[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201228458A - Driving circuit, controller and method thereof for powering LED sources - Google Patents

Driving circuit, controller and method thereof for powering LED sources Download PDF

Info

Publication number
TW201228458A
TW201228458A TW100128999A TW100128999A TW201228458A TW 201228458 A TW201228458 A TW 201228458A TW 100128999 A TW100128999 A TW 100128999A TW 100128999 A TW100128999 A TW 100128999A TW 201228458 A TW201228458 A TW 201228458A
Authority
TW
Taiwan
Prior art keywords
signal
current
level
reference signal
led
Prior art date
Application number
TW100128999A
Other languages
Chinese (zh)
Other versions
TWI376979B (en
Inventor
Da Liu
Original Assignee
O2Micro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/086,822 external-priority patent/US8253352B2/en
Application filed by O2Micro Inc filed Critical O2Micro Inc
Publication of TW201228458A publication Critical patent/TW201228458A/en
Application granted granted Critical
Publication of TWI376979B publication Critical patent/TWI376979B/en

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

A driving circuit for powering a plurality of light-emitting diode (LED) light sources includes a power converter and a plurality of current balance controllers. The power converter receives an input voltage and provides a regulated voltage to the LED light sources. The current balance controllers coupled to the power converter control a plurality of currents through the LED light sources respectively. The current balance controllers receive a first reference signal indicative of a target average level and a second reference signal indicative of a maximum transient level, and regulate an average current of each of the currents to the target average level and a transient level of each of the currents within the maximum transient level.

Description

201228458 六、發明說明· 【發明所屬之技術頜域】 本發明係有關一種驅動電路及供電方法,特別是一種 對多個發光二極體光源供電的驅動電路、控制器以及方 法0 【先前技術】 在顯示系統中,通常使用驅動電路驅動一或複數個光 源來為顯示面板提供照明。例如在使用發光二極體(led) 背光的液晶(LCD)顯示系統中,一 LED陣列用於為液晶 螢幕提供照明。LED陣列通常包括有二或複數個的LED串, 其中每一 LED串包含複數個串聯的LED。對於每一 LED串, 要達到期望的光輸出所需要的順向電壓(forward voltage) 可能因為LED的晶片面積、材料、產品差異或是溫度的不 同而有所不同。因此,為了產生一致亮度的光輸出,應該 對每一 LED串的順向電壓進行調整,以使得流過每—匕助 串的電流實質相等。圖1和圖2分別示出兩種習知的方法。 圖1所示為一種習知的LED驅動電路100的方塊圖。 LED驅動電路100包括直流/直流轉換器1〇2,用於將輸入 的直流電壓Vin轉換成期望的調節後電壓ν〇υτ,以對乙助 串 108_卜108一2、...108—Ν 供電。LED 串 1〇8J、1〇8—2、... 108_N分別與線性LED電流調節器1〇6J、1〇6 2、..~i〇6 n 串聯減。選擇電路104接收來自電流偵測電阻卿「、 RSEN一2、...RSENJ的偵測信號並產生回授信號。直流 流轉換β 102根據回授信號調整調節後電壓_丁。線性 0678-TW-CH Spec+Claim(sandra.t-20120130).d〇c 201228458 LED電流調節器、1〇6_2、…1〇6—N中的運算放大器 110—1 ' 110—2、…ii〇j分別比較參考信號REF和來自電 流偵測電阻RSEN—l、rSEN_2、…RSENJ的偵測信號,並 產生控制信號,以線性模式調整電晶體叭、Q2、…Qn的 阻抗。換s之,這種習知的LED驅動電路i〇Q線性地控制 電晶體qi、Q2、…⑽來分別調整流過LEd串、 108—2、…108 J的LED電流。然而,此種方法不適用於需 要相對較大LED電流的系統’因為其會導致電晶體q卜 Q2 ⑽產生大量的熱。因此系統的功率有效利用率會因 熱/功率耗損而降低。 圖2所不為另一種習知的LED驅動電路2〇〇的方塊 ,。圖2中’每一 LED串分別與一專用的直流/直流轉換 f 202_1 202—2、...2〇2_N相輕接。每一直流/直流轉換 益202—1、202_2、…202_N接收來自對應的電流偵測電阻 pSEll、RSEN—2、...RSENJ的回授信號,並根據對應的 ED電流需求而分別調整輸出電壓·丁」、v讓—2、... N°此種方法的缺點之—是,因為每—LED串需要一 了的專用直流/直流轉換器,如果系統包含許多哪率, 則系統成本會相應增加。 【發明内容】 本發明的目的為提供—種對多個發光二極體光源供 =的驅動電路,包括:—能量轉換器,接收—輸入電壓並 、·’,該夕個發光—極體光源提供—調整電壓;以及多個電流 平衡控制器’祕至誠量轉彻,分龍概經該多個 0678 TW-CH Spec+Claim(sandra.t-20120130).doc 201228458 器接收 自”h ^位旱的一第一參考信號和指示一最大暫 的—第二參考信號,並將該多個電流之每-個電流 為該目標平均位準,將該多個電流之每 .概、位準調整為於該最大暫態位準以下。 【實施方式】 以下輯本發明的實施例給出詳細的說明。雖狄本發 =:ίΙΐ例進行闡述’但應理解這並非意指將本發明 限=於廷些貫施例。相反,本發明意在涵蓋由後附申請專 利祀圍所界定的本發明精神和範圍内所定義的各種變 化、修改和均等物。 此外,在以下對本發明的詳細指述中,為了提供針對 本發明的完全的理解’提供了大量的具體細節。然而,於 ^技術領域巾具有通常知識者將理解,沒有這些具體細 節,本發明同樣可以實施。在另外的一些實例中,對於大 家熟知的方法、程序、元件和電路未作詳細描述,以便於 凸顯本發明之主旨。 本發明實施例提供了給LED光源供電的電路和方法’ 驅動電路透過控制與LED光源串聯的開關來調控流經led 光源的電流。開關能夠根據一個驅動信號交替地開和閉。 驅動信號的責任週期基於指示流經LED光源的電流的監測 仏號來決定。更具體而言,在一個實施例中,驅動信號的 責任週期由指示監測信號的平均值與第一參考值之間差 值的誤差#號來決定。驅動信號的振幅由監測信號與第二 0678-TW-CH Spec+Claim(sandra,t-20120130).doc 6 201228458 參考值之間的差值來決定。第一參考值決定流經LED光源 ,目標平均電流,第二參考值決定流經LED光源的最大暫 態電流。這樣流經led光源的平均電流就被調節得與目標 平均電流基本相同了。流經每個led光源的暫態電流能被 控制在隶大暫態電流以内。這樣,有利的是,驅動電路提 鬲了能量效率,並且不需要多個專門的能量轉換器。 圖3所示為根據本發明一個實施例的led驅動電路 300的方塊圖。LED驅動電路300包括用於為複數個led201228458 VI. DESCRIPTION OF THE INVENTION · Technical Field of the Invention The present invention relates to a driving circuit and a power supply method, and more particularly to a driving circuit, a controller and a method for supplying power to a plurality of light emitting diode light sources. [Prior Art] In a display system, a drive circuit is typically used to drive one or more of the light sources to provide illumination to the display panel. For example, in a liquid crystal (LCD) display system using a light-emitting diode (LED) backlight, an LED array is used to illuminate the liquid crystal screen. An LED array typically includes two or more LED strings, each of which includes a plurality of LEDs in series. For each LED string, the forward voltage required to achieve the desired light output may vary depending on the LED's wafer area, material, product variation, or temperature. Therefore, in order to produce a consistently bright light output, the forward voltage of each LED string should be adjusted so that the current flowing through each of the strings is substantially equal. Figures 1 and 2 show two conventional methods, respectively. 1 is a block diagram of a conventional LED driver circuit 100. The LED driving circuit 100 includes a DC/DC converter 1〇2 for converting the input DC voltage Vin into a desired adjusted voltage ν〇υτ, to the B string 108_b 108-2, ...108-供电 Power supply. The LED string 1〇8J, 1〇8-2, ... 108_N are respectively reduced in series with the linear LED current regulators 1〇6J, 1〇6 2, ..~i〇6 n . The selection circuit 104 receives the detection signals from the current detection resistors ", RSEN-2, ... RSENJ and generates a feedback signal. The DC current conversion β 102 adjusts the adjusted voltage according to the feedback signal. - Linear 0678-TW -CH Spec+Claim(sandra.t-20120130).d〇c 201228458 LED Current Regulator, 1〇6_2,...1〇6-N Operational Amplifier 110-1 '110-2,...ii〇j Compare The reference signal REF and the detection signals from the current detecting resistors RSEN-1, rSEN_2, ... RSENJ, and generate a control signal to adjust the impedance of the transistor, Q2, ... Qn in a linear mode. The LED driver circuit i〇Q linearly controls the transistors qi, Q2, ... (10) to adjust the LED current flowing through the LEd string, 108-2, ... 108 J, respectively. However, this method is not suitable for requiring relatively large LEDs. The system of current 'because it causes the transistor q Q2 (10) to generate a large amount of heat. Therefore, the power efficiency of the system is reduced due to heat/power consumption. Figure 2 is not another conventional LED driver circuit. 〇 , , 。 。 ' ' ' ' ' ' ' ' ' ' ' 每一 每一 每一 每一The stream conversion f 202_1 202-2, ... 2 〇 2_N phase is connected. Each DC/DC conversion benefit 202-1, 202_2, ... 202_N receives from the corresponding current detecting resistors pSE11, RSEN-2, ... RSENJ's feedback signal, and according to the corresponding ED current demand, respectively, adjust the output voltage · D," v - 2, ... N ° the disadvantage of this method - is, because each - LED string needs one A dedicated DC/DC converter, if the system contains many rates, the system cost will increase accordingly. SUMMARY OF THE INVENTION An object of the present invention is to provide a driving circuit for a plurality of light emitting diode light sources, including: - an energy converter, receiving - input voltage and , ', the light emitting body light source Provide - adjust the voltage; and a number of current balance controllers 'secret to the amount of change, the dragon is through the multiple 0678 TW-CH Spec +Claim (sandra.t-20120130).doc 201228458 received from the "h ^ bit a first reference signal of the drought and a maximum reference-second reference signal, and each of the plurality of currents is the target average level, and each of the plurality of currents is adjusted. The following is a detailed description of the embodiment of the present invention. Although the present invention is described in detail, it should be understood that this is not intended to limit the present invention. The present invention is intended to cover various modifications, adaptations and equivalents as defined by the scope of the invention as defined by the appended claims. In order to provide this The full understanding of the 'provides a great deal of detail. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other examples, well known methods The procedures, elements, and circuits are not described in detail to facilitate the purpose of the present invention. Embodiments of the present invention provide a circuit and method for powering an LED light source. The drive circuit regulates the flow through the LED light source by controlling a switch in series with the LED light source. The current can be alternately turned on and off according to a drive signal. The duty cycle of the drive signal is determined based on a monitoring nickname indicating the current flowing through the LED source. More specifically, in one embodiment, the responsibility of the drive signal The period is determined by the error # indicating the difference between the average value of the monitoring signal and the first reference value. The amplitude of the driving signal is determined by the monitoring signal and the second 0678-TW-CH Spec+Claim (sandra, t-20120130). Doc 6 201228458 The difference between the reference values is determined. The first reference value determines the flow through the LED source, the target average current, the second reference Determine the maximum transient current flowing through the LED source. The average current flowing through the LED source is adjusted to be substantially the same as the target average current. The transient current flowing through each LED source can be controlled at a large transient current. In this way, it is advantageous that the drive circuit improves energy efficiency and does not require a plurality of specialized energy converters. Figure 3 is a block diagram of a LED drive circuit 300 in accordance with one embodiment of the present invention. 300 includes for multiple LEDs

串提供調節後的電壓的電力轉換器(如直流/直流轉換器 302)。在圖3所示的實例中,為方便說明,顯示三個lED 串308—1、308_2和308_3。然而LED驅動電路3〇〇可以包 括任何數目的LED串。LED驅動電路300還包括複數個與 直流/直流轉換器302相耦接的開關調節器(如複數個降 壓開關調節器)306—1、306一2和306_3,用於分別調節LED 串308—1、308—2和308_3的順向電壓。LED驅動電路3〇〇 還包括複數個開關平衡控制器304J、3〇4—2和3〇4 3, 用於分別控制降壓開關調節器306J、3〇6—2和3〇6—3。 在直流/直流轉換器302和降壓開關調節器306」、3的_2 和。一3之間有回授選擇電路312,用於調節直流/直流轉 換器302的輸出電壓。複數個電流監測器gw 1、gw 2 和310—3分別與LED串308—j、3〇8—2和3〇8 3相耦接—, 提供監測信號ISENj、ISEN—2和ISEN〜3,用於指示流經 LED 串 308—1、308—2 和 308—3 的 LED 電流。 直流/直流轉換器302接收輸入電壓Vin並輸出調節 後電壓丽。在-實施例中,每個開關平衡控制器綱卜 0678-TW-CH Spec+Claim(sandra.t-20120130).do« 201228458The string provides a regulated voltage to the power converter (e.g., DC/DC converter 302). In the example shown in FIG. 3, three lED strings 308-1, 308_2, and 308_3 are displayed for convenience of explanation. However, the LED driver circuit 3 can include any number of LED strings. The LED driving circuit 300 further includes a plurality of switching regulators (such as a plurality of step-down switching regulators) 306-1, 306-2, and 306_3 coupled to the DC/DC converter 302 for respectively adjusting the LED strings 308. 1, the forward voltage of 308-2 and 308_3. The LED drive circuit 3A also includes a plurality of switch balance controllers 304J, 3〇4-2, and 3〇4 3 for controlling the buck switch regulators 306J, 3〇6-2, and 3〇6-3, respectively. _2 in the DC/DC converter 302 and the buck switching regulators 306", 3. There is a feedback selection circuit 312 between the three for adjusting the output voltage of the DC/DC converter 302. A plurality of current monitors gw 1, gw 2 and 310-3 are coupled to the LED strings 308-j, 3〇8-2 and 3〇8 3, respectively, to provide monitoring signals ISENj, ISEN-2 and ISEN~3, Used to indicate the LED current flowing through LED strings 308-1, 308-2, and 308-3. The DC/DC converter 302 receives the input voltage Vin and outputs the adjusted voltage MN. In the embodiment, each of the switching balance controllers is 0678-TW-CH Spec+Claim(sandra.t-20120130).do« 201228458

J 304_2和304—3接收一個相同的參考信號咖,該 號REF指示流择每個LED串308_1、308一2和30°8";的: 望電流值。每個開關平衡控制器304_1、3〇4__2和3〇4^ 运分別接收來自-個對應的電流監測器的 :J 304_2 and 304-3 receive the same reference signal, which indicates the current value of each LED string 308_1, 308-2 and 30°8"; Each of the switch balance controllers 304_1, 3〇4__2, and 3〇4^ receives the respective current monitors from:

Trn \ lTu2^ ° 1 益304J、304—2和304_3根據參考信號REF和對應 測信號分別產生脈衝調變信號(如:脈衝寬度調 PWM—1' PWM—2、PWM一3 ’ 並利用脈衝調變信號 pWM—1、、、 PWM_3分別調整降壓開關調節器加^卯^和3 f 壓降。 - j的 開關平衡控制器綱山綱力口酬」分別 即姦306J、306—2和306—3上的壓降。對於每一 LED 308J、308一2和308一3而言,一 LED電流根據LED串上的 順向電壓而流經LED串。-LED串的順向電壓正比於調節 後電壓丽與該LED串對應的開關調節器上的壓降之 差。因此’透過利用開關平衡控制器304」、3〇4—2和3〇4—3 分別調節降壓開關調節器306」、3〇6_2和3(3的麼降, LED串308J、308一2和308〜3的順向電壓能夠據此整。 因此,LE咖」、—2和氣咖二 凋整。在一實施例中,開關平衡控制器3〇4—卜別和 304-3分別調節降壓開關調節器3〇6—丨、3〇6;和3〇6_ 3的 壓降,使得各LED串的電流與期望電流值實# _ “與期望電流值實質相等”是指LED串的電二^一= 圍内變化’使得各LED串產生具有—致亮度的期望光輸出。 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 8 201228458 開關平衡控制器304J、3〇4_2和3〇4 3還可以根據 監測信號ISENJ、iSEN—2、ISEN_3和參考信號REF產生 複數個誤差錢。每健差錢指示—個順向電壓,對應 ^ LED串需要該順向電壓以產生和期望電流實質相等的電 抓。回授選擇電路312接收誤差信號,並判斷哪個LED串 具有最大的順向電壓。對於每個LED串308一 1、308—2和 308_3 ’產生期望的光輸出所需要的順向電壓可能各不相 同。此處“最大順向電壓”是指在一實施例中,當咖申 308—1 308—2和308_3產生一致亮度的期望光輸出時,各 LED串所具有的順向電壓中最大的順向電壓。回授選擇電 路312產生回授信號3(u,指示流過具有最大順向電壓的 LED串的LED電流。其結果是,在一實施例中,直流/直流 轉換器302根據回授信號30!調節丽,以滿足具有最大 順向,壓的LED串的電力需求。例如,直流/直流轉換器 302提升VQUT以增大流經具有最大順向電壓的串的 LED電流,或者降低ν〇υτ以減小流經具有最大順向電壓的 LED串的LED電流。 圖4所示為根據本發明一實施例具有共陽極連接之 LED驅動電路4〇〇的電路圖。圖4將結合圖3進行描述。 圖4中與® 3編號相同的元件具有類似的功能,為簡明起 見在此不重複描述。在圖4的實例中,為方便說明,顯示 二個LED串308—1、308_2和308—3。然而LED驅動電路 400可以包括任何數目的LED串。 LED驅動電路4〇〇利用複數個開關調節器(如降壓開 關調節器)根據參考信號REF和複數個監測信號ISEN j、 0678-TW-CH Spec+Claim(sandra.t-2〇 120130).doc 9 201228458 ISEN—2、ISEN—3 來分別調整 LED 串 3〇8—i、3〇8_2和 3 的順向電壓。監測信號ISENJ,ISEN—2,ISEN—3由複數 個電"κ則器產生,分別指示流經哪_細」、3〇8一2 彳308_3的電机。在圖4的實例+,每個電流監測器包括 -個電流監測電阻RSEN—i (i=i,2,3)。 在一個實施例中,每個降壓開關調節器包括-個電感Trn \ lTu2^ ° 1 益304J, 304-2 and 304_3 respectively generate pulse modulation signals according to the reference signal REF and the corresponding measurement signals (eg pulse width modulation PWM-1' PWM-2, PWM-3' and use pulse modulation The variable signals pWM-1, 1, and PWM_3 respectively adjust the buck switching regulator plus ^卯^ and 3 f voltage drop. - j's switching balance controller Gangshan Gangli rewards respectively maiden 306J, 306-2 and 306- The voltage drop across 3. For each of the LEDs 308J, 308-2, and 308-3, an LED current flows through the LED string according to the forward voltage on the LED string. - The forward voltage of the LED string is proportional to the adjustment The difference between the voltage drop and the voltage drop across the switching regulator corresponding to the LED string. Therefore, the buck switching regulator 306 is adjusted by using the switching balance controller 304, 3〇4-2, and 3〇4-3, respectively. 3〇6_2 and 3(3), the forward voltages of the LED strings 308J, 308-2, and 308~3 can be adjusted accordingly. Therefore, the LE coffee, the -2, and the air coffee are both neat. In an embodiment The switch balance controllers 3〇4-b and 304-3 respectively adjust the voltage drop of the buck switching regulators 3〇6—丨, 3〇6; and 3〇6_3, so that each L The current of the ED string and the expected current value are _ "substantially equal to the expected current value" means that the LED string is electrically = = within the variation 'such that each LED string produces a desired light output with a brightness. 0678-TW -CH Spec+Claim(sandra.t-20120130).doc 8 201228458 Switch balance controllers 304J, 3〇4_2 and 3〇4 3 can also generate complex errors based on the monitoring signals ISENJ, iSEN-2, ISEN_3 and reference signal REF. Money. Each health error indicates a forward voltage, which corresponds to the LED string to generate the forward voltage to generate an electrical grab that is substantially equal to the expected current. The feedback selection circuit 312 receives the error signal and determines which LED string has the largest Forward voltage. The forward voltage required to produce the desired light output for each of the LED strings 308-1, 308-2, and 308_3' may vary. Here, "maximum forward voltage" refers to an embodiment. The maximum forward voltage among the forward voltages of each LED string when the coffee claims 307-1 308-2 and 308_3 produce a desired light output of uniform brightness. The feedback selection circuit 312 generates a feedback signal 3 (u, Indicates the flow of LEDs with the largest forward voltage As a result, in one embodiment, the DC/DC converter 302 adjusts the brightness according to the feedback signal 30! to meet the power requirements of the LED string having the largest forward and voltage. For example, DC/DC conversion The device 302 boosts the VQUT to increase the LED current flowing through the string having the largest forward voltage, or to decrease ν 〇υτ to reduce the LED current flowing through the LED string having the largest forward voltage. 4 is a circuit diagram of an LED drive circuit 4A having a common anode connection in accordance with an embodiment of the present invention. Figure 4 will be described in conjunction with Figure 3. Elements in Figure 4 that have the same number as the ® 3 have similar functions and will not be repeated here for the sake of brevity. In the example of Fig. 4, two LED strings 308-1, 308_2 and 308-3 are shown for convenience of explanation. However, LED drive circuit 400 can include any number of LED strings. The LED driving circuit 4 uses a plurality of switching regulators (such as a step-down switching regulator) according to the reference signal REF and a plurality of monitoring signals ISEN j, 0678-TW-CH Spec+Claim (sandra.t-2〇120130). Doc 9 201228458 ISEN—2, ISEN—3 to adjust the forward voltage of the LED strings 3〇8—i, 3〇8_2, and 3, respectively. The monitoring signals ISENJ, ISEN-2, and ISEN-3 are generated by a plurality of electric "κ, respectively, indicating which motor flows through which _", 3〇8-2 彳308_3. In the example of Figure 4, each current monitor includes a current monitoring resistor RSEN-i (i = i, 2, 3). In one embodiment, each buck switching regulator includes an inductor

Ci (i 1 2 3)和—個開關 Si (i=1,2 ’ 3)。電感 與 對應的LED串308」(i=1,2,3)串聯。二極體Di與⑽ 串遞」及與之串聯的電感Li並聯。電容Ci與對應的LED 串308一i並聯。開關Si輪於電感Li和地之間。每個降 壓開關調郎器由—個脈衝調變信號所控制,例如由-個對 應的開關平衡控制器編―丨(i=1,2,3)產生的脈衝寬度 調變信號™U (M,2, 3)所控制。Ci (i 1 2 3) and a switch Si (i = 1, 2 ' 3). The inductance is in series with the corresponding LED string 308" (i = 1, 2, 3). The diode Di is connected in parallel with (10) serially and in series with the inductor Li. The capacitor Ci is connected in parallel with the corresponding LED string 308-i. The switch Si is between the inductor Li and ground. Each buck switch modulator is controlled by a pulse modulation signal, such as a pulse width modulation signal TMU generated by a corresponding switch balance controller i (i = 1, 2, 3). M, 2, 3) controlled.

LpD驅動電路4〇〇還包括直流/直流轉換器3〇2,以提 供調節後的電壓’以及回授選擇電路312,以提供回授信 號301來調整直流/直流轉換器3〇2輸出的調節後電壓, 以滿足具有最大順向電壓的LED串的電力需求。 直流/直流轉換器302接收輸入電壓vin並產生調節 後電壓VOUT。開關平衡控制器3〇4_i用脈衝寬度調變信號 PWM_i (i = l,2,3)控制開關Si的導通狀態。 在開關Si處於導通狀態的第一時間段内,LED電流流 過LED串308_i、電感Li、開關Si和電流監測電阻RSENj 到地。在一實施例中’ LED串308J的順向電壓正比於調 節後電壓VOUT與對應開關調節器上的壓降之差。在此第 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 10 201228458 直流轉換器302為⑽串氣1供電, 處丄電感L1進行充電。在_ 308—1、電感間段内’⑽電流流經LED串 U放電而對LED串氣f供D電。。在此第二時間段内’電感 J 3〇^i -實施例中,電二_的脈衝寬度調變信號PWM」。在 鐵L1、—極體D i、電容c i知pg關c. 成了-個降壓開關調節器。如果 :’關严構 電流監測電阻rsen . 〜肩關Si上的壓降和 壓等於VOUT與D之1乘、錢’ Μ串3〇8」上的順向電 信號PWM—i的卫作⑽n。因p此’透過調節脈衝寬度調變 得據此調整。、,ED _ 3〇8—i上的順向電壓能 望電流值之參考传二3〇4」接收指示-期 之監測信請Α Γ/:流㈣D_」的電流 臣七測_號Ϊ(、ΡΜ ( 2,3),並比較參考信號REF和 二以調節脈衝寬度調變信號PWM-1的工作 I月D,使付LED電流與期望電流 之,開關平衡控制m麻m ISEN i產4誤差L ·據/考信號REF和監測信號 并-—伽丨s人 (1 = 1 ’ 2 ’ 3)。誤差信號VEA i =固:向電壓’對應的⑽串308」需要該順向電壓 以產生和期望電流值實質相等的電流。在—實施例中,如 果VEA—i較大’說明對應的⑽串_」需要一個較大的 ,向電壓。圖4中的開關平衡控制器氣土將在圖5中做 詳細描述。 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 11 201228458 平丄ΠΓ,回授選擇電路312分別接收來自開關 +衡控制θ 3G4」的誤差信號VEAJ,並判斷 ^流貫質相料’哪個·串具有最大的順^壓。回授 路/12還接收來自電流監測電阻獅、I的監測信 號iiH電路312根據誤差信號観」和/或監測信 唬ISEMj產生回授信號3〇1,該回授信號3〇1 大:向電壓的⑽串的LED電流。直流/直流;= 根據回授信號301調整調節後電壓V()UT π302 順向電壓的LED串的電力需求。在一實施例中足:、有二大 旎滿足具有最大順向電壓的LED串的電力需求 滿】其他任何LED串的電力需求。因此,所有的‘二 能獲付足_電力以產生具有均勻亮度的光輪出。 圖5顯示圖4中的開關平衡控制器3〇4 立 圖,以及開關平衡控制器綱」與對應的= 連接關係。圖5將結合圖4進行描述。 —, 生^圖:3例中,開關平衡控制_」包括用於產 生决差仏唬VEA—1的積分器,和用於比較誤差信號 和斜波信號RMP以產生脈衝寬度調變信號簡」的比較器 502。積分器包括與電流監測電阻RSENj耦接的電阻5〇8、 誤差放大器(error amplifier) 51〇以及電容5〇6。電容 506的一端耦接於誤差放大器51〇和比較器5〇2之間,另 一端與電阻508相連。 誤差放大态510接收兩個輸入。第一個輸入是參考信 號腳與脈衝寬度調變信號#乘積,由乘法器⑽ 0678-TW-CHSpec+Claim(sandra.t-20120130).doc 12 201228458 產生。第二個輸人是來自電流監測電卩且 號ISEN_i。誤差放大器51〇的輸出 的诚剛信 比較器502將誤差信號號 較以產生脈衝寬度調變信號PWM i ^RMP進行比 信號剛—i的工作週期。脈衝寬c寬度調變 衝器504,用於控制對應降壓開關調節k 透過緩 通狀態。在-實施例中,在第一時;;中中之^ VEA_i的幅度高於斜波信號RMp時,脈 號 PWM_i被置為1,開關Si被導通。在—實扩、又”周婕^號 時間段中,當誤差信號VEA_i的幅度低=例中’在第二 脈衝寬度調變信號PWMj被置為Q,開關& = ^ RMP ’ 如此,透過比較誤差信號VEA i和斜 衝寬度調變信號剛」的工作週期D可據么:二脈 施例中,脈衝寬度調變信號讓」的工作週期^_貫 信號VEA_i位準的增加而增加,隨著誤差信號vea i位J 的減小而減小。同時,LED串的順向電壓透過脈衝 變信號™U㈣目賴整。在—實施财,具有較大= 週期的脈衝寬度調變信號導致LED串3〇8j具有較大的順 向電壓’而具有較小工作週期的脈衝寬度調變信號導致 LED串308_.i具有較小的順向電壓。 在一實施例中,圖4中的回授選擇電路312接收 VEA—1、VEA—2、VEA_3 ’ 並透過比較 VEAj ' VEA—2 和 VEA 3 判斷哪個LED串具有最大順向電壓。例如,如果 VEAJ<VEA—2<VEA_3,則回授選擇電路312判斷LED串 308—3具有最大順向電壓,並產生用於指示LED串3〇8 3 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 13 201228458 的LED電流的回授信號301 °圖4中的直流/直流轉換器 302接收回授信號301並調整調節後電壓ν〇υΤ,以滿足LED 串308—3的電力需求。V〇UT只要能夠滿足LED串3〇8_3的 電力需求’則也能滿足LED串308_1和LED串308_2的電 力需求。因此’所有的LED串308—1、3〇8_2和308_3均 能獲得足夠的電力’以產生具有一致亮度的期望光輸出。 圖6顯示流經LED串308J的LED電流6〇4、電感Li 的電感電流602、RSEN—i和開關Si之間節點514上的電 壓6 0 6之間的關係。圖6將結合圖4和圖5進行描述。 在開關Si導通的時間段’直流/直流轉換器302為LED 串308_i供電,並用調節後電壓VOUT對電感Li充電。當 開關Si被PWM_i導通’則電感電流β〇2流經開關si和電 流監測電阻RSEN」到地。當開關Si導通時,電咸電流602 逐漸增大,節點514上的電壓606隨之增大。 在開關S i關斷的時間段’電感l丨放電並對[ED串 308一i供電。虽開關Si被PWM—i關斷,則電感電流go?流 經電感1^1、二極體Di和LED串308」。當開關Si關斷時, 電感電流602逐漸減小。因為鱗沒有電流流過電流監測 電阻RSEN_i,所以節點514上的電壓6〇6減小到〇。 在-實施例中,與LED串3G8J並軸接的電容以 對電感電流·進行濾、波,並產生實質料的⑽電流 604 ’其位準為電感電流6〇2的平均位準。 因此,LED 串 308 i 的 LED 雷、,* /( At 杜 & ^電流604能夠朝向目標電 &進行調整。在一貫施例中,當開關si導通時,節點514The LpD drive circuit 4A further includes a DC/DC converter 3〇2 to provide an adjusted voltage 'and a feedback selection circuit 312 to provide a feedback signal 301 to adjust the adjustment of the DC/DC converter 3〇2 output. The post voltage is used to meet the power requirements of the LED string with the largest forward voltage. The DC/DC converter 302 receives the input voltage vin and produces a regulated voltage VOUT. The switching balance controller 3〇4_i controls the conduction state of the switch Si with the pulse width modulation signal PWM_i (i = l, 2, 3). During the first period of time during which the switch Si is in the conducting state, the LED current flows through the LED string 308_i, the inductor Li, the switch Si, and the current monitoring resistor RSENj to ground. In one embodiment, the forward voltage of the LED string 308J is proportional to the difference between the regulated voltage VOUT and the voltage drop across the corresponding switching regulator. Here, the 0678-TW-CH Spec+Claim (sandra.t-20120130).doc 10 201228458 DC converter 302 supplies (10) the string gas 1 and charges the inductor L1. In the _ 308-1, the inter-inductor section '(10) current flows through the LED string U to discharge the LED string f to the D power. . In the second period of time, the 'inductance J 3〇^i - in the embodiment, the pulse width modulation signal PWM". In the iron L1, the polar body D i, the capacitance c i know that pg off c. becomes a step-down switching regulator. If: 'Close the structure of the current monitoring resistor rsen. ~ The voltage drop and pressure on the shoulder Si are equal to 1 times VOUT and D, and the forward electric signal PWM-i on the money 'Μ3〇8' (10)n . Since p is adjusted by adjusting the pulse width, it is adjusted accordingly. , ED _ 3 〇 8 - i on the forward voltage can look at the current value of the reference 2 3 〇 4" receiving instructions - the monitoring signal of the period please Γ : /: flow (four) D_" of the current seven test _ number Ϊ ( ΡΜ ( 2,3), and compare the reference signal REF and two to adjust the pulse width modulation signal PWM-1 work I month D, to make the LED current and the desired current, the switch balance control m hemp m ISEN i production 4 Error L · data / test signal REF and monitoring signal - - gamma s person (1 = 1 ' 2 ' 3). Error signal VEA i = solid: (10) string 308 corresponding to voltage 'requires the forward voltage to Producing a current that is substantially equal to the expected current value. In the embodiment, if VEA-i is larger, 'the corresponding (10) string _" requires a larger, forward voltage. The switching balance controller in Figure 4 will This is described in detail in Fig. 5. 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 11 201228458 In the meantime, the feedback selection circuit 312 receives the error signal VEAJ from the switch + balance control θ 3G4 respectively. And judge ^ flow through the phase material 'which string has the largest smooth pressure. The feedback circuit / 12 also receives the current monitoring resistance lion, I The signal iiH circuit 312 generates a feedback signal 3〇1 according to the error signal 和" and/or the monitoring signal ISEMj, the feedback signal 3〇1 is large: the LED current of the (10) string of voltages. DC/DC; The signal 301 is used to adjust the power demand of the LED string of the adjusted voltage V() UT π302 forward voltage. In one embodiment, the power requirement of the LED string having the largest forward voltage is satisfied. The power demand of the LED string. Therefore, all the 'two can get enough power_ to generate light with uniform brightness. Figure 5 shows the switch balance controller 3〇4 in Figure 4, and the switch balance controller And the corresponding = connection relationship. Figure 5 will be described in conjunction with Figure 4. -, Figure: In 3 cases, the switch balance control _" includes an integrator for generating the variance 仏唬VEA-1, and for Comparing the error signal and the ramp signal RMP to generate a pulse width modulation signal, the comparator 502. The integrator includes a resistor 5〇8 coupled to the current monitoring resistor RSENj, an error amplifier 51〇, and a capacitor 5〇. 6. One end of the capacitor 506 is coupled to the error The difference amplifier 51A is connected between the comparator 5〇2 and the other end is connected to the resistor 508. The error amplification state 510 receives two inputs. The first input is the product of the reference signal pin and the pulse width modulation signal #, by the multiplier (10) 0678-TW-CHSpec+Claim(sandra.t-20120130).doc 12 201228458 Generated. The second input is from the current monitoring unit and number ISEN_i. The input signal of the error amplifier 51A is compared with the error signal number by the pulse width modulation signal PWM i ^ RMP to the duty cycle of the signal just - i. The pulse width c-width modulation buffer 504 is configured to control the corresponding buck switch to adjust the k through the mitigation state. In the embodiment, when the amplitude of VEA_i in the first time; is higher than the ramp signal RMp, the pulse number PWM_i is set to 1, and the switch Si is turned on. In the period of -expansion and "周婕^", when the amplitude of the error signal VEA_i is low = in the example 'in the second pulse width modulation signal PWMj is set to Q, switch & = ^ RMP ' The duty cycle D of the comparison error signal VEA i and the ramp width modulation signal just can be used: in the two-pulse embodiment, the pulse width modulation signal increases the duty cycle of the signal VEA_i. It decreases as the error signal vea i bit J decreases. At the same time, the forward voltage of the LED string is transmitted through the pulse-changing signal TMU (4). In the implementation, the pulse width modulation signal with a larger = period causes the LED string 3〇8j to have a larger forward voltage' while the pulse width modulation signal with a smaller duty cycle results in the LED string 308_.i having a higher Small forward voltage. In one embodiment, the feedback selection circuit 312 of Figure 4 receives VEA-1, VEA-2, VEA_3' and determines which LED string has the maximum forward voltage by comparing VEAj 'VEA-2 and VEA3. For example, if VEAJ <VEA-2 <VEA_3, then feedback selection circuit 312 determines that LED string 308-3 has the maximum forward voltage and is generated to indicate the LED string 3〇8 3 0678-TW-CH Spec+Claim(sandra .t-20120130).doc 13 201228458 LED current feedback signal 301 ° The DC/DC converter 302 in FIG. 4 receives the feedback signal 301 and adjusts the adjusted voltage ν〇υΤ to satisfy the LED string 308-3 electricity demand. The V〇UT can satisfy the power requirements of the LED string 308_1 and the LED string 308_2 as long as it can satisfy the power demand of the LED string 3〇8_3. Thus, all of the LED strings 308-1, 3〇8_2, and 308_3 can obtain sufficient power to produce a desired light output with consistent brightness. Figure 6 shows the relationship between LED current 6〇4 flowing through LED string 308J, inductor current 602, RSEN-i of inductor Li, and voltage 6 0 6 at node 514 between switches Si. Figure 6 will be described in conjunction with Figures 4 and 5. The DC/DC converter 302 supplies power to the LED string 308_i during the period in which the switch Si is turned on, and charges the inductor Li with the adjusted voltage VOUT. When the switch Si is turned "on" by PWM_i, the inductor current β〇2 flows through the switch si and the current monitoring resistor RSEN" to ground. When the switch Si is turned on, the electric salt current 602 gradually increases, and the voltage 606 on the node 514 increases. During the period of time when the switch S i is turned off, the inductor is discharged and the [ED string 308-i is supplied with power. Although the switch Si is turned off by PWM_i, the inductor current go? flows through the inductor 1^1, the diode Di, and the LED string 308". When the switch Si is turned off, the inductor current 602 gradually decreases. Since no current flows through the current monitoring resistor RSEN_i, the voltage 6〇6 at node 514 is reduced to 〇. In an embodiment, the capacitor axially coupled to the LED string 3G8J filters (filters) the inductor current, and produces a substantial (10) current 604' whose level is the average level of the inductor current 6〇2. Therefore, the LED ray of the LED string 308 i, * / (At Du & ^ current 604 can be adjusted towards the target power & in a consistent embodiment, when the switch si is turned on, node 514

上的平均雜㈣於參考信號REF的電壓值/ U 0678-TW-CH Spec+Claim(sandra.t-2012013〇),d〇c 14 201228458 ㈣二㈣Γ為據本發明—實施㈣有共陰極連接之 ◦ ◦的電路_。圖7中與圖4編號相同的元 件具有類㈣魏,為_起見在此不 的實例中,為方便說明,H 山 1月顯不二個LED串308J、3〇8_2 寿口 308_3。然而LED驅動電路可以包括數目的· 串。 ’、圖4中的LED驅動電路4〇〇類似,咖驅動電路· 利用複數個開_節器(如降壓開_節器)根據參考信 號REF和複數個分別指示⑽串3〇8—i、3〇8—2和氣3 的電流監測信號ISEN—1、ISEN_2、調〜3來調節哪串 308—1 308—2和308—3的順向電壓。監測信號丨娜」、 nwmg]電流監測!|產生。在圖7的實例 中,母個電流監測器包括—個電流監測電阻RSENj (丨=1, 2 ’ 3)、一個差動放大器(differential amplifier) 7〇2_土 (i=H 3)和一個電阻706」(丨=卜2,3)。電流監測電 阻RSEN_i與對應的LED串308_i串聯。差動放大器7〇2_i 耦接於電流監測電阻RSENj和開關平衡控制器7〇4J ^ 間。電阻706一i耦接於誤差放大器7〇2j和地之間。 在一實施例中,每個降壓開關調節器包括一個電感Li (i=l ’ 2,3)、一個二極體 Di (i=1,2,3)、一個電容以 (i=l,2 ’ 3)和一個開關Si (i=1,2,3)。電感u與對 應的LED串308—i (i=l,2,3)串聯。二極體Di與LED串 308—i及與之串聯的電感Li並聯。電容ci與對應的LED 串308_i並聯。開關Si耦接於直流/直流轉換器3〇2和電 感Li之間。每個降壓開關調節器由一個脈衝調變信號所 0678-TW-CH Spec+Claim(sandra.t-20120I30).doc 15 201228458 控制,例如由一個對應的開關平衡控制器7〇4j (i=1,2, 3)產生的脈衝寬度調變信號PWM—i (i=1,2,3)所控制。 LED驅動電路700還包括直流/直流轉換器3〇2,用於 提供調節後電壓,以及回授選擇電路312,用於提供回授 信號301來調整直流/直流轉換器3〇2產生的調節後的電 壓,以滿足具有最大順向電壓的LED串的電力需求。 在一實施例中,在開關Si處於導通狀態的第一時間 丰又内,LED電流流過LED串308_i到地。LED串308 i的 順向電壓正比於調節後電壓νουτ與對應開關調節器上的 壓降之差。在此第一時間段内,直流/直流轉換器302為 LED串308_i供電,並同時以調節後電壓ν〇υτ對電感u 進行充電。在開關Si處於關斷狀態的第二時間段内,LED 電流流經LED串308_i,電感Li和二極體Di。在此第二 時間段内’電感Li放電以對LED串308—i供電。 圖8顯示圖7中的開關平衡控制器7〇4_i的架構示意 圖,以及開關平衡控制器704—i與對應的LED串308 i的 連接關係。圖8與圖5類似,不同之處在於,對於圖7中 具有共陰極連接的LED驅動電路700,差動放大器i 檢測電流監測電阻RSEN_i上的壓降。經由電阻i可 以產生指示LED串308_i之LED電流的監測信號I sen i。 在一實施例中,電阻706_i與電流監測電阻RSENj具有 相同的阻值。 圖9顯示LED串308_i的LED電流904、電感Li的電 感電流902、RSEN_i和開關Si之間節點814上的電壓 之間的關係。圖9將結合圖7和圖8進行描述。 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 16 201228458 當開關Si導通時,直流/直流轉換器302為led串 308_i供電,並以調節後電壓ν〇υτ對電感Li充電。當開 關Si被PWM-i導通,電感電流902流經LED串308〜i到 地。當開關Si導通時,電感電流902逐漸增大,節點814 上的電壓906隨之增大。 當開關Si關斷時,電感Li放電並對LED串3〇8j供 電。當開關Si被關斷,電感電流902流經電感u、 LED串308一i和二極體Di。當開關si關斷時,電感電流 902逐漸減小。因為此時沒有電流流過電流監測電阻 RSEN_i,節點814上的電壓906升高至VOUT。 在一實施例中,與LED串308_i並聯的電容Ci對電 感電流902進行濾波,因此產生實質為恆定的LED電济 904 ’其位準為電感電流9〇2的平均位準。 因此’ LED串308一i的LED電流904能夠朝目標電流 調整。在一實施例中,當開關Si導通時,節點814上的 平均電壓值等於VOUT的電壓與參考信號REF的電壓之差。 圖10所示為根據本發明一個實施例的驅動複數個光 源的方法流程圖。儘管圖丨0中揭露特定之步驟,但、言此 步驟僅僅疋作為示意之用。亦即,本發明可用於執行^他 的步驟,或者圖1〇中特定步驟之變化步驟。圖1〇將^人 圖3和圖4進行描述。 '° σ 在步驟1002中,-個輪入電壓被電力轉換器(如直 流/直流轉換器302)轉換成調節後電壓。 在步驟1004中,調節後電壓被分別施加於複數個光 源(如LED串308—;1、308—2和308一3)以分別產生流經複 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 201228458 數個光源的光源電流。 在步驟_中,利用複數個開關調節器(如複數個 降壓開關調節器3G6J、3G6—2和3G6_3)分別調節各光源 的順向電壓。 在步驟1008中,利用複數個脈衝調變信號(如脈衝 寬度調,錢PWM」、Ρ·_2、PWM_3)相㈣該複數個 開關調節器。在一實施例中,利用一個脈衝調變信號控制 開關Si,使得在開關導通的第一時間段内,由調節後電壓 對一個對應光源供電,並由調節後電壓對—個對應的電感 Li充電。在開關關斷的第二時間段内,電感u放電,並 透過電感Li放電對光源供電。 在步驟1010中’根據參考信號REF和監測信號I sen i 調整脈衝調麦彳§號PWM一i的工作週期。在一實施例中,監 測信號ISEN_i由電流監測器310_丨產生,用於指示流經 對應光源的光源電流。 圖11所示為本發明一實施例中LED驅動電路11〇〇的 方塊圖。LED驅動電路11〇〇包括一個轉換器11〇2,接受輸 入電壓並輸出調節後電壓VOUT給多個LED串。轉換器1102 可為DC/DC轉換器或者AC/DC轉換器,但並不以此°為限。 在圖11所示的實施例中有三個led串308—1、308 2和 308_3作為例示,但LED驅動電路11〇〇可包括有其他數量 的LED串。LED驅動電路11 〇〇還包括多個開關si、%和 S3(例如,金屬氧化物半導體場效電晶體)與LED串3〇8卜 308_2和308_3分別連接。 — 此外,LED驅動電路11〇〇包括多個與轉換器11〇2相 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 18 201228458 連接的電流平衡控制器U04J、1104_2和11〇4—3。電节 平衡控制器1H)4—1、1104一2和1104—3能夠在一預定範= 内(例如,低於一預設電流位準)分別調整流經led串 308—1、308—2和308_3的電流,並且透過控制開關幻、% 和S3來平衡流經led串308—1、308—2和308一3的電流。 更進一步,電流平衡控制器1104一1、1104—2和u〇4^L 收指示目標平均位準的第一參考信號剛和指示最大 ^立準的第參考錢鹏,並且將每個相應⑽串 ^均電流調整為目標平均位準,將每個相應⑽串上 I、電流位準調整為最大暫態位準以内。 連接在轉換$1102和電流平衡控制器㈣ 1104—2和H04—3之間的回授選擇電路1112基於流瘦⑽ 卜篇―2和通―3的電流調整轉換器HG2的輸出 多個電流感測器(例如,電阻Rsen_」、Rsen2、和r ^i SI ^ S2 ^ S3 , ^^^^^ . ^ LED串308—卜通―2和氣3的電流的監測信㈣ 獅一2和腳_3。在一個實施例中,監測信幻卿-卜 ISEN一2和ISEN—3還分別指示相應LED串的順向電壓 308_i (.,|,〇 V3〇gi 可由下列方程式計算得出: (3)The average impurity (4) on the reference signal REF voltage value / U 0678-TW-CH Spec + Claim (sandra.t-2012013〇), d〇c 14 201228458 (four) two (four) Γ according to the invention - implementation (four) with common cathode connection Then ◦ 电路 _. The components numbered in Fig. 7 and having the same number as in Fig. 4 have the class (4) Wei. For the sake of convenience, for the sake of convenience, H Hill does not display two LED strings 308J, 3〇8_2 Shoukou 308_3 in January. However, the LED drive circuit can include a number of strings. ', the LED driver circuit 4 in Figure 4 is similar, the coffee driver circuit · using a plurality of open_theaters (such as step-down on the _theater) according to the reference signal REF and a plurality of separate indications (10) string 3 〇 8 - i The current monitoring signals ISEN-1, ISEN_2, and 〜3 of 3〇8-2 and 3 are used to adjust the forward voltage of which series 308-1 308-2 and 308-3. Monitoring signal 丨娜", nwmg] current monitoring! | Produced. In the example of FIG. 7, the mother current monitor includes a current monitoring resistor RSENj (丨=1, 2 '3), a differential amplifier 7〇2_ soil (i=H 3), and a Resistor 706" (丨 = Bu 2, 3). The current monitoring resistor RSEN_i is connected in series with the corresponding LED string 308_i. The differential amplifier 7〇2_i is coupled between the current monitoring resistor RSENj and the switching balance controller 7〇4J^. The resistor 706-i is coupled between the error amplifier 7〇2j and the ground. In one embodiment, each buck switching regulator includes an inductor Li (i=l '2,3), a diode Di (i=1,2,3), and a capacitor (i=l, 2 ' 3) and one switch Si (i = 1, 2, 3). The inductor u is connected in series with the corresponding LED string 308-i (i = 1, 2, 3). The diode Di is connected in parallel with the LED string 308-i and the inductor Li connected in series therewith. The capacitor ci is connected in parallel with the corresponding LED string 308_i. The switch Si is coupled between the DC/DC converter 3〇2 and the inductor Li. Each buck switching regulator is controlled by a pulse modulation signal 0678-TW-CH Spec+Claim(sandra.t-20120I30).doc 15 201228458, for example by a corresponding switch balancing controller 7〇4j (i= 1, 2, 3) The generated pulse width modulation signal PWM_i (i = 1, 2, 3) is controlled. The LED driving circuit 700 further includes a DC/DC converter 3〇2 for providing the adjusted voltage, and a feedback selection circuit 312 for providing the feedback signal 301 for adjusting the adjustment generated by the DC/DC converter 3〇2. The voltage is met to meet the power requirements of the LED string with the largest forward voltage. In one embodiment, the LED current flows through the LED string 308_i to ground during the first time that the switch Si is in the conducting state. The forward voltage of LED string 308i is proportional to the difference between the regulated voltage νουτ and the corresponding voltage drop across the switching regulator. During this first time period, the DC/DC converter 302 supplies power to the LED string 308_i and simultaneously charges the inductor u with the adjusted voltage ν 〇υτ. During the second period of time when the switch Si is in the off state, the LED current flows through the LED string 308_i, the inductance Li and the diode Di. During this second period of time, the inductor Li is discharged to supply power to the LED string 308-i. Figure 8 shows an architectural schematic of the switching balance controller 7〇4_i of Figure 7, and the connection relationship of the switching balance controller 704-i with the corresponding LED string 308i. 8 is similar to FIG. 5 except that for the LED driving circuit 700 having the common cathode connection in FIG. 7, the differential amplifier i detects the voltage drop across the current monitoring resistor RSEN_i. A monitoring signal I sen i indicative of the LED current of the LED string 308_i can be generated via the resistor i. In one embodiment, resistor 706_i has the same resistance as current monitoring resistor RSENj. Figure 9 shows the relationship between the LED current 904 of the LED string 308_i, the inductor current 902 of the inductor Li, RSEN_i, and the voltage across the node 814 between the switches Si. Figure 9 will be described in conjunction with Figures 7 and 8. 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 16 201228458 When the switch Si is turned on, the DC/DC converter 302 supplies power to the led string 308_i and charges the inductor Li with the adjusted voltage ν 〇υτ. When switch Si is turned on by PWM-i, inductor current 902 flows through LED string 308~i to ground. When switch Si is turned on, inductor current 902 gradually increases and voltage 906 at node 814 increases. When the switch Si is turned off, the inductor Li discharges and supplies power to the LED string 3〇8j. When the switch Si is turned off, the inductor current 902 flows through the inductor u, the LED string 308-i, and the diode Di. When the switch si is turned off, the inductor current 902 gradually decreases. Since no current flows through the current monitoring resistor RSEN_i at this time, the voltage 906 at node 814 rises to VOUT. In one embodiment, the capacitance Ci in parallel with the LED string 308_i filters the inductor current 902, thereby producing a substantially constant LED power 904' whose level is the average level of the inductor current 9〇2. Thus, the LED current 904 of the LED string 308-i can be adjusted toward the target current. In one embodiment, when switch Si is turned on, the average voltage value at node 814 is equal to the difference between the voltage of VOUT and the voltage of reference signal REF. Figure 10 is a flow diagram of a method of driving a plurality of light sources in accordance with one embodiment of the present invention. Although specific steps are disclosed in Figure 0, this step is merely for illustrative purposes. That is, the present invention can be used to perform the steps of the other, or the steps of the specific steps in Fig. 1. Figure 1 is a description of Figure 3 and Figure 4. '° σ In step 1002, a turn-in voltage is converted to a regulated voltage by a power converter (e.g., DC/DC converter 302). In step 1004, the adjusted voltages are applied to a plurality of light sources (eg, LED strings 308-; 1, 308-2, and 308-3) to generate flow through complex 0678-TW-CH Spec+Claim (sandra.t, respectively). -20120130).doc 201228458 Source current of several light sources. In step _, the forward voltages of the respective light sources are respectively adjusted by a plurality of switching regulators (e.g., a plurality of step-down switching regulators 3G6J, 3G6-2, and 3G6_3). In step 1008, a plurality of pulse modulation signals (e.g., pulse width modulation, money PWM), Ρ·_2, PWM_3 phase (4) are used to adjust the plurality of switching regulators. In one embodiment, the switch Si is controlled by a pulse modulation signal such that the first time period during which the switch is turned on, the regulated voltage is supplied to a corresponding light source, and the adjusted voltage is used to charge a corresponding inductor Li. . During the second period of time when the switch is turned off, the inductor u is discharged, and the light source is supplied through the inductor Li discharge. In step 1010, the duty cycle of the pulse modulation code PWM-i is adjusted according to the reference signal REF and the monitoring signal I sen i . In one embodiment, the monitor signal ISEN_i is generated by the current monitor 310_丨 to indicate the source current flowing through the corresponding source. Fig. 11 is a block diagram showing an LED driving circuit 11A according to an embodiment of the present invention. The LED drive circuit 11A includes a converter 11〇2 that receives an input voltage and outputs the adjusted voltage VOUT to a plurality of LED strings. The converter 1102 can be a DC/DC converter or an AC/DC converter, but is not limited to this. In the embodiment shown in Figure 11, there are three led strings 307-1, 308 2 and 308_3 as exemplifications, but the LED drive circuit 11A may include other numbers of LED strings. The LED drive circuit 11 further includes a plurality of switches si, %, and S3 (e.g., metal oxide semiconductor field effect transistors) connected to the LED strings 3, 8b, 308_2, and 308_3, respectively. - In addition, the LED driving circuit 11A includes a plurality of current balancing controllers U04J, 1104_2 and 11 connected to the converter 11〇2 phase 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 18 201228458 4-3. The electric node balance controllers 1H) 4-1, 1104-2, and 1104-3 can be adjusted to flow through the led strings 308-1, 308-2, respectively, within a predetermined range = (eg, below a predetermined current level). And 308_3 current, and through the control switch magic, % and S3 to balance the current flowing through the led strings 307-1, 308-2 and 308-3. Further, the current balance controllers 1104-1, 1104-2, and u〇4^L receive the first reference signal indicating the target average level and the first reference Qianpeng indicating the maximum standard, and each corresponding (10) The series current is adjusted to the target average level, and each corresponding (10) string of I and current levels are adjusted to be within the maximum transient level. The feedback selection circuit 1112 connected between the conversion $1102 and the current balance controller (4) 1104-2 and H04-3 is based on the output of the current-sense converter HG2 of the flow thin (10) and the three currents. (for example, resistors Rsen_", Rsen2, and r ^i SI ^ S2 ^ S3 , ^^^^^ . ^ LED string 308 - Butong-2 and gas 3 current monitoring signals (4) Lions 2 and _3 In one embodiment, the monitoring signals, ISEN-2 and ISEN-3, respectively indicate that the forward voltage 308_i (.,|, 〇V3〇gi of the corresponding LED string can be calculated by the following equation: (3)

V308_i = VOUT - Vsi - VlSEN 號 其中’ vsi是開關si上的順向電壓,νι_是監測信 VlSEN_i的電壓。 ° 0678-TW-CH Spcc+Claini(sandra.t-20120130).doc 19 201228458 電流平衡控制器ll〇4_l、1104—2和1104_3產生多個 驅動b虎DRVJ、DRV—2和DRV—3 (例如,脈衝信號),以 控制分別與LED串308_1、308—2和308—3串聯的開關S1、 S2和S3。驅動信號DRV—i(例如,丨=1、2、3)的責任週期 ,基於一相應監測信號ISEN_i和第一參考信號REF1被決 定之。更具體而言,在一實施例中,驅動信號DRVj的責 任週期係根據相應的監測信號ISENj的平均值和第一參 考“號REF1的差值決定之。可供選擇的,驅動信號 的貝任週期根據相應的監測信號ISEN_i和第一參考信號 REF1差值的平均值而決定之。驅動信號DRV—i的振幅則係 根據相應的監測信號ISEN_i和第二參考信號REF2差值而 決定之。 在操作過程中,電流平衡控制器11〇4_i接收指示目 標平均電流Irefi的第一參考信號REn,並接收來自電流感 測器RSEN_i的相應監測信號ISEN—i。電流平衡控制器11〇4」 基於第一參考信號REF1和監測信號iSEN_i產生誤差信號 VEAC一 1。更具體而言,在一個實施例中,電流平衡控制器 1104_ι產生指示參考信號REF1和監測信號ISENj平均值 的差值的誤差彳§號VEAC_i。可供選擇的,電流平衡控制器 1104_ι產生指示參考信號REF1和監測信號ISEN_j差值的 平均值的誤差信號VEAC—i。在一個實施例中,誤差信號 VEAC_i還指示相應LED串308_i之順向電壓的量,以產生 平均位準與目標平均電流IREF1實質上相同的Led電流。 基於誤差信號VEAC_i ’電流平衡控制器ii〇4j產生 相應的驅動信號DRV_i以調整流經LED串308 i的電流。 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 20 201228458 7為脈衝調變信號(例如,脈寬調變信 芦於疋,開關Si能夠交替地導通或關閉 =流能夠不連續。流經LED串氣1;電: 準utf上相等於目標電流一。在一個 ^施例中’誤差信號職」與參考信號_ !sen ^-1 ^tbf" ° 5 -比义考信號REFl小,使得誤差信號VEAC—i的位準 2地高,致使責任週期等於臓,開目su尤能一直保 符導通’這樣流、經LED φ 308_i㈣流能夠保持連續了。 而且電机平衡控制器ii〇4_i接收指示流經LE£)串 308—i的最大暫態電流Imax的第二參考信號REF2。電流平 衡控制器m4J控制流經LED _ 3G8_i的暫態電流Itran 在最大暫態電流i«ax以内,這樣可以防止LED串3〇8-i處 在過電流的情形。 一 圖12A--圖12C所示為所述轉換器11〇〇的波形。圖ι2Α 為流經LED串308—1暫態電流iTRA(U。圖12B為流經LED _ 308_2暫態電流V308_i = VOUT - Vsi - VlSEN number where ' vsi is the forward voltage on switch si and νι_ is the voltage of the monitoring signal VlSEN_i. ° 0678-TW-CH Spcc+Claini(sandra.t-20120130).doc 19 201228458 The current balancing controllers ll〇4_l, 1104-2 and 1104_3 generate multiple drives b tiger DRVJ, DRV-2 and DRV-3 (eg , pulse signal) to control switches S1, S2 and S3 in series with LED strings 308_1, 308-2 and 308-3, respectively. The duty cycle of the drive signal DRV-i (e.g., 丨 = 1, 2, 3) is determined based on a corresponding monitor signal ISEN_i and the first reference signal REF1. More specifically, in an embodiment, the duty cycle of the drive signal DRVj is determined according to the average value of the corresponding monitor signal ISENj and the difference of the first reference "number REF1. Alternatively, the drive signal is The period is determined according to the average value of the difference between the corresponding monitoring signal ISEN_i and the first reference signal REF1. The amplitude of the driving signal DRV-i is determined according to the difference between the corresponding monitoring signal ISEN_i and the second reference signal REF2. During operation, the current balance controller 11〇4_i receives the first reference signal REn indicating the target average current Irefi and receives the corresponding monitor signal ISEN_i from the current sensor RSEN_i. The current balance controller 11〇4" is based on A reference signal REF1 and a monitor signal iSEN_i generate an error signal VEAC-1. More specifically, in one embodiment, the current balancing controller 1104_ι generates an error 彳 VEAC_i indicating the difference between the average of the reference signal REF1 and the monitoring signal ISENj. Alternatively, the current balance controller 1104_ι generates an error signal VEAC_i indicating the average of the difference between the reference signal REF1 and the monitor signal ISEN_j. In one embodiment, the error signal VEAC_i also indicates the amount of forward voltage of the respective LED string 308_i to produce a Led current having an average level substantially the same as the target average current IREF1. A corresponding drive signal DRV_i is generated based on the error signal VEAC_i ' current balancing controller ii 〇 4j to adjust the current flowing through the LED string 308 i . 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 20 201228458 7 is a pulse modulation signal (for example, the pulse width modulation signal is in the 疋, the switch Si can be turned on or off alternately = the flow can be discontinuous Flow through LED string 1; electricity: quasi-utf equal to target current one. In a ^ example, 'error signal position' and reference signal _ !sen ^-1 ^tbf" ° 5 - comparison test signal REFl Small, so that the level of the error signal VEAC-i is high, so that the duty cycle is equal to 臓, and the opening of the eye can always be guaranteed to turn on. This way, the flow through the LED φ 308_i (four) can be kept continuous. Ii 〇 4_i receives a second reference signal REF2 indicating the maximum transient current Imax flowing through the string 308-i. The current balancing controller m4J controls the transient current Itran flowing through the LED _ 3G8_i to be within the maximum transient current i«ax, which prevents the LED string 3〇8-i from being overcurrent. A waveform of the converter 11A is shown in Fig. 12A - Fig. 12C. Figure ι2Α is the transient current iTRA (U through the LED string 308-1). Figure 12B shows the transient current flowing through the LED _ 308_2.

