[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201235302A - Lithium nickel manganese oxide composite material, method for making the same, and lithium battery using the same - Google Patents

Lithium nickel manganese oxide composite material, method for making the same, and lithium battery using the same Download PDF

Info

Publication number
TW201235302A
TW201235302A TW100133405A TW100133405A TW201235302A TW 201235302 A TW201235302 A TW 201235302A TW 100133405 A TW100133405 A TW 100133405A TW 100133405 A TW100133405 A TW 100133405A TW 201235302 A TW201235302 A TW 201235302A
Authority
TW
Taiwan
Prior art keywords
oxide composite
positive electrode
active material
composite material
manganese oxide
Prior art date
Application number
TW100133405A
Other languages
Chinese (zh)
Other versions
TWI482740B (en
Inventor
xian-kun Huang
xiang-ming He
Chang-Yin Jiang
Dan Wang
Jian Gao
Jian-Jun Li
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201235302A publication Critical patent/TW201235302A/en
Application granted granted Critical
Publication of TWI482740B publication Critical patent/TWI482740B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The invention relates to a lithium nickel manganese oxide composite material including a positive material grain and an aluminum phosphate layer coated thereon. The material of the positive material grain is represented by a formula LixNi0.5+y-aMn1.5-y-bMaNbO4, wherein x is equal to or smaller than 1.1, and equal to or larger than 0.1, y is smaller than 1.5, and equal to or larger than 0, a-y is smaller than 0.5, and equal to or larger than 0, and b+y is smaller than 1.5, and equal to or larger than 0, M and N are selected from the group consisting of an alkali metal, an alkaline-earth metal, a Group 13 element, a Group 14 element, a transition element, a rare earth element, and combinations thereof. The invention also relates to a method for making the lithium nickel manganese oxide composite material, and a lithium battery.

Description

201235302 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及-祕舰氡化物複合#料及其製備方法, 以及鋰離子電池。 ' 【先前技術】 [0002] 對裡離子電池正㈣,_f_㈣面採料他材料形 成包覆’係先前技術巾對正極活性物魏行改性的常用 方法。例如’在魏鐵_顆粒表面包覆―層雙可以有 效解決«麟導電性較低的問題,使包覆有⑽_ 酸鐵裡具有較好的導電性。另外,先前技術已表明在 鈷酸裡或其他疏活性物質難表面包覆_叙可以提 高裡離子電池正極的熱穩定性(請參閱文獻“C㈣心 tion between A1P〇4職咖⑴…c〇ati叫 thickness on LiCoO ra+iu 2cath〇de and thermal stabmity” J.Ch。,Electr〇chimica “ _謂-則及專利物,㈣,權的美國專利 )° 闺I前技術中用填酸銘包覆正極活性物質的方法係先製備 碟酸銘顆粒分散於水中形成的分散液,並將正極活性物 質顆粒加人這㈣備好㈣酸朗粒的分散液中,通過 吸附的仙使__粒簡在正極雜㈣大顆粒表 面’再將分散液中的水蒸幹,並在70CTC下熱處理’形成 表面具有磷酸鋁顆粒的正極活性物質。 [0004] 然而’由於魏料溶於水,魏㈣粒在水中分散時 可犯形成團聚,並且當將大量正極活性物質加入構酸銘 100133405 表單編號A0101 第4頁/共41頁 1002056727-0 201235302 分散液中時,先加入的正極活性物質吸附大量磷酸鋁顆 粒,後加入的正極活性物質顆粒則可能吸附不到足夠的 磷酸鋁顆粒。請參閱圖17,即使能夠很好的包覆,上述 方法決定該產物20從微觀上看係磷酸鋁以小顆粒22的形 態分佈在正極活性物質大顆粒24表面,並非一層均勻磷 酸紹物質層。因此,通過上述方法在正極活性物質表面 形成的磷酸鋁包覆層不夠均勻,無法保證每個正極活性 物質表面均能夠均勻的包覆一層磷酸鋁,從而使應用該 Ο [0005] [0006] ❹ 100133405 正極活性物質的鋰離子電池循環性能不好,使該方法難 以大規模工業化應用。 【發明内容】 有赛於此H種_独雜氧化物獅表面形成 均勻磷酸鋁包覆層的方法,及具有該磷酸鋁包覆層的鋰 錄猛氧化物複合材肖,以及應用該链舰氧化物複合材 料的鋰離子電池實為必要。 -種經錄猛氧化物複合材料,其包括正極活性物質顆粒 及包覆於該正極活性物質顆粒表面㈣酸料,該正極 1.5-y-bMaNb〇4表 各 a-y<〇.5,且〇 活性物質顆粒由化學式Li Ni Μπ x 0 · 5 + y - a 示,其中 0. l^x^l.卜 〇$γ<1 5,〇201235302 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a secret ship composite material and a preparation method thereof, and a lithium ion battery. [Prior Art] [0002] For the ionic battery, the _f_(four) surface material is used to form a coating, which is a common method for modifying the positive electrode active material. For example, 'coating on the surface of Wei Tie _ particle can effectively solve the problem of low conductivity of the lining, so that it has good conductivity in the coated (10) _ acid iron. In addition, the prior art has shown that it is difficult to surface coating in cobalt acid or other sparse active materials. The thermal stability of the positive electrode of the ion battery can be improved (please refer to the literature "C (4) Hearttion between A1P〇4 staff (1)...c〇ati Called thickness on LiCoO ra+iu 2cath〇de and thermal stabmity” J.Ch., Electroc〇chimica “ _ pre-and patents, (four), US patents for rights) ° 前I pre-technical coating with acid filling The method of the positive active material is to prepare a dispersion formed by dispersing the disc acid in the water, and adding the positive active material particles to the dispersion of the (4) acid granules, and absorbing the sage On the surface of the positive (4) large particle, the water in the dispersion was evaporated to dryness and heat-treated at 70 CTC to form a positive electrode active material having aluminum phosphate particles on the surface. [0004] However, because the Wei material is soluble in water, Wei (four) particles Agglomeration can be formed when dispersed in water, and when a large amount of positive active material is added to the composition of the acid positive 100133405 Form No. A0101 Page 4 / Total 41 page 1002056727-0 201235302, the positive active material adsorbed first The amount of aluminum phosphate particles, after the addition of the positive electrode active material particles may not adsorb enough aluminum phosphate particles. Referring to Figure 17, even if it can be well coated, the above method determines that the product 20 is microscopically aluminum phosphate. The morphology of the small particles 22 is distributed on the surface of the large active material 24 of the positive electrode active material, and is not a uniform phosphoric acid layer. Therefore, the aluminum phosphate coating layer formed on the surface of the positive electrode active material by the above method is not uniform enough to ensure each positive active material. The surface can be evenly coated with a layer of aluminum phosphate, so that the lithium ion battery with the positive electrode active material has poor cycle performance, which makes the method difficult for large-scale industrial application. The method for forming a uniform aluminum phosphate coating on the surface of the H-type hetero-oxide lion, and the lithium-recorded oxide composite material having the aluminum phosphate coating layer, and the application of the chain oxide composite material A lithium ion battery is necessary. - A recorded oxide composite material comprising positive electrode active material particles and coated on the positive electrode The surface of the material particles (4) acid material, the positive electrode 1.5-y-bMaNb〇4 is a-y<5, and the active material particles are represented by the chemical formula Li Ni Μπ x 0 · 5 + y - a, wherein 0. L^x^l. Buddy $γ<1 5,〇

Sb+y<l. 5,Μ及Ν為鹼金屬元素、鹼土金屬元素、第u 族元素、第14族元素、過渡族元素及稀土元素中的_種 或複數種。 一種鋰鎳錳氧化物複合材料的製備方法,其包括:提供 硝酸銘溶液;將待包㈣正極活性物加入該確酸 紹溶液中,形成混合物’該正極活性物質祕的材料由 表單編號A0101 第5頁/共41頁 1002056727-0 [0007] 201235302Sb+y<l. 5, Μ and Ν are _ species or plural species of an alkali metal element, an alkaline earth metal element, a u-th element, a group 14 element, a transition element, and a rare earth element. A method for preparing a lithium nickel manganese oxide composite material, comprising: providing a nitrate solution; adding a positive electrode active material to the acid solution to form a mixture of the cathode active material is formed by the form number A0101 5 pages/total 41 pages 1002056727-0 [0007] 201235302

