201121525 六、發明說明: 【發明所屬之技術領域】201121525 VI. Description of the invention: [Technical field to which the invention belongs]
作分析後取得量 化參數的結果,最後再交由臨床治_做為參考的依據。同 本發明係關於一種;室& W7能.鉢· ^上·„ 有關於一 統。本發印 平台的人4 時,本發明提供人機互動模式, 可以幫助訓練患者之上肢運 動。 【先前技術】 中風後上肢動作的缺損是最主要的後遺症之一,約2/3 的中風病患會有上肢的功能缺損,中風初期會有8〇%病患上 肢功能缺損,到了慢性朝後仍有4〇%的病患上肢功能障礙依 然存在,因此在偏癱患者上肢動作功能的回復期中,往往會 留下功能上的缺失,而影響往後日常生活功能的表現。如何 能夠有效的評估中風偏癱患者的上肢功能,對於復健專業人 員而言,會是一個很重要的課題。 然而中風後的病患常見的上肢問題有肌肉張力的改 變、不正常的協同性動作以及缺乏關節間的協調性,所以當 這些病患上肢動作時,會出現異於常人缓慢且不協調的動 作,而造成生活上的不方便。因此動作分析經常當作是中風 後上肢功能指標性的評估方式。 在上肢動作的復健上常使用之動作分析系統包括 201121525 VICON、FASTRAK等空間分析系統,其優點是可測得較多 參數,精準度較高,而缺點是要在固定的空間裝上多個感測 器’花費較多時間設置與後續資料分析,且需要專業人員陪 同操作。另外還有常用的上肢復健評估量表像Fugl_meyer、 Bmnnstrom、Ashworth等,皆可評估病患上肢功能等級,不 過也需要專業人員在旁陪同評估,花費較多人力與時間。然 而這些評估工具的共通點均是為了能夠評估病患上肢動作 的功能性,雖然在相關的臨床研究上,有它們的應用價值, 但是倘若能建立一簡易使用的的上肢動作評估系統,可提供 給臨床物理治療師做為參考的依據,能夠造福更多的病患, 減少治療師的壓力。 【發明内容】 本發明所欲解決之技術問題After the analysis, the results of the quantitative parameters were obtained, and finally the clinical treatment was used as a reference. The present invention relates to one type; room & W7 can. 钵 · ^上· „ About the unified system. The present invention provides a human-computer interaction mode, which can help train the upper limb movement of the patient. Techniques] The defect of upper limb movement after stroke is one of the most important sequelae. About 2/3 of stroke patients will have functional defects of upper limbs. In the initial stage of stroke, there will be 8% of patients with upper limb function defects. 4% of patients with upper extremity dysfunction still exist, so in the recovery period of upper limb motor function in patients with hemiplegia, there will often be a lack of function, which affects the performance of daily life function. How can effectively evaluate patients with stroke hemiplegia The upper limb function is an important issue for rehabilitation professionals. However, the common upper limb problems of patients after stroke have muscle tension changes, abnormal coordinated movements, and lack of coordination between joints. Therefore, when these patients move up the upper limbs, there will be slow and uncoordinated movements that are different from ordinary people, resulting in inconvenience in life. It is often used as an evaluation method for upper limb function after stroke. The motion analysis system commonly used in rehabilitation of upper limb movements includes 201121525 VICON, FASTRAK and other spatial analysis systems, which have the advantage of measuring more parameters and accuracy. High, but the disadvantage is to install multiple sensors in a fixed space's time spent setting up and subsequent data analysis, and need to be accompanied by professionals. There are also commonly used upper limb rehabilitation assessment scales like Fugl_meyer, Bmnnstrom Ashworth, etc., can assess the upper limb function level of patients, but it also requires professionals to accompany the assessment, which takes more manpower and time. However, the common point of these assessment tools is to be able to assess the functional function of the upper limb movement of the patient. Although they have their application value in related clinical research, if a simple use of the upper limb motion evaluation system can be established, it can be provided as a reference for clinical physiotherapists, which can benefit more patients and reduce The pressure of the therapist. [Disclosed] The technical problem to be solved by the present invention
