201143569 六、發明說明: 【發明所屬之技術領域】 、本發明為-種製造金屬_多層電路散熱基板的方 去’制是指-種具有多層金屬導電層與絕緣陶曼薄膜相 互沉積排列的金屬喊電路散熱基板製造方法,可廣泛於 發光4亟體(LED)散熱電路基板或致冷器散熱電路基板等 應用。 % 【先前技術】 隨著科技的突飛猛進以及人類對於生活品質的追求, 許多電子產品亦趨向了更為嚴格的要求,而現今積體電路 ^裝製程為追求傳輸效率更佳、體频小化及散熱效率 向,因此,一種使用金屬散熱基板因應而生。 傳統金屬散絲板的製作方式就是在金屬散熱層上以 濺錢方式形成-熱導陶莞層,並於熱導陶曼層上方設置一 金屬導電層,而金屬導電層外另可印刷形成一防焊層,此 •金解電層具有—躲連接區⑽接發熱元件。 另一種傳統金屬散熱基板為一麵合金屬基板,其是 在基板表面设置導電線路與發熱元件,而發熱元件下方 設有至少-個導通孔,各導通孔内設有導熱金屬,且導熱 金屬上表面貼合於發熱元件,而基板下方連接一上表面貼 &於導熱金屬的銅金屬板,並於銅金屬板下方連接紹金屬 板。 而傳統金屬散熱基板另具有一種複合材料基板,其主 要的製作方式是在—肋承载電子元件的金屬基板上方設 201143569 置一以微弧氧化方式製成的多孔陶瓷層,並於多孔陶瓷層 上方塗佈一形成於表面的銀層以及一覆蓋於銀層上方的銅 層’藉此在多孔陶究層上方形成銅銀合金層。 然而’上述金屬散熱基板往往採用網印或壓合塗佈方 式製成的高熱阻絕緣材料作為導熱金屬層之間的接合層, 會因高溫而導致内部黏膠軟化現象,不僅熱傳效率及耐熱 性較差,對於現今散熱要求甚高的積體電路封裝製程已不 敷使用’而且傳統金屬散熱基板的導熱效果明顯不足,有 鑒於此,對於金屬陶瓷散熱基板的製成方式實有改良的必 要,藉以減少製作的成本,並同時提升基板的熱傳導及耐 面溫效能。 【發明内容】 本發明之主要目的’旨在提供一種金屬陶究多層電路 散熱基板製造方法,讓金屬基板表面的各金屬導電層間形 成電性導通且與絕緣陶瓷薄膜相互沉積排列,讓金屬陶瓷 多層電路散熱基板的整體體積減少,有效降低整個金屬陶 宽散熱基板的製作成本。 本發明之另一目的在於金屬基板的兩側表面皆可設置 多層的金屬導電層與絕緣陶瓷薄膜,兼具多層電性導通、 低熱阻等優點,有效增加金屬陶瓷散熱基板的高熱傳及耐 高溫效能。 為達上揭目的,本發明金屬陶瓷多層電路散熱基板製 造方法包含以下步驟:(A)選定一金屬基板;毋)覆蓋一第一 圖形化遮罩於金屬基板表面;(C)物理氣相沉積或燒結或嘴 201143569 塗一第一絕緣陶究薄膜於金屬基板表面;(】))於金屬基板上 移除第一圖形化遮罩;(印物理氣相沉積一第一金屬導電層 於第一絕緣陶瓷薄膜的表面;(F)利用壓膜(抗I虫刻乾膜)、曝 光顯衫及餘刻製程形成第一金屬導電層的線路圖案;(G)將 金屬基板上的抗蝕刻乾膜剝除;¢5覆蓋一第二圖形化遮罩 於第一金屬導電層表面;①物理氣相沉積或燒結或喷塗一 第二絕緣陶瓷薄膜於第一金屬導電層表面;⑺於第一金屬201143569 VI. Description of the Invention: [Technical Field] The present invention is a metal-made multi-layer circuit heat-dissipating substrate, which means a metal having a plurality of metal conductive layers and an insulating Tauman film interposed and deposited. The method of manufacturing a circuit cooling substrate can be widely applied to applications such as a light-emitting 4 (LED) heat dissipation circuit substrate or a refrigerator heat dissipation circuit substrate. % [Prior Art] With the rapid advancement of technology and the pursuit of human quality, many electronic products have also become more stringent requirements. Nowadays, the integrated circuit is designed to pursue better transmission efficiency and smaller body frequency. The heat dissipation efficiency is, therefore, a use of a metal heat sink substrate. The traditional metal slab is made by splashing on the metal heat sink layer - a thermal conductive ceramic layer, and a metal conductive layer is arranged above the thermal conductive terracotta layer, and the metal conductive layer can be printed separately. The solder resist layer, the gold stripping layer has a hiding junction (10) connected to the heating element. Another conventional metal heat dissipating substrate is a one-side metal substrate, which is provided with a conductive line and a heating element on the surface of the substrate, and at least one via hole is disposed under the heating element, and each of the conducting holes is provided with a heat conducting metal and a heat conducting metal The surface is attached to the heating element, and a copper metal plate on the upper surface of the substrate is attached to the heat conductive metal, and the metal plate is connected under the copper metal plate. The conventional metal heat dissipating substrate further has a composite material substrate, and the main manufacturing method is to provide a porous ceramic layer formed by micro-arc oxidation on the metal substrate of the rib-bearing electronic component, and above the porous ceramic layer. A silver layer formed on the surface and