201209660 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種感測裝置,特別是有關於一種用 於觸控面板的感測裝置及其感應方法。 【先前技術】 藉由降低或減少機械按鈕、鍵盤以及指標裝置的需 要,觸碰感應裝置允許使用者便利地介接電子系統與顯= 裔。舉例來說,藉由簡單地觸碰在顯示裝置上的觸控螢幕 的圖像所識別的位置,使用者可實施複雜的順序指令。 有數種型態的技術用於實施觸控感測裝置,舉例來 說j括電阻式、紅外線、電容式、表面聲波、電磁以及 近場影像(near field imaging)技術等。電容式觸控感測裝置 已經可在很多應用運作很好。在許多觸控感測裝置之^, 當在感測器中導電物件電容地麵合到導電觸控卫具,例如 使用者的手指時,可感應到輸入。 通常,不管何時電子導電元件互相接近而沒有實際接 觸,它們的電場互動而形成電容。在電容式觸控感測置 的f例中,當—個物件如手指,接觸觸控感測介面,微小 電容形成於物件與接近物件的感應點之間。藉由偵測在每 個感測點的電容的變化且指明感測點的位置,當物件移動 經過觸控表面時’感測電路可辨認多個物件且決定物件的 特性(例如位置、壓力、方向、速度、加速等等)。 然而,當在同一時間兩手指接觸觸控感測表面時,電 容式觸控感測裳置可能不能精確制貞測在接觸瞬間的兩個 201209660 感測點。相反地,可以偵測到四個感應點(兩個所謂的鬼 點)’如第la圖所示。第一感測電路11()與第二感測電路 120分別感應沿著觸控表面的兩個不同的軸的兩個感應點 的電谷變化。因此,有四個可能感測點會被電容式觸控感 測裝置所感測。 上过·電各式觸控感測裝置也稱為自容式(self capacitor) 觸控感測裝置100。顯示於第lb圖中的另一電容式觸控感 '則裝置稱為互容式(mutual capacitor)觸控感測裝置。互容式 觸控感測裝置150有一個掃描驅動電路160、感測電路17〇 數位轉換器180 °舉例來說,掃描驅動電路160 輛^ &著υ軸排列的第一電極,其中感測電路170沿著χ 器::對應掃插的第一電極的電容的變化。類比數位轉換 位作=轉換感謂自感測電路170的感測的類比信號成為數 感;:個::’互容觸控感測裝置150可能需要更多時間 列的電極點I,因為它總是必須花費2mS*8=l6mS (有8 點,但是著X軸與γ軸)去精確地掃描與感測兩個 點。此外,、^要花費2ms*2=4ms掃描與感測兩個感測 (大約各式觸控感測裝置可能也佔據更多儲存容量 許多咸測钍i& 位7^ ’因為當電極被掃描與感測時, 關結果需要被儲存。 因此’有必要4η Λ, 精確降低鬼點較少時間與較少儲存空間 【發明内容】、、只際兩個觸碰點的感測裝置。 本揭露提供—種觸控面板的感測裝置,適用於當以二 S] 5 201209660 個物件觸碰觸控面板時感應二觸碰點s包括:複數個第一電 極,係沿著一第一軸形成;複數個第二電極,係沿著一第 二軸形成;複數個感測電容,係形成於該第一電極與該第 二電極的交叉點,其中當該觸控面板以物件觸碰時,該感 測電容的電容值改變;一第一感測電路,藉由感測對應於 該第一電極的二位置的該感測電容之變化的電容值定位二 物件所觸碰的該第一電極的該二位置;一第二感測電路, 藉由感應對應於該第二電極的二位置的該感測電容之變化 的電容值定位二物件所觸碰的該第二電極的該二位置,且 與該第一感測電路同步致動;一掃描驅動電路,用以順序 掃描該第一電極與該第二電極的其中一個;以及一第三感 測電路,藉由感測對應於該掃描的電極的二位置的該感測 電容之變化的電容值定位二物件所觸碰的該掃描電極的該 二位置;其中根據該第一電極的該二位置、該第二電極的 該二位置以及該掃描電極的該二位置決定該二觸碰點。 本揭露另提供一種觸控面板的感測方法,適用於當該 觸控面板以二物件觸碰時感測二觸控點,其中複數個感測 電容形成於複數個第一電極與第二電極的交叉點,且當以 物件觸碰面板時,該感測電容的電容值變化,包括:藉由一 第一感測電路感測對應於該第一電極的二位置的該感測電 容之變化的電容值定位二物件所觸碰的該第一電極的該二 位置;藉由一第二感測電路感測對應於該第二電極的二位 置的該感測電容之變化的電容值定位二物件所觸碰的該第 二電極的該二位置;藉由一掃描驅動電路順序掃描該第一 電極與該第二電極的其中一個;以及藉由一第三感測電路 201209660 感測對應於該掃描的電極的二位置的該感測電容之變化的 電容值定位二物件所觸碰的該掃描電極的該二位置;根據 該第一電極的該二位置、該第二電極的該二位置以及該掃 描電極的該二位置決定該二觸碰點。 【實施方式】 為使本發明之上述目的、特徵和優點能更明顯易懂, 下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: 第2圖顯示發明的觸控面板的感測裝置的示意圖。感 • 測系統200包括複數個第一電極202(例如dl-d8)、複數個 第二電極204(例如pl-p8)、第一感測電路210、第二感測 電路220、掃描驅動電路230以及第三掃描電路240。第三 感測電路240可能是低解析度的類比數位轉換器,但不限 於此。 複數個第一電極202沿著第一軸形成,且複數個第二 電極204沿著第二軸形成。複數個感測電容206因此形成 於第一電極與第二電極的交叉點之間。當觸控面板以物件 ® 或手指觸碰時,感測電容206的電容值變化。藉由感測對 應於第一電極的二位置的感測電容之變化的電容值,第一 感測電路210用於定位二物件所觸碰的第一電極的二位 置。藉由感測對應於第一電極的二位置的感測電容之變化 的電容值,第二感測電路220用於定位二物件所觸碰的第 二電極的二位置,且第一感測電路210與第二感測電路220 同步致動。也就是說,第一感測電路210與第二感測電路 220可能同時感測在觸控面板上的碰觸點。 201209660 掃描驅動電路230用於藉由感測對應於掃描電極的二 位置的感測電容之變化的電容值順序地掃描第一電極與第 二電極的其中一個。第三感測電路240用於順序地定位二 物件所觸碰的掃描電極的二位置。當掃描驅動電路230掃 描第一電極(測試信號依序地傳送到第二電極pl-p8),然後 第三感測電路240感測第一電極(dl-d8)。第三感測電路240 可能整合到第一感測電路210。相對地,當掃描驅動電路 230掃描第二電極(測試信號依序地傳送到第一電極 dl-d8),則第三感測電路240感測第二電極(pl-p8)。第三 感測電路240可能整合到第二感測電路220。 控制電路250用於根據第一電極的二位置、第二電極 的二位置以及掃描的電極的二位置決定二碰觸點。控制電 路250更用於控制第一感測電路210、第二感測電路220、 掃描驅動電路230以及第三感測電路240。 第3圖係根據發明的實施例說明觸控面板的感測方 法。觸控面板的感測方法適用於當觸控面板以二物件觸碰 時感測二觸碰點。首先,在步驟310,觸控面板的第一感 測電路可能藉由感測對應於第一電極的二位置的感測電容 之變化的電容值定位二物件所觸碰的第一電極的二位置。 接著,在步驟320,觸控面板的第二感測電路可能藉由感 測對應於第二電極的二位置的感測電容之變化的電容值定 位二物件所觸碰的第二電極的二位置,且與第一感測電路 同步致動。在步驟330,掃描驅動電路230可能藉由感測 對應於掃描電極的二位置的感測電容之變化的電容值依序 且快速地掃描(不必要精確掃描)第一電極與第二電極的其 201209660 中一個。接著,在步驟340,觸控面板的第三感測電路可 能藉由感測對應於第三感測電路的掃描的電極的二位置之 感測電容的電容值,順序地且大略地(亦即低解析度)定位 二物件所碰觸的掃描的電極的二位置。最後,在步驟350, 根據第一電極的二位置、第二電極的二位置以及掃描電極 的二位置可能決定二碰觸點。 在發明的實施例中,根據第一電極的二位置以及第二 電極的二位置,會有四個可能的碰觸點。因為第一感測電 • 路與第二感測電路是同步操作,二感測電路同時感測四個 點,其中包括二個鬼點。為了排除二個鬼點。舉例來說, 第一電極可能依序地且大略地藉由掃描驅動電路以測試信 號掃描,然後第三感測電路可能大略地感測對應於掃描的 第一電極的感測電容的變化的電容值。所以二個可能的觸 碰點可能根據掃描的第一電極更進一步驗證。舉例來說, 當第一電極的每一列以少於0.2ms的時間被快速掃描,則 第三感測電路的總掃描與感測時間是〇.2*8=1.6m(假設第 籲 一電極的列數目是8),其少於傳統互容式感測裝置。因此, 容量8*8*8位元(512位元)的低解析度類比數位轉換器足夠 應用於發明。 此外,於發明的實施例,當電極的對應位置被觸碰, 感測電容之改變的電容值變得較大。通常,臨界電容值係 使用者設定,用於決定觸控面板的靈敏度。也就是說,當 臨界電容值小,電容值的小變化可能觸發感測電路辨認到 觸碰點。 最後,熟此技藝者可體認到他們可以輕易地使用揭露 201209660 的觀念以及特定實施例為基礎而變更及設計可以實施同樣 目的之其他結構且不脫離本發明以及申請專利範圍。 201209660 【圖式簡單說明】 圖顯示傳統觸控面板的感測裝置的示意圖; —lb圖顯示另―傳統觸控面板的感測裝置的示意圖 弟2圖顯示發明的觸控面板的感測裝 置的示意圖;以 及 第3圖係根據發明的實施例說明觸控面板的感測方 法。 • 【主要元件符號說明】 I 〇〇〜自容式觸控感測裝置 II 〇〜第一感測電路 120〜第二感測電路 150〜互容式觸控感測裝置 160〜掃描驅動電路 170〜感測電路 180〜類比數位轉換器 200〜感測系統 202〜複數個第一電極 204〜複數個第二電極 206〜感測電容 210〜第一感測電路 220〜第二感測電路 230〜掃描驅動電路 240〜苐三感測電路 201209660 250〜控制電路 310、320、330、340、350〜方法步驟201209660 VI. Description of the Invention: [Technical Field] The present invention relates to a sensing device, and more particularly to a sensing device for a touch panel and a sensing method thereof. [Prior Art] By reducing or reducing the need for mechanical buttons, keyboards, and indicator devices, the touch sensing device allows the user to conveniently interface with the electronic system and display. For example, the user can implement complex sequential instructions by simply touching the location identified by the image of the touch screen on the display device. There are several types of techniques for implementing touch sensing devices, such as resistive, infrared, capacitive, surface acoustic, electromagnetic, and near field imaging techniques. Capacitive touch sensing devices have worked well in many applications. In many touch sensing devices, the input can be sensed when the conductive object capacitively grounds in the sensor to a conductive touch fixture, such as a user's finger. Generally, whenever the electronically conductive elements are close to each other without actual contact, their electric fields interact to form a capacitance. In the example of the capacitive touch sensing device, when an object such as a finger touches the touch sensing interface, a small capacitance is formed between the object and the sensing point of the object. By detecting the change in capacitance at each sensing point and indicating the location of the sensing point, the sensing circuit can identify multiple objects and determine the characteristics of the object (eg, position, pressure, when the object moves past the touch surface). Direction, speed, acceleration, etc.). However, when two fingers touch the touch sensing surface at the same time, the capacitive touch sensing skirt may not accurately detect the two 201209660 sensing points at the moment of contact. Conversely, four sensing points (two so-called ghost points) can be detected as shown in Figure la. The first sensing circuit 11() and the second sensing circuit 120 respectively sense electrical valley changes along two sensing points of two different axes of the touch surface. Therefore, there are four possible sensing points that are sensed by the capacitive touch sensing device. The above-mentioned various types of touch sensing devices are also referred to as self-capacitance touch sensing devices 100. Another capacitive touch sense shown in Figure lb is called a mutual capacitive touch sensing device. The mutual-capacitive touch sensing device 150 has a scan driving circuit 160, a sensing circuit 17, and a digital converter 180. For example, the scanning driving circuit 160 is mounted on the first electrode of the axis, wherein the sensing is performed. The circuit 170 is along the buffer:: corresponding to the change in capacitance of the first electrode of the sweep. The analog digital conversion bit is converted to sense that the sensed analog signal of the self-sensing circuit 170 becomes a digital sense; a:: 'the mutual capacitive touch sensing device 150 may require more time column electrode I because it It is always necessary to spend 2mS*8=l6mS (with 8 points, but with the X and γ axes) to accurately scan and sense two points. In addition, ^ will take 2ms * 2 = 4ms scanning and sensing two sensing (about various touch sensing devices may also occupy more storage capacity many salt test 钍 i & bit 7 ^ ' because when the electrode is scanned When sensing and sensing, the result needs to be stored. Therefore, it is necessary to reduce the ghost point less time and less storage space [invention], and only two touch points of the sensing device. Providing a sensing device for a touch panel, wherein when the touch panel is touched by two S] 5 201209660 objects, the sensing two touch points s include: a plurality of first electrodes formed along a first axis a plurality of second electrodes formed along a second axis; a plurality of sensing capacitors formed at an intersection of the first electrode and the second electrode, wherein when the touch panel is touched by the object, The capacitance value of the sensing capacitor is changed; a first sensing circuit positions the first electrode touched by the two objects by sensing a capacitance value corresponding to a change of the sensing capacitance of the two positions of the first electrode The second position; a second sensing circuit, by sensing The capacitance value of the change of the sensing capacitance at the two positions of the second electrode positions the two positions of the second electrode touched by the two objects, and is synchronously actuated with the first sensing circuit; a scan driving circuit, And sequentially scanning one of the first electrode and the second electrode; and a third sensing circuit positioning the capacitance value by sensing a change of the sensing capacitance corresponding to the two positions of the scanned electrode The two positions of the scan electrode touched by the object; wherein the two touch points are determined according to the two positions of the first electrode, the two positions of the second electrode, and the two positions of the scan electrode. A sensing method for a touch panel is provided, wherein when the touch panel touches two objects, two touch points are sensed, wherein a plurality of sensing capacitors are formed at intersections of the plurality of first electrodes and the second electrodes And changing the capacitance value of the sensing capacitor when the object touches the panel, comprising: sensing a capacitance value of the sensing capacitance corresponding to the two positions of the first electrode by a first sensing circuit Positioning two objects The two positions of the touched first electrode; the capacitance value of the change of the sensing capacitance corresponding to the two positions of the second electrode is sensed by a second sensing circuit, and the two objects touched by the two objects The two positions of the second electrode; sequentially scanning one of the first electrode and the second electrode by a scan driving circuit; and sensing two positions of the electrode corresponding to the scan by a third sensing circuit 201209660 The capacitance value of the sense capacitance changes the two positions of the scan electrode touched by the two objects; according to the two positions of the first electrode, the two positions of the second electrode, and the two of the scan electrodes The position, the two touch points are determined. The embodiments of the present invention will be more clearly understood, and the following detailed description will be given with reference to the accompanying drawings. 