等呈純化態 的微米級金屬#體與奈米、級金屬粉體與無纟乙醇的體積: 係為1:1。 16. 如申請專利範圍第13項所述之聚合物基複合材料 之製造方法中該分散劑係選自由矽烷偶聯劑、酞酸酯 偶聯劑、矽酸酯偶聯劑及其等之組合所構成的群組。 17. 如申請專利範圍帛16 述之聚合物基複合材料 之製造方法,其中該分散劑係為矽烷偶聯劑,且其添加量 為有機溶劑體積的1至3 %。 20 201236857 18.如申請專利範圍第8至17任一項所述之聚合物基複 合材料之製造方法,其中將該強化材與基材混合製成聚合 物基複合材料的方法係為粉末共混法、溶液法或熱壓法。 八、圖式:(如次頁) 21201236857 VII. Patent Application Range: 1. A polymer-based composite material comprising: a substrate composed of a polymer material; and a reinforcing material dispersed in the substrate, which comprises micron Grade metal powder and nano-grade metal powder, and the metal powders are passivated to be passivated; and the volume percentage of the substrate is 50 to 90%, and the volume ratio of the reinforcing material is 1〇 to 5〇%, based on the overall volume. 2. The polymer-based composite material according to the above-mentioned claim, wherein the volume ratio of the micron-sized metal powder to the nano-sized metal powder is 5:1 to 30:1. 3. The polymer-based composite material according to claim 2, wherein the micron-sized metal powder of the reinforcing material has a particle size ranging from i micrometers to 2 micrometers. 4. A polymer-based composite material according to claim 1, wherein the nano-sized metal powder of the reinforcing material has a particle size ranging from 1 nanometer to i(8) nanometer. 5. The polymer-based composite material according to claim i, wherein the surface of the micron-sized metal powder and the nano-sized metal powder of the reinforcing material are respectively coated with an oxide layer Passivation treatment is formed. 6. The polymer-based composite material as claimed in claim 15-5, wherein the reinforcing material comprises: selected from the group consisting of aluminum, chromium, nickel, iron, turn, Ming, tungsten, button, A group of sharp and its combinations. 7. The polymer-based composite material according to any one of claims 1 to 5, wherein the substrate is selected from the group consisting of polyvinylidene fluoride-trifluoroethylene, triethylene glycol, polypropylene. A group consisting of dilute, polypropylene methyl methacrylate, poly 18 201236857 arsenic amine, % oxy-resin, and combinations thereof. A method for producing a polymer-based composite material according to claim 1, which comprises: providing a passivated micron-sized metal powder and a nano-sized metal powder; and the passivated micron Dispersing the metal powder and the nano-sized metal powder; mixing the disperse-treated micron-sized metal powder with the nano-sized metal powder according to a certain volume ratio to form a reinforcing material; providing a substrate, The substrate is composed of a polymer material; and the reinforcing material is mixed with the substrate in a certain volume ratio to prepare a polymer-based composite material, and the volume ratio of the substrate in the polymer matrix composite material 50 to 90% 'The volume ratio of the reinforced material is 1 〇 to 50%, based on the overall volume. 9. The method for producing a polymer-based composite material according to claim 8, wherein providing the passivated micron-sized metal powder and the nano-sized metal powder system comprises: providing a metal; pulverizing the metal into The micron-sized metal powder and the nano-sized metal powder; and the passivation treatment of the micron-sized metal powder and the nano-sized metal powder to obtain the passivated metal powder. 10. The method of producing a polymer-based composite material according to claim 9, wherein the method of treating the method comprises forming an oxide layer on the surface of the micron-sized metal powder and the nano-sized metal powder. 201236857 η· The manufacturing method according to claim 10 of the patent application range... The composite material oxidation method, the strong oxidizing agent oxidation method and the like which form the oxide layer are: heated by two gases 12. As claimed in the scope of claim u The beautiful group ^ 夕锢#古,土. ^ Heart polymer matrix composite, ... (4) The method of the oxide layer is air-assisted oxidation, the system of micron-sized metal powder and nano-scale metal, and Drying the metal powders, and the second embodiment of the polymer-based composite material according to the item -8, the dialysis treatment includes the micron which is subjected to the oblique treatment. The metal powder and the nano metal powder are placed in a solvent, and a dispersing agent is added to form a suspension solution, and the solution is subjected to a super-shock treatment. ^ As claimed in the patent scope, item 13 In the polymer-based compound (4), the solvent is an organic solvent, and the solvent is selected from the group consisting of anhydrous ethanol, acetone, methyl methotrexate, and the like. 15. The method for producing a polymer-based composite material according to claim 14, wherein the solvent is anhydrous ethanol, and the micron-sized metal body and the nano-sized metal powder are in a purified state. Volume with innocent ethanol: 1:1. 16. The method of producing a polymer-based composite material according to claim 13, wherein the dispersant is selected from the group consisting of a decane coupling agent, a phthalate coupling agent, a phthalate coupling agent, and the like. The group formed. 17. The method of producing a polymer-based composite material according to claim 16, wherein the dispersing agent is a decane coupling agent and is added in an amount of from 1 to 3% by volume based on the volume of the organic solvent. The method for producing a polymer-based composite material according to any one of claims 8 to 17, wherein the method of mixing the reinforcing material with a substrate to form a polymer-based composite material is powder blending. Method, solution method or hot pressing method. Eight, the pattern: (such as the next page) 21
TW100108056A 2011-03-10 2011-03-10 Polymer based composite and its manufacturing method TWI429533B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100108056A TWI429533B (en) 2011-03-10 2011-03-10 Polymer based composite and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100108056A TWI429533B (en) 2011-03-10 2011-03-10 Polymer based composite and its manufacturing method