在現有技術中,針對上肢功能的評估已有光學動作分 析系統以及專業評估量表(Fugl-meyer、Brunnstrom)等方 式,但這些現有技術皆必須有專業人員的陪同下操作,而且 光學動作分析系統成本高。 由於臨床上物理治療師評估上肢功能是否有缺損,往 往只能依賴一些量表進行評估,而可以提供客觀的上肢運動 學參數之動作分析系統又十分昂貴且不易操作。故本研究提 供一個操作方便、成本低廉的簡易上肢功能評估與訓練之系 統。藉由量測不同的上肢功能損傷的患者,比較其運動學斗寺 徵與上肢功能的關係’以運動學的特徵評估上肢功能,達至】 201121525 簡易上肢功能評估的目的,並可提供給臨床人員做為參考的 依據。 本發明之另一目的係提供一種有效的臨床評估中風病 患上肢動作功能之系統,利用加速規和電子尺以及相關資料 擷取完成本發明之系統架構,將有助於減少中風病患上肢動 作功能的殘留缺失及提升日常生活功能的表現,進而促進中 風病患的生活品質。 本發明解決問題之技術手段 本發明為解決習知技術之問題所採用之技術手段係在 受測者上肢的肩膀肩峰處與手腕處設置適當數量的加速規 ,一電子尺之第一端定位在適當固定的地方如受測者上肢肩 膀,而第二端係定位在欲評估訓練之處如受測者上肢手腕。 該加速規及電子尺所感測的類比訊號經資料擷取介面及類 比至數位轉換器後送至一電腦平台。利用加速規和電子尺等 感測器的特性,搭配電腦平台的虛擬實境的人機介面視覺回 饋的方式,提供上肢功能缺損的所有患者,如中風偏癱患者 可以進行這樣的方法來評估以及訓練,經由系統分析後取得 量化參數的結果,再利用視覺回饋的方式達到訓練的目的, 最後再交由臨床治療師做為參考的依據。 本發明對照先前技術之功效 本發明是以操作方便、成本低廉為系統需求,藉由三 軸加速規以及電子尺的特性,結合人機介面來評估中風偏癱In the prior art, the evaluation of the upper limb function has an optical motion analysis system and a professional evaluation scale (Fugl-meyer, Brunnstrom), etc., but these prior art must be accompanied by a professional operation, and the optical motion analysis system high cost. Because clinical physiotherapists assess whether there is a defect in upper limb function, they can only rely on some scales for evaluation, and an action analysis system that provides objective upper extremity kinematic parameters is expensive and difficult to operate. Therefore, this study provides a system for easy evaluation and training of simple upper limb functions that is easy to operate and low in cost. By measuring the difference of upper limb functional impairment, the relationship between the kinetics of the martial arts and the function of the upper limbs is evaluated. The upper limb function is evaluated by the characteristics of kinematics. 201121525 The purpose of simple upper limb function assessment can be provided to the clinic. The basis for personnel as a reference. Another object of the present invention is to provide an effective clinical evaluation system for the upper limb movement function of a stroke patient, and using the acceleration gauge and the electronic ruler and related data to complete the system architecture of the present invention will help reduce the upper limb movement of the stroke patient. The lack of function remains and enhances the performance of daily life functions, thereby promoting the quality of life of stroke patients. Technical Solution for Solving the Problems The technical means adopted by the present invention to solve the problems of the prior art is to provide an appropriate number of accelerometers at the shoulder shoulders of the upper limbs of the subject and the wrist, and the first end of the electronic ruler is positioned. In a properly fixed place such as the shoulder of the upper limb of the subject, and the second end is positioned at the place where the training is to be evaluated, such as the wrist of the upper limb of the subject. The analog signal sensed by the accelerometer and the electronic ruler is sent to a computer platform through the data acquisition interface and the analog to digital converter. Using the characteristics of sensors