ItRAN_2 0 圖12C為流經LED串308_3暫態 電流 I ΤΈΑΝ_3。 如果指示參考信號REF1和監測信號ISEN1平均值的 差值的誤差信號VEACL1足夠大,驅動信號DRV_1的責任 週期等於100% ’流經LED串308_1的暫態電流ImNJ是連 續的。這樣流經LED串308_1的暫態電流等於流經LED串 308—1的平均電流。對於LED串308_2,假設誤差信號 VEAC_2比誤差信號VEAC__1小,並且監測信號ISEN—2的責 0678-TW-CH Spec+Claim(sandra.t-20120130).d〇c 21 201228458 任週期比監測信號ISen_1小。在電流平衡控制器ii〇4_2 的調整下,流經LED串308—2的暫態電流Itran_2是不連續 的,並且比目標平均電流IREF1大。對於Led串308—3,假 設誤差信號VEAC—3是誤差信號VEAC_1、VEAC_2和VEAC—3 中最小的一個。那麼監測信號ISEN—3的責任週期也是監 測信號ISEN—1、lSEN_2、ISEN一3中最小的一個。在電^ 平衡控制器1104—3的調整下,流經LED串308 3的暫熊 電流ImN_3是暫態電流ItraN 3、Itran_3和w3中最大的,但 仍然小於最大暫態電流IMAX。因此,在電流平衡控制器 1104J、1104一2 和 11〇4_3 的調整下,流經 led 串 308J、 308_2和308—3的平均電流基本與目標平均電流1(^相 同。電流平衡控制器ll〇4_i的調整將在圖13中進一步討 論。 ,、 回到圖11,在一個實施例中,回授選擇電路1112接 收誤差信號VEAC_1、VEAC—2和VEAC_3,並且決定哪個LED 串具有最大的導通電壓。另外’回授選擇電路Ul2根據 來自電流感測器RsEN_i的監測信號ISEN—i決定哪個led串 具有最大的導通電壓。在一個實施例中,“最大的導通電 壓”是指LED串308_1、308—2和308—3中最大的導通電 壓。在一個實施例中,回授選擇電路1112產生指示具有 最大導通電壓的LED串的電流的回授信號11〇1。因此,轉 換器1102根據回授信號1101調整VOUT,以滿足具有最大 導通電壓的LED串的能量需求。相應地,具有更的導通 電壓的LED串的能量需求也能被滿足。 圖13所示為圖11中的電流平衡控制器u〇4丨的結 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 22 201228458 與相應LED串3G8」連接關係。在-個實施例中, =r^rilQ4J包括-個用以接收指示目標平均 接參考信號随的第-參考引聊、-個用以 考引^不^㈣位準Imax的第二參考信號咖的第二參 j弓::,平衡控制器⑽」將流 值調整到目標平均位準“,將流經⑽串 暫態位準限制在最大暫態位準w以内。電 控制器聰―i進—步包括—個感測器引腳以接收 曰不d LED m的監測信號。電流控 1氣i啸監測錢ISEN—i的平均值與第—參考信號 剛,以及比較監測信號ISEIU與第二參考信號·。 結果’流經LED串3G8」的電流的責任週期由第一參考信 號REF1決定,流經led串308」的電流的振幅由第二參 考信號REF2決定。 在圖13所示的實施例中,電流平衡控制器11〇4j包 括一個積分器,以產生誤差信號VEAC_i、一個比較器—13〇2 以比較誤差信號VEAC_i與斜坡信號RMP,以產生致能信號 COMP—i、一個誤差放大器1314以產生驅動信號DRV—i來 驅動開關Si。積分器包括一個與電流取樣電阻RsENi連接 的電阻1308、一個誤差放大器131〇、以及一個電容13〇6。 電谷1306 ·-端麵接至誤差放大器131〇和比較器13〇2之 間,另一端則與電阻1308連接。誤差放大器131〇接收參 考信號REF1和監測信號ISEN—i的平均值,並基於參考信 號REF1與監測信號ISEN_i平均值的差值產生誤差信號 VEAC—i 。 ° & 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 23 201228458 比較器1302將誤差信號VEAC_i與斜坡信號RMp進行 比較以產生致能信號C0MP_i。在圖13所示的實施例中, 如果斜坡信號的峰值位準低於誤差信號VEAQJ,信號 COMP_i保持恒定的位準。否則,信號將會包括多 個脈衝。#號COMP_i用於致能和除能誤差放大器1314。 舉例來說,在一個實施例中,當誤差信號VEAC—i大於斜 坡信號RMP ’信號COMP— i具有邏輯高電位以致能誤差放大 器1314。在另一個實施例中,當誤差信號VEACj小於斜 坡信號RMP ’信號COMP— i具有邏輯低電位以除能誤差放大 器 1314。 當誤差放大器1314被信號COMP—i致能後,誤差放大 器1314透過比較監測信號ISEN—i與第二參考信號REF2 以產生一個相應的驅動信號DRV_i。更具體而言,如果誤 差放大器1314被除能,信號DRV一i斷開開關Si ,沒有電 &流經LED串308_i。如果誤差放大器1314被致能,信號 DRV一i由參考信號REF2和監測信號ISEN_i之間的差值控 制。也就是說,信號DRV_i的貴任週期由信號c〇MP_i(例 如’誤差信號VEAC_i與斜坡信號RMP的比較值)來決定。 信號DRV—i的振幅由參考信號REF2和監測信號iSENj的 差值決定。在一個實施例中,如果信號DRV_i的振幅比較 向’相應的開關Si在導通時被充分打開。如果信號⑽Vj 的振幅比較低,相應的開關Si在導通時被線性地控制。 結果,誤差放大器1314控制流經LED串308一i的平均電 流實質上相等於目標平均電流Iavg,流經LED串308一i的 暫態電流Imw低於最大暫態電流lMAX。例如,當流經led 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 24 201228458 串308_ι的暫態電流Itran增加,信號DRV-i的振幅減小, 於是流經LED串308—i的暫態電流17_又減小了。因此, 指示監測信號ISEN_i的平均值與參考信號Rm之間差值 的誤差信號VEAC—i增加了。相應地,指示驅動信號爾土 的貴任週期的信號C〇MP—i增加。於是,透過減少信號服乂 i 的振幅和增加信號DRV—i的責任週期’ LED串3〇8—丨的平 均電流保持實質上相等於目標平均電流丨,並且串 308_i的暫態電流不超過最大暫態電流“μ。 有利之處在於’開關的能量消耗被減少了。這樣,由 於開導致的熱問題被避免或減少,並且串的能量 效率提南了。更具體的’與LED串串聯的開關有連續的電 流透過’因為相應驅動信號刪」的振幅比較高,開關能 夠被充分地導通,因此,具有小的能量損耗。—個與 串連接的開關具有不連續的電流,流經開關的瞬態電流增 加,開關的導通時間和開關的順向電壓降減少,這樣,與 LED串連接的具有不連續電流的開關的能量消耗也將減 少〇 圖14A及圖14B所示為與圖13所示之架構相關的波 形1400。圖14A-14B將結合圖13進行描述。圖14A所示 為誤差信號VEAC_i、斜坡信號RMp、驅動信號DRVj、參 考電壓REF1和REF2、以及監測信號ISENj的波形。監測 信號ISENj的暫態位準低於參考電壓REF2,並且監測信 號ISEN_i的平均位準基本等於參考電壓refi。 圖14B所示為誤差信號VEACj,、斜坡信號跗P,、 驅動信號DRV_i 、參考電壓REF1和服F2、以及監測信 0678-TW-CH Spec+Claim(sandra.t-20120130).d〇〇 25 201228458 號 I SEN_ ISEli, 號 DRV— VEAC_i, DRV—i ISEl ISEN ] 所示的實施例中,監測信號 ^振^^動信號贿」。而且,誤差信號 的責信號VEACLi,並且越動信號 的貝任週期小於 的暫態位準低^者1 !虎黯」。監測信號 的平均位準㈣二^麼·2,並且監測信號 m 1 Π , 貝上相荨於參考電壓REF1。 圖15所不為根據本發 換器⑽的結構示所示之轉 器1102為一個DC/DC轉換t ^斤不的貫施例中,轉換 雷宠Πίΐβ、—-轉換包括一個電感1502、一個 一極體1504、一個控制調節後電壓VOUT ,功率開關1508、-個控制器153G,肋產生控 =關聰的控制信號1522、以及—個電流感測器刪, 測鍾功率_簡的電流。功率開關刪可為 金屬氧化物半導體場效電晶體’但並不以此為限。在一個 實施例中’電流感測器1510是一個電阻。在另_個實施 例中,控制信號1522是一個脈寬調變信號(p蘭)。 在操作過程中,當功率開關1508被開啟,流經電感 1502、功率開關15〇8和電阻1510的電流對電感15〇2充 電。當功率開關1508被關閉,流經電感1502和二極體15〇4 的電流對電容1506充電。這樣,調節後電壓VOUT〇UT因 此被調整。 控制器1530包括一個振盪器1532、一個累加器 1534、一個比較器1536和一個缓衝器1538。在操作過程 中’累加器1534累加來自電流感測器1510的感測器信號 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 26 201228458 以及來自㈣器1532的斜坡信號,以輪出-累加信號 1540。比較益1536比較累加信號154()與指示具有最大順 向電壓降的LED _電流的回授信號⑽。比較器腿的 輸出透過緩衝器1538提供給功率開關咖。這樣,控制 ㈣1522悄整調節後電壓_讀以滿足·串謂一卜 308_2和308_3的能量需求。 一 圖16所7Γ為根據本發明_實_之·驅動電路 誦方塊@。與圖11中相_«記的元件具有同樣的 1能。電流平衡控㈣還接收相應的調光信號 DIM」。調光信號麵」可為脈寬調變信號。串3〇8ι 的亮度可受控於參考信號_和剛以及調光信號 DIM—p更進-步,當調光信號氣土被設置為第—位準⑷ 如,邏輯高電位),電流平衡控制器1104J,被致能,並 且,驅動信號DRV—i根據參考信號_和剛透過開關 Si調整流經LED串308」的電流。當調光信號dim」被設 置為第二位準(例如’邏輯低電位),電流平衡控制器 1104—Γ被除能,於是開關Si被斷開,沒有電流流經· 串308」。在-個實施例中,調光信號DIM_i白勺頻率低於 開關S i的開關頻率。 此外,LED驅動電路1600可同步驅動信號〇心丄盥調 光信號DIM._i。例如,當調光錢包含正緣以致能 相應的電流平衡控制ϋ 1104—i’,驅動信號DRV—丨也包括 正緣以開啟相應開關Si;當調光信號DIM—i包含負緣以除 能相應的電流平衡控制器ll〇4_i,,驅動信號DRV—丨也包 括負緣以關閉相應開關S i。 0678-TW-CH Spec+Claiirt(sandra.t-20120130).doc 27 201228458ItRAN_2 0 Figure 12C shows the transient current I ΤΈΑΝ _3 flowing through the LED string 308_3. If the error signal VEACL1 indicating the difference between the average value of the reference signal REF1 and the monitor signal ISEN1 is sufficiently large, the duty cycle of the drive signal DRV_1 is equal to 100%'. The transient current ImNJ flowing through the LED string 308_1 is continuous. Thus, the transient current flowing through the LED string 308_1 is equal to the average current flowing through the LED string 308-1. For the LED string 308_2, it is assumed that the error signal VEAC_2 is smaller than the error signal VEAC__1, and the duty of the monitoring signal ISEN-2 is 0678-TW-CH Spec+Claim(sandra.t-20120130).d〇c 21 201228458 cycle ratio monitoring signal ISen_1 small. Under the adjustment of the current balancing controller ii 〇 4_2, the transient current Itran_2 flowing through the LED string 308-2 is discontinuous and larger than the target average current IREF1. For the Led string 308-3, it is assumed that the error signal VEAC-3 is the smallest of the error signals VEAC_1, VEAC_2, and VEAC-3. Then, the duty cycle of the monitoring signal ISEN-3 is also the smallest one of the monitoring signals ISEN-1, lSEN_2, ISEN-3. Under the adjustment of the electric balance controller 1104-3, the temporary bear current ImN_3 flowing through the LED string 308 3 is the largest of the transient currents ItraN 3, Itran_3 and w3, but still smaller than the maximum transient current IMAX. Therefore, under the adjustment of the current balancing controllers 1104J, 1104-2, and 11〇4_3, the average current flowing through the LED strings 308J, 308_2, and 308-3 is substantially the same as the target average current 1 (^. The current balancing controller 〇 The adjustment of 4_i will be further discussed in Figure 13. Returning to Figure 11, in one embodiment, feedback selection circuit 1112 receives error signals VEAC_1, VEAC-2, and VEAC_3 and determines which LED string has the maximum turn-on voltage. In addition, the feedback selection circuit Ul2 determines which LED string has the maximum on-voltage according to the monitor signal ISEN-i from the current sensor RsEN_i. In one embodiment, the "maximum on-voltage" refers to the LED strings 308_1, 308. The maximum turn-on voltage of -2 and 308-3. In one embodiment, feedback feedback circuit 1112 generates a feedback signal 11 〇 1 indicative of the current of the LED string having the largest turn-on voltage. Thus, converter 1102 is based on a feedback letter No. 1101 adjusts VOUT to meet the energy requirements of the LED string with the maximum turn-on voltage. Accordingly, the energy requirements of the LED string with a higher turn-on voltage can also be satisfied. The connection of the current balance controller u〇4丨 in FIG. 11 is 0678-TW-CH Spec+Claim (sandra.t-20120130).doc 22 201228458 and the corresponding LED string 3G8". In one embodiment, =r^rilQ4J includes a second reference signal for receiving a first reference message indicating the target average reference signal, and a second reference signal for referring to the ^4 level: :, the balance controller (10) "adjusts the flow value to the target average level", and limits the flow through the (10) string transient level to within the maximum transient level w. The electric controller _i-step includes a sense The detector pin receives the monitoring signal of 曰d LED m. The current control 1 i 啸 监测 monitors the average value of ISEN—i and the first reference signal, and compares the monitoring signal ISEIU with the second reference signal·. The duty cycle of the current flowing through the LED string 3G8" is determined by the first reference signal REF1, and the amplitude of the current flowing through the led string 308" is determined by the second reference signal REF2. In the embodiment shown in Figure 13, the current balance control The device 11〇4j includes an integrator to generate an error signal VEAC_i, a comparator −13〇2 to The error signal VEAC_i and the ramp signal RMP generate an enable signal COMP-i, an error amplifier 1314 to generate a drive signal DRV-i to drive the switch Si. The integrator includes a resistor 1308 connected to the current sense resistor RsENi, an error amplifier 131〇, and a capacitor 13〇6. The electric valley 1306·-end is connected between the error amplifier 131〇 and the comparator 13〇2, and the other end is connected to the resistor 1308. The error amplifier 131 receives the average of the reference signal REF1 and the monitor signal ISEN_i, and generates an error signal VEAC_i based on the difference between the reference signal REF1 and the average value of the monitor signal ISEN_i. ° & 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 23 201228458 The comparator 1302 compares the error signal VEAC_i with the ramp signal RMp to generate the enable signal C0MP_i. In the embodiment shown in Fig. 13, if the peak level of the ramp signal is lower than the error signal VEAQJ, the signal COMP_i remains at a constant level. Otherwise, the signal will include multiple pulses. #号COMP_i is used to enable and disable the error amplifier 1314. For example, in one embodiment, the error amplifier VEAC_i is greater than the ramp signal RMP' signal COMP_i having a logic high potential to enable the error amplifier 1314. In another embodiment, error signal amplifier 1314 is disabled when error signal VEACj is less than ramp signal RMP' signal COMP_i has a logic low potential. When the error amplifier 1314 is enabled by the signal COMP_i, the error amplifier 1314 compares the monitor signal ISEN_i with the second reference signal REF2 to generate a corresponding drive signal DRV_i. More specifically, if the error amplifier 1314 is disabled, the signal DRV-i turns off the switch Si, and no power & flows through the LED string 308_i. If error amplifier 1314 is enabled, signal DRV-i is controlled by the difference between reference signal REF2 and monitor signal ISEN_i. That is, the noble period of the signal DRV_i is determined by the signal c 〇 MP_i (e.g., the comparison value of the error signal VEAC_i and the ramp signal RMP). The amplitude of the signal DRV-i is determined by the difference between the reference signal REF2 and the monitor signal iSENj. In one embodiment, if the amplitude of the signal DRV_i is compared to the corresponding switch Si is fully turned on when turned on. If the amplitude of the signal (10) Vj is relatively low, the corresponding switch Si is linearly controlled when turned on. As a result, the error amplifier 1314 controls the average current flowing through the LED string 308-i to be substantially equal to the target average current Iavg, and the transient current Imw flowing through the LED string 308i is lower than the maximum transient current lMAX. For example, when the transient current Itran flowing through the LED 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 24 201228458 string 308_ι increases, the amplitude of the signal DRV-i decreases, and then flows through the LED string 308. The transient current 17_ of i is reduced again. Therefore, the error signal VEAC_i indicating the difference between the average value of the monitor signal ISEN_i and the reference signal Rm is increased. Accordingly, the signal C 〇 MP - i indicating the noble period of the drive signal is increased. Thus, by reducing the amplitude of the signal service 乂i and increasing the duty cycle of the signal DRV-i, the average current of the LED string 3〇8-丨 remains substantially equal to the target average current 丨, and the transient current of the string 308_i does not exceed the maximum The transient current "μ. is advantageous in that the energy consumption of the switch is reduced. Thus, the thermal problem caused by the opening is avoided or reduced, and the energy efficiency of the string is advanced. More specifically 'in series with the LED string The switch has a continuous current transmission 'because the corresponding drive signal is deleted", the amplitude of the switch is relatively high, and the switch can be sufficiently turned on, thus having a small energy loss. A switch connected to the string has a discontinuous current, the transient current flowing through the switch increases, the on-time of the switch and the forward voltage drop of the switch decrease, such that the energy of the switch having a discontinuous current connected to the LED string The consumption will also be reduced. Figures 14A and 14B show waveforms 1400 associated with the architecture shown in Figure 13. 14A-14B will be described in conjunction with FIG. Fig. 14A shows waveforms of the error signal VEAC_i, the ramp signal RMp, the drive signal DRVj, the reference voltages REF1 and REF2, and the monitor signal ISENj. The transient level of the monitor signal ISENj is lower than the reference voltage REF2, and the average level of the monitor signal ISEN_i is substantially equal to the reference voltage refi. Figure 14B shows the error signal VEACj, the ramp signal 跗P, the drive signal DRV_i, the reference voltage REF1 and the service F2, and the monitoring signal 0678-TW-CH Spec+Claim(sandra.t-20120130).d〇〇25 201228458 In the embodiment shown by No. I SEN_ ISEli, No. DRV-VEAC_i, DRV-i ISEl ISEN, the signal is monitored and the signal is signaled. Moreover, the error signal is responsible for the signal VEACLi, and the transient period of the overtone signal is less than the transient level. The average level of the monitoring signal is (4) 2^2, and the monitoring signal m 1 Π is on the reference voltage REF1. Figure 15 is not a schematic diagram of the converter 1102 according to the structure of the present converter (10) for a DC/DC conversion. In the embodiment, the conversion Ray Π ΐ ΐ, the conversion includes an inductor 1502, a A pole body 1504, a control regulated voltage VOUT, a power switch 1508, a controller 153G, a rib generates a control signal 1522 of the control = Guan Cong, and a current sensor delete, a clock power _ simple current. The power switch can be a metal oxide semiconductor field effect transistor 'but not limited to this. In one embodiment, current sensor 1510 is a resistor. In another embodiment, control signal 1522 is a pulse width modulated signal (p-lane). During operation, when power switch 1508 is turned on, current flowing through inductor 1502, power switch 15 〇 8 and resistor 1510 charges inductor 15 〇 2 . When the power switch 1508 is turned off, the current flowing through the inductor 1502 and the diode 15〇4 charges the capacitor 1506. Thus, the adjusted voltage VOUT〇UT is thus adjusted. Controller 1530 includes an oscillator 1532, an accumulator 1534, a comparator 1536, and a buffer 1538. During operation, the accumulator 1534 accumulates the sensor signal from the current sensor 1510, 0678-TW-CH Spec+Claim (sandra.t-20120130).doc 26 201228458 and the ramp signal from the (4) device 1532, in turn Out-accumulate signal 1540. Comparative benefit 1536 compares the accumulated signal 154() with a feedback signal (10) indicating the LED_current having the largest forward voltage drop. The output of the comparator leg is provided to the power switch via buffer 1538. In this way, the control (4) 1522 quietly adjusts the voltage _ read to meet the energy requirements of the strings 308_2 and 308_3. Figure 7 is a diagram showing the driving circuit 诵 block @ according to the present invention. It has the same energy as the component of the phase in Fig. 11. The current balance control (4) also receives the corresponding dimming signal DIM". The dimming signal surface can be a pulse width modulation signal. The brightness of the string 3〇8ι can be controlled by the reference signal _ and just the dimming signal DIM-p, and when the dimming signal is set to the first level (4), for example, logic high potential, current balance The controller 1104J is enabled, and the drive signal DRV-i adjusts the current flowing through the LED string 308" according to the reference signal_ and just passing through the switch Si. When the dimming signal dim" is set to the second level (e.g., 'logic low potential'), the current balancing controller 1104 - is disabled, so that the switch Si is turned off and no current flows through the string 308". In one embodiment, the frequency of the dimming signal DIM_i is lower than the switching frequency of the switch S i . In addition, the LED driving circuit 1600 can synchronously drive the signal centering dimming signal DIM._i. For example, when the dimming money includes a positive edge to enable a corresponding current balance control ϋ 1104-i', the drive signal DRV-丨 also includes a positive edge to turn on the corresponding switch Si; when the dimming signal DIM-i includes a negative edge to disable The corresponding current balancing controller 11〇4_i, the drive signal DRV_丨 also includes a negative edge to turn off the corresponding switch S i . 0678-TW-CH Spec+Claiirt(sandra.t-20120130).doc 27 201228458

另外’在-個實施财,_信號D 的操作。如果任何調光信號⑽^^^器 位準,那麼轉換器腕,根據回授信號11G]調二第: 電塵聰。如果所有的調光信號⑽」都處於第^:後 那麼轉換器1102’雜調節後電壓贿,且不根據^ #號11 ο 1調整調節後電壓νουτ。 义 —圖17所示為圖16中之電流平衡控制器u〇4—i,的釺 構示意圖及其與相應LED串3G8J連_係。圖~17 ‘ 合圖13和圖16進行描述。在圖17所示的實施例中,;^ 流平衡控㈣ll〇4_i,還包括—侧光㈣接腳以接收 調光信號DIM_i。如果調光信號DIM_i處於第一位準,流 經LED串308一i的電流由第一參考信號REF1和第二參考 信號REF2決定,如果調光信號DIM_i處於第二位準,流 經LED串308一i的電流將被切斷。更具體而言,調光信號 DIM_i致能或者除能誤差放大器131〇和比較器13〇2。如 果調光信號DIM_i處於第二位準,誤差放大器131〇和比 較器1302被除能,沒有電流流經LED串308_i。如果調光 信號DIM„i處於第一位準,誤差放大器1310和比較器1302 被致能。也就是說,誤差放大器1310比較參考信號REF1 與監測信號ISEN_i的平均值,比較器1302比較斜坡信號 RMP與誤差信號VEAC_i,並且驅動信號DRV_i透過開關Si 調整流經LED串308_i的電流。此外,調光信號DIMJ可 控制斜坡信號以同步驅動信號DRV_i與調光信號DIM_i。 同步過程將在圖18中進一步描述。 圖18所示為根據本發明一實施例之圖17所示之架構 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 28 201228458 相關的波形1800。圖士人阁】 所干㈣W 圖7進行描述。在圖18 ::的:施例中’調光信號DIM_i是—個脈衝信號一 調光信號DOU從輯 低電位轉變為邏輯高電位,钭坡伸㈣仗邏輯 觫πτμ以·^ 证針坡就開始增加。當調光信 :如—处;第一狀態’電流平衡控制器1104」,可以根 ^ ⑽串3G8—1的電流。誤差信號霞―i 曰不 > 考域_和監測信號 測信號ISEN—i的瞬態位準板於史去φ厂的差值成 ητκ · ^〜位準低於參考電壓REF2,並且當調 挪5:·'…: <於邏輯高電位的時間週期,監測信號 _1、平句位準實質上相等於參考電壓刪。 Μ Υ卜—°周光仏虎DIMJ從第—位準轉換到第二位 降:列:’:邏輯高電位轉換為邏輯低電位,斜坡信號下 古Φ :位$。相應的,驅動信號DRV—i關閉開關Si,沒 f電流流經LED串·j。這樣,斜坡信號膽與調光信 號DIM」被同步,驅動信號與調光信號画」相應 也被同步。 圖19所示為根據本發明—實施例之圖16巾所示的轉 換器1102的結構示意圖。相較於LED驅動電路ιι〇〇中 的轉換器1102,LED驅動電路16〇〇中的轉換器11〇2,還 包括一個或閘1942和一個及閘1946。或閘1942接收 光信號DIM_1-MM_3。在一個實施例中,透過或閘1942 和及閘1946,當任何一個调光信號dimj處於第一位準 時,轉換态1102根據回授信號hoi調整ν〇υτ,並且當 所有的調光信號DIM_1-DIM—3處於第二位準時,除能控制 0678-TW-CH Spec+Claim.(sandra.t-20120130).doc 29 201228458 為1530 ,維持調節後電壓V0UT。 圖20所示為根據本發明一實施例之對多個LED光源 供電的方法流程圖2刪。儘管圖2Q中描述了具體的步驟, 但上述步驟只是示例性質的,本發明也適用於其他步驟或 者圖20中步驟的變形實施例。圖20將結合圖16進行描 述。 在步驟2002中’ 一個輸入電壓viN透過一個轉換器 (例如,DC/DC轉換器11〇2’)被轉換成一個調節後電壓 V〇UT。並且調節後電壓V0UT被應用於多個LED光源(例 如,LED串308—1、308一2和308_3),以產生多個分別流 經LED光源的電流。 在步驟2004中,接收指示目標平均位準的第一參考 信號REF1。 〆 在步驟2006中,接收指示最大暫態位準的第二泉 信號REF2。 少 在步驟2008中,流經LED光源的每一電流的平均電 流被調整為目標平均位準,流經LED光源的每一電流的暫 態位準被調整為在最大暫態位準之下。更進一步,產生多 個脈衝信號DRV—i以分別調整流經LED串308_1、308 2 和308—3的電流。脈衝信號DRV—i的責任週期根據第一參 考信號REF1決定。脈衝信號DRV—i的振幅根據第二參^ 信號REF2決定。更具體的,脈衝信號DRV—i的責任週期 根據誤差信號VEAC_i和斜坡信號RMP的比較值決定。在 一個實施例中,誤差信號VEAC_i由監測信號iSENj的平 均值和第一參考信號REF1的差值決定。脈衝信號DRV 土 0678-TW-CHSpec+Claim(sandra.t-20120130).doc 30 201228458 的振幅根據第二參考信號,2和監測信號iSEN—i的差值 決定。 、在—個實施例中,LED串308_i的亮度進一步被一個 調光彳5旎D[M—i所控制。例如,當調光信號DIii被設置 =第一位準(例如,邏輯高電位),流經LED串308—i的電 抓,據參考信號REF1和REp2而被調整,當調光信號])IM_i 被°又置為第二位準(例如,邏輯低電位),流經LED串308_i 的電流被除能。 _ 上文具體實施方式和附圖僅為本發明之常用實施 例顯然,在不脫離權利要求書所界定的本發明精神和發 明範,的前提下可以有各種增補、修改和替換。本領域技 術人員應該理解,本發明在實際應用中可根據具體的環境 和工作要求在不背離發明準制前提下在形式、結構、佈 局比例、材料、元素、元件及其它方面有所變化。因此, 在此^露之實關僅驗制哺限制,本發明之範圍由 後附權利要求及其合法等同物界定,而不限於此前之描 述0 【圖式簡單說明】 ,以下結合附圖和具體實施例對本發明的技術方法進 行詳細的描述,以使本發明的特徵和優點更為明顯。其中: 圖1所示為一種習知的led驅動電路的電路圖; 圖2所不為另一種習知的LED驅動電路的電路圖; 圖3所不為根據本發明一實施例的LED驅動電路的方 塊圖; 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 31 201228458 圖4所示為根據本發明一實施例的LED驅動電路的電 路圖; 圖5所示為根據本發明一實施例圖4中的開關平衡控 制器的架構示意圖’以及開關平衡控制器與對應的LEE)串 的連接關係; 圖6所示為根據本發明一實施例圖5中的LED電流、 電感電流和電流監測電阻上的電壓波形之間的關係圖; 圖7所示為根據本發明一實施例的LED驅動電路的電 路圖; 圖8所示為根據本發明一實施例圖7中的開關平衡控 制器的架構示意圖’以及開關平衡控制器與對應的LED串 的連接關係; 圖9所示為根據本發明一實施例圖8中的LED電流, 電感電流和電流偵測電阻上的電壓之間的關係圖; 圖10所示為根據本發明一個實施例的驅動複數個光 源的方法流程圖; 圖11所示為根據本發明一實施例中LED驅動電路的 方塊圖; 圖12A~1 12C為根據本發明一實施例中LED驅動電路 中,各流經LED串之暫態電流波形圖; 圖13所示為根據本發明一實施例之圖η中的電流平 衡控制器的結構示意圖及其與相應LED串連接關係; 圖14A及圖14B所示為根據本發明一實施例之圖13 所示之架構相關的波形; 圖15所示為根據本發明一實施例之圖11中所示之轉 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 32 201228458 換器的結構示意圖; 圖16所示為根據本發明一實施例之LED驅動電路方 塊圖, 圖17所示為根據本發明一實施例之圖16中的電流平 衡控制器的結構示意圖及其與相應LED串連接關係; 圖18所示為根據本發明一實施例之圖17所示之架構 相關的波形; 圖19所示為根據本發明一實施例之圖16中所示的轉 換器的結構示意圖; 圖20所示為根據本發明一實施例之對多個LED光源 供電的方法流程圖。 ' 【主要元件符號說明】 100 : LED驅動電路 102 :直流/直流轉換器 104 :選擇電路 106_1、106_2、...106-N :線性 LED 電流調節器 108 1、108 2、...108 N : LED 串 — — -— · 110_1110_2、...11〇_Ν :運算放大器 200 : LED驅動電路 202_1、202_2、...202_Ν :直流/直流轉換器 300、400、700 : LED 驅動電路 301 :回授信號 302 :直流/直流轉換器 304_1、_ 304_2、304_3 :開關平衡控制器 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 33 201228458 306—1、306一2 ' 306—3 :降壓開關調節器 308—1、308_2、308_3 : LED 串 310—1、310一2、31〇_3 :電流監測器 312 :回授選擇電路 502 :比較器 504 :緩衝器 506 :電容 508 :電阻 510 :誤差放大器 512 :乘法器 514 :節點 602 :電感電流 604 : LED 電流 606 :電壓 702J、702_2、702_3 :差動放大器 704_1、704一2、704-3 :開關平衡控制器 706_1、706_2、706_3 :電阻 814 :節點 902 :電感電流 904 : LED 電流 906 :電壓 1000 :流程圖 1002、1004、1006、1008、1010 :步驟 1100 : LED驅動電路 1101 :回授信號 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 34 201228458 1102、1102’ :轉換器 1104_1、1104_2、1104_3 :電流平衡控制器 1104_1’、1104_2’、1104_3’ :電流平衡控制器 1112 :回授選擇電路 1302 :比較器 1306 :電容 1308 :電阻 1310 :誤差放大器 1314 :誤差放大器 1400 :波形 1502 :電感 1504 :電容 1506 :二極體 1508 :功率開關 1510:電流感測器 1522 :控制信號 1530、1530’ :控制器 1532:振盪器 1534 :累加器 1536 :比較器 1538 :缓衝器 1540 :累加信號 1600 : LED驅動電路 1800 :波形 1942 :或閘 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 35 201228458 1946 :及閘 2000 :流程圖 2002、2004、2006、2008 :步驟 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 36In addition, the operation of the signal D is performed. If any dimming signal (10) ^ ^ ^ device level, then the converter wrist, according to the feedback signal 11G] adjust the second: electric dust Cong. If all of the dimming signals (10) are after the ^: then the converter 1102' adjusts the voltage and does not adjust the adjusted voltage νουτ according to ^ #11 ο 1 . Sense - Figure 17 is a schematic diagram of the current balancing controller u 〇 4 - i of Figure 16 and its connection with the corresponding LED string 3G8J. Figure ~17 ′ is described in conjunction with Figure 13 and Figure 16. In the embodiment shown in Fig. 17, the flow balance control (four) ll 〇 4_i further includes a side light (four) pin to receive the dimming signal DIM_i. If the dimming signal DIM_i is at the first level, the current flowing through the LED string 308-i is determined by the first reference signal REF1 and the second reference signal REF2, and if the dimming signal DIM_i is at the second level, flowing through the LED string 308 The current of one i will be cut off. More specifically, the dimming signal DIM_i enables or disables the error amplifier 131A and the comparator 13〇2. If the dimming signal DIM_i is at the second level, the error amplifier 131A and the comparator 1302 are disabled and no current flows through the LED string 308_i. If the dimming signal DIM„i is at the first level, the error amplifier 1310 and the comparator 1302 are enabled. That is, the error amplifier 1310 compares the average of the reference signal REF1 with the monitor signal ISEN_i, and the comparator 1302 compares the ramp signal RMP. And the error signal VEAC_i, and the drive signal DRV_i adjusts the current flowing through the LED string 308_i through the switch Si. Further, the dimming signal DIMJ can control the ramp signal to synchronize the drive signal DRV_i with the dimming signal DIM_i. The synchronization process will be further in FIG. DESCRIPTION OF THE DRAWINGS Figure 18 is a diagram showing the waveform 1800 associated with the architecture 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 28 201228458 shown in Figure 17 in accordance with an embodiment of the present invention. Dry (four) W is described in Figure 7. In Figure 18:: In the example, the 'dimming signal DIM_i is a pulse signal-dimming signal DOU transition from low to logic high, 钭 slope stretch (four) 仗 logic 觫πτμ The needle slope begins to increase with the ^^. When the dimming signal: such as - the first state 'current balance controller 1104', can be the root of (3) string 3G8-1. The error signal Xia-i 曰不> The test field _ and the monitoring signal signal ISEN-i transient level plate in the history of the φ factory difference ητκ · ^ ~ level is lower than the reference voltage REF2, and when Move 5:·'...: < During the time period of logic high, the monitoring signal_1 and the level of the flat sentence are substantially equal to the reference voltage. Μ Υ — - ° Zhou Guangyi tiger DIMJ from the first position to the second position drop: column: ': logic high potential conversion to logic low, ramp signal lower Φ: bit $. Correspondingly, the drive signal DRV-i turns off the switch Si, and no f current flows through the LED string j. Thus, the ramp signal is synchronized with the dimming signal DIM", and the drive signal and the dimming signal are also synchronized. Figure 19 is a block diagram showing the structure of the converter 1102 shown in Figure 16 of the present invention. The converter 11102 in the LED drive circuit 16A also includes an OR gate 1942 and a AND gate 1946 as compared to the converter 1102 in the LED drive circuit ιι. Or gate 1942 receives optical signals DIM_1-MM_3. In one embodiment, the pass gate 1942 and the gate 1946, when any of the dimming signals dimj is at the first level, the transition state 1102 adjusts ν〇υτ according to the feedback signal hoi, and when all the dimming signals DIM_1- DIM-3 is in the second position, except for the control of 0678-TW-CH Spec+Claim.(sandra.t-20120130).doc 29 201228458 is 1530, maintaining the regulated voltage VOUT. Figure 20 is a flow chart showing a method of powering a plurality of LED light sources in accordance with an embodiment of the present invention. Although the specific steps are described in Figure 2Q, the above steps are merely exemplary in nature, and the present invention is also applicable to other steps or variant embodiments of the steps in Figure 20. Figure 20 will be described in conjunction with Figure 16. In step 2002, an input voltage viN is converted to a regulated voltage V〇UT through a converter (e.g., DC/DC converter 11〇2'). And the adjusted voltage VOUT is applied to a plurality of LED sources (e.g., LED strings 308-1, 308-2, and 308_3) to generate a plurality of currents respectively flowing through the LED sources. In step 2004, a first reference signal REF1 indicating a target average level is received. 〆 In step 2006, a second spring signal REF2 indicating the maximum transient level is received. Less In step 2008, the average current of each current flowing through the LED source is adjusted to the target average level, and the transient level of each current flowing through the LED source is adjusted to be below the maximum transient level. Further, a plurality of pulse signals DRV-i are generated to adjust the currents flowing through the LED strings 308_1, 308 2, and 308-3, respectively. The duty cycle of the pulse signal DRV_i is determined based on the first reference signal REF1. The amplitude of the pulse signal DRV-i is determined according to the second parameter REF2. More specifically, the duty cycle of the pulse signal DRV_i is determined based on the comparison value of the error signal VEAC_i and the ramp signal RMP. In one embodiment, the error signal VEAC_i is determined by the average of the monitor signal iSENj and the difference of the first reference signal REF1. The amplitude of the pulse signal DRV 0678-TW-CHSpec+Claim(sandra.t-20120130).doc 30 201228458 is determined according to the difference between the second reference signal 2 and the monitoring signal iSEN-i. In one embodiment, the brightness of the LED string 308_i is further controlled by a dimming 彳5旎D[M-i. For example, when the dimming signal DIii is set to the first level (eg, logic high), the electric current flowing through the LED string 308-i is adjusted according to the reference signals REF1 and REp2, when the dimming signal]) IM_i By being again set to the second level (eg, logic low), the current flowing through the LED string 308_i is disabled. The above detailed description of the embodiments and the accompanying drawings are in the form of the embodiments of the present invention, and the invention may be variously modified, modified and substituted without departing from the spirit and scope of the invention as defined by the appended claims. It should be understood by those skilled in the art that the present invention may vary in form, structure, arrangement ratio, materials, elements, components, and other aspects in accordance with the specific environmental and operational requirements without departing from the scope of the invention. Therefore, the scope of the present invention is defined by the appended claims and their legal equivalents, and is not limited to the foregoing description. [Simplified description of the drawings] DETAILED DESCRIPTION OF THE INVENTION The technical methods of the present invention are described in detail to make the features and advantages of the present invention more apparent. 1 is a circuit diagram of a conventional LED driving circuit; FIG. 2 is not a circuit diagram of another conventional LED driving circuit; FIG. 3 is not a block of an LED driving circuit according to an embodiment of the present invention. FIG. 4 is a circuit diagram of an LED driving circuit according to an embodiment of the invention; FIG. 5 is a circuit diagram of an LED driving circuit according to an embodiment of the invention; FIG. 4 is a schematic diagram of the architecture of the switching balance controller and the connection relationship between the switching balance controller and the corresponding LEE string; FIG. 6 is a diagram showing the LED current, inductor current and current monitoring of FIG. 5 according to an embodiment of the invention. FIG. 7 is a circuit diagram of an LED driving circuit according to an embodiment of the invention; FIG. 8 is a diagram showing the architecture of the switching balancing controller of FIG. 7 according to an embodiment of the invention; FIG. 9 is a diagram showing a relationship between a LED current, an inductor current, and a voltage on a current detecting resistor of FIG. 8 according to an embodiment of the present invention; Figure 10 is a flow chart showing a method of driving a plurality of light sources according to an embodiment of the present invention; FIG. 11 is a block diagram showing an LED driving circuit according to an embodiment of the present invention; and FIGS. 12A to 12C are diagrams showing an embodiment of the present invention. In the LED driving circuit, the transient current waveform diagram of each LED string is shown; FIG. 13 is a schematic structural diagram of the current balancing controller in FIG. η according to an embodiment of the invention and its connection relationship with the corresponding LED string. 14A and 14B are diagrams showing the waveforms associated with the architecture shown in FIG. 13 in accordance with an embodiment of the present invention; and FIG. 15 is a diagram showing the transition 0678-TW-CH shown in FIG. 11 in accordance with an embodiment of the present invention. Spec+Claim(sandra.t-20120130).doc 32 201228458 Structure of the converter; Figure 16 is a block diagram of an LED driving circuit according to an embodiment of the present invention, and Figure 17 is a block diagram of an LED driving circuit according to an embodiment of the present invention. Figure 16 is a schematic diagram of the structure of the current balancing controller and its connection with the corresponding LED string; Figure 18 is a diagram showing the waveforms associated with the architecture shown in Figure 17 in accordance with an embodiment of the present invention; An embodiment of Figure 16 is shown Converter is a schematic structural diagram; FIG. 20 is a flowchart of a method according to a plurality of LED light sources of a power supply embodiment of the present invention. ' [Main component symbol description] 100 : LED drive circuit 102 : DC/DC converter 104 : Selection circuit 106_1, 106_2, ... 106-N : Linear LED current regulator 108 1 , 108 2, ... 108 N : LED string - - - 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Feedback signal 302: DC/DC converter 304_1, _ 304_2, 304_3: Switch balance controller 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 33 201228458 306-1, 306-2 2 306- 3: buck switching regulators 308-1, 308_2, 308_3: LED string 310-1, 310-2, 31〇_3: current monitor 312: feedback selection circuit 502: comparator 504: buffer 506: capacitor 508: resistor 510: error amplifier 512: multiplier 514: node 602: inductor current 604: LED current 606: voltage 702J, 702_2, 702_3: differential amplifier 704_1, 704-2, 704-3: switching balance controller 706_1, 706_2, 706_3: Resistor 814: Node 902: Inductor Current 904: LED Current 906: Voltage 1000: Flowchart 10 02, 1004, 1006, 1008, 1010: Step 1100: LED drive circuit 1101: feedback signal 0678-TW-CH Spec+Claim (sandra.t-20120130).doc 34 201228458 1102, 1102': converter 1104_1, 1104_2 1104_3: Current balance controllers 1104_1', 1104_2', 1104_3': current balance controller 1112: feedback selection circuit 1302: comparator 1306: capacitor 1308: resistor 1310: error amplifier 1314: error amplifier 1400: waveform 1502: inductance 1504: Capacitor 1506: Diode 1508: Power Switch 1510: Current Sensor 1522: Control Signals 1530, 1530': Controller 1532: Oscillator 1534: Accumulator 1536: Comparator 1538: Buffer 1540: Accumulate Signal 1600: LED Driver Circuit 1800: Waveform 1942: or Gate 0678-TW-CH Spec+Claim (sandra.t-20120130).doc 35 201228458 1946: Gate 2000: Flowchart 2002, 2004, 2006, 2008: Step 0678- TW-CH Spec+Claim(sandra.t-20120130).doc 36