2 is a schematic view showing a sensing device of the inventive touch panel. The sensing system 200 includes a plurality of first electrodes 202 (eg, dl-d8), a plurality of second electrodes 204 (eg, pl-p8), a first sensing circuit 210, a second sensing circuit 220, and a scan driving circuit 230. And a third scan circuit 240. The third sensing circuit 240 may be a low resolution analog digital converter, but is not limited thereto. A plurality of first electrodes 202 are formed along the first axis, and a plurality of second electrodes 204 are formed along the second axis. A plurality of sensing capacitors 206 are thus formed between the intersections of the first electrode and the second electrode. When the touch panel is touched by an object ® or a finger, the capacitance value of the sensing capacitor 206 changes. The first sensing circuit 210 is configured to locate the two positions of the first electrode touched by the two objects by sensing a capacitance value corresponding to a change in the sensing capacitance of the two positions of the first electrode. The second sensing circuit 220 is configured to locate two positions of the second electrode touched by the two objects by sensing a capacitance value corresponding to a change of the sensing capacitance of the two positions of the first electrode, and the first sensing circuit 210 is synchronized with the second sensing circuit 220. That is, the first sensing circuit 210 and the second sensing circuit 220 may simultaneously sense the touch contacts on the touch panel. The 201209660 scan driving circuit 230 is for sequentially scanning one of the first electrode and the second electrode by sensing a capacitance value corresponding to a change in the sensing capacitance of the two positions of the scan electrodes. The third sensing circuit 240 is for sequentially positioning the two positions of the scanning electrodes that the two objects touch. When the scan driving circuit 230 scans the first electrode (the test signal is sequentially transferred to the second electrode pl-p8), then the third sensing circuit 240 senses the first electrode (dl-d8). The third sensing circuit 240 may be integrated into the first sensing circuit 210. In contrast, when the scan driving circuit 230 scans the second electrodes (the test signals are sequentially transferred to the first electrodes dl-d8), the third sensing circuit 240 senses the second electrodes (pl-p8). The third sensing circuit 240 may be integrated into the second sensing circuit 220. The control circuit 250 is operative to determine the two-touch contact based on the two positions of the first electrode, the two positions of the second electrode, and the two positions of the scanned electrode. The control circuit 250 is further used to control the first sensing circuit 210, the second sensing circuit 220, the scan driving circuit 230, and the third sensing circuit 240. Fig. 3 is a view showing a sensing method of a touch panel according to an embodiment of the invention. The sensing method of the touch panel is adapted to sense two touch points when the touch panel touches two objects. First, in step 310, the first sensing circuit of the touch panel may position the two positions of the first electrode touched by the two objects by sensing the capacitance value corresponding to the change of the sensing capacitance of the two positions of the first electrode. . Next, in step 320, the second sensing circuit of the touch panel may position the two positions of the second electrode touched by the two objects by sensing the capacitance value corresponding to the change of the sensing capacitance of the two positions of the second electrode. And being actuated synchronously with the first sensing circuit. At step 330, the scan driving circuit 230 may sequentially (sequentially scan) the first electrode and the second electrode by sensing the capacitance value corresponding to the change of the sensing capacitance of the two positions of the scan electrode. One of the 201209660. Next, in step 340, the third sensing circuit of the touch panel may sequentially and roughly (ie, by sensing the capacitance value of the sensing capacitance of the two positions of the electrode corresponding to the scanning of the third sensing circuit. Low resolution) locates the two positions of the scanned electrodes that the two objects touch. Finally, at step 350, the two-touch contact may be determined based on the two positions of the first electrode, the two positions of the second electrode, and the two positions of the scan electrodes. In an embodiment of the invention, there are four possible bump contacts depending on the two positions of the first electrode and the two positions of the second electrode. Because the first sensing circuit and the second sensing circuit are synchronized, the second sensing circuit simultaneously senses four points, including two ghost points. In order to rule out two ghost points. For example, the first electrode may scan the test signal sequentially and roughly by the scan driving circuit, and then the third sensing circuit may roughly sense the capacitance corresponding to the change of the sensing capacitance of the scanned first electrode. value. Therefore, two possible touch points may be further verified based on the scanned first electrode. For example, when each column of the first electrode is quickly scanned in less than 0.2 ms, the total scan and sensing time of the third sensing circuit is 〇.2*8=1.6 m (assuming the first electrode The number of columns is 8), which is less than the conventional mutual capacitance sensing device. Therefore, a low resolution analog digital converter with a capacity of 8*8*8 bits (512 bits) is sufficient for the invention. Further, in the embodiment of the invention, when the corresponding position of the electrode is touched, the capacitance value of the change in the sense capacitance becomes larger. Usually, the critical capacitance value is set by the user to determine the sensitivity of the touch panel. That is to say, when the critical capacitance value is small, a small change in the capacitance value may trigger the sensing circuit to recognize the touch point. In the end, it will be appreciated by those skilled in the art that they can readily change and design other structures for the same purpose without departing from the invention and the scope of the invention. 201209660 [Simple diagram of the drawing] The figure shows a schematic diagram of the sensing device of the conventional touch panel; the lb diagram shows the schematic diagram of the sensing device of the conventional touch panel. The figure 2 shows the sensing device of the inventive touch panel. FIG. 3 and FIG. 3 illustrate a sensing method of a touch panel according to an embodiment of the invention. • [Main component symbol description] I 〇〇 自 self-capacitive touch sensing device II 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 170 The sensing circuit 180, the analog-to-digital converter 200, the sensing system 202, the plurality of first electrodes 204, the plurality of second electrodes 206, the sensing capacitors 210, the first sensing circuits 220, the second sensing circuits 230~ Scan drive circuit 240~苐 three sense circuit 201209660 250~ control circuit 310, 320, 330, 340, 350~ method steps
12 ⑤12 5