201204472 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種靜電霧化裝置。 【先前技術】 以往已知可藉由向放電電極的前端部供給水,並於放 電電極與相對電極之間施加高電壓,來生成奈米大小之帶 電微粒子水。 例如,日本專利申請公開號2006_3345〇3 (以下稱為「 文獻1」),揭示有將放電電極及相對電極構成之靜電霧化部 並聯至單一的向壓電源,以生成大量帶電微粒子水。 立旦疋,於文獻1所示之先前例中,於複數個靜電霧化 π之間產生的放電可能會不_致。放電係依賴於放電電極 與相對電極之_距離差’距離較近者將會流過較多的放 電電流’因此易於較早地開始靜電霧化。當該易於開始放 電之靜電霧化部的放電電極_進行靜電霧化時,被供給 ^放電電極前端部之水,受到庫命力(Coul⑽b,sfbrce)牽 朝向相對電極側形成為泰勒錐(taylor 士果, ==離進—步縮短’從而此放電電極憎通 有二二:ΐ!=於複數個靜電霧化部之中’僅 管設進行靜電霧化之虞。結果會有儘 的問題。 '電霧化部,亦無法大幅增加靜電霧化量 壓電源之複數於= 4/14 201204472 ==!極之間的電極間電壓,來企圖統一各1 霧化。P中的放電狀態。但是,複數個 =各呀電 ,尤其是泰勒錐之形成會不一致,從而難並非易事 的靜電霧化量設定至目標量。 、乂將各敌電部中 【發明内容】 不里 供二例的問題點而完成,其係提 月尹屯務化I之靜電霧化裝置。 代 本發_靜電霧化裝置,其係具備 =放電雜、及分別與㈣丨及 2電極、 U目對電極及第2相對電極。向 屯性連接於高壓電源的第i電位側,另 t電電極係 =極係電性連接於該高麗電源的第2電::2相 ==性連接於該第1相對電極。該第:相=201204472 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an electrostatic atomization device. [Prior Art] It has been conventionally known to generate nanometer-sized charged fine particle water by supplying water to the tip end portion of the discharge electrode and applying a high voltage between the discharge electrode and the counter electrode. For example, Japanese Patent Application Publication No. 2006_3345〇3 (hereinafter referred to as "Document 1") discloses that an electrostatic atomization portion composed of a discharge electrode and a counter electrode is connected in parallel to a single piezoelectric power source to generate a large amount of charged fine particle water. In the previous example shown in Document 1, the discharge generated between a plurality of electrostatic atomizations π may not be caused. The discharge system depends on the distance between the discharge electrode and the opposite electrode, and the closer the distance is, the more the discharge current will flow. Therefore, it is easy to start electrostatic atomization earlier. When the discharge electrode of the electrostatically atomized portion that is easy to start discharging is electrostatically atomized, the water supplied to the front end portion of the discharge electrode is formed into a Taylor cone by the life force (Coul(10)b, sfbrce) toward the opposite electrode side (taylor)士果, ==从进-step shortening' thus the discharge electrode 憎通二二二:ΐ!= Among the plurality of electrostatic atomization parts, 'only the device is set to carry out electrostatic atomization. The result will be exhausted. 'Electro-atomization unit, can not significantly increase the number of electrostatic atomization pressure power supply at the voltage between the electrodes of = 4/14 201204472 ==!, in order to unify the atomization of each 1 atomization. However, a plurality of = each electric, especially the formation of the Taylor cone will be inconsistent, so it is difficult to set the amount of electrostatic atomization to the target amount. 乂 各 各 各 各 各 【 发明 发明 发明 发明 发明 发明 发明 发明The problem is completed, which is the electrostatic atomization device of Tiyue Yinyi I. The generation of _ electrostatic atomization device, which has = discharge impurity, and (4) 丨 and 2 electrodes, U mesh counter electrode And the second opposite electrode. The first connection to the high voltage power supply The i potential side, the other t electric electrode system = the second electric system electrically connected to the Korean electric power source:: 2 phase == is connected to the first opposite electrode. The first phase:
該連接於該高壓電源的參考C 二:形。而_ 2電位係為低於 該供液手段Γ 更具備供液手段, 極供給液=成為分別向該第1放電電極及D放電電 之電U列Γ ’較佳為該第1放電電極及該第1相對電極 相同。幻放電電極及該第2相對電極之電位差 之電第1放電電極及該第1相對電極 不同。糾第2放電電極及該第2相對電極之電位差 本發明係將第1相對電極及第2放電電極連接至高壓 5/14 201204472 ====1放電電極和第2 命楚w处 液手長。因此’可將第1放電電極 以之雷//電極之電位差以及第2放電電極與第2相對電 極之電位差分別設為固定的電位差。藉此 =心=電極之間所進行之靜電霧化以及在第2放ί 而::電極之間所進行之靜電霧化,可各自穩定 地進仃,而旎夠增加靜電霧化量。 【實施方式】 他特徵及Si:’二兄明本發明的較佳實施形態。本發明的其 理解。交^^照以下之詳細說明及隨附圖式以更加 以下’根據隨附圖式所 每 靜電霧化裝置,^ 7a、7b。第τ〈弟1和第2)静電霧化部 與此第,放=:=第1放電電極2和配置成 且,第2靜雷〜怕第1相對電極3所構成。並 第係、由第2放電電極4和配置成與此 第=電極4相對向之第2相對電極5所構成。 而壓電源卜具有第】輸出端子 性連接於參考電位之I ^ 2輸出J而子以及電 電壓至第1輸出並且其構成為:施加第1 輸出端子,和參考端子’以使第1電位產生於第】 考端子,以使第2電位==第2輸出端子和參 極2係電性連接於高壓電源;的第。: 1放電電 接於第1輸出端子。並且,第1 ^立側,亦即電性連 的第2電触咖原1 運接於第2輸出端子。第1電位 6/14 201204472 h為低於參考電位或高於參考電位 係為低於參考電位或高於參考電任第2電位 中’高壓電源1係包括用以健4之另一種,[月形。於-例 作a枯用U保持該第電 Μ、以及用以保持該第 ::二第1輪出電 輸出電容器係連接於Ρ輪出電容器。第! 端子(參考電位點)j 位側)與參考 輸出端子與參考端子之間:,:=系, 第1電壓和第2電壓。 ^電源卜可分別保持 又,連接第1相對電極3與第2放電電極4 係連接於高壓電源1的參考電位點,亦即連接於參 耩由供液手段6,分別向第1放電電極2和第2放 極4供給液體。而且由縫電源1向第1放電電極 相對電極3之間、以及第2放電電極4與第2相對带 之間施加高縣。亦即,第1電® (高電㈤係被施力。;5 第i放電電極2和第!相對電極3,另—方面第2電^ 電麼)係被施加至第2放電電極4和第2相對電極广= ,供給至第1放電電極2的前端部之液體係被靜電霧^, 而且供給至第2放電電極4的前端部之液體亦被靜電霧化 於圖1所示之實施形態中,做為低於高壓電源】的炎 考電位(於實施形態中參考電位為〇v)之電位側之負極夕 第1輸出端子),連接有第1放電電極2,高壓電源丨'的2 極(第2輸出端子)’連接有第2相對電極5。又,於圖 所示之實施形態中,係將第1放電電極2及第丨相對電二^ 的電位差VI (第1電壓)、以及第2放電電極4及第/相 7/14 201204472 對電極5的電位差V2(第2電壓)設定為相同。 水中液手段6所供給之液艘者,可以採用水、於 广千此入有效成分之水溶液或者水以外之液體。 為了分別向第1放電電極2的前端部和 可利用毛細管現象來上= 加絲供給液體,或_重力使其流下 ^加來液體。或者,亦可將如帕耳帖組件(触丨㈣他 J般之冷广手段’分別安裝至第】放電電極2和第2放 ^極4 ’藉由使空氣中的水分冷卻*生成結露水來分別向 弟放電電極2和第2放電電極4供給液體(水)。 、於圖1所不之實施形態中’係藉由第1冷卻手段和第2 冷卻手段來構成分㈣第1放電電極2和第2放電電極4 ^給液體之供液手段6。亦即,第i冷卻手段和第2冷卻手 段係分別安裝至第1放電電極2和第2放電電極4。以下, 係以分別供給至第1放電電極2和第2放電電極4之液體 為水而進行說明。 帕耳帖組件6a係使一對帕耳帖電路板以彼此的電路面 對面之方式相對向,而且,將複數個排列設置之熱電元件 夹持於兩個帕耳帖電路板之間,並利用兩側電路使鄰接之 熱電元件彼此電性連接。而且其構成為:當向熱電元件通 電時,熱量係自一個帕耳帖電路板(以下稱為「第i電路 板」)側朝向另一個帕耳帖電路板(以下稱為「第2電路板 」)側移動。 第1電路板的外側連接有冷卻部卜而且,第2電路板 的外側連接有放熱部10,於實施形態中例示了將散熱片用 作放熱部10。 8/14 201204472 和第帕耳帖組件6a通電,來冷卻第1放電電極2 1放電==吏,氣中的水分成為結 2和第2放笔電極4上,藉此來供給水。 放電電極;〗2 實施形態中’舉出了用以冷卻第1 之例,值亦可:第極4之帕耳帖組件如為分赚 為;可’其係有助於“霧化裝置:小^ 田靜電霧化裝置運作時,久 各冷卻部9,藉⑽第丨放 /件6a通電以冷卻 。藉此,使空氣中的水分結露,:分二電第電極4分別 極2的前端部和第2放雷^ ⑺向第1放電電 )。 ^ 2放”極4的前端部供料(結^ 於如此般向第1放電雷山 以4的前端部供給蝴’向第2 2㈣1相對電極3施加古 · θ對第1放電電 極4與第2相對電極5之間::;=且:對第2放電電 火:給至第1放電電極2和第2:口極,高電夺 液面,局部地隆起為錐狀,形::勒的各前端部< 开電2放電電極4的各前端部進行4而於第1 各,部形成泰勒錐時,和第2放― 泰勒錐如此:使泰勒錐進-4Γ: 评電荷密度成為高密度時2 2泰勒錐的#端部,; ^泰革力錐㈣部分的次則接^ 二是說,! =:::7放:述。 铋。卩形成泰勒錐時, 弟2放t電極4 201204472 較大此量(高密度之電荷 端部分的水接受到較大r力)。如此一來’當泰勒錐前 分穸、飛濺〔挫 b τ,由於超過表面張力而反復 帶電微粒子2刀裂)’而大量生成帶負電之奈米大小的 如此一來,藉由對供紙 電極4的各前端部之水進;放電電極2和第2放電 帶電微粒子水中,含有^^霧化而生叙奈米大小的 。因此,可藉由將太米大氧由基或經自由基這種自由基 象空間,而利用帶;微粒;她至嘴出對 參考電位之電位側之負::有: V!係被設定為與第2:雷雪J第1相對電極3的電位差 差似目同,因此^:17=^=極2電位 。因此’兩個靜電霧化部7a、7"的放;匕為:=值 靜電霧化量财,於兩個靜電霧化部%、叹“二 致相同之奈米大小的帶電:子 W於兩個月?電霧化部7a、7b中 生成平均粒為10〜3〇奈米的帶電微粒子水。思 里 接著,列舉另—實施形態。 枝3:ΪΓΓ:中,係將第1放電電極2及第1相對電 極3的電位差VI、以及第2放電電極 $ Μ 的電位差V2設定為不同。 帛2相對電極5 10/14 201204472 也就是說’Vl#V2且V1 v?及 值並::定:Γ霧化部二= = Ϊ: 為與靜電霧化“ ,並係穩定地進行靜電霧化。㈣之另―所設定之放電量 放電別供給至第1放電電極2和第2 化邱7a Λ 量、%或%,而可使第1靜電霧 不^^^_2靜電的靜電霧化量 電^靜轉化部之奈米大小的帶 二==第2靜電霧化部几所生成之奈: 電霧化部7a中释定地生。例如’可於第1靜 m 彳 成平均粒徑為1G〜3G奈米之帶電 =:::=r穩成平均粒徑 水的例如使第1放電電極2所生成之帶電微粒子 喷出第2放電電極4所生成之帶電微粒子水的 ^出工間不同時’―者(第1靜電霧化部7a)與另一者( ^靜電霧化部7b)在帶電微粒子水的喷出量與噴出之帶 =微粒子水的平均粒徑上可刊目同。而且,#將第1放電 電極2和第2放電電極4所生成之帶電微粒子水分別 至相同空啊僅可增加帶電微粒子水时&量,亦可 =出平均㈣寬度較大(平均粒徑的峰值有兩個)的帶電 微粒子水來做為仙之奈米大小的帶電微粒子水。 於圖1的實施形態中,雖將第!放電電極2連接至低 電位側之負極,將第2相對電極5連接至高電位側之正極 ’但亦可將第1放電電極2連接至高電位側,將第2相對 11/14 201204472The reference C 2: shape connected to the high voltage power supply. Further, the _ 2 potential system is lower than the liquid supply means Γ, and the liquid supply means is provided, and the electrode supply liquid = the electric discharge column which is respectively discharged to the first discharge electrode and the D discharge, and preferably the first discharge electrode and The first counter electrode is the same. The first discharge electrode of the potential difference between the phantom discharge electrode and the second counter electrode is different from the first counter electrode. Correcting the potential difference between the second discharge electrode and the second opposite electrode In the present invention, the first counter electrode and the second discharge electrode are connected to a high voltage 5/14 201204472 ====1 the discharge electrode and the liquid hand length at the second life. Therefore, the potential difference between the first/discharge electrode of the first discharge electrode and the potential difference between the second discharge electrode and the second counter electrode can be set to a fixed potential difference. Thereby, the electrostatic atomization between the electrodes = the electrodes and the electrostatic atomization between the electrodes: the electrodes can be stably introduced into each other, and the amount of electrostatic atomization can be increased. [Embodiment] Other features and Si: 'Two brothers show a preferred embodiment of the present invention. The present invention is understood. The following detailed description and the accompanying drawings are further described below with respect to each electrostatic atomizing device, 7a, 7b. In the first and second electrostatic discharge portions, the first discharge electrode 2 and the second static discharge unit are disposed. The second system is composed of a second discharge electrode 4 and a second counter electrode 5 disposed to face the fourth electrode 4. The voltage source has a first output terminal connected to the reference potential I ^ 2 output J and the electric voltage to the first output and is configured to: apply the first output terminal, and the reference terminal 'to generate the first potential In the first test terminal, the second potential == the second output terminal and the reference pole 2 are electrically connected to the high voltage power supply; : 1 Discharge is connected to the 1st output terminal. Further, the first electrical side of the first electrical side is electrically connected to the second output terminal. The first potential 6/14 201204472 h is lower than the reference potential or higher than the reference potential is lower than the reference potential or higher than the reference potential. The high voltage power supply 1 system includes another one for the health 4, [month shape. In the example, the U is used to hold the first electrode, and the output capacitor of the second and second wheels is connected to the output capacitor. The first! Terminal (reference potential point) j bit side) and reference between output terminal and reference terminal: ,:= system, first voltage and second voltage. ^ Power supply can be separately held, and the first opposite electrode 3 and the second discharge electrode 4 are connected to the reference potential point of the high voltage power supply 1, that is, connected to the reference liquid supply means 6, respectively, to the first discharge electrode 2 And the second discharge 4 supplies the liquid. Further, a high county is applied between the slit power source 1 and between the first discharge electrode opposing electrode 3 and between the second discharge electrode 4 and the second opposing belt. That is, the first electric heater (the high electric power (five) is applied with force; 5 the i-th discharge electrode 2 and the second counter electrode 3, and the second electric motor) is applied to the second discharge electrode 4 and The second counter electrode is wide, and the liquid system supplied to the tip end portion of the first discharge electrode 2 is electrostatically misted, and the liquid supplied to the tip end portion of the second discharge electrode 4 is also electrostatically atomized in the embodiment shown in FIG. In the form, the first discharge electrode is connected to the first discharge electrode 2, and the high-voltage power supply is connected to the first side of the potential side of the potential side of the high-voltage power source (the reference potential is 〇v in the embodiment). The second electrode (the second output terminal) is connected to the second counter electrode 5. Further, in the embodiment shown in the figure, the potential difference VI (first voltage) of the first discharge electrode 2 and the second electrode and the second discharge electrode 4 and the phase/phase 7/14 201204472 counter electrode are used. The potential difference V2 (second voltage) of 5 is set to be the same. The liquid tank supplied by the liquid liquid means 6 may be water, an aqueous solution of the active ingredient or a liquid other than water. In order to supply the liquid to the front end portion of the first discharge electrode 2 and the capillary phenomenon, the liquid may be supplied by the capillary action, or the gravity may be caused to flow down. Alternatively, it is also possible to install a dew condensation water such as a Peltier module (touching the four-step method) to the discharge electrode 2 and the second discharge electrode 4' by cooling the moisture in the air* to generate dew condensation water. The liquid (water) is supplied to the young discharge electrode 2 and the second discharge electrode 4, respectively. In the embodiment shown in Fig. 1, the first discharge electrode is formed by the first cooling means and the second cooling means. 2 and the second discharge electrode 4^ supply liquid supply means 6. That is, the i-th cooling means and the second cooling means are attached to the first discharge electrode 2 and the second discharge electrode 4, respectively. The liquid to the first discharge electrode 2 and the second discharge electrode 4 is water. The Peltier module 6a is such that a pair of Peltier boards face each other with their circuits facing each other, and a plurality of arrays are arranged. The thermoelectric element is clamped between the two Peltier circuit boards, and the adjacent thermoelectric elements are electrically connected to each other by the two-side circuit, and is configured to: when energizing the thermoelectric element, the heat is from a Parr Post board (hereinafter referred to as "the i-th board" The side moves toward the other Peltier circuit board (hereinafter referred to as "second circuit board"). The cooling portion is connected to the outside of the first circuit board, and the heat radiating portion 10 is connected to the outside of the second circuit board. In the form, the heat sink is used as the heat radiating portion 10. 8/14 201204472 and the Peltier module 6a are energized to cool the first discharge electrode 2 1 discharge == 吏, the moisture in the gas becomes the knot 2 and the second discharge Water is supplied from the pen electrode 4. Discharge electrode; 〖2 In the embodiment, 'the example for cooling the first one is given, and the value may be: the Peltier component of the fourth pole is profitable; 'The system helps the atomizing device: When the small electrostatic field atomizing device is operated, the cooling unit 9 is energized for a long time, and the (10) first discharge/piece 6a is energized to cool. Thereby, the moisture in the air is dew condensation: The second electrode is divided into a front end portion of the pole 2 and a second lightning discharge ^ (7) to the first discharge electric power). ^ 2 is placed at the front end portion of the pole 4 (the junction is discharged to the first discharge Leishan 4 The front end portion supply butterfly 'applies the ancient θ to the second (four) 1 counter electrode 3 between the first discharge electrode 4 and the second opposite electrode 5::; 2 discharge electric fire: to the first discharge electrode 2 and the second: the mouth, the high-power liquid-collecting surface, locally bulging into a cone shape, the shape: each end portion of the Le < each of the electric discharge 2 discharge electrode 4 When the front end portion is 4 and the first portion is formed with a Taylor cone, and the second release Taylor prism is such that the Taylor cone enters -4Γ: the end portion of the 2 2 Taylor cone when the charge density becomes high density; The second part of the Taige force cone (four) is connected to the second part. The second is said to be!! =:::7 put: 。.卩 When the Taylor cone is formed, the brother 2 puts the t electrode 4 201204472 Larger amount (high density charge end) Part of the water receives a large r force). As a result, when the Taylor cone is split, splashing (frustration b τ, repeated charged particles 2 cracks due to surface tension), a large amount of negatively charged nanometers are generated. In this way, the water is supplied to the front end portions of the paper feed electrode 4, and the discharge electrode 2 and the second discharge charged fine particle water are atomized to have a size of a naphtha. Therefore, it is possible to use the band; the particles by the radical-like space of the base or the free radicals; the negative of the potential side of the reference potential from the mouth to the mouth:: Yes: V! is set It is the same as the difference in potential difference between the first electrode 3 and the first electrode 3 of the Thunder snow J. Therefore, ^: 17 = ^ = pole 2 potential. Therefore, the 'two electrostatic atomization parts 7a, 7" are placed; 匕 is: = value electrostatic atomization amount, in the two electrostatic atomization parts%, sighs "the same nanometer size of the charging: the child W Two months, the electrospraying sections 7a and 7b generate charged microparticle water having an average particle size of 10 to 3 nanometers. The following is an alternative embodiment. Branch 3: ΪΓΓ: medium, the first discharge electrode 2, the potential difference VI of the first counter electrode 3 and the potential difference V2 of the second discharge electrode $ 设定 are set to be different. 帛 2 opposite electrode 5 10/14 201204472 That is, 'Vl#V2 and V1 v? Ding: Γ atomization part two = = Ϊ: for electrostatic atomization, and stable electrostatic atomization. (4) The other discharge amount discharge is supplied to the first discharge electrode 2 and the second chemical discharge 7a, the amount of %, % or %, and the electrostatic discharge amount of the first electrostatic mist is not generated. ^The nanometer-sized band of the static conversion unit===The second electrostatic atomization unit generates a few of them: The electrospray unit 7a is released. For example, it is possible to eject the charged particles generated by the first discharge electrode 2, for example, by charging the first static m to an average particle diameter of 1 G to 3 G nm =:::=r. When the charged fine particle water generated by the discharge electrode 4 is different, the discharge amount and discharge of the charged fine particle water (the first electrostatic atomization unit 7a) and the other (the electrostatic atomization unit 7b) are different. The band = the average particle size of the fine water can be published. Further, #the charged fine particle water generated by the first discharge electrode 2 and the second discharge electrode 4 can be increased to the same space, and the amount of charged fine particle water can be increased, and the average (4) width can be increased (average particle diameter) The peak has two) charged micro-particle water to make the charged micro-particle water of the size of the fairy. In the embodiment of Fig. 1, the first! The discharge electrode 2 is connected to the negative electrode on the low potential side, and the second opposite electrode 5 is connected to the positive electrode on the high potential side. However, the first discharge electrode 2 can also be connected to the high potential side, and the second relative 11/14 201204472
f圖式簡單說明】 卞’兩個靜電霧化部7a、7b均 之奈米大小的帶電微粒子水。 °兒明了本發明,但只要不 亦即申請專利範圍,本所屬技 圖1為本發明靜電霧化裝置的概略構成圖 【主要元件符號說明】 0 參考電位 1 高壓電源 2 第1放電電極 3 第1相對電極 4 第2放電電極 5 第2相對電極 6 供液手段 6a 帕耳帖組件 7a、7b 靜電霧化部 9 冷卻部 10 放熱部 12/14f is a simple description of the pattern] 带' The charged microparticle water of the size of the two electrostatic atomization sections 7a and 7b. The present invention has been described, but the technical scope of the present invention is as follows: FIG. 1 is a schematic view of the electrostatic atomization device of the present invention. [Reference of main components] 0 Reference potential 1 High voltage power supply 2 First discharge electrode 3 1 counter electrode 4 second discharge electrode 5 second counter electrode 6 liquid supply means 6a Peltier assembly 7a, 7b electrostatic atomization portion 9 cooling portion 10 heat release portion 12/14