such as accelerometers and electronic rulers, and the virtual reality of human-machine interface visual feedback on the computer platform, all patients with upper limb function defects, such as stroke hemiplegia patients, can be evaluated and trained. After the system analysis, the results of the quantitative parameters are obtained, and then the visual feedback is used to achieve the purpose of training, and finally the clinical therapist is used as a reference. The present invention compares the efficacy of the prior art. The present invention is based on the convenience of operation and low cost, and the characteristics of the three-axis acceleration gauge and the electronic ruler are combined with the human-machine interface to evaluate the stroke hemiplegia.
201121525 患者上肢的功能性。 ^明提供-個簡易域功能評估及輯之系統。本 H、4*彻加速規和電子尺㈣測㈣特性,搭配電腦平 :=建置的人機介面及數值分析程式,可將中風偏靡患者 的、軍勒::分析後取得量化參數的結果,得到該受測者上肢 =學參數資斜進行患者上肢之運動功能並提供人機互 動回饋之魏,使患者上肢得職健運動訓練之效果,最後 ^由臨床治療師做為參考的依據。藉由量财風偏靡患 ^患側和健側分別以翔和同時伸手動麵分析,能夠以 疋性的方式評估上肢功能,達到簡易上肢功能評估的目的。 在本發明的使用上,是為了節省專業醫療人員的使 用’只要-般看護即可操作此系統,並且能夠達到簡易上肢 评估的目m卜之後再加人_計分析可⑽餅估的準 確期望能將評估方式分成幾個等級,讓整個評估系統更 為完整。 本發明在未來工作的考量上,在實驗評估訓練過程 :’能夠將相關的參數記錄下來,結合網際網路的功能,將 廷些資料傳送到遠端的復健科醫師,依系統的評估内容,透 過網路視訊指示做更進—步的上肢訓練動作,讓中風患者不 用時4跑醫P元回診,確實減少醫療資源的浪費。 本發明之其它目的及其功效,將藉由以下之實施例及 附呈圖式作進一步之說明。 201121525 【實施方式】 >閱第1圖所不’其顯*本發明之電路系統示意圖。 本發明中風偏癱患者的上肢運動功能評估及訓練系統刚 包括有一第一加速規U、-第二加速規12、一電子尺 ?(P〇tenti〇meter)、一資料擷取介面14、一類比至數位轉換 器15、一電腦平台16。電腦平台16可採用一般商用電腦系 統或是特㈣位控制統,其可配置—顯示器17及記憶裝 置18。第一加速規u、第二加速規12、電子尺η連接至 資料擷取介面14,由該資料擷取介面14將各個感測器的類 比訊號祿取後,由類比至數位轉換器15將類比訊號轉換為 數位訊號’再送到電腦平台16做分析。 第加速規11及第一加速規12可採用商用ADXL330 之二軸加速規,此三軸加速規是使用的MEMS微機電製 私操作電壓可支援1.8-3.6V的低電產,最高的可偵測土 的重力加速度,採用靜電容感應式的設計。 電子尺13又稱為電位計,可以用來量測位移。電子尺 最主要的特色是線性度,所謂線性度就是擺臂每移動一距 離,裡面的精密電阻會產生一等比例於距離的電壓變化,而 與擺臂所在的位量無關。 本發明使用電子尺13搭配加速規11、12來進行上肢 動作的量測與分析以及視覺回饋之訓練,由於電子尺可以量 測線性的運動,加速規可以量測三維的運動,可利用適當的 電子尺搭配加速規放置位置,可量測直線線性度與角度的變 化,例如:往前伸手運動、往側邊的手部運動、手部旋轉的 201121525 動作…等等。 資料擷取介面14可採用商用NI pci_62n資料操取介 面(DAQ)和它的擴充版CB_68LpR,將各個感測器的類比型 態的電訊號操取到電腦平台16做分析。此DAQ卡擁有16 位元解析度、250k/s取樣率、16個類比輸入通道,能夠將 第-加速規Π、第二加速規12、電子尺13 &訊號同時操取 以供後續的處理分析取介面14亦可制測介面 φ 作為資料傳輸介面,可以讓整個系統變得更有可攜性。 電腦平自16中使用的軟體是商肖LabVIEW作為人機 介面及數值分析程式16卜用來建立人機介面,可以設計出 個外觀與操作上都跟實際儀器相似的虛擬儀表。 參閱第2圖所示’在進行中風偏癱患者的上肢評估前, 讓受測者2(中風偏癱患者)坐在-測試桌3前—適當距離 處,、並在受測者2患側21之手腕穿戴上-财魔鬼數的活 動式護腕,將第-加速規n設置在肩部的肩峰(嶋mi— • 之位置,利用透氣膠帶固定,而第二加速規12係設置在手 腕的橈月莖突(radial styi〇id pr〇ces〇和尺骨莖突(η〗⑽犷 _〇id pr〇cess)之中間,與中指延伸線之交又位置利用魔鬼 氈與透氣膠帶固定。在受測者2患側21的肩膀鎖骨上固定 電子尺13❺第一端13a,電子尺13的第二端別固定在受 測者2 _ 21料腕橈骨莖突的位置,利用魔鬼乾與透氣 夕帶固疋放置好所有感測器後,可再利用彈性繃帶固定 測者2躯幹。 測量受測者2 f臂的長度以及上手臂和下手臂的長 201121525 度,並記錄下來,在桌面上放置一目標物4,距離受測者2 個手#長度而能抓取的位置。放置目標物4的目的是讓受 測者2能夠在實驗過程中有個目標物,讓受測者2能順利配 _取資料。在進行復健評估及訓練時,顯示器17可提供 了一人機互動回饋的人機界面。 心參閱第3圖所示,受測者2手部往前伸展的起始點ρι 為=測者2手肘角度以量角器固定為90度(沒度),手財角 =里測方式是以鷹嘴突(01ecranon Process)作為原.點,量測 者2肩部肩峰位置與手腕尺骨莖突的角度。手部終止點 ;、、又測者2手部可以伸展的最大距離。而中風患者接受 ㈣t患側前伸距離則以其能主動動作達到的距離為準。 設置:測者2坐在測試桌3前的椅子上完成各個感測器的 :,二:可進行評估步驟。受測者2聽到測試開始指示 ’、與最準確的方式去碰觸最前方已設定的終止點, 盡置沿著測試桌3桌面已畫上、仲 的動作。在音 冰迟仃于旱向下則伸展 的剛試。例如V丁:試時,可以設計出各種不同運動型態 pi處之亍立 圖係顯不受測者2的手部位在起始點 的手部運動1㈣顯示受測者2的手部往側邊位移 (方向⑽手部運動矛音圖係:不又測者2的手部往前伸手 移動-角度( 二® 1 7圖係_受測者2的前臂 轉方向叫的手部運動示意圖。 患側2'ΐ單手無系統所進仃的實驗測試的項目亦可有:⑴ 及健侧22雙手手抓取水平桌面的目標物;(2)患側21 雙手问時操作,伸手抓取水平桌面的目標物;(3) 201121525 患側21單手操作,伸手抓取水平桌面的目標物後,抬高至 高於肩膀平面;(4)患側21及健侧22雙手同時操作,伸手抓 取水平桌面的目標物後,抬高至高於肩膀平面。實驗的過程 中,如果受測者第丨項及第2項測試項目都有困難度時,就 不會測試第3項及第4項的測試項目。 資料擷取介面14在進行各個實驗測試的項目中所擷取 到各個感測器的類比訊號,會傳送到類比至數位轉換器 15,以將類比訊號轉數位訊號後,由電腦平台“之人機介 面及數值分析程式161虛擬儀表上顯示出有用的量化參 數,例如:位移的距籬、最大加速度值、最大速度值、手財 角度、總共運動時間·..等等。使用人機介面及數值分析程式 161記錄其過程,每次試驗做三次記錄,再分析評估其結 果。而系統評估方式是分析伸手動作在實驗設置的起始點到 終止點期間’找出其運動學特徵的關係 資料⑻。運動學參數資…可包括加速== 移等參數。最後經由統計分析的方法評估上肢的功能性。運 動學參數資料181可儲存在記憶裝置18中,也可以進一步 傳送至其它分析系統中作進一步的數值分析。 在實驗的虛擬設計介面上,有位移的參數用來代表受 測者手部伸手的程度,還有三軸加速規電訊號的即時呈現以 及各軸的加速度值,都可表示在虛擬儀表介面上。當受測者 在要抓取物體的過程中,手腕上平行桌面的加速度會由大變 小’手腕上另外兩軸加速度_化可以看出手腕是否有翻轉 的情形,而肩膀上的加速規可以知道受測者崎是否有移動 201121525 的情形。此外㈣電子尺量側的距離再加上手臂的長度,即 可算出手肘彎曲的角度。 第8圖顯示本發明第二實施例。在此實施例中,電子 尺13的第一端13a是配置在受測者2的選定位置(例如圖式 中所不的體骨處),而第二端13b固定在受測者2患側Μ的 手腕位置。受測者2之整雙手臂盡可能伸直拉取電子尺13, 依照顯示器17所提供的人機界面(可作人機互動回饋)而可 ^ 達到復健評估及訓練之目的。 第9圖顯示本發明第三實施例。在此實施例中,電子 尺13的第一端13a是固定在牆邊,而第二端i3b固定在受 測者2患側21❺手腕位置,加速規u固定在手腕位置。受 、者之刖#與手腕做左右的運動,依照顯示器17所提供 的人機界面而可達到訓練之目的。 _由以上之實施例可知,本發明可以對受測者2上肢往 伸手的動作進行復健評估及訓練’也可以評估訓練手部外 # &甚至手的全部動作的復健評估及訓練。依據實際的需 要加速規與電子尺的位置與數量並不受限制。 本發明不僅僅可評估應用在往前伸展之單一維度的動 作’也可以藉由分析其他兩維度,來輔助分析上肢運動學的 關參數。另外亦可配合使用陀螺儀、磁力計等慣性元件, 即可定位空間令的位置,辨識上肢運動的軌跡,使得評估更 為確。 、上之貫施例說明,僅為本發明之較佳實施例說明, 凡精於此項技術者當可依據本發明之上述實施例說明而作 201121525 其匕種種之改良及變化。然而這些依據本發明實施例所作的 種種改良及變化,當仍屬於本發明之發明精神及以下所界定 之專利範圍内。 【圖式簡單說明】 第1圖顯示本發明之電路系統示意圖; 第2圖顯示本發明第—實_巾,受測者的上肢配置加速規 及電子尺之前視示意圖; 第3圖顯示受測者的上肢配置加速規及電子尺之側視示意 圖; 第4圖顯示受測者的上肢配置加速規及電子尺之俯視示意 圖; 第5圖顯示受測者的手部往側邊位移的手部運動示意圖; 第6圖顯示受測者的手部往前伸手的手部運動示意圖; 第7圖顯示受測者的前臂移動—角度的手部運動示意圖; 第8圖顯示本發明第二實施例; 第9圖顯示本發明第三實施例。 【主要元件符號說明】 中風偏癱患者的上肢運動功能評估及訓練系統 11 第一加速規 12 第二加速規 13 電子尺 13a 第一端 -12 · [S] 201121525201121525 Functionality of the upper limb of the patient. ^ Ming provides - a system for easy domain function evaluation and compilation. This H, 4* thorough acceleration gauge and electronic ruler (four) test (four) characteristics, with computer flat: = built human-machine interface and numerical analysis program, can be used for stroke patients with hemiplegia:: after analysis to obtain quantitative parameters As a result, it is obtained that the subject's upper limbs = learning parameters are inclined to perform the motor function of the upper limbs of the patient and provide the interaction of the human-machine interaction feedback, so that the upper limbs can obtain the effect of the occupational health training, and finally the basis of the clinical therapist as a reference. . By measuring the financial bias, the affected side and the healthy side were analyzed by Xiang and simultaneous manual analysis, and the upper limb function can be evaluated in a sturdy manner to achieve the purpose of simple upper limb function evaluation. In the use of the present invention, in order to save the use of professional medical personnel, as long as the general care can operate the system, and can achieve the goal of simple upper limb assessment, and then add people to calculate the accuracy of the (10) cake estimate. The evaluation method can be divided into several levels to make the entire evaluation system more complete. In the future work considerations of the present invention, in the experimental evaluation training process: 'the relevant parameters can be recorded, combined with the function of the Internet, the data is transmitted to the remote rehabilitation physician, according to the evaluation content of the system. Through the network video instructions to do more advanced step-up training exercises, so that stroke patients do not use 4 doctors to return to the doctor, it really reduces the waste of medical resources. Other objects and effects of the present invention will be further clarified by the following examples and accompanying drawings. 201121525 [Embodiment] > FIG. 1 is a schematic diagram of a circuit system of the present invention. The upper limb motor function evaluation and training system of the stroke hemiplegic patient of the present invention includes a first acceleration gauge U, a second acceleration gauge 12, an electronic scale (P〇tenti〇meter), a data capture interface 14, and an analogy. To the digital converter 15, a computer platform 16. The computer platform 16 can be a general commercial computer system or a special (four) bit control system, which can be configured - a display 17 and a memory device 18. The first acceleration gauge u, the second accelerometer 12, and the electronic scale η are connected to the data capture interface 14, and the analog capture signal of each sensor is taken by the data capture interface 14, and the analogy to the digital converter 15 The analog signal is converted to a digital signal and sent to the computer platform 16 for analysis. The first accelerometer 11 and the first accelerometer 12 can adopt the two-axis accelerometer of the commercial ADXL330, which uses the MEMS micro-electromechanical operating voltage to support the low-voltage production of 1.8-3.6V, the highest detectable The gravity acceleration of the soil is measured by a static capacitance induction type. The electronic ruler 13, also known as a potentiometer, can be used to measure displacement. The most important feature of the electronic ruler is linearity. The so-called linearity is the distance between each movement of the swing arm. The precision resistor inside will produce a voltage change proportional to the distance, regardless of the amount of the arm. The invention uses the electronic ruler 13 with the acceleration gauges 11, 12 for the measurement and analysis of the upper limb motion and the training of the visual feedback. Since the electronic ruler can measure the linear motion, the acceleration gauge can measure the three-dimensional motion, and the appropriate The electronic ruler is equipped with an accelerometer placement position to measure linear linearity and angle changes, such as: forward hand movement, hand movement to the side, hand movement 201121525 action, and so on. The data capture interface 14 can be implemented by the commercial NI pci_62n data manipulation interface (DAQ) and its extended version CB_68LpR, and the analog type electrical signals of the respective sensors are processed to the computer platform 16 for analysis. The DAQ card has 16-bit resolution, 250k/s sampling rate, and 16 analog input channels. It can simultaneously operate the first acceleration gauge, the second acceleration gauge 12, and the electronic scale 13 & signal for subsequent processing. The analysis interface 14 can also be used to measure the interface φ as a data transmission interface, which can make the whole system more portable. The software used in the computer is the LabVIEW as a human-machine interface and the numerical analysis program is used to create a human-machine interface. A virtual instrument with similar appearance and operation to the actual instrument can be designed. Referring to Figure 2, before the upper limb assessment of patients with stroke hemiplegia, let the subject 2 (a stroke hemiplegia patient) sit at the appropriate distance in front of the test table 3, and at the wrist of the affected person 2 on the affected side 21 Wear the active wristband of the Devil's number, set the first acceleration gauge n on the shoulder of the shoulder (嶋mi— • position, fixed with breathable tape, and the second acceleration gauge 12 is set on the wrist of the wrist. In the middle of the styloid process (radial styi〇id pr〇ces〇 and ulnar styloid process (η〗 (10)犷_〇id pr〇cess), and the middle finger extension line is fixed with the devil's felt and breathable tape. The second end 13a of the electronic ruler 13 is fixed on the shoulder clavicle of the affected side 2, and the second end of the electronic ruler 13 is fixed at the position of the styloid process of the wrist of the subject 2 _ 21, using the devil's dry and the ventilated temperament After placing all the sensors, you can use the elastic bandage to fix the torso of the tester 2. Measure the length of the 2 f arm of the subject and the length of the upper and lower arms of 201121525 degrees, and record and place a target on the table. 4, the position that the subject can take 2 hands #length and can be grasped. The purpose of the object 4 is to enable the subject 2 to have a target during the experiment, so that the subject 2 can smoothly obtain the data. When performing the rehabilitation evaluation and training, the display 17 can provide a human-computer interaction. Feedback on the human-machine interface. As shown in Figure 3, the starting point of the subject's 2 hand forward is ρι = = 2, the elbow angle is fixed at 90 degrees (no degree), the hand corner = The method of measuring is based on the 01ecranon process as the original point. The angle of the shoulder of the shoulder is measured at the angle of the shoulder and the styloid process of the wrist. The hand is terminated. The maximum distance, while the stroke patient accepts (four) t the front side reach distance is based on the distance that can be achieved by the active action. Setting: The tester 2 sits on the chair in front of the test table 3 to complete each sensor: Evaluation step. Subject 2 hears the test start indication ', and touches the most advanced way to touch the end point that has been set at the forefront, and puts the action on the table along the test table 3 to draw the upper and middle movements. Just try to stretch in the dry down. For example, V Ding: When you try, you can design The movement diagram of the various movement patterns pi shows the hand movement of the hand part of the undetected person 2 at the starting point. 1 (4) The hand of the subject 2 is displaced to the side (direction (10) hand movement spear sound Figure: The hand of the tester 2 is not moved forward - the angle (two ® 1 7 system _ the hand movement diagram of the forearm of the subject 2 is turned. The affected side 2' ΐ one hand without the system The experimental test items of 仃 can also be: (1) and the side of the healthy side 22 grasping the target of the horizontal tabletop; (2) the affected side 21 hands when asked to reach the target of the horizontal table; (3) 201121525 The affected side 21 is operated by one hand. After reaching the target of the horizontal table, it is raised to a level higher than the shoulder plane. (4) Both the affected side 21 and the healthy side 22 are operated at the same time. After reaching the target of the horizontal table, the height is raised. On the shoulder plane. In the course of the experiment, if the subject's item and the second item are difficult, the test items of items 3 and 4 will not be tested. The data acquisition interface 14 extracts the analog signal of each sensor in the project for each experimental test, and transmits it to the analog to digital converter 15 to convert the analog signal to the digital signal, and then the computer platform The machine interface and the numerical analysis program 161 display useful quantization parameters on the virtual instrument, such as: the distance of the displacement, the maximum acceleration value, the maximum speed value, the hand angle, the total movement time, etc. Using the human machine interface and The numerical analysis program 161 records the process, and records three times for each test, and then analyzes and evaluates the results. The system evaluation method is to analyze the relationship between the kinematic characteristics of the hand-stretching action during the experimental start-to-end point. (8) The kinematic parameters can include parameters such as acceleration == shift. Finally, the function of the upper limb is evaluated by statistical analysis. The kinematic parameter data 181 can be stored in the memory device 18 or can be further transmitted to other analysis systems. For further numerical analysis. In the virtual design interface of the experiment, the parameters with displacement are used to represent the hand extension of the subject. The degree of the three-axis accelerometer signal and the acceleration value of each axis can be expressed on the virtual instrument interface. When the subject is in the process of grabbing the object, the acceleration of the parallel table on the wrist will be The big and small 'the other two axes of acceleration on the wrist _ can see whether the wrist has a flip, and the accelerometer on the shoulder can know whether the subject has moved 201121525. In addition (4) the distance on the side of the electronic scale The angle of the elbow bending can be calculated by adding the length of the arm. Fig. 8 shows a second embodiment of the present invention. In this embodiment, the first end 13a of the electronic ruler 13 is disposed at a selected position of the subject 2 ( For example, the body bone is not in the figure, and the second end 13b is fixed at the wrist position of the affected side of the subject 2. The whole arm of the subject 2 is as straight as possible to pull the electronic ruler 13, according to the display 17 The provided human-machine interface (which can be used for human-machine interactive feedback) can achieve the purpose of rehabilitation evaluation and training. Figure 9 shows a third embodiment of the present invention. In this embodiment, the first end of the electronic ruler 13 13a is fixed at The second end i3b is fixed on the wrist side of the affected side 2 of the subject 2, and the acceleration gauge u is fixed at the wrist position. The left and right movements of the subject and the wrist are performed according to the human-machine interface provided by the display 17. The purpose of the training is achieved. _ From the above embodiments, the present invention can perform rehabilitation evaluation and training on the movement of the upper limbs of the subject 2 to the hand. It is also possible to evaluate the recovery of all the movements of the hands outside the hands and even the hands. Health assessment and training. The position and quantity of the acceleration gauge and the electronic ruler are not limited according to the actual needs. The present invention can not only evaluate the action of the single dimension of the application stretching forward, but also by analyzing the other two dimensions. Auxiliary analysis of the closing parameters of upper limb kinematics. In addition, it can also be used with inertial components such as gyroscopes and magnetometers to locate the position of the space and identify the trajectory of the upper limb movement, making the assessment more accurate. The above description of the present invention is merely illustrative of the preferred embodiments of the present invention, and those skilled in the art can make various modifications and variations of the present invention in accordance with the above-described embodiments of the present invention. However, various modifications and changes made in accordance with the embodiments of the present invention are still within the scope of the inventive concept and the scope of the invention as defined below. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the circuit system of the present invention; Fig. 2 is a front view showing the first embodiment of the present invention, the upper limb configuration accelerating gauge and the electronic ruler; A schematic view of the upper limb configuration acceleration gauge and the electronic ruler; Figure 4 shows a top view of the subject's upper limb configuration acceleration gauge and the electronic ruler; Figure 5 shows the subject's hand displaced to the side of the hand Schematic diagram of the movement; Figure 6 shows a schematic diagram of the movement of the hand of the subject's hand reaching forward; Figure 7 shows the movement of the forearm of the subject - an angular movement of the hand; Figure 8 shows a second embodiment of the present invention Fig. 9 shows a third embodiment of the present invention. [Main component symbol description] Upper limb motor function evaluation and training system for patients with stroke hemiplegia 11 First accelerometer 12 Second accelerometer 13 Electronic ruler 13a First end -12 · [S] 201121525
13b 第二端 14 資料擷取介面 15 類比至數位轉換器 16 電腦平台 161 人機介面及數值分析程式 17 顯示器 18 記憶裝置 181 運動學參數資料 2 受測者 21 患側 22 健側 3 測試桌 4 目標物 PI 起始點 P2 終止點 I 移動方向 II 旋轉方向 [s] -13 -13b Second end 14 Data acquisition interface 15 Analog to digital converter 16 Computer platform 161 Human interface and numerical analysis program 17 Display 18 Memory device 181 Kinematic parameters 2 Subject 21 Patient side 22 Health side 3 Test table 4 Target Object PI starting point P2 End point I Moving direction II Direction of rotation [s] -13 -