Claims (1)

201228458 七、申請專利範圍·· 1· 一種對多個發光二 一能量轉換器,接電的驅動電路,包括: 體光源提供對該多個發光二極 多個電流平衡控制器 制流經該多個發光二極體光==換器’分別控 考信號和=-目標平均位準的一第一參 將該多個電流之每—:二準的-第二參考信號’並 目標平均^钱調整為該 位準娜妓之每—㈣細一暫態 伹早膽為_最大暫態位準以下。 2.=請專利範圍第1項的驅動電路,其中,若一調光 ^號處於第一位準,則該多個電流平衡控制器根據 ^第參考信號和該第二參考信號調整該多個電 /;〖L且其中,若該調光信號處於一第二位準,則該多 個電流平衡控制器被除能。 3·如申明專利範圍第1項的驅動電路,更包括: 夕個It流感測器’搞接至該多個發光二極體光源,分 別產生指示該多個電流的多個監測信號。 4. 如申明專利範圍第3項的驅動電路,其中,該多個電 μ平衡控制器產生多個驅動信號以分別控制與該多 個發光二極體光源串聯的多個開關。 5. 如^請專利範圍第4項的驅動電路,其中,該多個驅 動信號之每—個驅動信號的__責任週期係基於該第 一參考信號和一相對應監測信號決定之。 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 37 201228458 6. 如申明專利範圍第4項的驅動電路,其中,該多個驅 動信號之每一個驅動信號的一振幅係根據該第二參 考信號和一相對應監測信號之間的一差值決定之。 7. 如申請專利範圍第4項的驅動電路,其中,該多個電 流平衡控制器之每一個電流平衡控制器包括一第一 玦差放大器,基於該第一參考信號和一相對應監測信 號的一平均值之間的一差值產生一誤差信號。 8. 如申請專利範圍第7項的驅動電路,其中,該多個電 平衡控制器之每一個電流平衡控制器進一步包括 一比較器,耦接至該第一誤差放大器,比較該誤差信 號與一斜坡信號以產生一致能信號。 9. 如申請專利範圍第8項的驅動電路,其中,該電流平 衡控制器進一步包括一第二誤差放大器,耦接至該比 較器,當該第二誤差放大器被該致能信號致能,比較 該監測信號與該第二參考信號,產生一相對應驅動信 號。 10. 如申請專利範圍第8項的驅動電路,其中,當一調光 信號處於一第一位準時,該第一誤差放大器比較該第 一參考信號與一相對應監測信號的一平均值,該比較 器比較該誤差信號與該斜坡信號;當該調光信號處於 一第二位準時’該第一誤差放大器和該比較器被除 能。 11. 如申請專利範圍第4項的驅動電路,其中,該多個驅 動信號為脈寬調變(PWM)信號。 12. 如申請專利範圍第3項的驅動電路,更包括: 0678-TW-CHSpec+Claim(sandra.t-20120130).doc 38 201228458 一回授選擇電路,耦接於該能量轉換器和該電流平衡 控制器之間,接收該多個監測信號並從該多個發光二 極體光源中決定具有一最大導通電壓的發光二極體 光源, 該能量轉換器將該調整電壓調整為滿足具有該最大 導通電壓的該發光二極體光源能量需求。 13. —種調整流經一發光二極體光源的一電流的控制 器,包括: 一第一參考引腳,接收指示一目標平均位準的一第一 參考信號; 一第二參考引腳,接收指示一最大暫態位準的一第二 參考信號;以及 該控制器將該電流的·一平均電流調整為該目標平均 位準,並將該電流的一暫態位準調整為低於該最大暫 態位準。 14. 如申請專利範圍第13項的控制器,其中,該電流的 一責任週期係根據該第一參考信號決定。 15. 如申請專利範圍第13項的控制器,其中,該電流的 振幅根據該第二參考k號決定。 16. 如申請專利範圍第13項的控制器,更包括: 一調光控制接腳,接收一調光信號, 若該調光信號處於一第一位準,則該電流根據該第一 參考信號和該第二參考信號決定,且其中,若該調光 信號處於一第二位準,該電流被切斷。 17. 如申請專利範圍第13項的控制器,更包括: 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 39 201228458 一感測接腳,接收指示該電流的一監測信號, 該控制器比較該監測信號的一平均值與該第一參考 信號,並比較該監測信號與該第二參考信號。 18. —種對多個發光二極體光源供電的方法,包括: 提供一調整電壓給該多個發光二極體光源,並產生分 別流經該多個發光二極體光源的多個電流; 接收指示一目標平均位準的一第一參考信號; 接收指示一最大暫態位準的一第二參考信號;以及 將該多個電流之每一個電流的一平均電流調整為該 目標平均位準,將該多個電流之每一個電流的一暫態 位準調整為於該最大暫態位準之下。 19. 如申請專利範圍第18項的方法,其中,該多個電流 之每一個電流的一責任週期係根據該第一參考信號 決定。 20. 如申請專利範圍第18項的方法,其中,該多個電流 之每·—個電流的' —振幅係根據該第二參考信號決定。 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 40201228458 VII. Patent Application Range···1· A driving circuit for a plurality of light-emitting two-in-one energy converters, comprising: a body light source providing a plurality of light-emitting diodes and a plurality of current balancing controllers Light-emitting diode light == converter's respective control signal and =- target average level of a first parameter of each of the multiple currents - two standard - second reference signal 'and target average ^ money Adjust to the level of each of the 妓 — — — — — — 暂 暂 暂 暂 暂 暂 暂 暂 暂 暂 暂 暂 暂 暂 暂 暂 暂 暂2. The drive circuit of claim 1, wherein if the dimming signal is at the first level, the plurality of current balancing controllers adjust the plurality according to the second reference signal and the second reference signal Electric /; L and wherein, if the dimming signal is at a second level, the plurality of current balancing controllers are disabled. 3. The driving circuit of claim 1 of the patent scope, further comprising: the U.S. Influenza detector' is coupled to the plurality of light emitting diode light sources to generate a plurality of monitoring signals indicative of the plurality of currents, respectively. 4. The drive circuit of claim 3, wherein the plurality of electrical μ balance controllers generate a plurality of drive signals to respectively control a plurality of switches in series with the plurality of light emitting diode light sources. 5. The driving circuit of claim 4, wherein the __ responsibility period of each of the plurality of driving signals is determined based on the first reference signal and a corresponding monitoring signal. 6. The driving circuit of claim 4, wherein an amplitude of each of the plurality of driving signals is based on the driving circuit of the fourth aspect of the invention A difference between the second reference signal and a corresponding monitor signal is determined. 7. The driving circuit of claim 4, wherein each of the plurality of current balancing controllers comprises a first coma amplifier based on the first reference signal and a corresponding monitoring signal A difference between the average values produces an error signal. 8. The driving circuit of claim 7, wherein each of the plurality of electrical balancing controllers further comprises a comparator coupled to the first error amplifier, comparing the error signal with a The ramp signal is used to generate a consistent energy signal. 9. The driving circuit of claim 8, wherein the current balancing controller further comprises a second error amplifier coupled to the comparator, and when the second error amplifier is enabled by the enabling signal, comparing The monitoring signal and the second reference signal generate a corresponding driving signal. 10. The driving circuit of claim 8, wherein when the dimming signal is at a first level, the first error amplifier compares an average value of the first reference signal with a corresponding monitoring signal, The comparator compares the error signal to the ramp signal; when the dimming signal is at a second level, the first error amplifier and the comparator are disabled. 11. The driving circuit of claim 4, wherein the plurality of driving signals are pulse width modulation (PWM) signals. 12. The driver circuit of claim 3, including: 0678-TW-CHSpec+Claim(sandra.t-20120130).doc 38 201228458 A feedback selection circuit coupled to the energy converter and the current Receiving the plurality of monitoring signals between the balance controllers and determining a light emitting diode light source having a maximum turn-on voltage from the plurality of light emitting diode light sources, the energy converter adjusting the adjustment voltage to satisfy the maximum The energy requirement of the light-emitting diode source of the turn-on voltage. 13. A controller for adjusting a current flowing through a light emitting diode source, comprising: a first reference pin receiving a first reference signal indicative of a target average level; a second reference pin, Receiving a second reference signal indicating a maximum transient level; and the controller adjusting an average current of the current to the target average level, and adjusting a transient level of the current to be lower than the Maximum transient level. 14. The controller of claim 13, wherein a duty cycle of the current is determined based on the first reference signal. 15. The controller of claim 13, wherein the amplitude of the current is determined according to the second reference k number. 16. The controller of claim 13, further comprising: a dimming control pin receiving a dimming signal, if the dimming signal is at a first level, the current is according to the first reference signal And determining the second reference signal, and wherein the current is cut off if the dimming signal is at a second level. 17. The controller of claim 13 of the patent scope further includes: 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 39 201228458 A sensing pin receives a monitoring signal indicating the current, The controller compares an average of the monitored signal with the first reference signal and compares the monitored signal with the second reference signal. 18. A method of powering a plurality of light emitting diode sources, comprising: providing an adjustment voltage to the plurality of light emitting diode light sources, and generating a plurality of currents respectively flowing through the plurality of light emitting diode light sources; Receiving a first reference signal indicating a target average level; receiving a second reference signal indicating a maximum transient level; and adjusting an average current of each of the plurality of currents to the target average level And adjusting a transient level of each of the plurality of currents to be below the maximum transient level. 19. The method of claim 18, wherein a duty cycle of each of the plurality of currents is determined based on the first reference signal. 20. The method of claim 18, wherein the amplitude of each of the plurality of currents is determined based on the second reference signal. 0678-TW-CH Spec+Claim(sandra.t-20120130).doc 40
TW100128999A 2010-08-16 2011-08-15 Driving circuit, controller and method thereof for powering led sources TWI376979B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37411710P 2010-08-16 2010-08-16
US13/086,822 US8253352B2 (en) 2008-08-05 2011-04-14 Circuits and methods for powering light sources

Publications (2)

Publication Number Publication Date
TW201228458A true TW201228458A (en) 2012-07-01
TWI376979B TWI376979B (en) 2012-11-11

Family

ID=45961561

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128999A TWI376979B (en) 2010-08-16 2011-08-15 Driving circuit, controller and method thereof for powering led sources

Country Status (2)

Country Link
CN (1) CN102427633B (en)
TW (1) TWI376979B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232591B2 (en) 2008-12-12 2016-01-05 O2Micro Inc. Circuits and methods for driving light sources
US9253843B2 (en) 2008-12-12 2016-02-02 02Micro Inc Driving circuit with dimming controller for driving light sources
US9386653B2 (en) 2008-12-12 2016-07-05 O2Micro Inc Circuits and methods for driving light sources
TWI710204B (en) * 2019-12-13 2020-11-11 大陸商北京集創北方科技股份有限公司 Control chip, DC-DC converter and portable electronic device using the DC-DC converter

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091720A1 (en) * 2012-09-28 2014-04-03 Power Systems Technologies, Ltd. Controller for Use with a Power Converter and Method of Operating the Same
JP6131511B2 (en) * 2012-10-10 2017-05-24 パナソニックIpマネジメント株式会社 Lighting device and lighting apparatus using the same
WO2014141002A1 (en) * 2013-03-14 2014-09-18 Koninklijke Philips N.V. Current feedback for improving performance and consistency of led fixtures
US9226354B2 (en) 2013-06-03 2015-12-29 Iml International Light-emitting diode lighting device having multiple driving stages
CN103561517B (en) * 2013-11-06 2015-12-30 青岛海信电器股份有限公司 Executive circuit, multi-way LED lamp cascade control circuit and control method
CN104797054B (en) * 2015-04-28 2018-02-06 中山市俊利来电子科技有限公司 LED sectional dimming capacitance-resistance driving powers
KR20170071307A (en) 2015-12-15 2017-06-23 엘지이노텍 주식회사 Power apparatus and method for controlling output current of the same
GB2546623A (en) * 2016-01-25 2017-07-26 O2Micro Inc System and method for driving light source
AT519927B1 (en) * 2017-04-26 2019-02-15 Zkw Group Gmbh Supply circuit for supplying LEDs from a primary DC voltage
CN110891346B (en) * 2018-08-16 2021-10-01 安沛科技股份有限公司 Bidirectional transmission control circuit and method for single-wire series connection of light emitting diodes
US11425807B2 (en) 2018-09-11 2022-08-23 Signify Holding B.V. LED lighting circuit and a lighting device comprising the same
US10560990B1 (en) * 2019-04-26 2020-02-11 Infineon Technologies Ag Light emitting diode circuit with accurate current monitoring of two or more different LED strings
CN110994987A (en) * 2019-12-30 2020-04-10 杭州必易微电子有限公司 Load driving circuit and driving method thereof and related switch control circuit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1871144B1 (en) * 2006-06-22 2010-05-05 Osram Gesellschaft mit Beschränkter Haftung A drive device for LED's
CN100517264C (en) * 2006-09-20 2009-07-22 鸿富锦精密工业(深圳)有限公司 Computer system average power consumption supervisory instrument
US7288902B1 (en) * 2007-03-12 2007-10-30 Cirrus Logic, Inc. Color variations in a dimmable lighting device with stable color temperature light sources
GB0715846D0 (en) * 2007-08-15 2007-09-26 Puddefoot Stephen Apparatus and method
CN101636018A (en) * 2008-07-21 2010-01-27 达方电子股份有限公司 Light source driving circuit and illumination system comprising light source driving circuit
CN101668363B (en) * 2008-09-05 2014-01-29 艾默龙电子科技(嘉兴)有限公司 High-efficiency drive control method for LED
CN101430223B (en) * 2008-09-28 2010-08-11 上海半导体照明工程技术研究中心 LED instantaneous light flux test method and apparatus in PWM activation technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232591B2 (en) 2008-12-12 2016-01-05 O2Micro Inc. Circuits and methods for driving light sources
US9253843B2 (en) 2008-12-12 2016-02-02 02Micro Inc Driving circuit with dimming controller for driving light sources
US9386653B2 (en) 2008-12-12 2016-07-05 O2Micro Inc Circuits and methods for driving light sources
TWI710204B (en) * 2019-12-13 2020-11-11 大陸商北京集創北方科技股份有限公司 Control chip, DC-DC converter and portable electronic device using the DC-DC converter

Also Published As

Publication number Publication date
TWI376979B (en) 2012-11-11
CN102427633B (en) 2013-03-13
CN102427633A (en) 2012-04-25

Similar Documents

Publication Publication Date Title
TW201228458A (en) Driving circuit, controller and method thereof for powering LED sources
US8237379B2 (en) Circuits and methods for powering light sources
TWI353195B (en) Driving circuit, display system and method for pow
CN102291874B (en) Dimming controller for controlling power of a light source, light driving circuit and method
US8324832B2 (en) Circuits and methods for controlling power of light sources
US8508150B2 (en) Controllers, systems and methods for controlling dimming of light sources
US8378589B2 (en) Driving circuit with dimming controller for driving light sources
CN102548143B (en) Drive circuit, dimmer controller and method for electrically controlling light-emitting diode (LED) light source
US10602577B2 (en) Control circuit, control method and switching power supply thereof
US8680775B2 (en) Lighting driver circuit and light fixture
EP2498579A2 (en) Controllers, systems and methods for controlling dimming of light sources
US20130278145A1 (en) Circuits and methods for driving light sources
TW201234924A (en) Drive circuit for optical element and light emitting device and electronic device using same
TW201336346A (en) Light emitting device driver circuit and control method thereof
JP6279749B2 (en) LED driver and control method
JP2014103001A (en) Light-emitting device control circuit, light-emitting device and electronic apparatus using the same, and method for controlling light-emitting device
JP2020077636A (en) Dimming circuit and dimming control method
JP2016197570A (en) Lighting control circuit for illumination power supply device
JP5691790B2 (en) Constant current power supply
JP2013203273A (en) Vehicle lighting device
CN109392217B (en) Light emitting element drive circuit and control method thereof
JP2012034516A (en) Operation mode switching type dc-dc converter
KR101233780B1 (en) Driver for back light unit and mode change method of charge pump thereof
JP2014102950A (en) Solid-state light-emitting element drive device, illuminating device, and illuminating fixture
JP2010199201A (en) Led lighting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees