TW201235723A - Optical amplifier for multi-core optical fiber - Google Patents
Optical amplifier for multi-core optical fiber Download PDFInfo
- Publication number
- TW201235723A TW201235723A TW100148458A TW100148458A TW201235723A TW 201235723 A TW201235723 A TW 201235723A TW 100148458 A TW100148458 A TW 100148458A TW 100148458 A TW100148458 A TW 100148458A TW 201235723 A TW201235723 A TW 201235723A
- Authority
- TW
- Taiwan
- Prior art keywords
- optical
- array
- couplers
- core
- coupled
- Prior art date
Links
Landscapes
- Optical Integrated Circuits (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
201235723 六、發明說明: 【發明所屬之技術領域】 本申請案大體而言係關於光學放大器及製造並使用此等 裝置之方法。 本申請案主張2〇10年I2月29日所申請之Doerr等人的臨 時美國專利申請案第61/428,154號之權利,該申請案以弓丨 用之方式併入本文中。本申請案係關於Doerr等人之題為 「Core-Selective Optical Switches」的美國專利申請案第 13/012,712號(’712申請案),該申請案與本案同時申請且其 全文以引用之方式併入本文中。 【先前技術】 多核心光纖包括若干核心區,其中每一核心區能夠傳播 實質上獨立之光信號。此等光纖可提供顯著大於單一核心 光纖之資料容量。因此,多核心光纖使得能夠在成本比一 個或多個單模<光纖之成本低的情況下顯著增加光學系統 中之資料傳送的速率。 【發明内容】 一態樣提供一光學裝置。該光學裝置包括位於一基板之 -表面上的光耗合器之一第一陣列及一第二陣列、:數個 波導及複數個粟激耦合器。該第一陣列之該等光耦合器能 夠以對一方式端輕合至一第一多核心光纖之光核心,該 第-多核心光纖具有面向且鄰近於該第一陣列及該表面之 -末端。該第二陣列之該等光耦合器能夠以一對一方式端 搞合至具有面向且鄰近於該第二陣列之末端的光核心/。該 160881.doc 201235723 複數個光波導以-對一方式將該第一陣列之該等光輕合器 連接至該第二陣列之該等光耗合器。每一光波導具有在該 波導之末端之間連接至該光波導的-泵激輕合器。 ,另-態樣提供—方法。該方法包括在—基板之—表面上 形成光輕合器之-第—陣列及—第二陣列、複數個波導及 複數個泵激耦合器。該第一陣列之該等光耦合器能夠以一 對-方式端耦合至一第一多核心光纖之光核心,該第一多 核心光纖具有面向且鄰近於該第_陣列及該表面之一末 端。該第二陣狀該等光搞纟器能夠以-對-方式端轉合 至具有面向且鄰近於該第二陣列之末端的光核心。該複數 個光波導以ϋ式將該第_陣列之該等光耗合器連接 至該第二陣列之該等光耦合器。每一光波導具有在該波導 之末端之間連接至該光波導的一泵激耦合器。 【實施方式】 參考結合隨附圖式進行之以下描述。 本文中,可(例如)使用按照慣例用於微電子及/或整合光 學器件領域中之層沈積、層摻雜及圖案化製程在基板之表 面上形成光學組件。 圖1說明用於多核心光纖之光學放大器ι00的實例。光學 放大器100包括整合平坦光子裝置(IPD)101及雷射泵激源 126。 IPD 101包括在基板102之平坦表面上的光耦合器23〇之 第一整合平坦陣列1〇5及第二整合平坦陣列11〇以及光波導 125。光波導125以一對一方式連接第一整合平坦陣列1 〇5 160881.doc 201235723 及第二整合平坦陣列110之光耦合器230。第一整合平坦陣 列105之光耗合器230以光學方式端耦合至第一多核心光纖 (MCF) 11 5(例如,輸出MCF)之相應光核心。第二整合平坦 陣列110之光耦合器230以光學方式端耦合至第二MCF 120(例如’輸入MCF)之相應光核心。但在一些實施例中, MCF 11 5、MCF 1 20之一或多個光核心可不耦合至IPE) 100。基板102可視情況包括以光學方式將基板ι〇2與形成 於其上之光學組件隔離的光學隔離層丨〇3(例如,介電層)。 雷射果激源126將激發光傳輸至光波導125以放大經由 IPD在第一 MCF 115與第二MCF 120之間傳輸的光。 裝置100可選擇性地放大自MCF 120的不同光核心接收 之光’如下文進一步描述。 圖2說明光耦合器之單一陣列,例如整合平坦陣列1 〇5或 整合平坦陣列110。所說明之陣列包括七個光波導125之若 干段。在該陣列中’每一光波導段包括(例如)光耦合段2 i 〇 及過渡段220。每一光耦合段2H)具有位於其上或其中之光 耦合器230 ^光耦合器23〇經橫向定位而以光學方式端耦合 MCF之單一相應光核心(未圖示)。可定製光耦合段21〇以增 強其經由相應過渡段22〇至MCF之相應光核心的耦合,例 如,每一光耦合段210可寬於相同光波導之剩餘部分。每 一過渡段220提供光耦合段21〇與相同光波導之通信段(展 不於圖2之左側)之間的耦合器。過渡段22〇可經組態以減 少光波導之不同大小的耦合段與通信段之間的耦合/插入 損失。 160881.doc 201235723 可(例如)在 Christopher Doerr之題為「Multi-Core Optical Cable to Photonic Circuit Coupler j 的美國專利申請案第 1 2/972,667號(·667申請案)中描述可適合於用作光耦合器 230之一些光柵耦合器之實例,該申請案之全文以引用之 方式併入本文中《在一些實施例中,光耦合器可包括45。 鏡之使用’該45。鏡經組態以將來自波導125中之一或多者 的光重定向至MCF 115、MCF 120中之一者的核心中。 例如,如'667申請案中所論述,光耦合器230常常以在 形式及大小上對應於待耦合之MCF内之光核心的橫向型樣 之橫向型樣來配置。在所說明之實施例中,圖2之實例陣 列經組態以耦合至位於規則六邊形之角及中心處的七個光 核心。然而,實施例不限於MCF中之光核心的此配置或 MCF中之特定數目個核心。 圖3說明在MCF 115耦合至位於平坦基板310上之整合平 坦陣列105之狀況下的整合平坦陣列105(亦即,七個光耦 合器230之陣列)之實施例的透視圖。說明具有七個光核心201235723 VI. Description of the Invention: [Technical Field of the Invention] The present application relates generally to optical amplifiers and methods of making and using such devices. The present application claims the benefit of the Provisional U.S. Patent Application Serial No. 61/428,154, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire This application is related to U.S. Patent Application Serial No. 13/012,712, the entire entire entire entire entire entire entire entire entire entire entire entire content Into this article. [Prior Art] A multi-core fiber includes a plurality of core regions, each of which is capable of propagating a substantially independent optical signal. These fibers can provide significantly more data capacity than a single core fiber. Thus, multi-core fibers enable a significant increase in the rate of data transfer in optical systems at a lower cost than one or more single mode < SUMMARY OF THE INVENTION An aspect provides an optical device. The optical device includes a first array of light absorbing devices on a surface of a substrate and a second array: a plurality of waveguides and a plurality of miller couplers. The optical couplers of the first array can be lightly coupled to the optical core of a first multi-core optical fiber having a facing end adjacent to the first array and the end of the surface . The optocouplers of the second array can be brought together in a one-to-one manner to an optical core/ having an end facing and adjacent to the end of the second array. The 160881.doc 201235723 plurality of optical waveguides connect the optical couplers of the first array to the optical consumulators of the second array in a one-to-one manner. Each optical waveguide has a pump-activated light coupler connected to the optical waveguide between the ends of the waveguide. , another way to provide - method. The method includes forming a -first array of light combiners and a second array, a plurality of waveguides, and a plurality of pump couplers on a surface of the substrate. The optocouplers of the first array can be coupled in a pair-to-end manner to an optical core of a first multi-core fiber having a surface facing and adjacent to the first array and one end of the surface . The second array of optical splicers can be turned in a -to-mode end to an optical core having an end facing and adjacent to the end of the second array. The plurality of optical waveguides connect the optical couplers of the first array to the optical couplers of the second array in a chirp manner. Each optical waveguide has a pump coupler coupled to the optical waveguide between the ends of the waveguide. [Embodiment] The following description is made with reference to the accompanying drawings. Herein, optical components can be formed on the surface of a substrate, for example, using layer deposition, layer doping, and patterning processes conventionally used in the field of microelectronics and/or integrated optical devices. Figure 1 illustrates an example of an optical amplifier ι00 for a multi-core fiber. Optical amplifier 100 includes an integrated flat photonic device (IPD) 101 and a laser pump source 126. The IPD 101 includes a first integrated flat array 1〇5 and a second integrated flat array 11〇 and an optical waveguide 125 of a photocoupler 23 on a flat surface of the substrate 102. The optical waveguide 125 connects the first integrated flat array 1 〇 5 160881.doc 201235723 and the optical coupler 230 of the second integrated flat array 110 in a one-to-one manner. The optical consumable 230 of the first integrated flat array 105 is optically coupled end to a respective optical core of a first multi-core fiber (MCF) 11 5 (e.g., output MCF). The optical coupler 230 of the second integrated flat array 110 is optically coupled end to a respective optical core of the second MCF 120 (e.g., 'Input MCF'). However, in some embodiments, one or more optical cores of MCF 11 5, MCF 1 20 may not be coupled to IPE) 100. The substrate 102 may optionally include an optical isolation layer 丨〇3 (e.g., a dielectric layer) that optically isolates the substrate ι2 from the optical components formed thereon. The laser fruit source 126 transmits excitation light to the optical waveguide 125 to amplify light transmitted between the first MCF 115 and the second MCF 120 via the IPD. Device 100 can selectively amplify light received from different optical cores of MCF 120' as further described below. Figure 2 illustrates a single array of optocouplers, such as an integrated flat array 1 〇 5 or an integrated flat array 110. The illustrated array includes a plurality of segments of seven optical waveguides 125. In the array, 'each optical waveguide segment includes, for example, an optical coupling section 2 i 〇 and a transition section 220. Each of the optical coupling sections 2H) has an optical coupler 230 on or in which the optical coupler 23 is laterally positioned to optically couple a single corresponding optical core (not shown) of the MCF. The optical coupling sections 21 can be customized to enhance their coupling via the respective transition sections 22 to the respective optical cores of the MCF, for example, each optical coupling section 210 can be wider than the remainder of the same optical waveguide. Each transition section 220 provides a coupler between the optical coupling section 21A and the communication section of the same optical waveguide (not shown to the left of Figure 2). The transition section 22〇 can be configured to reduce coupling/insertion losses between differently sized coupling segments and communication segments of the optical waveguide. </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; An example of some of the grating couplers of the coupler 230 is incorporated herein by reference in its entirety. "In some embodiments, the optical coupler can include 45. The use of a mirror." The mirror is configured to Light from one or more of the waveguides 125 is redirected into the core of one of the MCF 115, MCF 120. For example, as discussed in the '667 application, the optical coupler 230 is often in form and size. Corresponding to the lateral pattern of the lateral pattern of the optical core within the MCF to be coupled. In the illustrated embodiment, the example array of Figure 2 is configured to couple to the corner and center of the regular hexagon The seven optical cores. However, embodiments are not limited to this configuration of the optical core in the MCF or a particular number of cores in the MCF. Figure 3 illustrates the situation in which the MCF 115 is coupled to the integrated flat array 105 on the flat substrate 310. of A perspective view of an embodiment of integrating a flat array 105 (i.e., an array of seven optical couplers 230). Illustrated with seven optical cores
330之MCF 115,一個光核心330傳播一光信號340 〇 MCF 115的末端位於陣列上且經旋轉對準以使得MCF 115之個別 光核心面向且以光學方式耦合至整合平坦陣列1〇5之光耦 合器230的相應個別者。舉例而言,每一光核心33〇可具有 末端3 5 0 ’該末端3 5 0經定位及定向以將光點3 6 〇投影至整 合平坦陣列105之相應光耦合器230上而不將光投影至整合 平坦陣列105之其他光耦合器上。可在ι667申請案中描述相 對於MCF(諸如,MCF 115、MCF 120)來建構及組態整合 16088I.doc 201235723 平坦陣列i〇5 '整合平坦陣列no的方式之額外實例。 圖4A及圖4B說明圖3之MCF 115的光核心330中之一者至 整合平坦陣列110(例如,一維光柵陣列)中之相應光耦合器 230的耦合之定向及位置態樣。所投影之光點36〇產生位於 光耦合器230之上的近似高斯分佈4 1〇,其具有足夠的重疊 以將來自光信號340之光耦合至光耦合段21〇。 在所說明之實施例中,光核心330與光耦合段21〇之表面 法線成角度φ以產生偏光分離光耦合器。詳言之,在部分 由光信號340之波長所判定的特定角度中下,光信號34〇之 ΤΕ偏光模式420以如圖4Β所定向之向右傳播方向耦合至光 耦合段210。類似地,光信號34〇iTM偏光模式43〇以如圖 4B所定向之向左傳播方向耦合至光耦合段21〇。te及偏 光模式之此耦合可形成如下文進一步描述之用mMcf的光 學放大器之偏光互異實施例。可在Y〇ngb〇 Tang等人之 「Proposal for a Grating Waveguide SerWng as &An MCF 115 of 330, an optical core 330 propagating an optical signal 340. The end of the MCF 115 is located on the array and is rotationally aligned such that the individual optical cores of the MCF 115 face and are optically coupled to the light of the integrated flat array 1〇5 The respective individual of coupler 230. For example, each optical core 33A can have an end 350' that is positioned and oriented to project a spot 3 6 〇 onto a corresponding optical coupler 230 of the integrated flat array 105 without light Projected onto other optocouplers that integrate the flat array 105. Additional examples of ways to construct and configure integration with the MCF (such as MCF 115, MCF 120) can be described in the ι 667 application, 16088I.doc 201235723 Flat Array i 〇 5 'Integrated Flat Array No. 4A and 4B illustrate the orientation and positional aspects of the coupling of one of the optical cores 330 of the MCF 115 of FIG. 3 to the respective optical couplers 230 of the integrated planar array 110 (e.g., a one-dimensional grating array). The projected spot 36 〇 produces an approximate Gaussian distribution 4 1 位于 over the optocoupler 230 with sufficient overlap to couple light from the optical signal 340 to the optical coupling segment 21 〇. In the illustrated embodiment, the optical core 330 is at an angle φ to the surface normal of the optical coupling section 21A to produce a polarization split optical coupler. In particular, in a particular angle determined in part by the wavelength of the optical signal 340, the optically polarized mode 420 of the optical signal 34 is coupled to the optical coupling section 210 in a rightwardly directed direction as oriented in FIG. Similarly, the optical signal 34〇iTM polarization mode 43〇 is coupled to the optical coupling section 21〇 in the leftward propagation direction as oriented in FIG. 4B. This coupling of the te and polarization modes can result in a polarization divergence embodiment of an optical amplifier with mMcf as further described below. Available in Y〇ngb〇 Tang et al. "Proposal for a Grating Waveguide SerWng as &
Polarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits」(IEEE ph〇t〇nicsPolarization Splitter and an Efficient Coupler for Silicon-on-Insulator Nanophotonic Circuits" (IEEE ph〇t〇nics
Technology Letters,第 21卷,第 4期,第 242 至 μ 頁, 2009年2月15曰)中找到有關此偏光分割之額外資訊,該案 之全文以引用之方式併入本文中。 圖5說明可視情況置於MCF 115與整合平坦陣列1〇5之間 及/或MCF 12G與整合平坦陣列no之間的隔離總成%。隔 離總成5 0 5使在M c f i丨5與整合平坦陣列i 〇 5之間產生的背 反射光衰減。圖5呈現以光學方式耦合至整合平坦陣列ι〇5 160881.doc 201235723 之MCF 11 5的說明性狀況。 隔離總成包括各自具有焦距f之透鏡5丨〇、透鏡52〇。光 束偏移器53〇、法拉第旋光器(Faraday rotator)540、四分之 一波片550及光束偏移器56〇位於透鏡51〇與透鏡520之間。 透鏡510與(例如)末端35〇間隔約為^之距離以準直來自]^(:][7 之光核心的光束。透鏡520與(例如)整合平坦陣列I 〇5間隔 約為f之距離以(例如)將來自MCF 115之光核心的準直光束 聚焦至光耦合器上。透鏡510、透鏡520(例如)彼此間隔約 為2f之距離。隔離體總成將來自末端35〇之光(例如,光信 號340)導引至所指示之相應光耦合器23〇。類似地,將來 自MCF 11 5之其他核心的光導引至整合平坦陣列1 之其 他相應光耦合器230。 返回至圖1,雷射泵激源126產生激發光,該激發光為適 合於拉曼(Raman)放大之波長或適合於經由稀土摻雜劑之 激勵而放大之波長。在前一狀況下,激發光之波長在MCF 115或MCF 120中產生向前或向後拉曼放大。在後一狀況 下,激發光之波長在MCF 115、MCF 120中之一者的光核 心中或在光波導125中激勵稀土摻雜劑,藉此在其中引起 光學放大。在稀土摻雜劑為铒原子之實施例中,適合於激 勵铒原子之泵激波長可為(例如)約1480 nm之波長。 雷射泵激源126可將激發光傳輸至光學匯流排網路145, 該光學匯流排網路145經由可程式化或可調整光學分接頭 150將激發光傳輸至個別光波導125。 在一些實施例中’雷射泵激源126在外部,且光波導 160881.doc 201235723 130(例如,SCF)、光耦合器135(例如,一維光柵陣列)及波 導140將雷射泵激源126連接至光學匯流排網路145。 在其他實施例(未圖示)中,雷射泵激源126可整合於基 板102上,且基板102上的平坦波導可將雷射泵激源126連 接至波導140。 每一可程式化光學分接頭150可經由波導155及泵激耦合 器160將來自光學匯流排網路145之激發光傳輸至光波導 125中之相應者。每一泵激耦合器160可包括(例如)馬赫爾_ 曾德干涉計(MZI),該MZI經組態為2x1光耦合器以組合激 發光與來自整合平坦陣列105、整合平坦陣列11 〇中之一者 的光’以使得組合光被導引至整合平坦陣列11 〇、整合平 坦陣列105中之另一者。 圖6說明圖1之光學匯流排網路145之實例,其中可變馬 赫爾-曾德干涉計(MZI)620 ' 650充當可程式化光學分接頭 150。光學匯流排網路145(例如)接收來自雷射泵激源126的 激發光610〇第一可變MZI 620將所接收之激發光610之一 部分傳輸至波導1 55中的第一者且大致將所接收之激發光 6 10的剩餘部分傳輸至第二可變mzi 650。第一可變MZI 620包括移相器63〇(例如,加熱器控制式熱敏波導段p分 接頭控制信號640可控制移相器630將所接收之激發光610 之一可選擇部分導引至波導155中的第一者。可以類似於 針對第一可變MZI 620所描述的方式之方式來操作第二可 變MZI 650及可程式化光學分接頭15〇中之一者的任何稍後 可變MZI例例項’其中適當調整相關聯之分接頭控制信號 160881.doc -10· 201235723 以考慮到在激發光之部分被分接時激發光強度之減少。 可單獨調整可程式化光學分接頭150以改變自光學匯流 排網路145耦合至各種個別光波導125之激發光的量。因 此,可單獨調整來自MCF 11 5、MCF 1 20中之輸入MCF的 每一光核心之光之光學放大的程度以提供光的所要放大。 在一些實施例中’用樹網路替換光學匯流排網路14 5。 舉例而言’可以樹組態來組態1 x2可調整耦合器以將來自 雷射泵激雷射126之功率劃分至所要數目個光波導125。 在一些實施例中’額外泵激雷射(未圖示)可用以泵激 MCF 115及/或MCF 12〇。每一泵激雷射可連接至一或多個 可程式化分接頭(未圖示)’該一或多個可程式化分接頭連 接至MCF 11 5、MCF 120之光核心中之一或多者。在一實 施例中,放大器100包括對應於MCF 115及/或MCF 120之 每一光核心的一泵激雷射。在此等實施例中,可程式化光 學分接頭15 0並非必要《在另一實施例中,將多個泵激雷 射中之每一者連接至光波導125的光學路徑可經互連以提 供冗餘泵激能力。舉例而言,若一個泵激雷射出故障,則 可接入另一泵激雷射以供能給與出故障之泵激雷射相關聯 的MCF 115及/或MCF 120之核心。 圖7說明包括在整合平坦陣列} 〇 5與整合平坦陣列^ 1 〇之 間的切換器網路710之光核心切換器7〇〇之實施例。在,712 申請案中描述可適合於切換器網路71〇之切換器網路的實 例。切換器網路710能夠將整合平坦陣列1〇5之每一光耦合 器230耦合至整合平坦陣列丨1〇之光耦合器23〇中之任一選 160881.doc 201235723 定者。詳言之,切換器網路以一對一方式連接兩個整合平 坦陣列1 05、11 〇之光耦合器230。因此’光核心切換器7〇〇 可在MCF 115與MCF 12〇之間傳送信號串流時變更光信號 串流至特定光核心的指派。在光核心之指派的此變更期 間’光核心切換器700亦可按需要以不同方式放大個別光 核心上之光信號串流。光核心之指派的此切換在各種光信 號處理應用中可為有益的。 圖8說明用於MCF之光學放大器800的實施例,其中光波 導125a、光波導125b提供整合平坦陣列105與整合平坦陣 列110之間的平行光學路徑。本文中,藉由整合平坦陣列 105之光耦合器230的特殊構造將自MCF 11 5之核心所耦合 的光分離成TE偏光模式及TM偏光模式。舉例而言,整合 平坦陣列105之光耦合器230可具有圖4B中所說明之構造。 整合平坦陣列105之光耦合器230將TE模式光耦合至光波導 125b中且將TM模式光耦合至光波導125a中。可藉由各別 光波導125a、125b將在一對光波導125a、125b(該對光波 導125a、125b耦合至第二陣列110之相同光耦合器23〇)上 傳播之光耦合至第一整合平坦陣列n5之相同或不同光耦 合器230。以此方式,可在MCF 115之光核心内放大所接 收之偏光互異光信號的兩個偏光模式,藉此實現所接收之 信號的偏光互異光學放大。 在些實施例中’光學放大器800包括選用的可變光學 哀減器(V〇A)81〇a、810b。可獨立地控制v〇A 810a、v〇A 810b使藉由光學放大器8〇〇放大的te信號分量中之任一者 160881.doc 12 201235723 及/或TMk號分量中之任一者衰減。因此,可更改光信號 之偏光模式的相對強度以(例如)考慮到光學放大器8〇〇自身 内或別處的偏光相依性衰減。 一些實施例包括經組態以監視每一光波導125之光核心 . 中的光功率之一或多個光偵測器820,例如光電二極體。 • 光偵測器可藉此間接地監視MCF 115、MCF 120之光核心 中之一或多者中的光功率。此監視可用以(例如)提供回饋 以用於控制可程式化光學分接頭15〇將所要泵激功率遞送 至光波導125及/或MCF 115、MCF 120之光核心。 圖9說明放大器9〇〇之實施例。光學放大器9〇〇包括用於 光波導125b之第二雷射泵激源126t^第二雷射泵激源126b 可經由SCF 130b、光耦合器135b、波導140b及光學匯流排 網路145b連接至光波導125b。自光學匯流排 網路145b經由 可程式化光學分接頭150b及波導155b將激發光分佈至光波 導125b。針對來自雷射泵激源126b之激發光之分佈分量的 操作類似於如先前關於圖1B所描述之分佈分量的操作。在 光學放大器900之一些特殊實施例中,包括第二雷射泵激 源126b可為有益的,例如’有益於增加可用之總激發光功 • 率以放大輸出光信號。 . 圖10說明包括SCF耦合器1010之用於MCF 120的光耦合 器1000。每一 SCF耦合器1〇1〇可包括單一光耦合器23 該 等SCF耦合器1010可在空間上分離(例如,以足夠距離彼此 間隔)’使得個別SCF 1020之末端可相對於SCF耦合器1010 來定位以將光信號耦合至該等末端。SCF 1020可操作以將 160881.doc 13- 201235723 輸入光信號提供至光耦合器1000或自光耦合器丨〇〇〇接收輸 出光信號。光耦合器1 000可因此將扇入或扇出能力提供給 本文中所描述之整合平坦放大器中之一些。 圖11A及圖11B說明包括SCF耦合器之用於MCF 120的光 耦合器1100,其中SCF耦合器包括邊緣琢面耦合器mo。 每一邊緣琢面耦合器1110包括延伸至基板1〇2之邊緣的光 波導125中之一者的邊緣琢面112〇(圖i1B)。SCF 1020之光 核心1130可與邊緣琢面1120對準,藉此在兩者之間耦合光 信號。一或多個邊緣琢面耦合器111〇可配合一或多個SCF 耦合器1010及/或一或多個平坦陣列(諸如,整合平坦陣列 105)而使用以提供靈活之至裝置1〇〇的扇入及自裝置丨〇〇的 扇出。關於邊緣琢面耦合之一些實例,參見Doerr等人之 題為「Multi-Core Optical Cable to Photonic CircuitAdditional information on this polarization splitting is found in Technology Letters, Vol. 21, No. 4, pp. 242-μ, February 15, 2009), the entire contents of which is hereby incorporated by reference. Figure 5 illustrates the isolation assembly % placed between the MCF 115 and the integrated flat array 1〇5 and/or between the MCF 12G and the integrated flat array no, as appropriate. The isolation assembly 505 attenuates the back-reflected light generated between M c f i丨5 and the integrated flat array i 〇 5 . Figure 5 presents an illustrative condition of an MCF 11 5 optically coupled to an integrated flat array ι 5160881.doc 201235723. The isolation assembly includes a lens 5丨〇, a lens 52〇 each having a focal length f. A beam shifter 53A, a Faraday rotator 540, a quarter wave plate 550, and a beam shifter 56 are located between the lens 51A and the lens 520. The lens 510 is spaced apart from, for example, the end 35 约为 by a distance of ^ to collimate the light beam from the optical core of [...] [7]. The distance between the lens 520 and, for example, the integrated flat array I 〇 5 is approximately f. The collimated beam of light from the optical core of the MCF 115 is focused, for example, onto the optical coupler. The lens 510, lens 520 are, for example, spaced apart from each other by a distance of about 2f. The spacer assembly will emit light from the end 35〇 ( For example, the optical signal 340) is directed to the indicated respective optical coupler 23A. Similarly, light from other cores of the MCF 11 5 is directed to other respective optical couplers 230 that integrate the flat array 1. Back to the figure 1. The laser pump source 126 generates excitation light that is a wavelength suitable for Raman amplification or a wavelength suitable for excitation by excitation of a rare earth dopant. In the former case, the excitation light The wavelength produces forward or backward Raman amplification in the MCF 115 or MCF 120. In the latter case, the wavelength of the excitation light is excited in the optical core of one of the MCF 115, MCF 120 or in the optical waveguide 125. a dopant whereby the optical amplification is caused therein. In embodiments where the earth dopant is a germanium atom, the pump wavelength suitable for exciting the germanium atom can be, for example, a wavelength of about 1480 nm. The laser pump source 126 can transmit excitation light to the optical bus network 145. The optical bus network 145 transmits excitation light to the individual optical waveguides 125 via a programmable or adjustable optical tap 150. In some embodiments 'the laser pump source 126 is external, and the optical waveguide 160881.doc 201235723 130 (eg, SCF), optical coupler 135 (eg, a one-dimensional grating array), and waveguide 140 connect laser pump source 126 to optical bus network 145. In other embodiments (not shown), The laser pump source 126 can be integrated on the substrate 102, and a flat waveguide on the substrate 102 can connect the laser pump source 126 to the waveguide 140. Each programmable optical tap 150 can be coupled via a waveguide 155 and pumped The excitation light from the optical busbar network 145 is transmitted to a respective one of the optical waveguides 125. Each pumping coupler 160 can include, for example, a Machel-Zehnder interferometer (MZI), which is grouped State 2x1 optocoupler to combine excitation light with Self-integrating the flat array 105, integrating the light of one of the flat arrays 11 以 such that the combined light is directed to the integrated flat array 11 〇, integrating the other of the flat arrays 105. Figure 6 illustrates the optical confluence of Figure 1. An example of a network 145 in which a variable Maher-Zehnder interferometer (MZI) 620 '650 acts as a programmable optical tap 150. The optical bus network 145, for example, receives laser source 126 from the laser source The excitation light 610 〇 the first variable MZI 620 transmits a portion of the received excitation light 610 to a first one of the waveguides 1 55 and substantially transmits the remaining portion of the received excitation light 6 10 to the second variable mzi 650 . The first variable MZI 620 includes a phase shifter 63A (eg, the heater controlled thermal waveguide segment p tap control signal 640 can control the phase shifter 630 to direct a selectable portion of the received excitation light 610 to The first of the waveguides 155. Any of the second variable MZI 650 and the programmable optical tap 15 can be operated in a manner similar to that described for the first variable MZI 620. Change the MZI example item 'where the associated tap control signal 160881.doc -10· 201235723 is appropriately adjusted to take into account the decrease in excitation light intensity when the excitation light is tapped. The programmable optical tap can be individually adjusted 150 to vary the amount of excitation light coupled to the various individual optical waveguides 125 from the optical busbar network 145. Thus, optical amplification of light from each of the optical cores of the input MCFs in the MCF 1 5, MCF 1 20 can be individually adjusted. To the extent that the light is to be amplified. In some embodiments, the optical bus network 14 is replaced with a tree network. For example, a tree configuration can be used to configure a 1 x2 adjustable coupler to be from a laser. Pumping laser 126 The rate is divided into the desired number of optical waveguides 125. In some embodiments an 'extra pumped laser (not shown) may be used to pump the MCF 115 and/or MCF 12A. Each pumped laser may be connected to one or A plurality of programmable taps (not shown) 'the one or more programmable taps are coupled to one or more of the optical cores of the MCF 11 5, MCF 120. In an embodiment, the amplifier 100 includes A pumping laser corresponding to each of the optical cores of MCF 115 and/or MCF 120. In such embodiments, programmable optical taps 150 are not necessary. In another embodiment, multiple pumps are used. The optical paths of each of the lasers connected to the optical waveguide 125 can be interconnected to provide redundant pumping capability. For example, if one pump laser strikes a fault, another pump laser can be connected. The core of the MCF 115 and/or MCF 120 associated with the failed pump laser is supplied. Figure 7 illustrates the switch network included between the integrated flat array} 〇5 and the integrated flat array ^ 1 〇 An embodiment of a light core switcher 710. The description in the 712 application can be adapted to a switcher. An example of a switcher network of the switch 71. The switcher network 710 is capable of coupling each of the optical couplers 230 of the integrated flat arrays 1〇5 to any of the optical couplers 23 of the integrated flat arrays. 160881.doc 201235723 In particular, the switch network connects the two integrated flat arrays 105, 11 光 optical coupler 230 in a one-to-one manner. Therefore, the 'optical core switch 7 〇〇 can be in the MCF 115 The assignment of the optical signal stream to a particular optical core is changed when the signal stream is transmitted between the MCF and the MCF. During this change of assignment of the optical cores, the optical core switch 700 can also amplify the optical signal streams on the individual optical cores in different ways as needed. This switching of the assignment of optical cores can be beneficial in a variety of optical signal processing applications. Figure 8 illustrates an embodiment of an optical amplifier 800 for MCF in which optical waveguide 125a, optical waveguide 125b provides a parallel optical path between integrated flat array 105 and integrated flat array 110. Herein, the light coupled from the core of the MCF 11 5 is separated into a TE polarized mode and a TM polarized mode by a special configuration of the optical coupler 230 that integrates the flat array 105. For example, optocoupler 230 incorporating planar array 105 can have the configuration illustrated in Figure 4B. The optical coupler 230 incorporating the flat array 105 optically couples the TE mode into the optical waveguide 125b and couples the TM mode light into the optical waveguide 125a. Light propagating on a pair of optical waveguides 125a, 125b (the pair of optical waveguides 125a, 125b coupled to the same optical coupler 23A of the second array 110) can be coupled to the first integration by respective optical waveguides 125a, 125b The same or different optical couplers 230 of the flat array n5. In this manner, the two polarization modes of the received polarized disparate optical signal can be amplified within the optical core of the MCF 115, thereby effecting optical polarization amplification of the received signal. In some embodiments, optical amplifier 800 includes an optional variable optical reducer (V〇A) 81〇a, 810b. The V 〇 A 810a, v 〇 A 810b can be independently controlled to attenuate any of the te signal components amplified by the optical amplifier 8 160 160881.doc 12 201235723 and/or TMk components. Thus, the relative intensity of the polarization mode of the optical signal can be altered to account for, for example, the polarization dependence attenuation within the optical amplifier 8〇〇 itself or elsewhere. Some embodiments include one or more photodetectors 820, such as photodiodes, configured to monitor optical power in each optical waveguide 125. • The photodetector can thereby indirectly monitor the optical power in one or more of the optical cores of the MCF 115 and MCF 120. This monitoring can be used, for example, to provide feedback for controlling the programmable optical tap 15 to deliver the desired pump power to the optical cores of optical waveguide 125 and/or MCF 115, MCF 120. Figure 9 illustrates an embodiment of an amplifier 9A. The optical amplifier 9A includes a second laser pump source 126t for the optical waveguide 125b. The second laser pump source 126b can be connected to the SCF 130b, the optical coupler 135b, the waveguide 140b, and the optical bus network 145b. Optical waveguide 125b. The excitation bus light is distributed from the optical bus bar network 145b to the optical waveguide 125b via the programmable optical tap 150b and the waveguide 155b. The operation for the distribution component of the excitation light from the laser pump source 126b is similar to the operation of the distribution component as previously described with respect to Figure 1B. In some particular embodiments of optical amplifier 900, it may be beneficial to include second laser pump source 126b, e.g., to benefit from increasing the total excitation light power available to amplify the output optical signal. Figure 10 illustrates an optical coupler 1000 for an MCF 120 that includes an SCF coupler 1010. Each SCF coupler 1〇1〇 can include a single optical coupler 23 that can be spatially separated (eg, spaced apart from each other by a sufficient distance) such that the ends of the individual SCFs 1020 can be relative to the SCF coupler 1010 Positioning to couple the optical signal to the ends. The SCF 1020 is operable to provide a 160881.doc 13-201235723 input optical signal to the optocoupler 1000 or to receive an output optical signal from the optocoupler. Optocoupler 1000 can thus provide fan-in or fan-out capabilities to some of the integrated flat amplifiers described herein. 11A and 11B illustrate an optical coupler 1100 for an MCF 120 including an SCF coupler, wherein the SCF coupler includes an edge face coupler mo. Each edge facet coupler 1110 includes an edge face 112〇 (Fig. i1B) of one of the optical waveguides 125 that extends to the edge of the substrate 1〇2. The light core 1130 of the SCF 1020 can be aligned with the edge face 1120, thereby coupling the optical signal therebetween. One or more edge facet couplers 111 can be used in conjunction with one or more SCF couplers 1010 and/or one or more flat arrays (such as integrated flat array 105) to provide flexibility to the device Fan-in and fan-out of the device. For some examples of edge kneading coupling, see Doerr et al., entitled "Multi-Core Optical Cable to Photonic Circuit".
Coupler」的美國專利申請案第13/〇12,693號,該申請案之 全文以引用之方式併入本文中。 轉而參看圖12’呈現(例如)用於形成光學裝置之方法 1200。藉由參考本文中所描述之各種實施例(例如,圖i至 圖11之實施例)而在無限制情況下描述方法1200。可按不 同於所說明之次序的次序來執行方法丨2〇〇之步驟。 在步驟121 0中,在基板之表面上形成光耦合器(例如, 光耗合器230)之第一陣列(例如,整合平坦陣列丨〇5)。第一 陣列為經橫向配置以端耦合至第一多核心光纖(例如, MCF 11 5)之相應個別光核心的光耦合器之整合平坦陣列。 在步驟1220中,在基板之相同表面上形成光耦合器(例 16088I.doc 201235723 第二…3。)之第二陣列(例如,整合平坦陣列帅 之^合器能夠以-對—方式端輕合至具有面向 於該第二陣列之末端的光核心。在-些實施例中, 第二陣列為經橫向配置以使得個別絲合器端輕合至第二 多核心光纖(例如,MCF 12〇)之相應個別光核心的光耦合 器之整合平坦陣列。 在步驟1230中,在§亥表面上形成複數個光波導(例如, 光波導125)。光波導以—對—方式將第―陣列之光輛合器 連接至第二陣列之光耦合器。 在步驟1240中,形成複數個泵激耦合器(例如,泵激耦 合器16 0)以使得每一光波導具有連接至該光波導之泵激耦 合器。泵激耦合器在每一光波導之末端之間耦合至該光波 導。 下文提供方法1200之各種選用特徵。在一些狀況中,可 組合此等選用特徵。 可調整每一泵激耦合器以改變插入至所連接之光波導中 的激發光之量。可形成複數個可變光學衰減器(例如, VOA 810a、V0A 810b),其中每一可變光學衰減器沿著光 波導中之一者而定位。可將激發光源(例如,雷射泵激源 126)耦合至泵激耦合器。 第二陣列(例如,整合平坦陣列11 〇)之光耦合器可橫向位 於該表面上以能夠以一對一方式端耦合至第二多核心光纖 (例如,MCF 120)之光核心’該第二多核心光纖具有面向 且鄰近於該第一陣列及該表面之末端。第二陣列之光耦合 160881.doc •15· 201235723 器可為邊緣琢面耦合器,例如邊緣琢面耦合器mo。光波 導可能能夠在經由泵激耦合器以光學方式泵激時放大其中 之光。摻雜有铒之多核心光纖之光核心的末端可位於接近 光耦合器之第一陣列處,以使得光核心經組態以自光耦合 器接收激發光。 可將雷射泵激源耦合至光學泵激耦合器’其中雷射泵激 源具有適合於藉由拉曼放大來放大電信〇或1頻帶中之光信 號的輸出波長。可在該表面上形成複數個第二光波導(例 如,光波導125b),其中第二光波導以一對一方式將第一 陣列之光耦合器連接至第二陣列之光耦合器。 熟習本申請案有關技術者應瞭解,可對所描述之實施例 進行其他及進一步的添加 '刪除、替換及修改。 【圖式簡單說明】 圖1說明用於多核心光學放大器之光學放大器的實施 例; 圖2說明可用於圖1之光學放大器中之光耦合器的整合平 坦陣列之實例; 圖3說明多核心光纖(MCF)與圖2之光耦合器陣列之間的 空間關係; 圖4 A及圖4B說明MCF的單一核心與圖3之光麵合器中之 一者的實例之間的例示性空間關係; 圖5說明圖3之光耦合器陣列的實施例,其包括位於mcf 與圖2之光搞合器陣列的每核心光耦合器之間的隔離光學 器件; 160881.doc 201235723 圖6說明光學分接頭(例如,匯流排網路)之實施例,其 可配合圖1之光學放大器而使用以將激發光提供至其中之 光學路徑; 圖7說明包括在輸入MCF與輸出MCF之間的光學切換網 路之用於MCF的光學放大器之實施例; 圖8說明經組態以提供偏光互異放大之用於MCF之光學 放大器的實施例; 圖9說明包括兩個激發光源之用於MCf之放大器的實施 例; 圖10說明光學裝置之實施例,其用於端耦合單核心光纖 以使MCF之光核心分離且用於以光學方式放大其中之光; 圖11(包含圖11A及圖11B)說明圖10之光學裝置的替代實 施例,其中單核心光纖以光學方式端耦合至邊緣琢面輕合 3S, · SS , 圖12說明用於形成(例如)根據圖1、圖7、圖8、圖9、圖 10、圖11或圖12之用於MCF之光學放大器的方法。 【主要元件符號說明】 100 光學放大器 101 整合平坦光子裝置(IPD) 102 基板 103 光學隔離層 105 第一整合平坦陣列 110 第二整合平坦陣列 115 第一多核心光纖(MCF) 160881.doc • 17· 201235723 120 第二 MCF 125 光波導 125a 光波導 125b 光波導 126 雷射系·激源 126b 第二雷射果激源 130 光波導 130b 單核心光纖(SCF) 135 光柄合器 135b 光搞合器 140 波導 140b 波導 145 光學匯流排網路 145b 光學匯流排網路 150 可程式化或可調整光學分接頭 150b 可程式化光學分接頭 155 波導 155b 波導 160 栗激麵合器 210 光耦合段 220 過渡段 230 光耦合器 310 平坦基板 330 光核心 160881.doc -18- 201235723 340 光信號 350 末端 360 光點 410 近似高淅分佈 420 TE偏光模式 430 TM偏光模式 505 隔離總成 510 透鏡 520 透鏡 530 光束偏移器 540 法拉第旋光器 550 四分之一波片 560 光束偏移器 610 激發光U.S. Patent Application Serial No. 13/12,693, the entire disclosure of which is incorporated herein by reference. Turning to Figure 12', for example, a method 1200 for forming an optical device is presented. Method 1200 is described without limitation by reference to various embodiments described herein (e.g., the embodiments of Figures i through 11). The steps of the method can be performed in an order different from that illustrated. In step 121 0, a first array of optocouplers (e.g., light consuming couplers 230) is formed on the surface of the substrate (e.g., integrated flat array 丨〇 5). The first array is an integrated planar array of optical couplers that are laterally configured to be end coupled to respective individual optical cores of the first multi-core fiber (e.g., MCF 11 5). In step 1220, a second array of optocouplers (eg, 16088I.doc 201235723 second...3.) is formed on the same surface of the substrate (eg, the integrated flat array can be lightly-paired) Incorporating to an optical core having an end facing the second array. In some embodiments, the second array is laterally configured such that the individual wire ends are lightly coupled to the second multi-core fiber (eg, MCF 12〇) An integrated planar array of optocouplers of respective individual optical cores. In step 1230, a plurality of optical waveguides (e.g., optical waveguides 125) are formed on the surface of the hex. The optical waveguides The optical coupler is coupled to the optical coupler of the second array. In step 1240, a plurality of pump couplers (e.g., pump coupler 16 0) are formed such that each optical waveguide has a pump coupled to the optical waveguide A coupler is coupled to the optical waveguide between the ends of each optical waveguide. Various optional features of method 1200 are provided below. In some cases, such optional features can be combined. Each pump can be adjusted Coupler to change An amount of excitation light inserted into the connected optical waveguide. A plurality of variable optical attenuators (eg, VOA 810a, V0A 810b) may be formed, wherein each variable optical attenuator is along one of the optical waveguides Positioning. An excitation source (eg, laser pump source 126) can be coupled to the pump coupler. A second array (eg, integrated flat array 11 之) optocoupler can be laterally located on the surface to enable a pair A mode end coupled to the optical core of the second multi-core fiber (eg, MCF 120). The second multi-core fiber has an end facing and adjacent to the first array and the surface. The second array of optical couplings 160881.doc • 15· 201235723 The device can be an edge kneading coupler, such as an edge kneading coupler mo. The optical waveguide may be capable of amplifying the light when it is optically pumped via a pumping coupler. Doped multi-core fiber The end of the optical core may be located proximate to the first array of optocouplers such that the optical core is configured to receive excitation light from the optocoupler. The laser pump source may be coupled to the optical pump coupler 'where the thunder Shoot The excitation source has an output wavelength suitable for amplifying the optical signal in the telecommunication or the 1 band by Raman amplification. A plurality of second optical waveguides (eg, optical waveguides 125b) may be formed on the surface, wherein the second optical waveguide The optical coupler of the first array is coupled to the optical coupler of the second array in a one-to-one manner. It will be appreciated by those skilled in the art that other and further additions to the described embodiments can be deleted. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates an embodiment of an optical amplifier for a multi-core optical amplifier; Figure 2 illustrates an example of an integrated flat array of optocouplers that can be used in the optical amplifier of Figure 1; Spatial relationship between multi-core fiber (MCF) and the optical coupler array of Figure 2; Figure 4A and Figure 4B illustrate an exemplary relationship between a single core of the MCF and an instance of one of the optical couplers of Figure 3. Spatial relationship; FIG. 5 illustrates an embodiment of the optocoupler array of FIG. 3 including isolation optics between mcf and each of the optical couplers of the optical combiner array of FIG. 2; 160881.doc 201235723 6 illustrates an embodiment of an optical tap (eg, a busbar network) that can be used with the optical amplifier of FIG. 1 to provide an optical path to the excitation light therein; FIG. 7 illustrates the inclusion between the input MCF and the output MCF. An embodiment of an optical amplifier for an MCF optical switching network; Figure 8 illustrates an embodiment of an optical amplifier for MCF configured to provide polarization divergence amplification; Figure 9 illustrates the use of two excitation sources for Embodiment of an amplifier of MCf; Figure 10 illustrates an embodiment of an optical device for end coupling a single core fiber to separate the optical core of the MCF and for optically amplifying the light therein; Figure 11 (comprising Figure 11A and Figure 11B) illustrates an alternate embodiment of the optical device of FIG. 10, wherein the single core fiber is optically coupled to the edge face 3S, SS, FIG. 12 is illustrated for forming, for example, FIG. 1, FIG. 7, FIG. 8. The method of the optical amplifier for MCF of Figure 9, Figure 10, Figure 11, or Figure 12. [Major component symbol description] 100 Optical amplifier 101 Integrated flat photonic device (IPD) 102 Substrate 103 Optical isolation layer 105 First integrated flat array 110 Second integrated flat array 115 First multi-core optical fiber (MCF) 160881.doc • 17· 201235723 120 Second MCF 125 Optical waveguide 125a Optical waveguide 125b Optical waveguide 126 Laser system 激 126b Second laser fruit source 130 Optical waveguide 130b Single core fiber (SCF) 135 Optical shank 135b Light fitting 140 Waveguide 140b Waveguide 145 Optical Busbar Network 145b Optical Busbar Network 150 Programmable or Adjustable Optical Tap 150b Programmable Optical Tap 155 Waveguide 155b Waveguide 160 Chest Exciter 210 Optical Coupling Section 220 Transition Section 230 Optocoupler 310 Flat Substrate 330 Optical Core 160881.doc -18- 201235723 340 Optical Signal 350 End 360 Spot 410 Extremely High Distribution 420 TE Polarization Mode 430 TM Polarization Mode 505 Isolation Assembly 510 Lens 520 Lens 530 Beam Shifter 540 Faraday rotator 550 quarter wave plate 560 beam shifter 610 excitation light
620 可變馬赫爾-曾德干涉計(MZI)/第一可變MZI 630 移相器 640 分接頭控制信號620 Variable Maher-Zehnder Interferometer (MZI) / First Variable MZI 630 Phase Shifter 640 Tap Control Signal
650 可變馬赫爾-曾德干涉計(MZI)/第二可變MZI 700 光核心切換器 710 切換器網路 8〇〇 光學放大器 810a 可變光學衰減器(VOA) 810b 可變光學衰減器(VOA) 820 光偵測器 160881.doc -19. 201235723 900 光學放大器 1000 光耦合器 1010 SCF耦合器 1020 單核心光纖(SCF) 1100 光耦合器 1110 邊緣琢面耦合器 1120 邊緣琢面 1130 光核心 1200 方法 φ 特定角度 160881.doc -20-650 Variable Maher-Zehnder Interferometer (MZI) / Second Variable MZI 700 Optical Core Switch 710 Switcher Network 8 〇〇 Optical Amplifier 810a Variable Optical Attenuator (VOA) 810b Variable Optical Attenuator ( VOA) 820 Photodetector 160881.doc -19. 201235723 900 Optical Amplifier 1000 Optocoupler 1010 SCF Coupler 1020 Single Core Fiber (SCF) 1100 Optocoupler 1110 Edge Face Coupler 1120 Edge Face 1130 Optical Core 1200 Method φ Specific angle 160881.doc -20-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42815410P | 2010-12-29 | 2010-12-29 | |
US13/012,730 US8548291B2 (en) | 2010-12-29 | 2011-01-24 | Optical amplifier for multi-core optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201235723A true TW201235723A (en) | 2012-09-01 |
Family
ID=47222682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100148458A TW201235723A (en) | 2010-12-29 | 2011-12-23 | Optical amplifier for multi-core optical fiber |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201235723A (en) |
-
2011
- 2011-12-23 TW TW100148458A patent/TW201235723A/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8548291B2 (en) | Optical amplifier for multi-core optical fiber | |
US9103987B2 (en) | Optical amplifier for multi-core optical fiber | |
CN104303441B (en) | Optical transceiver and light output value control method | |
US8676003B2 (en) | Methods and systems for reducing polarization dependent loss | |
JP7237826B2 (en) | Laser module for optical data communication system | |
WO2014014068A1 (en) | Optical fiber laser device | |
EP0910140A2 (en) | Optical amplifier for use in optical communications equipment | |
US8699125B2 (en) | Reconfigurable optical amplifier | |
CN104966985B (en) | The image intensifer of switchable gain | |
KR101531406B1 (en) | Polarization stabilization scheme for un-cooled self-tuning cavity for colorless ultra broadband pon | |
US6208456B1 (en) | Compact optical amplifier with integrated optical waveguide and pump source | |
JP2002040495A (en) | Raman amplifier | |
US7031355B2 (en) | High efficiency single and multiple wavelength stabilized systems | |
CA2375832A1 (en) | Depolarized laser sources | |
US11870208B2 (en) | Optical fiber amplifier, optical fiber amplifier control method, and transmission system | |
TW201235723A (en) | Optical amplifier for multi-core optical fiber | |
US6144785A (en) | Light source with WDM function, and optical amplifier and two-way optical transmission apparatus applied therewith | |
WO2010060293A1 (en) | System and method for pumping redundancy protection | |
US6980357B2 (en) | Optical amplifier apparatus and method | |
US20240264387A1 (en) | Dual lens optical coupling to multicore fiber | |
EP0939466A2 (en) | Light source with WDM function, and optical amplifier and two-way optical transmission applied therewith | |
JP2007048855A (en) | Optical amplifier | |
JPH0685749A (en) | Optical fiber communication line changeover method and its device |