[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201139567A - Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element - Google Patents

Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element Download PDF

Info

Publication number
TW201139567A
TW201139567A TW100114096A TW100114096A TW201139567A TW 201139567 A TW201139567 A TW 201139567A TW 100114096 A TW100114096 A TW 100114096A TW 100114096 A TW100114096 A TW 100114096A TW 201139567 A TW201139567 A TW 201139567A
Authority
TW
Taiwan
Prior art keywords
diffusion layer
type diffusion
composition
glass
forming
Prior art date
Application number
TW100114096A
Other languages
Chinese (zh)
Other versions
TWI488222B (en
Inventor
Takeshi Nojiri
Masato Yoshida
Kaoru Okaniwa
Youichi Machii
Mitsunori Iwamuro
Shuuichirou Adachi
Tetsuya Sato
Keiko Kizawa
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW201139567A publication Critical patent/TW201139567A/en
Application granted granted Critical
Publication of TWI488222B publication Critical patent/TWI488222B/en

Links

Classifications

    • H01L31/1804
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • C03C3/074Glass compositions containing silica with less than 40% silica by weight containing lead containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/142Silica-free oxide glass compositions containing boron containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/145Silica-free oxide glass compositions containing boron containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • H01L31/0288
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Glass Compositions (AREA)

Abstract

The composition for forming a p-type diffusion layer contains an acceptor element-containing glass powder which has softening temperature of from 300 DEG C to 950 DEG C and a dispersion medium. A p-type diffusion layer and a photovoltaic cell element having a p-type diffusion layer are prepared by applying the composition for forming a p-type diffusion layer, followed by a thermal diffusion treatment.

Description

201139567 ^ο/,ουριί 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽電池元件的形成P型擴散層 的組成物、P型擴散層的製造方法及太陽電池元件的製造 方法,更詳細而言,本發明是有關於一種可減少作為半導 體基板的石夕基板的内應力、抑制結晶粒界(crystal grain bcmndary)的損壞、抑制結晶缺陷的增長及抑制翹曲的p 型擴散層形成技術。 【先前技術】 對先前的矽太陽電池元件的製造步驟進行說明。 首先’為了促進光學侷限效應(confinement effect)來謀 求咼效率化,準備形成有紋理(texture)構造的p型石夕基 板,繼而於氧氣化磷(POCI3)、氮氣、氧氣的混合氣體環 境下以800°C〜90(TC進行幾十分鐘的處理,從而同樣地形 成η型擴散層。於該先前的方法中,因使用混合氣體進行 磷的擴散,故不僅於表面形成η型擴散層,而且於侧面、 背面亦形成η型擴散層。由於這些原因,需要側蝕刻(以也 etching)來進行用於去移除側面的n型擴散層。另外,需 將背面的η型擴散層轉換成〆型擴散層,因此於背面印刷 鋁膏,然後對其進行煅燒(燒結)’以使η型擴散 +型層的同時並獲得歐姆接觸。 Ρ 但是,由鋁膏所形成的鋁層的導電率低,為了降低薄 片電阻(sheet resistance) ’通常形成於整個背面的鋁層於 201139567 锻燒❹需具有Η) μΐΏ〜2〇 μιη左右的厚度。進而,若妒 數鋁層’則由於矽的熱膨脹係數與鋁的熱膨脹 目差k大’因此這種差料致於輯及冷卻的過程中 2土板中產生較大的内應力,而構成結晶粒界的損壞、 、〜晶缺陷的增長及魏曲的原因。 為了解決該問題’存在減少膏組成物的塗佈量, 面電極層變薄的方法。但是,若減少膏組成物的塗佈量, 則自p型料導體基板的表面擴散至内部的軸量變得不 充分。其結果,無法達成所期望的背面電場(BackSurface Field,BSF)效果(生成载子(earrier )的收集效率(㈣⑽〇n efficiency)因〆型層的存在而提高的效果),因此產生太 陽電池的特性下降的問題。 因此,例如於日本專利特開2〇〇3_223813號公報中提 出有-種膏組成物’其包含在呂粉末,有機媒齊^ (〇职也 vehicle),以及熱膨脹係數小於銘且溶融溫度、軟化溫度及 分解溫度巾的任-者高純轉關無機化合物粉末。 但是,當使用日本專利特開2003-223813號公報中所 記載的膏組成物時,亦存在無法充分地抑制翹曲的情況。 【發明内容】 本發明是鑒於以上的先前的問題點而完成的發明,其 課題在於提供一種於使用矽基板的太陽電池元件的製造步 驟中,可抑制矽基板中的内應力、基板翹曲的產生,並形 成P型擴政層之形成p型擴散層的組成物、p型擴散層的 製造方法及太陽電池元件的製造方法。 201139567 ^ozoopif 解決上述課題的方法如下。 &lt;1&gt; 一種形成P型擴散層的組成物,其包括含有受 體元素且軟化溫度為30(rc〜95(rc的玻璃粉/末、及分散介 質。 &lt;2&gt;如上述&lt;1&gt;所述之形成p型擴散層的組成 物,其中上述受體元素是選自B(硼)、A1(鋁)及Ga(鎵) 中的至少一種。 &lt;3&gt;如上述&lt;1&gt;或&lt;2&gt;所述之形成p型擴散層的 組成物,其中含有上述受體元素的玻璃粉末包括:選自 Βζ〇3、Al2〇3及Ga2〇3中的至少一種含有受體元素的物質, 以及選自 Si02、K20、Na20、Li2〇、Ba〇、sr〇、CaO、 MgO、BeO、ZnO、PbO、CdO、SnO、Zr02、Ce〇2 及 Mo03 中的至少一種玻璃成分物質。 &lt;4&gt;如上述&lt;1&gt;〜&lt;3&gt;中任一項所述之形成p型 擴散層的組成物’其中進而上述玻璃粉末的結晶化溫度為 1050°C 以上。 &lt;5&gt; —種p型擴散層的製造方法,其包括:塗佈如 上述&lt; 1 &gt;〜&lt;4&gt;中任一項所述之形成p型擴散層的組成 物的步驟、以及實施熱擴散處理的步驟。 &lt;6&gt; —種太陽電池元件的製造方法,其包括··於半 導體基板上塗佈如上述&lt; 1 &gt;〜&lt;4&gt;中任一項所述之形成 p型擴散層的組成物的步驟、實施熱擴散處理來形成p型 擴散層的步驟、以及於所形成的上述p型擴散層上形成電 極的步驟。 6 201139567 J〇z,〇uplf [發明的效果] 根據本發明,可提供一種於使用矽基板的太陽電池元 件的製造步驟中’可抑制矽基板中的内應力、基板翹曲的[Technical Field] The present invention relates to a composition for forming a P-type diffusion layer of a solar cell element, a method for producing a P-type diffusion layer, and a solar cell device. In a more detailed manner, the present invention relates to a p-type capable of reducing internal stress of a shi-shi substrate as a semiconductor substrate, suppressing damage of crystal grain bcmndary, suppressing growth of crystal defects, and suppressing warpage. Diffusion layer formation technology. [Prior Art] The manufacturing steps of the prior 矽 solar cell element will be described. First, in order to promote the efficiency of the optical confinement effect, it is required to form a p-type slab substrate with a texture structure, and then in a mixed gas atmosphere of oxygenated phosphorus (POCI3), nitrogen, and oxygen. 800 ° C to 90 (TC is processed for several tens of minutes to form an n-type diffusion layer in the same manner. In the prior method, since the diffusion of phosphorus is performed by using a mixed gas, not only the n-type diffusion layer is formed on the surface but also An n-type diffusion layer is also formed on the side surface and the back surface. For these reasons, side etching (also etching) is required to perform the n-type diffusion layer for removing the side surface. In addition, the n-type diffusion layer on the back side needs to be converted into germanium. a type of diffusion layer, thus printing an aluminum paste on the back side, and then calcining (sintering) it to make the n-type diffusion + type layer while obtaining an ohmic contact. Ρ However, the aluminum layer formed of the aluminum paste has low conductivity. In order to reduce the sheet resistance, the aluminum layer usually formed on the entire back surface is required to have a thickness of about ΐΏμΐΏ~2〇μιη after calcining at 201139567. Furthermore, if the number of turns of the aluminum layer is 'the thermal expansion coefficient of the crucible is greater than the thermal expansion of the aluminum, the difference k is large. Therefore, this difference causes a large internal stress in the 2 soil plates during the cooling process, and constitutes a crystal grain. The damage of the boundary, the growth of ~ crystal defects and the cause of Wei Qu. In order to solve this problem, there is a method of reducing the amount of coating of the paste composition and thinning the surface electrode layer. However, when the coating amount of the paste composition is reduced, the amount of the axis diffused from the surface of the p-type conductor substrate to the inside becomes insufficient. As a result, the desired back surface field (BSF) effect (the effect of generating the carrier (earth) ((4) (10) efficiencyn efficiency) is improved by the presence of the enamel layer), and thus the solar cell is generated. The problem of declining characteristics. Therefore, for example, Japanese Laid-Open Patent Publication No. 2-3-223813 proposes a paste composition which is contained in a powder, an organic medium, and a coefficient of thermal expansion which is smaller than the melting temperature and softening. The high-purity inorganic compound powder of any temperature and decomposition temperature towel. However, when the paste composition described in Japanese Laid-Open Patent Publication No. 2003-223813 is used, there is a case where warpage cannot be sufficiently suppressed. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the invention is to provide a method for manufacturing a solar cell element using a germanium substrate, which can suppress internal stress and warpage of the substrate in the germanium substrate. A composition for forming a p-type diffusion layer, a method for producing a p-type diffusion layer, and a method for producing a solar cell element are formed. 201139567^ozoopif The method for solving the above problems is as follows. &lt;1&gt; A composition for forming a P-type diffusion layer comprising a receptor element and having a softening temperature of 30 (rc to 95 (r glass powder/end, and dispersion medium. &lt;2&gt; as above &lt;1&gt; The composition for forming a p-type diffusion layer, wherein the acceptor element is at least one selected from the group consisting of B (boron), A1 (aluminum), and Ga (gallium). &lt;3&gt;&lt;1&gt; Or a composition for forming a p-type diffusion layer according to <2>, wherein the glass powder containing the above-mentioned acceptor element comprises: at least one selected from the group consisting of ruthenium 3, Al 2 〇 3 and Ga 2 〇 3 containing an acceptor element a substance, and at least one glass component selected from the group consisting of SiO 2 , K 20 , Na 20 , Li 2 〇, Ba 〇, sr 〇, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , Ce 〇 2 and Mo03. The composition of the p-type diffusion layer according to any one of the above-mentioned items, wherein the glass powder has a crystallization temperature of 1050 ° C or more. <5> A method of producing a p-type diffusion layer, comprising: forming a p-type diffusion layer as described in any one of the above &lt;1&gt;~&lt;4&gt; The step of forming a product and the step of performing a thermal diffusion treatment. <6> A method for producing a solar cell element, comprising: coating the semiconductor substrate as described above in &lt;1 &gt;~&lt;4&gt; a step of forming a composition of a p-type diffusion layer, a step of performing a thermal diffusion treatment to form a p-type diffusion layer, and a step of forming an electrode on the formed p-type diffusion layer. 6 201139567 J〇z 〇uplf [Effects of the Invention] According to the present invention, it is possible to provide a method for suppressing internal stress and substrate warpage in a ruthenium substrate in a manufacturing step of a solar cell element using a ruthenium substrate.

產生’並形成p型擴散層之形成p型擴散層的組成物、P 型擴散層的製造方法及太陽電池元件的製造方法。. 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 首先’對本發明的形成P型擴散層的組成物進行說 明,其次對使用了形成P型擴散層的組成物的p型擴散層 及太陽電池元件的製造方法進行說明。 再者,於本說明書中,「步驟(process)」這一用語不 僅是指獨立的步驟,亦包含在無法與其他步驟明確地加以 區分的情況下,若該步驟能達成所預期的作用,則亦包含 2用語中。另外,於本朗書中,「〜」表示分別包括其 剛後所記_數值作為最小值及最大__。進而,於 till中,當論及組成物中的各成分的量時,在組成物 中存在多個相當於各成分的物質的情況下,尸 別說明,職示組錢中所存在_多個物質的 f 本發_形成p型擴散層的組成物包括。 兀素且軟化溫度為航〜赋的破螭 僅稱為「朗粉末」)、Μ分散付,㈣考慮塗佈性等、, 201139567 38286pif 亦可視需要含有其他添加劑。 一此處’所謂形成P型擴散層的組成物,是指含有受體 7C素’且可藉由例如塗佈於矽基板上後進行熱擴散處理(煅 燒)而使該受體元素熱擴散來形成卩型擴散層的材料。藉 由使用本發明的形成p型擴散層的組成物,可分離〆型擴 散層的形成步驟與歐姆接觸的形成步驟,從而拓展了對用 於形成歐姆接觸的電極材料的選擇項,並且還拓展了對電 極構造的選擇項。例如將銀等低電阻材料用於電極時,能 夠以較薄的膜厚達成低電阻。另外,電極亦無需形成於整 個面上,亦可如梳型等形狀般部分地形成梳型電極。藉由 如以上般使電極變成薄膜或梳型形狀等部分形狀,可二面 抑制石夕基板中的内應力、基板翹曲的產生,一面形 擴散層。 因此,若應用本發明的形成P型擴散層的組成物則 抑制先前歧採用的方法中所產生於基板中的⑽力及基 板_曲的產生’前述之先前廣泛採用的方法為:印刷ς 膏’然後對其進行崎’以使η型擴散層變成p+型擴散層 的同時並獲得歐姆接觸的方法。 曰 進而,玻璃粉末中的受體成分於煅燒中亦難以揮發 (sublimation),因此抑制ρ型擴散層因揮發氣體的產生 而形成至所期望的區域以外的情況。 對本發明的含有受體元素的玻璃粉末進行詳細說明。 所謂受體元素,是指藉由摻雜於石夕基板中而可形成ρ 型擴散層的元素。受體元素可使用第13族的元素,例如可 8 201139567 jo^oupif 列舉:B (硼)、A1 (鋁)及Ga (鎵)等。 作為用於將受體元素導入至玻璃粉末中的含有受體元 素的物質,可列舉B2〇3、Ah〇3、及Ga2〇3,較佳為使用選 自B2〇3、Al2〇3及Ga203中的至少一種。 另外,含有受體元素的玻璃粉末可視需要調整成分比 率’藉此控制熔融溫度、軟化溫度、玻璃轉移溫度、化學 耐久性等。較佳為進而包含以下所述的玻璃成分物質。 作為玻璃成分物質,可列舉:Si02、K20、Na20、Li20、A composition for forming a p-type diffusion layer and a p-type diffusion layer, a method for producing a P-type diffusion layer, and a method for producing a solar cell element. The above and other objects, features, and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] First, a composition for forming a P-type diffusion layer of the present invention will be described, and a method for producing a p-type diffusion layer and a solar cell element using a composition for forming a P-type diffusion layer will be described. Furthermore, in the present specification, the term "process" means not only an independent step but also a case where it cannot be clearly distinguished from other steps, and if the step can achieve the intended effect, then Also included in 2 terms. In addition, in this book, "~" means that the value of _ is the minimum value and the maximum __, respectively. Further, in the case of till, when the amount of each component in the composition is referred to, when a plurality of substances corresponding to the respective components are present in the composition, the corpse indicates that there are more than one in the group money. The composition of the material is formed by a composition that forms a p-type diffusion layer. The alizarin and the softening temperature are only known as "lang powder", and the disperse is paid. (4) considering the coating property, etc., 201139567 38286pif may also contain other additives as needed. Here, the composition of the so-called P-type diffusion layer means that the receptor 7C is contained and can be thermally diffused by thermal diffusion treatment (calcination) by, for example, coating on a ruthenium substrate. A material that forms a 卩-type diffusion layer. By using the composition for forming a p-type diffusion layer of the present invention, the step of forming the 〆-type diffusion layer and the step of forming the ohmic contact can be separated, thereby expanding the selection of the electrode material for forming the ohmic contact, and further expanding A choice of electrode construction. For example, when a low-resistance material such as silver is used for the electrode, a low resistance can be achieved with a thin film thickness. Further, the electrode does not need to be formed on the entire surface, and the comb-shaped electrode may be partially formed in a shape such as a comb shape. By forming the electrode into a partial shape such as a film or a comb shape as described above, it is possible to suppress the internal stress in the substrate and the occurrence of warpage of the substrate on both sides, and to form a diffusion layer on one side. Therefore, if the composition for forming a P-type diffusion layer of the present invention is applied, the (10) force generated in the substrate and the generation of the substrate-curvature generated in the method employed in the prior method are suppressed. The previously widely used method is: printing paste 'There is then a method of making it an ohmic contact while making the n-type diffusion layer into a p+ type diffusion layer. Further, since the acceptor component in the glass powder is hardly sublimated during calcination, it is suppressed that the p-type diffusion layer is formed outside the desired region due to the generation of volatile gas. The glass powder containing the acceptor element of the present invention will be described in detail. The term "receptor element" means an element which can form a p-type diffusion layer by doping it in a slate substrate. The element of the group 13 can be used as the acceptor element, for example, 8 201139567 jo^oupif, exemplified by B (boron), A1 (aluminum), and Ga (gallium). Examples of the acceptor element-containing substance for introducing the acceptor element into the glass powder include B2〇3, Ah〇3, and Ga2〇3, and preferably selected from the group consisting of B2〇3, Al2〇3, and Ga203. At least one of them. Further, the glass powder containing the acceptor element may be adjusted in accordance with the ratio of the component of the composition, thereby controlling the melting temperature, the softening temperature, the glass transition temperature, the chemical durability, and the like. It is preferable to further contain the glass component substance described below. Examples of the glass component material include SiO 2 , K 20 , Na 20 , and Li 20 .

BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、 Zr02、Mo03、La203、Ce02、Nb205、Ta205、Y2〇3、Ti〇2、BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, Zr02, Mo03, La203, Ce02, Nb205, Ta205, Y2〇3, Ti〇2

Zr〇2、Ge02、Te〇2及Lu2〇3等,較佳為使用選自si〇2、 K20、Na20、Li2〇、BaO、SrO、CaO、MgO、BeO、ZnO、Zr〇2, Ge02, Te〇2, Lu2〇3, etc., preferably selected from the group consisting of si〇2, K20, Na20, Li2〇, BaO, SrO, CaO, MgO, BeO, ZnO,

PbO、CdO、SnO、Zr02、Ce02 及 Mo03 中的至少一種。 作為含有受體元素的玻璃粉末的具體例,可列舉包括 上述含有受體元素的物質與上述玻璃成分物質兩者,可列 舉:B2〇rSi〇2體系(以含有受體元素的物質玻璃成分物 質的順序記载,以下相同)、B2〇rZn〇體系、B2〇3_pb〇體 系、B2〇rCe〇2體系、Βζ〇3單獨體系等包含b2〇3作為含有 受體元素的物質的體系,A12〇3_si〇2體系等包含A%作 為含有受體元素的物質的體系,Ga2〇rSi〇2體系等包含 Ga2〇3作為含有受體元素的物質的體系等的玻螭粉末。 另外,亦可為如Al2CVB2〇3體系、Ga2〇3_B2〇3體系等 般’包含兩翻上的含有受體元素的㈣的玻璃粉末。 於上述中例示了包含一種成分的玻璃或包含兩種成分 201139567 ^C/6〇pif 的複合玻璃’但亦可為如B2〇rSi〇2-Na20體系、 B2〇rSi〇2-Ce〇2體系等般,包含三種成分以上的物質的玻 璃粉末。 玻璃粉末中的玻璃成分物質的含有比率較理想的是考 慮熔融溫度、軟化溫度、玻璃轉移溫度、結晶化溫度、化 學耐久性而適宜設定,一般而言,較佳為〇1質量%以上 至95質量%以下,更佳為〇 5質量%以上至9〇質量%以下。 具體而言’當為B2〇3_Ce〇2體系玻璃時,Ce〇2的含有 比率較佳為1質量%以上至5〇質量%以下,更佳為3質量 久以上至40質;g;%以下。藉由為該含有比率,可更均勻地 形成P型擴散層。 另外,玻璃粉末的軟化溫度就於後述的熱擴散處理時 使受體元素更有效地擴散至矽基板中,獲得均勻的p型擴 散層的觀點而言較重要。於本發明中,玻璃粉末的軟化^ 度為300°C〜95(TC,較佳為35〇。(:〜90〇ΐ,更佳為37(ΤΓAt least one of PbO, CdO, SnO, Zr02, Ce02, and Mo03. Specific examples of the glass powder containing the acceptor element include both the above-mentioned acceptor element-containing substance and the above-mentioned glass component substance, and examples thereof include a B2〇rSi〇2 system (a glass component substance containing a receptor element) In the order of the following, the following B2〇rZn〇 system, B2〇3_pb〇 system, B2〇rCe〇2 system, Βζ〇3 individual system, etc., including b2〇3 as a substance containing an acceptor element, A12〇 A system containing, for example, A% as a substance containing an acceptor element, and a system such as a Ga2〇rSi〇2 system containing Ga2〇3 as a system containing a substance of an acceptor element. Further, it may be a glass powder containing (F) containing an acceptor element which is double-turned, such as an Al2CVB2〇3 system or a Ga2〇3_B2〇3 system. In the above, a glass containing one component or a composite glass containing two components 201139567 ^C/6〇pif is exemplified, but may also be a system such as B2〇rSi〇2-Na20 system or B2〇rSi〇2-Ce〇2 system. Similarly, a glass powder containing three or more substances. The content ratio of the glass component in the glass powder is preferably set in consideration of the melting temperature, the softening temperature, the glass transition temperature, the crystallization temperature, and the chemical durability. In general, it is preferably 〇1% by mass or more and 95%. The mass% or less is more preferably 5% by mass or more to 9% by mass or less. Specifically, when it is a B2〇3_Ce〇2 system glass, the content ratio of Ce〇2 is preferably 1% by mass or more and 5% by mass or less, more preferably 3 times or more to 40% by mass; g;% or less . By this content ratio, the P-type diffusion layer can be formed more uniformly. Further, the softening temperature of the glass powder is important from the viewpoint of obtaining a uniform p-type diffusion layer by diffusing the acceptor element more efficiently into the ruthenium substrate during the thermal diffusion treatment described later. In the present invention, the softening degree of the glass powder is from 300 ° C to 95 (TC, preferably 35 〇. (: ~ 90 〇ΐ, more preferably 37 (ΤΓ)

〜85〇t,進而更佳為·。c〜8〇(rCe更佳為37〇C 當玻璃粉末的軟化溫度未滿3〇(rc時,高溫下的熱擴 散處理時綱成分容易結晶化,於熱擴 璃成 分的姓刻去除步㈣,存在雜縣雜下降的傾 夕卜二2著受體元素因熔點下降而容易揮發,熱擴散處理 夺今易於不需要的部分形成?型擴散層的傾向。另外,舍 末的軟化溫度超過9耽時,存在如下的傾向;~85〇t, and thus better. c~8〇(rCe is more preferably 37〇C When the softening temperature of the glass powder is less than 3〇 (rc, the composition of the component is easily crystallized during thermal diffusion treatment at high temperature, and the step of removing the thermal expansion component is removed (4) In the presence of miscellaneous counts, the acceptor element is easily volatilized due to a decrease in melting point, and the thermal diffusion treatment tends to form an undesired portion to form a diffusion layer. In addition, the softening temperature of the last is more than 9 When there is a tendency, there is a tendency as follows;

以軟化’玻璃粉末維持粒狀的形狀,因 此於微觀下玻璃成分在魏板絲被均勻地覆蓋,受體I 201139567 政’結果p型擴散層的形_變得不均勻,且存 在薄片電阻值上升的情況。 。仔 梦置麵粉末的軟化溫度可藉由公知的示差熱分析 波峰而容 日為 進而更佳為1200°C以 =:r,制'__:== 析裝结晶化溫度可藉由公知的示差熱分 裝置(DTA),根據其發熱波峰而容易地測定。 作為玻雜末的形狀,可列舉:大致球狀 物主、板狀、及鱗片狀等,就製成形成n型擴散層的組 c基板的塗佈性或均勻擴散性的觀點而;,較 求狀、扁平狀、或板狀。玻璃粉末的粒徑鈔 特別限制,較理想的是⑽卿以下。當使用 I,、 以下的粒徑的玻璃粉末時,易於辞 ^ μΐΏ 破填粉末的粒徑更理相的S 5〇严千爾膜。進而, 的教徑更理想的是1〇=下。=下下°=,璃粉末 但較佳為_μΐη以上。再者下限並無特別限制, ^處,玻璃雜縣示平均粒徑,可藉由雷射 ^ (laser scattering dlffracti〇n meth〇d } ^ ^ ^ ^ ( ^ 11 201139567 ^oxoupif size distribution )測定裝置等來測定。 含有受體元素的玻璃粉末是藉由以下的程序來製作。 首先’稱量原料並將其填充至坩堝中。坩堝的材質可 列舉鉑、鉑-铑、銥、氧化鋁、石英、碳等,可考慮熔融溫 度、環境、與炼融物質的反應性等而適宜選擇。 其次,藉由電爐以對應於玻璃組成的溫度進行加熱而 製成熔液。此時,較理想的是以使熔液變得均勻的方式進 行攪拌。 繼而’使所獲得的熔液流出至石墨板、鉑板、鉑-鍺合 金板、氧化锆板等上而將熔液玻璃化。 最後’粉碎玻璃而形成粉末狀。粉碎可應用喷射磨機、 珠磨機、球磨機等公知的方法。 形成P型擴散層的組成物中的含有受體元素的玻螭粉 末的含有比率是考慮塗佈性、受體元素的擴散性等而決 定。一般而言,形成p型擴散層的組成物中的玻璃粉末的 含有比率較佳為0.1質量%以上至95質量%以下,更佳為 1質量%以上至90質量%以下,進而更佳為i 5質量%以上 至85質量%以下,特佳為2質量%以上至8〇質量。/0以下。 其次,對分散介質進行說明。 所明分散介質’是指於組成物中使上述玻璃粉末分散 的介質。具體而言’採用黏合劑或溶劑等作為分散介質。 作為黏合劑,例如可適宜選擇:聚乙烯醇、聚丙烯醯 胺類、聚乙稀酿胺類、聚乙烯η比略。定g同、聚環氧乙烧 (polyethylene oxide)類、聚磺酸、丙烯醯胺烧基確酸、 12 201139567 纖維素醚類、纖維素衍生物、羧甲基纖維素、羥乙基纖維 素、乙基纖維素、明膠、澱粉及澱粉衍生物、海藻酸鈉 (sodium alginate)類、三仙膠(xaiUhan)、瓜爾膠(guar) 及瓜爾膠f;i生物、硬葡聚糖、黃蓍膠(tragacanth )或糊精 仿生物、(曱基)丙婦酸樹脂、(曱基)丙烯酸醋樹脂(例如(甲 基)丙烯酸烷基酯樹脂、(曱基)丙烯酸二曱基胺基乙酯樹脂 等)、丁二烯樹脂、苯乙烯樹脂及該些的共聚物、矽氧燒樹 脂等。該些可單獨使用一種、或者組合兩種以上來使用。 黏合劑的分子量並無特別限制,較理想的是鑒於作為 組成物的所期望的黏度而適宜調整。 作為溶劑,例如可列舉:丙酮、曱基乙基酮、甲基_ 正丙基酮、曱基·異丙基酮、曱基正丁基酮、曱基異丁基 酮、甲基-正戊基酮、甲基·正己基酮、二乙基酮、二丙基 酮、一-異丁基酮、三曱基壬酮、環己酮、環戊酮、曱基環 己嗣、2,4_戊二酮、丙酮基丙酮等酮系溶劑;二乙醚、甲 基乙基醚、甲基正丙醚、二_異丙醚、四氫呋喃、甲基四 氫呋喃、二噁烷、二甲基二噁烷、乙二醇二曱醚、乙二醇 一乙趟乙—醇二-正丙謎、乙二醇二丁趟、二乙二醇二甲 醚、二乙二醇二乙醚、二乙二醇曱基乙基醚、二乙二醇甲 基-正丙醚、二乙二醇曱基_正丁醚、二乙二醇二_正丙醚、 一乙一醇二-正丁醚、二乙二醇甲基_正己醚、三乙二醇二 曱醚、二乙二醇二乙醚、三乙二醇曱基乙基醚、三乙二醇 甲基-正丁醚、三乙二醇二_正丁醚、三乙二醇曱基-正己 醚、四乙二醇二f醚、四乙二醇二乙醚、四-二乙二醇甲基 13 201139567 oo^oopif 乙基醚、四乙二醇曱基-正丁醚、二乙二醇二_正丁醚、四 乙二醇曱基-正己醚、四乙二醇二-正丁醚、丙二醇二曱鱗、 丙二醇二乙醚、丙二醇二-正丙醚、丙二醇二丁醚、二丙二 醇二曱醚、二丙二醇二乙醚、二丙二醇曱基乙基醚、二丙 一醇甲基-正丁鍵、二丙二醇二-正丙喊、二丙二醇二-正丁 _、二丙二醇甲基-正己越、三丙二醇二曱醚、三丙二醇二 乙醚、三丙二醇曱基乙基醚、三丙二醇曱基·正丁喊、三丙 二醇二-正丁醚、三丙二醇曱基-正己鱗、四丙二醇二曱趟、 四丙二醇二乙喊、四-二丙二醇曱基乙基喊、四丙二醇曱基 -正丁驗、一丙一醇一-正丁趟、四丙二醇曱基-正己_、四 丙一醇一-正丁酸等喊系溶劑;乙酸曱g旨、乙酸乙醋、乙酸 正丙醋、乙酸異丙酿、乙酸正丁 g旨、乙酸異丁 g旨、乙酸第 二丁酯、乙酸正戊酯、乙酸第二戊酯、乙酸3_曱氧基丁酯、 乙酸曱基戊酯、乙酸2-乙基丁酯、乙酸2-乙基己酯、乙酸 2-(2-丁氧基乙氧基)乙酯、乙酸苄酯、乙酸環己酯、乙酸曱 基環己酯、乙酸壬酯、乙醯乙酸曱酯、乙醯乙酸乙酯、乙 酸一乙二醇曱_、乙酸二乙二醇單乙喊、乙酸二乙二醇_ 正丁醚、乙酸一丙一醇甲驗、乙酸二丙二醇乙喊、乙二醇 二乙酸酯、乙氧基三甘醇乙酸酯、丙酸乙酯、丙酸正丁酯、 丙酸異戊酯、草酸二乙酯、草酸二-正丁酯、乳酸甲酯、乳 Sx乙S曰、乳酸正丁g旨、乳酸正戊酯、乙二醇曱趟丙酸酯、 乙二醇乙醚丙酸酯、乙二醇曱醚乙酸酯、乙二醇乙醚乙酸 酯、一乙二醇f醚乙酸酯、二乙二醇乙越乙酸酯、二乙二 醇-正丁醚乙酸酯、丙二醇曱醚乙酸酯、丙二醇乙醚乙酸 201139567 joz^oupif 酯、丙二醇丙基醚乙酸醋、In order to soften the 'glass powder to maintain the granular shape, the glass component is uniformly covered in the microplate under the microscopic state, and the shape of the p-type diffusion layer becomes uneven, and the sheet resistance value rises. Happening. . The softening temperature of the baby-faced powder can be determined by a well-known differential thermal analysis peak, and more preferably 1200 ° C to =: r, the '__:== precipitation crystallization temperature can be known by the known difference The heat separation device (DTA) is easily measured based on the peak of the heat generation. Examples of the shape of the glassy haze include a substantially spherical shape, a plate shape, and a scale shape, and the coating properties or uniform diffusibility of the group c substrate forming the n-type diffusion layer are obtained. Request, flat, or plate shape. The particle size of the glass powder is particularly limited, and it is preferably less than (10). When a glass powder having a particle diameter of I or less is used, it is easy to smash the S 5 千 千 千 更 film of the particle size of the powder. Furthermore, the teaching path is more ideally 1〇=lower. = lower down = =, glass powder, but preferably _μΐη or more. Further, there is no particular limitation on the lower limit. At the location of the glass miscellaneous county, the average particle diameter can be determined by laser scattering dlffracti〇n meth〇d } ^ ^ ^ ^ ( ^ 11 201139567 ^ oxoupif size distribution ) The glass powder containing the acceptor element is produced by the following procedure: First, the raw material is weighed and filled into the crucible. The material of the crucible is platinum, platinum-ruthenium, rhodium, aluminum oxide, quartz. Carbon, etc. can be suitably selected in consideration of the melting temperature, the environment, and the reactivity with the smelting material, etc. Next, the molten metal is heated by a temperature corresponding to the glass composition in an electric furnace. The mixture is stirred so that the melt becomes uniform. Then, the obtained melt flows out onto a graphite plate, a platinum plate, a platinum-ruthenium alloy plate, a zirconia plate, or the like to vitrify the melt. A powdery form is formed, and a known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization. The content ratio of the glass-containing powder containing the acceptor element in the composition for forming the P-type diffusion layer is considered to be coatability. The content of the glass powder in the composition forming the p-type diffusion layer is preferably 0.1% by mass or more and 95% by mass or less, and more preferably 1% by mass or more and 90% or more. The mass % or less is more preferably i 5 mass % or more and 8 mass % or less, particularly preferably 2 mass % or more to 8 mass % / 0 or less. Next, the dispersion medium will be described. A medium for dispersing the above glass powder in the composition. Specifically, a binder or a solvent is used as a dispersion medium. As the binder, for example, polyvinyl alcohol, polypropylene decylamine, and polystyrene can be suitably selected. Class, polyethylene η ratio slightly. Ding g, polyethylene oxide (polyethylene oxide), polysulfonic acid, acrylamide, acid, 12 201139567 cellulose ethers, cellulose derivatives, carboxymethyl Cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, starch and starch derivatives, sodium alginate, xaiUhan, guar and guar gum; i biological, scleroglucan, gum tragacanth (tragacanth) or dextrin imitation organism, (mercapto) propylene glycol, (mercapto) acrylic vinegar resin (such as (meth) acrylate resin, (mercapto) decyl methacrylate resin And the like, a butadiene resin, a styrene resin, a copolymer of the above, a bismuth-oxygen resin, etc. These may be used alone or in combination of two or more. The molecular weight of the binder is not particularly limited, and is preferable. In view of the desired viscosity as a composition, it is suitably adjusted. Examples of the solvent include acetone, mercaptoethyl ketone, methyl propyl ketone, decyl isopropyl ketone, and decyl butyl ketone. Ketone, mercaptoisobutyl ketone, methyl-n-pentyl ketone, methyl n-hexyl ketone, diethyl ketone, dipropyl ketone, mono-isobutyl ketone, trimethyl fluorenone, cyclohexyl a ketone solvent such as ketone, cyclopentanone, decylcyclohexane, 2,4-pentanedione or acetonylacetone; diethyl ether, methyl ethyl ether, methyl n-propyl ether, diisopropyl ether, tetrahydrofuran , methyltetrahydrofuran, dioxane, dimethyl dioxane, ethylene glycol dioxime ether, ethylene glycol monoethyl bromide - 正丙谜, ethylene glycol dibutyl hydrazine, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol decyl ethyl ether, diethylene glycol methyl-n-propyl ether, two Glycol fluorenyl-n-butyl ether, diethylene glycol di-n-propyl ether, mono-glycol di-n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dioxime ether, diethylene glycol Diethyl ether, triethylene glycol decyl ethyl ether, triethylene glycol methyl-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol decyl-n-hexyl ether, tetraethylene glycol dif Ether, tetraethylene glycol diethyl ether, tetra-diethylene glycol methyl 13 201139567 oo^oopif ethyl ether, tetraethylene glycol decyl-n-butyl ether, diethylene glycol di-n-butyl ether, tetraethylene Alcohol-n-hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol diterpenoid scale, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dioxime ether, dipropylene glycol diethyl ether, two Propylene glycol decyl ethyl ether, dipropanol methyl-n-butyl bond, dipropylene glycol di-n-propyl propylene, dipropylene glycol di-n-butyl-, dipropylene glycol methyl-n-hexyl, tripropylene glycol diterpene ether, tripropylene glycol Diethyl ether, tripropyl Glycol decyl ethyl ether, tripropylene glycol sulfhydryl, n-butyl ketone, tripropylene glycol di-n-butyl ether, tripropylene glycol decyl-n-hexyl sulphate, tetrapropylene glycol dioxane, tetrapropylene glycol di-ethyl sulfonate, tetra-dipropylene glycol hydrazine Base ethyl ketone, tetrapropanediol decyl-n-butyl, monopropanol-n-butane, tetrapropylene glycol sulfhydryl-n-hexyl, tetrapropanol-n-butyric acid, etc.; Acetate, vinegar acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, second butyl acetate, n-amyl acetate, second amyl acetate, 3-methoxyl acetate Butyl ester, decyl amyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2-(2-butoxyethoxy)ethyl acetate, benzyl acetate, cyclohexyl acetate, Nonylcyclohexyl acetate, decyl acetate, decyl acetate, ethyl acetate, ethylene glycol ruthenium acetate, diethylene glycol monoethylene glycol, diethylene glycol acetate _ n-butyl ether, Acetate-propanol acetate test, dipropylene glycol acetate, ethylene glycol diacetate, ethoxy triethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate Diethyl oxalate, di-n-butyl oxalate, methyl lactate, milk Sx, ethyl sulphate, n-butyl lactic acid, n-amyl lactate, ethylene glycol phthalate, ethylene glycol ethyl propionate, Ethylene glycol oxime ether acetate, ethylene glycol ethyl ether acetate, monoethylene glycol f ether acetate, diethylene glycol ethylene acetate, diethylene glycol-n-butyl ether acetate, propylene glycol Ethyl ether acetate, propylene glycol diethyl ether acetate 201139567 joz^oupif ester, propylene glycol propyl ether acetate vinegar,

—一 i^V 醇乙:乙酸醋、γ-丁内醋、γ機“二 劑,二正丙醇、異丙醇、/丁: 一丁醇第一丁醇、正戊醇、異戊醇、2_甲其丁 、 笛祕 己醇、2-甲基戊醇、 第一己醇、2-乙基丁醇、第二庚醇、正 第二辛醇、正壬醇、正癸醇、第二 、 节醇、乙二醇,丙二醇识二=甲基壞己醇、 二醇、三乙二醇、三丙二醇等醇系溶劑.二::、二丙 二醇乙驗、乙二醇單苯醚、二乙 醇㈣、乙 乙醚、二乙二醇單蝴、二乙二醇單甲:、二乙二醇單 三甘醇、四乙二醇單_正丁醚、丙二 正己醚、乙氧基 甲醚、二丙二醇單乙醚、三丙—了,早甲醚、二丙二醇單 劑;(X-薛品稀、σ— 一醇單甲鱗等二醇單趟系溶 (allo-ocimene)、檸檬歸 乃桂油烯、別羅勒烯 醇(terpineol)、香旱芹_、羅歸、t蒎烯、蒎烯、松脂 水。該些可單獨使用一種、、烯、水芹烯等萜烯系溶劑; 當製成形成η型擴散層=合兩種以上來使用。 佈性的觀點而言’較佳為=物時’就·基板的塗 乙酸2-(2-丁氧基乙氧基)乙嗤。。’、二乙二醇單_正丁驗、 15 201139567 形成p型擴散層的組成物中的分散介質的含有比率是 考慮塗佈性、受體濃度而決定。 考慮到塗佈性’形成P型擴散層的組成物的黏度較佳 為lOmPa.S以上至1000000 mPa.s以下,更佳為5〇mPa.s 以上至500000 mPa.S以下。 其次’對本發明的P型擴散層及太陽電池元件的製造 方法進行說明。 。1作為p型半導體基板10的矽基板賦予鹼性溶液來去 除損壞層’並藉由敍刻而獲得紋理構造。 詳細而言,利用2〇質量%苛性鈉去除自鑄錠進行切片 時所產生的矽表面的損壞層。繼而,利用丨質量%苛性鈉 f 10質量%異丙醇的混合液進行姓刻,形成紋理構造。太 陽電池元件藉由在受光面(表面)侧形成紋理構造,而可 促進光學侷限效應,謀求高效率化。 ^次,於氧氣㈣⑻cl3)、氮氣、氧氣的混合氣體 ^下以8(Krc〜WC進行幾十分鐘的處理,從而同樣地 形成η型擴散層。此時,於個魏_環賴方 翻擴散㈣達側面及背面,η型擴散層 成於側面、背面。因此,為了去除侧面的表 型擴散層而實施側蝕》 然後,於ρ型半導體基板的背面,即與 :的面的η型擴散層上塗佈上述形成ρ型擴散層的 :太形成了形成ρ型擴散層的組成物層。於本發明中、 佈方法並祕制,例如有印職、旋料、毛刷塗: 201139567, 霧法、刮刀法、輥塗機法、喷墨法等。 j形成Ρ型擴散層的組成物的塗佈量並無特別限 制。例如,作為玻璃粉末量,可設定為001 g/nl g/m ’ 較佳為 0.1 g/m2〜1〇 g/m2。 再者,根據形成p型擴散層的組成物的組成 置用以於塗佈後,使組成物中所含有的溶娜發的乾^ 驟。於該情況下,於8〇t:〜3〇(rc左右的溫度下 = 加熱板時賴1分鐘〜1G分鐘’#使肖賴機料^ 分鐘〜3G分鐘左右。該乾雜件依存於形成p贿散 組成物的溶劑組成’於本發明中並不特別⑯定於上述曰、。 於_ΐ〜120G°C下對塗佈了上述形成p型擴散層的 組成物的半導縣板進行熱擴散處理。藉由該熱擴 理,受體it素向半導體基板中擴散,㈣成p+型擴散/ 熱擴散處理可制公知的連續爐、分批式料。另外 擴散處理時的爐内環境視需要亦可適宜調整成、 氣、氮氣等。 乳 熱擴散處理時間可對應於形成p型擴散層的組成物 所含有的受體it韻含有率、或玻璃粉末的軟化溫 而適宜選擇。例如,可設^為i分鐘〜6G分鐘,更 分鐘〜30分鐘。 *由於在所形成的P+型擴散層的表面形成有玻璃層,故 藉由触刻而去除該玻璃層。㈣可應用浸潰於氫I酸等 中的方法、浸潰於苛性納等驗中的方法等公知的方法。 另外,於先前的製造方法中,於背面印刷鋁膏然後 201139567 ,其進行職,使n龍散層㈣p+型擴制的同時並獲 得歐姆接觸。但是,由鋁膏所形成的鋁層的 了降低薄&gt;1電阻’通常形成於整個f_|g層於锻燒後: 需具有10 μιη〜20 μιη左右的厚度。進而,若如上述般形 成較厚的紹層,則由於石夕的熱膨脹係數與銘的熱膨脹係數 相差較大,因此有時於煅燒及冷卻的過程中,在矽基板_ 產生較大的内應力,而成為翹曲的原因。 ^存在該内應力對結晶的結晶粒界造成損傷、電力損失 變大的課題。另外,翹曲於模組製程中的太陽電池元件的 搬送、或者與被稱為分支線路(tab wire)的銅線的連接過 程中,容易使太陽電池元件破損。近年來,由於切片加工 技術的提高,因此矽基板的厚度正被薄型化,而存在太陽 電池元件更加容易破裂的傾向。 ,、但是,根據本發明的製造方法,於藉由上述本發明的 形成P型擴散層的組成物將n型擴散層轉換成p+型擴散層 後,在該p+型擴散層上另外設置電極。因此,用於背面的 ,極,材料並不限定於鋁,例如可應用Ag(銀)或Cu(銅) 等,背面的電極的厚度亦可比先前的厚度更薄地形成,並 ,另外亦無需形成於整個面上。因此,可減少於锻燒及冷 部的過程中所產生的矽基板中的内應力及翹曲。 θ於上述所形成的n型擴散層上形成抗反射膜。抗反射 膜是應用公知的技術而形成。例如,當抗反射膜為氮化矽 ,時藉由將SiH4與ΝΗ3的混合氣體作為原料的電漿化學 氣相 /尤積(Chemical Vapor Deposition,CVD)法來形成。 18 201139567 Jdzoopif 此時,氫於結晶中擴散,不參與矽原子之鍵結的執道,即 懸鍵(dangling bond)與氫鍵結,而使缺陷純化(氫純化)。 更具體而言,於上述混合氣體流量比NH3/SiH4為〇 〇5 〜1.0,反應至的壓力為〇.1 T〇rr〜2Torr,成膜時的溫度為 30(TC〜550t,使電漿放電的頻率為1〇〇kHz以上的條件 下形成。 於表面(受光面)的抗反射膜上,藉由網版印刷法印 刷塗佈表面電極齡屬膏並使其麵,㈣成表面電極。 表面電極用金屬膏是將金屬粒子與玻璃粒子作為必需成 女,且視需要包含樹脂黏合劑、其他添加劑等。 繼而,於上述背面的P+型擴散層上亦形成背面電極。 如上所述’本發明中背面電極的材f或形成方法並無特別 限定、。例如,可塗佈包含銘、銀或銅等金屬的背面電極用 膏,並使其乾燥而形成背面電極。此時,為了模組製程中 的太陽電池元件間的連接,亦可於背面的一部分上設置形 成銀電極用的銀膏。 對上述電極進行煅燒’製成太陽電池元件。若於60〇t: 〜900°C的範_職幾秒〜齡鐘,狀表面側,作為絕 緣膜的抗反射翻電刻金屬膏帽含有的玻璃粒子而溶 融,進而矽表面的一部分亦熔融,膏中的金屬粒子(例如 銀粒子)與矽基板形成接觸部並凝固。藉此,所形成的表 面電極與矽基板被導通。將此稱為燒透(firethr〇ugh)。 對表面電極的形狀進行說明。表面電極是由匯流條電 極、以及與該匯流條電極交叉的指狀電極構成。 19 201139567 此種表面電極可藉由例如上述金屬膏的網版印刷、或 者電極材料的鍍敷、高真空中的利用電子束加熱的電極材 料的蒸鍍等方法而形成。眾所周知,包含匯流條電極與指 狀電極的表面電極一般是用作受光面側的電極,可應用受 光面側的匯流條電極及指狀電極的公知的形成方法。 再者’於上述的P型擴散層及太陽電池元件的製造方 法中’為了於作為P型半導體基板的矽基板上形成^型擴 散層,而使用氧氣化磷(POC13)、氮氣及氧氣的混合氣體, 但亦可使用形成n型擴散層的組成物來形成n型層。於形 成η型擴散層的組成物中,含有p (磷)或讥(銻)等第 15族的元素作為施體元素。 於將形成η型擴散層的組成物用於n型擴散層的形成 的方法中,首先’於作為p型轉縣板的表面的受光面 塗佈形成η型擴散層的組成物,於背面塗佈本發明的形成 ρ型擴散層的組成物,然後於60(rc 〜12〇〇t下進行熱擴散 處理。藉由該熱擴散處理,施體元素於表面向p型;^導^ 基板中+ 擴散而形成η型擴散層,受體元素則於背面擴散而 开/成Ρ型擴散層。除該步驟以外,藉由與上述方法相 步驟來製作太陽電池元件。 一再者,藉由參照而將曰本申請案2010_100227中所揭 示的全部内容引用於本說明書中。 ㈣^說1書中所記載騎有文獻、專射請案、及技術 ,格疋以與具舰且個職記鶴由參照而㈣各個文 獻、專利ΐ請案、及技術規格時_的程度 201139567 ^ozoopif 引用於本說明書中。 [實例] 以下,更具體地說明本發明的實例,但本發明並不受 該些實例限制。再者,只要事先無特別記述,則化學品全 部使用試劑。另外’只要事先無說明,則「%」表示 量%」。 [實例1] 使用自動乳蛛混練裝置將粒子形狀為大致球狀,平均 粒徑為 4.9 μιη 的 B203-Ce02 體系玻璃(B2〇3 : 39 6%,- one i ^ V alcohol B: acetic acid vinegar, γ-butane vinegar, γ machine "two doses, di-n-propanol, isopropanol, / butyl: monobutanol first butanol, n-pentanol, isoamyl alcohol , 2_methetin, flute hexanol, 2-methylpentanol, first hexanol, 2-ethylbutanol, second heptanol, n-second octanol, n-nonanol, n-nonanol, Second, alcohol, ethylene glycol, propylene glycol, two = methyl decyl alcohol, diol, triethylene glycol, tripropylene glycol and other alcohol-based solvents. Two::, dipropylene glycol, ethylene glycol monophenyl ether , diethanol (tetra), ethyl ether, diethylene glycol mono-butter, diethylene glycol monomethyl: diethylene glycol monotriethylene glycol, tetraethylene glycol mono-n-butyl ether, propylene di-n-hexyl ether, ethoxy Methyl ether, dipropylene glycol monoethyl ether, tripropylene-, early methyl ether, dipropylene glycol single agent; (X-Xue thin, σ-monool monomethyl scale and other glycol monoterpene (allo-ocimene), lemon It is a linoleic solvent such as oleyl alcohol, terpineol, celery y, Luogui, t-decene, decene, and rosin. These may be used alone as a terpene solvent such as alkene or water. When formed into an n-type diffusion layer = two From the viewpoint of fabricity, 'preferably = when the object' is coated with 2-(2-butoxyethoxy)acetic acid of the substrate. ', diethylene glycol mono-positive test 15 201139567 The content ratio of the dispersion medium in the composition forming the p-type diffusion layer is determined in consideration of coatability and acceptor concentration. Considering the coatability, the viscosity of the composition forming the P-type diffusion layer is preferably 10 mPa. .S or more to 1,000,000 mPa.s or less, more preferably 5 〇 mPa.s or more to 500,000 mPa·s or less. Next, a method of manufacturing the P-type diffusion layer and the solar cell element of the present invention will be described. The tantalum substrate of the semiconductor substrate 10 is provided with an alkaline solution to remove the damaged layer' and the texture structure is obtained by characterization. In detail, the damage of the tantalum surface generated by slicing from the ingot is removed by using 2% by mass of caustic soda. Then, a mixture of 丨 mass% caustic soda f 10% by mass of isopropyl alcohol is used to form a texture structure. The solar cell element can promote optical confinement effect by forming a texture structure on the light-receiving surface (surface) side. Seeking to be more efficient. ^ In the mixed gas of oxygen (tetra) (8) cl3), nitrogen, and oxygen, the treatment is performed for several tens of minutes with Krc~WC, so that the n-type diffusion layer is formed in the same manner. At this time, the diffusion is spread in the Wei_ring On the side and back sides, the n-type diffusion layer is formed on the side surface and the back surface. Therefore, side etching is performed to remove the surface type diffusion layer on the side surface. Then, on the back surface of the p-type semiconductor substrate, that is, on the n-type diffusion layer of the surface Coating the above-mentioned p-type diffusion layer: the composition layer forming the p-type diffusion layer is formed too much. In the present invention, the cloth method is secret, such as printing, spinning, brushing: 201139567, fog method , scraper method, roll coater method, inkjet method, and the like. The coating amount of the composition forming the Ρ-type diffusion layer is not particularly limited. For example, the amount of the glass powder can be set to 001 g/nl g/m ', preferably 0.1 g/m2 to 1 〇 g/m2. Further, the composition of the composition forming the p-type diffusion layer is used to dry the enamel contained in the composition after coating. In this case, at 8 〇t: ~3 〇 (at a temperature of about rc = 1 minute to 1G minutes when heating the plate) #使肖赖机料 ^ minutes ~ 3G minutes or so. The dry and miscellaneous pieces depend on the formation The solvent composition of the composition of the bribes is not specifically determined in the present invention. The semi-conductive plate coated with the composition for forming the p-type diffusion layer is subjected to the above-mentioned composition at ΐ 120 to 120 ° C. Thermal diffusion treatment. By the thermal expansion, the receptor is diffused into the semiconductor substrate, and (4) the p+ diffusion/thermal diffusion treatment can be used to prepare a known continuous furnace or batch batch. In addition, the furnace environment during diffusion treatment The heat treatment time may be appropriately adjusted depending on the acceptor rhythm content of the composition forming the p-type diffusion layer or the softening temperature of the glass powder, for example. It can be set to i minutes to 6G minutes, and more minutes to 30 minutes. * Since a glass layer is formed on the surface of the formed P + -type diffusion layer, the glass layer is removed by etch. (4) Application of dipping a method in hydrogen acid or the like, a method of immersing in caustic soda, etc. In addition, in the previous manufacturing method, the aluminum paste was printed on the back side and then 201139567, which was used to make the n-dragon layer (4) p+ type expansion while obtaining ohmic contact. However, the aluminum formed by the aluminum paste The reduced thickness of the layer &gt; 1 resistance 'is usually formed in the entire f_|g layer after calcination: it needs to have a thickness of about 10 μm to 20 μπη. Further, if a thick layer is formed as described above, The coefficient of thermal expansion of the eve differs greatly from the coefficient of thermal expansion of the singularity. Therefore, in the process of calcination and cooling, a large internal stress is generated in the ruthenium substrate _, which causes the warpage. ^The internal stress exists for crystallization. The problem that the crystal grain boundary causes damage and power loss increases. In addition, it is easy to cause the warpage of the solar cell element in the module process or the connection with a copper wire called a tab wire. In recent years, due to the improvement of the slicing technology, the thickness of the tantalum substrate is becoming thinner, and the solar cell element tends to be more easily broken. However, According to the manufacturing method of the present invention, after the n-type diffusion layer is converted into the p + -type diffusion layer by the composition for forming a P-type diffusion layer of the present invention, an electrode is additionally provided on the p + -type diffusion layer. The material is not limited to aluminum. For example, Ag (silver) or Cu (copper) can be applied, and the thickness of the electrode on the back surface can be formed thinner than the previous thickness, and it is not necessary to form the entire surface. It can reduce the internal stress and warpage in the tantalum substrate generated during the calcination and cold parts. θ forms an anti-reflection film on the n-type diffusion layer formed above. The anti-reflection film is a well-known technique. For example, when the antireflection film is tantalum nitride, it is formed by a plasma Vapor Deposition (CVD) method using a mixed gas of SiH4 and cesium 3 as a raw material. 18 201139567 Jdzoopif At this point, hydrogen diffuses in the crystal and does not participate in the bonding of the helium atom, that is, the dangling bond and hydrogen bonding, and the defect is purified (hydrogen purification). More specifically, the mixed gas flow rate ratio NH3/SiH4 is 〇〇5 to 1.0, and the pressure to be reacted is 〇.1 T〇rr~2 Torr, and the temperature at the time of film formation is 30 (TC to 550 t, so that the plasma is made The discharge frequency is formed under the condition of 1 〇〇 kHz or more. On the anti-reflection film of the surface (light-receiving surface), the surface electrode age paste is printed and screened by screen printing, and (4) is a surface electrode. The metal paste for a surface electrode contains metal particles and glass particles as essentials, and optionally contains a resin binder, other additives, etc. Then, a back electrode is formed on the P + -type diffusion layer on the back surface as described above. In the invention, the material f or the formation method of the back surface electrode is not particularly limited. For example, a paste for a back surface electrode containing a metal such as ingot, silver or copper may be applied and dried to form a back surface electrode. For the connection between the solar cell elements in the process, a silver paste for forming a silver electrode may be provided on a part of the back surface. The electrode is calcined to form a solar cell element. If it is 60 〇t: ~900 ° C _ job a few seconds The age bell, the surface side, is melted as glass particles contained in the anti-reflective electric metal cap of the insulating film, and a part of the surface of the crucible is also melted, and metal particles (for example, silver particles) in the paste form a contact portion with the crucible substrate. And solidified. Thereby, the formed surface electrode and the germanium substrate are turned on. This is called fire-through. The shape of the surface electrode is described. The surface electrode is composed of a bus bar electrode and the bus bar The finger electrodes are formed by electrodes. 19 201139567 Such a surface electrode can be formed by, for example, screen printing of the above metal paste, plating of an electrode material, vapor deposition of an electrode material by electron beam heating in a high vacuum, or the like. It is known that the surface electrode including the bus bar electrode and the finger electrode is generally used as an electrode on the light-receiving surface side, and a known method of forming the bus bar electrode and the finger electrode on the light-receiving surface side can be applied. In the method of manufacturing a P-type diffusion layer and a solar cell element, 'in order to form a diffusion layer on a germanium substrate as a P-type semiconductor substrate, use Gasified phosphorus (POC13), a mixed gas of nitrogen and oxygen, but a composition forming an n-type diffusion layer may be used to form an n-type layer. In the composition forming the n-type diffusion layer, p (phosphorus) or yttrium is contained. (锑) Element of Group 15 is used as a donor element. In the method of forming a composition of an n-type diffusion layer for the formation of an n-type diffusion layer, first, the light-receiving surface of the surface of the p-type plate is used. Coating the composition forming the n-type diffusion layer, coating the composition of the present invention to form the p-type diffusion layer on the back surface, and then performing thermal diffusion treatment at 60 (rc ~ 12 〇〇t). By the thermal diffusion treatment, The donor element is diffused to form a n-type diffusion layer on the surface of the p-type; the substrate is diffused to form an n-type diffusion layer on the back surface. In addition to this step, by the above method Steps to make solar cell components. The entire contents of the application of the present application, which is hereby incorporated by reference in its entirety in its entirety in its entirety in the the the the the the the the the the the (4) ^ Say 1 book records the number of documents, special shots, and techniques, and the extent of the documents and patents, and the technical specifications. 201139567 ^ozoopif is quoted in this manual. [Examples] Hereinafter, examples of the invention will be more specifically described, but the invention is not limited by the examples. Further, as long as there is no special description in advance, the reagents are all used in the chemical. In addition, "%" means %) unless there is no explanation in advance. [Example 1] A B203-Ce02 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 4.9 μm was used (B2〇3: 39 6%, using an automatic milk spider kneading device).

Ce〇2 . 10%,BaO · 10.4% ’ Mo03 ·· 10%,Zn〇 : 30%)於 末20 g與乙基纖維素0.3 g、乙酸2-(2-丁氧基乙氧基)乙醋 7g加以混合並膏化,製成形成p型擴散層的組成物。 使用島津製作所(股份)製造的熱分析裝置 (TG-DTA,DTG60H型’測定條件:升溫速度2〇°c/分, 空氣流量1 〇〇 ml/分)對上述B2〇3_Ce〇2體系玻璃粉末進行 熱分析的結果,軟化溫度為600°C。 另外,結晶化溫度為1100°C以上,超過熱分析裝置的 測定範圍。 再者,玻璃粒子形狀是使用日立高科技(Hitachi High-Technologies)(股份)製造的TM-1000型掃描型電 子顯微鏡進行觀察並判定。玻璃的平均粒徑是使用 Beckman Coulter (股份)製造的LS 13 320型雷射散射繞 射法粒度分布測定裝置(測定波長:632 nm)來算出。 其次,藉由網版印刷將所製備的膏(形成P型擴散層 21 201139567 ^ozoopif l 的組成物)塗佈於P型矽基板的—面上(以下, 「背面」),並於酿的加熱板上乾燥5分鐘:繼:稱: 用設定成麵。⑶魏騎1G分鐘熱擴散處理 ^Ce〇2 . 10%, BaO · 10.4% ' Mo03 ·· 10%, Zn〇: 30%) at the end of 20 g with ethyl cellulose 0.3 g, 2-(2-butoxyethoxy)acetate 7 g of vinegar was mixed and pasteified to prepare a composition for forming a p-type diffusion layer. The thermal analysis device (TG-DTA, DTG60H type 'measurement conditions: heating rate 2〇°c/min, air flow rate 1 〇〇ml/min) manufactured by Shimadzu Corporation (share) was used for the above B2〇3_Ce〇2 system glass powder. As a result of the thermal analysis, the softening temperature was 600 °C. Further, the crystallization temperature is 1100 ° C or more, which exceeds the measurement range of the thermal analysis apparatus. Further, the shape of the glass particles was observed and judged using a TM-1000 scanning electron microscope manufactured by Hitachi High-Technologies Co., Ltd. The average particle diameter of the glass was calculated using a LS 13 320 laser scattering particle size distribution measuring apparatus (measuring wavelength: 632 nm) manufactured by Beckman Coulter Co., Ltd. Next, the prepared paste (forming a composition of the P-type diffusion layer 21 201139567 ^ozoopif l) is applied to the surface of the P-type ruthenium substrate (hereinafter, "back") by screen printing, and is brewed. Drying on a hot plate for 5 minutes: followed by: said: set to face. (3) Wei riding 1G minutes thermal diffusion treatment ^

為了去除玻璃層而將基板浸潰於1〇%氫氟酸中5分梦 後進行流水清洗。其後,進行乾燥。 A 塗佈有形成p型擴散層的組成物之側的表面的 阻為45 Ω/口,B (硼)擴散而形成〆型擴散層。另一方面, 未塗佈有形成p型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成p+型擴散層。另外石夕 基板上未產生基板的翹曲。將結果示於表i。 再者’薄片電阻是使用三菱化學(股份)製造的 L〇resta-EP MCP_T360型低電阻率計並藉由四探針法來測 定。 [實例2] 除將熱擴散處理時間設定為15分鐘以外,以與實例j 相同的方式形成p型擴散層。塗佈有形成p型擴散層的組 成物之側的表面的薄片電阻為35 Ω/α,B (硼)擴散而形 成Ρ+型擴散層。另一方面,未塗佈有形成ρ型擴散層的組 成物的部分的薄片電阻過大而無法測定,判斷為實質上未 形成Ρ+型擴散層。另外,矽基板上未產生基板的翹曲。 [實例3] 除將熱擴散處理時間設定為3〇分鐘以外,以與實例1 相同的方式形成ρ型擴散層。塗佈有形成ρ型擴散層的組 成物之側的表面的薄片電阻為2〇 ω/口,β (硼)擴散而形 22 201139567 oozoopif 成P+型擴散層。另一方面,未塗佈有形成p型擴散層的組 成物的部分的薄片電阻過大而無法測定,判斷為實質上未 形成P+型擴散層。另外,矽基板上未產生基板的翹曲。 [實例4] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 Β203-Ζη0 體系玻璃(b2〇3 : 40%,ZnO : 40%, Ce02 : 10% ’ MgO : 5% ’ CaO : 5%),除此以外,以與實 例1相同的方式製備形成p型擴散層的組成物,並使用該 形成P型擴散層的組成物來形成p型擴散層。再者,玻璃 粉末的軟化溫度為580°C。另外’結晶化溫度為以 上’超過熱分析裝置的測定範圍。 塗佈有形成p型擴散層的組成物之側的表面的薄片電 阻為48Ω/〇]’Β (硼)擴散而形成p+型擴散層。另一方面, 未塗佈有形成ρ型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成ρ+型擴散層。另外,矽 基板上未產生基板的輕曲。 [實例5] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3·2 μιη 的 B203-Si02 體系玻璃(Β2〇3 : 30%,Si〇2 : 50%,In order to remove the glass layer, the substrate was immersed in 1% hydrofluoric acid for 5 minutes, and then washed with running water. Thereafter, drying is carried out. The surface of the side on which the composition on which the p-type diffusion layer is formed is 45 Ω/□, and B (boron) is diffused to form a 〆-type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the p + -type diffusion layer was not substantially formed. On the other hand, the warpage of the substrate was not generated on the substrate. The results are shown in Table i. Further, the sheet resistance was measured by a four-probe method using a L〇resta-EP MCP_T360 type low resistivity meter manufactured by Mitsubishi Chemical Corporation. [Example 2] A p-type diffusion layer was formed in the same manner as in Example j except that the thermal diffusion treatment time was set to 15 minutes. The sheet surface coated on the side of the composition on which the p-type diffusion layer was formed had a sheet resistance of 35 Ω/α, and B (boron) was diffused to form a Ρ+-type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the Ρ+ type diffusion layer was not substantially formed. In addition, warpage of the substrate did not occur on the substrate. [Example 3] A p-type diffusion layer was formed in the same manner as in Example 1 except that the thermal diffusion treatment time was set to 3 Torr. The surface resistance of the surface coated with the side on which the composition of the p-type diffusion layer was formed was 2 〇 ω / port, and β (boron) was diffused to form 22 201139567 oozoopif into a P + -type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the P + -type diffusion layer was not substantially formed. In addition, warpage of the substrate did not occur on the substrate. [Example 4] The glass powder was set to a Β203-Ζη0 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (b2〇3: 40%, ZnO: 40%, Ce02: 10% 'MgO: 5%) A composition forming a p-type diffusion layer was prepared in the same manner as in Example 1 except that 'CaO: 5%), and the p-type diffusion layer was formed using the composition forming the P-type diffusion layer. Further, the softening temperature of the glass powder was 580 °C. Further, the crystallization temperature is above the measurement range of the thermal analyzer. The sheet resistance of the surface coated with the side on which the composition of the p-type diffusion layer was formed was 48 Ω / 〇] Β (boron) diffused to form a p + -type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the p + -type diffusion layer was not substantially formed. In addition, no slight curvature of the substrate was produced on the substrate. [Example 5] The glass powder was set to a B203-SiO 2 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3·2 μηη (Β2〇3: 30%, Si〇2: 50%,

Ce02 : 10%,Zn〇 : 10%) ’除此以外,以與實例i相同的 方式製備形成ρ型擴散層的組成物,並使用該形成ρ型擴 散層的組成物來形成ρ型擴散層。再者,上述玻螭粉末的 軟化溫度為680°C。另外,結晶化溫度為110〇ΐ以I,超 過熱分析裝置的測定範圍。 23 201139567 JOZOOpif 塗佈有形成p型擴散層的組成物之側的表面的薄片電 阻為52 Ω/口,B (硼)擴散而形成P+型擴散層。另一方面, 未塗佈有形成ρ型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成Ρ+型擴散層。另外,矽 基板上未產生基板的翹曲。 [實例6] 除將熱擴散處理時間設定為30分鐘以外,以與實例5 相同的方式形成ρ型擴散層。塗佈有形成ρ型擴散層的組 成物―之侧的表面的薄片電阻為33 Ω/口,Β (硼)擴散而形 成Ρ型擴散層。另一方面,未塗佈有形成卩型擴散層的組 成物的部分的薄片電阻過大而無法測定,判斷為實質上未 形成Ρ型擴散層。另外,矽基板上未產生基板的翹曲。 [實例7] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 B2OrPbO 體系玻璃(Β2〇3 : 3〇〇/。,Pb〇 : 50%,Ce02 : 10%, Zn〇: 10%) 'Aside from this, a composition for forming a p-type diffusion layer was prepared in the same manner as in Example i, and a composition for forming a p-type diffusion layer was used to form a p-type diffusion layer. . Further, the glass wool powder had a softening temperature of 680 °C. Further, the crystallization temperature was 110 Torr to 1, and the measurement range of the superheat analyzer was exceeded. 23 201139567 JOZOOpif The sheet resistance of the surface coated with the side on which the p-type diffusion layer is formed is 52 Ω/□, and B (boron) is diffused to form a P+ type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the ytterbium-type diffusion layer was not substantially formed. In addition, no warpage of the substrate occurred on the substrate. [Example 6] A p-type diffusion layer was formed in the same manner as in Example 5 except that the thermal diffusion treatment time was set to 30 minutes. The sheet surface on the side coated with the composition on which the p-type diffusion layer was formed had a sheet resistance of 33 Ω/□, and Β (boron) was diffused to form a Ρ-type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the ruthenium-type diffusion layer was not applied was too large to be measured, and it was judged that the ruthenium-type diffusion layer was not substantially formed. In addition, warpage of the substrate did not occur on the substrate. [Example 7] The glass powder was set to a B2OrPbO system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (Β2〇3: 3〇〇/., Pb〇: 50%,

ZnO : 20%),除此以外,以與實例】相同的方式製備形成 P型擴散層的組成物,並使用該形成p型擴散層的組成物 來形成ρ型擴散層。再者,玻璃粉末的軟化溫度為34〇。〇。 另外,結晶化溫度為ll〇〇°C以上,超過熱分析裝置的測定 範圍。 、 塗佈有形成P型擴散層的組成物之側的表面的薄片電 阻為17Ω/α,Β (硼)擴散而形成P+型擴散層。另一方面, 未塗佈有形成ρ型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成ρ+型擴散層。另外,矽 24 201139567 基板上未產生基板的麵曲。 [實例8] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 B2〇rSl〇2 體系玻璃(b2〇3 : 3〇%,叫:1〇%, 隊鄕,Zn〇 :肌,㈤:1()%),除此以外以與實 例1相同的方式製備形成P型擴散層的組成物,並使用該 形成P型擴制的組成物來形成p型擴散層。再者,玻璃 粉末的軟化溫度為3贼。另外,結晶化溫度為画。(:以 上’超過熱分析裝置的測定範圍。 塗佈有形成p型擴散層的組成物之側的表面的薄片電 阻為25Ω/α,Β(侧)擴散而形成擴散層。另一方面, 未塗佈有形成ρ型擴散層的組成物的部分的薄片電阻過大 而無法測^,判斷為實質上未形成/型擴散層。另外,石夕 基板上未產生基板的麵曲。 [實例9] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 B203_Si02 體系玻璃(β2〇3 : 3〇〇/0,Si02 : 10%,A composition for forming a P-type diffusion layer was prepared in the same manner as in the example except for ZnO: 20%), and a p-type diffusion layer was formed using the composition for forming a p-type diffusion layer. Further, the softening temperature of the glass powder was 34 Å. Hey. Further, the crystallization temperature is ll 〇〇 ° C or more, which exceeds the measurement range of the thermal analysis apparatus. The sheet resistance of the surface coated with the side on which the composition of the P-type diffusion layer was formed was 17 Ω/α, and Β (boron) was diffused to form a P + -type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the p + -type diffusion layer was not substantially formed. In addition, 面 24 201139567 no surface curvature of the substrate was produced on the substrate. [Example 8] The glass powder was set to a B2〇rSl〇2 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (b2〇3: 3〇%, called: 1〇%, 鄕, Zn〇) : Muscle, (5): 1 ()%), except that a composition for forming a P-type diffusion layer was prepared in the same manner as in Example 1, and the P-type diffusion-forming composition was used to form a p-type diffusion layer. Furthermore, the softening temperature of the glass powder is 3 thieves. In addition, the crystallization temperature is drawn. (: The above 'beyond the measurement range of the thermal analyzer. The sheet resistance of the surface coated with the side on which the p-type diffusion layer is formed is 25 Ω/α, and the Β (side) diffuses to form a diffusion layer. The sheet resistance of the portion to which the composition for forming the p-type diffusion layer was applied was too large to be measured, and it was judged that the diffusion layer was not substantially formed. Further, the surface curvature of the substrate was not produced on the Shih-hs substrate. [Example 9] The glass powder was set to a B203_SiO 2 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (β 2 〇 3 : 3 〇〇 / 0, SiO 2 : 10%,

PbO . 30%,ZnO : 20%,NaO : 10%),除此以外,以與實 例1相同的方式製備形成p型擴散層的組成物,並使用該 形成P型擴散層的組成物來形成p型擴散層。再者,玻璃 粉末的軟化溫度為390°C。另外,結晶化溫度為ii〇〇t:以 上’超過熱分析裝置的測定範圍。 塗佈有形成p型擴散層的組成物之侧的表面的薄片電 阻為31 Ω/口,B (硼)擴散而形成p+型擴散層。另一方面, 25 201139567 未塗佈有城p型擴散層的組絲的部分的薄片電阻過大 而無法測定,判斷為實質上未形成p+型擴散層。另外,石夕 基板上未產生基板的勉曲。 [實例10] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 Β203_Ζη0 體系玻璃(b2〇3 : 3〇%,Zn〇 : 4〇%,A composition for forming a p-type diffusion layer was prepared in the same manner as in Example 1 except that PbO. 30%, ZnO: 20%, NaO: 10%), and the composition for forming a P-type diffusion layer was used to form. P-type diffusion layer. Further, the softening temperature of the glass powder was 390 °C. Further, the crystallization temperature is ii 〇〇 t: the above is beyond the measurement range of the thermal analysis apparatus. The sheet resistance of the surface coated with the side on which the composition of the p-type diffusion layer was formed was 31 Ω/□, and B (boron) was diffused to form a p + -type diffusion layer. On the other hand, in 25 201139567, the sheet resistance of the portion of the filament which was not coated with the p-type diffusion layer was too large to be measured, and it was judged that the p + -type diffusion layer was not substantially formed. In addition, no distortion of the substrate occurred on the Shi Xi substrate. [Example 10] The glass powder was set to a Β203_Ζη0 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (b2〇3: 3〇%, Zn〇: 4〇%,

CaO : 20% ’ Al2〇3 : 10%),除此以外,以與實例i相同的 方式製備形成p型擴散層的組成物,並使用該形成p型擴 散層的組成物來形成p型擴散層。再者,玻璃粉末的軟化 溫度為505 C。另外,結晶化溫度為11〇〇〇c以上,超過熱 分析裝置的測定範圍。 塗佈有形成p型擴散層的組成物之側的表面的薄片電 阻為43 Ω/口 ’ B (硼)擴散而形成p+型擴散層。另一方面, 未塗佈有形成P型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成p+型擴散層。另外,石夕 基板上未產生基板的麵曲。 [實例11] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 B203-Si02 體系玻璃(B2〇3 : 50%,Si02 : 10%,A composition forming a p-type diffusion layer was prepared in the same manner as in Example i except that CaO: 20% 'Al2〇3: 10%), and the composition forming the p-type diffusion layer was used to form p-type diffusion. Floor. Further, the softening temperature of the glass powder was 505 C. Further, the crystallization temperature was 11 〇〇〇c or more, which exceeded the measurement range of the thermal analyzer. The sheet resistance of the surface coated with the side on which the composition of the p-type diffusion layer was formed was 43 Ω/□' B (boron) diffused to form a p + -type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the P-type diffusion layer was not applied was too large to be measured, and it was judged that the p + -type diffusion layer was not substantially formed. In addition, no surface curvature of the substrate was produced on the Shi Xi substrate. [Example 11] The glass powder was set to a B203-SiO 2 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (B2〇3: 50%, Si02: 10%,

ZnO · 30% ’ CaO : 10) ’並將熱擴散處理時間設定為2〇 分鐘,除此以外,以與實例1相同的方式製備形成p型擴 散層的組成物,並使用該形成p型擴散層的組成物來形成 P型擴散層。再者’玻璃粉末的軟化溫度為69〇°c。另外, 結晶化溫度為1100°C以上,超過熱分析裝置的測定範圍。 26 201139567 JO^-OUpif 塗佈有形成p型擴散層的組成物之側的表面的薄片電 阻為56 Ω/口’B (硼)擴散而形成p+型擴散層。另一方面, 未塗佈有形成p型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成p+型擴散層。另外,矽 基板上未產生基板的勉曲。 [實例12] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 B203-Si02 體系玻璃(b2〇3 : 22%,Si〇2 : 58%,A composition for forming a p-type diffusion layer was prepared in the same manner as in Example 1 except that ZnO · 30% ' CaO : 10) ' and the thermal diffusion treatment time was set to 2 〇 minutes, and p-type diffusion was formed using the same. The composition of the layer forms a P-type diffusion layer. Further, the softening temperature of the glass powder was 69 ° C. Further, the crystallization temperature is 1100 ° C or more, which exceeds the measurement range of the thermal analysis apparatus. 26 201139567 JO^-OUpif The sheet resistance of the surface coated with the side on which the p-type diffusion layer is formed is 56 Ω/□'B (boron) diffuses to form a p+ type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the p + -type diffusion layer was not substantially formed. In addition, no distortion of the substrate occurred on the substrate. [Example 12] The glass powder was set to a B203-SiO 2 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (b2〇3: 22%, Si〇2: 58%,

CaO: 2G%),除此料,以與實例i侧的方式製備形成 P型擴散層驗成物’並使用該形成p型擴散層的組成物 來形成P型擴散層。再者,玻璃粉末的軟化溫度為85(rc。 另外’結晶化溫度為110(TC以上,超過熱分析裝置的測定 範圍。 塗佈有形成p型擴散層的組成物之側的表面的薄片電 阻為78Ω/ο’Β (硼)擴散而形成卩+型擴散層。另一方面, 未塗佈有形成ρ型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成p+型擴散層。另外,石夕 基板上未產生基板的翻^曲。 [實例13] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3·2 哗的 B2〇rSi〇2 體系玻璃(β2〇3 · 25%,Si〇2 : 6〇%,CaO: 2G%), in addition to this, a P-type diffusion layer tester was prepared in the same manner as in the example i side, and a P-type diffusion layer was formed using the composition forming the p-type diffusion layer. Further, the glass powder has a softening temperature of 85 (rc. Further, the 'crystallization temperature is 110 (TC or more, which exceeds the measurement range of the thermal analyzer. The sheet resistance of the surface coated with the side of the composition forming the p-type diffusion layer) The ytterbium-type diffusion layer was formed by diffusion of 78 Ω/ο' Β (boron). On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that it was substantially not formed. The p+ type diffusion layer was not formed on the shixi substrate. [Example 13] The glass powder was set to a B2〇rSi〇2 system having a substantially spherical shape and an average particle diameter of 3·2 哗. Glass (β2〇3 · 25%, Si〇2 : 6〇%,

CaO · 15%) ’除此以外’以與實例i相同的方式製備形成 P型擴散層的組錢,並使肖郷成p麵散層的組成物 來形成ρ型擴散層。再者’玻璃粉末的軟化溫度為沾叱。 27 201139567 另外,結晶化溫度為ll〇〇°C以上,超過熱分析裝置的測定 範圍。 、 塗佈有形成P型擴散層的組成物之側的表面的薄片電 阻為82 Ω/口’B (硼)擴散而形成p+型擴散層。另一方面, 未塗佈有形成p型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成〆型擴散層。另外,矽 基板上未產生基板的魏曲。 [實例14] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3_2 μιη 的 B203-Si02 體系玻璃(b2〇3 : 2〇%,Si〇2 : 65;〇’,CaO · 15%) 'Other than this' The group forming the P-type diffusion layer was prepared in the same manner as in Example i, and the composition of the p-type diffusion layer was formed to form a p-type diffusion layer. Furthermore, the softening temperature of the glass powder is dip. 27 201139567 In addition, the crystallization temperature is ll 〇〇 °C or more, which exceeds the measurement range of the thermal analyzer. The sheet resistance of the surface coated on the side of the composition on which the P-type diffusion layer was formed was 82 Ω/□'B (boron) diffused to form a p+-type diffusion layer. On the other hand, the sheet resistance of the portion to which the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the ruthenium-type diffusion layer was not substantially formed. In addition, no warpage of the substrate was produced on the substrate. [Example 14] The glass powder was set to a B203-SiO 2 system glass (b2〇3: 2〇%, Si〇2: 65; 〇' having a particle shape of a substantially spherical shape and an average particle diameter of 3_2 μηη.

CaO : 1〇〇/0,aI2〇3 : 5%),除此以外’以與實例】相同的 方式製備形成p型擴散層的組成物,並使用該形成p型擴 散層的組成物來形成p型擴散層。再者,玻璃粉末的軟化 溫度為94(TC。另外,結晶化溫度為11〇〇〇c以上,超過熱 分析裝置的測定範圍。 … 塗佈有形成ρ型擴散層的組成物之侧的表面的薄片電 阻為96 Ω/ci’B (硼)擴散而形成〆型擴散層。另一方面, 未塗佈有形成p型擴散層的組成物的部分的薄片電阻過大 而無法測疋,判斷為貫質上未形成P+型擴散層。另外,石夕 基板上未產生基板的勉曲。 [比較例1] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 B203-Si02 體系玻璃(B2〇3 : 10%,Si〇2 : 2〇% ,CaO: 1〇〇/0, aI2〇3: 5%), except that a composition for forming a p-type diffusion layer was prepared in the same manner as in the example, and the composition forming the p-type diffusion layer was used to form P-type diffusion layer. Further, the glass powder has a softening temperature of 94 (TC. Further, the crystallization temperature is 11 〇〇〇c or more, which exceeds the measurement range of the thermal analyzer. ... the surface coated with the side of the composition forming the p-type diffusion layer The sheet resistance is 96 Ω/ci'B (boron) diffuses to form a 〆-type diffusion layer. On the other hand, the sheet resistance of the portion where the composition forming the p-type diffusion layer is not applied is too large to be measured, and it is judged as The P + -type diffusion layer was not formed in the permeation. The distortion of the substrate did not occur on the substrate. [Comparative Example 1] The glass powder was set to a B203-SiO 2 having a substantially spherical shape and an average particle diameter of 3.2 μηη. System glass (B2〇3: 10%, Si〇2: 2〇%,

PbO : 40% ’ NaO : 30%),除此以外,以與實例}相同的 28 201139567 方式製備形成p型擴散層的組成物,並使用 ::成物進行熱擴散處理。再者,玻‘末的::: 於塗佈有顧㈣餘層的組成物之_面上 ^政而形成p+型擴散層。另外,該表面的薄片電阻 D。但是,未塗佈有形成p型擴散層的組成物的部分3 ’片電阻為7G Ω/〇 ’ p+型擴散層形成至不需要部分。再 者,矽基板上未產生基板的翹曲。 [比較例2] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 B20rSi02 體系玻璃(β2〇3 ·· 5%,Si〇2 ·· 93〇/〇,PbO: 40% 'NaO: 30%), except that a composition for forming a p-type diffusion layer was prepared in the same manner as in Example}, in the manner of the following example, and a thermal diffusion treatment was carried out using a :: product. Furthermore, the glass "last"::: forms a p+ type diffusion layer on the surface of the composition coated with the (four) remaining layer. In addition, the sheet has a sheet resistance D. However, the portion 3' sheet resistance to which the composition for forming the p-type diffusion layer was not applied was 7 G Ω / 〇 ' p + type diffusion layer was formed to an unnecessary portion. Further, warpage of the substrate did not occur on the substrate. [Comparative Example 2] The glass powder was set to a B20rSi02 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (β2〇3 ··5%, Si〇2 ··93〇/〇,

Na〇 : 2%) ’除此以外,以與實例i相同的方式製備形成p 型擴散層的組成物,並使用該形成p型擴散層的組成物進 行熱擴散處理。再者,玻璃粉末的軟化溫度為1100。〇以 上’超過熱分析裝置的測定範圍。 塗佈有形成p型擴散層的組成物之侧的面的薄片電阻 過大而無法測定’判斷為實質上未形成p+型擴散層。再 者’石夕基板上未產生基板的紐曲。 29 201139567t ^ ^ ^ Λ A.Na〇 : 2%) In addition, a composition for forming a p-type diffusion layer was prepared in the same manner as in Example i, and the composition for forming the p-type diffusion layer was subjected to thermal diffusion treatment. Further, the softening temperature of the glass powder was 1,100. The upper side exceeds the measurement range of the thermal analysis device. The sheet resistance of the surface on the side on which the composition on which the p-type diffusion layer was formed was too large to be measured. It was judged that the p + -type diffusion layer was not substantially formed. Further, the button of the substrate was not produced on the stone substrate. 29 201139567t ^ ^ ^ Λ A.

[表l] 玻璃粉末 玻璃粉末 軟化點(°C) 實例1 B2〇3-Ce〇2 體系 600 實例2 B2〇3-Ce〇2 體系 600 實例3 B203-Ce02 餿系 600 實例4 Β203-Ζη0 體系 580 實例5 B203-Si02 逋系 680 實例6 B203-Si02 體系 680 實例7 B203-Pb0 體系 340 實例8 B203-Si02 體系 370 實例9 B2〇3_Si〇2 體系 390 實例10 Β203-Ζη0 體系 505 實例11 B203-Si02 體系 690 實例12 B203-Si02 體系 850 實例13 B203-Si02 體系 880 實例14 B203-Si02 體系 940 比較例1 B203-Si02 體系 240 比較例2 B203-Si02 體系 &gt;1100[Table 1] Glass powder glass powder softening point (°C) Example 1 B2〇3-Ce〇2 system 600 Example 2 B2〇3-Ce〇2 system 600 Example 3 B203-Ce02 Lanthanide 600 Example 4 Β203-Ζη0 system 580 Example 5 B203-Si02 Lanthanide 680 Example 6 B203-Si02 System 680 Example 7 B203-Pb0 System 340 Example 8 B203-Si02 System 370 Example 9 B2〇3_Si〇2 System 390 Example 10 Β203-Ζη0 System 505 Example 11 B203- Si02 system 690 Example 12 B203-SiO 2 system 850 Example 13 B203-SiO 2 system 880 Example 14 B203-SiO 2 system 940 Comparative Example 1 B203-SiO 2 system 240 Comparative Example 2 B203-SiO 2 system &gt; 1100

根據以上可知,藉由使用本發明的形成p型擴散層的 組成物,可不產生矽基板的翹曲而均勻地形成p型擴散層。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾’因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 無。 【主要元件符號說明】 無。 30As described above, by using the composition for forming a p-type diffusion layer of the present invention, the p-type diffusion layer can be uniformly formed without causing warpage of the ruthenium substrate. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. [Simple description of the diagram] None. [Main component symbol description] None. 30

Claims (1)

201139567 七、申請專利範園: 1. 一種形成P型擴散層的組成物,包括: 含有受體元素且軟化溫度為30(rc〜^(^^的玻璃粉 末;以及 分散介質。 2. 如申請專利範圍第1項所述之形成p型擴散層的組 成物’其中上述受體元素是選自B (硼)、A1 (鋁)及Ga (鎵)中的至少一種。 3. 如申請專利範圍第丨項所述之形成p型擴散層的組 成物,其中含有上述受體元素的玻璃粉末包括: 選自Β2〇3、Α12〇3及Ga203中的至少一種含有受體元 素的物質;以及 選自 Si02、K2〇、Na20、Li2〇、BaO、SrO、CaO、 MgO、BeO、ZnO、PbO、CdO、SnO、Zr02、Ce02 及 Mo03 中的至少一種玻璃成分物質。 4·如申請專利範圍第1項所述之形成p型擴散層的組 成物’其中上述玻璃粉末的結晶化溫度為1〇5〇°c以上。 5_ —種p型擴散層的製造方法,包括: 塗佈如申請專利範圍第1項至第4項中任一項所述之 形成P型擴散層的組成物的步驟;以及 實施熱擴散處理的步驟。 6. —種太陽電池元件的製造方法,包括·· 於半導體基板上塗佈如申請專利範圍第1項至第4項 中任一項所述之形成p型擴散層的組成物的步驟; 31 201139567 w»OZ.O\jpif 實施熱擴散處理來形成P型擴散層的步驟;以及 於所形成的上述P型擴散層上形成電極的步驟。 32 201139567 ^oz-oupif 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無。 五、本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無。 3 201139567 . 38286pifl ’ 爲第100114096號中文說明書無劃線修正頁 修正日期:1〇〇年7 .月15曰. 列舉:B (硼)、A1 (鋁)及Ga (鎵)等。 作為用於將受體元素導入至玻璃粉末中的含有受體元 素的物質,可列舉B2〇3、Al2〇3、及Ga2〇3 ’較佳為使用選 自B2〇3、Al2〇3及Ga203中的至少一種。 另外,含有受體元素的玻璃粉末可視需要調整成分比 率,藉此控制熔融溫度、軟化溫度、玻璃轉移溫度、化學 耐久性等。較佳為進而包含以下所述的玻璃成分物質。 ❹ 作為玻璃成分物質,可列舉:Si〇2、K2O、Na20、Li2〇、 BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、SnO、 Zr02、M〇03、La203、Ce02、Nb205、Ta205、Y2〇3、Ti〇2、 Zr02、Ge02、Te02及Lu203等,較佳為使用選自Si02、 κ20、Na20、Li20、BaO、SrO、CaO、MgO、BeO、ZnO、 PbO、CdO、SnO、Zr02、Ce02及 Mo03 中的至少一種。 作為含有受體元素的玻璃粉末的具體例,可列舉包括 上述含有受體元素的物質與上述玻璃成分物質兩者的體 _ 系’可列舉:B2〇rSi〇2體系(以含有受體元素的物質_破 〇 璃成分物質的順序記載,以下相同)、Β203-Ζη0體系、 BaCVPbO體系、B2〇rCe02體系、B2〇3單獨體系等包含 ΒΛ作為含有受體元素的物質的體系,A12〇3_si〇2體系等 包’ Al2〇3作為含有受體元素的物質的體系,Ga2〇3_Si〇2 體系等包含Ga2〇3作為含有受體元素的物質的體系等的破 璃粉末。 另外,亦可為如A12〇3_b2〇3體系、Ga2CVB2〇3體系等 般’包含兩種以上的含有受體元素的物質的玻璃粉末。 201139567 &lt;r 38286pifl &gt; 爲第臟剛6號中文說明書無劃線修正頁 修正曰期:100年7月15日 於上述中例示了包含一種成分的玻璃或包含兩種成分 的複合玻璃,但亦可為如B2〇3_Si〇2_Na2〇體系、 BA-SiCVCeO2體系等般,包含三種成分以上的物質的玻 璃粉末。 玻璃粉末中的玻璃成分物質的含有比率較理想的是考 慮熔融溫度、軟化溫度、玻璃轉移溫度、結晶化溫度、化 學耐久性而適宜設定,一般而言,較佳為〇1質量%以上 至95質量%以下,更佳為0.5質量%以上至9〇質量%以下。 具體而言,當為BaCVCeO2體系玻璃時,Ce〇2的含有 比率較佳為i質量%以上至5〇質量%以下,更佳為3質量 /〇以上至4G貝量%以下。藉由為該含有比率,可更均勻地 形成P型擴散層。 、&lt;另外玻末的軟化溫度就於後述的熱擴散處理時 使受體元素更有效地擴散至石夕基板中,獲得均句的p型擴 散層的觀點而言較重要。於本發明中,玻璃粉末的軟化溫 度為3。00°(:〜950。(:,較佳為3贼〜9〇〇。〇,更佳為3听 〜850°C ’進而更佳為40(TC〜800°C。 ^當玻璃粉末的軟化溫度未滿300°C時,高溫下的熱擴 政處理日卞玻璃成分容易結晶化,於熱擴散處理後的玻璃成 分的蝕刻去除步驟中,存在其蝕刻去除性下降的傾向,另 夕ίΐ存在著受體元素因熔點下降而容易揮發,熱擴散處理 時容易於不需要的部分形成P型擴散層的傾向。另外,當 玻螭粉末的軟化溫度超過950°C時,存在如下的傾向:熱 擴散處理時玻璃難以軟化,玻璃粉末維持粒狀的形狀,因 此於微觀下玻璃成分在;g夕基板上未被均勻地覆蓋,受體元 201139567 38286pifl 修正日期:1〇〇年7月15日 爲第100114096號中文說明書無劃線修正頁 2行擴散,結果p型擴散層的形成性變得 在薄片電阻值上升的情況。 且存 裝置:玻璃·?盈度可藉由公知的示差熱分析 O^fferenta Thermal Analyzer,Dta),根據盆 波峰而容易地測定。 *、、、 ⑽另外’於本發明巾,玻璃粉末的結日日日化溫度較 〇 〇 上’更佳為謂t以上,進而更佳為·。。以 上。藉由結晶化溫度為105(TC以上,熱擴散 2 =晶化得到抑制。藉此,在熱擴散處理後的玻璃成 ===步驟中抑制結晶化物的殘存,提高玻璃成分的 再者,玻璃粉末的結晶化溫度可藉由公 析裝置(祖),根據其發触峰而料地峡。”、、刀 作為越粉末的形狀,可列舉:大致球狀、爲平狀、 板狀、及鱗片狀等’就製成形成p型擴散層的組成 夺的對於基板的塗佈性或羽擴散性的觀誠言,較理 ^的是大致球狀、扁平狀、或餘。玻璃粉末的粒徑並無 、、別限制,較理想的是100 μηι以下。當使用具有1〇〇 μιη 以下的粒徑的玻璃粉末時,易於獲得更平 玻璃粉末陳徑更理想狀5ΰμ1η以下。進=玻璃7末 的粒徑更理想的是10吨以下。再者,下限並無特別限制, 但較佳為0.01 μιη以上。 /處,玻璃的粒徑表示平均粒徑,可藉由雷射散射繞 去(laser scattering diffraction method )粒度分布(particie 11 201139567 38286pifl 修正日期:100年7月15日 爲第100114096號中文說明書無劃線修正頁 size distribution )測定裝置等來測定。 含有受體元素的玻璃粉末是藉由以下的程序來製作。 首先’稱量原料並將其填充至掛堝中。坩禍的材質可 列舉鉑、鉑-铑、銥、氧化鋁、石英、碳等,可考慮熔融溫 度、環境、與熔融物質的反應性等而適宜選擇。〜⑺1 其次’错由電爐以對應於玻璃組成的溫度進行加熱而 製成熔液。此時’較理想的是以使熔液變得均句的方&amp; 行攪拌。 &quot; 繼而,使所獲得的溶液流出至石墨板、銘板、麵-錢合 金板、氧化锆板等上而將熔液玻璃化。 ° 最後,粉碎玻璃而形成粉末狀。粉碎可應用喷射 珠磨機、球磨機等公知的方法。 形成Ρ型擴散層的紅成物中的含有受體元素的玻粉 ^的含有比率是考慮塗佈性、受體元素的擴散性等而決 疋。-般而言,形成ρ型擴散層的組成 含有比率較佳_質量%以上至95質量% == !質量似上至9G質量%以下,進而更佳為 1 至85質量%以下,特佳為 旦 貝$/〇以上 其次,對分散介質从上至8Q_以下。 的入4二疋指於組成物中使上述玻璃粉末分散 ' 採用點合劑或溶劑等作為分散介質。 作為黏合劑,例如可 勹刀狀;I頁 胺類、聚乙烯蕴胺類、d擇2乙烯醇、聚丙烯酿 (p〇lyethylene oxlde ^ ^ ^ ^ ^ ^ 頬、聚%酸、丙烯醯胺烷基磺酸、 12 201139567 38286pifl JOZ-OOpiIl 爲第100114096號中文咖書無劃線修正Η 修正曰期:100年7月15日 =、丙二醇丙基it乙酸酿、二丙二醇甲_乙酸自旨、 二乙_乙_ 'γ_丁内、γ_戊内酯等 ^ - Ν-甲基吡咯酮、其邮々 合知丨,乙腈、 懈NW各二基如各_、Ν-丁基吼 胺、Ν Ν-二甲美,1 f每己基吼略綱、Ν,Ν•二甲基甲醯 劑;甲醇、乙醇、正丙醇、異丙醇 4 二丁醇、第:r 丁萨 T L 、吳丁醇、第 Ο &amp;外 丁知、正戊醇、異戊醇、2-甲基丁醇、笛_ 戊醇、第三戊醇、3_甲氣A TP3^ 醇弟一 第二己醇、2-乙基丁二=、、正正己辛醇醇、22,醇、 ”正壬醇、正癸醇、第 、、二=、 一=_乙一醇、三丙二醇等醇系溶劑;乙二甲 =乙趟、乙二醇單苯越、二乙二醇單甲喊:醇】 乙醚、二乙二醇單_正丁峻、 一乙一醇早 Ο 三甘醇、四乙二醇單_正丁驗岛乙一上单-正已醚、乙氧基 甲趟、二丙二醇單⑽、丁^丙二醇、二丙二醇單 劑⑽品稀、丄Γ;?醇 Ullo-oclmene)、捧樣稀土&amp;別羅勒烯 吏用一種、或者组合兩種以上3用4 佈性散,成物時,就對於基板的塗 乙叫丁氧基單-正頂、 15 201139567 38286pifl 爲第100114096號中文說明書無劃線修正頁 修正曰期:100年7月15曰 形成P型擴散層的組成物中的分散介質的含有比率是 考慮塗佈性、受體濃度而決定。 X 考慮到塗佈性’形成P型擴散層的組成物的黏度較佳 為10 mPa.S以上至1000000 mPa.S以下,更佳為5〇 mpa s 以上至500000 mPa.S以下。 其次,對本發明的P型擴散層及太陽電池元件的製 方法進行說明。 ° 對作為p型半導體基板的石夕基板賦予驗性溶液來 損壞層,並藉由蝕刻而獲得紋理構造。 示 士詳細而言’利用20質量%苛性納去除自_進行 4所產生_表面的損壞層。繼而,利用 =質量%異㈣的混合液進行綱,形成紋理 促進光學舰效應,謀求高效率化。成、文理構心而可 其次’於氧氣化磷(p〇cl )、氦裔备友u、 環境下以_。。〜900。。進行幾十分鐘的處理乳從 :爾亦到達侧面及背面,n 二的二 面,而且亦形成於側面、背面。因;表 型擴散層而實❹m。 4 了去除側面的n 然後’於!)型半導體基板的背面盘 側的面的η型擴散層上塗佈上述 為相反 物,形成了形成ρ型擴散, 成Ρ ^•擴政層的組成 佈方法亚無限制,例如 於本U中,塗 刺凌%塗法、毛刷塗佈、喷 16 201139567 38286pifl 修正日期:100年7月15日 爲第100114096號中文說明書無劃線修正頁 基板上未產生基板的魅曲。 [實例8] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 B203-Si02 體系玻璃(B2〇3 : 30%,Si02 : 10%, PbO · 40% ’ ZnO : 10% ’ CaO : 1〇%),除此以外’以與實 例1相同的方式製備形成p型擴散層的組成物,並使用該 形成P型擴散層的組成物來形成p型擴散層。再者,玻璃 Q 粉末的軟化溫度為370°c。另外’結晶化溫度為ll〇〇°C以 上,超過熱分析裝置的測定範圍。 塗佈有形成p型擴散層的組成物之側的表面的薄片電 阻為25 Ω/口 ’ B (领)擴散而形成p+型擴散層。另一方面, 未塗佈有形成p型擴散層的組成物的部分的薄片電阻過大 而無法測定’判斷為實質上未形成p+型擴散層。另外,石夕 基板上未產生基板的麵曲。 [實例9] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 〇 3.2 μιη 的 B2〇3-Si〇J 系玻璃(b2〇3 : 30%,Si〇2 : 10%, PbO : 30% ’ ZnO : 20% ’ NaO : 10%),除此以外,以與實 例1相同的方式製備形成p型擴散層的組成物,並使用該 形成ρ型擴散層的組成物來形成P型擴散層。再者,玻璃 粉末的軟化溫度為390°C。另外,結晶化溫度為ii〇〇°c以 上’超過熱分析裝置的測定範圍。 塗佈有形成ρ型擴散層的組成物之侧的表面的薄片電 阻為31 Ω/口 ’ B (爛)擴散而形成p+型擴散層。另一方面, 25 201139567 38286pifl · 爲第腿雇號中想明書無劃線修正頁 修正日期駕年7月15曰 未塗佈有开)成p型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成p+型擴散層。另外,矽 基板上未產生基板的魅曲。 [實例10] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μιη 的 B2〇3_Zn〇 體系玻璃(b2〇3 : 3〇%,Zn〇 : 4〇%, CaO : 20% ’ Al2〇3: 10%) ’除此以外,以與實例1相同的 方式製備形成P型擴散層的組成物,並使用該形成1)型擴 散層的組成物來形成!)型擴散層。再者,玻璃粉末的軟化 溫度為505。(:。另外’結晶化溫度為測cc以上,超過孰 分析裝置的測定範圍。 塗佈有开&gt; 成ρ型擴散層的組成物之侧的表面的薄片電 阻為43 Ω/口,B (硼)擴散而形成p+型擴散層。另一方面, 未塗佈有形成p型擴散層的組成物的部分的薄片電阻過大 而無法測定,判斷為實質上未形成p+型擴散層。另外,矽 基板上未產生基板的翹曲。 [實例11] 將玻璃粉末設定為粒子形狀為大致球狀,平均粒徑為 3.2 μηι 的 BaCVSiO2 體系玻璃(B2〇3 : 50%,Si〇2 : 10%, ZnO . 30%,CaO . 10%) ’並將熱擴散處理時間設定為2〇 分鐘,除此以外,以與實例1相同的方式製備形成p型擴 散層的組成物,並使用該形成p型擴散層的組成物來形成 p型擴散層。再者,玻璃粉末的軟化溫度為69(rc。另外, 結晶化溫度為110(TC以上,超過熱分析裝置的測定範圍。 26201139567 VII. Application for Patent Park: 1. A composition for forming a P-type diffusion layer, comprising: a glass powder containing an acceptor element and having a softening temperature of 30 (rc~^(^^; and a dispersion medium. The composition for forming a p-type diffusion layer according to the first aspect of the invention, wherein the above-mentioned acceptor element is at least one selected from the group consisting of B (boron), A1 (aluminum), and Ga (gallium). The composition for forming a p-type diffusion layer according to the above item, wherein the glass powder containing the above-mentioned acceptor element comprises: at least one substance containing an acceptor element selected from the group consisting of Β2〇3, Α12〇3, and Ga203; At least one glass component material from SiO 2 , K 2 〇, Na 20 , Li 2 〇, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, ZrO 2 , Ce02 and Mo03. The composition for forming a p-type diffusion layer, wherein the crystallization temperature of the glass powder is 1〇5〇°c or more. 5_ a method for producing a p-type diffusion layer, comprising: coating as claimed in the patent scope Formation of P type according to any one of items 1 to 4 a step of forming a composition of the diffusion layer; and a step of performing a thermal diffusion treatment. 6. A method of manufacturing a solar cell element, comprising: coating on a semiconductor substrate as in any one of claims 1 to 4 of the patent application scope The step of forming a composition of the p-type diffusion layer; 31 201139567 w»OZ.O\jpif performing a thermal diffusion treatment to form a P-type diffusion layer; and forming an electrode on the formed P-type diffusion layer 32 201139567 ^oz-oupif IV. Designated representative map: (1) The representative representative of the case is: No. (2) The symbol of the symbol of the representative figure is simple: None. 5. If there is a chemical formula in this case, please reveal The chemical formula that best shows the characteristics of the invention: None. 3 201139567 . 38286pifl ' is the Chinese version of the 100114096 No-line correction page Revision date: 1 year 7 . Month 15 曰. List: B (boron), A1 (aluminum) And Ga (gallium), etc. As a substance containing an acceptor element for introducing an acceptor element into a glass powder, B2〇3, Al2〇3, and Ga2〇3' are preferably used. 3, Al2〇 At least one of 3 and Ga 203. Further, the glass powder containing the acceptor element may adjust the component ratio as needed, thereby controlling the melting temperature, the softening temperature, the glass transition temperature, the chemical durability, etc. It is preferable to further include the following Glass component substance ❹ As the glass component, Si〇2, K2O, Na20, Li2〇, BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, Zr02, M〇03, La203, Ce02, Nb205, Ta205, Y2〇3, Ti〇2, Zr02, Ge02, Te02 and Lu203, etc., preferably selected from the group consisting of SiO2, κ20, Na20, Li20, BaO, SrO, CaO, MgO, BeO, ZnO, PbO At least one of CdO, SnO, Zr02, Ce02, and Mo03. Specific examples of the glass powder containing the acceptor element include a substance including the above-mentioned acceptor element-containing substance and the above-mentioned glass component substance, and examples thereof include a B2〇rSi〇2 system (containing an acceptor element). The material _ broken glass component substance is described in the following order, the Β203-Ζη0 system, the BaCVPbO system, the B2〇rCe02 system, the B2〇3 single system, etc., which contains ruthenium as a substance containing an acceptor element, A12〇3_si〇 2 system or the like 'Al2〇3 is a system containing a substance of an acceptor element, and a Ga2〇3_Si〇2 system or the like contains a glass powder such as Ga2〇3 as a system containing a substance of an acceptor element. Further, it may be a glass powder containing two or more kinds of substances containing an acceptor element, such as the A12〇3_b2〇3 system and the Ga2CVB2〇3 system. 201139567 &lt;r 38286pifl &gt; For the Dirty Gang No. 6 Chinese manual, there is no sizing correction page correction period: July 15th, 100th, in the above, exemplified a glass containing one component or a composite glass containing two components, but It may be a glass powder containing three or more components, such as a B2〇3_Si〇2_Na2〇 system or a BA-SiCVCeO2 system. The content ratio of the glass component in the glass powder is preferably set in consideration of the melting temperature, the softening temperature, the glass transition temperature, the crystallization temperature, and the chemical durability. In general, it is preferably 〇1% by mass or more and 95%. The mass% or less is more preferably 0.5% by mass or more and 9% by mass or less. Specifically, when it is a BaCVCeO2 system glass, the content ratio of Ce〇2 is preferably from i% by mass or more to 5% by mass or less, more preferably from 3 mass% to more than 4% by mass. By this content ratio, the P-type diffusion layer can be formed more uniformly. Further, the softening temperature of the glass frit is more important in the viewpoint of obtaining a p-type diffusion layer of a uniform sentence by diffusing the acceptor element more efficiently into the slab substrate during the thermal diffusion treatment to be described later. In the present invention, the softening temperature of the glass powder is 1.00 (: ~ 950. (:, preferably 3 thief ~ 9 〇〇. 〇, more preferably 3 ~ 850 ° C ' and further preferably 40 (TC~800 ° C. ^When the softening temperature of the glass powder is less than 300 ° C, the heat expansion treatment at a high temperature is easy to crystallize the daytime glass component, and in the etching removal step of the glass component after the heat diffusion treatment, There is a tendency that the etching removability is lowered, and there is a tendency that the acceptor element is easily volatilized due to a decrease in melting point, and a P-type diffusion layer is likely to be formed in an unnecessary portion during thermal diffusion treatment. In addition, when the glassy powder is softened When the temperature exceeds 950 ° C, there is a tendency that the glass is hard to soften during the thermal diffusion treatment, and the glass powder maintains a granular shape, so that the glass component is not uniformly covered on the substrate under the microscopic state, the receptor element 201139567 38286pifl Correction date: July 15th, 1st, the 100th No. 100114096 Chinese manual, no line correction page spreads, and the formation of the p-type diffusion layer becomes a case where the sheet resistance value rises. ·? It can be easily determined from the basin peak by a well-known differential thermal analysis (Otafferenta Thermal Analyzer, Dta). *,,, (10) In addition, in the present invention, the daily temperature of the glass powder is relatively high. 'More preferably, it is t or more, and more preferably.. The crystallization temperature is 105 (TC or more, thermal diffusion 2 = crystallization is suppressed. Thereby, the glass after thermal diffusion treatment becomes == = In the step, the residual of the crystallized compound is suppressed, and the glass component is further increased. The crystallization temperature of the glass powder can be measured by the analysing device (grandfather) according to the peak of the sensory peak.", the knife is in the shape of the powder. In addition, the coating property or the feather diffusing property of the composition which is formed into a p-type diffusion layer, which is formed into a substantially spherical shape, a flat shape, a plate shape, a scale shape, or the like, is exemplified. The particle diameter of the glass powder is not limited to, and is not limited to, preferably 100 μm or less. When a glass powder having a particle diameter of 1 μm or less is used, it is easy to obtain. More flat glass powder The particle size of the final glass = 7 is more preferably 10 tons or less. Further, the lower limit is not particularly limited, but is preferably 0.01 μm or more. / The glass particle diameter indicates an average particle diameter. The measurement is performed by a laser scattering diffraction method particle size distribution (particie 11 201139567 38286pifl revision date: July 15, 100, the 100114096 Chinese manual no-line correction page size distribution) measuring device or the like. The glass powder containing the acceptor element was produced by the following procedure. First, weigh the ingredients and fill them into the hanging pot. The material of the trouble may be platinum, platinum-ruthenium, rhodium, alumina, quartz, carbon, etc., and may be appropriately selected in consideration of the melting temperature, the environment, and the reactivity with the molten material. ~(7)1 Secondly, the electric furnace is heated by a temperature corresponding to the glass composition to form a melt. At this time, it is preferable to agitate the squares and lines in which the melt becomes uniform. &quot; Then, the obtained solution is allowed to flow out onto a graphite plate, a nameplate, a face-gold alloy plate, a zirconia plate or the like to vitrify the melt. ° Finally, the glass is pulverized to form a powder. The pulverization can be applied to a known method such as a jet bead mill or a ball mill. The content ratio of the glass powder containing the acceptor element in the red-formed material forming the Ρ-type diffusion layer is determined in consideration of coatability, diffusibility of the acceptor element, and the like. In general, the composition content ratio of the p-type diffusion layer is preferably _ mass% or more to 95 mass% == ! The quality is as high as 9 G mass% or less, and more preferably 1 to 8 mass% or less, particularly preferably Once more than $10/〇, the dispersion medium is from up to 8Q_. The incorporation of 4 bis refers to dispersing the above-mentioned glass powder in the composition, using a spotting agent or a solvent or the like as a dispersion medium. As a binder, for example, a sickle-like shape; I sheet amines, polyethylene amines, d-vinyl alcohol, polypropylene (p〇lyethylene oxlde ^ ^ ^ ^ ^ ^ 頬, poly-% acid, acrylamide) Alkyl sulfonic acid, 12 201139567 38286pifl JOZ-OOpiIl is no correction for Chinese coffee book No. 100114096 曰 Corrected flood season: July 15, 100 = propylene glycol propyl acetate, dipropylene glycol methyl acetate乙B_'γγ, γ-valerolactone, etc. ^ - Ν-methylpyrrolidone, its 々 々 丨, acetonitrile, N NW each di-based such as _, Ν-butyl decylamine , Ν Ν-dimethyl meth, 1 f per hexyl sulfonamide, hydrazine, hydrazine dimethyl hydrazine; methanol, ethanol, n-propanol, isopropanol 4 dibutanol, the first: r Dingsa TL, Wu Butanol, Dijon &amp; butyl, n-pentanol, isoamyl alcohol, 2-methylbutanol, flute-pentanol, third pentanol, 3_methyl A TP3^ Alcohol, 2-ethylbutane di-, n-hexanol, 22, alcohol, "n-nonanol, n-nonanol, di-, di-, ethyl alcohol, tripropylene glycol and other alcohol-based solvents; Dimethyl = ethyl hydrazine, ethylene glycol monophenyl, Ethylene glycol single nail shout: alcohol] ether, diethylene glycol single _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Base guanidine, dipropylene glycol mono (10), butyl propylene glycol, dipropylene glycol single agent (10) thin, bismuth; alcohol Ullo-oclmene), holding rare earth &amp; bellerolene 一种 one, or a combination of two or more 4 Cloth dispersing, when forming a product, the coating of the substrate is called butoxy single-positive top, 15 201139567 38286pifl is the 100114096 Chinese manual without a sizing correction page. Correction period: 100 years July 15 曰 formation P The content ratio of the dispersion medium in the composition of the type of diffusion layer is determined in consideration of coatability and acceptor concentration. X Considering the coatability, the viscosity of the composition forming the P-type diffusion layer is preferably 10 mPa·s or more. It is more than 1,000,000 mPa.S or less, more preferably 5 〇mpa s or more to 500,000 mPa.S or less. Next, a method of manufacturing the P-type diffusion layer and the solar cell element of the present invention will be described. ° For a stone as a p-type semiconductor substrate The substrate is given an experimental solution to damage the layer and obtain a grain by etching. In particular, the taxis use '20% by mass of caustic soda to remove 4 damaged layers from the surface. Then, use a mixture of =% by mass (four) to form a texture to promote the optical ship effect. High efficiency. The formation of the text, the culture and the science can be followed by 'in the case of oxygenated phosphorus (p〇cl), 氦 备 备 u, _. . ~900. . The treatment of tens of minutes of milk from: also reaches the side and back, the two sides of n, and also formed on the side, back. Because of the phenotype diffusion layer and ❹m. 4 The above-mentioned opposite substance is coated on the n-type diffusion layer on the surface of the back disk side of the side surface of the semiconductor substrate, and the composition of the p-type diffusion is formed. There is no limitation in the method. For example, in this U, the application of the coating method, the brush coating, and the spraying 16 201139567 38286pifl The correction date: July 15, 100 is the 100114096 Chinese manual without the sizing correction page on the substrate. Produce the enchantment of the substrate. [Example 8] The glass powder was set to a B203-SiO 2 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (B2〇3: 30%, SiO 2 : 10%, PbO · 40% ' ZnO : 10%) 'CaO: 1%%), except that a composition for forming a p-type diffusion layer was prepared in the same manner as in Example 1, and the composition for forming a P-type diffusion layer was used to form a p-type diffusion layer. Further, the glass Q powder had a softening temperature of 370 ° C. Further, the crystallization temperature is ll 〇〇 ° C or more, which exceeds the measurement range of the thermal analyzer. The sheet resistance of the surface coated with the side on which the composition of the p-type diffusion layer was formed was 25 Ω/□' B (collar) to form a p + -type diffusion layer. On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the p + -type diffusion layer was not substantially formed. In addition, no surface curvature of the substrate was produced on the Shi Xi substrate. [Example 9] The glass powder was set to a B2〇3-Si〇J-based glass having a particle shape of a substantially spherical shape and an average particle diameter of 〇3.2 μm (b2〇3: 30%, Si〇2: 10%, PbO: A composition for forming a p-type diffusion layer was prepared in the same manner as in Example 1 except that 30% 'ZnO: 20% 'NaO: 10%), and the composition for forming a p-type diffusion layer was used to form a P-type. Diffusion layer. Further, the softening temperature of the glass powder was 390 °C. Further, the crystallization temperature is ii 〇〇 ° c or more and exceeds the measurement range of the thermal analysis apparatus. The sheet resistance of the surface coated with the side on which the composition of the p-type diffusion layer was formed was 31 Ω/□' B (bad) diffusion to form a p + -type diffusion layer. On the other hand, 25 201139567 38286pifl · The sheet resistance of the part of the composition of the p-type diffusion layer is too large for the first leg of the employee's article, if there is no scribe line correction page, the date of the modification is July 15 曰 uncoated. However, it was judged that the p+ type diffusion layer was not formed substantially. In addition, the embossing of the substrate is not generated on the substrate. [Example 10] A glass powder was set to a B2〇3_Zn〇 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μm (b2〇3: 3〇%, Zn〇: 4〇%, CaO: 20% ' Al2〇3: 10%) 'Aside from this, a composition for forming a P-type diffusion layer was prepared in the same manner as in Example 1, and a composition for forming a diffusion layer of 1) was used to form a diffusion layer of the type]. Further, the softening temperature of the glass powder was 505. (: The other 'crystallization temperature is cc or more, which exceeds the measurement range of the 孰 analyzer. The surface resistance of the surface coated with the opening of the composition of the p-type diffusion layer is 43 Ω/□, B ( On the other hand, the sheet resistance of the portion where the composition for forming the p-type diffusion layer was not applied was too large to be measured, and it was judged that the p + -type diffusion layer was not substantially formed. No warpage of the substrate occurred on the substrate. [Example 11] The glass powder was set to a BaCVSiO2 system glass having a particle shape of a substantially spherical shape and an average particle diameter of 3.2 μη (B2〇3: 50%, Si〇2: 10%, A composition forming a p-type diffusion layer was prepared in the same manner as in Example 1 except that ZnO. 30%, CaO. 10%) was set to 2 〇 minutes, and a p-type was formed using the same method as in Example 1. The composition of the diffusion layer forms a p-type diffusion layer. Further, the glass powder has a softening temperature of 69 (rc. Further, the crystallization temperature is 110 (TC or more, which exceeds the measurement range of the thermal analyzer.
TW100114096A 2010-04-23 2011-04-22 Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element TWI488222B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010100227 2010-04-23

Publications (2)

Publication Number Publication Date
TW201139567A true TW201139567A (en) 2011-11-16
TWI488222B TWI488222B (en) 2015-06-11

Family

ID=44834296

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100114096A TWI488222B (en) 2010-04-23 2011-04-22 Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TW104101934A TWI541869B (en) 2010-04-23 2011-04-22 Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104101934A TWI541869B (en) 2010-04-23 2011-04-22 Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element

Country Status (3)

Country Link
JP (2) JP5541359B2 (en)
TW (2) TWI488222B (en)
WO (1) WO2011132782A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160047480A (en) * 2013-08-30 2016-05-02 히타치가세이가부시끼가이샤 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, method for producing semiconductor substrate with n-type diffusion layer, and method for manufacturing solar cell element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL207969A (en) * 1955-06-28
US4891331A (en) * 1988-01-21 1990-01-02 Oi-Neg Tv Products, Inc. Method for doping silicon wafers using Al2 O3 /P2 O5 composition
JPH06105696B2 (en) * 1988-12-15 1994-12-21 シャープ株式会社 Method for manufacturing semiconductor device
JPH02177569A (en) * 1988-12-28 1990-07-10 Sharp Corp Manufacture of solar cell
JPH04158514A (en) * 1990-10-22 1992-06-01 Sumitomo Chem Co Ltd Impurity diffusion to semiconductor substrate
JPH04174517A (en) * 1990-11-07 1992-06-22 Canon Inc Manufacture of diamond semiconductor
KR101556873B1 (en) * 2007-01-03 2015-10-02 나노그램 코포레이션 Nanoparticle inks based on silicon/germanium, doped particles, printing and processes for semiconductor applications
WO2009060761A1 (en) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. Dopant host and process for producing the dopant host
JP5522900B2 (en) * 2008-02-22 2014-06-18 東京応化工業株式会社 Electrode forming conductive composition and method for forming solar cell
TW201007770A (en) * 2008-06-06 2010-02-16 Du Pont Glass compositions used in conductors for photovoltaic cells
JP5447397B2 (en) * 2010-02-03 2014-03-19 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell

Also Published As

Publication number Publication date
JP2014150261A (en) 2014-08-21
TW201521092A (en) 2015-06-01
WO2011132782A1 (en) 2011-10-27
TWI488222B (en) 2015-06-11
TWI541869B (en) 2016-07-11
JP5541359B2 (en) 2014-07-09
JPWO2011132782A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
TWI480930B (en) Method for producing photovoltaic cell
TW201140659A (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell
TW201140660A (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TW201201400A (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TW201214742A (en) Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer
CN103688341B (en) N-type diffusion layer is formed by compositions, the manufacture method of n-type diffusion layer and the manufacture method of solar cell device
TW201212107A (en) Composition for forming impurity diffusion layer, method for producing impurity diffusion layer, and method for producing photovoltaic cell element
TW201230380A (en) Method for producing photovoltaic cell
TW201139567A (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI548102B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TWI482302B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TW201125154A (en) Fabricating method of solar cell
TWI480929B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TW201214528A (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
JP2017139419A (en) P-type diffusion layer forming composition, method for manufacturing semiconductor substrate with p-type diffusion layer, manufacturing method for solar cell element, and solar cell element
TW201530791A (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer and method for producing photovoltaic cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees