TW201228994A - Thermal insulation material and method for making the same - Google Patents
Thermal insulation material and method for making the same Download PDFInfo
- Publication number
- TW201228994A TW201228994A TW100101540A TW100101540A TW201228994A TW 201228994 A TW201228994 A TW 201228994A TW 100101540 A TW100101540 A TW 100101540A TW 100101540 A TW100101540 A TW 100101540A TW 201228994 A TW201228994 A TW 201228994A
- Authority
- TW
- Taiwan
- Prior art keywords
- weight
- foam
- mineral foam
- filler
- hydraulic
- Prior art date
Links
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
201228994 六、發明說明: 【發明所屬之技術領域】 本發明係關料窩㈣構絕熱㈣,詩獲得該絕熱材 料之礦物發泡體,以及製造該等材料之方法。 【先前技術】 現今對絕熱材料之需要實質上增加。甚至,吾人咸信在 法國,建築工業佔約46%之總能量消耗及25%之二氧化碳 總排放。冑築能量效能調節可使得國内能量消耗顯著降 低。 為旎夠實現該等目標,不僅消費者必須深入改變其生活 習性,且亦必須實現建築絕熱技術領域之基本創新。 此外,為有效執行現有分享停車位(h〇me park)之翻新, 重要的是該等新穎技術可由使用者容易地實施,同時經濟 上符合家庭所有者預算。 絕熱技術中’致力於内絕熱及外絕熱之技術之間應存在 區別,尤其在翻新市場方面。 亦出現創新建築技術’諸如單壁(M〇n〇wall)磚及使用包 含填充有絕熱材料之構架之夹層型軸承面板。 上述絕熱技術中現今傳統上使用之絕熱材料本質上確實 存在變化: -礦物:玻璃絨、石棉、蛭石, _聚合物:膨脹型聚笨乙烯發泡體(EPS)及擠壓型聚苯 乙烤發泡體(XPS)、聚胺基甲酸酯發泡體(PU)、聚異三聚 氰酸ga發泡體(聚異三聚氰酸醋), 153561.doc 201228994 -天然來源純物或動物之材料:主體纖維素或注射型 纖維素、大麻、亞麻、木材(纖維、薄片、板)、稻草、軟 木、棉花、椰油(coco)、羊毛、鴨羽毛。 其在絕熱方面之固有效能由導熱係數λ表徵。此係數靖 應於當兩側之間的溫差等於1度時,跨越lm214的壁之 熱流通w/m.以攝氏度或絕對溫度)表示)。該係數愈 低’材料之絕熱效能愈佳。 所有先前提及之材料均具有缺陷及使用限制。石棉、玻 璃絨及經石傾向於隨時間而H從而引起功效損 失。此外,為滿足控管能量效能之新穎調節之要求(屬201228994 VI. Description of the Invention: [Technical Field to Be Invented by the Invention] The present invention relates to a material nest (four) structural heat insulation (4), a mineral foam obtained by the poem obtaining the heat insulating material, and a method of manufacturing the same. [Prior Art] The demand for heat insulating materials is now substantially increased. Even, I believe that in France, the construction industry accounts for about 46% of total energy consumption and 25% of total carbon dioxide emissions. Energy efficiency adjustments can significantly reduce domestic energy consumption. In order to achieve these goals, not only must consumers change their living habits in depth, but they must also achieve basic innovations in the field of building insulation technology. Furthermore, in order to effectively implement the refurbishment of existing shared parking spaces, it is important that such novel technologies are easily implemented by the user while being economically in line with the family owner's budget. There should be a distinction between technologies dedicated to internal insulation and external insulation in adiabatic technology, especially in the context of refurbishment. Innovative construction techniques such as single-wall bricks and sandwich-type bearing panels containing a structure filled with a heat insulating material have also emerged. The insulation materials conventionally used in the above-mentioned thermal insulation technology are inherently subject to change: - minerals: glass wool, asbestos, vermiculite, _polymer: expanded polystyrene foam (EPS) and extruded polystyrene Baked foam (XPS), polyurethane foam (PU), polyisocyanuric acid ga foam (polyisocyanuric acid vinegar), 153561.doc 201228994 - pure natural source Or animal material: bulk cellulose or injectable cellulose, hemp, flax, wood (fiber, flake, board), straw, cork, cotton, coco, wool, duck feathers. Its inherent performance in terms of thermal insulation is characterized by the thermal conductivity λ. This coefficient is intended to be expressed in degrees Celsius or absolute temperature when the temperature difference between the two sides is equal to 1 degree, across the wall of the lm214. The lower the coefficient, the better the thermal insulation performance of the material. All previously mentioned materials have defects and usage restrictions. Asbestos, glass wool and warp stones tend to cause H loss over time. In addition, in order to meet the requirements of novel regulation of control energy efficiency (genus
Thermal Regulation),有必要增加材料厚度來實現該等效 能’從而引起有效空間損失之問題(例如:對於玻璃織 等,400 mm厚度)。藉由增加此類型材料之密度而實現其 固有效率之改良仍然受限。 八 具有較低範圍内之熱導率值的聚合物(聚異三聚氰酸⑰ 之熱導率值為0.029)具有與存在問題之再循環有關,且^ 其與自建築材料分離聚合物以用於廢物處置之需要有關之 缺陷°此外’其引起耐火性及在火災情況下可能釋放有毒 终霧之問題(PU發泡體中尤其顯著)。 所疋義之天然來源材料具有在一個批次與其他批次之間 「變化」之效能且具有由壓縮現象引起之耐久性問題。B 【發明内容】 為了下文中清晰起見,採用以下慣例: 除非另作說明,否則所有重量百分比均表示為以組合物 I53561.doc 201228994 中乾物質之重量計。 •水泥漿: 如本文所用,水泥漿意欲意謂藉由添加至少一種礦物水 硬性黏合劑、水及視情況選用之特定添加劑、硫酸鈣及填 充劑而獲得之可塑狀態組合物。 •水性發泡體: 如本文所用,水性發泡體意欲意謂由至少一種氣體(尤 其為二氣)及一種溶劑(其可為水)構成之發泡體。該等發泡 體不含任何礦物黏合劑。 其在初始時間由其初始膨脹係數表徵,初始膨脹係數= 初始時間之總體積/用於產生發泡體之溶液體積。 如本文所用’初始時間意欲意謂操作員實現用於產生發 泡體之輸氣之時刻,諸如專利FR2913351(Al)中所述。 關於固有不穩定性’其由其通常經由半衰期(亦即獲得 與用於產生發泡體之全部液體的—半等效之排水所需之時 間)量測之隨時間推移之穩定性表徵。 可藉由適當選擇界面活性劑與泡沫穩定劑之組合來改良 此等發泡體之穩定性,料穩定㈣諸如專利申請案及專 利 WO/2008/020246、WO/2006/067064及 US 4,218,490 中提 及之炫醇酿胺、親水膠體、蛋白質。 •礦物發泡體: 如本文所用,礦物發泡體意欲意謂包含下文中所定義之 量的至少-種氣體(尤其為空氣)、至少一種溶劑(其可為 水)、至少-種礦物水硬性黏合劑及至少一種填充劑(尤其 153561.doc 201228994 為細料)之發泡體。 此等發泡體(如前述發泡體)將隨時間改變且僅在礦物黏 合劑已發生反應以「冷凍」材料結構時穩定。 •硬化礦物發泡體: 如本文所用,礦物發泡體意欲意謂在水硬性黏合劑之反 應(水合作用)導致經由水合物網狀物之滲透作用而「冷 凍」礦物發泡體主結構之後最終獲得之礦物發泡體。礦物 發泡體亦意謂經由硬化礦物發泡體而獲得之蜂离狀結構絕 熱材料。 作為本發明之替代,經由硬化以包含低密度中空填充劑 之两鋁水硬性黏合劑為主之水泥漿自該水泥漿獲得絕熱材 料。 •高铭水硬性黏合劑(縮寫為AHB): 如本文所用,高鋁水硬性黏合劑意欲意謂包含至少一種 選自以下之相的水硬性黏合劑:C3A、CA、ci2A7、 CUA7CaF2、C4A3$(Yee lemite)、C2A(1_x)Fx(其中 χ屬於 [〇,〗])、水硬性非晶相,該等水硬性非晶相具有〇 3至15範 圍内之C/A莫耳比且使得此等相中之Al2〇3累積量在水硬性 黏合劑總重量之3重量%至7〇重量%、較佳7重量%至5〇重 量/〇且更佳20重量%至3〇重量%範圍内。 在特疋貫施例令,此黏合劑亦可視情況含有以黏合劑總 重量計之以下物質: _ 〇重量%至90重量。/。,較佳至多7〇重量%,更佳至多5〇 重量%且最佳至多40重量%硫酸辦或硫酸釣源,及 153561.doc 201228994 -〇重量%至1〇重量%,較佳〇重量%至小於5重量%波特 蘭水泥(Portland cement)。同時,以水硬性黏合劑為主之 硬化礦物發泡體已發展用於各種應用^許多專利尤其描述 如何藉由併入水性發泡體或藉由借助於鋁金屬分解現場產 生氣體來製造氣泡混凝土。 已廣泛論證及公開具有由氣泡網狀物吸收應力引起之改 良凍融抗性性質且抑制裂紋擴張之輕質混凝土。可尤其提 及專利 US 7,288,147。 亦已知使用專利申請案US 2005/126781中描述之輕質水 泥漿來膠結不穩定岩石及土地(諸如深海沈積環境)中之油 井。 自GB-1,506,417已知由鈣礬石類型黏合劑(亦即高鋁水泥 與硫酸鈣之混合物)獲得之硬化礦物發泡體。US-4,670,05 5 亦描述以鋁酸鹽及硫酸鈣為主之黏合劑。然而,此等黏合 劑用於製造具有極高密度之以矽酸鈣為主之發泡體塊。自 GB-1578470及GB-2162506已知由高鋁水泥及大量矽酸鹽 獲得之硬化礦物發泡體。硬化此等礦物發泡體後獲得之蜂 窩狀材料具有弱機械阻力性質及極高密度之缺陷。 WOOO/23395描述以鋁酸鈣為主且包含呈聚集體形式之 填充劑的充氣灰泥組合物。由此等組合物獲得之絕熱材料 具有極高密度且因此絕熱效能不足。文獻RU2305087描述 以鋁酸鈣、石膏及砂為主之硬化礦物發泡體。此文獻中所 獲得之絕熱材料具有高熱導率及高密度。硬化礦物發泡體 亦發展用於防火應用,其中由於其固有非可燃性特徵或甚 153561.doc 201228994 至耐火〖生質,其與包含有機鹼或聚合物組份之材料相比提 供顯而易見的優點。然而,儘管此等硬化礦物發泡體完全 滿足防火要求,但其熱導率值1對於絕熱類型應用仍過 面,此等絕熱類型應用需要在2(rc下低於或等於〇 2 W/m. C ’甚至更佳低於或等於Q」5 w/m ,甚至低於或 等於0.08 W/m/C且最佳低於或等於〇 〇45 w/m ^之熱導率 值。已利用二氧化矽衍生之材料獲得〇 2 w/m (>c之性質, 如DE3227G79中所述n該等材料具有密度高(獅至 600 kg/m3)、機械效能弱且耐火性質弱之缺陷。低熱導率 材料亦描述於EP 2 093 201中。存在由水硬石灰及水泥之 混合物獲得之以石灰為主之發泡體。然而,使用水硬石灰 不幸地引起形成具有極高密度之產物。Jp〇6〇56497中亦 已描述高紹水泥以獲得該等導熱性效能。然而,此等材料 實質3上以浮石為主且由於缺乏充氣而具有極高密度(8〇〇 kg/m )。然而,技術上極難以在2〇<)(:下獲得此等熱導率 值’同時保持材料具有最小機械特性且保留其實體完整 性’亦即材料不在其自重下崩潰。此外,獲得具有比先前 技術低之密度的材料亦為由本發明解決之問題。 由以硬化水泥為主之礦物發泡體產生之材料的固有絕熱 效能將較高’此係因為㈣巾氣泡分率純高且該等氣泡 將儘可能細小且不連接以避免熱橋。,然而,既定孔徑分佈 下對絕熱特性有利之孔隙體積增加亦引起材料脆弱性增 加其說明了耐火硬化礦物發泡體如何達到限制。 最終,製造絕熱硬化礦物發泡體之方法描述於專利Ep 〇 153561.doc 201228994 121 524中’該方法包含提供經由用空氣機械發泡產生之 X I1生發/包體/¾聚乙烯醇水溶液及分散劑,接著向水性發 /包體/π中添加包含氧化鎮及偏棚酸領之水溶液。此專利 中,經由組合使用聚乙烯醇及偏硼酸鈉或偏硼酸鋇而使得 能夠提供穩定水性發泡體此處棚酸鹽料聚乙稀醇之交 聯劑’使得能夠固^材料中所包括之氣泡的大小β因此使 得水性發泡體化學上穩定。 因此需要有效、易於實施且成本有效,同時對操作員及 使用者安全且使得能夠獲得可加工性、機械特性、低密度 與絕熱之間的優良折衷之新穎解決方法。 申請人意外發現,特定高鋁水硬性黏合劑組合物使得有 可能以細粉形式(尤其以鼓泡形式)或以低密度中空填充劑 形式併入大量空氣且在硬化黏合劑之後獲得具有低熱導率 及高機械強度'尤其高抗壓強度之材料。因此,可由以硬 化水泥為主之礦物發泡體獲得蜂窩狀結構材料,該礦物發 泡體具有顯著絕熱性質且亦在此材料用於尤其需要現場置 放該材料之許多應用中時具有足夠的短期機械強度。 s使用基本上由波特蘭水泥製得之黏合劑時不能獲得該 等抗壓強度值。本發明係關於蜂窩狀結構絕熱材料,其包 含以材料總重量計之以下物質: a) 4重量%至96重量%之由水硬性黏合劑之水合作用獲得 的水泥基質,該水硬性黏合劑之特徵在於在與水接觸之 前’其包含至少一種選自以下之相:C3A、CA、C12A7、 CllA7CaF2、C4A3$(Yee lemite)、C2A(l-x)Fx(其中 χ屬於 153561.doc 10 201228994 [〇, i])、水硬性非晶相,該等水硬性非晶相具有〇3至15範 圍内之C/Α莫耳比且使得此等相之Al2〇3累積量在水硬性黏 合劑總重量之3重量%至70重量%、較佳7重量%至5〇重量% 且較佳20重量%至3〇重量%範圍内, b”重量%至96重量%之至少一種填充劑,較佳為細料。 該材料宜在2(TC下具有低於或等於〇2 w/m〇c,較佳低 於或等於G.15 W/m°C,較佳低於或等於〇 Q8 w/me(:,甚至 更佳低於或等於0.G45 W/mt且最佳低於或等於〇 〇4 W/m°C之導熱係數。 較佳地,本發明絕熱材料之黏合劑另外包含以黏合劑總 重量計之以下物質: 〇 /〇至90 /〇,較佳至多7〇%,甚至更佳至多且最佳 至多40〇/。之硫酸鈣或硫酸鈣源,及 -〇%至小於5%之波特蘭水泥。 較佳地水尼基質佔蜂窩狀結構絕熱材料之1 〇重量%至 80重量%且更佳20重量❶/〇至6〇重量0/〇。 如本文所用’「水硬性黏合劑之水合作用」意欲意謂水 硬性黏合劑與水接觸,水與水硬性黏合劑之重量比通常在 〇.1至0.7,較佳〇.15至〇5範圍内。 且使用水作為溶劑來製備本發明之礦物發泡體且此重量 比表徵本發明之礦物發泡體。 該水合作用可如下文中描述在製備水泥漿時實現,或在 製備礦物發泡體時藉由引入水或水性溶劑而隨時實現。 本發明進一步係關於一種製造絕熱材料或硬化礦物發泡 153561.doc 201228994 體之方法’此方法包含產生將於下文中描述之礦物發泡體 或包含低密度中空填充劑之水泥漿,以及凝結或硬化步 驟,其將視所用添加劑而耗費不同時間。 本發明進一步係關於使得能夠在硬化後獲得絕熱材料之 礦物發泡體,以及製造該礦物發泡體之方法。 此外,本發明係關於使得能夠在硬化後獲得絕熱材料之 包含低密度中空填充劑之水泥漿,以及製造此水泥漿之方 法。 為獲得符合絕熱類型應用之熱導率值,不僅有必要在初 始狀態形成極精細水性發泡體,且亦宜具有使得能夠獲得 礦物發泡體之水硬性基質,該礦物發泡體一方面具有足夠 可加工性以允許對其進行置放且另一方面極早發展水合物 網狀物以便在發生奥斯特瓦爾德熟化(0stwald ripening)現 象之前穩定該礦物發泡體使其呈塑膠組態。 申請人發現,使用高鋁水硬性黏合劑AHB尤其良好地適 於獲得發泡體之可加工性質與水合物網狀物之早期發展之 間的折衷。 在替代例中’可使用分散於以該等高鋁水硬性黏合劑 AHB為主之水泥漿中之低密度中空填充劑來獲得此等性 質。 在較佳替代例中,使用選自反應性填充劑之填充劑來改 良此等性質。 此等相在黏合劑AHB與水接觸之後即發展極高水硬性潛 能,立即引起大量小型水合物(其可具有亞微米至微米大 153561.doc 201228994 小)之成核作用,從而: -首先穩定礦物發泡體使其在某一時段内呈塑化相(因 此防止奥斯特瓦爾德熟化),該時段可根據所需可加工性 進行調節’其在5分鐘與30分鐘之間,甚至大於30分鐘; •其次’使得能夠經由滲透形成礦物水合骨架,其將確 保早期獲取機械效能且允許提供本發明之硬化礦物發泡體 及/或本發明之絕熱材料。 尤其關注使用包含硫酸鈣或硫酸鈣源之水硬性黏合劑以 促進產生舞礬石性及水合氧化鋁相,其具有增強硬化礦物 發泡體之機械性質且亦改良其耐火性之優點。 此等黏合劑對提供高早期機械強度尤其重要。24小時 時,本發明材料具有至少8〇%之其最終機械強度,此現象 在黏合劑基本上由波特蘭水泥製成之材料之情況下未發 生。 此等黏合劑亦使得能夠控制及限制硬化後材料之收縮。 使用本發明之水硬性黏合劑AHB使得能夠獲得不含聚合 物(尤其EPS、XPS、PU及PIR類型聚合物)之硬化礦物發泡 體,此等硬化礦物發泡體具有所期望之熱導率性質及優良 耐火性。 因此,此類型水硬性黏合劑AHB使得能夠改良材料之耐 火性,表示與以EPS、XPS、Pu及PIR類型聚合物為主之發 泡體相比存在顯著改良。 此外,使用此類型水硬性黏合劑AHB可改良工業條件下 礦物發泡體之生產可靠性,此係因為對奥斯特瓦爾德熟化 153561.doc 201228994 之敏感性問題不大且因為界面活性劑及泡洙穩定劑系統之 最佳化由此變得不太重要。 作為非限制性實例,本發明黏合劑將能夠含有高鋁水泥 及硫鋁酸鈣類型水泥,後一種水泥將能夠視情況由硫酸鈣 源獲得。 市售高紹水泥之非限制性實例包括例如由Kerneos公司 出售之 Secar 71、Secar 51、Fondu水泥、Ternal RG、 Ternal EV,及由 Calucem、Cementos Molins公司及日本之 TMC及Denka公司出售之高鋁水泥。市售硫酸鋁水泥之非 限制性實例包括例如由CTS出售之Rapidset、由Italcementi 公司出售之ΑΙιρΓέ水泥、由p〇iarbear&Li〇nhead出售之硫 鋁酸鈣。 本發明之高鋁水硬性黏合劑A Η B由於其反應性而使得能 夠快速發展水合物網狀物,該水合物網狀物滲透、凍結氣 泡直徑且形成硬化礦物發泡體之礦物骨架。無論使用何種 試劑獲得水性發泡體,此現象均發生,亦即與發泡劑、輸 氣劑或氣體產生劑無關。實情為,似乎本發明範疇内之機 制對應於由於形成在早期凍結氣體或空氣内含物之水合物 而實現之礦物穩定化。因此,從而獲得具有極均勻分佈之 小型氣泡之硬化礦物發泡體。 因此’在水硬性黏合劑ΑΗΒ之特定選擇方面,本發明與 先前技術且尤其專利ΕΡ 0 121 524中描述之硬化礦物發泡 體組合物不同。實情為,所用礦物化合物之高反應性使得 能夠在無需例如使用聚乙烯醇+硼酸鹽組合之情況下獲得 15356I.doc 201228994 具有優良品質之硬化礦物發泡體。因此,本發明之礦物發 泡體以及硬化礦物發泡體及蜂窩狀結構絕熱材料較佳不含 聚乙烯醇+硼酸鹽組合。 與進行界面活性劑系統之優化以限制奥斯特瓦爾德熟化 之先前技術相比,本發明由此使得能夠在早期管理礦物系 統之凝結且尤其克服引起氣泡大小增加且因此引起導熱係 數增加及機械強度降低之奥斯特瓦爾德熟化。 與藉由界面活性劑與聚合物或熟習此項技術者熟知的其 他水性泡沫穩定劑(諸如天然或合成來源的蛋白質、聚合 物)組合之相關選擇而獲得之水性發泡體穩定性或礦物發 泡體穩定性之改良相比,由於與本發明硫酸鈣相關(或不 相關)之水硬性黏合劑AHB之高反應性而獲得的硬化礦物 發泡體或水泥漿之穩定化使得能夠以可靠且穩固方式獲得 具有精細及均勻氣泡網狀物之硬化礦物發泡體,從而在凝 、’·。之後產生具有低熱導率同時保留優良機械強度特徵之蜂 窩狀結構絕熱材料。 與包含大量矽酸鹽之先前技術之礦物發泡體相比,本發 明之硬化礦物發泡體具有與高機械強度相關之較低密度。 作為本發明之替代例,可藉由使水泥漿中存在低密度中 空填充劑而提供孔隙率,視情況與水性發泡體相關。 作為不可忽略之額外優點’本發明系統具有尤其經由以 下抗壓強度值表現之優良短期機械強度(3小時後): -對於λ值低於0.08 W/mt之材料,CS值高於0.2 MPa,較 佳尚於0.3 MPa,且甚至更佳高於或等於0.5 MPa, 153561.doc 15 201228994 -在λ值在0.08至0.2 W/m°C範圍内之情況下,CS值高於 0.8 MPa,較佳高於1 MPa且甚至更佳高於1.5 MPa。 本發明系統之特徵在於以下抗壓強度值(24小時後): -對於λ值低於〇.〇8 W/nTC之材料,CS值高於0.3 MPa,較 佳高於或等於0.5 MPa, -在λ值在0.08至0.2 W/m°C範圍内之情況下,CS值高於1 MPa,較佳高於1.5 MPa。 本發明絕熱材料之特徵亦在於收縮率值低於5〇〇 Mm/m, 較佳低於400 μπι/m,有利地低於300 μηι/ιη且甚至更佳低 於200 μηι/m。根據NF ΕΝ 128 08-4標準教示之方法量測此 收縮率。 此性質有利地提供本發明材料對牆壁之優良黏著以用於 填充中空建築元件’及更佳的隨時間推移之穩定性。當現 場置放發泡體:建築翻新、複合板構造時,此性質對避免 形成熱橋尤其重要》 最終,作為另一優點,本發明之礦物發泡體允許調節凝 結時間。此與在早期非固有地發展極高水合物成核作用之 基本上包含波特蘭水泥作為黏合劑之礦物發泡體相比為有 益的。 以波特蘭水泥為主之礦物發泡體(無加速劑系統)之凝社 時間通常超過2小時。 本發明之礦物發泡體及水泥漿可具有短至5分鐘(驟凝) 或長達30分鐘之可加工性。因此,本發明之礦物發泡體具 有可容易地調節為5至30分鐘範圍内之值或甚至超過3〇二 153561.doc •16· 201228994 :值的可加工性。可調節凝結時間之實情之優點在於當 進行預鑄時’需㈣至3G分鐘之快速凝結,而對於需要現 場置放礦物發泡體之應用,超過3G分鐘或甚至超⑻小時 或2小時之較長凝結時間可為有利的。心,利用水硬性 黏合劑細可獲得超過1小時或甚至超過2小時之可加工 性’同時在可加工性時段之後㈣快速機械效能獲取動力 學。如熟習此項技術者已知’可加工性時段期間沈澱之小 型水合物使礦物發泡體穩定化且不影響其塑性特徵。 可使用熟習此項技術者已知及下文中所描述之加速劑/ 阻滯劑添加劑系統容易地調節可加工性時間與機械效能獲 取之間的折衷。 【實施方式】 此外,本發明之蜂窩狀結構絕熱材料或硬化礦物發泡體 具有以下特徵(單獨或組合): _其孔隙體積在70%至95%,較佳80。/。至95。/。範圍内; -其密度低於或等於500 Kg/m3,較佳低於或等於3〇〇 Kg/m3。其密度宜為8〇至250 Kg/m3 ; -其孔眼平均大小小於5〇〇 μπι,較佳小於4〇〇 μιη,有利 地小於300 μηι。經由材料橫截面之光學顯微法觀測該等孔 眼大小; -其在3小時之時抗壓強度cs高於或等於〇 2 Mpa,較佳 高於或等於0.3 MPa且甚至更佳高於或等於〇 5 Mpa ; -其在600 C下,較佳在90(TC下且甚至更佳在1200。(:下 耐火性為3小時。 153561.doc -17- 201228994 令人驚奇地,與先前技術之硬化礦物發泡體類型材料相 比,本發明之絕熱材料可具有高孔隙體積及低密度,同時 保留極佳機械強度。此等性質之組合由所選之特定高鋁水 硬性黏合劑組合物產生,該組合物使得能夠併入大量氣泡 或大量中空填充劑,同時保留具有強内聚力之礦物網狀 物。 -水硬性黏合劑AHB可包含以水硬性黏合劑總重量計之 以下物質: -10重量%至90重量%,較佳1 〇重量。/。至7〇重量%,甚至 更佳10重量至50重量%且最佳20重量。/。至40重量◦/◦硫酸 約。 -水硬性黏合劑ΑΗΒ可進一步包含〇重量❶/。至丨〇重量%波 特蘭水泥’較佳0重量%至小於5重量%且甚至更佳2重量〇/〇 至小於5重量%波特蘭水泥。 -水硬性黏合劑可進一步包含一或多種添加劑,包括選 自發泡劑及發泡體交聯劑、促凝劑、緩凝劑、流變改質劑 及保水劑、分散劑及尚效塑化劑之添加劑,較佳該(等)添 加劑佔水硬性黏合劑總重量之至多15重量%,較佳至多 重量°/〇且通常5重量%或更少。 尤其,選自促凝劑及緩凝劑之凝結時間控制劑可佔以水 硬性黏合劑總重量計之0.05重量%至15重量%,較佳〇 i重 量%至10重量%。 填充劑或細料(慣用填充劑粒徑小於1〇〇 Mm)通常選自矽 石菸;高爐渣;鋼渣;飛灰;石灰石填充劑;微粒二氧化 153561.doc •18- 201228994 矽·’二氧化矽,包括熱解及沈澱二氧化矽、榖殼中回收之 二氧化矽;矽藻土;碳酸鈣;矽酸鈣;硫酸鋇;偏高嶺 土;鈦、鐵、鋅、鉻、锆、鎂金屬氧化物;各種形式之氧 化紹(水合或非水合);氧化鋁中空珠粒;氮化硼;鋅鎖 白;偏硼酸鋇;煅燒、標準或膨脹黏土;珍珠岩;蛭石; 浮石;流紋岩;燒粉;滑石;雲母;視情況選用之中空、 玻璃珠粒或膨脹玻璃(expanded glass)顆粒;矽酸鹽發泡體 晶粒;石夕氣凝膠;砂;碎礫石;礫石;卵石;碳黑;碳化 矽;剛玉;橡膠顆粒;木材;稻草。 根據本發明’細料為礦物填充劑,其組份之大小小於 100微米。 _硬化礦物發泡體可進一步包含一或多種其他組份,諸 如在製備黏合劑或礦物發泡體時引入之添加劑,該(等)添 加劑較佳佔材料總重量之至多15重量%,通常3重量。、至切 重置%。此等添加劑可選自發泡劑及泡沫穩定劑、促凝 劑、緩凝劑、流變改質劑及保水劑、分散劑或高效塑化 劑。 -硬化礦物發泡體或水泥漿亦可含有在製備黏合劑或礦 泡體時或藉由噴霧或浸潰於硬化礦物發泡體上而完全 或刀引入之其他添加劑(諸如防水劑)以及熱塑性或熱固 使㈣’此等添加劑通f佔蜂窩狀結構絕熱 :總重量之0.5重量%至25重量%,較佳ι重量㈣重量 步包含纖維 本發明之硬化礦物發泡體或水泥渡可進 153561.doc -19- 201228994 或微纖維,例如纖維素、聚乙_、聚n胺、$乙烯、聚 丙稀、聚石夕氧、金屬及/或玻璃纖維、天然來源纖維(諸如 大麻纖維、椰子纖維、棉纖維、木材纖維”較佳具有20 4〇1至6 mm範圍内之長度及10至800 μπι之直徑。 -此等纖維被引入黏合劑組合物或礦物發泡體中且可佔 蜂窩狀結構絕熱材料總重量之至多2重量〇/0。 -本發明之蜂窩狀結構絕熱材料較佳具有低於或等於 500 Kg/m3,較佳低於或等於3〇〇 Kg/m3之密度。其密度宜 為 80至 250 Kg/m3。 本發明之絕熱材料較佳含有以絕熱材料總重量計丨重量 %至40重量%,有利地為5重量%至3〇重量%之低密度中空 填充劑。 在實施例中,蜂窩狀結構絕熱材料宜具有以材料總重 量計之以下組合物: a) 50重量。/。至96重量❶/◦,較佳7〇重量。/。至96重量%且甚至 更佳90重量%至96重量%水硬性黏合劑AHB,諸如上文中 定義之水硬性黏合劑AHB,其含有: -1 0重量%至90重量。/〇,較佳1 〇重量%至7〇重量%,甚至 更佳1 0重量%至50重量%且甚至更佳2〇重量%至4〇重量。/0硫 酸鈣,及 b) 1重量%至40重量%至少一種選自反應性填充劑之材 料, c) 0.5重量%至5重量%選自反應性填充劑活化劑之材 料’ 153561.doc •20· 201228994 d) 0重s: %至2重量%,較佳〇重量%至i重量%纖維或微 纖維,及 e) 〇重量%至15重量%選自發泡劑及穩定劑或發泡體交聯 劑、促凝劑、緩凝劑、流變改質劑及保水劑、分散劑及高 效塑化劑之添加劑。 、在本發明之另—實施例中,蜂⑽結構絕熱材料宜具有 以材料總重量計之以下組合物: a) 50重量%至96重量%,較佳7〇重量。至%重量%且甚至 ,佳90重量%至96重量%水硬性黏合劑ahb,諸如上文中 定義之水硬性黏合劑AHB,其含有: _ 10重量。/。至90重量%’較佳1〇重量%至70重量%,甚至 更佳10重量〇/〇至50重量%且甚至更佳2〇重量%至4〇重 量%硫酸鈣,及 b) 1重量%至80重量% ’較佳丨重量%至6〇重量%,有利 地1重量%至40重量%至少一種選自低密度中空填充劑之材 料, C) 0重置%至2重量%,較佳〇重量。心重量%纖維或微纖 維,及 )重I%至1 5重量%選自發泡劑及穩定劑或發泡體交聯 劑、促凝劑、緩凝劑、流變改質劑及保水劑、分散劑及高 效塑化劑之添加劑。 在一實施例中,蜂窩狀結構絕熱材料宜具有以材料總重 量計之以下紐合物: a) 50重量%至96重量% ’較佳7〇重量%至%重量%且甚至 153561.doc 21 - 201228994 更佳90重量%至96重量%水硬性黏合劑AHB,諸如上文中 定義之水硬性黏合劑AHB,其含有: -10重量%至90重量%,較佳10重量%至70重量%,甚至 更佳10重量%至50重量%且甚至更佳20重量%至40重 量%硫酸鈣,及 -0重量%至小於5重量%波特蘭水泥, b) 4重量%至50重量%,較佳4重量%至30重量%且甚至 更佳4重量β/❶至10重量%細料, c) 0重量°/〇至2重量% ’較佳〇重量%至1重量。纖維或微纖 維,及 d) 0重量%至15重量%選自發泡劑及穩定劑或發泡體交聯 劑、促凝劑、緩凝劑、流變改質劑及保水劑、分散劑及高 效塑化劑之添加劑。本發明材料可具有開放或封閉蜂窩狀 結構,通常為開放與封閉結合。 本發明進一步係關於充當用於獲得本發明之蜂窩狀結構 絕熱材料(硬化礦物發泡體)之前驅體之礦物發泡體。 用於製造下文中描述之蜂窩狀結構絕熱材料的本發明礦 物發泡體可具有以下特徵(單獨或組合): •其包含: -至少一種水硬性黏合劑AHB,諸如上文描述之水 硬性黏合劑AHB,其視情況含有硫酸鈣及/或視情 況含有波特蘭水泥, -至少一種填充劑,較佳為細料, -至少一種水性及/或非水性溶劑,及 153561.doc •22· 201228994 _至少—種氣體,諸如空氣、Thermal Regulation), it is necessary to increase the material thickness to achieve this equivalent energy', thereby causing the problem of effective space loss (for example, for glass woven, etc., 400 mm thickness). Improvements in achieving their inherent efficiency by increasing the density of this type of material are still limited. Eight polymers having a thermal conductivity value in the lower range (the thermal conductivity value of polyisocyanuric acid 17 is 0.029) has a problem associated with the recycling of the problem, and it separates the polymer from the building material. Defects associated with the need for waste disposal. In addition, it causes fire resistance and may release toxic end-of-fog in the event of fire (particularly significant in PU foams). The natural source material that is derogatory has the effect of "changing" between one batch and the other and has durability problems caused by compression. B [ SUMMARY OF THE INVENTION For the sake of clarity in the following, the following conventions are employed: Unless otherwise stated, all weight percentages are expressed as the weight of dry matter in the composition I53561.doc 201228994. • Cement slurry: As used herein, cement slurry is intended to mean a plastic state composition obtained by the addition of at least one mineral hydraulic binder, water, and optionally a specific additive, calcium sulfate and a filler. • Aqueous Foam: As used herein, an aqueous foam is intended to mean a foam composed of at least one gas (especially two gas) and one solvent (which may be water). These foams do not contain any mineral binders. It is characterized by its initial expansion coefficient at the initial time, the initial expansion coefficient = the total volume of the initial time / the volume of the solution used to produce the foam. As used herein, the 'initial time' is intended to mean that the operator implements the gas supply for generating the foam, such as described in patent FR2913351 (Al). With respect to the inherent instability, it is characterized by its stability over time, usually measured by the half-life (i.e., the time required to obtain a semi-equivalent drainage of the entire liquid used to produce the foam). The stability of such foams can be improved by the appropriate choice of a combination of a surfactant and a foam stabilizer, which is stable (4), such as in the patent application and the patents WO/2008/020246, WO/2006/067064 and US 4,218,490. And scented alcohol, hydrophilic colloid, protein. • Mineral Foam: As used herein, a mineral foam is intended to mean at least one gas (especially air), at least one solvent (which may be water), at least one mineral water, in an amount as defined below. A foam of a hard binder and at least one filler (especially 153561.doc 201228994). Such foams (e.g., the aforementioned foams) will change over time and will only stabilize when the mineral binder has reacted to "freeze" the material structure. • Hardened Mineral Foam: As used herein, mineral foam is intended to mean that the reaction of the hydraulic binder (hydration) results in the "freezing" of the main structure of the mineral foam via the hydration of the hydrate network. The mineral foam finally obtained. The mineral foam also means a bee-like structural heat insulating material obtained by hardening a mineral foam. As an alternative to the present invention, a heat insulating material is obtained from the cement slurry by hardening a cement slurry mainly composed of two aluminum hydraulic binders containing a low-density hollow filler. • Gaoming hydraulic binder (abbreviated as AHB): As used herein, a high aluminum hydraulic binder is intended to mean a hydraulic binder comprising at least one phase selected from the group consisting of C3A, CA, ci2A7, CUA7CaF2, C4A3$ (Yee) Lemite), C2A(1_x)Fx (wherein χ belongs to [〇, 〗]), hydraulic amorphous phase, the hydraulic amorphous phase has a C/A molar ratio in the range of 〇3 to 15 and makes such The cumulative amount of Al2〇3 in the phase ranges from 3% by weight to 7% by weight, preferably from 7% by weight to 5% by weight, and more preferably from 20% by weight to 3% by weight based on the total weight of the hydraulic binder. In particular, the adhesive may optionally contain the following based on the total weight of the binder: _ 〇% by weight to 90% by weight. /. , preferably up to 7% by weight, more preferably up to 5% by weight and most preferably up to 40% by weight of sulphuric acid or sulphuric acid source, and 153,561.doc 201228994 - 〇% by weight to 10,000% by weight, preferably 〇% by weight To less than 5% by weight Portland cement. At the same time, hardened mineral foams based on hydraulic binders have been developed for various applications. Many patents describe in particular how to make bubble concrete by incorporating aqueous foam or by generating gas on site by means of aluminum metal decomposition. . Lightweight concrete having improved freeze-thaw resistance properties caused by absorption of stress in the bubble network and inhibiting crack propagation has been widely demonstrated and disclosed. Particular mention can be made of patent US 7,288,147. It is also known to use the lightweight cement described in the patent application US 2005/126781 to cement oil wells in unstable rocks and land, such as deep sea sedimentary environments. A hardened mineral foam obtained from a ettringite type binder (i.e., a mixture of high alumina cement and calcium sulfate) is known from GB-1,506,417. US-4,670,05 5 also describes binders based on aluminates and calcium sulphates. However, these adhesives are used to make a foam block mainly composed of calcium citrate having a very high density. Hardened mineral foams obtained from high alumina cement and a large amount of niobate are known from GB-1578470 and GB-2162506. The honeycomb material obtained after hardening such mineral foams has the defects of weak mechanical resistance properties and extremely high density. WOOO/23395 describes an aerated stucco composition which is predominantly calcium aluminate and which comprises a filler in the form of aggregates. The heat insulating material obtained by such compositions has an extremely high density and thus insufficient heat insulating performance. Document RU2305087 describes hardened mineral foams based on calcium aluminate, gypsum and sand. The thermal insulation materials obtained in this document have high thermal conductivity and high density. Hardened mineral foams have also been developed for fire protection applications where they provide significant advantages over materials containing organic base or polymer components due to their inherently non-flammable characteristics or to 153561.doc 201228994 to refractory biomass. . However, although these hardened mineral foams fully meet the fire protection requirements, their thermal conductivity values of 1 are still acceptable for adiabatic type applications. These adiabatic type applications need to be less than or equal to 〇2 W/m at 2 (rc). C 'is even better than or equal to Q"5 w/m, even lower than or equal to 0.08 W/m/C and optimally lower than or equal to 〇〇45 w/m ^ of thermal conductivity value. The cerium oxide-derived material acquires a property of 〇2 w/m (>c, as described in DE3227G79, which has a high density (lion to 600 kg/m3), weak mechanical properties and weak fire resistance. Low thermal conductivity materials are also described in EP 2 093 201. There are lime-based foams obtained from a mixture of hydraulic lime and cement. However, the use of hydraulic lime unfortunately results in the formation of products of very high density. Gaoshao Cement has also been described in Jp〇6〇56497 to obtain such thermal conductivity. However, these materials are essentially pumice-based and have a very high density (8 〇〇kg/m) due to lack of aeration. However, it is technically extremely difficult to maintain the material at 2 〇 <)(: obtain these thermal conductivity values) It has minimal mechanical properties and retains its physical integrity', ie the material does not collapse under its own weight. Furthermore, obtaining a material having a lower density than the prior art is also a problem solved by the present invention. Foaming of minerals based on hardened cement The intrinsic adiabatic performance of the material produced by the body will be higher 'this is because the bubble fraction of the (four) towel is purely high and the bubbles will be as small as possible and not connected to avoid the thermal bridge. However, the adiabatic properties are favorable for the given pore size distribution. An increase in pore volume also causes an increase in material fragility, which illustrates how the refractory hardened mineral foam reaches a limit. Finally, a method of making an adiabatic hardened mineral foam is described in the patent Ep 〇 153 561. doc 201228994 121 524 'This method includes providing An aqueous solution containing oxidized and partially accommodating acid is added to the aqueous hair/envelope/π via an aqueous solution of X I1 hair/encapsulated/3⁄4 polyvinyl alcohol produced by mechanical foaming with air, and a dispersing agent. By using polyvinyl alcohol and sodium metaborate or barium metaborate in combination, it is possible to provide a stable aqueous foam. The crosslinker' enables the size β of the bubbles included in the material to thus make the aqueous foam chemically stable. Therefore, it needs to be effective, easy to implement, and cost effective, while being safe and accessible to operators and users. A novel solution to the excellent trade-off between workability, mechanical properties, low density and thermal insulation. Applicants have unexpectedly discovered that certain high aluminum hydraulic binder compositions make it possible to use fine powders (especially in bubbling form) or Incorporating a large amount of air in the form of a low-density hollow filler and obtaining a material having a low thermal conductivity and a high mechanical strength, particularly a high compressive strength, after hardening the binder. Therefore, the honeycomb can be obtained from a hardened cement-based mineral foam. A structural material that has significant thermal insulation properties and also has sufficient short-term mechanical strength when used in many applications where it is particularly desirable to place the material in situ. These compressive strength values are not obtained when using an adhesive substantially made of Portland cement. The present invention relates to a honeycomb structural heat insulating material comprising the following materials based on the total weight of the material: a) 4% by weight to 96% by weight of a cement matrix obtained by hydration of a hydraulic binder, the hydraulic binder Characterized in that it comprises at least one phase selected from the group consisting of C3A, CA, C12A7, CllA7CaF2, C4A3$(Yee lemite), C2A(lx)Fx (where χ belongs to 153561.doc 10 201228994 [〇 before contact with water] , i]), a hydraulic amorphous phase having a C/Α molar ratio in the range of 〇3 to 15 and such that the cumulative amount of Al2〇3 in the phases is in the total weight of the hydraulic binder Between 3% by weight and 70% by weight, preferably 7% by weight to 5% by weight, and preferably 20% by weight to 3% by weight, b"% by weight to 96% by weight of at least one filler, preferably The material preferably has a lower than or equal to 〇2 w/m〇c at 2 (TC), preferably lower than or equal to G.15 W/m ° C, preferably lower than or equal to 〇Q8 w/me (:, even better, lower than or equal to 0.G45 W/mt and preferably lower than or equal to 导热4 W/m ° C. The thermal conductivity is preferably The binder of the material additionally comprises the following substances in terms of the total weight of the binder: 〇/〇 to 90 /〇, preferably up to 7〇%, even more preferably up to and optimally up to 40〇/. Calcium sulfate or calcium sulfate source And - 〇% to less than 5% of Portland cement. Preferably, the water-containing matrix accounts for 1% by weight to 80% by weight of the honeycomb structural insulating material and more preferably 20% ❶/〇 to 6〇0. As used herein, '"hydraulic binder hydration" is intended to mean that the hydraulic binder is in contact with water, and the weight ratio of water to hydraulic binder is usually from 〇1 to 0.7, preferably 〇.15 to The mineral foam of the present invention is prepared using water as a solvent and this weight ratio characterizes the mineral foam of the present invention. The hydration can be achieved as described in the preparation of the cement slurry as described below, or in the preparation The mineral foam is realized at any time by introducing water or an aqueous solvent. The present invention further relates to a method for producing a heat insulating material or a hardened mineral foam 153561.doc 201228994. The method comprises producing a mineral hair which will be described below. Bubble or contain low density a cement slurry of a hollow filler, and a coagulation or hardening step, which will take different time depending on the additive used. The present invention further relates to a mineral foam which enables a heat insulating material to be obtained after hardening, and the production of the mineral foam Further, the present invention relates to a cement slurry comprising a low-density hollow filler which enables a heat insulating material after hardening, and a method of manufacturing the same. In order to obtain a thermal conductivity value in accordance with an adiabatic type of application, not only It is necessary to form a very fine aqueous foam in an initial state, and it is also preferable to have a hydraulic substrate which enables a mineral foam which has sufficient workability on the one hand to allow placement thereof and another The hydrate network is developed very early in order to stabilize the mineral foam in a plastic configuration prior to the occurrence of the Ostwald ripening phenomenon. Applicants have found that the use of the high alumina hydraulic binder AHB is particularly well suited to obtain a compromise between the processability of the foam and the early development of the hydrate network. In an alternative embodiment, such a property can be obtained by using a low density hollow filler dispersed in a cement slurry mainly composed of the high alumina hydraulic binder AHB. In a preferred alternative, fillers selected from reactive fillers are used to modify these properties. These phases develop extremely high hydraulic potential after contact of the binder AHB with water, immediately causing a large number of small hydrates (which can have submicron to micron 153561.doc 201228994 small) nucleation, thus: - first stabilized The mineral foam makes it plasticized in a certain period of time (thus preventing Ostwald ripening), which can be adjusted according to the desired processability - it is between 5 minutes and 30 minutes, or even greater than 30 minutes; • Secondly' enables the formation of a mineral hydration skeleton via infiltration, which will ensure early mechanical performance and allow for the provision of the hardened mineral foam of the invention and/or the insulating material of the invention. Particular attention is paid to the use of a hydraulic binder comprising a source of calcium sulphate or calcium sulphate to promote the production of a mafic and hydrated alumina phase which has the advantage of enhancing the mechanical properties of the hardened mineral foam and also improving its fire resistance. These binders are especially important for providing high early mechanical strength. At 24 hours, the material of the present invention has a final mechanical strength of at least 8%, which is not the case when the binder is substantially made of Portland cement. These binders also enable control and restriction of shrinkage of the cured material. The use of the hydraulic binder AHB of the invention makes it possible to obtain hardened mineral foams which are free of polymers, in particular EPS, XPS, PU and PIR type polymers, which have the desired thermal conductivity. Nature and excellent fire resistance. Therefore, this type of hydraulic binder AHB enables improved fire resistance of the material, indicating a significant improvement over foams based on EPS, XPS, Pu and PIR type polymers. In addition, the use of this type of hydraulic binder AHB improves the production reliability of mineral foams under industrial conditions, which is less sensitive to Ostwald ripening 153561.doc 201228994 and because of surfactants and The optimization of the bubble stabilizer system thus becomes less important. As a non-limiting example, the adhesive of the present invention will be capable of containing high alumina cement and calcium sulphoaluminate type cement, and the latter cement will be available from a calcium sulphate source as appropriate. Non-limiting examples of commercially available Gaoshao cement include, for example, Secar 71, Secar 51, Fondu Cement, Ternal RG, Ternal EV sold by Kerneos, and high alumina sold by Calucem, Cementos Molins, and TMC and Denka of Japan. cement. Non-limiting examples of commercially available aluminum sulfate cements include, for example, Rapidset sold by CTS, ΑΙιρΓέ cement sold by Italcementi Corporation, and calcium sulphoaluminate sold by p〇iarbear & Li〇nhead. The high aluminum hydraulic binder A Η B of the present invention enables rapid development of a hydrate network due to its reactivity, which permeates, freezes the bubble diameter and forms a mineral skeleton of the hardened mineral foam. This phenomenon occurs regardless of the reagent used to obtain the aqueous foam, i.e., independent of the blowing agent, the gas carrier or the gas generating agent. As a matter of fact, it appears that the mechanism within the scope of the present invention corresponds to mineral stabilization achieved by the formation of hydrates in the early freezing of gas or air inclusions. Therefore, a hardened mineral foam having a very uniform distribution of small bubbles is obtained. Thus, the present invention differs from the hardened mineral foam compositions described in the prior art and in particular the patent ΕΡ 0 121 524 in terms of the particular choice of hydraulic binder. The fact is that the high reactivity of the mineral compounds used makes it possible to obtain a hardened mineral foam of good quality 15356I.doc 201228994 without using, for example, a polyvinyl alcohol + borate combination. Accordingly, the mineral foams and hardened mineral foams of the present invention and the honeycomb structural heat insulating material preferably do not contain a polyvinyl alcohol + borate combination. In contrast to prior art techniques for optimizing the surfactant system to limit Ostwald ripening, the invention thus enables early management of the condensation of the mineral system and in particular overcomes the increase in bubble size and thus the increase in thermal conductivity and mechanical Ostwald ripening with reduced strength. Aqueous foam stability or mineral hair obtained by correlation with surfactants and polymers or other aqueous foam stabilizers known to those skilled in the art, such as proteins or polymers of natural or synthetic origin. The stabilization of the hardened mineral foam or cement slurry obtained by the high reactivity of the hydraulic binder AHB associated with the calcium sulphate of the present invention, compared to the improvement of the foam stability, enables reliable and A hardened mineral foam having a fine and uniform bubble network is obtained in a stable manner, thereby being condensed, '. A honeycomb-like structural insulating material having a low thermal conductivity while retaining excellent mechanical strength characteristics is then produced. The hardened mineral foam of the present invention has a lower density associated with high mechanical strength than prior art mineral foams containing a large amount of phthalate. As an alternative to the present invention, porosity can be provided by the presence of a low density hollow filler in the cement slurry, optionally associated with aqueous foams. As an additional advantage that cannot be ignored, the system of the invention has excellent short-term mechanical strength (after 3 hours), in particular via the following values of compressive strength: - for materials having a lambda value below 0.08 W/mt, the CS value is above 0.2 MPa, Preferably, it is still 0.3 MPa, and even more preferably higher than or equal to 0.5 MPa, 153561.doc 15 201228994 - in the case where the λ value is in the range of 0.08 to 0.2 W/m ° C, the CS value is higher than 0.8 MPa, Preferably higher than 1 MPa and even better than 1.5 MPa. The system of the present invention is characterized by the following compressive strength values (after 24 hours): - for materials having a lambda value lower than 〇.〇8 W/nTC, the CS value is higher than 0.3 MPa, preferably higher than or equal to 0.5 MPa, - In the case where the λ value is in the range of 0.08 to 0.2 W/m ° C, the CS value is higher than 1 MPa, preferably higher than 1.5 MPa. The heat insulating material of the present invention is also characterized by a shrinkage value of less than 5 〇〇 Mm/m, preferably less than 400 μm/m, advantageously less than 300 μm/m, and even more preferably less than 200 μm/m. This shrinkage is measured according to the method taught by the NF ΕΝ 128 08-4 standard. This property advantageously provides excellent adhesion of the material of the invention to the wall for filling hollow building elements' and better stability over time. This property is especially important to avoid the formation of thermal bridges when placing foam on site: building renovation, composite panel construction. Finally, as a further advantage, the mineral foam of the present invention allows for adjustment of the setting time. This is advantageous in comparison with mineral foams which essentially develop Portland oil as a binder in the early development of very high hydrate nucleation. The time of the Portland cement-based mineral foam (without accelerator system) is usually more than 2 hours. The mineral foams and cement slurries of the present invention can have a processability as short as 5 minutes (rapid coagulation) or as long as 30 minutes. Therefore, the mineral foam of the present invention has a workability which can be easily adjusted to a value in the range of 5 to 30 minutes or even more than 3 〇 153561.doc • 16· 201228994 : value. The advantage of the adjustable condensing time is that it requires rapid condensing from (4) to 3G minutes when it is carried out, and more than 3G minutes or even over (8) hours or 2 hours for applications requiring on-site mineral foam placement. Long setting times can be advantageous. The core can be obtained by using a hydraulic binder to obtain a processability of more than 1 hour or even more than 2 hours' while at the same time after the processability period (4) to obtain kinetics for rapid mechanical performance. As is well known to those skilled in the art, the small hydrate precipitated during the processability period stabilizes the mineral foam without affecting its plastic characteristics. The trade-off between processability time and mechanical performance gain can be readily adjusted using an accelerator/blocker additive system known to those skilled in the art and described below. [Embodiment] Further, the honeycomb structure heat insulating material or the hardened mineral foam of the present invention has the following characteristics (alone or in combination): _ its pore volume is from 70% to 95%, preferably 80. /. To 95. /. Within the range; - its density is lower than or equal to 500 Kg/m3, preferably lower than or equal to 3 〇〇 Kg/m3. The density is preferably from 8 Å to 250 Kg/m3; - the average size of the perforations is less than 5 〇〇 μπι, preferably less than 4 〇〇 μιη, advantageously less than 300 μηι. The pore size is observed by optical microscopy of the cross section of the material; - its compressive strength cs is higher than or equal to M2 Mpa at 3 hours, preferably higher than or equal to 0.3 MPa and even better than or equal to 〇5 Mpa; - at 600 C, preferably at 90 (TC and even better at 1200. (: lower fire resistance is 3 hours. 153561.doc -17- 201228994 surprisingly, with prior art The thermally insulating material of the present invention can have a high pore volume and a low density while retaining excellent mechanical strength compared to a hardened mineral foam type material. The combination of these properties is produced by the particular high alumina hydraulic binder composition selected. The composition enables the incorporation of a large amount of air bubbles or a large amount of hollow filler while retaining a mineral network having a strong cohesive force. - The hydraulic binder AHB may comprise the following materials based on the total weight of the hydraulic binder: - 10 weight % to 90% by weight, preferably 1% by weight to 7% by weight, even more preferably 10% to 50% by weight and most preferably 20% by weight to 40% by weight of ◦/◦ sulphuric acid. The agent can further comprise 〇 weight ❶ To the weight % Portland cement 'preferably 0% by weight to less than 5% by weight and even more preferably 2 parts 〇 / 〇 to less than 5% by weight of Portland cement. - The hydraulic binder may further comprise a Or a plurality of additives, including an additive selected from the group consisting of a foaming agent and a foaming agent crosslinking agent, a coagulant, a retarder, a rheology modifier, a water retaining agent, a dispersing agent, and a plasticizer, preferably The additive comprises up to 15% by weight, preferably at most weight % / 〇 and usually 5% by weight or less, based on the total weight of the hydraulic binder. In particular, the setting time control agent selected from the group consisting of a coagulant and a retarder may account for From 0.05% by weight to 15% by weight, preferably from 重量i% by weight to 10% by weight, based on the total weight of the hydraulic binder. Fillers or fine materials (custom fillers having a particle size of less than 1 〇〇Mm) are usually selected from the group consisting of meteorites. Blast furnace slag; steel slag; fly ash; limestone filler; particulate dioxide 153561.doc • 18- 201228994 矽·'2 cerium oxide, including pyrolysis and precipitation of cerium oxide, cerium oxide recovered in clam shell; Soil; calcium carbonate; calcium citrate; barium sulfate; metakaolin; Iron, zinc, chromium, zirconium, magnesium metal oxides; various forms of oxidation (hydrated or non-hydrated); alumina hollow beads; boron nitride; zinc lock white; barium metaborate; calcined, standard or expanded clay; Perlite; vermiculite; pumice; rhyolite; burnt powder; talc; mica; hollow, glass beads or expanded glass particles as appropriate; citrate foam crystals; Glue; sand; gravel; gravel; pebbles; carbon black; tantalum carbide; corundum; rubber particles; wood; straw. According to the invention, the fine material is a mineral filler, the composition of which is less than 100 micrometers in size. The foam may further comprise one or more other components, such as additives introduced during the preparation of the binder or mineral foam, preferably at most 15% by weight, typically 3 weights, based on the total weight of the material. , to cut to reset %. These additives may be selected from the group consisting of a foaming agent and a foam stabilizer, a coagulant, a retarder, a rheology modifier, a water retaining agent, a dispersing agent or a high-efficiency plasticizer. - hardened mineral foams or grouts may also contain other additives (such as water repellents) and thermoplastics that are completely or knively introduced during the preparation of the binder or mineral body or by spraying or impregnating the hardened mineral foam. Or thermosetting (4) 'These additives pass the honeycomb structure insulation: 0.5% to 25% by weight of the total weight, preferably 1% by weight (4) Weight step comprising fibers The hardened mineral foam or cement of the present invention can enter 153561.doc -19- 201228994 or microfibers, such as cellulose, polyethylene, poly namine, ethylene, polypropylene, polyox, metal and / or fiberglass, natural fiber (such as hemp fiber, coconut The fibers, cotton fibers, wood fibers" preferably have a length in the range of 20 4 〇 1 to 6 mm and a diameter of 10 to 800 μπι. - These fibers are introduced into the binder composition or mineral foam and may occupy the honeycomb The total weight of the structurally insulating material is at most 2 weights 〇/0. The honeycomb structural heat insulating material of the present invention preferably has a density of less than or equal to 500 Kg/m3, preferably less than or equal to 3 〇〇Kg/m3. Its density should be 80 to 250 Kg/m3 The heat insulating material of the present invention preferably contains from 5% by weight to 40% by weight, advantageously from 5% by weight to 3% by weight, based on the total weight of the insulating material, of a low density hollow filler. In an embodiment, the honeycomb structure is insulated. The material preferably has the following composition based on the total weight of the material: a) 50% by weight to 96% by weight, preferably 7% by weight, to 96% by weight and even more preferably from 90% to 96% by weight. A hydraulic binder AHB, such as the hydraulic binder AHB as defined above, containing: -10% by weight to 90% by weight, preferably 1% by weight to 7% by weight, even more preferably 10% by weight. % to 50% by weight and even more preferably 2% by weight to 4% by weight. /0 calcium sulfate, and b) 1% to 40% by weight of at least one material selected from reactive fillers, c) 0.5% by weight to 5% by weight of material selected from reactive filler activators' 153561.doc •20· 201228994 d) 0 weight s: % to 2% by weight, preferably 〇% by weight to i% by weight of fibers or microfibers, and e) 〇% by weight to 15% by weight selected from foaming agents and stabilizers or foam crosslinkers, accelerators The retarder, the rheology modifier and the water retaining agent, the dispersing agent and the additive of the high-efficiency plasticizer. In another embodiment of the present invention, the bee (10) structural heat insulating material preferably has the following composition based on the total weight of the material. : a) 50% by weight to 96% by weight, preferably 7% by weight, to % by weight and even preferably 90% by weight to 96% by weight of hydraulic binder ahb, such as the hydraulic binder AHB as defined above, Containing: _ 10% by weight to 90% by weight 'preferably 1% by weight to 70% by weight, even more preferably 10% by weight/〇 to 50% by weight and even more preferably 2% by weight to 4% by weight of sulfuric acid Calcium, and b) 1% by weight to 80% by weight 'preferably 丨% by weight to 6% by weight, advantageously 1% to 40% by weight of at least one material selected from low-density hollow fillers, C) 0 reset % to 2% by weight, preferably 〇 weight. Heart weight % fiber or microfiber, and) I% to 15% by weight selected from foaming agents and stabilizers or foam crosslinkers, accelerators, retarders, rheology modifiers and water retention agents, Additives for dispersants and high-efficiency plasticizers. In one embodiment, the honeycomb structural insulation material preferably has the following cores based on the total weight of the material: a) 50% by weight to 96% by weight 'preferably 7% by weight to % by weight and even 153561.doc 21 - 201228994 more preferably from 90% by weight to 96% by weight of hydraulic binder AHB, such as the hydraulic binder AHB as defined above, containing: from 10% by weight to 90% by weight, preferably from 10% by weight to 70% by weight, Even more preferably from 10% by weight to 50% by weight and even more preferably from 20% by weight to 40% by weight of calcium sulphate, and from -0% by weight to less than 5% by weight of Portland cement, b) from 4% by weight to 50% by weight, Preferably 4% by weight to 30% by weight and even more preferably 4% by weight of β/❶ to 10% by weight of fines, c) 0% by weight/〇 to 2% by weight 'preferably 〇% by weight to 1% by weight. Fiber or microfiber, and d) 0% by weight to 15% by weight selected from the group consisting of a foaming agent and a stabilizer or a foam crosslinking agent, a coagulant, a retarder, a rheology modifier, a water retaining agent, a dispersing agent, and A highly effective plasticizer additive. The materials of the present invention may have an open or closed honeycomb structure, typically open and closed. The present invention is further directed to a mineral foam serving as a precursor for obtaining a honeycomb structural heat insulating material (hardened mineral foam) of the present invention. The mineral foam of the present invention for use in the manufacture of the honeycomb structural insulation material described hereinafter may have the following features (alone or in combination): • It comprises: - at least one hydraulic binder AHB, such as the hydraulic bond described above Agent AHB, which optionally contains calcium sulphate and/or, as the case may be, Portland cement, at least one filler, preferably finely divided, - at least one aqueous and/or non-aqueous solvent, and 153,561.doc • 22· 201228994 _At least - a gas, such as air,
用於獲得本發明之蜂窩狀社 之前驅體。 二氧化碳或氮氣》 令空填充劑之水泥漿,其充當 構絕熱材料(硬化礦物發泡體) ,·Ό構絕熱材料的本發明之 以下特徵(單獨或組合): 用於製造下文令描述之蜂窩狀結構絕 含有中空填充劑之水泥漿可具有以 •其包含: ’其視情況含有硫酸 -至少一種水硬性黏合劑Αηβ, 弼及/或視情況含有波特蘭水泥, -至少一種低密度中空填充劑, •至少一種水性及/或非水性溶劑。 在本發明之水泥漿或礦物發泡體中,引入低密度中空填 充劑,其量以水泥漿或礦物發泡體中乾物質總重量計在丄 重量%至80重量%,較佳1重量%至6〇重量%,有利重量 %至40重量% ’最佳5重量%至3〇重量%範圍内。 用於實施本發明之礦物發泡體及水泥漿之組合物宜包 含: 尚I呂水硬性黏合劑,諸如上文中定義之高銘水硬性點合 劑。 黏合劑較佳包含以黏合劑總重量計1 〇重量。/。至90重量〇/〇 之硫酸鈣。 此荨礦物發泡體或水泥漿組合物宜另外含有至少一種選 自反應性填充劑之填充劑。其亦可含有低密度中空填充 劑0 153561.doc •23· 201228994 如本文所用,反應性填充劑意欲意謂參與水硬性黏合劑 之水合反應的填充劑。根據本發明,稱為「反應性填充 劑」之材料類別不包括波特蘭水泥及石夕酸辦。 對於製造本發明之硬化礦物發泡體材料,礦物發泡體或 水泥漿組合物較佳包含1重量%至30重量%,較佳i 5重量% 至15重量。/。,有利地2重量%至1〇重量%至少一種選自反應 性填充劑之填充劑,此百分比係以礦物發泡體中乾物質總 重量計。 對於製造本發明之硬化礦物發泡體材料,礦物發泡體或 水泥漿組合物宜包含以礦物發泡體組合物總重量計〇 5重 里%至5重量%之至少一種反應性填充劑活化化合物。 如本文所用,反應性填充劑活化化合物意欲意謂選自鹼 金屬及鹼土金屬鹽,尤其鹼金屬及鹼土金屬碳酸鹽及硫酸 鹽之化合物。除上文提及之反應性填充劑及低密度中空填 充劑外,本發明之礦物發泡體組合物亦可含有化學惰性填 充劑或細料。其宜佔礦物發泡體或水泥漿乾物質重量之工〇 重量%至70重量%。 在特定實施例中,黏合劑亦可視情況含有以黏合劑總重 量計0%至小於5%之波特蘭水泥。 矽酸鈣為波特蘭水泥之一種組份,且傳統上佔組合物中 波特蘭水泥之40重量%至60重量%。 本發明之黏合劑宜含有0重量%至小於3重量%,最佳小 於2重量%之鹼金屬或鹼土金屬矽酸鹽,此組份單獨使用 或併入作為波特蘭水泥之一種成份。 153561.doc •24· 201228994 其可含有以礦物發泡體或水泥漿重量計〇重量%至小於5 重量%之氫氧化鈣及氧化弼(兩種材料均以累積重量% 計)。 用於本發明黏合劑之適當反應性填充劑或細料(慣用填 充劑粒徑小於100 μΓΠ)尤其包括:矽石菸;高爐渣;鋼 渣;飛灰;偏高嶺土;二氧化矽,包括熱解及沈澱二氧化 矽、穀殼中回收之二氧化矽;矽藻土;各種形式之氧化鋁 (水合或非水合);氧化鋁中空珠粒;煅燒、標準或膨脹黏 土,石夕氣凝膠;火山灰。在可作為反應性填充劑用於本發 明之化學材料中,一些材料以各種粒徑存在。在此等材料 之現有粒徑中,一些粒徑對應於化學惰性結構。本發明中 反應性填充劑之使用意欲與材料形式相關,該形式實際上 使得此材料能夠參與水硬性黏合劑之水合反應。當存在 時’波特蘭水泥不屬於反應性填充劑類別。 較佳地’用於本發明之反應性填充劑之中值直徑d5〇低 於或等於30 μηι,有利地低於或等於15 μιη。 較佳地,用於本發明之反應性填充劑之中值直徑d90低 於或等於80 μηι,有利地低於或等於35 μιη。 如本文所用’中值直徑〇<低於或等於y μιη意欲意謂χ〇/〇 粒子之直徑低於y μηι。使用Malvern型雷射粒度計實現量 測。 非反應性填充劑或細料(慣用填充劑粒徑小於100 μπι)通 常選自石灰石填充劑;微粒二氧化矽;碳酸鈣;硫酸鋇; 欽、鐵、鋅、鉻、锆、鎂金屬氧化物;氮化硼;鋅鋇白; 153561.doc -25· 201228994 偏硼酸鋇;珍珠岩;蛭石;浮石;流紋岩;燒粉;滑石; 雲母;視情況選用之中空玻璃珠粒或膨脹玻璃顆粒;石夕酸 鹽發泡體晶粒;石少;碎襟石;碟石;印石;碳黑;碳化 石夕;剛玉;橡膠顆粒;木材;稻草。 包含中空填充劑之礦物發泡體或漿料組合物之特徵進一 步在於: •其可進一步較佳包含選自界面活性劑、輸氣劑及/或 氣體產生劑之化合物, •其具有可調節為5-30分鐘之可加工性或超過3〇分鐘之 可加工性, -溶劑佔礦物發泡體總重量之1〇重量。/❶至4〇重量%, 較佳20重量%至3〇重量〇/0, 其了進步包含一或多種選自發泡劑及穩定劑或發泡 體交聯劑、促凝劑、緩凝劑、流變改質劑及保水劑、 分散劑及高效塑化劑之添加劑, •其可進一步包含選自防水劑、纖維、熱塑性或熱固性 聚合物之其他添加劑。 本發明之適當礦物發泡體組合物宜具有以礦物發泡體總 重量計之以下組合物: -50重量%至8〇重量%,較佳6〇重量❶/〇至7〇重量。/〇水 硬性黏合劑AHB1 〇,在40重量。/〇情況下,較佳20 重量%至30重量%溶劑, -2重量%至1 〇重量% ’較佳2重量%至5重量。/〇細 料,及視情況選用的以下物質, 153561.doc •26· 201228994 -0.1重量%至15重量%,較佳3重量%至1 〇重量%選 自發泡劑及穩定劑或發泡體交聯劑、促凝劑、緩 凝劑、流變改質劑及保水劑、分散劑及高效塑化 劑之添加劑, 其中尤其為: -0.1重量%至2重量%發泡劑, -0_1重量%至2重量%交聯劑, -0.1重量%至2重量%分散劑, -0.1重量%至10重量%促凝劑或緩凝劑。 本發明進一步係關於一種用於製造礦物發泡體,諸如上 述礦物發泡體之方法。用於製造發泡體之方法及裝置為已 知的且描述於例如專利1182005/0,126,781及1;3 4,731,389 中。 本發明方法包含以下步驟: a) 由至少包含水及至少一種選自發泡劑、輸氣劑及氣 體產生劑之化合物的組合物製備水性發泡體, b) 製備水泥漿,其包含: -混合黏合劑與溶劑及視情況選用之至少一種選自界面 活性劑、輸氣劑及氣體產生劑之化合物, c) 將一或多種填充劑完全或部分引入水性發泡體及/或 水泥漿中, d) 將水性發泡體與漿料混合在一起。 根據另一實施例,可根據包含以下步驟之製備方法製備 礦物發泡體: 153561.doc -27· 201228994 a) 製備水泥漿,其包含: 將黏合劑與溶劑及視情況選用之至少一種選自界面 活性劑、輸氣劑及氣體產生劑之化合物混合在一起, b) 將氣體注射至漿料中,同時最大化氣體與水泥激之 間的接觸表面, c) 在步驟a)期間或之後或在步驟b)期間或之後將—或多 種填充劑完全或部分併入。 根據另一實施例,可根據包含以下步驟之製備方法製備 本發明之含有中空填充劑之水泥漿: a) 製備水泥漿,其包含: 將黏合劑AHB與溶劑混合在一起, b) 將至少一種低密度中空填充劑併入漿料中, c) 在步驟a)期間或之後或在步驟b)期間或之後將一或多 種填充劑完全或部分併入。 备用於製備本發明之含有中空填充劑之礦物發泡體或水 泥漿時,反應性填充劑活化化合物可引入水泥聚中或與填 充劑一起引入。 在上述全部二個貫施例中,添加劑(諸如凝結活化劑等) 可完全或部分地引入漿料或發泡體中或在組合發泡體與漿 料之後引入。 可例如使用靜態混合器實現氣體與水泥漿之間的接觸表 面之最大化。此外,將填充劑同時完全或部分引入漿料及 氣體中可增加氣體與漿料之間的接觸表面。 根據另一實施例,當製備包含水硬性黏合劑AHB,視情 153561.doc •28· 201228994 況含有硫酸鈣、溶劑及視情況選用之填充劑(其可在製備 漿料時或在此步驟之後完全或部分引人)之水泥漿時,可 ••里由簡易輸氣在不添加界面活性劑的情況下產生礦物發泡 體0 最終,本發明係關於礦物發泡體或硬化礦物發泡體之用 途,其係用作蜂窩狀結構絕熱材料以用於製造絕熱材料: -用於製造包含至少一個以礦物發泡體或硬化礦物發泡 體為主之絕熱層的預鑄面板, -用於藉由現場置放該礦物發泡體來填充設施中諸如牆 壁、天花板、中空塊、門、管道之建築元件的中空部分, •用於藉由現場置放發泡體與管道下表面接觸來製造熱 炕, -用於藉由現場置放該礦物發泡體來戶外施用用於對建 築物進行表面處理之具有絕熱功能之單層。 當硬化礦物發泡體用於製備用於此等應用(絕熱)之材料 時’ 20°c下導熱係數低於或等於0.045 w/m/C為尤其有利 的。 本發明進一步係關於礦物發泡體或硬化礦物發泡體在絕 熱耐火應用中之用途: -用於製造耐火磚, •用於藉由現場置放該礦物發泡體來製造整體混凝土。 當礦物發泡體或硬化礦物發泡體用於製備用於絕熱耐火 應用之材料時,通常經由使用先前提及之輕質填充劑以限 制燒製後之收縮及增加機械強度來增強結構。 153561.doc -29· 201228994 此外,此應用中20。(:下導熱係數低於或等於〇 2 w/mt 且較佳低於或等於0.15 W/m°C即可。 本發明之黏合劑較佳為鈣礬石黏合劑。如本文所用鈣 礬石黏合劑意欲意謂水硬性黏合劑,其組份在正常使用條 件下之水合作用後提供作為主要水合物之鈣礬石,鈣礬石 為具有式3CaO,Ah〇3.3CaS〇4.32H2〇之三硫化鋁酸辦 (trisulfocalcium aluminate)。含有硫酸鈣之黏合劑AHB經 由水合作用引起形成鈣礬石。因此,本發明之水硬性黏合 劑AHB包含以水硬性黏合劑總重量計較佳1〇重量%至%重 量%之硫酸鈣,較佳10重量%至7〇重量%,甚至更佳1〇重 量%至5〇重量。/。且最佳20重量%至40重量%。 硫酸鈣源於天然或合成來源之化合物,或藉由處理選自 硬石膏、半水合物、石膏及其組合之副產物而獲得。使用 包含高反應性材料之水硬性黏合劑AHB使得能夠獲得具有 極低黏合劑比率之礦物發泡體、水泥漿及絕熱材料,例如 以組合物總重量計低於20重量%,較佳低於1〇重量%或甚 至為4重量%。 視應用而定,本發明之蜂窩狀結構絕熱材料較佳包含至 多70重量%填充劑’甚至更佳至多6〇重量%填充劑。 因此,本發明之水硬性黏合劑可主要包含高鋁水泥及 (或)硫鋁酸鈣水泥。然而,其可包含波特蘭水泥作為微量 組份,較佳最大量為以水硬性黏合劑總重量計5重量〇/〇。 本發明材料亦具有顯著耐火性質。可觀測到,當使用舞 礬石黏合劑時,由於鈣礬石分子結構中存在大量結合水而 153561.doc •30· 201228994 使得此性質更為明顯。 本發明之水硬性黏合劑較佳包含凝結時間控制添加劑, 諸如促凝劑或緩凝劑。其佔以水硬性黏合劑總重量計 重量%至15重量%,較佳0.1重量%至1〇重量0/〇。 用於本發明之促凝劑可為任何已知類型。使用促凝劑使 得能夠調節礦物發泡體或水泥漿之可加工性。作為說明性 實例可提及铭酸鈉、碎酸納、铭酸鉀、硫酸鋁、碳酸卸、 鋰鹽(諸如氫氧化鋰、硫酸鋰及碳酸鋰.),其單獨或組合使 用。 用於本發明之緩凝劑可為任何已知類型,且作為說明性 貫例可尤其提及檸檬酸、酒石酸、葡糖酸鹽及硼酸及其 鹽’其單獨或組合使用。 可在包括纖維素醚、瓜爾醚、澱粉醚、締合聚合物、經 由生物醱酵獲得之聚合物(諸如三仙膠、文萊膠)之家族中 選擇保水劑及流變改質劑。 為限制硬化礦物發泡體内部之濕氣轉移以免顯著增加導 熱係數且因此顯著降低絕熱效率,宜在礦物發泡體或水泥 槳·物質製備期間或經由浸潰硬化礦物發泡體將完全或部分 引入之防水劑併入礦物發泡體或水泥漿物質中。作為適當 防水劑之說明性、非限制性實例,可提及: -聚二曱矽氧烷類型之矽油,其可經Si_H、si(〇Me)、 Si(OEt)型反應基團官能化或未經官能化,由此等油獲得水 性乳液’諸如專利US 5,373,079中所描述; -有機矽烷,諸如專利US 2,005, 018,217,4中描述之三烷 153561.doc -31 - 201228994 氧基矽烷及矽氮烷; •聚石夕氧鹽(siliconate)’諸如甲基聚石夕氧鉀; -石蠟、硬脂酸鹽及油酸鹽類型的蠟、植物油及其衍生 物’諸如由Novance公司出售之產品。 此等防水劑將視其性質使用,無溶劑,或在溶劑中稀 釋’或在水中分散或乳化。 為增強硬化礦物發泡體之機械性質,宜在礦物發泡體或 水泥漿製備期間引入聚合物,諸如聚乙烯醇、聚醯胺、呈 液體形式或呈粉末形式之乳膠。 如本文所用,乳膠意欲意謂經由稀系不飽和單體之自由 基聚合獲得之一或多種聚合物之乳液,該等烯系不飽和單 體選自苯乙烯;苯乙烯衍生物;乙烯;乙酸乙烯酯;氣乙 烯’二氣亞乙烯;丙酸乙烯酯;正丁酸乙烯酯;月桂酸乙 嫦醋;特戊酸乙烯酯及硬脂酸乙烯酯;VEOVA。9至11 ; (甲基)丙烯醯胺;曱基丙烯酸之(C1_C20)烷基酯;甲基丙 烯酸與具有1至12個碳原子之烷醇形成之(C2_C2〇)烯基 醋’諸如丙烯酸與曱基丙烯酸之曱酯、乙酯、正丁酯、異 丁酯、第三丁酯及2-乙基己酯;腈;丙烯腈;二烯,諸如 1,3-丁二烯、異戊二烯;攜帶兩個乙烯基、兩個亞乙烯基 或兩個伸烷基之單體。 亦可預期’在礦物發泡體或水泥漿製備期間或藉由噴霧 或浸潰於硬化礦物發泡體上完全或部分地引入一些熱固性 或光可交聯聚合物。 作為非限制性實例,熱固性聚合物(其在熱或輻射作用 153561.doc -32- 201228994 環氧樹脂及聚 下交聯)之適當實例包括聚胺基甲酸酯 酯0 用於本發明之填充劑通常為用作填充試劑之惰性物質。 在尤其有利實施例中,預期在礦物發泡體中使用反應性填 充劑。在另一有利替代例中,預期在礦物發泡體或水泥漿 中使用低密度中空填充劑。填充劑可本質上為礦 物。礦物填充劑可例如選自矽石菸;高爐逢;鋼逢;飛 灰;石灰石填充劑;微粒二氧化矽;〕氧化矽,包括熱解 及沈澱二氧化矽、榖殼中回收之二氧化矽;矽藻土:碳酸 約,硫酸鋇;偏高嶺土;鈦、鐵、辞、絡、錯、鎮金屬氧 化物;各種形式之氧化鋁(水合或非水合);氧化鋁中空珠 粒;氮化硼;辞鋇白;偏硼酸鋇;煅撓、標準或膨脹黏 土;珍珠岩;蛭石;浮石;流紋岩;燒粉;滑石;雲母; 視情況選用之中空玻璃珠粒或膨脹玻璃顆粒;石夕氣凝膠; 石夕酸鹽發泡體晶粒;砂;碎襟石;礫石;及/或印石。可 在由有機聚合物珠粒(聚四氟乙烯、聚乙烯、聚丙稀、聚 苯乙烯、聚氣乙烯、聚二曱矽氡烷)、橡膠顆粒、木材(諸 如軟木粉)、填充劑木材、稻草及/或聚苯乙烯薄片構成之 群中選擇有機填充劑。 較佳使用低密度中空填充劑。填充劑之密度較佳低於新 製灰泥之密度(其小於3)。低密度中空填充劑之密度通常小 於0.5 ’較佳小於〇.1,有利地小於〇 〇5。中空填充劑大小 較佳在10 μιη至2·5 mm範圍内。較佳使用疏水性填充劑, 例如碳酸鈣。細料填充劑(亦即平均直徑D9G小於或等於5 μπι, 153561.doc 201228994 較佳小於1 μιη之填充劑)增強礦物發泡體》本發明材料較 佳包含平均直徑(D9G)小於或等於5 μιη之填充劑。 作為發泡體玻璃顆粒,可提及以商標Poraver®出售之顆 粒,其體密度隨粒徑而變,在140至53 0 Kg/m3範圍内。舉 例而言,具有4-8 mm標準粒徑之顆粒之體密度為180 kg/m3且具有0.1-0.3 mm粒徑之顆粒之密度為400 kg/m3。 亦可提及發泡體玻璃顆粒Liaver,其粒徑在0.25至4 mm範 圍内’以及以商標名Misapor®出售之具有較高粒徑(〇-72 mm)之晶粒。 作為中空玻璃珠粒,可提及由3M、Potters PQ及Akzo Nobel Expancel公司出售之玻璃珠粒,其粒徑在2〇 0爪至 110 μιη範圍内且密度為約1〇〇 kg/m3。 使用由 Trelleborg Fillite、Potters PQ、Omega Minerals 公司出售之產品作為空心微珠(cen0Sphere)。此等填充劑 為粒徑為0-0.5 mm之空心微珠,其體密度在35〇至45〇 kg/m3範圍内。 作為石夕酸鹽發泡體晶粒’可提及晶粒SLS(g)2〇,其為極 輕質晶粒’本質上為疏水性的。 所用膨脹黏土為例如粒徑為〇_4 mm且體密度為約2〇〇 kg/m3之膨脹黏土。 浮石為高孔隙率火山岩,其通常具有小於丨之低密度。 浮石粒徑較佳在0.3至8 mm範圍内。此產品由Quick Μίχ& 司出售。 根據本發明使用之膨脹黏土較佳具有1至8 mm範圍内之 153561.doc -34- 201228994 粒徑及280至650 kg/m3範圍内之體密度。此等產品由MaxhUsed to obtain the honeycomb precursor of the present invention. Carbon dioxide or nitrogen cement slurry for empty fillers, which acts as a heat insulating material (hardened mineral foam), the following features of the invention (alone or in combination): for the manufacture of honeycombs as described below A cement slurry having a hollow filler containing a hollow filler may have: • it contains sulfuric acid as appropriate - at least one hydraulic binder Αηβ, 弼 and/or, as the case may be, Portland cement, at least one low density hollow Filler, • at least one aqueous and/or non-aqueous solvent. In the cement slurry or mineral foam of the present invention, a low-density hollow filler is introduced in an amount of from 5% by weight to 80% by weight, preferably 1% by weight, based on the total weight of the dry matter in the cement slurry or mineral foam. Up to 6% by weight, preferably from 5% by weight to 40% by weight 'best 5% to 3% by weight. The composition for use in the practice of the mineral foam and cement slurry of the present invention preferably comprises: a water-based adhesive, such as the high-temperature hydraulic dot-binding agent as defined above. The binder preferably comprises 1 〇 by weight based on the total weight of the binder. /. To 90 weight 〇 / 〇 of calcium sulfate. Preferably, the cerium mineral foam or cement slurry composition additionally contains at least one filler selected from the group consisting of reactive fillers. It may also contain a low density hollow filler. 0 153561.doc • 23· 201228994 As used herein, a reactive filler is intended to mean a filler that participates in the hydration reaction of a hydraulic binder. According to the present invention, the material category referred to as "reactive filler" does not include Portland cement and the company. For producing the hardened mineral foam material of the present invention, the mineral foam or cement slurry composition preferably comprises from 1% by weight to 30% by weight, preferably from 5% by weight to 15% by weight. /. Advantageously, from 2% by weight to 1% by weight of at least one filler selected from the group consisting of reactive fillers, the percentage being based on the total weight of the dry matter in the mineral foam. For the manufacture of the hardened mineral foam material of the present invention, the mineral foam or grout composition preferably comprises from 5 5% to 5% by weight, based on the total weight of the mineral foam composition, of at least one reactive filler activating compound. . As used herein, a reactive filler activating compound is intended to mean a compound selected from the group consisting of alkali metal and alkaline earth metal salts, especially alkali metal and alkaline earth metal carbonates and sulfates. In addition to the reactive fillers and low density hollow fillers mentioned above, the mineral foam compositions of the present invention may also contain chemically inert fillers or fines. It preferably comprises from about 5% by weight of the weight of the mineral foam or cement slurry dry matter. In a particular embodiment, the binder may optionally contain from 0% to less than 5% Portland cement based on the total weight of the binder. Calcium citrate is a component of Portland cement and traditionally comprises from 40% to 60% by weight of Portland cement in the composition. The binder of the present invention preferably contains from 0% by weight to less than 3% by weight, optimally less than 2% by weight, of an alkali metal or alkaline earth metal silicate, which component is used alone or incorporated as a component of Portland cement. 153561.doc •24· 201228994 It may contain from 5% by weight to less than 5% by weight, based on the weight of the mineral foam or grout, of calcium hydroxide and cerium oxide (both materials in cumulative weight %). Suitable reactive fillers or fines for the adhesives of the invention (custom fillers having a particle size of less than 100 μΓΠ) include, inter alia, vermiculite; blast furnace slag; steel slag; fly ash; metakaolin; cerium oxide, including pyrolysis And precipitated cerium oxide, cerium oxide recovered in chaff; diatomaceous earth; various forms of alumina (hydrated or non-hydrated); alumina hollow beads; calcined, standard or expanded clay, Shixi aerogel; Volcanic ash. Among the chemical materials which can be used as the reactive filler in the present invention, some materials exist in various particle diameters. Among the existing particle sizes of these materials, some of the particle sizes correspond to chemically inert structures. The use of reactive fillers in the present invention is intended to be related to the form of the material which in effect enables the material to participate in the hydration reaction of the hydraulic binder. When present, 'Portland cement is not a reactive filler category. Preferably, the reactive filler used in the present invention has a median diameter d5 〇 less than or equal to 30 μηι, advantageously less than or equal to 15 μηη. Preferably, the reactive filler used in the present invention has a median diameter d90 of less than or equal to 80 μηι, advantageously less than or equal to 35 μηη. As used herein, the median diameter 〇 < below or equal to y μιη is intended to mean that the diameter of the χ〇/〇 particles is lower than y μηι. Measurements were performed using a Malvern-type laser granulometer. Non-reactive fillers or fines (common filler particle size less than 100 μm) are usually selected from limestone fillers; particulate ceria; calcium carbonate; barium sulfate; chin, iron, zinc, chromium, zirconium, magnesium metal oxides Boron nitride; zinc bismuth; 153561.doc -25· 201228994 bismuth metaborate; perlite; vermiculite; pumice; rhyolite; burnt powder; talc; mica; hollow glass beads or expanded glass selected as appropriate Granules; ashes acid foam crystals; stone less; crushed vermiculite; disc stone; printed stone; carbon black; carbonized stone eve; corundum; rubber particles; wood; straw. The mineral foam or slurry composition comprising a hollow filler is further characterized by: • it may further preferably comprise a compound selected from the group consisting of a surfactant, a gas carrier and/or a gas generating agent, • it has an adjustable 5-30 minutes of processability or more than 3 minutes of processability, - the solvent accounts for 1 〇 of the total weight of the mineral foam. /❶ to 4〇% by weight, preferably 20% by weight to 3〇% by weight/0, the progress comprising one or more selected from the group consisting of a foaming agent and a stabilizer or a foaming agent, a coagulant, a retarder An additive for a rheology modifier and a water retaining agent, a dispersing agent, and a high-efficiency plasticizer, which may further comprise other additives selected from the group consisting of water repellents, fibers, thermoplastic or thermosetting polymers. The suitable mineral foam composition of the present invention preferably has the following composition in terms of the total weight of the mineral foam: - 50% by weight to 8% by weight, preferably 6 〇 by weight 〇 / 〇 to 7 〇 by weight. / 〇 Water Hard adhesive AHB1 〇, at 40 weight. In the case of hydrazine, it is preferably from 20% by weight to 30% by weight of the solvent, from -2% by weight to 1% by weight, preferably from 2% by weight to 5% by weight. / 〇 fines, and as the case may be selected, 153561.doc • 26· 201228994 -0.1% by weight to 15% by weight, preferably 3% by weight to 1% by weight selected from foaming agents and stabilizers or foams A crosslinking agent, a coagulant, a retarder, a rheology modifier, a water retaining agent, a dispersing agent, and an additive for a high-efficiency plasticizer, among which are: -0.1% by weight to 2% by weight of a foaming agent, -0_1 by weight % to 2% by weight of a crosslinking agent, -0.1% by weight to 2% by weight of a dispersing agent, -0.1% by weight to 10% by weight of a coagulant or a retarder. The invention further relates to a method for making a mineral foam, such as the mineral foam described above. Methods and apparatus for making foams are known and are described, for example, in the patents No. 1182005/0,126,781 and 1; 3,731,389. The process of the invention comprises the steps of: a) preparing an aqueous foam from a composition comprising at least water and at least one compound selected from the group consisting of a blowing agent, a gas carrier and a gas generating agent, b) preparing a cement slurry comprising: - mixing a binder and a solvent and optionally at least one compound selected from the group consisting of a surfactant, a gas carrier and a gas generator, c) introducing one or more fillers completely or partially into the aqueous foam and/or cement slurry, d) mixing the aqueous foam with the slurry. According to another embodiment, the mineral foam can be prepared according to the preparation method comprising the following steps: 153561.doc -27· 201228994 a) preparing a cement slurry comprising: the binder and the solvent and optionally at least one selected from the group consisting of The surfactant, gassing agent and gas generant compound are mixed together, b) the gas is injected into the slurry while maximizing the contact surface between the gas and the cement, c) during or after step a) or Part or a plurality of fillers are fully or partially incorporated during or after step b). According to another embodiment, the cement slurry containing the hollow filler of the present invention can be prepared according to the preparation method comprising the following steps: a) preparing a cement slurry comprising: mixing the binder AHB with a solvent, b) at least one The low density hollow filler is incorporated into the slurry, c) one or more fillers are fully or partially incorporated during or after step a) or during or after step b). When prepared for the preparation of the mineral foam or cement slurry containing the hollow filler of the present invention, the reactive filler activating compound can be introduced into the cement or introduced together with the filler. In all of the above two embodiments, an additive such as a coagulating activator or the like may be introduced completely or partially into the slurry or the foam or after combining the foam and the slurry. Maximization of the contact surface between the gas and the cement slurry can be achieved, for example, using a static mixer. In addition, the simultaneous or partial introduction of the filler into the slurry and gas at the same time increases the contact surface between the gas and the slurry. According to another embodiment, when the preparation of the hydraulic binder AHB is contained, the calcium sulphate, the solvent and, optionally, the filler (which may be used in the preparation of the slurry or after this step), as the case may be, 153561.doc •28·201228994 When the cement slurry is fully or partially introduced, it can be produced by a simple gas transmission without adding a surfactant. Finally, the present invention relates to a mineral foam or a hardened mineral foam. Use for use as a honeycomb structural insulation material for the manufacture of thermal insulation materials: - for the manufacture of enamel panels comprising at least one thermal insulation layer based on mineral foam or hardened mineral foam, - for The hollow portion of the building component such as walls, ceilings, hollow blocks, doors, and pipes is filled by placing the mineral foam on site, and is used to manufacture the foam by in-situ contact with the lower surface of the pipe. Heat enthusiasm - used to apply a single layer of thermal insulation for surface treatment of buildings by placing the mineral foam on site. It is especially advantageous when the hardened mineral foam is used to prepare a material for such applications (insulation) at a thermal conductivity of less than or equal to 0.045 w/m/C at 20 °C. The invention further relates to the use of mineral foams or hardened mineral foams in adiabatic refractory applications: - for the manufacture of refractory bricks, - for the manufacture of monolithic concrete by placing the mineral foam on site. When mineral foams or hardened mineral foams are used to prepare materials for use in adiabatic refractory applications, the structure is typically enhanced by using the previously mentioned lightweight fillers to limit shrinkage after firing and to increase mechanical strength. 