[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201229210A - Method for producing manganese-activated germanate phosphor - Google Patents

Method for producing manganese-activated germanate phosphor Download PDF

Info

Publication number
TW201229210A
TW201229210A TW100135710A TW100135710A TW201229210A TW 201229210 A TW201229210 A TW 201229210A TW 100135710 A TW100135710 A TW 100135710A TW 100135710 A TW100135710 A TW 100135710A TW 201229210 A TW201229210 A TW 201229210A
Authority
TW
Taiwan
Prior art keywords
manganese
activated
compound
phosphor
mixed
Prior art date
Application number
TW100135710A
Other languages
Chinese (zh)
Inventor
Tadayoshi Yanagihara
Original Assignee
Nippon Chemical Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Ind filed Critical Nippon Chemical Ind
Publication of TW201229210A publication Critical patent/TW201229210A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Provided is a method for producing a manganese-activated germanate phosphor that has a high emission intensity and is represented by general formula (1), a(Mg1-xM1x)ObMgF2c{(Ge1-yM2y)O2}:nMn4+ (1) the method for producing a manganese-activated germanate phosphor being characterized in that a mixed slurry is prepared by mixing a dispersant with magnesium fluoride, a magnesium compound other than magnesium fluoride, a germanium compound, a manganese compound, and one or more compounds containing additional elements selected from the above-mentioned M1 elements and M2 elements added as necessary, this starting mixed slurry is wet mixed using a media mill, the resulting uniformly mixed slurry is spray dried to obtain a reaction precursor, and this reaction precursor is fired.

Description

201229210 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種有用地成為紅色螢光體之錳活化鍺 烷酸鹽螢光體的製造方法。 【先前技術】 在近年來,大多知道:藍色二極體係進行實用化而以 該二極體作為發光源之白色發光二極體之研究。發光二極 體係具有所謂輕量且不使用水銀而成為長壽命之優點。 知道例如在藍色發光元件來塗佈Y3Ah〇i2 : Ce之白色 發光二極體。但是,該發光二極體係嚴密地說,並非白色, 成為混合藍綠色之白色。因此,提議:混合Y3Al5〇i2 : Ce 和吸收藍色光而發出紅色螢光之紅色螢光體,調整色調。 關於吸收藍色光而發出紅色蝥光之紅色螢光體之報告係大 多是關於有機系材料,但是,關於無機系材料係變少。 另一方面,作為一般之紅色螢光體係提議氧化物螢光 體、氧硫化物螢光體、硫化物螢光體、氮化物螢光體等之 無機系材料,也提議錳活化鍺烷酸鹽螢光體。 作為錳活化鍺烷酸鹽螢光體之一般之製造方法係知道 藉由以球磨機等, 錳,在1 000〜120 、氧化鍺和碳酸 ’而得到錳活化 4 ’來混合氧化鎂、氟化鎂、 1 2 0 0 C ’燒成得到之混合物, 鍺烷酸鹽螢光體。201229210 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method for producing a manganese-activated yanoate phosphor which is useful as a red phosphor. [Prior Art] In recent years, it has been known that a blue dipole system is put into practical use and a white light-emitting diode using the diode as a light-emitting source is studied. The light-emitting diode system has the advantage of being so lightweight and not using mercury to have a long life. It is known to apply, for example, a blue light-emitting element to a white light-emitting diode of Y3Ah〇i2: Ce. However, the light-emitting diode system is strictly white, and it is a mixed blue-green white. Therefore, it is proposed to mix Y3Al5〇i2 : Ce and a red phosphor that absorbs blue light and emits red fluorescence to adjust the color tone. The report on the red phosphor that emits red light and absorbs blue light is mostly an organic material, but the inorganic material is less. On the other hand, as a general red fluorescent system, an inorganic material such as an oxide phosphor, an oxysulfide phosphor, a sulfide phosphor, or a nitride phosphor is proposed, and a manganese activated decanoate is also proposed. Fluorescent body. As a general manufacturing method of a manganese-activated yanoate phosphor, it is known to mix magnesium oxide and magnesium fluoride by using a ball mill or the like, manganese, manganese activated 4' at 1 000 to 120, yttrium oxide and carbonic acid'. , 1 2 0 0 C 'A mixture obtained by firing, a phthalate phosphor.

進行燒成 此外, 磨機而混合 201229210 之方法。 此外’在下列之專利文獻2,提議:藉由使用氧化鎂, 來作為鎂化合物,呈規則或不規則地搖動加入氧化鎂、氟 化鎂、氧化鎵和錳化合物之容器,或者是以外部攪拌手段, 來攪拌原料,同時,進行燒成,而得到一次粒子變大且不 包含微小粒子之凝集體之錳活化鍺烷酸螢光體之方法。 向來,錳活化鍺烷酸螢光體係藉由在許多之狀態下, 以乾式或濕式,來混合各原料,燒成得到之均勻混合物之 方法,而得到錳活化鍺烷酸螢光體,像這樣得到之螢光體 係在發光強度,有問題發生,量子良品率也變低。 【先前技術文獻】 【專利文獻】 【專利文獻1】日本特開昭58一 1 58387號公報 【專利文獻2】曰本特開平u_ 1 58464號公報 【發明内容】 【發明所欲解決之課題】 因此,本發明係提供一種有利於工業地製造比起習知 之錳活化鍺烷酸鹽螢光體而還更加地提升性能之錳活化鍺 烷酸鹽螢光體的方法。 【用以解決課題之手段】 本發明係提供一種錳活化鍺烷酸鹽螢光體的製造方 法,係藉由下列之通式(1): MMghMlOO.bMgFpcM (GeiyM2y)CM :nMn“⑴ 4 s 201229210 (在化學式中,Ml孫本_ 之群…, 、出之1種或2種以上之元素,M2係表示由si、 Sn、Pb之群组而選屮夕 Q< <4 之1種或2種以上之元素。a係表示 〇<…,b係表示〇.5…4,c係表示〇 8“ , 係表不G. GG1S 〇· 〇5,χ係表示Performing the firing In addition, the mill is mixed with the method of 201229210. Further, in the following Patent Document 2, it is proposed to use a magnesium oxide as a magnesium compound to regularly or irregularly shake a container to which magnesium oxide, magnesium fluoride, gallium oxide and manganese compounds are added, or to externally stir. Means for stirring a raw material and simultaneously calcining to obtain a manganese-activated decanoic acid phosphor in which primary particles become large and aggregates of fine particles are not contained. Conventionally, a manganese-activated decanoic acid fluorescent system is obtained by mixing a raw material in a dry state or a wet state in a plurality of states, and firing a homogeneous mixture to obtain a manganese-activated decanoic acid phosphor. The fluorescent system thus obtained has a problem in light emission intensity, and the quantum yield rate also becomes low. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A No. Hei. No. Hei. No. Hei. Accordingly, the present invention provides a process that facilitates the industrial manufacture of manganese activated phthalate phosphors that provide improved performance over conventional manganese activated phthalate phosphors. [Means for Solving the Problem] The present invention provides a method for producing a manganese-activated strontium silicate phosphor by the following formula (1): MMghMlOO.bMgFpcM (GeiyM2y)CM:nMn"(1) 4 s 201229210 (In the chemical formula, Ml Sunben _ group..., one or two or more elements, and M2 means one selected from the group of si, Sn, and Pb, and one of the following; Or two or more elements: a indicates 〇 <..., b indicates 〇.5...4, c indicates 〇8", and the system does not G. GG1S 〇· 〇5, χ indicates

SyS 0.28。)所类- μ乐表不0 汁表不之錳活化鍺烷酸鹽螢光體的製造方 法’其特徵在於:將含有由氟化鎂、氟化鎮以外之鎮化合 物=化合物、猛化合物以及由於需要而添加之前述Μ元 素M2 7L素來選出之添加元素之含添加元素化合物 之1種或2種以上而混合於分散媒之混合漿體予以調製, ,由介質軋磨機而對於該原料混合t體’進行濕式混合, 仔到之均勻混合漿體,附加至喷射乾燥法而成為反應先驅 體’燒成該反應先驅體。 【發明效果】 如果藉由本發明的話,則可以藉由有利於工業之方法 而得到高發光強度之紅色光之錳活化鍺烷酸鹽螢光體。 【實施方式】 在以下’根據其理想之實施形態而說明本發明。 藉由本製造方法而得到之猛活化錯烧酸鹽螢光體係在 基本上’藉由藍色光而進行激發,發出紅色光。具體地說, 藉由至少270〜550 nm、最好是380〜490 nm之激發光而進 行激發。此外,在580〜750ηιη、最好是600〜700nm之區 域,具有發光帶(也就是具有紅色光譜)。 201229210 藉由本製造方法而得到之錳活化鍺烷酸鹽螢光體係藉 由下列之通式(1)所表示。 a ( Mgi-xMlx) 〇 . bMgFa · c { ( Ge.-vM2y) 〇2 } : nMn4+ ( 1 ) 通式(1 )之化學式中之M1係表示由Zn、Cu、Cd、Ca、SyS 0.28. A method for producing a manganese-activated strontium hydride phosphor that is not a scent of a scent, which is characterized in that it contains a compound derived from magnesium fluoride, a fluorinated town, a compound, a stimulating compound, and It is prepared by mixing one or more kinds of the additive element-containing compound of the additive element, which is added with the above-mentioned lanthanum element M2 7L, in a mixed slurry of the dispersion medium, and mixing the raw material by a media roll mill. The t-body' is subjected to wet mixing, and the slurry is uniformly mixed until it is attached to the spray drying method to become a reaction precursor to "fire" the reaction precursor. [Effect of the Invention] According to the present invention, a red light manganese activated strontium silicate phosphor having high luminescence intensity can be obtained by an industrially advantageous method. [Embodiment] The present invention will be described below based on its preferred embodiments. The vigorously activated maltorite fluorescent system obtained by the present production method is excited by blue light to emit red light. Specifically, the excitation is performed by excitation light of at least 270 to 550 nm, preferably 380 to 490 nm. Further, in the region of 580 to 750 ηιη, preferably 600 to 700 nm, there is a light-emitting band (that is, having a red spectrum). 201229210 The manganese-activated decanoate fluorescent system obtained by the present production method is represented by the following general formula (1). a ( Mgi-xMlx) 〇 . bMgFa · c { ( Ge.-vM2y) 〇 2 } : nMn4+ ( 1 ) The M1 in the chemical formula of the formula (1) represents Zn, Cu, Cd, Ca,

Hg、Sr、Ba之群組而選出之1種或2種以上之元素,M2係 表示由Si、Sn、Pb之群組而選出之!種或2種以上之元素。 前述之Ml元素係由於需要而一部分取代成為鎂原子且包 含在錳活化鍺烷酸鹽螢光體中而更加地提高發光高度之元 素,則述之M2元素係也還由於需要而一部分取代成為鍺原 子且包含在錳活化鍺烷酸鹽螢光體中而更加地提高發光高 度之元素。 通式(1)之化學式中之3係0<a$4、最好是 $ 3. 4 ’ b 係 〇. 5$ 4、$1.2、最好县n $4、最好是 〇.6$bS3,c 係 0.8蕊 cOne or more elements selected from the group of Hg, Sr, and Ba, and M2 means the group selected by Si, Sn, and Pb! Species or more than two elements. The above-mentioned M1 element is partially substituted with a magnesium atom and is contained in a manganese-activated decanoate phosphor to further increase the luminescence height, and the M2 element system is also partially substituted into ruthenium as needed. An atom and an element which is contained in a manganese-activated strontium hydride phosphor to further increase the luminescence height. 3 of the formula (1) is 0 0<a$4, preferably $ 3. 4 ' b 〇. 5$ 4, $1.2, best county n $4, preferably 〇.6$bS3,c Department 0.8 core c

. 系匕3 ,將含有由氟化鎂、氟化鎂以外之鎂化合物、System 3, which will contain magnesium compounds other than magnesium fluoride and magnesium fluoride,

聚體’附加至噴射聋乞 螺之混合漿體予以調製,藉由介質軋磨機 5毁體’進行濕式混合,得到之均勻混合 射乾燥法而成為反應先驅體,燒成該反應The polymer ' is added to the mixed slurry of the spray snail to be prepared, and is wet-mixed by the medium crusher 5, and the mixture is uniformly mixed and sprayed to form a reaction precursor, and the reaction is fired.

6 S 201229210 先,驅體之製程。也就是說 均勻混合漿體調製製程、 燒成製程。 本製造方法係大致包含(甲 乙)噴射乾燥製程以及(丙 在(甲)之均勻混合漿體 以外之鎂化㈣(在以下,僅稱為:化::鎮、氣化鎮 化合物、錳化合物以及由於需要而添力。」。)、鍺 ,,, ’、加之含添加元素化人 物,均勻地混合於分散媒 ° 勾混合漿體。 〖原抖呈均勾地混合之均 由均勻之混合可以變溫交旦 B ^ 易之觀點來看的話’則最好 疋齓化鎂之理想物性係平均 J下仅马1 0以m以下,特別是〇 〜1 A m。 · 乍為鎂化合物係除了氧化鎂以外,在後面敘述之(丙) 燒成製程’還可以轉換成為氧化鎂,並且,使用對於後面 敘述之分散媒呈難溶性或不溶性者。作為此種鎮化合物係 1、吏用例如鎂之氧化物、碳酸鹽、草酸鹽、硫酸鹽、氫 氧化物等。&些化合物係可以使用1種或2種以上。在燒 成後而不殘留不純物之方面以及原料間之反應性變高之方 最好是使用氫氧化鎂。由均勻之混合可以變得容易之 來看的話’則最好是鎂化合物之理想之物性係平均粗 徑為以下,特別是0.2〜 作為錯化合物係使用對於後面敘述之分散媒呈難溶性 或不溶性者。从· & 乍為該鍺化合物係可以使用例如錯之氧化 &辟L酸鹽、硝酸鹽 '氫氧化物、有機酸鹽等。這些化合 物係可以借闲q 1種或2種以上。即使是在這些當中,也由 201229210 於揮發性變低且不容 ^ 解之方面,則最好是使用氧化 鍺。由均勻之混合可 〜 a ^ 支仔谷易之觀點來看的話,則最好 疋鍺化合物之理想之物 a ! 迮係千均粒徑為50//Π1以下,特別 疋丄〜d 0 # m 〇 作為猛化合物係可 ^ ,,、 使用例如錳之氧化物、氫氧化 物、奴酸鹽、硝酸鹽、 il ^鹽、有機酸鹽等。這此化合物 係可以使帛1種或2 _ ° % ,.^ . c 即使是在這些當中,也由於 燒成後而不殘留不純物 士丈 方面以及容易固溶於母體結晶中 之方面,則最好是碳酸 猛化合物係可以是水溶性,也 可以疋水不溶性》在錳化 物為水不〉谷性之狀態下,由可 以谷易均勻混合之觀點央县^ _ 看的話,則其平均粒徑係最好是 ΙΟμιη以下,特別是1〜9//m。 作為含添加元素彳卜人私& & 、口 '丁'使用對於後面敘述之分散媒 呈難溶性或不溶性者。作為人 、 為^3添加元素化合物係列舉例 如包含添加7〇素之氣仆铷 虱軋化物、_化物、碳酸醆、 硝酸鹽、有機酸鹽等。這此 ^ 一化σ物係可以使用1種或2錄 以上。由可以容易均句混合之觀點來看㈣,則含 素:合物之理想物性係最好是平均粒徑為心,以二 別是1〜9 y m。 荷 ,Γ:述之氣化鎮、鎂化合物、錯化合物、猛化合物 以及由於而要而添加之含禾六 70素化合物之製造履歷,但 是’為了製造向純度之猛法外為^ 又炙錳活化鍺烷酸鹽螢光體,因此, 好是儘可能地減少不純物含有量。 在本製造方法,氣化糕避 鼠化鎂、鎂化合物、鍺化合物、錳化 201229210 合物以及由於堂 y 、而要而添加之含添加元素化合物之混合比例 係可以配合則述之要求之錳活化鍺烷酸鹽螢光體之組成而 適度地選擇各原料之練合比例。 具體地說,为X .·* Λ 在不添加含添加元素化合物之狀態下,氟 匕鎂鎂化合物、鍺化合物及錳化合物之混合比例係氟化 鎮之添加里成為氣化鎂之分子數相對於鍺化合物中之鍺原 孝猛化s物中之猛原子之合計原子數之莫爾數比值 (MgF2/ ( Ge+ Μη))之 〇· 5〜4、最好是 0. 6〜3。此外, 鎮化5物之添加量係鎂化合物中之鎂原子數相對於鍺化合 物中之鍺原子和猛化合物中之猛原子之合計原子數之莫爾 數比值(Mg/ ( Ge+ Μη))成為大於〇、小於4,最好是1 3. 4盆化合物之添加量係猛化合物中之猛原子數相對於 鍺化5物中之鍺原子和鐘化合物中之錳原子之合計原子數 之莫爾數比值(Mn/ ( Ge+ Μη))成為0. 001〜0· 〇5,最 好是 0.005 〜〇.〇3。 此外’表好是在添加含有Μ1元素之含Μ1元素化合物 之狀態下’含Ml元素化合物中之Ml原子數相對於鎂化合 物中之鎂原子和含Ml元素化合物中之Ml原子之合計原子 數之莫爾數比值(Ml/Mg+M1)係大於0、小於0.2,最好 疋大於0、小於〇· 15,在添加含有M2元素之含M2元素化 S物之狀態下’含Μ 2元素化合物中之Μ 2原子數相對於錯 化合物中之鍺原子和含M2元素化合物中之M2原子之合計 原子數之莫爾數比值(M2/Ge+ M2)係大於〇、小於〇. 28, 最好是大於〇、小於0. 25。 201229210 氟匕鎮#化合物、錯化合物、猛化合物以及由於需 要而添加之含添加元素化合物係混合於分散媒而成為混合 2作為分散媒係最好是使用水或者是水溶性有機溶媒練 2於水而組成之水溶液。由可以有效率地進行使用介質乾 磨機之混合之觀點來看的 濃度係5〜4〇重量%、最^ 疋混合液之固態成分 更置/最好是10〜30重量% 。 法,m以調製均勾混合聚體之混合方法係在本製造方 m2為可㈣時地進行粉碎和混合之機器之介 質乾磨機之處理。可以茲 各原料呈人^該方法而更加容易地得到 呈均勾地混合之均勻混合漿體。 作為介質軋磨機係可以 料振動哭& 顆粒軋磨機、球磨機、塗 m ° 、·、砂磨機等。特別最好是使用顆位軋邃 機。在其狀態下,運轉條件或者 吏用顆拉軋磨 以配合裝置之尺寸或處、《種類及大小係可 擇。 用之原料種類而適度地選 由更加有效率地進行使用 看的話,則可以在、θ^質軋磨機之處理之觀點來 ⑴』以在混合漿體中, 劑係可以配合分散劑°入分散劑。使用之分散 為水之狀態下,作類而選擇適當者。在分散劑例如 ^彳乍為分散劑係可以俅田々 劑、聚缓酸敍鹽等。由得到充分之八μ各種之界面活性 話,則最好是混合聚體中之分散劑;3政效果之觀點來看的 % 、特別是0.1〜5重量% 。 濃度係0.01〜10重量 由所謂得料_^目°㈣ 銳點來看的話,則悬 于到南發光效率之 ㈣h磨機之混合處理係進6 S 201229210 First, the process of the body. That is to say, the slurry preparation process and the firing process are uniformly mixed. The manufacturing method generally comprises a (A and B) spray drying process and (in the case of a uniform mixed slurry of (A), magnesium (4) (hereinafter, only: chemical: town, gasification town compound, manganese compound and Adding force due to need."), 锗,,, ', plus the addition of elemental characters, evenly mixed with the dispersion medium ° Hook mixed slurry. 〖The original shaking is evenly mixed by the uniform mixture can be In the case of temperature-changing cross-baked B ^ easy view, it is best to use magnesium as the ideal physical property system. The average J is only 10 or less in m, especially 〇~1 A m. · 乍 is a magnesium compound except oxidation. In addition to magnesium, the (C) firing process described later can also be converted into magnesium oxide and used as a poorly soluble or insoluble agent for a dispersion medium to be described later. Oxide, carbonate, oxalate, sulfate, hydroxide, etc. Some of these compounds may be used alone or in combination, and the reactivity between the raw materials and the raw materials may be high after the firing without leaving impurities. The best thing is to make Magnesium hydroxide is used. When it is easy to mix evenly, it is preferable that the desired physical properties of the magnesium compound are below the average diameter, especially 0.2~ as a wrong compound, which is used as a dispersion medium to be described later. It is insoluble or insoluble. From the & 乍, it is possible to use, for example, oxidized & oxidized acid salts, nitrates, hydroxides, organic acid salts, etc. These compounds can be used for free. Species or more than two. Even among these, it is preferable to use yttrium oxide in the aspect of low volatility and inability to be solved by 201229210. From the viewpoint of uniform mixing, it can be ~ a ^ If you look at it, it is best to use the compound of the compound a! The 千 system has a thousand-average particle size of 50//Π1 or less, especially 疋丄~d 0 # m 〇 as a violent compound system, and, for example, manganese Oxide, hydroxide, sulphate, nitrate, il salt, organic acid salt, etc. This compound can make 帛1 or 2 _ °%, .^ . c even in these cases, After firing, there is no residual impurity and In view of the fact that the solid is soluble in the matrix of the mother, it is preferred that the carbonated compound can be water-soluble or water-insoluble. In the state where the manganese is not water, the homogeneous mixture can be mixed. When the central county ^ _ is seen, the average particle size is preferably ΙΟμιη or less, especially 1 to 9//m. As an additive element, it is used for the private &&& The dispersing medium is insoluble or insoluble. For example, a series of compound compounds added as a compound includes, for example, a gas, a cerium, a cerium carbonate, a nitrate, an organic acid salt, or the like. ^ One or two records can be used for the σ system. From the viewpoint that it is easy to mix the sentences uniformly (4), the ideal physical property of the compound: the average particle diameter is the heart, and is usually 1 to 9 y m.荷,Γ: The gasification town, magnesium compound, wrong compound, violent compound, and the manufacturing history of the compound containing hexahydrate, which is added for the purpose, but 'for the purpose of manufacturing the purity of the method The phthalate phosphor, therefore, is intended to reduce the amount of impurities as much as possible. In the present production method, the mixing ratio of the gasification cake to remove the magnesium, the magnesium compound, the bismuth compound, the manganeseated 201229210 compound, and the compound containing the additive element added due to the church y can be combined with the manganese required The composition of the phthalate phosphor is activated to appropriately select the ratio of the raw materials. Specifically, X.·* Λ In the state in which the compound containing an additive element is not added, the mixing ratio of the fluoroantimony magnesium compound, the cerium compound, and the manganese compound is the number of molecules of the magnesium hydride which is added to the fluorinated town. 6〜3。 The 莫 5 孝 孝 孝 孝 孝 孝 孝 孝 孝 孝 孝 孝 孝 孝 孝 孝 孝 孝 。 。 。 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 。 。 Further, the addition amount of the singulated 5 substance is a ratio of the number of magnesium atoms in the magnesium compound to the molar ratio (Mg/(Ge+ Μη)) of the total number of atoms of the ruthenium atom in the ruthenium compound and the violent atom in the stilbene compound. More than 〇, less than 4, preferably 3.4. The amount of the compound added is the molar atomic number in the compound, and the total number of atoms in the bismuth atom and the manganese atom in the bismuth 5 The ratio (Mn/(Ge+ Μη)) becomes 0. 001~0· 〇5, preferably 0.005 〇.〇3. Further, 'the table is good in the state in which the compound containing the Μ1 element is added, and the number of M1 atoms in the compound containing the M1 element is relative to the total number of atoms of the magnesium atom in the magnesium compound and the M1 atom in the compound containing the M1 element. The Mohr number ratio (Ml/Mg+M1) is greater than 0, less than 0.2, preferably 疋 is greater than 0, less than 〇·15, and the Μ2-containing compound is added in the state of adding the M2-containing element S containing the M2 element. The molar ratio (M2/Ge+M2) of the total number of atoms of the atomic number to the atomic number of the M2 atom in the compound containing the M2 element is greater than 〇, less than 〇. 28, preferably More than 〇, less than 0.25. 201229210 Fluoride town # compound, wrong compound, violent compound, and added element compound added as needed, mixed with a dispersing medium to form a mixture 2 as a dispersing medium. It is preferred to use water or a water-soluble organic solvent to practice 2 in water. And the composition of the aqueous solution. From the viewpoint of efficiently performing mixing using a medium dry mill, the concentration is 5 to 4% by weight, and the solid content of the most mixed liquid is more preferably / preferably 10 to 30% by weight. The method in which m is used to prepare a mixed-mixed polymer is a treatment of a medium dry mill of a machine which is pulverized and mixed while the manufacturer m2 is (4). It is possible to more easily obtain a uniformly mixed slurry which is uniformly mixed in the manner of each raw material. As a media mill, it is possible to vibrate crying & pellet mills, ball mills, m °, sand mills, etc. It is especially preferable to use a granule rolling mill. In its state, the operating conditions or the use of a pulverizing mill to match the size or location of the device, "type and size" are optional. If it is used in a more efficient manner, the material can be used in a more efficient manner. (1) 』In the mixed slurry, the agent can be blended with the dispersant. Dispersant. When the dispersion is in the state of water, select the appropriate one for the class. In the dispersing agent, for example, 彳乍 is a dispersing agent, such as 俅田々剂, polyacid sulfate salt, and the like. From the viewpoint of obtaining a sufficient interfacial activity of a total of eight μ, it is preferably a dispersant in a mixed polymer; and from the viewpoint of 3 political effects, particularly, 0.1 to 5 wt%. The concentration is 0.01~10 by weight. From the point of view of the so-called material _^°° (4), if it is sharp point, it will hang in the south luminescence efficiency.

S 201229210 行至固態成分之平均粒徑成為―以下、最好是…以 下特別最好是〇. 1〜〇. 5 " m為止。該平均粒徑係可以藉 由光散亂式粒徑分布測定裝置而進行測定。 9 ^像這樣而得到之均勻混合漿體,附加至(乙)之喷射 W製辁而传_反應先驅體。在混合液之 :嘴:乾燥法以外之方法,但是,在本製造方法,根:: J於、擇喷射乾燥法之意見而採用該乾燥方法。詳細地 龙’在使用喷射乾燥法之時,彳以得到真球或近似於該真 球之形狀之反應先驅體,因A ’可以容易地得到球狀之錳 :化鍺Μ鹽螢光體粒子。此外,在使用喷射乾燥法之時, 月匕夠以固態成分之原料粒子呈緻密地堵塞之狀態,來得 反應先驅體’目此,在(丙)之燒成製程,得到 的組成物。 a …在喷射乾燥法’藉由規定之手段而霧化混合液,藉由 乾燥:此來產生之微細之液滴而得到反應先驅體。在混合 液之霧化,例如有使用旋轉圓盤之方法以及使用壓力喷= 之方法。在本製程,也可以使用任何一種方法。 在噴射乾燥法,由安定地得到充分乾燥之粉體之 的話,則最好是在乾燥混合液時之乾燥溫度 100〜2抓、特別最好是15〇〜25(rc。 4 在噴射乾燥法,霧化之混合液之液滴大小 二態成分之原料粒子大小之關係,對於安定之乾= ,传到之反應先驅體之性狀,造成影響。詳細地說二 態成分之原料粒子大小相對於液滴大小呈過度小之時,固 11 201229210 滴變得不安定,π〜 各易首尾良好地進行乾焊。± 看的話,則最妬b 逆仃钇各。由該觀點來 ⑴被好疋以混合液中之固態 成為前述之範圍1 粒子大小 “、特別是1〇〜 小係5〜15〇 液供應至噴射乾鮮㈣。好是考慮該觀點而決定遇合 貝耵钇岛盗之供應量。 作為目的之链活化鍺 之方面來看的話,則悬杯0 /皿營先體粒子之粒徑控制 則最好疋進行喷射乾燥法 驅體之平均粒徑成A 叩便仔反應先 好是m #好是1〜3〇“、特別最 布列定f置而㈣。該平均粒徑係使用例如光散亂式粒徑分 ♦測疋裝置而進行測定。 像k樣而得到之球狀之反應先驅體,附加至 燒成製程而得龍活化鍺院酸鹽營光體。最好是在本製. 方法’理想是在mot以上,燒成附加至喷 : 得到之反應先驅體。此外,由所謂開始溶解而無法維;: 子形狀之理由’因此’燒成溫度之上限溫度係1 250。。。此 外’在燒成進行於1 050〜12〇〇t之時,可以在仍然維持粒 子形狀之狀態下’得到單一之目的組成物,粒子表面也可 以更加地平滑’進而言之,由所謂得到高發光效率之觀點 來看的話,則變得特別理想。 在本製造方法,燒成時間係並非臨界。—般而古,如 果是燒成3小時以上、特別是5〜36小時的話,則可以得 到應該滿足之錳活化鍺烷酸鹽螢光體。 在本製造方法,燒成之氣氛係也並非臨界,例如可以 是大氣等之氧化性氣體氣氛_以及惰性氣體氣氛中之任何S 201229210 The average particle size of the solid component is hereinafter, preferably... the following is particularly preferably 〇. 1~〇. 5 " m. The average particle diameter can be measured by a light scattering type particle size distribution measuring apparatus. 9 ^ The slurry obtained in this way is uniformly mixed, and is attached to the jet of (B) to pass the _ reaction precursor. In the mixed solution: the mouth: a method other than the drying method, but in the present manufacturing method, the drying method is employed in the following: In detail, when using the spray drying method, the dragon is used to obtain a true ball or a reaction precursor similar to the shape of the true ball. Since A ' can easily obtain spherical manganese: strontium salt phosphor particles . Further, when the blast drying method is used, the composition of the reaction precursor is obtained by the firing of the precursor particles in a state in which the raw material particles of the solid component are densely clogged. a ... In the spray drying method, the mixed liquid is atomized by a predetermined means, and the fine precursor is produced by drying to obtain a reaction precursor. The atomization of the mixed solution is, for example, a method of using a rotating disk and a method of using a pressure spray. In this process, any method can also be used. In the spray drying method, if the powder is sufficiently dried to be stably dried, it is preferably dried at a drying temperature of 100 to 2, particularly preferably 15 to 25 (r. 4 in the spray drying method). The relationship between the droplet size of the atomized mixture and the size of the raw material particles of the dimorphic component is affected by the stability of the stability of the mixture, and the effect of the precursors on the reaction. In detail, the size of the raw material particles of the two-state component is relative to When the droplet size is too small, the solid 11 201229210 drops become unstable, and π~ each is easy to dry and dry. ± If you look at it, then the last b is reversed. From this point of view (1) is good The solid state in the mixed liquid becomes the aforementioned range 1 particle size ", especially 1 〇 ~ small 5~15 〇 liquid is supplied to the spray dry fresh (4). It is good to consider the viewpoint and decide the supply of the 耵钇 耵钇 耵钇 盗 盗As a result of the chain activation of the target, the particle size control of the suspension cups is better. The average particle size of the spray drying method is A. m #好是1~3〇", special best list The average particle diameter is determined by, for example, a light-scattering particle size measuring device. The spherical reaction precursor obtained as a sample is added to the firing process to obtain a dragon activation. The broth acid salt camp body. It is best in the system. The method 'ideal is above mot, the firing is added to the spray: the precursor is obtained. In addition, the so-called dissolution begins and cannot be dimensioned; 'Therefore, the upper limit temperature of the firing temperature is 1 250... In addition, when the firing is performed at 1 050 to 12 〇〇t, a single target composition can be obtained while maintaining the shape of the particles. The surface can be made smoother. In other words, it is particularly desirable from the viewpoint of obtaining high luminous efficiency. In the present manufacturing method, the firing time is not critical. Generally, if it is firing For 3 hours or more, particularly 5 to 36 hours, a manganese-activated strontium silicate phosphor which should be satisfied can be obtained. In the present production method, the atmosphere of the firing is not critical, and for example, it can be an oxidizing property such as the atmosphere. gas _ And in any atmosphere of an inert gas atmosphere

S 12 201229210 一種。 像&樣得到之燒成體係可以配合需要而附加至 之燒成製程。 可以對於在燒成後而得到之錳活化鍺烷酸鹽榮光體, -己口而要來進行解碎處理或粉碎處理,並且,還進行分 &樣’作A單一組成物係得到猛活化錯燒酸鹽螢光 體作為該猛活化錄院酸鹽螢光體之理想物性係藉由光韵 亂式粒徑分布測定裝置而求出之平均粒㈣5〜心 好疋10〜30#ιη〇可1:2益rk τ 杰· 了猎由平均粒徑成為前述之範圍而效 率更加良好地吸收激藤也 x先。平均粒徑係藉由堀場製作所製 造之雷射繞射/散亂式粒度分 一 及刀布測疋裝置(LA— 920 )而進 行測定。BET比表面積係〇】τ 2 / 槓係0.1〜h2/g、最好是〇.2〜〇7m / g。可以藉由BET比表面積成兔‘ 慣成為刚述之範圍而充分地吸收 激發光,並且,也可以阶w、紅兮 了以防止激發光之純,iUt,可以充 分地提高發光強度。 凡 此外’藉由本製造方法 而件到之猛活化鍺烧酸鹽螢朵 體係得到粒子形狀呈球狀 L瓜螢先 . 考此外’所謂粒子形狀呈球狀 係只要是認定為球狀之形爿 《形狀’則不一定需要是真球。 而言,在可以藉由球形声 又 ♦ y 又表不球形之程度之時,錳活化 鍺院酸鹽螢光體係其球开彡许了 、“度可以成為1.0〜L8程度、特別 疋1. 0〜1. 7私度之球形。士 ^ , 為球形之錳活化鍺烷酸鹽螢光 . 子,還更加地使得量子良品率變 尚’發光強度也變高。球开彡 夂 瓦形度係在呈二次元地投影粒子之 13 201229210 時藉由技衫圖形之最大徑來形成之真圓面積/投影圖形 之實面積而進行定義°因此,球形度之值係越接近1而粒 子越接近真球。 此外,藉读 藉由本製造方法而得到之錳活化鍺烷酸鹽螢 體之粒子表面係、最好是平滑。猛活化錯烧酸鹽勞光體之粒 子表面之平滑程度係在例如可以藉由凹凸度而表示之時, 本發明之粒子係可以具有其凹凸度1· G〜1. 8程度、特別是 1. 〇 1.5程度之平滑。凹凸度係在呈二次元地投影粒子之 時,稭著由投影圖形之周圍長度來算出之真圓面積/投影 圖形之實面積而進行定義。因此, 而粒子之表面越加地平滑。 凹凸度之值係越接近i 月_j述之真球度及凹凸度係例如可以使用晝像解析裝置 而進行測定。作為此種裝置之例子係列舉nic〇le公司製之 LUZEX AP等。測定係以任意地抽提之3〇〇個之粒子來作為 對象而進行。粒子之擴大倍率係配合其大小而成為4〇〇〜 300000 倍。 本發明之錳活化鍺烷酸鹽螢光體係可以由於改善耐濕 性之目的,因此,還藉由金屬氧化物而對於其粒子表面, 進行表面處理。 作為前述之金屬氧化物係使用例如由Be、Mg、A丨、s i、S 12 201229210 One. A firing system such as & can be attached to the firing process as needed. It is possible to carry out the pulverization treatment or the pulverization treatment for the manganese-activated decanoate glomerium obtained after the calcination, and also perform the sub- <amp; The acid salt of the dysprosate as the ideal property of the phosphoric acid phosphor is the average particle obtained by the rhythm particle size distribution measuring device (4) 5~心好疋10~30#ιη〇 Can be 1:2 y rk τ Jay · Hunting from the average particle size to the above range and the efficiency is better to absorb the vines also x first. The average particle size was measured by a laser diffraction/scattering particle size division and a knife cloth measuring device (LA-920) manufactured by Horiba. The BET specific surface area system 〇 τ 2 / bar system 0.1~h2/g, preferably 〇.2~〇7m / g. The excitation light can be sufficiently absorbed by the BET specific surface area into a rabbit's range, and the order of w and red 以 can be prevented to prevent the purity of the excitation light, iUt, and the luminescence intensity can be sufficiently increased. In addition, the particle shape is spherical in the form of a globular L-cured fluorescens by the method of the present manufacturing method. In addition, the so-called particle shape is a spherical shape as long as it is a spherical shape. "Shape" does not necessarily need to be a real ball. In the case of the degree of spherical sound, ♦ y and sphericity, the manganese activated strontium silicate fluorescent system has a spherical opening, and the degree can be 1.0 to L8, especially 疋1. 0~1. 7 The spherical shape of private. The ^ is a spherical manganese-activated strontium hydride. It also makes the quantum yield better. The luminous intensity also becomes higher. It is defined by the real area of the true circular area/projection pattern formed by the maximum diameter of the technical pattern of the film 2012 20121010. Therefore, the closer the value of the sphericity is to 1, the closer the particle is. In addition, the surface of the particles of the manganese-activated decanoate fluorite obtained by the present production method is preferably smooth. The smoothness of the surface of the particles of the activated agglomerated mortar is, for example, When the particle size is expressed by the degree of concavity and convexity, the particle system of the present invention may have a degree of concavity and convexity of 1·G to 1.8, particularly 1. 〇1.5 degree of smoothness. When the straw is calculated from the length around the projected figure The true area of the circle/the real area of the projected figure is defined. Therefore, the surface of the particle is more smoothly smoothed. The value of the unevenness is closer to the true sphericity and the degree of unevenness of the image of the month _j, for example, an image analysis device can be used. As an example of such a device, LUZEX AP manufactured by nic〇le Co., Ltd., etc. is used. The measurement is carried out by randomly extracting three particles, and the magnification of the particles is matched with the size. Further, it is 4 to 300,000 times. The manganese-activated yanoate fluorescent system of the present invention can be surface-treated by the metal oxide for the purpose of improving moisture resistance. The metal oxide is used, for example, by Be, Mg, A丨, si,

Dy 、 Ho 、 Er 、 Tm 、 Yb 、 Lu 、 Th 、 PaDy, Ho, Er, Tm, Yb, Lu, Th, Pa

I 〇u 、Ba、La、Hf、 pm 、 Sm 、 Eu 、 Gd 、 Tb 、 Pa、U、Pu而選出之1種 s 14 201229210 或2種以上之金屬氧化物。 作為藉由這些金屬氧化物而對於錳活化鍺烷酸鹽螢光 體粒子之粒子表面來進行被覆處理之方法係可以使用習知 之方法,如果是顯示其一例的話,則列舉:使用包含前述 金屬元素之金屬醇鹽,添加前述之金屬醇鹽至含有該錳活 化鍺烷酸鹽螢光體粒子之漿體或懸濁液,由於需要而在酸 觸媒或ia觸媒之存在下,進行該金屬醇鹽之水解反應,藉 由刚述之金屬氧化物,而對於錳活化鍺烷酸鹽螢光體粒子 之粒子表面,均勻地進行表面處理之方法等。 像這樣得到之錳活化鍺烷酸鹽螢光體係可以適合使用 作為紅色螢光體,該紅色營光體係可以使用在例如電解放 射型顯不器、電漿顯示器、電激發光等之顯示器元件等之 各種:光l #之用途。此外,具有接近於45Gnm前後之激 發光f,因此,可以適用在藍色LED激發用螢光體之用途。 特:疋適合在電激發光之顯示器元件之用it。此外,也可 :藉由併用於藍色激發綠色榮光體之方法、併用藍色LED 兀件和藍色激發綠色螢光體而使用之方法、或者是併用藍 711件和藍色激發黃色發光螢光體而使用之方法 來適用於白色LED。 【實施例】 在X下,藉由實施例而說明本發明。但是,本發明 範圍係並非阳—_、 没句之 、疋於這些實施例。並無特別限制,「% 往 表示「重量%」。 」係 [實施例1 ] 15 201229210 (甲)均勻混合漿體調製製程: 秤置氫氧化鎂(平均粒徑0.57# m)、氟化鎂(平均 粒徑19.〇/"m)、氧化鍺(平均粒徑17.7/ζπΟ和碳酸錳(平 均粒徑5.2#m)而使得Mg: Ge: F: Mn之莫爾數比,成為 4 0·99· 2.0. 〇·〇ι、也就是 Mn/ (Ge+Mn) = 〇.〇1、MgF2 / (Ge+Mn) s^Mg/ (Ge+Mn) = 4.0’ 裝入至球磨 機。在球磨機’加入水和分散劑(花王(股)公司製、泊 (P〇ise) :21〇〇),調製固態成分濃度ι5%之混合液。 分散劑之濃度係2% 。 在球磨機,裝入直徑〇_ 5mm之氧化锆球,進行藉由濕 式法而造成之混合粉碎2小時。在藉由光散亂法而測定在 混合粉碎後之漿體固態成分之平均粒徑之時,成為〇 3以. (乙)喷射乾燥製程(乾燥製程): 接著’在入口之溫度設定於2〇(rc之喷射乾燥器,以 45ml/分鐘之供應速度,來供應混合液,得到反應先驅體。 反應先驅體之平均粒徑係22. 8 // m。反應先驅體之電子顯 微鏡相片(SEM圖像)顯示於圖1 ( &)及圖1 ( b)。 (丙)燒成製程: 該反應先驅體裝入至電爐,在大氣下、丨15〇〇c,以靜 置6小時之狀態,來進行燒成。 像這樣而得到作為目的之成為3Mg〇 · MgF2 · 0. 99Ge〇2 : 0_ OIMn之錳活化鍺烷酸鹽。在就得到之錳活 化鍺烷酸鹽螢光體而進行X射線繞射測定之時,確認該錳 活化鍺院酸鹽螢光體係由MgMGe5〇24和MgO而組成,成為單 201229210 一組成物之錳活化鍺烷酸鹽螢光體。該錳活化鍺烷酸鹽螢 光體之SEM圖像’顯示於圖2 ( a)及圖2 ( b)。 [實施例2 ] 除了在實施例1之(曱)均勻混合漿體調製製程,裝 入莫爾數比為Mn/ ( Ge+ Μη) = 〇· 〇〇5以外,其餘係相同 於貫施例1 而得到成為 3Mg0 · MgF2 · 0. 995Ge〇2 : 〇. 〇〇5Μη4 +之錳活化鍺烷酸鹽螢光體。在就得到之錳活化鍺烷酸鹽螢 光體而進仃X射線繞射測定之時,確認由Mgi4Ge5〇24和Mg〇 而組成’成為單一組成物之錳活化鍺烷酸鹽螢光體。 [實施例3] 除了在實施例1之(甲)均勻混合漿體調製製程,裝 入莫爾數比為Mn/ ( Ge+ Μη) =〇· 03以外,其餘係相同於 貫施例1而得到成為3Mg0· MgF” 〇.97Ge〇2: 〇 〇3心4+之 錳活化鍺烷酸鹽螢光體。在就得到之錳活化鍺烷酸鹽螢光 體而進行X射線繞射測定之時,確認由仏14以5〇24和以〇而 組成,成為單一組成物之錳活化鍺烷酸鹽螢光體。 [實施例4 ] 除了在實施例1之(曱)均勻混合漿體調製製程,裝 入莫爾數比為MgF2/ ( Ge+ Mn) = G. 6以外,其餘係相同 於實施例1而得到成為3. 4MgG · G. 6MgF2 · G. 99Ge〇2 : 〇.〇1Μη4+之錳活化鍺烷酸鹽螢光體。在就得到之錳活化鍺 烧酸鹽螢光體而進行χ射線繞射測定之時,確認由One s 14 201229210 or two or more metal oxides selected from I 〇u , Ba, La, Hf, pm, Sm, Eu, Gd, Tb, Pa, U, and Pu. As a method of coating the surface of the particles of the manganese-activated strontium silicate phosphor particles by these metal oxides, a conventional method can be used, and if an example is shown, the use of the aforementioned metal elements is exemplified. a metal alkoxide, adding the aforementioned metal alkoxide to a slurry or suspension containing the manganese activated strontium silicate phosphor particles, and if necessary, performing the metal in the presence of an acid catalyst or an ia catalyst The hydrolysis reaction of the alkoxide, a method of uniformly surface-treating the surface of the particles of the manganese-activated yanosilicate phosphor particles by the metal oxide just described. The manganese-activated phthalate fluorescent system obtained in this manner can be suitably used as a red phosphor, and the red camping system can be used for, for example, a display device such as an electrolysis display, a plasma display, or an electroluminescence. Various: the use of light l #. Further, since it has the excitation light f close to 45 Gnm, it can be applied to the blue LED excitation phosphor. Special: 疋 It is suitable for the display components of electric excitation light. In addition, it is also possible to use the method of exciting the green glory in blue, and to use the blue LED element and the blue color to excite the green phosphor, or to use the blue 711 piece and the blue color to illuminate the yellow illuminating Light body is used to apply to white LEDs. [Examples] The present invention will be described by way of examples under X. However, the scope of the present invention is not intended to be a simplification of the present invention. There is no special restriction. "% indicates "% by weight". [Example 1] 15 201229210 (A) Uniform mixing slurry preparation process: Scale magnesium hydroxide (average particle size 0.57 # m), magnesium fluoride (average particle size 19. 〇 / " m), oxidation锗 (average particle size of 17.7/ζπΟ and manganese carbonate (average particle size 5.2#m) such that the molar ratio of Mg: Ge: F: Mn becomes 4 0·99· 2.0. 〇·〇ι, ie Mn / (Ge+Mn) = 〇.〇1, MgF2 / (Ge+Mn) s^Mg/ (Ge+Mn) = 4.0' is charged to the ball mill. Add water and dispersant to the ball mill (Kao) Preparation, Poise (P〇ise): 21〇〇), to prepare a mixture of solid concentration ι5%. The concentration of dispersant is 2%. In the ball mill, zirconia balls with a diameter of 〇 _ 5mm are placed and wetted. The mixture is pulverized by the method for 2 hours. When the average particle size of the solid component of the slurry after mixing and pulverization is measured by the light scattering method, it becomes 〇3. (B) Spray drying process (drying process) : Then 'the temperature at the inlet is set at 2 〇 (the jet dryer of rc, the supply liquid is supplied at a supply rate of 45 ml/min to obtain the reaction precursor. The average of the reaction precursors) The diameter system is 22. 8 // m. The electron micrograph of the reaction precursor (SEM image) is shown in Figure 1 ( &) and Figure 1 (b). (C) Firing process: The reaction precursor is loaded into The electric furnace is fired in the state of 丨15〇〇c in the atmosphere for 6 hours. The manganese activated 锗 of 3Mg〇·MgF2 · 0. 99Ge〇2 : 0_ OIMn is obtained for this purpose. An alkanoate. When the X-ray diffraction measurement was performed on the obtained manganese-activated strontium silicate phosphor, it was confirmed that the manganese-activated strontium silicate fluorescent system was composed of MgMGe5〇24 and MgO, and became a single 201229210. A composition of manganese activated strontium hydride phosphor. The SEM image of the manganese activated strontium silicate phosphor is shown in Figure 2 (a) and Figure 2 (b). [Example 2] In the first embodiment, the slurry preparation process was carried out, and the molar ratio was Mn/(Ge+ Μη) = 〇· 〇〇5, and the others were the same as in Example 1 to obtain 3Mg0 · MgF2. 0. 995Ge〇2 : 〇. 〇〇5Μη4 + manganese activated strontium hydride phosphor. X-ray is obtained in the obtained manganese activated strontium hydride phosphor At the time of the measurement, it was confirmed that Mgi4Ge5〇24 and Mg〇 constituted a manganese activated strontium hydride phosphor which became a single composition. [Example 3] In addition to the uniform mixing slurry preparation in Example 1 (a) In the process, the molar ratio is Mn/(Ge+ Μη) = 〇·03, and the others are the same as in Example 1 to obtain 3Mg0·MgF” 〇.97Ge〇2: 〇〇3 core 4+ manganese Activate the phthalate phosphor. When the X-ray diffraction measurement was performed on the obtained manganese-activated strontium hydride phosphor, it was confirmed that Mn-activated yanoate fluorite consisting of ruthenium 14 at 5 〇 24 and 〇 as a single composition. body. [Example 4] The same procedure as in Example 1 was carried out except that the slurry preparation process was uniformly mixed in Example 1 and the molar ratio was MgF2/(Ge+Mn) = G.6. 3. 4MgG · G. 6MgF2 · G. 99Ge〇2 : Mn.〇1Μη4+ manganese activated strontium hydride phosphor. When the manganese-activated strontium sulphate phosphor was obtained for the enthalpy ray diffraction measurement, it was confirmed

Mg"Ge5〇24#n Mg0而組成,成為單一組成物之錳活化鍺烷酸 鹽螢光體。 17 201229210 [實施例5] 除了在實施例1之(甲)均勻混合漿體調製製程,裝 入莫爾數比為MgF2〆(Ge+ Μη) = 3· 0以外,其餘係相同 於實施例 1 而得到成為 MgO · 3MgF2 · 0. 99Ge〇2 : 0. 0lMn4 + 之猛活化錯院酸鹽螢光體。在就得到之猛活化鍺烧酸鹽螢 光體而進行X射線繞射測定之時,確認由MgHGe5〇24和Mg〇 而組成’成為單一組成物之錳活化鍺烷酸鹽螢光體。 [實施例6 ] 除了在實施例1之(曱)均勻混合漿體調製製程,裝 入莫爾數比為Mg/ ( Ge+ Μη) = 3· 0以外,其餘係相同於 實施例1而得到成為2Mg0· MgF2· 0.99Ge〇2 : Ο.ΟΙΜη“之 猛活化鍺燒酸鹽螢光體。在就得到之猛活化鍺烧酸鹽螢光 體而進行X射線繞射測定之時,確認由MgHGes〇24和Mg〇而 組成,成為單一組成物之錳活化鍺烷酸鹽螢光體。 [實施例7 ] 。除了在實施例1之(丙)燒成製程,燒成溫度為1〇75 c以外,其餘係相同於實施例i而得到成為3Mg〇·心^· 〇.99Ge〇2 : 0.01Mn4+之錳活化鍺烷酸鹽螢光體。在就得到 之錳活化鍺烷酸鹽螢光體而進行X射線繞射測定之時,確 認由仏心5〇24和Mg〇而組成,成為單—組成物之錳活化鍺 烧酸鹽螢光體。 [比較例1] 除了在實施例【之(乙)噴射乾燥製程(乾燥製程), 為了取代使用噴射乾燥器而得到球狀粒子, 丁 因此,仍然直 201229210 接地靜置及乾燥濕式粉碎漿體以外,其餘係相 1 而得到成為 3Mg〇 · MgF2 · 0. 99Ge〇2: 0. 01Mn4 +Mg"Ge5〇24#n Mg0 is composed of a manganese-activated strontanoate phosphor which is a single composition. 17 201229210 [Example 5] Except that in the (a) homogeneous mixed slurry preparation process of Example 1, the molar ratio was MgF2〆(Ge+Μη)=3.0, and the rest was the same as in Example 1. A pulverized activated tyrosine phosphor which is MgO · 3MgF2 · 0. 99Ge〇2 : 0. 0lMn4 + is obtained. When the X-ray diffraction measurement was carried out on the obtained activated strontium sulphate phosphor, it was confirmed that the manganese-activated strontium hydride phosphor which was composed of MgHGe 5 〇 24 and Mg ’ became a single composition. [Example 6] The same procedure as in Example 1 was carried out except that the slurry preparation process was uniformly mixed in Example 1 and the molar ratio was Mg/(Ge + Μη) = 3.0. 2Mg0·MgF2· 0.99Ge〇2 : Ο.ΟΙΜη" The activated strontium sulphate phosphor. When X-ray diffraction was measured on the activated strontium sulphate phosphor, it was confirmed by MgHGes 〇24 and Mg〇 constitute a manganese-activated yanoate phosphor of a single composition. [Example 7] Except for the (C) firing process of Example 1, the firing temperature was 1〇75 c The same is the same as in Example i to obtain a manganese-activated yanoate phosphor which is 3Mg〇·heart^·〇.99Ge〇2: 0.01Mn4+. The manganese-activated decanoate phosphor obtained in the same manner. On the other hand, in the X-ray diffraction measurement, a manganese-activated strontium sulphate phosphor composed of a ruthenium 5 〇 24 and Mg 确认 was confirmed to be a mono-composition. [Comparative Example 1] Except in the example [ B) Spray drying process (drying process), in order to replace the use of jet dryer to obtain spherical particles, so, still straight 2 01229210 Other than the ground static and dry wet pulverized slurry, the other phase 1 is obtained as 3Mg〇 · MgF2 · 0. 99Ge〇2: 0. 01Mn4 +

貌k鹽營光體。在就得到之錳活化鍺烷酸鹽螢 X射線繞射測定之時,確認由MguGe5〇24和MgO 為單一組成物之錳活化鍺烷酸鹽螢光體。在圖3 3 ( b ) ’顯示該錳活化鍺烷酸鹽螢光體之SEM 於實施例 猛活化鍺 體而進行 組成,成 (a)及圖 像。 19 201229210 Π<】 燒成製程 燒成溫度 CC ) 1150 1150 1150 1150 1150 1150 1075 1150 乾燥製程 1 離,糾 躁; CO (# m) 〇〇 CO CS3 C3 LO 〇〇 〇〇 CN1 CO 々· 03 οα CC CN1 CO CN3 (ΝΪ T—< co 03 CO <〇 乾燥方法 噴射乾燥法 噴射乾燥法 喷射乾燥法 喷射乾燥法 噴射乾燥法 喷射乾燥法 喷射乾燥法 靜置乾燥法 混合液調製製程 u固態成分 之丰均粒子 i B Ο CO ο CNI CO 〇 CD CO CD CNI CO Ο) CO CO 〇 卜 CO 〇) LO CO 〇 CNJ CO 〇 混合方法 濕式顆粒軋磨機 濕式顆粒軋磨機 濕式顆粒軋磨機 濕式顆粒軋磨機 濕式顆粒軋磨機 濕式顆粒軋磨機 濕式顆粒軋磨機 濕式顆粒軋磨機 i 原料裝入量(莫爾數比) Mg/(Ge+Mn) 寸 CO MgF2/(Ge+Mn) 〇 〇 Τ—Η CD CO 〇 〇 CO 〇 〇 1—Η ◦ Η Mn/(Ge+Mn) 1 1 〇 〇 0. 005 CO ο <=> 〇 <=) Τ—< 〇 〇 1—< 〇 c=> 1—^ 〇 CD CD Ο 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 比較例1 。令噠f®w-&-ll鲧》趣贫条左^馁顰趔资^嗖3食<««)矽茛€(026丨3)鲥铋奴 。迴wwwvg( 026丨π )鲥鉍鉍茛怜Φ衂磁<ΊΙ粲\某絮某s W友尝¾甥-fflfr#趔磁5Γ牛W觀鞞來鹚^( 3Look at the salt camp. At the time of the obtained manganese-activated decanoate X-ray diffraction measurement, a manganese-activated yanoate phosphor having a single composition of MguGe5〇24 and MgO was confirmed. The SEM of the manganese-activated decanoate phosphor is shown in Fig. 3 3 (b)' to form a composition (a) and an image by vigorously activating the steroid in the examples. 19 201229210 Π<] firing process firing temperature CC) 1150 1150 1150 1150 1150 1150 1075 1150 Drying process 1 away, entanglement; CO (# m) 〇〇CO CS3 C3 LO 〇〇〇〇CN1 CO 々· 03 οα CC CN1 CO CN3 (ΝΪ T—< co 03 CO <〇 drying method spray drying method spray drying method spray drying method spray drying method spray drying method spray drying method spray drying method static drying method mixture preparation process u solid component The average particle i B Ο CO ο CNI CO 〇CD CO CD CNI CO Ο) CO CO 〇 CO CO 〇) LO CO 〇CNJ CO 〇 mixing method wet granule rolling mill wet granule mill wet granule rolling Mill Wet Particle Rolling Mill Wet Particle Rolling Mill Wet Particle Rolling Mill Wet Particle Rolling Mill Wet Particle Rolling Mill i Raw Material Loading (Mohr Number Ratio) Mg/(Ge+Mn) Inch CO MgF2/(Ge+Mn) 〇〇Τ-Η CD CO 〇〇CO 〇〇1—Η ◦ Mn Mn/(Ge+Mn) 1 1 〇〇0. 005 CO ο <=>〇< =) Τ - < 〇〇 1 - < 〇 c = > 1 - ^ 〇 CD CD 实施 Example 1 Example 2 Example 3 Implementation Example 54 Example 6 Example 7 Comparative Example 1.哒f®w-&-ll鲧》趣穷条 Left ^馁颦趔资^嗖3食<««)矽茛€(026丨3)鲥铋奴. Back to wwwvg( 026丨π ) 鲥铋铋茛 Φ 衂 & ΊΙ粲 ΊΙ粲 某 某 某 某 某 某 友 友 友 友 友 友 友 友 友 友 友 友 友 友 友 友 ff ff ff ff ff ff ff ff ( ( ( ( ( ( (

S 201229210 [物性評價] 藉由先前敘述之方法而測定在實施例及比較例來得到 之猛活化錯院酸鹽螢光體之平均粒徑、真球度、凹凸度及 BET比表面積。此外,在3000倍之SEM觀察,觀察猛活化 錯烧酸鹽螢光體粒子之粒子表面。這些結果,顯示於表2。 【表2】 平均粒徑 (// m) 球形度 凹凸度 BET比表面積 (mVg) —次粒子之狀態 實施例1 20. 5 1. 04 1. 32 0. 24 藉由一次粒子之凝 集而形成球體。 實施例2 21.2 1. 03 1.31 0. 23 // 實施例3 21. 0 1. 01 1. 32 0. 24 // 實施例4 20. 8 1. 02 1. 33 0.24 〃 實施例5 22. 5 1. 04 1. 32 0. 26 // 實施例6 20. 2 1. 05 1. 32 0. 23 〃 實施例7 21. 6 1. 04 1. 31 0. 58 〃 比較例1 9. 27 1. 75 1. 90 16.22 不定形 [評價] 就在實施例及比較例來得到之錳活化鍺烷酸鹽螢光體 而言,藉由以下之方法而測定在激發波長45〇nm之内部量 子效率及相對發光強度。這些結果,顯示於以下之表3。 [内部量子效率] 使用日立尚科技公司製之螢光分光光度計(F — 7〇〇〇 ) 和附屬之積分球,成為激發光45〇nm,掃描由42〇開始至 70〇nm之範圍,求出轉換效率。此外,在用以測定全散亂 光之5式料,使用氧化鋁粉末。以藉由氧化鋁而得到之 21 201229210 開始至475nm之光譜強度積分值’作為激發光量,以藉由 螢光體試料而得到之435開始至475nm之光譜強度積分 值’作為吸收後激發光量,以藉由螢光體試料而得到之6 〇 〇 開始至70〇nm之光譜強度積分值’作為螢光量而求出。接 者,由以下之公式而求出内部量子效率。 内部量子效率(% ) = 1 〇〇X螢光量+ (激發光量—吸收 後激發光量)。 [相對發光強度] 使用日立高科技公司製之螢光分光光度計(F — ?〇〇〇),成為激發光450nm,掃描由47〇開始至8〇〇nm之 範圍得到螢光光譜。由得到之強度值,以最大發光強度 作為1 0 0而求出相對發光強度。 【表3】 内部量子效率 (% ) 相對發光強度 實施例1 100 實施例2 ^_iL2 94. 6 實施例3 55. 2 70. 〇 實施例4 73. 6 實施例5 68. 6 實施例6 70.2 實施例7 105.3 79. 3 比較例1 48. 1 及圖3之對比而明確地判斷:實施例1之錳活 化鍺烷酸鹽鸯光體 鍺烷酸鹽螢光體, (本發明品)係比起比較例1之錳活化 還更加地藉由一次粒子之凝集而形成球S 201229210 [Physical property evaluation] The average particle diameter, true sphericity, unevenness, and BET specific surface area of the stimuli-activated tyrosine phosphor obtained in the examples and the comparative examples were measured by the methods described above. Further, the surface of the particles of the activated agglomerate phosphor particles was observed at 3,000 times SEM observation. These results are shown in Table 2. [Table 2] Average particle diameter (//m) Sphericality and convexity BET specific surface area (mVg) - State of secondary particles Example 1 20. 5 1. 04 1. 32 0. 24 Formation by agglomeration of primary particles Sphere. Example 2 21.2 1. 03 1.31 0. 23 // Example 3 21. 0 1. 01 1. 32 0. 24 // Example 4 20. 8 1. 02 1. 33 0.24 实施 Example 5 22. 5 1. 04 1. 32 0. 26 // Example 6 20. 2 1. 05 1. 32 0. 23 实施 Example 7 21. 6 1. 04 1. 31 0. 58 〃 Comparative Example 1 9. 27 1 75 1.90 16.22 Amorphous [Evaluation] For the manganese-activated yanoate phosphors obtained in the examples and comparative examples, the internal quantum efficiency at an excitation wavelength of 45 〇 nm was measured by the following method. And relative luminous intensity. These results are shown in Table 3 below. [Internal quantum efficiency] Using a fluorescent spectrophotometer (F-7 〇〇〇) manufactured by HitachiShang Technology Co., Ltd. and an attached integrating sphere, the excitation light is 45 〇 nm, and the scanning starts from 42 至 to 70 〇 nm. Find the conversion efficiency. Further, alumina powder was used in the type 5 material for measuring the total scattered light. The spectral intensity integral value 'from the beginning of 2012 201210 to 475 nm obtained by alumina is used as the amount of excitation light, and the integral value of the spectral intensity from 435 to 475 nm obtained by the phosphor sample is taken as the amount of excitation light after absorption. The spectral intensity integral value 'from 6 〇〇 to 70 〇 nm obtained by the phosphor sample was obtained as the amount of fluorescence. The internal quantum efficiency is obtained by the following formula. Internal quantum efficiency (%) = 1 〇〇 X amount of fluorescence + (excitation amount - amount of excitation light after absorption). [Relative luminous intensity] A fluorescent spectrophotometer (F-??) manufactured by Hitachi High-Technologies Co., Ltd. was used to obtain excitation light of 450 nm, and scanning was performed from 47 Å to 8 〇〇 nm to obtain a fluorescence spectrum. From the obtained intensity values, the relative luminous intensity was obtained by taking the maximum luminous intensity as 100. [Table 3] Internal quantum efficiency (%) Relative luminous intensity Example 1 100 Example 2 ^_iL2 94. 6 Example 3 55. 2 70. 〇 Example 4 73. 6 Example 5 68. 6 Example 6 70.2 Example 7 105.3 79. 3 Comparative Example 1 48. 1 and FIG. 3 are clearly and clearly judged: the manganese-activated strontanoate strontium phthalate phosphor of Example 1 (the present invention) The ball is formed by agglomeration of primary particles more than the manganese activation of Comparative Example 1.

S 22 201229210 狀。比較例1之鍺烷酸鹽螢光體係成為不定形之形狀。 此外,由表3所示之結果而明確地判斷:實施例1之 猛活化鍺烧酸鹽螢光體(本發明品)係比起比較例1之錳 活化鍺烷酸鹽螢光體,還更加地使得在紅色區域之發光強 度變高。 【圖式簡單說明】 圖1 ( a )及圖i ( b)係在實施例J來得到之反應先驅 體之SEM圖像,圖!( a)係倍率1〇〇〇倍,圖i ( 係倍 率3000倍。 例1來得到之錳活化鍺 2 ( a)係倍率1〇〇〇倍, 圖2 ( a)及圖2 ( b)係在實施例 院k鹽螢光體粒子之sem圖像,圖2< 圖2 ( b)係倍率3000倍。 例1來得到之錳活化鍺 3 ( a)係倍率1〇〇〇倍, 圖3 ( a)及圖3 ( b)係在比較例 烷酸鹽螢光體粒子之SEM圖像,圖3 < 圖3 ( b )係倍率3 〇 〇 〇倍。 【主要元件符號說明】 無 23S 22 201229210 shape. The decanoate fluorescent system of Comparative Example 1 became an amorphous shape. Further, it was confirmed from the results shown in Table 3 that the vigorously activated strontium sulphate phosphor of the first embodiment (the present invention) was compared with the manganese activated strontium silicate phosphor of Comparative Example 1, The luminous intensity in the red region is made higher. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 (a) and Fig. i (b) are SEM images of the reaction precursor obtained in Example J, Fig. (a) The magnification is 1〇〇〇, Figure i (the magnification is 3000 times. The manganese activation 锗2 (a) obtained in Example 1 is 1〇〇〇 times, Figure 2 (a) and Figure 2 (b) The sem image of the k-salt phosphor particles in the example, Figure 2 < Figure 2 (b) is 3000 times the magnification. The manganese activated 锗3 (a) obtained in Example 1 is 1 〇〇〇 times, 3 (a) and Fig. 3 (b) are SEM images of the alkanoate phosphor particles of the comparative example, Fig. 3 < Fig. 3 (b) is a magnification of 3 。. [Main component symbol description] twenty three

Claims (1)

201229210 七、申請專利範圍: 1 · 一種錳活化鍺烷酸鹽螢光體的製造方法,係藉由下 列之通式(1): a ( Mgi-xMlx) 0 · bMgFi · c ------- Vi; (在化學式中’MH系表示由Zn、CU、Cd、Ca、Hg、SrBa 之群組而選出之i種或2種以上之元素,M2係表示由^、 Sn、pb之群組而選出之丄種或2種以上之元素,a係表示 〇&lt;a$4’b 係表示 〇.5$b$4’c 係表示 〇 8&lt; 0 = c ^ 1. 2 5 η 表〈不。.〇〇1…。·〇5’χ係表示。化。2,y係表示。 SyS 0.28)所表示之猛活化錯院酸鹽螢光體的製造方法, 其特徵在於: 猛化::有由氟化鎮、氟化鎂以外之鎮化合物、錯化合物、 ==由於需要而添加之㈣元素和_元 元素之含添加元素化合物之1種或2種以 上而扣5於分散媒之 而對於該原料混&quot;體,由介f軋磨機 聚體,附加至噴較“ .、·、式’…得到之均句混合 先驅體。 、 而成為反應先驅體,燒成該反應 的 平 製造方法,其^利乾圍第1項之錳活化鍺烷酸鹽螢光 均粒徑,成i ,進行嘴射乾燥法而使得反應先驅體 馬1〜5〇 &quot; m。 °月專利範圍第3 〇 體的製造方法 乐1或2項之猛活化錯烧酸鹽螢光 徑係以下。’、中,岣勻混合漿體之固態成分之平均粒 S 24 201229210 4.如申請專利範圍第1至3項中任一項之錳活化鍺烷 酸鹽螢光體的製造方法,其中,燒成溫度係1 000°C以上。 25201229210 VII. Patent application scope: 1 · A method for producing manganese activated strontium silicate phosphors by the following general formula (1): a ( Mgi-xMlx) 0 · bMgFi · c ----- -- Vi; (In the chemical formula, 'MH system means i or two or more elements selected from the group consisting of Zn, CU, Cd, Ca, Hg, and SrBa, and M2 means a group consisting of ^, Sn, and pb. The group selected or the two or more elements, a indicates 〇&lt;a$4'b indicates 〇.5$b$4'c indicates 〇8&lt; 0 = c ^ 1. 2 5 η Table <No 〇〇 ... ... χ χ χ χ χ χ χ χ χ χ 2 2 2 2 2 2 2 S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S One or two or more kinds of the compound containing an element of a fluorinated town, a compound other than magnesium fluoride, a wrong compound, == (a) element added as needed, and a _ element element, and are deducted from the dispersion medium. For the raw material mixture, the body is mixed with the powder, and the precursor is mixed with the "., ·, formula", and becomes the reaction precursor, and the reaction is fired. In the flat manufacturing method, the manganese-activated strontium sulphate fluorescence average particle size of the first item is determined to be i, and the reaction precursor is used to make the reaction precursor horse 1 to 5 〇 &quot; m. ° The manufacturing method of the 3rd carcass of the patent range of the month is the following. The 1 or 2 item of the activated agglomerate phosphoric acid diameter is below. ', the average particle of the solid component of the mixed slurry of the homogenate S 24 201229210 4. If applying The method for producing a manganese-activated yanoate phosphor according to any one of the items 1 to 3, wherein the firing temperature is 1 000 ° C or higher.
TW100135710A 2010-10-13 2011-10-03 Method for producing manganese-activated germanate phosphor TW201229210A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230990 2010-10-13

Publications (1)

Publication Number Publication Date
TW201229210A true TW201229210A (en) 2012-07-16

Family

ID=45938280

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100135710A TW201229210A (en) 2010-10-13 2011-10-03 Method for producing manganese-activated germanate phosphor

Country Status (2)

Country Link
TW (1) TW201229210A (en)
WO (1) WO2012050051A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345451B2 (en) * 2009-06-23 2013-11-20 株式会社東京化学研究所 Deep red phosphor
US20170121600A1 (en) * 2014-06-17 2017-05-04 Zhongshi Liu Phosphor, Light-Emitting Device Containing a Phosphor and Method for Producing a Phosphor
CN104326465B (en) * 2014-09-22 2017-01-18 安徽科技学院 Preparation method of phosphate functional material with vice celsian structure crystal structure
JP6094641B2 (en) * 2015-01-28 2017-03-15 日亜化学工業株式会社 Red phosphor
JP6477556B2 (en) * 2016-03-14 2019-03-06 住友大阪セメント株式会社 Composite powder, surface treatment composite powder, resin composition, cured body, optical semiconductor light emitting device
JP6477557B2 (en) * 2016-03-14 2019-03-06 住友大阪セメント株式会社 Composite powder, surface treatment composite powder, resin composition, cured body, optical semiconductor light emitting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158387A (en) * 1978-06-05 1979-12-14 Toshiba Corp Production of magnesium fluorogermanate phosphor
JPH04372689A (en) * 1991-06-20 1992-12-25 Mitsubishi Electric Corp Manufacture of phosphor powder
DE69834559T3 (en) * 1997-02-24 2011-05-05 Cabot Corp., Boston Oxygenated phosphorus powder, process for the preparation of phosphorus powder and device hereby
JPH11158464A (en) * 1997-11-26 1999-06-15 Matsushita Electric Ind Co Ltd Manganese-activated germanate phosphor and its production
JP4131155B2 (en) * 2002-09-25 2008-08-13 日亜化学工業株式会社 Manganese-activated magnesium fluorogermanate phosphor
JP2006348139A (en) * 2005-06-15 2006-12-28 Fujikura Ltd Method for producing alpha-sialon phosphor powder
JP4860354B2 (en) * 2006-05-29 2012-01-25 シャープ株式会社 Method for manufacturing phosphor, phosphor and light emitting device

Also Published As

Publication number Publication date
WO2012050051A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
TW201229210A (en) Method for producing manganese-activated germanate phosphor
JP2011246662A (en) Aluminate phosphor, method for producing the same, and light-emitting element
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
TWI471408B (en) Aluminum oxide phosphor and producing method thereof
CN102627971B (en) Phosphor particle, preparation method and photodiode
JP2009540069A (en) Method for producing luminescent material for flare in pulsation reactor
JP5578739B2 (en) Alkaline earth metal silicate phosphor and method for producing the same
Fu et al. Influence of doping concentration on valence states of europium in SrAl2O4: Eu phosphors
JP6555111B2 (en) Method for producing hybrid phosphor and hybrid phosphor
CN1238744A (en) Compound with base of alkaline-earth, sulphur and luminium, gallium or indium, method of preparing same and use as luminophore
JP2007513038A (en) Alkaline earth or rare earth metal aluminate precursor compounds, processes for their preparation and their use as emitter precursors in particular
WO2010119799A1 (en) Red phosphor, method for producing same, and light-emitting element
JP2010265448A (en) Red phosphor and method for producing the same
JP2014506266A (en) Composition comprising core-shell aluminate, phosphor obtained from this composition, and method of production
JP4538739B2 (en) α-type sialon phosphor and lighting equipment using the same
JP6239456B2 (en) Phosphor and method for producing the same
EP3168279A1 (en) Phosphor and method for manufacturing the same
Liang et al. Calcining temperatures of Sr1-3xEuxDy2xAl2O4 (x= 0− 0.12) phosphors prepared using the potassium carbonate coprecipitation method
JP2013159718A (en) Manganese-activated germanate phosphor, method for preparing the same, and light-emitting element
JP6741614B2 (en) Rare earth activated alkaline earth silicate compound Afterglow phosphor
JP2003292949A (en) High-luminance luminescent material and method of producing the same
Wu et al. Crystallization and activator reduction simultaneously for calcium sulfide nanophosphors and evaluation of red-light compensation-Environmental reliability
JP2019173035A (en) Manufacturing method of hybrid phosphor, and the hybrid phosphor
WO2012066993A1 (en) Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element
JP5030077B2 (en) Precursor for synthesizing composite nitride or composite oxynitride ceramics and method for producing composite nitride or composite oxynitride ceramics using the same