Publications (2)

Publication Number Publication Date
TW201236857A true TW201236857A (en) 2012-09-16
TWI429533B TWI429533B (en) 2014-03-11

Family

ID=47222970

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108056A TWI429533B (en) 2011-03-10 2011-03-10 Polymer based composite and its manufacturing method

Country Status (1)

Country Link
TW (1) TWI429533B (en)

Also Published As

Publication number Publication date
TWI429533B (en) 2014-03-11

Similar Documents

Publication Publication Date Title
Liu et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement
Xiao et al. Preparation of highly thermally conductive epoxy resin composites via hollow boron nitride microbeads with segregated structure
Qi et al. Preparation of PA11/BaTiO3 nanocomposite powders with improved processability, dielectric and piezoelectric properties for use in selective laser sintering
Meng et al. Recent progress on fabrication and performance of polymer composites with highly thermal conductivity
CN102181168B (en) Polymer matrix composite material and production method of polymer matrix composite material
US7998367B2 (en) Metal-carbon nanotube composites for enhanced thermal conductivity for demanding or critical applications
Beier et al. Improved breakdown strength and energy density in thin-film polyimide nanocomposites with small barium strontium titanate nanocrystal fillers
US20150221409A1 (en) Graphene Composite Fiber and Method for Manufacturing the Same
CN102775705B (en) Polymer-matrix composite material and preparation method thereof
Yang et al. A high-performance dielectric elastomer consisting of bio-based polyester elastomer and titanium dioxide powder
Xu et al. A malleable composite dough with well-dispersed and high-content boron nitride nanosheets
KR101896103B1 (en) Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
US20120193568A1 (en) Electrostrictive composite and method for making the same
Wu et al. Layer‐by‐Layer Assembly of Multifunctional NR/MXene/CNTs Composite Films with Exceptional Electromagnetic Interference Shielding Performances and Excellent Mechanical Properties
Zhang et al. Performance enhancements in poly (vinylidene fluoride)-based piezoelectric films prepared by the extrusion-casting process
Jin et al. Tellurium/polymers for flexible thermoelectrics: status and challenges
CN113121233A (en) Preparation process of graphene oxide three-dimensional self-assembled plate
Zhao et al. Dielectric polyimide composites with enhanced thermal conductivity and excellent electrical insulation properties by constructing 3D oriented heat transfer network
Harami et al. Mixed Matrix Membranes for Sustainable Electrical Energy‐Saving Applications
CN103087449A (en) Preparation method of polymer nanometer composite material with high heat conduction, high dielectric and low loss
TW201038466A (en) Method of forming nanometer-scale point materials
Fang et al. NH 2-functionalized carbon-coated Fe 3 O 4 core–shell nanoparticles for in situ preparation of robust polyimide composite films with high dielectric constant, low dielectric loss, and high breakdown strength
Zhou et al. Enhancing cryogenic thermal conductivity of epoxy composites through the incorporation of boron nitride nanosheets/nanodiamond aerogels prepared by directional‐freezing method
KR101794079B1 (en) Heating element manufactured using carbon nanotube and polymer
KR101484304B1 (en) Graphene coated with aluminum oxide, preparative method threrefor and nano-composite containing the same