---,-bMaNb〇4 表示’其中〇. I N為驗金屬it素、驗土金屬元素、第13族元素、第⑽— 素、過渡族元素及稀土元素中的—種或複數種;將鱗酸70 鹽溶液加入該混合物進行反應,在該正極活性物質顆板 表面形成魏!呂層;以及熱處理該表面具有磷酸紹層的 正極活性物質顆粒。 [0008] 一種鋰離子電池,苴由蛀τ & — τ , 电也其包括正極,該正極包括上述鐘錄錳 氧化物複合材料。 _]相較於S前技術,本發明避免了由於固固混合產生的吸 附不均勻,導致磷酸鋁包覆不均的現象,適合大規模工 業化應用。另外,本發明可在正極活性物質顆粒表面生 成-層厚度均句且連續_酸_,而非將磷酸紹顆粒 堆積在正極活性物質顆粒表面,因此具有更好的電化學 性能。 【實施方式】 _〇]下面將結合關及具體實_對本發明提供的鐘錄猛氧 化物複合材料及其製備方法,以及輯子電池作進一步 的詳細說明。 [0011] 100133405 請參閱圖1,本發明實施例提供—種正極複合材料顆粒ι〇 ,其包括正極活性物質·12及包覆於該正極活性物質 顆粒表面的磷酸_14。該磷酸—14在該正極複合材 料顆粒U)中的質量百分比狀1%至3%。該碟酸紹層14的 厚度優選為5奈米至2〇奈米。該韻銘層14為原位生成在 該正極活性物質顆粒12表面。該碟⑽層14為厚度均句 1002056727-0 201235302 且連續的磷酸鋁物質層。該正極活性物質顆粒12的所有 表面均被該連續的磷酸鋁層14覆蓋。進一步地,在該磷 酸鋁層14與該正極活性物質顆粒12間的介面處可能形成 介面擴散,使鈷原子擴散至該磷酸鋁層14中》 [0012] 該正極活性物質顆粒12的材料可以為層狀鈷酸鋰結構或 摻鎳的尖晶石錳酸鋰結構,具體可以由化學式 Ο---, -bMaNb〇4 means 'where 〇. IN is a metal or a metal element, a 13th element, a (10)-, a transitional element, and a rare earth element; A squary acid 70 salt solution is added to the mixture to form a reaction, and a surface of the positive electrode active material is formed on the surface of the positive electrode active material; and a positive electrode active material particle having a phosphate layer on the surface is heat-treated. [0008] A lithium ion battery, which consists of 蛀τ & —τ, which also includes a positive electrode comprising the above-described choline manganese oxide composite material. _] Compared with the pre-S technology, the present invention avoids uneven adsorption due to solid-solid mixing, resulting in uneven coating of aluminum phosphate, and is suitable for large-scale industrial applications. Further, the present invention can form a layer thickness on the surface of the positive electrode active material particle and continuously_acid_, instead of depositing phosphoric acid particles on the surface of the positive electrode active material particle, thereby having better electrochemical performance. [Embodiment] _ 〇 下面 下面 下面 下面 下面 下面 下面 下面 下面 下面 下面 钟 钟 钟 钟 钟 钟 钟 钟 钟 钟 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 [0011] Referring to FIG. 1, an embodiment of the present invention provides a positive electrode composite material ι 〇 comprising a positive electrode active material·12 and phosphoric acid _14 coated on the surface of the positive electrode active material particle. The phosphoric acid-14 has a mass percentage of 1% to 3% in the positive electrode composite particles U). The thickness of the dish acid layer 14 is preferably from 5 nm to 2 nm. The rhyme layer 14 is formed in situ on the surface of the positive electrode active material particle 12. The dish (10) layer 14 is a continuous layer of aluminum phosphate material having a thickness of 1002056727-0 201235302. All surfaces of the positive electrode active material particles 12 are covered by the continuous aluminum phosphate layer 14. Further, an interface diffusion may be formed at the interface between the aluminum phosphate layer 14 and the positive electrode active material particle 12 to diffuse cobalt atoms into the aluminum phosphate layer 14 [0012] The material of the positive electrode active material particle 12 may be a layered lithium cobalt oxide structure or a nickel-doped spinel lithium manganate structure, specifically by a chemical formula

LixcVzMzVtu八5+7 >1 5 y bMaV4表示,其 1~x-1· 1 * 〇^y<1.5 » 0^a-y<0. 5 » j_〇^ b+y<l. 5,且〇各Z<1。M&N均選自鹼金屬元素鹼土金 屬元素、帛㈣元素、帛14族元素、過㈣元素及稀土 疋素中的-種或複數種’優選地,選自Cr、c〇、v、 1 Fe Ga及Mg中的至少_種。其中y的範圍優選 為hy<〇. 1。具體地,該正極活性物質顆粒12的材料的 化學式可以為LiCoO或LiNi Μ Λ ^ 2 〇· 5Μηΐ. 504。该正極活性物 質顆粒12的粒徑優選為刚奈米至議微米,更優 微米至20微米。 Ο [0013] [0014] [0015] [0016] 100133405 步驟一,提供硝酸鋁溶液; 步驟二,將待包覆的 液中,形成一混合物 正極活性物質顆粒加人該硝酸紹溶 =,將顧鹽溶液加入該現合物進行反應 #物質顆粒表面形成碟酸紹層 表單編號咖 第7頁,共41頁 使該正 :以及 頁 1002056727-0 201235302 [0017] 步驟四’熱處理該表面具有魏銘層的正極活性物質顆 粒,得到正極複合材料顆粒。 、、 [0018] 該硝酸鋁溶液包括液相 溶劑及溶解於該溶劑的硝酸鋁 可以理解,該溶劑選擇為可使硝㈣解離形賴3+的溶 劑即可。因此該溶劑不限於水,還可以為易揮發的有機 ^優選地,该溶劑為乙醇、丙網、二氣乙烧和氣仿 中一種或者幾種㈣合。相躲採时作為溶劑以有 機溶劑如乙醇作為溶劑,可以避免正極活性物質顆粒與 水反應使正極活性物質性能降低。 [0019] 在上述步驟二中,該正極活性物質顆粒不溶於該硝酸鋁 溶液,兩料固液混合,目_在該正極活性物質顆粒 的表面均句附著—層A13、由於ai3+以離子形式存在, 可以均勻_著於正極活性婦顆粒表面,對該正極活 性物質顆粒形成原子級的包覆。進—步地,可控制該正 極活性物質的加人量’該正極活性物質顆粒與硝酸紹溶 液的比例可㈣為使該硝㈣賴能㈣蓋該正極活性 物質顆粒表面即可,使得到的混合物呈泥漿狀。形成泥 聚狀混合物的目的主要係為了控制确酸銘溶液的加入量 剛好夠在正極活性物質顆粒表面形成一層磷酸鋁包覆層 。具體地,該硝酸鋁溶液的體積與該正極活性物質顆粒 的體積比約為1:10至1:4〇。該正極活性物f顆粒的粒徑 優選為小於20微米。該硝酸鋁溶液的加入量可通過需要 形成的磷酸鋁包覆層占正極複合材料顆粒的質量百分比 加以確定,優選地,該磷酸鋁包覆層在該正極複合材料 顆粗中的質量百分比為〇. 1 %至3%。 100133405 表單編號A0101 第8 1/共41 1 1002056727-0LixcVzMzVtu 八5+7 >1 5 y bMaV4 means that 1~x-1· 1 * 〇^y<1.5 » 0^a-y<0. 5 » j_〇^ b+y<l. 5, And each Z<1. Each of M&N is selected from the group consisting of an alkali metal element alkaline earth metal element, a cerium (four) element, a lanthanum 14 group element, an over (four) element, and a rare earth lanthanide or a plurality of species 'preferably, selected from the group consisting of Cr, c〇, v, 1 At least _ of Fe Ga and Mg. Wherein the range of y is preferably hy<〇.1. Specifically, the material of the material of the positive electrode active material particle 12 may be LiCoO or LiNi Μ 2 ^ 2 〇 · 5Μηΐ. 504. The particle diameter of the positive electrode active material particles 12 is preferably from nanometer to micrometer, more preferably from micrometer to 20 micrometer. [0016] [0016] [0016] 100133405 Step one, providing an aluminum nitrate solution; Step two, the liquid to be coated, forming a mixture of positive electrode active material particles plus the nitric acid solubilized =, will The salt solution is added to the present compound to carry out the reaction. The surface of the material particle is formed into a dish of the acid layer. The number of the table is the same as that of the page. The page is made up of: page 1002056727-0 201235302 [0017] Step 4 'heat treatment the surface has Wei Ming The positive electrode active material particles of the layer were obtained as positive electrode composite particles. [0018] The aluminum nitrate solution includes a liquid phase solvent and aluminum nitrate dissolved in the solvent. It is understood that the solvent is selected such that the nitrate (4) can be dissociated from the solvent of 3+. Therefore, the solvent is not limited to water, and may be a volatile organic compound. Preferably, the solvent is one or a combination of ethanol, propylene mesh, dioxane and gas. When the solvent is used as a solvent, an organic solvent such as ethanol is used as a solvent to prevent the positive electrode active material particles from reacting with water to lower the performance of the positive electrode active material. [0019] In the above step two, the positive electrode active material particles are insoluble in the aluminum nitrate solution, and the two materials are mixed with solid and liquid, and the surface of the positive electrode active material particles is uniformly attached to the layer A13, and the ai3+ exists in the form of ions. , the surface of the positive active material particles can be uniformly formed on the surface of the positive active material particles to form an atomic coating. Further, the amount of the positive active material added may be controlled. The ratio of the positive active material particles to the nitrate solution may be (4) such that the nitrate (4) can cover the surface of the positive active material particles, so that The mixture is in the form of a slurry. The purpose of forming a mud-like mixture is mainly to control the amount of the acid solution to be just enough to form an aluminum phosphate coating on the surface of the positive electrode active material particles. Specifically, the volume ratio of the volume of the aluminum nitrate solution to the positive electrode active material particles is about 1:10 to 1:4 Torr. The particle size of the positive electrode active material f is preferably less than 20 μm. The amount of the aluminum nitrate solution added can be determined by the mass percentage of the aluminum phosphate coating layer to be formed in the positive electrode composite material particles. Preferably, the mass percentage of the aluminum phosphate coating layer in the coarse electrode of the positive electrode composite material is 〇 1% to 3%. 100133405 Form No. A0101 No. 8 1/Total 41 1 1002056727-0

201235302 [観0J 在上述步驟三中,該磷酸鹽溶液包括水作為溶劑,以及 溶解於該溶劑的可溶性磷酸鹽,如磷酸銨鹽。該墙酸敍 鹽包括磷酸二氫銨(NHP0J、磷酸氫二銨 4 ft ((ΝΗ4:)2ΗΡ〇4)及磷酸三銨CCNWPOp中的一種或幾種 的混合。該填酸鹽溶液中含填酸根離子。該碟酸根離子 可係正磷酸根離子(P〇43_)、磷酸二氫根離子(H p〇 -)及 2 4 Ο 峨酸—氫根離子(HP〇42-)中的一種或幾種的混合。該磷 酸鹽溶液加入至所述泥漿狀混合物時,該磷酸根離子與 附著於正極活性物質顆粒表面的Al3 +反應,從而在正極 活性物質顆粒表面原位形成一層均勻的磷酸鋁沉澱。優 選地,該磷酸鹽溶液可以逐滴加入該泥漿狀混合物,並 加以攪拌,從而使該磷酸根離子與該A13+能夠在該正極 活性物質顆粒表面均勻的反應。與硝酸鋁溶液相似地, 該碟酸鹽溶液的加入量可通過需要形成_酸銘包覆層 佔正極複合材料顆粒的質量百分比加以確定。 [0021] ❹ 在上述步驟四t ’該熱處理的目的係使_酸銘與正極 活性物質在介面處更好的結合,形成複合材料,並去除 殘留的溶劑及反應生成的硕酸銨。通過該熱處理在磷 酸紹與正極活性物質介面處可能形成介面擴散使正極 活性物質中的金屬原子擴散至__層卜㈣處理 溫度可以為4啊至8帆。該熱處理的時間優選為05 至2小時。 [0022] 100133405 由於本方絲將正極活性物加人到概銘溶液中二ΓΓ_容液中加入可以與銘離子反應生成磷酸 鹽溶液,從而在正極活性物質顆粒表面原位生 表單編號Α0101 第9頁/共41頁 1002056727-0 201235302 成—層連續的磷酸域。由於液相的峭酸赌液盘固相 的正極活性物f顆粒進行混合,可叫使輯子均句的 包覆在該疏雜„驗表面,㈣,純反應後由 銘離子生成的磷_沉殿也能夠更⑼且連續的包覆在 該正極活㈣粒整個表面。與先合成射㈣粒,再通 過吸附作較碟酸㈣粒吸關正極活性㈣顆粒表面 的方式相比較,本方法避免了由於固固混合產生的吸附 不均句,導致碟酸紹包覆不均勻、不連續或包覆不完整 的現象,適合大規模工業化應用1外,本方法可在正 極活性物質顆粒表面生成m的厚度Μ且連續的 磷酸铭層,而非_酸關粒堆積在正極活性物質顆粒 表面。該磷酸鋁層可以在隔絕電解液與活性物質之間的 電子遷移的同時使離子通過,從而在完成轉子的叙入 和脫出的同時避免電解液在較高電壓下分解,因此使該 正極活性物質可以在較高電壓下具有更好的電池電化學 性能及容量保持性能。 [0023] [0024] 务月實把例具體採用上述方法通過碗酸紹包覆正極活 物質顆粒製備所述正極複合材料顆粒,並將該正極複 。材料顆粒應用於鐘離子電池中進行性能測試。 實施例1 :磷酸鋁〜鈷酸鋰複合材料 本實施例中該正極活性物質顆粒為钻酸經顆粒,化學式 為[1(:〇〇2。該磷酸鋁—鈷酸鋰複合材料包括鈷酸鋰顆粒及 ι覆於5亥鈷酸鋰顆粒表面的磷酸鋁層。 _]纟__㈣酸鋰複合材料的製備中該硝酸銘溶液為 100133405 表單編號Α0101 第10頁/共41頁 1002056727-0 201235302 硝酸紹在乙醇中形成的溶液1賴錄_體 宅升,摩爾濃度為0. 16摩爾/升。該銘酸鐘顆粒的加入旦 為1〇〇g ° _酸鹽溶液為⑽4)2_4水溶液。在里 溫度分別為彻。。、5_及6〇〇。。,魏銘層占; 的質量百分比㈣的條件下製備得到3輯:= 複合材料顆繼。”,竭崎她。酸 紹層占總質量的質量百分y_氣,r Λ •歸複合材㈣。.::條件下製備得_ 材料樣°°。請參閱圖2及圖3,得到的201235302 [観0J In the above step three, the phosphate solution includes water as a solvent, and a soluble phosphate such as an ammonium phosphate dissolved in the solvent. The wall acid salt includes a mixture of one or more of ammonium dihydrogen phosphate (NHP0J, diammonium phosphate 4 ft ((ΝΗ4:)2ΗΡ〇4) and triammonium phosphate CCNWPOp. Acid ion. The acid ion of the dish may be one of orthophosphate ion (P〇43_), dihydrogen phosphate ion (H p〇-), and 2 4 Ο 峨 acid-hydrogen ion (HP〇42-) or When the phosphate solution is added to the slurry mixture, the phosphate ion reacts with Al3 + attached to the surface of the positive electrode active material particle to form a uniform aluminum phosphate in situ on the surface of the positive electrode active material particle. Preferably, the phosphate solution may be added dropwise to the slurry mixture and stirred to allow the phosphate ion to react uniformly with the A13+ on the surface of the positive electrode active material particle. Similarly to the aluminum nitrate solution, The amount of the disc acid solution can be determined by the mass percentage of the positive composite particles required to form the acid coating layer. [0021] ❹ In the above step four t 'the purpose of the heat treatment is to make the acid The polar active material is better combined at the interface to form a composite material, and the residual solvent and the ammonium amicate formed by the reaction are removed. The heat treatment may form an interface diffusion between the phosphoric acid and the positive active material interface to make the positive electrode active material The metal atom diffuses to the __ layer. (IV) The treatment temperature may be from 4 to 8. The heat treatment time is preferably from 05 to 2 hours. [0022] 100133405 Since the square wire adds the positive active material to the general solution The ΓΓ_ contained in the liquid can be reacted with the ionic ions to form a phosphate solution, so that the surface number of the positive active material particles is generated in situ. Α0101 Page 9 / Total 41 pages 1002056727-0 201235302 The phase of the positive acid active material f particles of the solid phase of the slick acid slab is mixed, which can be called to cover the surface of the mixture, and (4), the phosphorus formed by the ionic ions after the pure reaction It can also be more (9) and continuously coated on the entire surface of the positive (four) particles of the positive electrode. Compared with the method of first synthesizing the shot (four) particles, and then adsorbing the surface of the positive electrode (four) particles by the adsorption of the acid (four) particles. The method avoids the phenomenon of uneven adsorption caused by solid-solid mixing, resulting in uneven coating, discontinuity or incomplete coating of the dish, which is suitable for large-scale industrial application, and the method can be used in the positive active material particles. The surface generates a thickness of m and a continuous phosphoric acid inlaid layer, and the non-acid is deposited on the surface of the positive electrode active material particle. The aluminum phosphate layer can pass ions while injecting electron migration between the electrolyte and the active material. Thereby, the electrolyte is prevented from decomposing at a higher voltage while completing the introduction and removal of the rotor, so that the positive active material can have better battery electrochemical performance and capacity retention performance at a higher voltage. [0024] The positive electrode composite material particles are prepared by coating the positive electrode active material particles with a bowl of acid, and the positive electrode is recovered by using the above method. The material particles were used in a plasma battery for performance testing. Example 1: Aluminum phosphate to lithium cobaltate composite material In the present embodiment, the positive electrode active material particles are drilled acid particles, and the chemical formula is [1(:〇〇2). The aluminum phosphate-cobaltate composite material includes lithium cobaltate. The granules and the aluminum phosphate layer coated on the surface of the 5H lithium cobalt oxide particles. The preparation of the _]纟__(tetra) lithium acid composite material is 100133405 Form No. 1010101 Page 10/Total 41 Page 1002056727-0 201235302 Nitric acid The solution formed in ethanol is 1 liter, and the molar concentration is 0.16 mol/liter. The addition of the acid clock particles is 1 〇〇g ° _ the acid solution is (10) 4) 2_4 aqueous solution. In the temperature, the temperature is respectively. . , 5_ and 6〇〇. . , Wei Ming layer accounted for; mass percentage (four) prepared under the conditions of three series: = composite material followed. ", she is exhausted. The acid-sand layer accounts for the mass percentage of the total mass y_gas, r Λ • the composite material (four)..:: prepared under the condition _ material sample ° °. Please refer to Figure 2 and Figure 3, of

樣品中’魏㈣均勻的包覆在該鈷酸㈣粒表面 過高倍率透射電鏡觀察,可以清晰地看到_酸銘係以 厚度均勻的物質層的形式覆蓋在該賴_粒表面表面 。分別將這4種樣品與—定比例的導電劑及枯結劑混合均 勻塗敷於正極集流體表面製成正極,以金驗片作為負 極’將正極及負極通過隔膜間隔並以電解液浸潤組裝成 鐘離子電池,進行級電聽測試。本實施例中,該導 電劑為乙炔黑,粘結劑為聚偏氟乙烯,正極活性材料與 導電劑及麟劑的質量比為8:1:1。賴為微孔聚丙稀膜 ,電解液為lmol/L LiPF6/EC +DEC (1:1)溶液。 剛包覆有顧㈣正㈣性,㈣起包覆作用的 磷酸銘改善了正祕性物質雖絲面結構,給鐘離子 提供了脫欠平臺,同時起到阻擋層的作用,有效地抑制 四價銘離子與電解液反應,穩定了銘較結構,提高了 電化學循環性能。請參閱圖4,將上述4種樣品在〇, 5(:電 流下進行恒流充放電循環測試,該充電的截止電壓為 4. 5V’放電的截止電壓為2. 7V。從®中可以發現,採用 100133405 表單編號A0101 第11頁/共41頁 1002056727-0 201235302 本發明方法製傷的樣品,由於磷酸鋁能夠均勻的包覆鈷 酸紹顆粒’在較高電壓下充電仍能具有較高的容量及穩 定的容量保持率,50次循環後的容量保持率均在90%以上 ’比容量為l6〇mAh/g至i75mAh/g。並且,隨著熱處理 溫度的提高,電池的容量有所增加。該磷酸鋁百分含量 的改變對電池容量的影響不大。 [0028] 對比實驗1 [0〇29]為與本發明實施例1製備的正極複合材料顆粒進行對比, 以先前技術的方法製備另一對比樣品,具體步驟為: [〇〇3〇] 將(nh4)2hp〇4水溶液與硝酸銘水溶液混合,在水中生成 磷酸鋁顆粒,形成分散液; [〇〇31] 將鈷酸鋰顆粒投入該分散液中,通過吸附的作用使碟酸 鋁顆粒吸附在鈷酸鋰顆粒表面;以及 [0032] 在600°C下熱處理該表面吸附有填酸銘顆粒的钻酸鐘顆粒 ,得到所述對比樣品。請參閱圖5及圖6,通過先前技術 方法製備的對比樣品中’磷酸鋁係顆粒的形態聚集在該 鈷酸鋰顆粒表面,且磷酸鋁顆粒發生團聚,使包覆不均 勻。 [0033] 100133405 將該對比樣品替換實施例1中的磷酸鋁-鈷酸鋰複合材料 ’在與實施例1相同的條件下組裝電池,進行充放電性能 測試。另外還將未包覆任何材料的姑酸链顆粒作為正極 活性物質,在與實施例1相同的條件下組裝成鋰離子電、也 ,進行充放電性能測試。上述實施例1與對比實驗的區別 僅在於正極活性材料’其他電池條件及測試條件均相同 ^02056727-0 表單編號A0101 第12頁/共41頁 201235302 [0034] 1參關7 ’該對比樣品及未包覆的鈷酸鋰顆粒樣品的循 %谷量則急劇下降’ 50次循環後的容量保持率均小於85% ’這主要係由於鈷酸鋰顆粒包覆不均勻或未包覆’使得 在同壓下進行充電時,鈷酸鋰與電解液發生反應使電池 的容量降低。 [0035] ⑼例2 .魏銘〜鍾鎳猛氧化物複合材料 [0036] t實施例中該正極活性物質顆粒為尖晶石型的鋰鎳猛氧 化物顆粒,化學式為LiNi。5〇4 »該磷酸銘—链鎳猛 氧化物複合材料包括鋰鎳錳氧化物顆粒及包覆於該鋰鎳 猛氧化物顆粒表面的魏銘層。該填酸Ιδ-ϋ錄猛氧化物 複合材料的製備方法與上述實施例i的碟酸銘_姑酸經複 合材料顆粒的製備方法相同,熱處理溫度選擇為600°C, 區別僅在正極活性物質顆粒的材料為鋰雜氧化物,碟 S曼銘層占總質量的質量百分比為〇. 5%。將該填酸銘_鋰錄 猛氧化物複合材料替換實施例1的填酸銘-銘酸鐘複合材 料,在與實施例1相同的條件下組裝成娜子電池 。將該 裡離子電池在0. 2C電流下進行恒流充放電循環測試,該 充電的截止電壓為5V,放電的截止電壓為3V,5〇次擔環 後電池的容量保持率均在95%以上,比容量約為 138mAh/g。另外,請參閱圖8,將該鋰離子電池在1(:電 流下進行恒絲放㈣環咐,在1C钱下5G次循環後 電池的容量保持率仍可以達到95%,比容量約為 132mAh/g 。 100133405 表單編號A0101 第13頁/共41頁 1002056727-0 201235302 [0037] 對比實驗2 [0038] 將未包覆的LiNin ,0,顆粒作為正極活性物質,在 與實施例1相同的條件下組裝成鋰離子電池,進行充放電 性能測試。該測試結果與實施例2的測試結果在圖8中進 行對比,發現使用該未包覆的LiN% 5〇4顆粒作為 正極活性物質的鋰離子電池在1C電流下50次循環後電池 的容量保持率約為86%,比容量約為118mAh/g。 [0039] 實施例3 :磷酸鋁-球形鋰鎳錳氧化物複合材料 [0040] 本實施例中,先通過控制結晶法合成球形鋰鎳錳氧化物 ,再對該球形鋰鎳錳氧化物進行磷酸鋁包覆。該球形鋰 錄猛氧化物的化學式為LiN% 5〇4。該鱗酸銘-球形 鋰鎳錳氧化物複合材料包括球形鋰鎳錳氧化物及包覆於 該球形鋰鎳錳氧化物表面的磷酸鋁層。 [0041] 製備該球形鋰鎳錳氧化物的控制結晶合成方法包括以下 步驟: [0042] 提供可溶性的錳源化合物和鎳源化合物,將該可溶性的 锰源化合物和鎳源化合物按化學計量比在溶劑中溶解混 合,形成一鎳錳混合溶液; [0043] 提供具有碳酸根或碳酸氫根的碳酸鹽溶液,將該鎳錳混 合溶液及該碳酸鹽溶液分別同時輸入到控制結晶反應釜 中混合攪拌,並控制釜内的pH值為8-10,控制釜内的溫 度為40°C-60°C,得到反應產物; [0044] 對該反應產物進行固液分離並乾燥,得到球形粉體; 100133405 表單編號A0101 第14頁/共41頁 1002056727-0 201235302 LUU4bj [0046] [0047] [0048] ΟThe uniform coating of 'Wei (4) in the sample on the surface of the cobalt acid (tetra) was observed by high-magnification transmission electron microscopy. It can be clearly seen that the acid-like layer covers the surface of the surface of the granule in the form of a layer of a uniform thickness. The four samples are uniformly mixed with a proportion of the conductive agent and the dry agent to form a positive electrode on the surface of the positive current collector, and the gold sample is used as a negative electrode. The positive electrode and the negative electrode are separated by a separator and are impregnated with an electrolyte. Chengzhong ion battery, conducting audio-visual testing. In this embodiment, the conductive agent is acetylene black, the binder is polyvinylidene fluoride, and the mass ratio of the positive active material to the conductive agent and the lining agent is 8:1:1. The solution is a microporous polypropylene film, and the electrolyte is a 1 mol/L LiPF6/EC + DEC (1:1) solution. Just coated with Gu (four) positive (four), (4) the role of the coating of phosphoric acid to improve the positive structure of the material, although the silk surface structure, to provide a platform for the clock ions, while playing a barrier role, effectively inhibiting four The reaction of the valence ion with the electrolyte stabilizes the structure and improves the electrochemical cycle performance. 5伏。 From the ® can be found in the above-mentioned four kinds of samples in the 〇, 5 (: current under constant current charge and discharge cycle test, the cutoff voltage of the charge is 4. 5V' discharge cutoff voltage is 2. 7V. , using 100133405 Form No. A0101 Page 11 / Total 41 Page 1002056727-0 201235302 The sample of the method of the present invention, because the aluminum phosphate can uniformly coat the cobalt acid granules, can still have a higher charging at a higher voltage. Capacity and stable capacity retention rate, the capacity retention rate after 50 cycles is above 90%' specific capacity is l6〇mAh/g to i75mAh/g. And, as the heat treatment temperature increases, the capacity of the battery increases. The change in the percentage of aluminum phosphate has little effect on the battery capacity. [0028] Comparative Experiment 1 [0〇29] is prepared by comparing the particles of the positive electrode composite prepared in Example 1 of the present invention with the prior art method. Another comparative sample, the specific steps are: [〇〇3〇] mixing (nh4) 2hp〇4 aqueous solution with nitrate aqueous solution to form aluminum phosphate particles in water to form a dispersion; [〇〇31] lithium cobaltate particles Invest in the dispersion The aluminum silicate particles are adsorbed on the surface of the lithium cobaltate particles by the action of adsorption; and [0032] the acid clock particles adsorbed with the acid-filled particles on the surface are heat-treated at 600 ° C to obtain the comparative sample. Referring to Figures 5 and 6, in the comparative sample prepared by the prior art method, the morphology of the 'aluminum phosphate-based particles aggregated on the surface of the lithium cobaltate particles, and the aluminum phosphate particles agglomerated to make the coating uneven. [0033] 100133405 The comparative sample was replaced with the lithium aluminum phosphate-cobaltate composite material of Example 1 to assemble a battery under the same conditions as in Example 1 to perform charge and discharge performance tests. Further, a sulphate chain particle not coated with any material was also used. The positive electrode active material was assembled into lithium ion electricity under the same conditions as in Example 1, and the charge and discharge performance test was also performed. The above Example 1 differs from the comparative experiment only in that the positive electrode active material 'other battery conditions and test conditions are the same. ^02056727-0 Form No. A0101 Page 12 of 41 201235302 [0034] 1 Participation 7 'The comparison sample and uncoated lithium cobalt oxide particles sample The capacity retention rate after the 50th cycle is less than 85% 'this is mainly due to the uneven coating or uncoated of lithium cobaltate particles', so that lithium cobaltate reacts with the electrolyte when charging under the same pressure. [0035] (9) Example 2: Wei Ming ~ Zhong Nickel Oxide Composite [0036] In the embodiment, the positive active material particles are spinel-type lithium nickel oxide oxide particles, the chemical formula is LiNi.5〇4 » The phosphoric acid-chain nickel oxide composite material comprises lithium nickel manganese oxide particles and a Weiming layer coated on the surface of the lithium nickel oxide oxide particles. The preparation method of the yttrium-doped yttrium-yttrium oxide composite material is the same as the preparation method of the composite material particle of the above-mentioned example i, and the heat treatment temperature is selected to be 600 ° C, and the difference is only in the positive electrode active material. 5%。 The material of the particles is lithium hetero-oxide, the mass percentage of the dish S-Ming layer to the total mass is 〇. 5%. The acid-filled sulphur oxide composite material was replaced with the acid-filled acid-time composite material of Example 1, and assembled into a nano battery under the same conditions as in Example 1. The lithium ion battery was subjected to a constant current charge and discharge cycle test at a current of 0.2 C. The cutoff voltage of the charge was 5 V, and the cutoff voltage of the discharge was 3 V. The capacity retention rate of the battery after the 5〇 times of the ring was above 95%. The specific capacity is about 138 mAh/g. In addition, please refer to FIG. 8 , the lithium ion battery is subjected to a constant wire discharge (4) ring at 1 (current), and the capacity retention rate of the battery can still reach 95% after 5G cycles at 1 C, and the specific capacity is about 132 mAh. /g 100133405 Form No. A0101 Page 13 of 41 1002056727-0 201235302 [Comparative Experiment 2 [0038] Uncoated LiNin, 0, particles were used as the positive electrode active material under the same conditions as in Example 1. The lithium ion battery was assembled and tested for charge and discharge performance. The test results were compared with the test results of Example 2 in Fig. 8. It was found that the uncoated LiN% 5〇4 particles were used as the lithium ion of the positive electrode active material. The battery has a capacity retention rate of about 86% and a specific capacity of about 118 mAh/g after 50 cycles of 1 C current. [0039] Example 3: Aluminum phosphate-spherical lithium nickel manganese oxide composite [0040] This embodiment In the example, the spherical lithium nickel manganese oxide is first synthesized by controlled crystallization, and then the spherical lithium nickel manganese oxide is coated with aluminum phosphate. The chemical formula of the spherical lithium oxide oxide is LiN% 5〇4. Ming-spherical lithium nickel manganese oxide composite package A spherical lithium nickel manganese oxide and an aluminum phosphate layer coated on the surface of the spherical lithium nickel manganese oxide. [0041] The controlled crystal synthesis method for preparing the spherical lithium nickel manganese oxide comprises the following steps: [0042] providing soluble a manganese source compound and a nickel source compound, the soluble manganese source compound and the nickel source compound are dissolved and mixed in a stoichiometric ratio in a solvent to form a nickel manganese mixed solution; [0043] providing a carbonate having carbonate or bicarbonate a solution, the nickel manganese mixed solution and the carbonate solution are simultaneously input into a controlled crystallization reactor for mixing and stirring, and the pH in the kettle is controlled to be 8-10, and the temperature in the controlled kettle is 40 ° C - 60 ° C. The reaction product is obtained; [0044] The reaction product is subjected to solid-liquid separation and dried to obtain a spherical powder; 100133405 Form No. A0101 Page 14 of 41 page 1002056727-0 201235302 LUU4bj [0046] [0048]

[0049] [0050] 將該球形粉體在40(TC—60(TCT熱處理4小時_1〇小時; 將"亥熱處理後的球形粉體與鋰源化合物混合,並在⑽t 綱C下烺燒8小時-20小時’得到球祕賴氧化物。 述步驟中所述猛源化合物和鎳源化合物按裡鎳猛氧 化物中的織鎳的化學計量比齡,本實施例中,該裡 鎳猛氧化物為LiNifl 5ά,缝·合物和錄源化 合物中的鎳與錳的摩爾比為1:3。 該猛源化合物可以為MnS〇4.H2〇、Mn(CH3C〇〇)2.4H2〇及 Μη(Ν〇3)2·4Η2〇中的一種或多種,所述錄源化合物可以為NiS〇4-6H2〇 ^ Ni(CH3COO) -4H?O^Ni(NOq) ·6Η90t u ^ 〇 2 2 的一種或多種。本實施例中,該錳源化合物為MnS〇4 Η, ’ *亥鎳源化合物NiS〇4.6H2〇 〇具體地,5〇. 7g MnS〇4. H2〇和26. 3gNiS〇4.6H2〇,溶於2L去離子水中,充分攪拌 至全部溶解,得到鎳錳混合溶液。本實施例中,該碳酸 鹽溶液為42.4g Na2C〇3溶於2L去離子水中,充分攪拌至 全部溶解後形成。 將所述碳酸鹽溶液及鎳錳混合溶液分別輸入到控制結晶 反應爸的過程中,所述鎮猛混合溶液的進料流速可控制 為2mL/min ’所述碳酸鹽溶液的進料流速可控制為 2.2mL/min。 所述反應釜内的溫度的溫度對於反應釜中的反應有一定 的影響,還會影響結晶的過程,因此,釜内的溫度不宜 過低,過低的溫度不利於反應進行;而溫度過高則難以 生成結晶。本實施例中,釜内的溫度可以保持在45。(:, 100133405 表單編號A0101 第15頁/共41頁 1002056727-0 201235302 釜内的pH值保持在8左右。另外,攪拌速度對於生成 形顆粒形貌有很大影響,在攪拌混合的過程中,攪掉的球 轉速可以保持在UOOrpm/Wn。本實施例令,該球开的 體的化學式為N1〇 & 5(C〇3)2,xH2〇。 4 [0051]在所述將該球形粉體在40〇°C-60(TC下熱處理的步綠 所述熱處理的溫度可以為420t。熱處理後的物粉中。’ 以與1.5%過量的Μ化合物混合,該㈣化合物可以可[0050] The spherical powder is mixed at 40 (TC-60 (TCT heat treatment for 4 hours and 1 hour; the spherical powder after heat treatment) is mixed with the lithium source compound, and is immersed in (10)t Burning for 8 hours to 20 hours 'to obtain the ball-based oxides. In the step, the source compound and the nickel source compound are in the stoichiometric ratio of the nickel in the nickel oxide, in this embodiment, the nickel The catastrophe oxide is LiNifl 5 ά, and the molar ratio of nickel to manganese in the slit compound and the source compound is 1:3. The catastrophic compound may be MnS〇4.H2〇, Mn(CH3C〇〇)2.4H2〇 And one or more of Μη(Ν〇3)2·4Η2〇, the source compound may be NiS〇4-6H2〇^Ni(CH3COO)-4H?O^Ni(NOq)·6Η90t u ^ 〇2 The MnS 〇 Η Η ' ' ' 锰 锰 锰 锰 锰 锰 锰 锰 锰 锰 〇 〇 〇 〇 〇 〇 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 〇4.6H2〇, dissolved in 2L of deionized water, fully stirred until completely dissolved, to obtain a mixed solution of nickel and manganese. In this example, the carbonate solution is 42.4g Na2C〇3 dissolved in 2L of deionized water, charged After the mixture is completely dissolved, the carbonate solution and the nickel-manganese mixed solution are separately input into the process of controlling the crystallization reaction dad, and the feed flow rate of the Zhenmao mixed solution can be controlled to 2 mL/min. The feed flow rate of the solution can be controlled to 2.2 mL/min. The temperature of the temperature in the reactor has a certain influence on the reaction in the reactor, and also affects the crystallization process. Therefore, the temperature in the kettle should not be too low. Too low a temperature is not conducive to the reaction; and if the temperature is too high, it is difficult to form crystals. In this embodiment, the temperature in the autoclave can be maintained at 45. (:, 100133405 Form No. A0101 Page 15 / Total 41 Page 1002056727-0 201235302 The pH value in the autoclave is maintained at about 8. In addition, the stirring speed has a great influence on the shape of the formed particles, and the stirring speed of the ball can be maintained at UOO rpm/Wn during the stirring and mixing. The chemical formula of the spherical body is N1〇& 5(C〇3)2, xH2〇. 4 [0051] in the step of treating the spherical powder at 40 ° C - 60 (TC under heat treatment) The heat treatment temperature can be 420t. After the powder was' in excess of 1.5% and mixed Μ compound, the compound (iv) may be

Ll2C〇3,Ll2C〇3過篁係為了彌補假燒過程中链的損失 所述瑕燒步驟可以在馬弗爐裏進行,假燒溫度可以° °C,煆燒時間可以為16小時。 5〇 [_❹閱圖9 ’通過控制結晶法合成的熱處理前的球心 顆粒大小在5微米-30微米之間。請參閱圖1〇,經過^題 wc處理後得到的球形ίιΝν5ΜηιΛ顆教仍為球 形形貌’但球體已收縮,球形LiNi"Mn"〇4粒經 米左右。 [0053] 100133405 進-步地’對該球形鋰錄錳氧化物進行磷酸紹包覆星 體方法為:稱取適量的M(N〇3)3.9H2〇溶於乙醇中配 製成100g/L的醇溶液。稱取適量的(NH4)2Hp〇4溶於去 離子水中,配製成100g/L的水溶液。稱取i克球形裡錄 锰氧化物,將ai(n〇3)3醇溶液加入到球形㈣猛氧化物 中’授拌均句,再緩慢滴加⑽ΑΗΡ、水溶液邊滴加 邊進行攪拌,直至溶液變成泥敗狀。加入的AKN〇3)3與 (nh4)2hp〇4的摩爾比為i:卜將泥漿狀軌合物放3入3到 12〇°C的烘箱内烘It ’再敌入到馬弗爐中假燒2個小時得 到包覆A1P04的球形朗缝氧化物。其中,姐銘層占填 表草編號疆 第16頁/共41 w 識 201235302 [0054] 酸鋁-球形鋰鎳錳氧化物複合材料總質量的質量百分比為 1%,煆燒溫度選擇400°C得到樣品1,煆燒溫度選擇700 °(:得到樣品2。 進一步地,以700°C為煆燒溫度,通過改變磷酸鋁層的包 覆量,製備了 2種不同樣品,其中,在磷酸鋁層占磷酸鋁 -球形链錄猛氧化物複合材料總質量的質量百分比為2 %的 條件下製備得到樣品3,以質量百分比為3%的條件下製備 得到樣品4。 f\ [0055] 請參閲圖11,圖11中曲線(a)為未包覆的球形 LiNin Jni.50,,曲線(b)為煆燒溫度400°C的樣品1, 曲線(c)為煆燒溫度700°C的樣品2。通過與未包覆磷酸鋁 的球形LiNin ,Μη, ^(^進行對比,在包覆磷酸鋁的球形 0 _ 5 1.5 4 LiN^ 5Μηι 5〇4的义1?1)譜圖中,衍射峰的位置和強度基本 沒有改變,也沒有Α1Ρ0,衍射峰出現,說明包覆的Α1Ρ0, 4 4 層係無定形的,△1?〇4與1^心()5〇4也沒有發生反應 〇 〇 [0056] 請參閲圖12,將樣品2通過透射電鏡觀察分析,可以看到 Α1Ρ0,包覆層均勻,且厚度在10奈米左右。 [0057] 將該磷酸鋁-球形鋰鎳錳氧化物複合材料替換實施例1中 的磷酸鋁-鈷酸鋰複合材料,在與實施例1相同的條件下 組裝成鋰離子電池,進行充放電性能測試。 [0058] 對比實驗3 [0059] 通過與實施例3相同的控制結晶方法,合成球形 LiN、5Μηι 5〇4,並將未包覆的球形LiNi。5Μηι 5〇4作 100133405 表單編號A0101 第17頁/共41頁 1002056727-0 201235302 為正極活性物質,在與實施例3相同的條件下組裝成鋰離 子電池,進行充放電性能測試。 [0060] 請參閱圖13,圖13係分別應用實施例3的樣品3和未包覆 的球形LiNin Jn, 組裝成的鋰離子電池,在0.5C倍 0.5 1.54 率下恒流充放電的首次充放電曲線。採用樣品2的鋰離子 電池的充放電平臺在4. 7V左右,與採用未包覆的球形Ll2C〇3, Ll2C〇3 over-theft system to compensate for the loss of chain during the calcination process The calcination step can be carried out in a muffle furnace, the calcination temperature can be ° ° C, and the calcination time can be 16 hours. 5〇 [_❹图9' The core particle size before heat treatment synthesized by the controlled crystallization method is between 5 μm and 30 μm. Please refer to Figure 1〇. After the ^c wc treatment, the spherical ίιΝν5ΜηιΛ teaching is still a spherical shape' but the sphere has contracted, and the spherical LiNi"Mn" [0053] 100133405 step by step 'the method of phosphoric acid coating the spherical lithium manganese oxide is: weigh the appropriate amount of M (N〇3) 3.9H2 〇 dissolved in ethanol to prepare 100g / L Alcohol solution. An appropriate amount of (NH4)2Hp〇4 was weighed and dissolved in deionized water to prepare an aqueous solution of 100 g/L. Weigh the manganese oxide in the i gram sphere, add the ai(n〇3)3 alcohol solution to the spherical (four) mascara oxide, and then slowly add (10) hydrazine and the aqueous solution while stirring. The solution turned into a muddy state. The molar ratio of AKN〇3)3 to (nh4)2hp〇4 is i: Put the mud-like trajectory into the oven at 3 to 12 °C and dry it into the muffle furnace. Slightly burn for 2 hours to obtain a spherical slat oxide coated with A1P04. Among them, the sister layer accounts for the number of grasses, and the number of masses is 1%. The total mass of the acid-aluminum-spherical lithium-nickel-manganese oxide composite is 1%, and the temperature of the simmering temperature is 400°C. Sample 1 was obtained, and the calcination temperature was selected to be 700 ° (: Sample 2 was obtained. Further, at 700 ° C for the calcination temperature, two different samples were prepared by changing the coating amount of the aluminum phosphate layer, wherein, in the aluminum phosphate The sample 3 was prepared under the condition that the mass percentage of the total mass of the aluminum phosphate-spherical chain recording oxide composite material was 2%, and the sample 4 was prepared under the condition of 3% by mass. f\ [0055] Referring to Figure 11, the curve (a) in Fig. 11 is an uncoated spherical LiNin Jni.50, the curve (b) is a sample 1 having a calcining temperature of 400 ° C, and the curve (c) is a calcining temperature of 700 ° C. Sample 2. In the spectrum of spherical 0N_5 1.5 4 LiN^ 5Μηι 5〇4, which is coated with aluminum phosphate, is compared with spherical LiNin, Μη, ^(^, which is not coated with aluminum phosphate, The position and intensity of the diffraction peaks are basically unchanged, and there is no Α1Ρ0, and the diffraction peak appears, indicating that the coated Α1Ρ0, 4 4 layer is not present. Shape, △1?〇4 and 1^心()5〇4 also did not react 〇〇[0056] Please refer to Figure 12, the sample 2 was observed by transmission electron microscopy, you can see Α1Ρ0, uniform coating And the thickness is about 10 nm. [0057] The aluminum phosphate-spherical lithium nickel manganese oxide composite material was replaced with the aluminum phosphate-lithium cobaltate composite material of Example 1, and assembled under the same conditions as in Example 1. A lithium ion battery was subjected to a charge and discharge performance test. [0058] Comparative Experiment 3 [0059] A spherical LiN, 5Μηι 5〇4, and an uncoated spherical LiNi.5Μηι were synthesized by the same controlled crystallization method as in Example 3. 5〇4为100133405 Form No. A0101 Page 17 of 41 1002056727-0 201235302 A positive electrode active material was assembled into a lithium ion battery under the same conditions as in Example 3, and subjected to charge and discharge performance tests. [0060] 13 and FIG. 13 are first charge and discharge curves of a constant current charge and discharge at a rate of 0.5 C times 0.5 1.54 for a lithium ion battery assembled using the sample 3 of Example 3 and the uncoated spherical LiNin Jn, respectively. Charge and discharge of 2 lithium ion batteries Station about 4. 7V, employing uncoated spherical

LiNin κΜη, 的鋰離子電池相同。樣品3的鋰離子電池 0.5 1.54 的首次充電比容量達到了 134. 9 mAh/g,放電比容量達 到了 126.2 mAh/g。與未包覆的球形LiNin Jn, /,的 U . 5 1 . 5 4 鋰離子電池對比,發現包覆使得正極活性物質的比容量 有所提高,這係由於包覆的ΑΙΡΟ/層有效地起到阻隔電解 4 液的作用,防止在高壓下電解液發生的分解反應生成的 HF腐蝕正極材料,導致部分容量損失。 [0061] 請參閱14,圖14係分別應用實施例3的樣品3和未包覆的 球形LiNin Jn, 的鋰離子電池,在1C、3C及5C倍率 下恒流充放電的循環性能曲線。從圖1 4可以看出,未包 覆的球形LiNi。5〇4的裡離子電池隨著充放電倍率 的增大,比容量衰減得很快,5C倍率下放電比容量幾乎 為0。樣品3的鋰離子電池首次放電比容量比未包覆的電 池略有下降,然隨著循環次數的增加,比容量不但沒有 下降,反而略有上升,隨著倍率的增加,比容量的衰減 也明顯比採用未包覆的球形LiN、5Mni 5〇4的電池要小 得多。另外,採用樣品3的鋰離子電池在5C倍率下放電時 ,比容量先係下降,後隨著循環次數增加又明顯地提高 ,這係因為AlPC^包覆層在球形LiNin 。(^表面會增 4 0.5 1.5 4 100133405 表單編號Α0101 第18頁/共41頁 1002056727-0 201235302 大材料的電阻,使得開始時,離子的嵌人和脫出變㈣ 難,但隨著循環讀的增加,離子通道建立起來以後, 離子又可以順利地在通道中移動,所以容量也會隨之增 加。 剛請參閱圖15及圖16,圖15為樣品2_4的鐘離子電池在^ 倍率下’電壓範圍為3.5V-4.9V的首次充放電曲線。圖 16為樣品2-4的鋰離子電池在1(:倍率下,電壓範圍為 3.5V-4.9V的循環性能曲線。_15可以看到,樣品㈣ 〇 纽電容量較高。樣品4的電池的比容量下降,說明包覆 α1Ρ〇4的量過高時’過厚的包覆層會造成_子嵌入和脫 出的障礙,導致容量較低。由圖16可以看丨,樣品3的電 池的循環性能最好,經過20次循環後,容量還有113 6 mAh/g。 [_]乡宗上所述’本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ’自不能以此限制本案之申請專利範圍。舉凡習知本案 〇 ㈣之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内β 【圖式簡單說明】 [0064] 圖1為本發明實施例磷酸鋁包覆正極活性物質的結構示意 圖。 [0065] 圖2為本發明實施例磷酸鋁包覆鈷酸鋰的掃摇電鏡照片。 [00661 圖3為本發明實施例磷酸鋁包覆鈷酸鋰的透射電鏡照片。 [0067]圖4為本發明實施例磷酸鋁包覆的鈷酸鋰的猶環性能測試 100133405 表單編號Α0101 第19頁/共41頁 1002056727-0 201235302 曲線。 [0068] 圖5為對比實驗的高倍放大的磷酸鋁包覆鈷酸鋰的掃描電 鏡照片。 [0069] 圖6為對比實驗的低倍放大的磷酸鋁包覆鈷酸鋰的掃插電 鏡照片。 [0070] 圖7為對比實驗的磷酸鋁包覆的正極活性物質的循環性能 測試曲線。 [00Ή]圖8為本發明實施例磷酸鋁包覆的鋰鎳錳氧化物與對比實 驗未包覆的裡鎳猛氧化物的循環性能測試曲線。 [0072] 圖9為本發明實施例通過控制結晶法合成的熱處理前的球 形粉體顆粒的掃描電鏡照片。 [0073] 圖1 0為本發明實施例通過控制結晶法合成的球形鋰錄猛 氧化物的掃描電鏡照片。 [0074] 圖11為本發明實施例磷酸鋁包覆的球形鋰鎳錳氧化物與 對比試驗未包覆的球形鋰鎳錳氧化物的XRD分析譜圖。 [0075] 圖12為本發明實施例磷酸鋁包覆的球形鋰鎳錳氧化物的 透射電鏡照片。 [〇〇76]圖13為本發明實施例磷酸鋁包覆的球形鋰鎳錳氧化物與 對比試驗未包覆的球形鋰鎳錳氧化物的鋰離子電池首次 充放電曲線。 [0077]圖丨4為本發明實施例磷酸鋁包覆的球形鋰鎳錳氧化物與 對比試驗未包覆的球形鋰鎳錳氧化物的鋰離子電池在不 100133405 表單編號A0101 第20頁/共41頁 1002056727-0 201235302 同倍率下的循環性能曲線。 [0078] 圖15為本發明實施例不同包覆量的磷酸鋁包覆的球形鋰 鎳錳氧化物的鋰離子電池首次充放電曲線。 [0079] 圖16為本發明實施例不同包覆量的磷酸鋁包覆的球形鋰 鎳錳氧化物的鋰離子電池的循環性能曲線。 [0080] 圖17為先前技術的磷酸鋁包覆正極活性物質的結構示意 圖。 【主要元件符號說明】 [0081] 正極複合材料顆粒:10 [0082] 正極活性物質顆粒:12 [0083] 磷酸鋁層:14 [0084] 產物:20 [0085] 小顆粒:22 [0086] 大顆粒:24 〇 1002056727-0 100133405 表單編號A0101 第21頁/共41頁LiNin κΜη, the same lithium-ion battery. The lithium-ion battery of sample 3 has a first charge specific capacity of 135. 9 mAh/g and a discharge specific capacity of 126.2 mAh/g. Compared with the uncoated spherical LiNin Jn, /, U. 5 1 . 5 4 lithium ion battery, it was found that the coating increased the specific capacity of the positive electrode active material because the coated ruthenium/layer effectively By blocking the action of the electrolysis liquid 4, the HF generated by the decomposition reaction of the electrolyte under high pressure is prevented from corroding the positive electrode material, resulting in partial capacity loss. Referring to FIG. 14, FIG. 14 is a cycle performance curve of constant current charge and discharge at a 1C, 3C, and 5C magnification for a lithium ion battery of Sample 3 of Example 3 and uncoated spherical LiNin Jn, respectively. As can be seen from Figure 14, the uncoated spherical LiNi. With the increase of charge and discharge rate, the 5 〇 4 ionic battery decays rapidly, and the specific discharge capacity at the 5C rate is almost zero. The first discharge specific capacity of the lithium ion battery of sample 3 is slightly lower than that of the uncoated battery. However, as the number of cycles increases, the specific capacity does not decrease, but slightly increases. As the magnification increases, the specific capacity decreases. It is significantly smaller than the battery using uncoated spherical LiN, 5Mni 5〇4. In addition, when the lithium ion battery using sample 3 was discharged at a rate of 5 C, the specific capacity decreased first, and then increased with the number of cycles, which was because the AlPC^ coating was in the spherical LiNin. (^ Surface will increase by 4 0.5 1.5 4 100133405 Form number Α 0101 Page 18 / Total 41 page 1002056727-0 201235302 The resistance of large materials, so that the beginning of the ion intrusion and the escape (4) is difficult, but with the cycle read Increase, after the ion channel is established, the ions can move smoothly in the channel, so the capacity will also increase. Just refer to Figure 15 and Figure 16, Figure 15 is the sample 2_4 of the clock ion battery at the ^ rate The first charge and discharge curve ranges from 3.5V to 4.9V. Figure 16 shows the cycle performance curve of the lithium ion battery of sample 2-4 at 1 (: magnification, voltage range of 3.5V-4.9V. _15 can be seen, sample (4) The capacity of the neon is higher. The specific capacity of the battery of sample 4 decreases, indicating that when the amount of α1Ρ〇4 is too high, the 'over-thick coating layer will cause obstacles to _ sub-embedding and detachment, resulting in lower capacity. As can be seen from Fig. 16, the battery of sample 3 has the best cycle performance, and after 20 cycles, the capacity is also 113 6 mAh/g. [_] Xiang Zong said that the invention has indeed met the invention patent. Essentials, 提出 file a patent application according to law. However, the above mentioned only The preferred embodiment of the present invention is not intended to limit the scope of the patent application of the present invention. Any equivalent modifications or variations made by those skilled in the art of the present invention in the spirit of the present invention should be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0064] FIG. 1 is a schematic view showing the structure of an active material of a phosphoric acid-coated positive electrode according to an embodiment of the present invention. [0065] FIG. 2 is a scanning electron micrograph of a lithium aluminum phosphate coated lithium cobaltate according to an embodiment of the present invention. [00661] FIG. 3 is a transmission electron micrograph of an aluminum phosphate coated lithium cobaltate according to an embodiment of the present invention. [0067] FIG. 4 is a performance test of a lithium phosphate coated lithium cobaltate according to an embodiment of the present invention 100133405 Form No. Α0101 19 pages/total 41 pages 1002056727-0 201235302 Curves [0068] Figure 5 is a scanning electron micrograph of a high-amplification aluminum phosphate coated lithium cobaltate for a comparative experiment. [0069] Figure 6 is a low-magnification phosphoric acid of a comparative experiment. A scanning electron micrograph of aluminum-coated lithium cobaltate. [0070] Figure 7 is a cycle performance test curve of an aluminum phosphate-coated positive active material of a comparative experiment. [00] Figure 8 is an aluminum phosphate coated embodiment of the present invention. Lithium nickel manganese FIG. 9 is a scanning electron micrograph of spherical powder particles before heat treatment synthesized by controlling the crystallization method according to an embodiment of the present invention. [0073] FIG. 10 is a scanning electron micrograph of a spherical lithium-recorded oxide synthesized by controlling a crystallization method according to an embodiment of the present invention. [0074] FIG. 11 is a view showing an aluminum phosphate-coated spherical lithium nickel manganese oxide according to an embodiment of the present invention. XRD analysis of the coated spherical lithium nickel manganese oxide. 12 is a transmission electron micrograph of a spherical lithium nickel manganese oxide coated with aluminum phosphate according to an embodiment of the present invention. Figure 13 is a graph showing the first charge and discharge curves of a lithium ion battery of an aluminum phosphate-coated spherical lithium nickel manganese oxide and a comparative test uncoated spherical lithium nickel manganese oxide according to an embodiment of the present invention. 4 is a lithium ion battery coated with aluminum phosphate coated spherical lithium nickel manganese oxide and a comparative test uncoated spherical lithium nickel manganese oxide according to an embodiment of the present invention, not 100133405 Form No. A0101 Page 20 / Total 41 pages 1002056727-0 201235302 Cycle performance curves at the same rate. 15 is a first charge and discharge curve of a lithium ion battery of a spherical aluminum lithium manganese oxide coated with different amounts of aluminum phosphate according to an embodiment of the present invention. 16 is a cycle performance curve of a lithium ion battery of a coating amount of aluminum phosphate coated spherical lithium nickel manganese oxide according to an embodiment of the present invention. 17 is a schematic view showing the structure of a prior art aluminum phosphate-coated positive electrode active material. [Main component symbol description] [0081] Positive electrode composite material particle: 10 [0082] Positive electrode active material particle: 12 [0083] Aluminum phosphate layer: 14 [0084] Product: 20 [0085] Small particle: 22 [0086] Large particle :24 〇1002056727-0 100133405 Form No. A0101 Page 21 of 41

Claims (1)

201235302 七、申請專利範圍: 1 . 一種裡鎳锰氧化物複合材料,其包括正極活性物質顆粒, 其改進在於,進一步包括包覆於所述正極活性物質顆粒表 面的磷酸鋁層,所述正極活性物質顆粒的材料係由化學式 Li Ni Μη Μ 表示,其中 0. 1 Sx S 1. 1, 0Sy<1.5,OSa-y<0.5,且0Sb + y<1.5,M及N為驗金 屬元素、鹼土金屬元素、第13族元素 '第14族元素、過 渡族元素及稀土元素中的一種或複數種。 2 .如申請專利範圍第1項所述的鋰鎳錳氧化物複合材料,其 中,所述磷酸鋁層在該鋰鎳錳氧化物複合材料中的質量百 分比為0. 1%至3%。 3 .如申請專利範圍第1項所述的鋰鎳錳氧化物複合材料,其 中,所述璃酸銘層在該裡錄猛氧化物複合材料中的質量百 分比為0. 5 %。 4 .如申請專利範圍第1項所述的鋰鎳錳氧化物複合材料,其 中,所述磷酸鋁層的厚度為5奈米至20奈米。 5 .如申請專利範圍第1項所述的鋰鎳錳氧化物複合材料,其 中,所述磷酸鋁層為原位生成在該正極活性物質顆粒表面 〇 6 .如申請專利範圍第1項所述的鋰鎳錳氧化物複合材料,其 中,所述磷酸鋁層厚度均勻且連續。 7 .如申請專利範圍第1項所述的鋰鎳錳氧化物複合材料,其 中,所述y的範圍為0Sy<0.1。 8 .如申請專利範圍第1項所述的鋰鎳錳氧化物複合材料,其 中,戶斤述Μ選自Cr、Co、V、Ti、Al、Fe、Ga及Mg中的至 100133405 表單編號A0101 第22頁/共41頁 1002056727-0 201235302 少一種。 9.如申請專利範圍第1項所述的㈣猛氧化物複合材料’其 中,所述正極活性物質顆粒的化學式為UNi。'I。 1〇 .如申清專利範圍第1項所述的鐘錄猛氧化物複合材料,其 中,所述正極活性物質顆粒的粒徑為1〇〇奈米至1〇〇微米 11 .如申清專利範圍第10項所述的經錄猛氧化物複合材料其 中,所述正極活性物質顆粒的粒徑為丨微米至2〇微米。 12 種鐘舰氧化物複合材料的製備方法 ,其包括: 提供硝酸鋁溶液; 抑付a禝 〇 13 14 100133405 /’物質顆粒加入所述硝酸銘溶液中,從 而升/成-4合物,在此之中,所述正極活性物質顆粒的材 料係由化學式Li Ni u χ 0·5 +卜aMni.5-y-bMaNb〇4表示,其中-x-l.l > 〇^y<i.5 , 〇^a-y<〇> 5 . j_〇^ 一1· 5 ’ _為驗金屬元素、驗土金屬元素、第13族 凡素、第14族元素、過渡族元素及稀土元素中的—種或複 數種; 將碟酸鹽溶液加人該混合物進行反應,在該正極活性物質 顆粒表面形成磷酸鋁層;以及 熱處理該表面具__層的正極錄物質顆粒。 如申請專鄕圍第12項㈣祕魏氧化物複合材料的製 備方法’其中’在所述將待包覆的正極活性物質顆粒加入 该靖酸銘溶液的步驟中, ^ 進一步控制該正極活性物質的加 入量,使混合物呈泥漿狀。 如申明專如圍第12項所述的鋰騎氧化物複合材料的製 m其巾,_軸溶液包括_及溶解於該溶劑的 表單編號卿 ^ 23 41 1002056727-0 201235302 硝酸鋁,該溶劑為乙醇。 15 .如申請專利範圍第12項所述的鋰鎳錳氧化物複合材料的製 備方法,其中,該磷酸鹽溶液包括水及溶解於水的磷酸銨 鹽,該磷酸銨鹽包括磷酸二氫銨、磷酸氫二銨及磷酸三銨 中的一種或幾種的混合。 16 .如申請專利範圍第12項所述的鋰鎳錳氧化物複合材料的製 備方法,其中,該熱處理溫度為400°C至600°C。 17 .如申請專利範圍第12項所述的鋰鎳錳氧化物複合材料的製 備方法,其中,該硝酸鋁溶液的體積與該正極活性物質顆 粒的體積比為1 :10至1 :40。 18 . —種鋰離子電池,其包括正極,其改進在於,該正極包括 如權利要求1所述的鋰鎳錳氧化物複合材料。 19.如申請專利範圍第18項所述的鋰離子電池,其中,在充電 截止電壓為5V,放電截止電壓為3V的範圍進行恒流充放 電循環50次後具有95%以上的容量保持率。 100133405 表單編號A0101 第24頁/共41頁 1002056727-0201235302 VII. Patent Application Range: 1. A nickel-manganese oxide composite material comprising positive electrode active material particles, the improvement comprising further comprising an aluminum phosphate layer coated on a surface of the positive electrode active material particle, the positive electrode active The material of the material particles is represented by the chemical formula Li Ni Μη ,, wherein 0.1 Sx S 1. 1, 0Sy < 1.5, OSa-y < 0.5, and 0Sb + y < 1.5, M and N are metal elements, alkaline earth metals One or more of the element, the Group 13 element 'Group 14 element, the transition group element, and the rare earth element. 1%至3%。 The lithium nickel manganese oxide composite material in the mass percentage of the lithium nickel manganese oxide composite material is 0.1% to 3%. 5 %。 The mass percentage of the mass of the lanthanum oxide composite material is 0.5%. 4. The lithium nickel manganese oxide composite material according to claim 1, wherein the aluminum phosphate layer has a thickness of from 5 nm to 20 nm. 5. The lithium nickel manganese oxide composite material according to claim 1, wherein the aluminum phosphate layer is formed in situ on the surface of the positive electrode active material particle 〇6 as described in claim 1 A lithium nickel manganese oxide composite material, wherein the aluminum phosphate layer has a uniform thickness and is continuous. 7. The lithium nickel manganese oxide composite material according to claim 1, wherein the range of y is 0 Sy < 0.1. 8. The lithium nickel manganese oxide composite material according to claim 1, wherein the household is selected from the group consisting of Cr, Co, V, Ti, Al, Fe, Ga, and Mg to 100133405. Form No. A0101 Page 22 of 41 Page 1002056727-0 201235302 One less. 9. The (four) sulphur oxide composite material according to claim 1, wherein the positive electrode active material particles have a chemical formula of UNi. 'I. The invention relates to a bell recording oxide composite material according to claim 1, wherein the positive electrode active material particles have a particle diameter of from 1 nanometer to 1 micrometer and 11 micrometers. The recorded smear oxide composite material according to the item 10, wherein the positive electrode active material particles have a particle diameter of from 丨micron to 2 〇micrometer. A method for preparing 12 kinds of bell oxide composite materials, comprising: providing an aluminum nitrate solution; suppressing a禝〇13 14 100133405 /' material particles are added to the nitrate solution, thereby increasing/forming a compound, Herein, the material of the positive electrode active material particles is represented by a chemical formula of Li Ni u χ 0·5 + a amni.5-y-bMaNb 〇 4, wherein -xl.l >〇^y<i.5 , 〇^a-y<〇> 5 . j_〇^ A 1· 5 ' _ is a metal element, a soil metal element, a 13th element, a 14th element, a transition element, and a rare earth element. One or more kinds; a disc salt solution is added to the mixture to carry out a reaction, an aluminum phosphate layer is formed on the surface of the positive electrode active material particles; and the positive electrode recording material particles having the surface layer are heat-treated. For example, in the preparation method of the 12th item (4) Miwei oxide composite material, in which the cathode active material particles to be coated are added to the Jingshen solution, ^ further control the cathode active material The amount added is such that the mixture is in the form of a slurry. For example, the invention relates to the preparation of the lithium-ride oxide composite material according to Item 12, the _axis solution includes _ and the form number dissolved in the solvent ^ 23 41 1002056727-0 201235302 aluminum nitrate, the solvent is Ethanol. The method for producing a lithium nickel manganese oxide composite according to claim 12, wherein the phosphate solution comprises water and an ammonium phosphate salt dissolved in water, the ammonium phosphate salt comprising ammonium dihydrogen phosphate, Mixing one or more of diammonium hydrogen phosphate and triammonium phosphate. The method of producing a lithium nickel manganese oxide composite according to claim 12, wherein the heat treatment temperature is from 400 ° C to 600 ° C. The method for producing a lithium nickel manganese oxide composite according to claim 12, wherein a volume ratio of the volume of the aluminum nitrate solution to the positive electrode active material particles is 1:10 to 1:40. A lithium ion battery comprising a positive electrode, the improvement comprising the lithium nickel manganese oxide composite material according to claim 1. The lithium ion battery according to claim 18, which has a capacity retention ratio of 95% or more after performing a constant current charge and discharge cycle for 50 times in a range of a charge cutoff voltage of 5 V and a discharge cutoff voltage of 3 V. 100133405 Form No. A0101 Page 24 of 41 1002056727-0
TW100133405A 2010-10-15 2011-09-16 Lithium nickel manganese oxide composite material, method for making the same, and lithium battery using the same TWI482740B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010509983 2010-10-15

Publications (2)

Publication Number Publication Date
TW201235302A true TW201235302A (en) 2012-09-01
TWI482740B TWI482740B (en) 2015-05-01

Family

ID=46260862

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100133405A TWI482740B (en) 2010-10-15 2011-09-16 Lithium nickel manganese oxide composite material, method for making the same, and lithium battery using the same

Country Status (3)

Country Link
JP (1) JP5491461B2 (en)
CN (1) CN102969494B (en)
TW (1) TWI482740B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447106B (en) * 2010-10-15 2014-03-26 清华大学 Spinel lithium manganate composite material and preparation method thereof as well as lithium ion battery
US8568620B2 (en) 2010-08-02 2013-10-29 Tsinghua University Electrode composite material, method for making the same, and lithium ion battery using the same
CN105144438B (en) * 2013-05-07 2018-05-15 同和控股(集团)有限公司 Positive electrode active material powder and its manufacture method
CN103384003B (en) * 2013-07-23 2015-04-29 广东精进能源有限公司 Preparation method and application of high-capacity high-temperature-resistant lithium manganate
WO2015070447A1 (en) * 2013-11-18 2015-05-21 中国科学院物理研究所 High-voltage non-aqueous electrolyte solution and high-voltage non-aqueous electrolyte solution secondary battery
CN106663791A (en) * 2014-07-25 2017-05-10 台湾立凯电能科技股份有限公司 Method for preparing lithium nickel manganese oxide positive battery electrode material, and lithium nickel manganese oxide positive battery electrode material
EP3693340B1 (en) * 2017-11-21 2024-09-04 LG Energy Solution, Ltd. Positive electrode active material precursor, preparation method thereof, positive electrode active material prepared using same, positive electrode and secondary battery
KR102313092B1 (en) * 2018-04-04 2021-10-18 주식회사 엘지화학 Method of manufacturing positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary, positive electrode for lithium secondary and lithium secondary comprising the same
CN111180822B (en) * 2020-02-05 2021-06-22 中国科学院化学研究所 Recycling method of nickel-cobalt-manganese waste ternary lithium battery positive electrode material
CN112864372B (en) * 2021-04-12 2022-08-02 中国科学院化学研究所 Lithium ion battery nickel-rich single crystal positive electrode material with double functional interfaces and preparation method thereof
CN117476917B (en) * 2023-12-28 2024-05-10 深圳先进技术研究院 Positive electrode material and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896058B2 (en) * 2001-09-05 2007-03-22 三星エスディアイ株式会社 Battery active material and method for producing the same
CN1328805C (en) * 2004-04-05 2007-07-25 中国科学院物理研究所 Negative electrode active material and use of secondary lithium battery
US20070141470A1 (en) * 2005-12-16 2007-06-21 Kensuke Nakura Lithium ion secondary battery
JP5223166B2 (en) * 2006-02-07 2013-06-26 日産自動車株式会社 Battery active material and secondary battery
JP5228576B2 (en) * 2008-03-31 2013-07-03 株式会社豊田中央研究所 Lithium ion secondary battery and electric vehicle power supply
CN102347473B (en) * 2010-08-02 2014-03-26 清华大学 Anode composite material particle of lithium ion battery and preparation method thereof

Also Published As

Publication number Publication date
JP2012089472A (en) 2012-05-10
CN102969494A (en) 2013-03-13
CN102969494B (en) 2015-07-01
TWI482740B (en) 2015-05-01
JP5491461B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
CN110224129B (en) MOFs derivative coated NCM ternary positive electrode material and preparation method thereof
TW201235302A (en) Lithium nickel manganese oxide composite material, method for making the same, and lithium battery using the same
Zhang et al. Surface-coated LiNi0. 8Co0. 1Mn0. 1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries
Deng et al. Li x Ni 0.25 Mn 0.75 O y (0.5≤ x≤ 2, 2≤ y≤ 2.75) compounds for high-energy lithium-ion batteries
US20200185709A1 (en) Lithium tetraborate glass coating on cathode materials for improving safety and cycling ability
US9306209B2 (en) Method of preparing negative active material containing a carbon-coated silicon core for a rechargeable lithium battery and a rechargeable lithium battery
JP5303081B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery
JP6756279B2 (en) Manufacturing method of positive electrode active material
JP6090085B2 (en) Positive electrode active material, method for producing positive electrode active material, and lithium battery
WO2014104466A1 (en) Anode active material coated with manganese potassium oxide for lithium secondary battery and method for manufacturing same
TW201301639A (en) Cobalt oxide, composite thereof, and method for making the same
Lei et al. Effect of flower-like Ni (OH) 2 precursors on Li+/Ni2+ cation mixing and electrochemical performance of nickel-rich layered cathode
JP7414702B2 (en) Cathode active material for lithium secondary batteries
CN106935808B (en) Positive active material, preparation method thereof, battery slurry, positive electrode and lithium battery
CN110649230B (en) Nanometer rivet core-shell structure anode material and preparation method thereof
Zhao et al. Porous LiNi1/3Co1/3Mn1/3O2 microsheets assembled with single crystal nanoparticles as cathode materials for lithium ion batteries
CN102447105B (en) Lithium nickel oxide composite material and preparation method thereof and lithium ion battery
WO2012087916A1 (en) Method of forming a metal phosphate coated cathode for improved cathode material safety
CN106575760A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
Kim et al. Preparation and cycle performance at high temperature for Li [Ni 0.5 Co 0.2 Mn 0.3] O 2 coated with LiFePO 4
CN114094060B (en) Preparation method of high-voltage positive electrode material with core-shell structure
TWI323522B (en)
JP6059632B2 (en) Lithium air secondary battery
TWI487175B (en) Lithium nickel manganese oxide composite material, method for making the same, and lithium battery using the same
TWI475743B (en) Spinel lithium manganese oxide composite material, method for making the same, and lithium battery using the same