153561.doc -29· 201228994 Also, this application is 20. (The lower thermal conductivity is lower than or equal to 〇2 w/mt and preferably lower than or equal to 0.15 W/m ° C. The adhesive of the present invention is preferably an ettringite binder. As used herein, ettringite The binder is intended to be a hydraulic binder, and the component provides ettringite as a main hydrate after hydration under normal use conditions, and the ettringite has the formula 3CaO, Ah〇3.3CaS〇4.32H2〇 Trisulfocalcium aluminate. The calcium sulphate-containing binder AHB causes ettringite formation by hydration. Therefore, the hydraulic binder AHB of the present invention contains preferably 1 〇 by weight based on the total weight of the hydraulic binder. % to % by weight of calcium sulfate, preferably 10% by weight to 7% by weight, even more preferably 1% by weight to 5% by weight, and most preferably 20% by weight to 40% by weight. Or a synthetically derived compound, or obtained by treating a by-product selected from the group consisting of anhydrite, hemihydrate, gypsum, and combinations thereof. The use of a hydraulic binder AHB comprising a highly reactive material enables a very low binder ratio to be obtained. Mineral foam, water The slurry and the heat insulating material are, for example, less than 20% by weight, preferably less than 1% by weight or even 4% by weight based on the total weight of the composition. Depending on the application, the honeycomb structural insulating material of the present invention preferably comprises at most 70% by weight of the filler 'even more preferably up to 6% by weight of filler. Therefore, the hydraulic binder of the present invention may mainly comprise high alumina cement and/or calcium sulphoaluminate cement. However, it may comprise Portland Cement as a minor component, preferably in a maximum amount of 5 〇/〇 based on the total weight of the hydraulic binder. The material of the present invention also has significant refractory properties. It can be observed that when using the sarcophagus binder, it is due to calcium strontium. There is a large amount of bound water in the stone molecular structure and 153561.doc • 30· 201228994 makes this property more obvious. The hydraulic binder of the present invention preferably contains a setting time control additive such as a coagulant or a retarder. The total weight of the hydraulic binder is from 1% by weight to 15% by weight, preferably from 0.1% by weight to 1% by weight. The coagulant used in the present invention may be of any known type. The use of a coagulant enables adjustment Processability of foam or cement slurry. As illustrative examples, sodium sulphate, sodium sulphate, potassium citrate, aluminum sulfate, carbonic acid slag, lithium salt (such as lithium hydroxide, lithium sulfate, and lithium carbonate) may be mentioned. . . , used alone or in combination. The retarder used in the present invention may be of any known type, and as an illustrative example, mention may be made especially of citric acid, tartaric acid, gluconate and boric acid and salts thereof. Used alone or in combination. Water retaining agents and streams can be selected from a family of polymers including cellulose ethers, guar ethers, starch ethers, associative polymers, bio-fermented polymers (such as Sanxian gum, Brunei gum). In order to limit the moisture transfer inside the hardened mineral foam to avoid significantly increasing the thermal conductivity and thus significantly reducing the adiabatic efficiency, it is preferred to foam during mineral foam or cement paddle material preparation or through impregnation hardening. The body incorporates the fully or partially introduced water repellent into the mineral foam or cement slurry material. As illustrative, non-limiting examples of suitable water repellents, mention may be made of: - polydioxane type eucalyptus oils which may be functionalized by Si_H, si(〇Me), Si(OEt) type reactive groups or Without being functionalized, the oil is thus obtained as an aqueous emulsion as described in the patent US 5,373,079; - an organic decane such as the trioxane 153561.doc -31 - 201228994 oxydecane and hydrazine described in the patent US 2,005,018,217,4 Alkane; • polysilicone such as methyl polypotassium; - paraffin, stearate and oleate type waxes, vegetable oils and derivatives thereof such as those sold by Novance . These water repellents will be used depending on their nature, solvent free, or diluted in a solvent' or dispersed or emulsified in water. In order to enhance the mechanical properties of the hardened mineral foam, it is preferred to introduce a polymer such as polyvinyl alcohol, polyamide, a latex in liquid form or in powder form during the preparation of the mineral foam or cement slurry. As used herein, latex is intended to mean an emulsion of one or more polymers obtained by free radical polymerization of a dilute unsaturated monomer selected from the group consisting of styrene; styrene derivatives; ethylene; acetic acid Vinyl ester; ethylene ethylene 'diethylene vinylene; vinyl propionate; vinyl butyrate; acetal laurate; vinyl pivalate and vinyl stearate; VEOVA. 9 to 11; (meth) acrylamide; (C1_C20) alkyl methacrylate; (C2_C2 〇) alkenyl vinegar formed by methacrylic acid with an alkanol having 1 to 12 carbon atoms such as acrylic acid Ethyl methacrylate, ethyl ester, n-butyl ester, isobutyl ester, tert-butyl ester and 2-ethylhexyl ester; nitrile; acrylonitrile; diene, such as 1,3-butadiene, isoprene Ane; a monomer that carries two vinyl groups, two vinylidene groups, or two alkylene groups. It is also contemplated that some thermosetting or photocrosslinkable polymers may be introduced, in whole or in part, during the preparation of the mineral foam or grout or by spraying or impregnating the hardened mineral foam. By way of non-limiting example, suitable examples of thermoset polymers (which are thermally or radiantly 153561.doc-32-201228994 epoxy and poly-crosslinking) include polyurethane esters 0 for use in the filling of the present invention. The agent is usually an inert substance used as a filling agent. In a particularly advantageous embodiment, it is contemplated to use a reactive filler in the mineral foam. In another advantageous alternative, it is contemplated to use a low density hollow filler in a mineral foam or cement slurry. The filler can be mineral in nature. The mineral filler may, for example, be selected from the group consisting of meteorites; blast furnaces; steel ash; fly ash; limestone fillers; particulate cerium oxide; cerium oxide, including pyrolysis and precipitation of cerium oxide, cerium oxide recovered from cerium shells. ; diatomaceous earth: carbonic acid, barium sulfate; metakaolin; titanium, iron, rhyme, complex, wrong, town metal oxide; various forms of alumina (hydrated or non-hydrated); alumina hollow beads; boron nitride ; 钡白; bismuth metaborate; calcined, standard or expanded clay; perlite; vermiculite; pumice; rhyolite; burnt powder; talc; mica; hollow glass beads or expanded glass granules, optionally selected; Xiqi gel; agglomerate foam crystal; sand; crushed vermiculite; gravel; and/or printed stone. Can be used in organic polymer beads (polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, polyethylene, polydioxane), rubber particles, wood (such as cork powder), filler wood, An organic filler is selected from the group consisting of straw and/or polystyrene sheets. A low density hollow filler is preferably used. The density of the filler is preferably lower than the density of the new mortar (which is less than 3). The density of the low density hollow filler is usually less than 0.5', preferably less than 〇1, advantageously less than 〇5. The hollow filler size is preferably in the range of 10 μm to 2·5 mm. Hydrophobic fillers such as calcium carbonate are preferably used. Fine filler (i.e., filler having an average diameter D9G less than or equal to 5 μm, 153561.doc 201228994 preferably less than 1 μm) reinforcing mineral foam. The material of the present invention preferably comprises an average diameter (D9G) of less than or equal to 5 Filler for μιη. As the foam glass particles, there may be mentioned particles sold under the trademark Poraver® whose bulk density varies depending on the particle diameter, and is in the range of 140 to 53 0 Kg/m3. For example, particles having a standard particle size of 4-8 mm have a bulk density of 180 kg/m3 and a particle having a particle size of 0.1-0.3 mm has a density of 400 kg/m3. Mention may also be made of the foam glass particles Liaver having a particle size in the range of 0.25 to 4 mm and the crystal grains having a higher particle diameter (〇-72 mm) sold under the trade name Misapor®. As the hollow glass beads, glass beads sold by 3M, Potters PQ and Akzo Nobel Expancel, which have a particle diameter in the range of 2 〇 0 claws to 110 μηη and a density of about 1 〇〇 kg/m 3 , may be mentioned. The products sold by Trelleborg Fillite, Potters PQ, and Omega Minerals were used as hollow microspheres (cen0Sphere). These fillers are hollow microspheres having a particle size of 0-0.5 mm and have a bulk density in the range of 35 〇 to 45 〇 kg/m 3 . As the asbestos foam crystal grains, the crystal grains SLS(g) 2〇, which are extremely lightweight grains, are inherently hydrophobic. The expanded clay used is, for example, an expanded clay having a particle size of 〇 4 mm and a bulk density of about 2 〇〇 kg/m 3 . Pumice is a high porosity volcanic rock that typically has a low density less than 丨. The particle size of the pumice is preferably in the range of 0.3 to 8 mm. This product is sold by Quick Μίχ& The expanded clay used in accordance with the present invention preferably has a particle size of 153561.doc -34 - 201228994 in the range of 1 to 8 mm and a bulk density in the range of 280 to 650 kg/m3. These products by Maxh
Fibo及LiaP〇r公司出售。出於節水需要,可選擇經表面處 理之膨脹黏土。 根據本發明使用之膨脹葉岩之粒徑較佳在2至8 mm範圍 内。此等產.品由Berwilit公司出售。 根據本發明使用之珍珠岩較佳具有0至6 mm範圍内之粒 徑及39至95 kg/m3範圍内之體密度。此產品由例如KnaufA Pavatex公司出售。 根據本發明使用之蛭石較佳具有〇至2 mm範圍内之粒徑 及60至160 kg/m3範圍内之體密度。此產品由例如Is〇la_Fibo and LiaP〇r are sold. For the purpose of water saving, the surface treated expanded clay can be selected. The particle size of the expanded porphyry used in accordance with the present invention is preferably in the range of 2 to 8 mm. These products are sold by Berwilit. The perlite used in accordance with the present invention preferably has a particle size in the range of 0 to 6 mm and a bulk density in the range of 39 to 95 kg/m3. This product is sold, for example, by KnaufA Pavatex. The vermiculite used in accordance with the present invention preferably has a particle size in the range of 〇 to 2 mm and a bulk density in the range of 60 to 160 kg/m3. This product is made up of, for example, Is〇la_
Mineralwolle Werke、CMMP及 Reppei公司出售。 根據本發明使用之流紋岩較佳具有1〇至35〇 圍内之 粒徑及180至350 kg/m3範圍内之體密度。此產品由例如 Lafarge Noblite公司出售。 亦可使用其他類型添加劑,諸如保水劑及流變改質劑, 其可選自纖維素at、瓜爾醚、殿粉醚、聚乙烯醇、聚丙稀 醯胺、締合聚合物、經由生物醱酵獲得之聚合物(諸如三 仙膠、文萊膠)、熱解二氧化矽、沈澱二氧化矽、合成鋰 皂石、皂土、鋰皂石之家族。 亦可使用分散劑,諸如木質素磺酸鹽、萘磺酸鹽、三聚 氰胺磺酸鹽、酪蛋白、經改質之聚羧酸鹽、包含膦酸鹽單 元之聚合物、磷酸鹽及膦酸鹽。 由水泥漿獲得礦物發泡體或含有中空填充劑之水泥漿。 水泥漿可臨時(亦即臨用前)製備。在此情況下,可首先將 153561.doc -35- 201228994 水硬性黏合劑組份與凝結時間控制劑及視情況選用之填充 劑及/或其他添加劑混合在—起以形成粉末混合物,接著 混合由此獲得之混合物與水或溶劑以形成水泥浆。 亦有可能使用即用型水性漿料,亦即預先製備之漿料。 在此情況下,聚料應穩定化以呈現長壽命,亦即至少⑽ 月’甚至更佳2個月,較佳3個月或更長,且甚至更佳至少 6個月,從而確保在儲存期限或遞送時間内安全。 如本文所用’「壽命」意欲意謂組份保持固體產物之水 杜或非水性懸浮液形式(大致為流體)之時間,該組份能夠 在無凝結情況下經由簡易機械授拌恢復水性或非水性懸浮 液狀態。 呈水相之漿料應穩定(或緩凝)數月。可例如使用侧酸或 其一種鹽(懸浮於水中)實現此目的。因此需要開始凝結以 在使用前「釋放」漿料中所含之水泥。為達成此目的,通 常使用月b夠「釋放」緩凝高銘水泥及視情況選用之能夠促 進水泥凝結之催化劑的材料,例如石灰與氫氧化經之混合 物。專利EP 0 24i 230及EP 〇 1 13 593揭示此類型系統。 為獲得本發明之礦物發泡體,可將上文描述之水泥漿與 包含至少-種選自發泡劑、輸氣劑及氣體產生劑之化合物 的水性發泡體組合。可使用諸如^中說明之用於製備水 性發泡體之設備。借助於計量泵2抽沒水與發泡劑或輸氣 劑之混合物1且將其與氣體3共注射至混合裝置5 (例如靜態 混合器(或填充有珠粒之管子))中。自氣體源3收集氣體, 例如空氣、氮氣或二氧化碳。使用流量計4監測注射氣體 153561.doc • 36 * 201228994 饥動速率。根據另一實施例,氣體與水、發泡劑及/或輸 氣劑之混合物流經數個具有直徑連續減小之珠粒的珠粒攪 样器5及6 ^最終在容器7令回收水性發泡體。 根據本發明之另一實施例,向水泥漿中直接添加至少一 種選自發泡劑、輸氣劑及氣體產生劑之化合物,接著將氣 體注射至此漿料令以形成礦物發泡體。藉由最大化氣體與 漿料之間的相互作用表面實現氣體注射以獲得大量穩定礦 物發泡體。可使用諸如圖丨中描述之設備,用添加之水泥 漿替換水與發泡劑或輸氣劑 之組合。 根據另一實施例,當製備包含水硬性黏合劑ahb '溶 劑、填充劑(較佳為反應性填充劑或低密度中空填充劑, 或例如可在製備漿料時或在此步驟之後完全或部分引入之 填充劑)的水泥漿時,可藉由輸氣在不添加界面活性劑之 情況下產生礦物發泡體。 根據另一實施例,將中空填充劑併入水泥漿中以產生孔 隙。 由此獲得之礦物發泡體或水泥漿可直接用於製造本發明 之蜂窩狀結構絕熱材料(或硬化礦物發泡體)。本發明之礦 物發泡體或水泥漿或硬化礦物發泡體有利地無需任何化學 處理’尤其任何昂貴的熱液處理。因此,可在無任何化學 或熱液處理之情況下獲得本發明之蜂寫狀結構絕熱材料。 根據本發明,可適當地使用傳統用於發泡水泥之任何發 泡劑’諸如陰離子型界面活性劑、非離子型界面活性劑及 其組合。可視情況添加用於穩定水性發泡體之添加劑〇穩 153561.doc -37- 201228994 定化添加劑可為界面活态丨七&人。 生劑或聚合物、長鏈醇(呈液體形 式或固體粒子形式),諸如專利WO/2008/020246、 而/2_67064請4,218,例中提及之炫醇酿胺親水 膠體、蛋白質。本發明之發泡 a心货忍體可不含任何發泡劑或泡沫 穩定劑。 輸氣劑為使得有可能穩定藉Μ拌所引起之㈣捕獲之 氣泡的化合物1為輸㈣,可提及木材天然樹脂、硫酸 鹽或磺酸鹽化合物、合成清潔劑及有機脂肪酸。 根據本發明使用之氣體產生劑可例如選自產生氮氣、氧 氣、氫氣、二氧化碳、—氧化碳、氨氣或甲院之化合物。 專利US 2005/0,126,781提及複數種氣體產生劑,其可根據 本發明使用。作為說明性實例,可提及含有肼或偶氮基之 化合物,諸如肼、偶氮曱醯胺、偶氮雙(異丁腈)、對甲苯 磺醯基酿肼、對甲苯磺醯基半卡肼、碳醯肼、ρ_ρ,_氧基雙 (苯磺醯肼)及其組合。不含任何肼或偶氮基之氮氣產生劑 之實例包括有機或無機酸銨鹽、羥胺硫酸鹽、尿素及其組 合。氧氣產生劑之實例為例如傳統用於清潔劑領域之漂白 劑,諸如過氧化物、過碳酸鹽、過硫酸鹽、過氧碳酸鹽。 本發明之材料(硬化礦物發泡體)或礦物發泡體或含有中空 填充劑之水泥漿尤其適用於改良設施之絕熱及耐火性。實 情為’該材料(硬化礦物發泡體)或礦物發泡體或水泥漿可 用於製造包含至少一個以該材料(硬化礦物發泡體)為主之 絕熱層的預鑄面板,諸如: -用於製造用於自外部替換用於絕熱系統之聚苯乙烯面 153561.doc • 38 - 201228994 板的面板, -用於製造夾層面板’其中在建築材料(木材、膠合 板、聚苯乙烯、灰泥、混凝土)的兩個壁之間引入礦物 發泡體或含有中空填充劑之水泥漿, -用於製造承重或非承重絕熱前壁(pre_wall),或欲用於 構造之中空塊及磚, -用於製造用於替換内部具有玻璃纖維或PU之複合平板 面板(用於房屋内部絕熱)之面板。 材料(硬化礦物發泡體)或礦物發泡體或含有_空填充劑 之水泥聚亦可用於現場置放礦物發泡體以用於填充設施中 諸如牆壁、天花板、中空塊、門、管道之建築元件的中空 部分。 材料或礦物發泡體亦可用於現場置放礦物發泡體以與用 於熱坑之官道之下表面接觸。 材料或礦物發泡體或含有中空填充劑之水泥漿亦可用於 戶外現場施用礦物發泡體,作為使建築物具有絕熱功能之 單層,其中該單層可由美觀性外漆層覆蓋。 材料或本發明之礦物發泡體或含有中空填充劑之水泥漿 ^尤其適用於製造用㈣火應狀絕熱混凝土或磚,包括 製耐火磚及現場置放礦物發泡體以用於製造整體混凝 土0 最n,本發明之礦物發泡體或含有中空填充劑之水泥漿 可用作即用型混凝土,可由1 ^ ^ ^ J田具獲付用於以下應用之絕熱材 料: 153561.doc •39· 201228994 -單壁元件中之結構、雙頭螺栓、橫壁及平板,因此使 得能夠減少接合處之熱橋, -外部混凝土殼,使得能夠減少建築物之各底板之間的 熱橋, •土平台上之平板, -填充雙壁, •屋頂及平台絕熱。 實例 I-方案之定義 1.1 -熱導率及熱收縮率之測定。 -在20°c下量測熱導率λ。 已根據標準ΕΝ 12667:2001「建築材料及產品之熱效 能。借助於保護熱板及熱流計方法測定熱阻。高級及中等 熱阻產品(Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plates and heat flow meter methods. Products of high and medium thermal resistance)」量測熱導率值 〇 1.2 -抗壓強度之測定。 根據標準ΕΝ 196-1測定3小時及24小時後1 〇〇 X 1 〇〇 X 1 〇〇 mm之混凝土立方體之抗壓強度。 1.3 -根據標準EN 993-1測定混凝土之視孔隙率。 1.3.1 -設備 -配備有用於容納樣品之籃子的緊固裝置之〇.lg种, -真空鐘罩, 153561.doc •40· 201228994 ••具有壓力計之真空果, -處於20°C下之水瓶, -處於20 °C下之水桶。 I · 3 · 2 -程序 -在烘箱中6Gt(土木工程)或11(^(耐火)下乾燥樣品μ 小時, 對乾燥樣品進行稱重(P 1), -將樣品引入真空鐘罩中, 建立真空且控制壓力計(<5〇 mBar), -在保持抽吸之同時將水緩慢引入真空鐘罩中直至樣品 上覆蓋2 cm水(在真空中浸沒樣品), -保持抽吸直至水沸騰結束(=>自孔隙移除空氣), -關閉真空鐘罩之閥門且關閉泵, -在真空中浸潰至少3小時(樣品之脫氣時間), -使鐘罩恢復大氣壓力, _移出待測試樣品且用潮濕海綿移除過量水(不乾燥樣 品), -對水飽和樣品進行稱重(P2), _稱量盤上具有水飽和樣品之秤之皮重, _將樣品引入懸掛於秤下方之金屬籃中, -在桶中約1 0 cm水下方浸沒全部樣品, -讀取重量(P3),其使得能夠量測排水量立因此能夠量 測樣品體積(水飽和試樣之浮力量測), 孔隙率(%)==(水飽和重量-乾重)/體積χ 1 〇〇 153561.doc •41 - 201228994 孔隙率(%)=(P2 - Pl)/P3* 100 1-4 :藉由比重瓶方法測定真密度及視孔隙率 1-4-1 ·•設備 -比重瓶微粒學儀器ACCUPYCII1340 -Mettler類型 +/_ o.oooi g精密秤 -瓶子+壓力調節劑氦(最小99.995%)1.5巴(21.5 psi)。 Ϊ-4-2 :有效範圍-精確度 •量測範圍:>0.2 g/cm3 -量測精確度:0.05%。 1-4-3 :程序 樣品製備: 應將樣品置放於烘箱中處於6〇。〇下(最少2小時),接著 冷卻以移除水且更快速地使量測穩定(5次相同連續量測)。 稱量樣品支撐單元之皮重且填充樣品至2/3。保留精確 質量。將單元引入比重瓶中且封閉蓋子。 經由電腦程式開始量測循環。 結果 ·· 基於單兀中存在的已知質量之材料所佔據之體積的量測 測定固體之真密度((g/cm3)。 結果對應於裝置信賴區間内5個最後結果之平均值(體積 變化為0.02%)。 0.01 g/cm3内之電腦化結果表示值。 孔隙率(%)=1·(1/量測之體密度_丨/真密度)χ 1〇〇 1-5 :經由光學顯微法量測孔隙直徑 153561.doc •42· 201228994 用可硬化樹脂(環氧樹脂)浸潰硬化礦物發泡體,使得可 藉由光學顯微法進行觀測。硬化12小時後,將樣品橫向切 割為約4 cm *4 cm之板,其厚度在0.05至3 mm範圍内。在 放大率X5下進行樣品橫截面之觀測。 II -本發明組合物之實例及本發明絕熱材料之熱導率及抗 壓強度之評估 II. A.實例 1 : II. A. 1 -製備黏合劑 向容器中添加以下組份: 組份 本發明黏合劑LI 水硬性黏合劑: 來自TM公司之鋁酸鈣 70 g 石膏 30 g 碳酸鋰 0.05 g* 檸檬酸 0.18 g* 分散劑: Mighty 21 PZ® (粉末狀聚羧酸酯醚) 0.22 g 纖維素醚 0.1 g 纖維素之微纖維: Arbocel®40(CFF)長度 0.45-1 μιη 0.5 g 填充劑: 碎石於 Rw Q1 Fuller 5g 水· 22.5 g 交聯劑: LithoF oam® NWFS 1-5 g 使用電動混合器在低速(刻度1)下混合組份30秒,接著 在高速(刻度5)下混合1分30秒。從而獲得水泥漿。 II. A. 2 -製造水性發泡體 在碗中混合以下產品: -6 g發泡劑 Lithofoam® SL400-L(20000至 120000道爾頓 153561.doc •43· 201228994 之蛋白質), -0.40 g纖維素醚, -80 g水。 用電動混合器在高速下混合所有組份5分鐘直至產生均 勻且緻密之水性發泡體。 II. A. 3 -製備礦物發泡體 借助於用電動混合器在中速(刻度3)下混合3分鐘將2〇公 克水性發泡體併入以上製備之水泥漿中。 II. A. 4-澆注且乾燥礦物發泡體 將礦物發泡體澆注至先前經模具油潤滑之4 cm*4 cm*16 cm 模具中。 II· A. 5 -礦物發泡體組成 組成 量 % (重量份) (以重量計) 黏合劑 94.5 66.8% 水 38.6 (21.2+17.4) 27.3% 發泡劑 1.3 0.9% 交聯劑 1.4 1% 填充劑 5.2 3.7% 其他添加劑 0.4(0.3+0.1) 0.3% Π. A. 6-所得絕熱材料之表徵 -密度:125 Kg/m3 -3小時之時之抗壓強度:Cs=〇.3 MPaMineralwolle Werke, CMMP and Reppei are for sale. The rhyolite used in accordance with the present invention preferably has a particle size in the range of from 1 〇 to 35 Å and a bulk density in the range of from 180 to 350 kg/m 3 . This product is sold, for example, by Lafarge Noblite. Other types of additives may also be used, such as water retaining agents and rheology modifiers, which may be selected from the group consisting of cellulose at, guar, phenolic ether, polyvinyl alcohol, polyacrylamide, associative polymers, via biopterin. A family of polymers obtained by leaven (such as Sanxianjiao, Brunei), pyrogenic cerium oxide, precipitated cerium oxide, laponite, bentonite, hectorite. Dispersing agents such as lignosulfonates, naphthalenesulfonates, melamine sulfonates, casein, modified polycarboxylates, polymers containing phosphonate units, phosphates and phosphonates may also be used. . A mineral foam or a cement slurry containing a hollow filler is obtained from the cement slurry. The cement slurry can be prepared temporarily (ie, immediately before use). In this case, the 153561.doc -35- 201228994 hydraulic binder component may first be mixed with a setting time control agent and optionally a filler and/or other additives to form a powder mixture, followed by mixing The mixture obtained is combined with water or a solvent to form a cement slurry. It is also possible to use a ready-to-use aqueous slurry, that is, a slurry prepared in advance. In this case, the aggregate should be stabilized to exhibit a long life, ie at least (10) months 'or even better 2 months, preferably 3 months or longer, and even better at least 6 months, thus ensuring storage. Safe for the deadline or delivery time. As used herein, 'lifetime' is intended to mean the time during which the component retains the form of a solid or non-aqueous suspension of the solid product (approximately fluid) which is capable of restoring water or non-coagulation via simple mechanical mixing without condensation. Aqueous suspension state. The slurry in the aqueous phase should be stable (or retarded) for several months. This can be achieved, for example, by using a side acid or a salt thereof (suspended in water). Therefore, it is necessary to start coagulation to "release" the cement contained in the slurry before use. In order to achieve this, it is common to use the monthly b to "release" the retarded Gaoming cement and the materials selected to promote the cement setting catalyst, such as a mixture of lime and hydroxide. This type of system is disclosed in the patents EP 0 24i 230 and EP 〇 1 13 593. To obtain the mineral foam of the present invention, the cement slurry described above may be combined with an aqueous foam comprising at least one compound selected from the group consisting of a blowing agent, a gas carrier and a gas generating agent. An apparatus for preparing an aqueous foam such as described in ^ can be used. The mixture 1 of water and blowing agent or gas carrier is pumped by means of a metering pump 2 and co-injected with gas 3 into a mixing device 5 (for example a static mixer (or a tube filled with beads)). Gas is collected from gas source 3, such as air, nitrogen or carbon dioxide. Use the flow meter 4 to monitor the injected gas. 153561.doc • 36 * 201228994 Rate of hunger. According to another embodiment, a mixture of gas and water, a blowing agent and/or a gas carrier flows through a plurality of bead agitators 5 and 6 having beads of continuously decreasing diameter to finally recover water in the vessel 7 Foam. According to another embodiment of the present invention, at least one compound selected from the group consisting of a blowing agent, a gas carrier, and a gas generating agent is directly added to the cement slurry, and then a gas is injected into the slurry to form a mineral foam. Gas injection is achieved by maximizing the interaction surface between the gas and the slurry to obtain a large amount of stable mineral foam. The combination of water and blowing agent or gas carrier can be replaced with an added cement slurry using equipment such as those described in the drawings. According to another embodiment, when preparing a hydraulic binder ahb 'solvent, a filler, preferably a reactive filler or a low density hollow filler, or for example, may be completely or partially after preparing the slurry or after this step When the filler of the filler is introduced, the mineral foam can be produced by the gas transfer without adding a surfactant. According to another embodiment, a hollow filler is incorporated into the cement slurry to create a void. The mineral foam or cement slurry thus obtained can be directly used for producing the honeycomb structural heat insulating material (or hardened mineral foam) of the present invention. The mineral foam or cement slurry or hardened mineral foam of the present invention advantageously does not require any chemical treatment, especially any expensive hydrothermal treatment. Therefore, the bee-writing structural heat insulating material of the present invention can be obtained without any chemical or hydrothermal treatment. According to the present invention, any foaming agent conventionally used for foaming cements such as an anionic surfactant, a nonionic surfactant, and a combination thereof can be suitably used. Additives for stabilizing aqueous foams can be added as appropriate 153561.doc -37- 201228994 The chemistry additives can be used in the interface of the 丨7 & A greening agent or a polymer, a long-chain alcohol (in the form of a liquid or a solid particle), such as the patent WO/2008/020246, and /2_67064, 4,218, the hydrolytic amine colloid, protein mentioned in the examples. The foaming of the present invention can be free of any blowing agent or foam stabilizer. The gas carrier is a compound (4) which makes it possible to stabilize the (4) trapped bubbles caused by the mixing, and mentions a natural resin, a sulfate or a sulfonate compound, a synthetic detergent, and an organic fatty acid. The gas generating agent used in accordance with the present invention may, for example, be selected from the group consisting of nitrogen, oxygen, hydrogen, carbon dioxide, carbon monoxide, ammonia or a compound. A number of gas generating agents are mentioned in the patent US 2005/0,126,781, which can be used in accordance with the invention. As illustrative examples, mention may be made of compounds containing hydrazine or an azo group, such as hydrazine, azoguanamine, azobis(isobutyronitrile), p-toluenesulfonyl hydrazine, p-toluenesulfonyl sulphate肼, carbon 醯肼, ρ_ρ, _oxy bis(phenylsulfonate) and combinations thereof. Examples of the nitrogen generating agent containing no hydrazine or azo group include an organic or inorganic acid ammonium salt, hydroxylamine sulfate, urea, and a combination thereof. Examples of oxygen generating agents are, for example, bleaching agents conventionally used in the detergent field, such as peroxides, percarbonates, persulfates, peroxycarbonates. The material of the present invention (hardened mineral foam) or mineral foam or cement slurry containing a hollow filler is particularly suitable for improving the heat insulation and fire resistance of the facility. The fact is that the material (hardened mineral foam) or mineral foam or cement slurry can be used to make a concrete panel comprising at least one thermal insulation layer based on the material (hardened mineral foam), such as: For the manufacture of panels for the replacement of polystyrene surfaces for thermal insulation systems from the outside 153561.doc • 38 - 201228994 panels, - for the manufacture of sandwich panels 'of which in construction materials (wood, plywood, polystyrene, plaster, a mineral foam or a cement slurry containing a hollow filler between two walls of the concrete) - for the manufacture of a load-bearing or non-load-bearing adiabatic front wall (pre_wall), or a hollow block and brick to be used for construction, - For the manufacture of panels for replacing composite flat panels with fiberglass or PU inside (for interior insulation in houses). Materials (hardened mineral foams) or mineral foams or cement aggregates containing _ empty fillers can also be used for on-site placement of mineral foams for filling facilities such as walls, ceilings, hollow blocks, doors, pipes The hollow part of the building element. The material or mineral foam can also be used to place mineral foam on site for contact with the underlying surface of the tunnel for hot pits. The material or mineral foam or the cement slurry containing the hollow filler can also be used for outdoor application of the mineral foam as a single layer which makes the building have a heat insulating function, wherein the single layer can be covered by the aesthetic outer paint layer. The material or the mineral foam of the invention or the cement slurry containing the hollow filler is particularly suitable for the manufacture of (4) fire-resistant insulating concrete or brick, including refractory bricks and on-site placement of mineral foam for the manufacture of monolithic concrete. 0 Most n, the mineral foam of the present invention or the cement slurry containing the hollow filler can be used as a ready-to-use concrete, which can be obtained by the 1 ^ ^ ^ J field for the following applications: 153561.doc •39 · 201228994 - Structures in single-walled components, studs, transverse walls and flat plates, thus making it possible to reduce the thermal bridge at the joints, - the outer concrete shell, so that the thermal bridge between the floors of the building can be reduced, Flat plate on the platform, - filled double wall, • roof and platform insulation. Example I - Definition of Scheme 1.1 - Determination of Thermal Conductivity and Thermal Shrinkage. - The thermal conductivity λ was measured at 20 ° c. According to the standard ΕΝ 12667:2001 "The thermal performance of building materials and products. Thermal resistance is determined by means of protective hot plates and heat flow meters. Thermal performance of building materials and products. Determination of thermal resistance by means "Measurement of thermal conductivity value 〇 1.2 - Determination of compressive strength". The compressive strength of a concrete cube of 1 〇〇 X 1 〇〇 X 1 〇〇 mm after 3 hours and 24 hours was measured according to the standard ΕΝ 196-1. 1.3 - Determine the apparent porosity of concrete according to standard EN 993-1. 1.3.1 - Equipment - 紧固.lg, equipped with a fastening device for holding the basket of samples, - vacuum bell, 153561.doc •40· 201228994 •• Vacuum fruit with pressure gauge, - at 20 °C Water bottle, - a bucket at 20 °C. I · 3 · 2 - Procedure - Dry the sample in an oven at 6Gt (civil engineering) or 11 (^ (refractory) for μ hours, weigh the dried sample (P 1), - Introduce the sample into the vacuum bell, establish Vacuum and control the pressure gauge (<5〇mBar), - slowly introduce water into the vacuum bell while holding the suction until the sample is covered with 2 cm of water (immersing the sample in vacuum), - keep pumping until the water boils End (=> remove air from the pores), - close the vacuum bell valve and close the pump, - immerse in vacuum for at least 3 hours (sample degassing time), - return the bell jar to atmospheric pressure, _ remove The sample to be tested and the excess water is removed with a damp sponge (no dry sample), - the water-saturated sample is weighed (P2), the tare weight of the scale with the water-saturated sample on the weighing plate, _ the sample is introduced into the suspension In the metal basket below the scale, - immerse all the samples below about 10 cm of water in the barrel, - read the weight (P3), which enables the measurement of the displacement and thus the sample volume (the floating force of the water-saturated sample) Measure), porosity (%) == (water saturation weight - dry weight) / Volume χ 1 〇〇153561.doc •41 - 201228994 Porosity (%)=(P2 - Pl)/P3* 100 1-4 : Determination of true density and apparent porosity by the pycnometer method 1-4-1 ·• Equipment - Pycnometer Particle Instruments ACCUPYCII1340 -Mettler Type +/_ o.oooi g Precision Scale - Bottle + Pressure Regulator 氦 (minimum 99.995%) 1.5 bar (21.5 psi) Ϊ-4-2 : Effective Range - Accuracy • Measurement range: > 0.2 g/cm3 - Measurement accuracy: 0.05% 1-4-3: Program sample preparation: The sample should be placed in an oven at 6 〇 under the armpit (minimum 2 hours), It was then cooled to remove water and stabilize the measurement more quickly (5 consecutive identical measurements). Weigh the sample support unit to tare and fill the sample to 2/3. Preserve accurate mass. Introduce the unit into the pycnometer and The lid is closed. The measurement cycle is started via a computer program. Results · The true density of the solid ((g/cm3) is determined based on the volume of the volume occupied by the material of known mass present in the unit. The result corresponds to the confidence interval of the device. The average of the five final results (volume change is 0.02%). The computerized result in 0.01 g/cm3 indicates the value. Porosity (%) = 1 · (1/Measured bulk density _ 丨 / true density) χ 1 〇〇 1-5 : Measurement of pore diameter by optical microscopy 153561.doc • 42· 201228994 Using hardenable resin (Epoxy resin) impregnated hardened mineral foam, which can be observed by optical microscopy. After 12 hours of hardening, the sample is transversely cut into a plate of about 4 cm * 4 cm, and its thickness is 0.05 to 3 mm. Within the scope. The cross section of the sample was observed at a magnification of X5. II - Example of Composition of the Invention and Evaluation of Thermal Conductivity and Compressive Strength of Insulation Material of the Invention II. A. Example 1: II. A. 1 - Preparation of Adhesive Adding the following components to a container: Component Invention Adhesive LI Hydraulic Adhesive: Calcium aluminate from TM Company 70 g Gypsum 30 g Lithium carbonate 0.05 g* Citric acid 0.18 g* Dispersant: Mighty 21 PZ® (powdered polycarboxylate ether) 0.22 g fiber Polyether 0.1 g Cellulose Microfiber: Arbocel® 40 (CFF) Length 0.45-1 μηη 0.5 g Filler: Crushed Stone on Rw Q1 Fuller 5g Water · 22.5 g Crosslinker: LithoF oam® NWFS 1-5 g Use The electric mixer mixes the components for 30 seconds at low speed (scale 1) and then mixes for 1 minute and 30 seconds at high speed (scale 5). Thereby obtaining a cement slurry. II. A. 2 - Manufacture of aqueous foams The following products are mixed in a bowl: -6 g foaming agent Lithofoam® SL400-L (20000 to 120,000 Dalton 153561.doc • 43· 201228994 protein), -0.40 g Cellulose ether, -80 g water. All components were mixed at high speed for 5 minutes using an electric mixer until a uniform and dense aqueous foam was produced. II. A. 3 - Preparation of Mineral Foam 2 g of aqueous foam was incorporated into the cement slurry prepared above by mixing with a motor mixer at medium speed (scale 3) for 3 minutes. II. A. 4-Pour and dry mineral foam The mineral foam is cast into a 4 cm*4 cm*16 cm mold previously lubricated with mold oil. II· A. 5 - Mineral foam composition % (parts by weight) (by weight) Adhesive 94.5 66.8% Water 38.6 (21.2+17.4) 27.3% Foaming agent 1.3 0.9% Crosslinking agent 1.4 1% Filling Agent 5.2 3.7% Other additives 0.4 (0.3+0.1) 0.3% Π. A. 6- Characterization of the obtained thermal insulation material - Density: 125 Kg/m3 - Compressive strength at 3 hours: Cs = 〇.3 MPa
-導熱係數:X=0.044 W/m.°C -不存在由奥斯特瓦爾德熟化引起之缺陷 -孔隙率>90%。 153561.doc •44· 201228994 II. B.實例2 :本發明絕熱材料與以波特蘭水泥52.5 R為 主之絕熱材料之間的比較 II. B.1 -製備黏合劑 向容器中添加以下組份: 組份 本發明 比較性 比較性 黏合劑 黏合劑1 黏合劑2 L2 LC1 LC2 水硬性黏合劑: 波特蘭水泥 52.5R (Lafarge Le Havre) 4.76 g 100 g 100 g IS 酸妈 Temal RG®(Kemeos) 66.67 g - - 硬石膏 28.7 g - - 碳酸鋰 0.05 g - - 碳酸鈉 - - 0.4 g 檸檬酸 0.18 g - 分散劑: Mighty® 21 PZ(粉末狀聚羧酸酯醚) 〇.2g 0.2 g 0.2 g 纖維素之微織維: Arbocel®40(CFF)長度 0.45-1 μιη 0.2 g 0.2 g 0.2 g 填充劑: 石夕石於Rw Q1 Fuller 5 g 5g 5 g 水: 22.5 g 22.5 g 22.5 g 發泡體固化劑: Lithofoam® NWFS(溶液=30% 乾物質) 1.5 g 1.5 g 1-5 g 使用電動混合器在低速(刻度1)下混合組份30秒,接著 在高速(刻度5)下混合1分30秒。 II. B.2 -製造水性發泡體 在碗中混合以下產品: -5 g發泡劑 Lithofoam® SL400-L(20000至 120000道爾頓 之蛋白質), -80 g7jc 〇 153561.doc 45- 201228994 用電動混合器在高速下混合所有組份5分鐘直至產生均 勻且緻密之水性發泡體。 π· B.3 -製備礦物發泡體 借助於用電動混合器在中速(刻度3)下混合3分鐘將2〇公 克水性發泡體併入100公克黏合劑中。 因為水性發泡體易於併入結合相中且整體為均句的,所 以更易於獲得本發明之礦物發泡體。 因為黏合劑流動性不足,所以難以獲得比較性檢驗礦物 發泡體2。 Η-Β.4-澆注且乾燥礦物發泡體 將礦物發泡體澆注至先前經模具油潤滑之4 cm*4 em*16 cm 模具中。 接著在23°C及60% RH下乾燥礦物發泡體24小時以獲得 本發明之蜂窩狀結構絕熱材料。 可觀測到,用比較性黏合劑LC1獲得之主要以波特蘭水 泥為主之礦物發泡體崩潰(圖2b),與之相對,主要以高鋁 水泥L2為主之本發明礦物發泡體不崩潰(圖2&)。圖2幻表示 主要以波特蘭水泥LC2為主之絕熱材料。所得蜂窩狀結構 絕熱材料内可觀測到較小崩潰,但其中亦存在高度非均勻 性。 II· B.5-本發明之蜂窩狀結構絕熱材料之表徵。 孔隙體積及密度之量測: 使用比重瓶量測蜂窩狀結構絕熱材料之密度,比較此量 測結果與經由水孔隙度測定法獲得之結果。兩種方法均使 153561.doc -46 - 201228994 得有可能量測出包含以高鋁水泥、硫酸鈣及波特蘭水泥為主 之黏合劑的本發明絕熱材料之密度為0.29且孔隙體積為85%。 絕熱材料孔隙直徑之量測: 用可硬化樹脂(環氧樹脂)浸潰硬化礦物發泡體,使得可 藉由光學顯微法進行觀測。硬化12小時後,將樣品橫向切 割為約4 cm*4 cm之板,其厚度在0.05至3 mm範圍内。 在放大率X5下進行樣品橫截面之觀測且說明於圖3a)及 3b)中。 如圖2a至2c所示,本發明之硬化礦物發泡體(L2,圖2a) 具有顯著機械特性,而僅以波特蘭水泥為主之硬化礦物發 泡體(LC1,圖2b及LC2,圖3b)在水性發泡體與漿料接觸後 即崩潰。 本發明之硬化礦物發泡體(L2,圖3a)包含規則分佈(4至5 個氣泡/mm2)及規則大小之氣泡,而比較性實例之硬化礦 物發泡體LC1(圖3b)具有非均勻氣泡大小及氣泡分佈。 II· C.實例3:具有中空填充劑之鈣礬石黏合劑及與以波 特蘭水泥52.5R為主之材料之比較 II. C. 1 -製備黏合劑 . 向容器中添加以下組份: 組份 具有中空及反應性 填充劑之本發明 黏合劑L3 比較性/不含中空 填充劑之黏合劑 1LC3 比較性黏合劑 100% OPC/ 黏合劑1LC4 水硬性黏合劑: 波特蘭水泥 7.15 g 7.15 g 100 g 52.5R(Lafarge Le Havre) 銘酸約Secar 35.75 g 35.75 g 51®(Kemeos) 硬石膏 12.5 g 12.5 g 153561.doc -47- 201228994 組份 具有中空及反應性 填充劑之本發明 黏合劑L3 比較性/不含中空 填充劑之黏合劑 1LC3 比較性黏合劑 100% OPC/ 黏合劑1 LC4 碳酸鈉 - - 0.4 g 檸檬酸 0.1 g 0.1 g 0.1 g 中空填充劑 Thermosilit®(*) ll.Og 反應性填充劑: 石夕石於Rw Q1 Fuller 5.03 g 5.03 g 5.03 g 分散劑: Conpac 500 0.36 g 0.36 g 0.36 g 纖維素醚: Tylose H300P2 0.11 g 0.11 g 0.11 g 樹脂 Vinnapass 5011L 3 g 3g 3r 填充劑: Durcal 2 25 g 25 g 25 g 砂Palvadeau 0-0.315 mm - Hg Π g 混合用水 30 g 22 g 22 g (*)Thermosilit®為膨脹珍珠岩類型之中空填充劑,其呈現 以下特徵: 粒徑:0-2.5 mm 密度:80-100 kg/m3 使用電動混合器在低速(刻度1)下混合組份30秒,接著 在高速(刻度5)下混合1分30秒。從而獲得水泥漿。 II. C. 2 -製造水性發泡體 在碗中混合以下產品: -4 g發泡劑Empicol ESC/3L(月桂醇硫酸鈉), -0.1 g三仙膠, -0.1 g硫酸鋰, -92.8 g水。 用電動混合器在高速下混合所有組份5分鐘直至產生均 153561.doc -48- 201228994 勻且緻密之水性發泡體’其密度為5〇 kg.m3。 II· C. 3 -製備礦物發泡體 借助於用電動混合器在中速(刻度3)下混合3分鐘將3〇公 克水性發泡體併入1 〇〇 g以上製備之水泥漿中。 II. C. 4 -澆注且乾燥礦物發泡體 將礦物發泡體澆注至4 cm*4 cm*16 cm或10 cm*10 cm*10 cm 之聚苯乙烯模具中。 接著在23 C及60°/。RH下乾燥礦物發泡體24小時以獲得 本發明之蜂窩狀結構絕熱材料。 可觀測到,用比較性黏合劑LC3獲得之主要以波特籣水 泥為主之礦物發泡體崩潰,與之相對,主要以具有反應性 填充劑及中空填充劑之高鋁水泥L3為主之本發明礦物發泡 體不崩潰。 II. C. 5 _礦物發泡體組成(具有反應性填充劑及中空填 充劑之黏合劑L3) 組成 L3% ~ (以重量計) 黏合劑 32.78 ~ 中空填充劑 6.51 反應性填充劑 2.98 ~ 填充劑 14.79 水 39.75 - 發泡劑 0.30 "" 其他添加劑 3.19 一 II. C. 6 -所得絕熱材料之表徵 -密度:194 Kg/m3 -孔隙率:91 % 153561.doc -49· 201228994- Thermal conductivity: X = 0.044 W/m. °C - No defects caused by Ostwald ripening - Porosity > 90%. 153561.doc •44· 201228994 II. B. Example 2: Comparison between the thermal insulation material of the present invention and the thermal insulation material based on Portland cement 52.5 R II. B.1 - Preparation of the binder Add the following group to the container Parts: Component Comparative Comparative Adhesive Adhesive 1 Adhesive 2 L2 LC1 LC2 Hydraulic Adhesive: Portland Cement 52.5R (Lafarge Le Havre) 4.76 g 100 g 100 g IS Sour Mother Temal RG® ( Kemeos) 66.67 g - - Anhydrite 28.7 g - - Lithium carbonate 0.05 g - - Sodium carbonate - - 0.4 g Citric acid 0.18 g - Dispersant: Mighty® 21 PZ (powdered polycarboxylate ether) 〇.2g 0.2 g 0.2 g cellulose micro-woven dimension: Arbocel® 40 (CFF) length 0.45-1 μηη 0.2 g 0.2 g 0.2 g Filling agent: Shi Xishi in Rw Q1 Fuller 5 g 5g 5 g Water: 22.5 g 22.5 g 22.5 g Foam curing agent: Lithofoam® NWFS (solution = 30% dry matter) 1.5 g 1.5 g 1-5 g Mix the components at low speed (scale 1) for 30 seconds using an electric mixer, then mix at high speed (scale 5) 1 minute and 30 seconds. II. B.2 - Manufacture of aqueous foams The following products are mixed in a bowl: -5 g foaming agent Lithofoam® SL400-L (protein of 20,000 to 120,000 Daltons), -80 g7jc 〇153561.doc 45- 201228994 All components were mixed at high speed for 5 minutes using an electric mixer until a uniform and dense aqueous foam was produced. π·B.3 - Preparation of mineral foam A 2 gram aqueous foam was incorporated into 100 gram of the binder by mixing with a motor mixer at medium speed (scale 3) for 3 minutes. Since the aqueous foam is easily incorporated into the binder phase and is uniform in its entirety, the mineral foam of the present invention is more easily obtained. Since the fluidity of the binder is insufficient, it is difficult to obtain a comparative test mineral foam 2. Η-Β.4-cast and dry mineral foam The mineral foam was cast into a 4 cm*4 em*16 cm mold previously lubricated with mold oil. The mineral foam was then dried at 23 ° C and 60% RH for 24 hours to obtain a honeycomb structural heat insulating material of the present invention. It can be observed that the mineral foam mainly composed of Portland cement is collapsed with the comparative adhesive LC1 (Fig. 2b), and the mineral foam of the invention mainly composed of high alumina cement L2. Does not crash (Figure 2 &). Figure 2 shows the thermal insulation material mainly based on Portland cement LC2. Small collapses were observed in the resulting honeycomb structure insulation, but there was also a high degree of non-uniformity. II.B.5 - Characterization of the honeycomb structural insulation material of the present invention. Measurement of pore volume and density: The density of the honeycomb structure insulation material was measured using a pycnometer, and the measurement results were compared with those obtained by water porosimetry. Both methods make it possible to measure the density of the thermal insulation material of the present invention comprising a high alumina cement, calcium sulfate and Portland cement as a binder of 0.259 and a pore volume of 85, 153561.doc -46 - 201228994. %. Measurement of the pore diameter of the heat insulating material: The hardened mineral foam was impregnated with a hardenable resin (epoxy resin) so that it can be observed by optical microscopy. After 12 hours of hardening, the sample was cut transversely into a plate of about 4 cm * 4 cm with a thickness in the range of 0.05 to 3 mm. The cross section of the sample was observed at magnification X5 and is illustrated in Figures 3a) and 3b). As shown in Figs. 2a to 2c, the hardened mineral foam (L2, Fig. 2a) of the present invention has remarkable mechanical properties, and only Portland cement-based hardened mineral foam (LC1, Figs. 2b and LC2, Figure 3b) collapses after the aqueous foam contacts the slurry. The hardened mineral foam (L2, Fig. 3a) of the present invention contains a regular distribution (4 to 5 bubbles/mm2) and regular-sized bubbles, while the hardened mineral foam LC1 (Fig. 3b) of the comparative example has non-uniformity Bubble size and bubble distribution. II· C. Example 3: Comparison of ettringite binders with hollow fillers and materials based on Portland cement 52.5R II. C. 1 - Preparation of binders. Add the following components to the vessel: Component of the present invention having a hollow and reactive filler L3 Comparative / non-hollow filler adhesive 1LC3 Comparative adhesive 100% OPC / Adhesive 1LC4 Hydraulic binder: Portland cement 7.15 g 7.15 g 100 g 52.5R(Lafarge Le Havre) 酸酸约Secar 35.75 g 35.75 g 51®(Kemeos) anhydrite 12.5 g 12.5 g 153561.doc -47- 201228994 Component adhesive of the invention having a hollow and reactive filler L3 Comparative / Non-Hard Filler Adhesive 1LC3 Comparative Adhesive 100% OPC / Adhesive 1 LC4 Sodium Carbonate - - 0.4 g Citric Acid 0.1 g 0.1 g 0.1 g Hollow Filler Thermosilit®(*) ll.Og Reactive Filler: Shi Xi Shi on Rw Q1 Fuller 5.03 g 5.03 g 5.03 g Dispersant: Conpac 500 0.36 g 0.36 g 0.36 g Cellulose Ether: Tylose H300P2 0.11 g 0.11 g 0.11 g Resin Vinnapass 5011L 3 g 3g 3r Filler : Durcal 2 25 g 25 g 2 5 g sand Palvadeau 0-0.315 mm - Hg Π g mixed water 30 g 22 g 22 g (*) Thermosilit® is a hollow filler of expanded perlite type with the following characteristics: Particle size: 0-2.5 mm Density: 80 -100 kg/m3 Mix the components at low speed (scale 1) for 30 seconds using an electric mixer, then mix for 1 minute and 30 seconds at high speed (scale 5). Thereby obtaining a cement slurry. II. C. 2 - Manufacture of aqueous foam The following products are mixed in a bowl: -4 g of foaming agent Empicol ESC/3L (sodium lauryl sulfate), -0.1 g of tristancene, -0.1 g of lithium sulfate, -92.8 g water. All components were mixed at high speed for 5 minutes using an electric mixer until a uniform and dense aqueous foam of 153561.doc -48 - 201228994 was produced having a density of 5 〇 kg.m3. II·C. 3 - Preparation of mineral foams 3 gram of aqueous foam was incorporated into a cement slurry prepared above 1 〇〇 g by mixing with an electric mixer at medium speed (scale 3) for 3 minutes. II. C. 4 - Pouring and drying the mineral foam The mineral foam is cast into a polystyrene mold of 4 cm * 4 cm * 16 cm or 10 cm * 10 cm * 10 cm. Then at 23 C and 60 ° /. The mineral foam was dried under RH for 24 hours to obtain a honeycomb structural heat insulating material of the present invention. It can be observed that the mineral foam mainly composed of Portland cement is obtained by the comparative adhesive LC3. In contrast, the high alumina cement L3 with reactive filler and hollow filler is mainly used. The mineral foam of the present invention does not collapse. II. C. 5 _ Mineral foam composition (adhesive L3 with reactive filler and hollow filler) Composition L3% ~ (by weight) Adhesive 32.78 ~ Hollow filler 6.51 Reactive filler 2.98 ~ Fill Agent 14.79 Water 39.75 - Foaming agent 0.30 "" Other additives 3.19 I. II. C. 6 - Characterization of the resulting thermal insulation material - Density: 194 Kg/m3 - Porosity: 91 % 153561.doc -49· 201228994
-3小時之時之抗壓強度:0.5 MPa,24小時之時:Cs=0.8 MPa -導熱係數:λ=0·07 W/m.°C 由於礦物發泡體崩潰而無法獲得具有波特蘭水泥LC4之 比較性檢驗礦物發泡體。該崩潰之原因由此系統之低反應 性引起。 絕熱材料孔隙直徑之量測: 圖4展示大小範圍為約100至550 μιη之孔隙。 II. D.實例4 :低濃度黏合劑,不含普通波特蘭水泥 (OPC),具有反應性填充劑及中空填充劑 II. D. 1 -製備黏合劑 向容器中添加以下組份: 組份 具有中空及反應性填 充劑之鈣礬石黏合劑 L4 比較性黏合劑100% OPC/鈣礬石黏合劑 LC5 水硬性黏合劑: 波特蘭水泥52.5R(Lafarge Le Havre) • 13.3 g 銘酸妈 Secar 51® (Kemeos) 9.1 g - 硬石膏Francis Flower 3.51 g - 半水合 Prestia Creation 0.39 g 風化石灰 0.3 g 0.3 g 中空填充劑 Silica aerogel Isogel® 5.0 g 5.0 g 反應性填充劑: 礦潰(*) 5g 5g 石夕石於Rw Q1 Fuller 5g 5g 分散劑: Compac 500 0.36 g 0.36 g 纖維素醚: Tylose MH15003P6 0.10 g 0.11 g 填充劑: Durcal 130 33 g 25 g 砂 Sifraco BR36 37.5 g Hg (*) 153561.doc -50- 201228994 所有實例中所用礦渣之特徵如下: 比表面積(Blaine) : 2900 cm2/g 真密度:2.913 g/cm3 粒徑(μπι): D10 3.49 D20 5.60 D50 12.65 D80 24.76 D90 33.22 使用電動混合器在低速(刻度1)下混合組份30秒,接著 在尚速(刻度5)下混合3分3 0秒。從而獲得礦物發泡體。 II. D. 2 -製造水性發泡體 在碗中混合以下產品: -4 g發泡劑Empicol ESC/3L(月桂酵醚硫酸鈉), -0.1 g三仙膠, -0.1 g硫酸链, -92.8 g水。 用電動混合器在高速下混合所有組份5分鐘直至產生均 勻且緻密之水性發泡體,其密度為50 kg.m3。 II. D. 3 ·製備礦物發泡體 借助於用電動混合器在中速(刻度3)下混合3分鐘將15公 克水性發泡體併入100 g以上製備之水泥漿中。 II D.4 -礦物發泡體組成 153561.doc •51· 201228994 組成 % (以重量計) 黏合劑L3 9.27 中空填充劑 3.56 反應性填充劑 7.13 填充劑 50.88 水 28.12 發泡劑 0.52 其他添加劑 0.63 II. D.4-所得絕熱材料之表徵 密度:232 Kg/m3 -3小時之時之抗壓強度:Cs=0.2 MPa -導熱係數:λ=0.0712 W/m.°C -孔隙率:86% 由於礦物發泡體崩潰而無法獲得具有波特蘭水泥之比較 性檢驗礦物發泡體LC5。該崩潰之原因由此系統之低反應 性引起。 絕熱材料孔隙直徑之量測: 圖5中,可觀測到大小小於300 μπι之孔隙。 II. Ε.實例5:由具有反應性填充劑及中空填充劑之漿料 現場製造發泡體 II. Ε. 1 -製備黏合劑 向容器中添加以下組份: 組份 具有中空及反應性填充劑之約礬石黏合劑L5 水硬性黏合劑: 波特蘭水泥52.5R(Lafarge Le Havre) - 在呂酸妈 Secar 51 ®(Kemeos) 7g 硬石膏 Francis Flower 2.7 g 半水合Prestia Creation 0.3 g 風化石灰 0.3 g 153561.doc -52- 201228994 中空填充劑 Thermosilit⑧ 20.0 g 反應性填充劑: 鑛渣(*) 5 g 石夕石於Rw Q1 Fuller 5 g 分散劑: Conpac 500 0.36 g 纖維素醚: Tylose H300P2 0.08 g 填充劑: Durcal 130 26 g 砂 Siftaco BR36 30.5 g 發泡系統: Empicol ESC/3L 1 g 硫酸經 '0.1 g 三仙膠 0.015 混合用水 40 g (*)參見實例4 使用電動混合器在低速(刻度1)下混合組份30秒,接著 在高速(刻度5)下混合3分30秒。從而獲得礦物發泡體。 II.E.2-澆注且乾燥礦物發泡體 與II.D.2.方法相同。 II. E. 3 -礦物發泡體組成 組成 % (以重量計) 黏合劑 7.23 中空填充劑 14.46 反應性填充劑 7.23 填充劑 40.84 水 28.91 發泡劑 0.72 其他添加劑 0.56 II. E. 4-所得絕熱材料之表徵 -密度:287 Kg/m3 -3小時之時之抗壓強度:Cs<0.2MPa,24小時之時:Cs=0.2MPa 153561.doc •53· 201228994 -導熱係數:λ=0·0821 W/m.°C -孔隙率:88.5% 絕熱材料孔隙直徑之量測:圖6中可觀測到之孔隙大小 基本上小於200 μηι。 II. F.實例6 :高黏合劑比率,具有OPC,具有中空填充 劑且具有或不具有反應性填充劑 II. F. 1 -製備黏合劑 向容器中添加以下組份: 組份 具有中空及反應性填充 劑之詞礬·石黏合劑L6 具有中空填充劑且不含 礦渣之转礬石黏合劑L7 水硬性黏合劑: 波特蘭水泥52.5R 4.5 g 4.5 g (Lafarge Le Havre) 铭酸弼 Secar 51® (Kemeos) 35.06 g 35.06 g 硬石膏Francis Flower 10.52 g 10.52 g 半水合 Prestia Creation 1.17g 1.17g 反應性填充劑: 礦潰(, 5g 梦石於Rw Q1 Fuller 5g 5g 分散劑: Compac 500 0.36 g 0.36 g 織維素醚: Tylose H300P2 0.10 g 0.10 g 填充劑: Durcal 2 l〇g 15S 砂Sifraco BR36 28 g 28 g 混合用水 22 g 22 g (*)參見實例4 使用電動混合器在低速(刻度1)下混合組份30秒,接著 在高速(刻度5)下混合1分30秒。從而獲得水泥漿。 II. F. 2 -製造水性發泡體 在碗中混合以下產品: 153561.doc -54- 201228994 -4 g發泡劑Empicol ESc/3L(月桂醇醚硫酸鈉), -0.1 g三仙膠, -0.1 g硫酸鋰, -9 2 · 8 g 〇 用電動混合器在高速下混合所有組份5分鐘直至產生均 勻且緻密之水性發泡體,其密度為5〇 kg m3。 II. F. 3 -製備礦物發泡體 借助於用電動混合器在中速(刻度3)下混合3分鐘將3〇公 克水性發泡體併入1 00 g以上製備之水泥漿中。 Π. F. 4 -澆注且乾燥礦物發泡體 與II.C.4相同 II· F. 5 -礦物發泡體組成(具有礦渣及中空填充劑之點 合劑1以及具有中空填充劑且不含礦渣之黏合劑i) 組成 %(以重量計) 黏合劑L6 %(以重量計)〜 黏合劑L7 黏合劑 32.31 32.31 〜 反應性填充劑 6.31 3.15 ^' 填充劑 24.08 27.23 〜' 水 35.95 35.95 —' 發泡劑 0.92 0.92 〜 其他添加劑 0.43 0.43 〜 II. F. 6 -所得絕熱材料之表徵 -密度:黏合劑L6之情況下為194Kg/m3 黏合劑L7之情況下為143 Kg/m3 -孔隙率:黏合劑L6之情況下為91% 黏合劑L7之情況下為94% 153561.doc •55- 201228994 -3小時之時之抗壓強度: 黏合劑L6之情況下Cs=0.2 MPa 黏合劑L7之情況下Cs<0.2 MPa -導熱係數: 黏合劑L6之情況下λ=0.053 W/m.°C 黏合劑L7之情況下λ=0·045 W/m.°C 絕熱材料孔隙直徑之量測: 黏合劑L6之情況下:圖7中觀測到之孔隙大小基本上小 於 400 μηι。 黏合劑L7之情況下:圖8中觀測到之孔隙大小基本上小 於 350 μηι 〇 II. G.實例7 :高黏合劑比率,無OPC,具有矽氣凝膠類 型之中空填充劑 II. G. 1 -製備黏合劑 向容器中添加以下組份: 組份 具有中空及反應性填充劑之 鈣礬石黏合劑L8 水硬性黏合劑: 波特蘭水泥 52.5R(Lafarge Le Havre) 铭酸的 Secar 51 ®(Kemeos) 42 g 半水合 Prestia Creation 18g 酒石酸 0.1 g 反應性填充劑: 石夕石於Rw Q1 Fuller 5.20 g 中空填充劑 矽氣凝膠 ll.Og 分散劑: Compac 500 0.36 g 纖維素之微織維: Arbocel®40(CFF)長度 0.45-1 μιη 0.20 g 153561.doc -56- 201228994 組份 具有中空及反應性填充劑之 鈣礬石黏合劑L8 纖維素醚 Tylose H300P2 0.11 g 填充劑: Durcal 2 23 g 混合用水 30 g 使用電動混合器在低速(刻度1)下混合組份30秒,接著 在高速(刻度5)下混合1分30秒。從而獲得水泥漿。 II. G. 2 -製造水性發泡體 在碗中混合以下產品: -4 g發泡劑Empicol(月桂醇醚硫酸鈉), -0.1 g硫酸鋰, -92.8 g水。 用電動混合器在高速下混合所有組份5分鐘直至產生均 勻且緻密之水性發泡體,其密度為50 kg.m3。 II. G. 3 -製備礦物發泡體 借助於用電動混合器在中速(刻度3)下混合3分鐘將30公 克水性發泡體併入100 g以上製備之水泥漿中。 II. G. 4-澆注且乾燥礦物發泡體 與11. C相同。 II. G. 5 -礦物發泡體組成 組成 L8% (以重量計) 黏合劑 35.50 反應性填充劑 3.08 中空填充劑 6.51 填充劑 13.61 水 39.83 發泡劑 0.92 其他添加劑 0.53 153561.doc -57- 201228994 II. G. 6 -所得絕熱材料之表徵 -密度:236 Kg/m3 -孔隙率:90.3% -3小時及24小時之時之抗壓強度:Cs<0.2 MPa,Cs(28 天時)= 0.4 MPa-Compressive strength at 3 hours: 0.5 MPa, 24 hours: Cs = 0.8 MPa - Thermal conductivity: λ = 0.07 W/m. °C Unable to obtain Portland due to collapse of mineral foam Comparative inspection of mineral foams of cement LC4. The cause of this crash is caused by the low reactivity of the system. Measurement of pore diameter of the insulating material: Figure 4 shows pores ranging in size from about 100 to 550 μηη. II. D. Example 4: Low-concentration adhesive, excluding ordinary Portland cement (OPC), with reactive filler and hollow filler II. D. 1 - Preparation of binder Add the following components to the container: Calcium Oxide Binder with Hollow and Reactive Filler L4 Comparative Adhesive 100% OPC/Calcite Binder LC5 Hydraulic Binder: Portland Cement 52.5R (Lafarge Le Havre) • 13.3 g Mom Secar 51® (Kemeos) 9.1 g - Anhydrite Francis Flower 3.51 g - Semi-Hydrating Prestia Creation 0.39 g Weathered Lime 0.3 g 0.3 g Hollow filler Silica aerogel Isogel® 5.0 g 5.0 g Reactive filler: Ore collapse (*) 5g 5g Shi Xishi on Rw Q1 Fuller 5g 5g Dispersant: Compac 500 0.36 g 0.36 g Cellulose ether: Tylose MH15003P6 0.10 g 0.11 g Filler: Durcal 130 33 g 25 g Sand Sifraco BR36 37.5 g Hg (*) 153561. Doc -50- 201228994 The characteristics of the slag used in all the examples are as follows: Specific surface area (Blaine): 2900 cm2/g True density: 2.913 g/cm3 Particle size (μπι): D10 3.49 D20 5.60 D50 12.65 D80 24.76 D90 33.22 Using electric mixing Device Mix the components at low speed (scale 1) for 30 seconds, then mix for 3 minutes and 30 seconds at the current speed (scale 5). Thereby a mineral foam is obtained. II. D. 2 - Manufacture of aqueous foam The following products are mixed in a bowl: -4 g of foaming agent Empicol ESC/3L (sodium lauryl ether sulfate), -0.1 g of trisin, -0.1 g of sulfuric acid chain, - 92.8 g water. All components were mixed at high speed for 5 minutes using an electric mixer until a uniform and dense aqueous foam was produced having a density of 50 kg.m3. II. D. 3 - Preparation of Mineral Foam 15 g of the aqueous foam was incorporated into 100 g of the above prepared cement slurry by mixing with a motor mixer at a medium speed (scale 3) for 3 minutes. II D.4 - Mineral foam composition 153561.doc •51· 201228994 Composition % (by weight) Adhesive L3 9.27 Hollow filler 3.56 Reactive filler 7.13 Filler 50.88 Water 28.12 Foaming agent 0.52 Other additives 0.63 II D.4-Characteristics of the obtained thermal insulation material Density: 232 Kg/m3 - Compressive strength at 3 hours: Cs = 0.2 MPa - Thermal conductivity: λ = 0.0712 W/m. °C - Porosity: 86% due to The mineral foam collapsed and the comparative test mineral foam LC5 with Portland cement could not be obtained. The cause of this crash is caused by the low reactivity of the system. Measurement of the pore diameter of the insulating material: In Figure 5, pores smaller than 300 μm are observed. II. Ε. Example 5: On-site manufacture of foam II from a slurry with reactive filler and hollow filler. -. 1 - Preparation of binder Add the following components to the vessel: The component has a hollow and reactive filling Agent about vermiculite binder L5 hydraulic binder: Portland cement 52.5R (Lafarge Le Havre) - in Sesame 51 Seke 51 ® (Kemeos) 7g anhydrite Francis Flower 2.7 g Semi-hydrated Prestia Creation 0.3 g weathered lime 0.3 g 153561.doc -52- 201228994 Hollow Filler Thermosilit8 20.0 g Reactive Filler: Slag (*) 5 g Shi Xi Shi on Rw Q1 Fuller 5 g Dispersant: Conpac 500 0.36 g Cellulose Ether: Tylose H300P2 0.08 g Filler: Durcal 130 26 g Sand Siftaco BR36 30.5 g Foaming system: Empicol ESC/3L 1 g Sulfuric acid via '0.1 g Sanxian 0.015 Mixing water 40 g (*) See example 4 Using an electric mixer at low speed (scale 1) Mix the components for 30 seconds, then mix for 3 minutes and 30 seconds at high speed (scale 5). Thereby a mineral foam is obtained. II.E.2-cast and dry mineral foam The same method as in II.D.2. II. E. 3 - Mineral foam composition % (by weight) Adhesive 7.23 Hollow filler 14.46 Reactive filler 7.23 Filler 40.84 Water 28.91 Foaming agent 0.72 Other additives 0.56 II. E. 4- Insulation Characterization of the material - Density: 287 Kg/m3 - Compressive strength at 3 hours: Cs < 0.2 MPa, 24 hours: Cs = 0.2 MPa 153561.doc • 53· 201228994 - Thermal conductivity: λ = 00821 W/m.°C - Porosity: 88.5% Measurement of pore diameter of the insulating material: The pore size observed in Fig. 6 is substantially less than 200 μηι. II. F. Example 6: High binder ratio with OPC, with hollow filler and with or without reactive filler II. F. 1 - Preparation of binder Adding the following components to the container: The component has a hollow Reactive Filler Words 石· Stone Adhesive L6 Transferable gangue binder L7 with hollow filler and slag. Hydraulic binder: Portland cement 52.5R 4.5 g 4.5 g (Lafarge Le Havre) Secar 51® (Kemeos) 35.06 g 35.06 g Anhydrite Francis Flower 10.52 g 10.52 g Semi-hydrated Prestia Creation 1.17g 1.17g Reactive Filler: Mine Crush (, 5g Dream Stone on Rw Q1 Fuller 5g 5g Dispersant: Compac 500 0.36 g 0.36 g Weaving Oxide Ether: Tylose H300P2 0.10 g 0.10 g Filler: Durcal 2 l〇g 15S Sand Sifraco BR36 28 g 28 g Mixing water 22 g 22 g (*) See example 4 Using an electric mixer at low speed (scale 1) The mixture was mixed for 30 seconds, followed by mixing at high speed (scale 5) for 1 minute and 30 seconds to obtain a cement slurry. II. F. 2 - Making an aqueous foam The following products were mixed in a bowl: 153561.doc - 54- 201228994 -4 g foaming agent Empicol ESc/3L (sodium lauryl ether sulfate), -0.1 g of tristancene, -0.1 g of lithium sulfate, -9 2 · 8 g 混合 Mix all components at high speed for 5 minutes with an electric mixer until uniform and dense An aqueous foam having a density of 5 〇 kg m3. II. F. 3 - Preparation of a mineral foam by means of an electric mixer at a medium speed (scale 3) for 3 minutes to combine 3 gram of aqueous foam Into the cement slurry prepared above 100 g. Π. F. 4 - poured and dried mineral foam is the same as II.C.4 II. F. 5 - mineral foam composition (with slag and hollow filler Pointing agent 1 and binder with hollow filler and no slag i) Composition % (by weight) Adhesive L6 % (by weight) ~ Adhesive L7 Adhesive 32.31 32.31 ~ Reactive filler 6.31 3.15 ^' Filler 24.08 27.23 ~ 'Water 35.95 35.95 — 'Foaming agent 0.92 0.92 ~ Other additives 0.43 0.43 ~ II. F. 6 - Characterization of the resulting thermal insulation material - Density: 194Kg / m3 in the case of adhesive L6 Adhesive L7 In the case of 143 Kg/m3 - porosity: 91% in the case of adhesive L6, in the case of adhesive L7 94% 153561.doc •55- 201228994 - Compressive strength at 3 hours: Cs=0.2 MPa in the case of adhesive L6 Cs<0.2 MPa in the case of adhesive L7 - Thermal conductivity: In the case of adhesive L6 λ=0.053 W/m.°C In the case of the adhesive L7 λ=0·045 W/m.°C Measurement of the pore diameter of the insulating material: In the case of the adhesive L6: the pore size observed in Fig. 7 is basically Less than 400 μηι. In the case of the adhesive L7: the pore size observed in Fig. 8 is substantially less than 350 μηι 〇 II. G. Example 7: high binder ratio, no OPC, hollow filler with helium gel type II. G. 1 - Preparation of binder Add the following components to the container: Calcium carbide binder L8 with hollow and reactive fillers. Hydraulic binder: Portland cement 52.5R (Lafarge Le Havre) Secor 51 ®(Kemeos) 42 g Semiseal Prestia Creation 18g Tartaric acid 0.1 g Reactive Filler: Shi Xi Shi on Rw Q1 Fuller 5.20 g Hollow Filler Helium Aerogel ll.Og Dispersant: Compac 500 0.36 g Microfiber of cellulose Dimensions: Arbocel® 40 (CFF) Length 0.45-1 μηη 0.20 g 153561.doc -56- 201228994 Component Calcium Oxide Adhesive with Hollow and Reactive Filler L8 Cellulose Ether Tylose H300P2 0.11 g Filler: Durcal 2 23 g Mixing water 30 g Mix the ingredients at low speed (scale 1) for 30 seconds using an electric mixer, then mix for 1 minute and 30 seconds at high speed (scale 5). Thereby obtaining a cement slurry. II. G. 2 - Manufacture of aqueous foam The following products were mixed in a bowl: - 4 g of blowing agent Empicol (sodium lauryl ether sulfate), -0.1 g of lithium sulfate, -92.8 g of water. All components were mixed at high speed for 5 minutes using an electric mixer until a uniform and dense aqueous foam was produced having a density of 50 kg.m3. II. G. 3 - Preparation of Mineral Foam 30 g of the aqueous foam was incorporated into 100 g of the above prepared cement slurry by mixing at a medium speed (scale 3) for 3 minutes with an electric mixer. II. G. 4-cast and dry mineral foam The same as 11. C. II. G. 5 - Mineral foam composition L8% (by weight) Adhesive 35.50 Reactive filler 3.08 Hollow filler 6.51 Filler 13.61 Water 39.83 Foaming agent 0.92 Other additives 0.53 153561.doc -57- 201228994 II. G. 6 - Characterization of the resulting thermal insulation material - Density: 236 Kg/m3 - Porosity: 90.3% - Compressive strength at 3 hours and 24 hours: Cs < 0.2 MPa, Cs (28 days) = 0.4 MPa
-導熱係數:λ=0.061 W/m.°C 絕熱材料孔隙直徑之量測:圖9中,圖中觀測到之孔隙 大小為450 μιη。 II. Η.實例8:高黏合劑比率,具有OPC,具有矽石菸類 型之反應性填充劑 II. Η· 1 -製備黏合劑 向容器中添加以下組份: 組份 具有中空及反應性 填充劑之鈣礬石 黏合劑L9 具有中空及反應性 填充劑之鈣礬石 黏合劑L10 水硬性黏合劑: 波特蘭水泥52.5R 8,25 g 8,25 g (Lafarge Le Havre) 在呂酸約 Secar 51 ® (Kemeos) 35.06 g 35.06 g 硬石膏Francis Flower 11.69 g 11.69 g 酒石酸 0.1 g 0.1 g 反應性填充劑: 礦渣(*) _ 5.0 g 石夕石於Rw Q1 Fuller 5.20 g 5.20 g 分散劑: Compac 500 0.38 g 0.11 g 樹脂 Vinnapass 5011L 3.20 g 3.20 g 纖維素醚 Tylose H300P2 0.11 R 0.11 g 填充劑: 砂Palvadeau 0-0.315 mm 16.51 g 16.51 g Durcal 2 19.5 g 14.5 g 混合用水 22 g 22 g (*)參見實例4 153561.doc -58· 201228994 使用電動混合器在低速(刻度υ下混合組份3〇秒,接著 在高速(刻度5 )下混合1分3 0秒。從而獲得水泥浆。 II. Η.2 -製造水性發泡體 在碗中混合以下產品: -1 g發泡劑Glucopon CSUP 600(烷基聚葡萄糖皆醚), -0.3 g Gluadin(小麥蛋白水解產物), -0.3 g碳酸鋰 -0.1 g纖維素醚H300P2 -98.3 g水。 用電動混合器在高速下混合所有組份5分鐘直至產生均 勻且緻密之水性發泡體,其密度為50 kg.m3。 II. Η. 3 -製備礦物發泡體 借助於用電動混合器在中速(刻度3)下混合3分鐘將30公 克水性發泡體併入100 g以上製備之水泥漿中。 II. H. 4-澆注且乾燥礦物發泡體 與II. C. 4相同。 II. H. 5 -礦物發泡體組成 組成 L9% L10% (以重量計) (以重量計) 黏合劑 34.68 34.68 反應性填充劑 3.28 6.56 填充劑 22.70 19,43 36.23 36.23 發泡劑 0.62 0.62 其他添加劑 2.49 2.49 II· H. 6 -所得絕熱材料之表徵 153561.doc -59· 201228994 -密度:無礦渣情況下為212 Kg/m3,具有礦渣情況 下為 300 Kg/m3 -孔隙率:無礦渣情況下為90.3%,具有礦渣情況下 為80% -3小時之時之抗壓強度:Cs<0.2 MPa,24小時之時之 Cs : 0.5 MPa(具有礦渣情況下)及<0.5 MPa(無礦渣情況 下),28天時之Cs(無礦渣情況下):0.6 MPa- Thermal conductivity: λ = 0.061 W/m. °C Measurement of pore diameter of the insulating material: In Fig. 9, the pore size observed in the figure was 450 μηη. II. Η. Example 8: High binder ratio, with OPC, reactive filler with vermiculite type II. Η·1 - Preparation of binder Adding the following components to the container: The component has a hollow and reactive filling Calcium carbide binder L9 Calcium carbide binder with hollow and reactive filler L10 Hydraulic binder: Portland cement 52.5R 8,25 g 8,25 g (Lafarge Le Havre) in Lu Secar 51 ® (Kemeos) 35.06 g 35.06 g Anhydrite Francis Flower 11.69 g 11.69 g Tartaric acid 0.1 g 0.1 g Reactive Filler: Slag (*) _ 5.0 g Shi Xi Shi on Rw Q1 Fuller 5.20 g 5.20 g Dispersant: Compac 500 0.38 g 0.11 g Resin Vinnapass 5011L 3.20 g 3.20 g Cellulose ether Tylose H300P2 0.11 R 0.11 g Filler: Sand Palvadeau 0-0.315 mm 16.51 g 16.51 g Durcal 2 19.5 g 14.5 g Mixing water 22 g 22 g (*) See also Example 4 153561.doc -58· 201228994 Use a electric mixer to mix the components at low speed (under the scale for 3 seconds, then mix at high speed (scale 5) for 1 minute and 30 seconds to obtain the cement slurry. II. Η. 2 - Making aqueous foam in a bowl The following products were mixed: -1 g of blowing agent Glucopon CSUP 600 (alkyl polyglucosamine), -0.3 g of Gluadin (wheat protein hydrolysate), -0.3 g of lithium carbonate - 0.1 g of cellulose ether H300P2 - 98.3 g of water. All components were mixed at high speed for 5 minutes using an electric mixer until a uniform and dense aqueous foam was produced with a density of 50 kg.m3. II. Η. 3 - Preparation of mineral foam by means of an electric mixer Mix 30 minutes of aqueous foam at a medium speed (scale 3) for 3 minutes into a cement slurry prepared above 100 g. II. H. 4-cast and dry mineral foam is the same as II. C. 4. II H. 5 - Mineral foam composition L9% L10% (by weight) (by weight) Adhesive 34.68 34.68 Reactive filler 3.28 6.56 Filler 22.70 19,43 36.23 36.23 Foaming agent 0.62 0.62 Other additives 2.49 2.49 II· H. 6 - Characterization of the resulting thermal insulation material 153561.doc -59· 201228994 - Density: 212 Kg/m3 in the absence of slag and 300 Kg/m3 in the case of slag - Porosity: without slag 90.3%, with slag in the case of 80% -3 hours of compression Strength: Cs < 0.2 MPa, Cs at 24 hours: 0.5 MPa (with slag) and <0.5 MPa (without slag), Cs at 28 days (without slag): 0.6 MPa
-導熱係數:k=W/m.°C,具有礦渣情況下:0.102 W/m.°C II. I.實例9 :高黏合劑比率,具有OPC,具有矽石菸類 型之反應性填充劑+疏水劑 II. I. 1 -製備黏合劑 向容器中添加以下組份: 組份 具有反應性填充劑之 鈣礬石黏合劑L11 水硬性黏合劑: 波特蘭水泥52.5R(Lafarge Le Havre) 8,25 g 在呂酸約 Secar 51®(Kemeos) 35.06 g 半水合 Prestia creation 11.69 g 酒石酸 0.1 g 反應性填充劑: 石夕石於Rw Q1 Fuller 4g 分散劑: Compac 500 0.38 g 樹脂 Vinnapass 8031Η 0.7 g 纖維素醚 Tylose H300P2 0.11 g 填充劑: 砂Palvadeau 0-0.315 mm 17.8 g Durcal 2 22 g 混合用水 22 g 153561.doc •60· 201228994 使用電動混合器在低速(刻度1)下混合組份3 〇秒,接著 在南速(刻度5)下混合1分3 0秒。從而獲得水泥椠。 II. 1.2 -製造水性發泡體 在碗中混合以下產品: -7 g發泡劑Neopor®600(動物蛋白質), -0.3 g碳酸鋰 -92.7 g水。 用電動混合器在高速下混合所有組份5分鐘直至產生均 勻且緻密之水性發泡體,其密度為50 kg.m3。 II. 1.4-澆注且乾燥礦物發泡體 與II.C.4相同。 II. 1.5 -礦物發泡體組成 組成 配方L11% (以重量計) 黏合劑 34.68 反應性填充劑 2.52 填充劑 25.09 水 35.85 發泡劑 1.00 其他添加劑 0.91 II. 1.6-所得絕熱材料之表徵 -密度:214 Kg/m3 -孔隙率:90.1% -3小時之時之抗壓強度:Cs<0.2MPa,28天時之Cs : 0.7MPa -導熱係數:λ=0·0545 W/m.°C。 圖10中可觀測到之孔隙直徑基本上小於3〇〇 μιη。 II· J.實例10 :具有中空填充劑之非發泡體漿料 153561.doc •61 201228994 II. J. 1 -製備黏合劑 向容器中添加以下組份: 組份 具有中空及反應性 填充劑之鈣礬石 黏合劑L12 比較性黏合劑 100% OPC/鈣礬石 黏合劑LC6 水硬性黏合劑: 波特蘭水泥52.5R 10.0 g (Lafarge Le Havre) 紹酸在弓 Secar 51 ®(Kemeos) 7g 一 硬石膏Francis Flower 2.70 g - 風化石灰 1.0 g - 半水合 Prestia creation 0.3 g - 碳酸鈉 - 0.5 g 碳酸鋰 0.066 g - 檸檬酸 0.05 g - 反應性填充劑: 礦逢⑴ 5.0 g 5.0 g 石夕石於Rw Q1 Fuller 5.0 g 5.0 g 中空填充劑 Thermosilit 20 g 20 g 分散劑: Conpac 500 0.36 g 0.36 g 織維素醚 Tylose H300P2 0.08 g 0.08 g 填充劑: 砂 Sifraco BR36 30.5 g 30.5 g Durcal 130 26.0 g 26.0 g 混合用水 28 g 28 g (*)參見實例4 使用電動混合器在低速(刻度1)下混合組份30秒,接著 在高速(刻度5)下混合1分30秒。從而獲得水泥漿。 II. J.2 -所得絕熱材料之表徵 機械強度 24小時之時之反應(MPa) 1.3 - 3小時之時之反應(MPa) 1.5 0.9 抗壓強度(3小時,MPa) 2.3 - 抗壓強度(24小時,MPa) 3.1 1.3 153561.doc -62- 201228994 【圖式簡單說明】 圖1展示用於製造本發明之水性發泡體或礦物發泡體之 裝置之示圖; 圖2a)至2c)展示本發明之蜂窩狀結構絕熱材料或硬化礦 物發泡體(2a)、不含促凝劑之以波特籣水泥為主之材料 (2b)及具有促凝劑之以波特蘭水泥為主之材料(2c)之相 片;且 光學顯微影像 圖3a及3b展示圖2a之材料之橫截面之 (x5);及 圖4至10展示實例3至7及實例9之材料之橫 . 微影像(x5) 只甄面之光學顯 【主要元件符號說明】 1 水與發泡劑或輸氣劑之混合物 2 計量泵 3 氣體 4 流量計 5 混合裝置/珠粒攪拌器 6 珠粒攪拌器 7 容器 153561.doc -63-- Thermal conductivity: k = W / m. ° C, with slag: 0.102 W / m. ° C II. I. Example 9: high binder ratio, with OPC, reactive filler with meteorite type + Hydrophobic Agent II. I. 1 - Preparation of Adhesive Adding the following components to the container: Calcium silicate adhesive L11 with reactive fillers. Hydraulic binder: Portland cement 52.5R (Lafarge Le Havre) 8,25 g in Lycaic acid Secar 51® (Kemeos) 35.06 g Semi-hydrated Prestia creation 11.69 g tartaric acid 0.1 g Reactive filler: Shi Xishi in Rw Q1 Fuller 4g Dispersing agent: Compac 500 0.38 g Resin Vinnapass 8031Η 0.7 g Cellulose Ether Tylose H300P2 0.11 g Filler: Sand Palvadeau 0-0.315 mm 17.8 g Durcal 2 22 g Mixing water 22 g 153561.doc •60· 201228994 Mix the components at low speed (scale 1) using an electric mixer 3 〇 Then, mix 1 minute and 30 seconds at the south speed (scale 5). Thereby obtaining cement concrete. II. 1.2 - Manufacture of aqueous foam The following products are mixed in a bowl: -7 g of foaming agent Neopor® 600 (animal protein), -0.3 g of lithium carbonate -92.7 g of water. All components were mixed at high speed for 5 minutes using an electric mixer until a uniform and dense aqueous foam was produced having a density of 50 kg.m3. II. 1.4-Pour and dry mineral foam The same as II.C.4. II. 1.5 - Mineral foam composition Composition L11% (by weight) Adhesive 34.68 Reactive filler 2.52 Filler 25.09 Water 35.85 Foaming agent 1.00 Other additives 0.91 II. 1.6 - Characterization of the resulting thermal insulation material - Density: 214 Kg/m3 - Porosity: 90.1% - Compressive strength at 3 hours: Cs < 0.2 MPa, Cs at 28 days: 0.7 MPa - Thermal conductivity: λ = 0.0545 W/m. °C. The pore diameter observed in Fig. 10 is substantially less than 3 〇〇 μηη. II. J. Example 10: Non-foam slurry with hollow filler 153561.doc • 61 201228994 II. J. 1 - Preparation of binder Adding the following components to the container: The component has a hollow and reactive filler Calcium Oxide Adhesive L12 Comparative Adhesive 100% OPC/Calcite Adhesive LC6 Hydraulic Adhesive: Portland Cement 52.5R 10.0 g (Lafarge Le Havre) Seroic Acid in Bow Secar 51 ® (Kemeos) 7g An anhydrite Francis Flower 2.70 g - Weathered lime 1.0 g - Semi-hydrated Prestia creation 0.3 g - Sodium carbonate - 0.5 g Lithium carbonate 0.066 g - Citric acid 0.05 g - Reactive filler: Mine (1) 5.0 g 5.0 g Shi Xishi For Rw Q1 Fuller 5.0 g 5.0 g Hollow Filler Thermosilit 20 g 20 g Dispersant: Conpac 500 0.36 g 0.36 g Weaving Oxide Tylose H300P2 0.08 g 0.08 g Filler: Sand Sifraco BR36 30.5 g 30.5 g Durcal 130 26.0 g 26.0 g Mixing water 28 g 28 g (*) See Example 4 The mixture was mixed at low speed (scale 1) for 30 seconds using an electric mixer, followed by mixing at high speed (scale 5) for 1 minute and 30 seconds. Thereby obtaining a cement slurry. II. J.2 - Characterization of the resulting thermal insulation material Mechanical strength at 24 hours (MPa) 1.3 - 3 hours reaction (MPa) 1.5 0.9 Compressive strength (3 hours, MPa) 2.3 - Compressive strength ( 24 hours, MPa) 3.1 1.3 153561.doc -62- 201228994 [Schematic description of the drawings] Figure 1 shows a diagram of an apparatus for producing an aqueous foam or mineral foam of the present invention; Figs. 2a) to 2c) The honeycomb structure heat-insulating material or hardened mineral foam (2a) of the present invention, the Portland-based cement-based material (2b) containing no coagulant, and the Portland cement based on the coagulant Photograph of material (2c); and optical micrographs 3a and 3b show (x5) the cross section of the material of Fig. 2a; and Figs. 4 to 10 show the cross section of the materials of Examples 3 to 7 and Example 9. Microimage (x5) Optical display only: [Main component symbol description] 1 Mixture of water and foaming agent or gas carrier 2 Metering pump 3 Gas 4 Flow meter 5 Mixing device / bead agitator 6 Bead agitator 7 Container 153561.doc -63-
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100101540A TW201228994A (en) | 2011-01-14 | 2011-01-14 | Thermal insulation material and method for making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100101540A TW201228994A (en) | 2011-01-14 | 2011-01-14 | Thermal insulation material and method for making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201228994A true TW201228994A (en) | 2012-07-16 |
Family
ID=46933846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100101540A TW201228994A (en) | 2011-01-14 | 2011-01-14 | Thermal insulation material and method for making the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201228994A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108367988A (en) * | 2015-11-17 | 2018-08-03 | 霍尔辛姆科技有限公司 | Microlight-type is inorganic foamed and preparation method thereof |
TWI719874B (en) * | 2020-04-01 | 2021-02-21 | 國立宜蘭大學 | Environmental protection fireproof material and manufacturing method thereof |
CN115259826A (en) * | 2022-09-29 | 2022-11-01 | 河北化工医药职业技术学院 | Solid waste base 3D printing material |
-
2011
- 2011-01-14 TW TW100101540A patent/TW201228994A/en unknown
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108367988A (en) * | 2015-11-17 | 2018-08-03 | 霍尔辛姆科技有限公司 | Microlight-type is inorganic foamed and preparation method thereof |
TWI719874B (en) * | 2020-04-01 | 2021-02-21 | 國立宜蘭大學 | Environmental protection fireproof material and manufacturing method thereof |
CN115259826A (en) * | 2022-09-29 | 2022-11-01 | 河北化工医药职业技术学院 | Solid waste base 3D printing material |
CN115259826B (en) * | 2022-09-29 | 2022-12-27 | 河北化工医药职业技术学院 | Solid waste base 3D printing material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101808663B1 (en) | Thermal Insulation Material and Method For Manufacturing Same | |
Chica et al. | Cellular concrete review: New trends for application in construction | |
Tran et al. | Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review | |
JP5685760B2 (en) | Lightweight cement slurry, method for producing the same, and cement board | |
US9840440B2 (en) | Hydrophobic low shrinkage lightweight cementitious matrix | |
ES2535136T3 (en) | Provision of resistance to freezing and thawing to cementitious compositions | |
CN106517972B (en) | A kind of foamed cement | |
JP2013540098A (en) | High-strength phosphate cement with low alkalinity | |
JP2023529058A (en) | Method for accelerating and fluidizing wet concrete or mortar compositions containing activators, water-reducing polymers comprising the use of performance additives containing chaotropic ions, and their use in low carbon alternative binder compositions | |
KR101074371B1 (en) | Cement milk for highly durable semi-rigid pavement using chloride resistant cement and semi-rigid pavement method using filling the same into asphalt with vibrating | |
KR101380171B1 (en) | High durable cement for semi-rigid pavement having chloride resistant cement and Semi-rigid pavement method using filling the same in asphalt with vibrating | |
TW201228994A (en) | Thermal insulation material and method for making the same | |
EP3802456B1 (en) | Ultra-light mineral foam having water repellent properties | |
KR20050087029A (en) | Cast-in-place rapid hardening aerated concrete having excellent adiabatic ability and method for manufacturing the same | |
EP4384487A1 (en) | Self-foaming gypsum compositions | |
Bodur et al. | Durability of green rubberized 3D printed lightweight cement composites reinforced with micro attapulgite and micro steel fibers: Printability and environmental perspective | |
US20220289630A1 (en) | Lightweight structural concrete from recycled materials | |
Bindiganavile et al. | University of Alberta, Edmonton, AB, Canada | |
Sidheeq et al. | UTILIZATION OF VARIOUS INDUSTRIAL WASTE MATERIALS AS FILLER IN AERATED CONCRETE: A REVIEW | |
TW202335996A (en) | Ready-mix concrete or mortar, or precast concrete composition, comprising ground granulated blast furnace slag, an alkali sulfate activator and a pce type water reducing polymer | |
CN116789429A (en) | High-performance gypsum wall, and preparation method, construction method and application thereof | |
TR2022003068A2 (en) | THERMAL INSULATION FOAM WITH INORGANIC BINDING | |
JP2008162841A (en) | Method for suppressing deterioration in mortar or concrete, and deterioration-suppressed mortar or concrete | |
BR102015003576A2 (en) | cellular cement mixture for the manufacture of a cellular concrete and its cellular concrete obtained from such a mixture | |
UA9996U (en) | The porous concrete |