a copper layer overlying the silver layer are applied 'by forming a copper-silver alloy layer over the porous ceramic layer. However, the above-mentioned metal heat-dissipating substrate often uses a high thermal resistance insulating material made by screen printing or press-bonding as a bonding layer between the thermally conductive metal layers, which causes internal adhesive softening due to high temperature, and is not only heat transfer efficiency and heat resistance. Poor performance, the current circuit packaging process with high heat dissipation requirements is not enough to use 'and the heat conduction effect of the traditional metal heat sink substrate is obviously insufficient. In view of this, it is necessary to improve the manufacturing method of the cermet heat dissipation substrate. In order to reduce the cost of production, and at the same time improve the heat transfer and surface temperature resistance of the substrate. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for manufacturing a metal ceramic multilayer circuit heat-dissipating substrate, which is electrically conductive between the metal conductive layers on the surface of the metal substrate and deposited with the insulating ceramic film to make the cermet multilayer. The overall volume of the circuit heat sink substrate is reduced, which effectively reduces the manufacturing cost of the entire metal ceramic wide heat sink substrate. Another object of the present invention is to provide a plurality of metal conductive layers and insulating ceramic films on both sides of the metal substrate, which have the advantages of multiple layers of electrical conduction and low thermal resistance, and effectively increase the high heat transfer and high temperature resistance of the cermet heat dissipation substrate. efficacy. In order to achieve the above, the cermet multi-layer circuit heat dissipation substrate manufacturing method of the present invention comprises the following steps: (A) selecting a metal substrate; 毋 covering a first patterned mask on the surface of the metal substrate; (C) physical vapor deposition Or sintering or mouth 201143569 coating a first insulating ceramic film on the surface of the metal substrate; ())) removing the first patterned mask on the metal substrate; (printing physical vapor deposition of a first metal conductive layer in the first The surface of the insulating ceramic film; (F) the wiring pattern of the first metal conductive layer formed by using a laminated film (anti-I dry film), an exposure shirt, and a residual process; (G) an anti-etching dry film on the metal substrate Stripping; ¢5 covering a second patterned mask on the surface of the first metal conductive layer; 1 physically vapor depositing or sintering or spraying a second insulating ceramic film on the surface of the first metal conductive layer; (7) on the first metal
導電層上移除第二圖形化遮罩;(κ)物理氣相沉積一第二金 屬導電層於第二絕緣陶料膜的表面,藉以形成一金屬陶 瓷多層電路散熱基板。 本發明藉由上述步驟(A)到步驟(κ)即可形成一單面成 型兩層電路結構料層金錄熱基板或者是一雙面成 型兩層電路結構的多層金屬陶統熱基板結構,本發明亦 可依據使財的f求’於金屬基板單—側喊雙面重覆至 化遮罩與金 -第==Γ的金屬陶变多層電路散熱基板形成 第—金屬導電層與第三絕緣陶变薄膜 屬導電層與第四絕緣喊薄膜,甚至Μ讓2四’ r有第五層以上的多層金屬導電層與絕二= 鋁 鹤、鎳或 一金屬導 於一較佳 本發明所應用的金屬基板是為鋼、鐵 其合金的其中—種導熱金屬,而本發明採用的^ 電層及第二金屬導電層為高導電性的金屬材料 201143569 實施例巾’金屬材料與金屬基板最好設為—齡屬材料。 本發明物理氣相沉積方法可為蒸鍍或歧的其中任何 種方式’上述燒結方法可為印刷燒結方式或其他燒結方 式’而上述噴塗方法可為低溫熱噴塗陶瓷粉末方式或其他 喷塗方式。上述第一絕緣陶瓷薄膜與第二絕緣陶瓷薄臈可 以設為氧化銘、氧化辞、硫化鋅、氧化石夕或其他陶究絕緣 材料的其中一種陶瓷材料。 本發明金屬陶瓷多層電路散熱基板最外側的金屬導電 層表面可麵—由其他金屬構成的抗氧化賴層,於一較 佳實施例t ’上述抗氧化防制由化轉層混合化學金 層化學銀層、錫或錫合金的其中一種所構成。 本發明的特點在於讓金屬基板表面的各金屬導電層間 心成電I1生導通且與絕緣陶莞薄膜相互沉積排列,讓金屬陶 曼多層電路散絲板雜體體積減少,有效降健個金屬 陶瓷多層電路散熱基板的製作成本;且金屬基板的雙面皆 • 可設置多層的金屬導電層與絕緣陶瓷薄膜,兼具多層電性 導通、低熱阻等優點,有效增加金屬陶瓷多層電路基板的 间熱傳及耐高溫效能,適合用於發光二極體(LED)散熱電路 基板或致冷器散熱電路基板等應用。 【實施方式】 茲為便於更進一步對本發明之構造、使用及其特徵有 更深一層明確、詳實的認識與瞭解,爰舉出較佳實施例, 配合圖式詳細說明如下: 首先’請參閱第1圖至第4圖所示,本發明金屬陶瓷 201143569 多層電路散錄板製妨法包含町㈣·· (A)選定一金屬基板2〇 ;其中, 上述金屬基板20是為銅、 rm薄」、鐵、鎳或其合金的其中—種導熱金屬製成。A second patterned mask is removed from the conductive layer; (κ) physical vapor deposition of a second metal conductive layer on the surface of the second insulating ceramic film to form a metal ceramic multilayer circuit heat sink substrate. The invention can form a single-sided two-layer circuit structure layer gold recording substrate or a double-sided two-layer circuit structure multi-layer metal ceramic thermal substrate structure by the above steps (A) to (κ), The invention can also form a first metal conductive layer and a third according to the metal substrate of the metal ceramic substrate of the metal ceramic substrate, which is double-sidedly overlapped with the metal mask on the side of the metal substrate. The insulating ceramic film belongs to the conductive layer and the fourth insulating film, and even the multilayer metal conductive layer having the fifth layer or more and the second layer = aluminum crane, nickel or a metal is guided by a preferred embodiment of the invention. The metal substrate used is a kind of heat conductive metal for steel and iron alloy, and the electric layer and the second metal conductive layer used in the present invention are highly conductive metal materials 201143569. The towel of the metal material and the metal substrate is the most Good to set - age material. The physical vapor deposition method of the present invention may be either vapor deposition or dissimilarity. The above sintering method may be a printing sintering method or other sintering method. The above spraying method may be a low temperature thermal spraying ceramic powder method or other spraying methods. . The first insulating ceramic film and the second insulating ceramic thin layer may be one of ceramic materials of oxidized, oxidized, zinc sulfide, oxidized stone or other ceramic insulating materials. The surface of the outermost metal conductive layer of the cermet multilayer circuit heat-dissipating substrate of the present invention may be surface--an anti-oxidation layer composed of other metals, in a preferred embodiment t' the above-mentioned anti-oxidation prevention and chemical conversion layer chemical gold layer chemistry One of silver, tin or tin alloy. The invention is characterized in that the metal conductive layers on the surface of the metal substrate are electrically connected to each other and are deposited with the insulating ceramic film, so that the volume of the metal ceramics multi-layer circuit bulk board is reduced, and the cermet is effectively reduced. Multi-layer circuit heat-dissipating substrate manufacturing cost; and both sides of the metal substrate can be provided with multiple layers of metal conductive layer and insulating ceramic film, which has the advantages of multiple layers of electrical conduction, low thermal resistance, etc., effectively increasing the heat of the cermet multilayer circuit substrate Transmission and high temperature resistance, suitable for applications such as light-emitting diode (LED) heat-dissipation circuit boards or refrigerator heat-dissipating circuit boards. [Embodiment] In order to facilitate further understanding and understanding of the structure, use and features of the present invention, a preferred embodiment will be described with reference to the drawings as follows: First, please refer to the first As shown in FIG. 4, the cermet 201143569 multilayer circuit slab of the present invention comprises a singularity (four) (A) selecting a metal substrate 2; wherein the metal substrate 20 is made of copper or rm thin, One of the heat conductive metals of iron, nickel or alloys thereof.
盍-第-_化遮罩21於金屬基板2〇表面。 (Q=屬基板20表面成型—第—絕緣喊_22,讓金 屬土板20表面上方形成一絕緣層。其中,上述第一絕 緣陶究薄膜22的成型方式包含物理氣相沉積、燒結或 喷塗的其中一種,上述物理氣相沉積可為蒸錢或減渡的 ’、中任何-種方式’上述燒結方法可為印刷燒結或其他 燒結方式’上射财法可魏溫喊粉末或其他 喷塗方式,社述第—絕賴t·細22可設為氧化 鋁、氧化鋅、硫化鋅、氧化梦或其他陶究絕緣材料的其 中一種陶瓷材料。 所謂的物理氣相沉積(Physical Vapor Deposition, PVD),就是以物理現象的方式,來進行薄膜沉積的一 種技術。 所謂蒸鍍(Evaportion Deposition)是藉著對被蒸鑛 物體加熱’利用被蒸鍍物在接近炼點時的高溫所具備 的飽和蒸氣壓,來進行薄膜沉積。 所謂濺鍍(Sputtering)則是利用電漿所產生的離 子,藉著離子對被滅鍍物電極(Electrode)的轟擊 (Bombardment),使電聚的氣相(Vapor phase)内具有被 鍍物的原子,然後產生沉積鍍膜。 所謂燒結(Sintering),是將粉末材料於印刷沉積成 201143569 形後加熱,使結合於底材表面形成薄臈層之過程。 所謂噴塗(Thermal Spray Coating),是將粉末材料 加熱溶化再經霧化後高速沉積於底材表面相互結合形 成薄膜層。 / P)於金屬基板2〇上移除第一圖形化遮罩2卜 (E) 物理氣相沉積—第—金屬導電層23於第—絕緣陶究薄 膜22的表面,讓第一金屬導電層23與金屬基板構 成電性導通;其中,物理氣相沉積可為蒸鍍或濺渡的其 中任何-種方式,而上述第一金屬導電層Μ為高導電 性的金屬材料。 於-較佳實細巾,本發明所躺的金屬材料與 金屬基板20最好設為一銅金屬,於另-較佳實施例 中,金屬材料與金屬基板20可設為一鐵金屬。 (F) 利用壓膜(抗蝴乾膜)、曝光顯影及蝴製程24形成第 -金屬導電層23的線路其中,壓職程是在基 # 板上欲形成線路圖案的導電層表面黏貼一對紫外線反 應的聚合性樹脂的乾膜25(Diy Film),其主要用在聚合 後保護線路圖案不會被蝕刻掉。 曝光顯影製程中的曝光部分,是將線路圖案製成 正版的光轉’先行粒及平祕贿細25的基板 上’再經曝光機進行抽真空、壓板及紫外線照射而完 成。受到紫外線的照射的乾膜25將產生聚合作用,而 乾膜25上焚到光罩阻擋無法由紫外線透射的線路圖 案,將無法產生聚合作用。 [S1 8 201143569 曝光顯影製程尹的顯鸟却 未產生聚合的乾分而,__ 刀去除,而以物理及化學剝降 ^將純觀_獅,以 構成之線路,具杨解整之雜。 V驟所 而餘刻製程24是以一飩利 _•將第一絕緣二==行_ 崎的第-金物物容1=表吻有乾膜25 (G)將金屬基板2〇上的抗飯刻乾㈣剝除。 =:第二圖形化遽罩26於第一金屬導電層23表面。 27,讓第金屬八 1 電層23表面成型一第二絕緣陶究薄膜 W讓第-金屬導電層23上方形成另一絕緣層。其中, 上述第二絕緣陶究薄膜27的成型方式包含物理氣相沉 積、燒結或喷塗的其中一種,上述物理氣相沉積可為基 鑛或濺渡的其中任何一種方式,上述燒結方法可為印刷 燒結或其他燒財式’上射塗方法可為低溫嘴塗陶究 粉末或其他嘴塗方式,而上述第二絕緣喊薄膜^可 設為氧化銘、氧化辞、氧化石夕或其他陶究絕緣材料的其 中一種陶瓷材料。 (J) 於第一金屬導電層23上移除第二圖形化遮罩26。 (K) 物理氣相沉積一第二金屬導電層28於第二絕緣陶瓷薄 膜27的表面’讓第二金屬導電層28與上述第—金屬導 電層23與金屬基板20構成電性導通,藉以形成一金屬 陶瓷多層電路散熱基板;其中,物理氣相沉積可為蒸铲 或濺渡的其中任何一種方式,而上述第二金屬導電層 201143569 28為高導電性的金屬材料。 於此一實施例中,上述金屬材料同樣是最好設為 一銅金屬,於另一可實施例中,金屬材料可設為一鐵 金屬。 本發明藉由上述步驟(A)到步驟(κ)即可形成一單面成 型兩層電路結構的多層金屬陶瓷散熱基板或者是一雙面成 型兩層電路結構的多層金屬陶竞散熱基板結構,請參閱第5 圖所示,本發明亦可依據使用者的需求,於金屬基板單一 • 側面或雙面重覆至少-次步驟(Β)至步驟(G),藉以形成不同 的圖幵ν化遮罩與金屬線路圖案。,如此即可讓本發明的金 屬陶兗散熱基板設置有一第三金屬導電層29與第三絕緣陶 瓷薄膜30,進而形成三層電路結構的金屬陶竟散熱基板。 但此-實施例僅用為方便舉例說明,並非加以限制, 亦即上述金屬喊散絲板可增設—第四金料電層與第 :絕緣陶,甚至依據使黯的需求在金屬陶究基板 • 5又置第五層以上的多層金屬導電層與絕緣陶究薄膜結構。 請參閱第6圖所示,本發明金屬陶竞多層電路散倾 板最外側的導電層(第二金屬導電層28)可另行電鍍一由、I 他金屬構成的抗氧化防護層3卜於一較佳實施例中,上述 抗氧化防護層31最好是由化學錄層混合化學金層、化學銀 層、錫或錫合金的其中一種所構成。 ’ 凊參閱第7圖所示’本發明金屬陶竞多層電路散熱基 財金縣板2G料面謂金屬喊散熱i 板、、,。構,亦可進行步驟⑻至步驟(κ)於金屬基板20的雙面 201143569 同時進行多層金屬導電層與絕緣陶瓷薄膜的製程,形成金 屬基板20雙面成型的多層金屬陶瓷散熱基板結構,如此即 可廣泛地應用於發光一極體散熱電路基板或致冷器散熱電 路基板。 綜上所述,本發明金屬陶瓷多層電路散熱基板製造方 法可讓金屬基板的同面或反面或雙面形成多層次的金屬導 電層與絕緣陶究薄膜而相互沉積排列,讓金屬陶曼多層電 路散熱基板的整體體積減少,有效降低整個金屬陶竞基板 的製作成本,兼具多層電性導通、低熱阻等優點,有效增 加金屬陶竞基板高熱傳及耐高溫的效能,可廣泛於發光二 極體(LED)散熱電路基板或致冷器散熱基板等應用。 以上所舉實施例,僅用為方便說明本發明並非加以限 制,在不離本發明精神範疇,熟悉此一行業技藝人士依本 發明申請專利範圍及發明說明所作之各種簡易變形與修 飾,均仍應含括於以下申請專利範圍中。 【圖式簡單說明】 第1圖係本發明金屬陶瓷多層電路散熱基板一較佳實 施例之製造流程圖; 第2圖係第1圖流程(a)至(〇)之結構示意圖; 第3圖係第1圖流程(E)至(η)後半部流程之結構示意 圖; 第4圖係第1圖流程(1)到(反)之結構示意圖; 第5圖係本發明設置多層金屬導電層與絕緣陶瓷薄膜 之示意圖; [S] 201143569 第6圖係本發明金屬陶瓷多層電路散熱基板表面設置 抗氧化防護層之結構圖;以及 第7圖係本發明金屬陶瓷多層電路散熱基板設為雙面 結構之示意圖。 【主要元件符號說明】 20------金屬基板 21…一第一圖形化遮罩 22——第一絕緣陶瓷薄膜 23……第一金屬導電層 24——蝕刻製程 25……乾膜 26— —第二圖形化遮罩 27— —第二絕緣陶瓷薄膜 28— -----第二金屬導電層 29— —第三金屬導電層 30— —第三絕緣陶瓷薄膜 31…抗氧化防護層 m 12The 盍-the first--the mask 21 is on the surface of the metal substrate 2 . (Q=the surface of the substrate 20 is formed - the first - the insulation is shouted _22, and an insulating layer is formed on the surface of the metal earth plate 20. The first insulating ceramic film 22 is formed by physical vapor deposition, sintering or spraying. One of the coatings, the above physical vapor deposition can be steamed or reduced, any of the above-mentioned methods can be used for printing sintering or other sintering methods. The coating method, the social statement - the absolute t. fine 22 can be set as one of the ceramic materials of alumina, zinc oxide, zinc sulfide, oxidized dream or other ceramic insulation materials. The so-called physical vapor deposition (Physical Vapor Deposition, PVD) is a technique for performing thin film deposition in the form of physical phenomena. The so-called evaporation (Evaportion Deposition) is obtained by heating the vaporized mineral body to use the high temperature of the vaporized material near the refining point. Saturated vapor pressure for thin film deposition. Sputtering is the use of ions generated by plasma to bombard the electrode of the electrode (Electrode). The Vapor phase has an atom of the object to be plated, and then a deposition coating is produced. The so-called sintering (Sintering) is to heat the powder material after printing into a shape of 201143569, so as to form a thin layer bonded to the surface of the substrate. The process of the layer is called "thermal spray coating", which is to melt the powder material and then atomize it and then deposit it on the surface of the substrate at high speed to form a film layer. / P) remove the first pattern on the metal substrate 2 Mask 2 (E) physical vapor deposition - the first metal conductive layer 23 on the surface of the first insulating ceramic film 22, the first metal conductive layer 23 and the metal substrate are electrically connected; wherein, physical vapor deposition It may be any of the methods of vapor deposition or sputtering, and the first metal conductive layer Μ is a highly conductive metal material. Preferably, in the preferred embodiment, the metal material and the metal substrate 20 of the present invention are preferably made of a copper metal. In another preferred embodiment, the metal material and the metal substrate 20 may be made of an iron metal. (F) forming a first-metal conductive layer 23 by using a laminated film (anti-butter film), an exposure developing process, and a butterfly process 24, wherein the pressing process is to adhere a pair of conductive layers on the base plate to form a wiring pattern. The dry film 25 (Diy Film) of the ultraviolet-ray-reactive polymerizable resin is mainly used for protecting the wiring pattern from being etched after the polymerization. The exposed portion of the exposure and development process is formed by making the line pattern into a genuine light-turning "precursor" and a flat-brieze 25 on the substrate, and then performing vacuuming, pressing, and ultraviolet irradiation on the exposure machine. The dry film 25 which is irradiated with ultraviolet rays will cause polymerization, and the dry film 25 is burned to the reticle to block the wiring pattern which cannot be transmitted by ultraviolet rays, and polymerization cannot be produced. [S1 8 201143569 Exposure and development process Yin's bird does not produce polymerized dry points, __ knife removal, and physical and chemical peeling ^ will be pure view _ lion, to form the line, with Yang Jiequan. V step and the engraving process 24 is a profit _• will be the first insulation two == line _ Saki's first - gold object capacity 1 = the kiss has a dry film 25 (G) the metal substrate 2 〇 resistance The rice is dried (4) stripped. =: The second patterned mask 26 is on the surface of the first metal conductive layer 23. 27, forming a second insulating ceramic film on the surface of the first metal layer 23 to form another insulating layer over the first metal conductive layer 23. Wherein, the forming manner of the second insulating ceramic film 27 includes one of physical vapor deposition, sintering or spraying, and the physical vapor deposition may be any one of a base or a splash, and the sintering method may be Printing and sintering or other burning type 'upjection coating method can be used for low temperature nozzle coating powder or other nozzle coating method, and the above second insulation shouting film ^ can be set as oxidation, oxidation, oxidized stone or other ceramics One of the ceramic materials of insulating material. (J) The second patterned mask 26 is removed from the first metal conductive layer 23. (K) physically vapor-depositing a second metal conductive layer 28 on the surface of the second insulating ceramic film 27 to electrically connect the second metal conductive layer 28 and the first metal conductive layer 23 and the metal substrate 20, thereby forming A cermet multilayer circuit heat dissipation substrate; wherein the physical vapor deposition may be any one of steaming or splashing, and the second metal conductive layer 201143569 28 is a highly conductive metal material. In this embodiment, the metal material is also preferably a copper metal. In another embodiment, the metal material may be an iron metal. The invention can form a multi-layer cermet heat-dissipating substrate with a single-sided two-layer circuit structure or a multi-layer metal ceramic hot-heat substrate structure with a double-sided forming two-layer circuit structure by the above steps (A) to (k). Referring to FIG. 5, the present invention can also repeat at least one step (Β) to step (G) on a single side or both sides of the metal substrate according to the needs of the user, thereby forming different patterns. Mask and metal circuit pattern. Thus, the metal ceramic substrate of the present invention can be provided with a third metal conductive layer 29 and a third insulating ceramic film 30, thereby forming a three-layer circuit structure of the metal ceramic heat-dissipating substrate. However, this embodiment is only for convenience of illustration and is not limited, that is, the above-mentioned metal shingling board can be added - the fourth gold layer and the first: insulating pottery, even in accordance with the demand for the metal in the ceramic substrate • 5 layers of multi-layer metal conductive layer and insulating ceramic film structure. Referring to FIG. 6 , the outermost conductive layer (second metal conductive layer 28 ) of the metal Tao competition multilayer circuit of the present invention can be separately plated with an anti-oxidation protective layer composed of a metal. In a preferred embodiment, the oxidation resistant protective layer 31 is preferably composed of one of a chemical recording layer mixed with a chemical gold layer, a chemical silver layer, a tin or a tin alloy.凊 凊 第 第 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属 金属The step (8) to the step (κ) may be performed on the double-sided 201143569 of the metal substrate 20 to simultaneously perform the processes of the multilayer metal conductive layer and the insulating ceramic film, thereby forming a multilayer cermet heat-dissipating substrate structure formed by the double-sided molding of the metal substrate 20, that is, It can be widely applied to a light-emitting one-pole heat dissipation circuit substrate or a refrigerator heat dissipation circuit substrate. In summary, the cermet multi-layer circuit heat-dissipating substrate manufacturing method of the present invention can form a multi-layer metal conductive layer and an insulating ceramic film on the same side or the opposite side or both sides of the metal substrate to be mutually deposited and arranged, so that the metal terracotta multilayer circuit The overall volume of the heat-dissipating substrate is reduced, which effectively reduces the manufacturing cost of the entire metal ceramic substrate, and has the advantages of multi-layer electrical conduction and low thermal resistance, and effectively increases the high heat transfer and high temperature resistance of the metal ceramic substrate, and can be widely used in the light-emitting diode. Applications such as body (LED) heat sink circuit boards or refrigerator heat sink substrates. The above embodiments are intended to be illustrative only, and are not intended to limit the scope of the present invention. It is included in the scope of the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a manufacturing flow chart of a preferred embodiment of a cermet multilayer circuit heat-dissipating substrate of the present invention; FIG. 2 is a schematic structural view of a flow (a) to (〇) of FIG. 1; Figure 1 is a schematic structural view of the flow of the second half of the flow (E) to (η); Figure 4 is a schematic view of the flow of the first (Figure 1) to (reverse); Figure 5 is a schematic diagram of the present invention for providing a multilayer metal conductive layer and Schematic diagram of an insulating ceramic film; [S] 201143569 FIG. 6 is a structural view showing an anti-oxidation protective layer on a surface of a heat dissipating substrate of a cermet multilayer circuit of the present invention; and FIG. 7 is a double-sided structure of the cermet multilayer electric circuit of the present invention Schematic diagram. [Major component symbol description] 20------Metal substrate 21...a first patterned mask 22-first insulating ceramic film 23...first metal conductive layer 24-etching process 25...dry film 26—the second patterned mask 27—the second insulating ceramic film 28—the second metal conductive layer 29—the third metal conductive layer 30—the third insulating ceramic film 31...antioxidation protection Layer m 12