[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201118353A - A novel method and equipment for measuring chromaticity coordinate and intensity of light - Google Patents

A novel method and equipment for measuring chromaticity coordinate and intensity of light Download PDF

Info

Publication number
TW201118353A
TW201118353A TW98139213A TW98139213A TW201118353A TW 201118353 A TW201118353 A TW 201118353A TW 98139213 A TW98139213 A TW 98139213A TW 98139213 A TW98139213 A TW 98139213A TW 201118353 A TW201118353 A TW 201118353A
Authority
TW
Taiwan
Prior art keywords
light source
light
brightness
chromaticity coordinates
color system
Prior art date
Application number
TW98139213A
Other languages
Chinese (zh)
Other versions
TWI392859B (en
Inventor
Yong-Nong Chang
Shih-Cin Tung
Yan-Chuen Wang
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW98139213A priority Critical patent/TWI392859B/en
Publication of TW201118353A publication Critical patent/TW201118353A/en
Application granted granted Critical
Publication of TWI392859B publication Critical patent/TWI392859B/en

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

This invention is related to a novel method and developed equipment for measuring chromaticity coordinate and intensity of light. The associated quantity of CIE chromaticity coordinate and intensity of incident visible light can be accomplished without requiring for expensive instruments, such as integral sphere and spectrometer and so on. By the invention, CIE chromaticity coordinate and intensity of various visible light sources can measured easily and quickly.

Description

201118353 六、發明說明: 【發明所屬之技術領域】 本發明係與光之量測有關,特別是關於可量測光之色 度座標與亮度之裝置與方法。 【先前技術】 當某一顏色之光源被人類所看見,從口中說出的往往 只是主觀地對於顏色的判別,無法直接讀取該顏色之實際 配色數量,因而國際照明委員(Commission Internationale deL’Edairage,CIE)以許多正常視覺的人對配色感覺的平 均,訂立標準觀測者之色感覺。在αΕ配色實驗中,以 二原色光混和,用以配出光譜中各單波光的色彩,如此所 用的二原色光的數量即稱之為光譜三刺激值,並以R、 G、Β表示之;通常我們並不直接用三刺激值來表示色 彩,而是以二原色在R、G、Β相加總量中的相對比例表 示,例如,當二原色光的相對亮度比例為丨〇〇〇〇 : 4.5907 : 0.0601時,就能匹配出等能白光,αΕ將此比例 選取為紅綠藍三原色的單位量,因此三原色在R、q、b 相加總量中的相對比例即為用以表示人眼所見顏色之αΕ 色度座標。 然而,欲得知可見光源顏色之CIE色度座標及亮 度’往往需具有如同CIE配色實驗所使用之測試環境, -般為利用積分球將光源處理為均勻漫射的光束輸出,再 配合光譜儀對該光源進行量測才可得知,然而該等儀器價 201118353 格卻十分昂貴;有鏗於此,本案發明人致力於尋找可量測 光之色度座標與亮度之方法,可以相較前述該等儀器價格 低得多的電子元件達成對任一人眼可見光源進行偵測,並 運算出其CIE色度座標及亮度。 【發明内容】 本發明之主要目的在於提供一種可量測光之色度座樑 與亮度之裝置與方法,可簡易並快速地量測出各種不同人 眼可見光源之CIE色度座標及亮度,以解決需藉由複雜 昂貴之儀器進行量測才可得知一光源顏色的CIE色度座 標及亮度之問題。 為達成上述目的,依據本發明技術思想所提供之一種 可量測光之色度座標與亮度之裝置,包含有至少一光偵測 器、一多工器、一類比數位轉換器、一運算處理器,以及 一顯示器。該等光偵測器係用以檢知一光源,並輸出多數 對應該光源之不同波長範圍之電訊號;該多工器係用以接 收該光偵測器輸出之電訊號,將不同之電訊號選擇性切換 輸出;該類比數位轉換器係與該多工器電性連接,以接收 該多工器輸出之電訊號,將其轉換為數位訊號後再輸出; 該運算處理器係與該多工器及類比數位轉換器電性連接, 以控制該多工器切換接收該光偵測器輸出之不同電訊號, 以及接收該類比數位轉換器輸出之數位訊號,將該些數位 訊號轉換出CIE色度座標及亮度之數值再輸出;該顯示 器係與該運算處理器電性連接,以顯示該處理器運算出之 201118353 數值;藉由上述技術手段,不需使用複雜昂貴之儀器進行 量測,即可簡易並快速地量測出任一光源之CiE色度座 標及亮度。 上述可量測光之色度座標與亮度之裝置中,可具有三 光债測器’且該等光偵測器可為以光二極體 (photodiode)所製成,用以檢知該光源,並分別輸出對 應該光源之紅、綠、藍光亮度之電訊號;該等光二極體耗 能低、功率高、體積小,且反應迅速,可提升該量測裝置 之功能性與便利性。 上述可量測光之色度座標與亮度之裝置中,該運算處 轉換式。 依據本發明技術思想所提供之另一201118353 VI. Description of the Invention: [Technical Field] The present invention relates to measurement of light, and more particularly to an apparatus and method for chromaticity coordinates and brightness of measurable light. [Prior Art] When the light source of a certain color is seen by human beings, it is often only subjectively discriminating the color from the mouth, and the actual color matching quantity of the color cannot be directly read, so the Commission Internationale deL'Edairage , CIE) establishes the standard observer's color sensation with the average of the color perception of many normal visual people. In the αΕ color matching experiment, the two primary colors are mixed to match the color of each single-wave light in the spectrum. The number of the two primary colors used in the spectrum is called the spectral tristimulus value, and is represented by R, G, and Β. Usually, we do not directly use the tristimulus value to represent the color, but the relative proportion of the two primary colors in the total amount of R, G, and Β, for example, when the relative brightness ratio of the two primary colors is 丨〇〇〇 〇: 4.5907 : 0.0601, it can match the white light of equal energy, αΕ select this ratio as the unit quantity of the three primary colors of red, green and blue. Therefore, the relative proportion of the three primary colors in the total amount of R, q and b is used to represent The color Ε chromaticity coordinates of the color seen by the human eye. However, to know the CIE chromaticity coordinates and brightness of the visible light source color, it is often necessary to have a test environment as used in the CIE color matching experiment, and generally use the integrating sphere to process the light source into a uniformly diffused beam output, and then cooperate with the spectrometer pair. The light source can be measured, but the price of the instrument is very expensive. In this case, the inventor of the present invention is working to find the chromaticity coordinate and brightness of the measurable light, which can be compared with the foregoing. The electronic components with much lower price of the instrument can detect any visible light source of the human eye and calculate its CIE chromaticity coordinates and brightness. SUMMARY OF THE INVENTION The main object of the present invention is to provide a device and method for measuring the chromaticity of the illuminating beam and brightness, which can easily and quickly measure the CIE chromaticity coordinates and brightness of various human visible light sources. The problem of CIE chromaticity coordinates and brightness of a light source color can be known by solving the measurement by a complicated and expensive instrument. In order to achieve the above object, a device for measuring the chromaticity coordinates and brightness of the light according to the technical idea of the present invention includes at least one photodetector, a multiplexer, an analog-to-digital converter, and an arithmetic processing. And a display. The photodetector is configured to detect a light source and output a plurality of electrical signals corresponding to different wavelength ranges of the light source; the multiplexer is configured to receive the electrical signal output by the optical detector, and the different telecommunication signals Selectively switching the output; the analog-to-digital converter is electrically connected to the multiplexer to receive the electrical signal output by the multiplexer, convert it into a digital signal, and output the same; The device and the analog digital converter are electrically connected to control the multiplexer to switch to receive different electrical signals output by the optical detector, and receive the digital signal output by the analog digital converter, and convert the digital signals into CIE The chromaticity coordinates and the brightness value are output again; the display is electrically connected to the arithmetic processor to display the 201118353 value calculated by the processor; by the above technical means, the measurement is not required by using a complicated and expensive instrument, The CiE chromaticity coordinates and brightness of any source can be measured easily and quickly. The device for chromaticity coordinates and brightness of the above-mentioned measurable light may have a three-light debt detector' and the photodetectors may be made of a photodiode for detecting the light source, and The electrical signals corresponding to the red, green and blue light levels of the light source are respectively output; the optical diodes have low energy consumption, high power, small volume, and rapid response, which can improve the functionality and convenience of the measuring device. In the above device for measuring the chromaticity coordinates and brightness of the light, the operation is converted. Another according to the technical idea of the present invention

轉換程式,以及一運墓虛拽鉬士、. 理器可為-儲存有將RGB表色祕轉換為χγζ表色系統 之參數矩陣的可程式化單晶片,藉此,可使該量測裝置 更為簡潔_。更甚者’該域義可對應該光源不同波 長範圍輸出不同之電壓訊號,而該可程式化單晶片可儲存 有將不同波㈣應之峨轉換為職表色系統之一The conversion program, as well as the one-to-one tomb, can be a programmable single-chip that stores a parameter matrix that converts the RGB color to the χγζ color system, thereby enabling the measurement device More concise _. What's more, the domain can output different voltage signals corresponding to different wavelength ranges of the light source, and the programmable single chip can store one of the different waveforms (four)

電訊號作處理,該多 工 多工處理程式、一類比數位 招士该單晶片係用以接收該 ,並分別以其該等程錢序對該些 處理程式係用以將該光偵測器輸出 201118353 之不同電訊號選擇性切換輸出,該類比數位轉換程式係用 以將該多=處理程錢出之電訊號轉換為數位訊號後再輸 出,該運算處理程式係用以將該類比數位轉換程式輸出之 數位訊號,運算出CIE色度座標及亮度之數值再輸出; 該顯示器係與該可程式化單晶片電性連接,肋顯示該運 算處理程式運算4之數值;藉由上述技術手段,亦可不使 用複雜昂貴之顧進行制,即簡易並快速地量測出任一 光源之CIE色度座標及亮度。 上述可量測光之色度座標與亮度之裝置中,可具有三 光偵測器,且該等光偵測器可為以光二極體所製成,用以 檢知該光源,並分別輸出對應該光源之紅、綠、藍光亮度 之電sfl號,藉此,可提升該量測裝置之功能性與便利性。 依據本發明技術思想所提供之一種可量測光之色度座 標與亮度之方法,係先以一額定電流驅動一光源,再使用 一光譜儀與一積分球,量測該光源紅、綠、藍光波長範圍 之光譜,進而得到該光源在RGB表色系統之三第一刺激 值R0、G0、B0,接著透過CIE1931二度角色彩相稱函數 (CIE 1931 2-deg XYZ Color Matching Functions),將各 該光谱在χγζ表色系統之刺激值相加,得到該光源在 ΧΥΖ表色系統之三第二刺激值χ〇、γ〇和Ζ〇,將R〇、 G〇、B〇、X〇、γ〇和z〇分別代入以下一第一方程式之r、 G、B、X、γ和z等參數中: 201118353For processing the electrical signal, the multiplex processing program, the analog digital camera, is used to receive the single chip, and the processing signals are used to the optical detector in the same manner. Outputting different signal selective switching outputs of 201118353, the analog-to-digital conversion program is used for converting the multi-signal processing electric signal into a digital signal, and the arithmetic processing program is used to convert the analog digital conversion The digital signal output by the program calculates the CIE chromaticity coordinates and the brightness value and outputs the same; the display is electrically connected to the programmable single chip, and the rib displays the value of the operation processing program 4; by the above technical means, It is also possible to measure the CIE chromaticity coordinates and brightness of any light source simply and quickly without using complex and expensive methods. The device for chromaticity coordinates and brightness of the above-mentioned measurable light may have three photodetectors, and the photodetectors may be made of photodiodes for detecting the light source and respectively outputting pairs The electric sfl number of the red, green and blue light of the light source should be used, thereby improving the functionality and convenience of the measuring device. According to the technical idea of the present invention, a method for measuring the chromaticity coordinates and brightness of a light is to first drive a light source with a rated current, and then use a spectrometer and an integrating sphere to measure the red, green and blue light of the light source. The spectrum of the wavelength range, which in turn obtains the first stimulus values R0, G0, B0 of the light source in the RGB color system, and then passes through the CIE 1931 2-deg XYZ Color Matching Functions (CIE 1931 2-deg XYZ Color Matching Functions) The stimulating values of the spectra in the χγζ color system are added to obtain the second stimuli values χ〇, γ〇 and Ζ〇 of the light source in the ΧΥΖ ΧΥΖ Ζ〇 system, and R 〇, G 〇, B 〇, X 〇, γ 〇 And z〇 are substituted into the following first equations such as r, G, B, X, γ, and z: 201118353

X" Rx Οχ Βχ· ΊΓ Y — Ry °y By G Z _RZ Gz Bz B 得到以下一參數矩陣: X Gx Βχ·X" Rx Οχ Βχ· ΊΓ Y — Ry °y By G Z _RZ Gz Bz B Get the following parameter matrix: X Gx Βχ·

Ry Gy By,Ry Gy By,

Rz Gz Bz_Rz Gz Bz_

該參數矩耗M將任—対三原色波長之光源在 RGB表色系統之刺激值轉換為χγζ表色系統之刺激值; 利用至少L⑺量測出分別賴—制光源之紅、 綠、藍光免度的電a Vr、vg、vb,再利用以下用以轉換 該待測光源之紅、、綠、藍光強度對應電墨與RGB表色系 統刺激值之一第二方程式:The parameter moment consumption M converts the stimulus value of the light source of the RGB color system into the stimuli value of the χγζ color system; and uses at least L(7) to measure the red, green and blue light immunity of the respective light source. The electric a Vr, vg, vb, and then use the following two equations for converting the red, green, and blue light intensities of the light source to be tested to one of the stimulation values of the electro-ink and RGB color system:

GiGi

將vr、vg、vb代入該第二方程式之Vr、%、%等 參數中,㈣該待測光源在RGB表色系統之—第一色度 座心(Rt Gt Bt)即為該待測光源之紅、綠、藍光的亮 度;利用以下一第三方程式: X' "Rx Gx Bx- 'K Yt = Ry Gy By Gt 人 _Rz g2 b2 運算出該細:¾源於χΥΖ表色祕之—第二色度座 標(Xt,Yt,Zt);利用一第四方程式χ =--^_,以Vr, vg, vb are substituted into the parameters of Vr, %, %, etc. of the second equation, and (4) the light source to be tested is in the RGB color system - the first chromaticity center (Rt Gt Bt) is the light source to be tested The brightness of red, green and blue light; use one of the following third-party programs: X' "Rx Gx Bx- 'K Yt = Ry Gy By Gt person _Rz g2 b2 Calculate the fine: 3⁄4 is derived from the color of the color - a second chromaticity coordinate (Xt, Yt, Zt); using a fourth equation χ =--^_,

Xt+Yt+Zt 201118353 及一第五方程式丫=_____Σ_,換算出該待測光源之一Xt+Yt+Zt 201118353 and a fifth equation 丫=_____Σ_, one of the light sources to be tested

Wzt 二次元色度座標(X,y)。 有關本發明所提供之可量刺光之色度座標與亮度之裝 置與方法的詳細構造、特點、組裝或使用方式,將於後續 的實施方式詳細說明中予以描述。然而,在本發明領域中 具有通常知識者應能瞭解,該等詳細說明以及實施本發明 所列舉的特定實施例,僅係用於說明本發明’並非用以限 制本發明之專利申請範圍。 【實施方式】 以下將藉由所列舉之實施例配合隨附之圖式,詳細說 明本發明之技術内容及特徵,其中: 第一圖為本發明一第一較佳實施例所提供之可量測光 之色度座標及亮度之農置之方塊圖; 第-圖為本發明該第—較佳實施例所提供之可量測光 之色度座標及凴度之方法之步驟方塊圖; 第三圖為本發明一第二較佳實施例所提供之可量測光 之色度座標及亮度之裝置之方塊圖; 第四圖為本發明一第三較佳實施例所提供之可量測光 之色度座標及亮度之裝置之方塊圖;以及 之二明該第三較佳實施例所提供之可量測光 ^色度座之裝置之可程式化單晶片之步驟方塊 圃。 201118353 如第一圖所示,本發明一第一較佳實施例所提供之可 量測光之色度座標與亮度之裝置10,包含有一光電轉換 電路20、一處理單元30,以及一液晶顯示器40。 該光電轉換電路20具有檢知一光源,並輸出對應該 光源所包含不同波長亮度之光電訊號的功能。該光電轉換 電路20包含有三光偵測二極體22、三低通濾波器24,以 及三第一放大器26 ;各該光偵測二極體22係用以檢知一 光源裝置50所發射出人眼可見之光線,依所接收到不同 波長之光訊號,分別偵測出其中紅、綠、藍光之亮度,並 轉換為與亮度相對應之光電流或光電壓等電訊號後,分別 輸出至各該低通濾波器24 ;各該低通濾波器24電性連接 各該光偵測二極體22及各該第一放大器26,各該低通濾 波器24分別接收該光偵測二極體22輸出之各該電訊號 後’濾除其中來自電路環境噪音之高頻雜訊,而得到較穩 定之該電訊號,再輸出至該第一放大器26 ;該等第一放 大器26係電性連接該處理單元30,各該第一放大器26 分別接收各該低通濾波器24輸出之該電訊號,並加以放 大’再輸出至該處理單元30。當然該些濾波器24並非本 發明所需具備之必要條件,若電路設計上即有高品質的環 境噪音隔離設備,省去該些濾波器24可減少濾波造成的 功率衰減’亦可同時省去濾波元件所佔的電路空間,以及 訊號於電路後級所需經過放大器的放大功率;不但減少電 路體積且可降低電路成本’亦仍然可達成本發明所欲達成 之功效。 201118353 該處理單元30包含有一多工處理器32、一第二放大 器34、一類比數位轉換器36,以及一運算處理器% ;該 處理單元30接收該等第一放大器26輸出之該些電訊號, 先由該多工處理器32選擇性地切換導通各該光偵測二極 體22,以將各該電訊號切換輸出至該第二故大器;該 第二放大器34接收該多工處理器32輸出之電訊號,將= 加以放大而增加其解析度後,再輸出至該頬比數位轉換器 36 ;該類比數位轉換器36接收該第二放大器料輸出之電 訊號,將其轉換為一數位訊號後,再輸出至該運算處理器 38 ;該運算處理器38具有一可程式化單晶片,可藉由撰 寫並儲存於内部之程式,對該類比數位轉換器36輸出之 該數位訊朗算㈣統裝置%所發射出之光線的αΕ 色度座標及亮度。 該液晶顯示器40係電性連接該處理單元3〇,用以接 3處理該運算處理器38輸出之訊號,將該光源裝置50 毛射出之光線的CIE色度座標及亮度顯示出來。 产之:t係為本實施例所提供之可量測光之色度座標與亮 二程,置'0’其中該運算處理器38内’所寫入之運算處 广;係篁測光之色度座標與亮度之方法中重要的一 二法睛參閱第二圖,算處理程式所之 方法’以及使賴公式之方法,以—例子介紹如下· 咖r;】omA之電流驅動一為三原色發光二極體(廳 紅Wzt quadratic chromaticity coordinates (X, y). Detailed construction, features, assembly or use of the apparatus and method for chromaticity coordinates and brightness of the smear of the sizing provided by the present invention will be described in the detailed description of the subsequent embodiments. However, it should be understood by those of ordinary skill in the art that the present invention is not limited to the scope of the invention. The following is a detailed description of the technical content and features of the present invention by the accompanying embodiments in conjunction with the accompanying drawings in which: FIG. Block diagram of the chromaticity coordinates and brightness of the metering; FIG. 1 is a block diagram of the method for measuring the chromaticity coordinates and the intensity of the measurable light provided by the first preferred embodiment of the present invention; 3 is a block diagram of a device for measuring the chromaticity coordinates and brightness of a measurable light according to a second preferred embodiment of the present invention; and FIG. 4 is a measurable measurement according to a third preferred embodiment of the present invention. A block diagram of a device for chromaticity coordinates and brightness of light; and a block diagram of a programmable single chip of the device for measurable optical chromaticity of the third preferred embodiment. As shown in the first figure, a device 10 for chromaticity coordinates and brightness of a measurable light according to a first preferred embodiment of the present invention includes a photoelectric conversion circuit 20, a processing unit 30, and a liquid crystal display. 40. The photoelectric conversion circuit 20 has a function of detecting a light source and outputting photoelectric signals corresponding to luminances of different wavelengths included in the light source. The photoelectric conversion circuit 20 includes a three-light detecting diode 22, a three-low-pass filter 24, and three first amplifiers 26; each of the light detecting diodes 22 is configured to detect that a light source device 50 emits The light visible to the human eye, according to the received optical signals of different wavelengths, respectively detects the brightness of red, green and blue light, and converts them into electrical signals such as photocurrent or photovoltage corresponding to the brightness, and outputs them to the respective signals. Each of the low-pass filters 24 is electrically connected to each of the photodetecting diodes 22 and the first amplifiers 26, and each of the low-passing filters 24 respectively receives the photodetecting diodes After each of the electrical signals output by the body 22, the high frequency noise from the circuit ambient noise is filtered out, and the relatively stable electrical signal is obtained, and then output to the first amplifier 26; the first amplifier 26 is electrically connected. The processing unit 30 is connected to each of the first amplifiers 26 to receive the electrical signals output by the low-pass filters 24, and is amplified and output to the processing unit 30. Of course, the filters 24 are not necessary for the present invention. If the circuit design has high-quality environmental noise isolation devices, the elimination of the filters 24 can reduce the power attenuation caused by the filtering. The circuit space occupied by the filter components, and the amplification power required by the amplifiers in the subsequent stages of the circuit; not only reduces the circuit size but also reduces the circuit cost, and still achieves the effect desired by the invention. The processing unit 30 includes a multiplexer 32, a second amplifier 34, an analog-to-digital converter 36, and an arithmetic processor %; the processing unit 30 receives the telecommunications output by the first amplifiers 26 The multiplexer 32 selectively switches the light detecting diodes 22 to switch the respective electrical signals to the second genre; the second amp 34 receives the multiplex The electrical signal output by the processor 32 is amplified and increased in resolution, and then output to the analog-to-digital converter 36. The analog-to-digital converter 36 receives the electrical signal output from the second amplifier and converts it. After being a digital signal, it is output to the operation processor 38. The operation processor 38 has a programmable single chip, and the digital output of the analog-to-digital converter 36 can be output by a program written and stored in the internal program. The Ε chromaticity coordinates and brightness of the light emitted by the device (%). The liquid crystal display 40 is electrically connected to the processing unit 3 for processing the signal output by the arithmetic processor 38, and displaying the CIE chromaticity coordinates and brightness of the light emitted by the light source device 50. Produced by: t is the chromaticity coordinate and bright two-way of the measurable light provided by the embodiment, and is set to '0', wherein the operation processor 38 has a wide operation; the chromaticity of the measurement The important method of coordinates and brightness is to refer to the second figure. The method of calculating the program's method and the method of making the formula are as follows: the example is as follows: coffee r;] the current drive of omA is the three primary colors. Polar body

綠:皮=一光譜儀與一積分球,量_光源 藍先波長範圍之光譜,進而得到該光源在RGB 201118353 表色系統之三第一刺激值R0、G〇、B〇 ;再透過CIE 1931 二度角色彩相稱函數(CIE 1931 2-deg XYZ Color Matching Functions),將各該光譜在XYZ表色系統之刺 激值相加,得到該光源在ΧΥΖ表色系統之三第二刺激值 Χ〇、Υ〇和Ζ〇 ;將R〇、G0、Β0、Χ〇、Υ〇和Ζ〇分別代入以 下一第一方程式之R、G、Β、X、Υ和Ζ等參數中:Green: skin = a spectrometer and an integrating sphere, the amount _ light source blue first wavelength range of the spectrum, and then the light source in the RGB 201118353 color system of the three first stimulus values R0, G 〇, B 〇; and then through CIE 1931 II CIE 1931 2-deg XYZ Color Matching Functions, adding the stimulus values of each of the spectra in the XYZ color system to obtain the second stimulus value of the light source in the ΧΥΖ color system Χ〇, Υ 〇 and Ζ〇; substituting R〇, G0, Β0, Χ〇, Υ〇, and Ζ〇 into the following parameters of R, G, Β, X, Υ, and 第一 of the first equation:

X Κ 〇χ Βχ' R Y — Ry °y By G Z Rz 〇ζ Bz BX Κ 〇χ Βχ' R Y — Ry ° By G Z Rz 〇ζ Bz B

得到以RGB表色系統轉換為ΧΥΖ表色系統之參數矩Obtaining the parameter moment of converting the RGB color system into the ΧΥΖ color system

Rx Gx B Ry Gy B Gz B 0.665004514 0.286500228 0.001403187 0.081033993 0.326041208 0.036829154 1.469354291 0.295145536 8.092841376 因此該參數矩陣可用以將任一 RGB LED光源在RGB 表色系統之刺激值轉換為XYZ表色系統之刺激值;Rx Gx B Ry Gy B Gz B 0.665004514 0.286500228 0.001403187 0.081033993 0.326041208 0.036829154 1.469354291 0.295145536 8.092841376 This parameter matrix can therefore be used to convert the stimulus values of any RGB LED source in the RGB color system to the stimulus values of the XYZ color system;

再者,以下一第二方程式: R/ GT =[11.9946 20.2956 3.5378 A. 係任一 RGB LED光源在RGB表色系統之刺激值與 用以偵測紅、綠、藍光亮度之光二極體產生之對應電壓訊 號’兩者間之轉換式;當前述該可量測光之色度座標及亮 度之裝置10偵測到該光源裝置50所發射出之光線,並量 測出其中紅、藍、綠光所分別對應之電壓值Vr、Vg、 Vb ’該處理單元3〇内該類比數位轉換器36將該等電壓偯 201118353 轉換數位訊號後,輸入至該運算處理器38,其利用該第 二方程式’將該等電壓值Vr、Vg、Vb分別代入該第二方 程式之三電壓參數VR、VG、VB,則可運算出該光源裝置 50所發射出之光線令,分別代表紅、藍、綠光之三亮度 值Rt、Gt和Bt ;該運算處理器38内另利用了以下一第三 方程式: X' Ό.665004514 0.081033993 1.469354291" Rt" Yt = 0.286500228 0.326041208 0.295145536 Gt Λ_ 0.001403187 0.036829154 8.092841376 Λ.Furthermore, the following second equation: R/ GT = [11.9946 20.2956 3.5378 A. The stimulus value of any RGB LED light source in the RGB color system and the light diode used to detect the red, green and blue light brightness. Corresponding to the voltage signal 'the conversion between the two; when the chromaticity coordinate and brightness of the light metering device 10 detects the light emitted by the light source device 50, and measures the red, blue, and green The voltage value Vr, Vg, Vb corresponding to the light respectively is converted into a digital signal by the analog digital converter 36 in the processing unit 3, and then input to the arithmetic processor 38, which utilizes the second equation By substituting the voltage values Vr, Vg, and Vb into the voltage parameters VR, VG, and VB of the second equation, respectively, the light commands emitted by the light source device 50 can be calculated to represent red, blue, and green lights, respectively. The third brightness values Rt, Gt, and Bt; the following third-party program is additionally utilized in the operation processor 38: X' Ό.665004514 0.081033993 1.469354291"Rt" Yt = 0.286500228 0.326041208 0.295145536 Gt Λ _ 0.001403187 0.036829154 8. 092841376 Λ.

並運用前述求得之該參數矩陣,將該第二方程式運算 出之該等亮度值Rt、^和Bt換算為相對應之三XYZ表色 系統刺激值Xt、Yt和Zt,亦可表示為該光源裝置50所發 射出之光線在XYZ表色系統之一色度座標(xt ’ Yt,And using the parameter matrix obtained as described above, converting the brightness values Rt, ^ and Bt calculated by the second equation into the corresponding three XYZ color system stimulation values Xt, Yt and Zt, which may also be expressed as The light emitted by the light source device 50 is at one of the chromaticity coordinates of the XYZ color system (xt 'Yt,

Zt);該運算處理器38内並還利用以下一第四方程式: _ Xt X~^+Yt+Zt,Zt); the arithmetic processor 38 also utilizes a fourth equation: _ Xt X~^+Yt+Zt,

以及以下一第五方程式: y =-^-,And the following fifth equation: y =-^-,

Xt+Yt+Zt 將該第三方程式運算出之三刺激值\、\和Zt換算 為相對應之二數值X、y,亦可表示為該光源裝置5〇所發 射出之光線之一二次元色度座標(x,y)。 藉此,該可量測光之色度座標與亮度之裝置10之該 運算處理器38,輸出該光源裝置50所發射出之光線中, 分別代表紅、藍、綠光之該等亮度值Rt、Gt* Bt,以及 12 201118353 代表qe色度座標之該等數值χ、y所對應之訊號,該液 晶顯示器4 〇接收後,將各該值顯示出來。 值得一提的是,本實施例中,該光電轉換電路2〇係 以三個該細測二極體22,達到檢知該光源裝置5〇所發 ㈣之光線’並輸出對應其巾紅、綠、藍光亮度之訊號的 功能,然而’實際上達成該功能之方式並不以此為限,亦 可使用以下所舉之-第二較佳實施例所利用之方式。 • 如第二圖所示,本發明之該第二較佳實施例所提供之 可量測光之色度座標與亮度之裝置6〇,與前述該第一較 佳實施例所提供之裝置1〇的差別僅在於光電轉換電路的 部份’其餘部分均與該裝置1〇相同。本實施例之光電轉 換電路70,包含有一偵測範圍可涵蓋紅、綠、藍光波長 之光偵測器72,以及如上述實施例所提供用以對應處理 各光波長之三低通濾波器74及三第一放大器76。 該光偵測器72係用以檢知該光源裝置5〇所發射出人 * 眼可見之光線,將所接收到不同波長之光訊號,分別轉換 為電麼訊號後’輸出至各該低通遽波器74與各該第一放 大器76。 藉此,本實施例之光電轉換電路72亦可達到檢知該 光源裝置50所發射出之光線’並藉由如該第一較佳實施 例中所述之處理單元30以多工控制切換輪出對應其中 紅、綠、藍光亮度之電訊號,再由該處理單元3〇進行放 大處理、數位類比轉換以及運算處理,最後再由如該第一 較佳實施例中所述之液晶顯示器40將運算出之數值顯示 13 201118353 出來,即可達到量測該光源裝置5G所發射出之光線的色 度座標及亮度之功能。 再者,前述該第一較佳實施例中,該處理單元3〇係 以該多工處理器32、該第二放大器34、該類比數位轉換 器36,以及該運算處理器38,達到將輸入之訊號做多 工、放大處理,以及數位類比轉換,並進行運算的功能, 然而,實際上達成該功能之方式並不以此為限,亦可使用 以下所舉之一第三較佳實施例所利用之方式。 如第四圖所示,本發明之該第三較佳實施例所提供之 可量測光之色度座標與亮度之裝置8〇,與前述該第一較 佳實施例所提供之裝置10的差別僅在於處理單元的部 伤,其餘部分均與該裝置10相同。本實施例之處理單元 係為一可程式化單晶片90,可撰寫並儲存有一多工處理 程式、一放大私式、一類比數位轉換程式,以及一運算處 理程式,分別依序進行多工處理、放大處理、類比數位轉 換處理,以及運算處理之步驟,如第五圖所示;意即,該 等程式之功能係分別與該第一實施例中該多工處理器 32、該第二放大器34、該類比數位轉換器36,以及該運 算處理器38相同。 藉此’本實施例之該可程式化單晶片90,亦可達到 接收如該第一或第二較佳實施例中所述之該光電轉換電路 20,70輸出之訊號,並進行多工、放大處理、數位類比 轉換,以及運算處理的功能,最後再由如該第一較佳實施, 例中所述之液晶顯示器40將運算出之數值顯示出來,即 201118353 可達到量測該光源裝置5G所發射出之光線的色度座標及 亮度之功能。 最後必J再-人說明,本發明於前揭實施例中所揭露 的構成元件,僅為舉例說明,並_來限制本案之範圍, 其他等效it件的替代或變化,亦應為本案之申請專利範圍 所涵蓋。 【圖式簡單說明】 第-圖為本發明之第一較佳實施例所提供之可量測光 之色度座標及亮度之裝置之方塊圖; 第二圖為本發明之第一較佳實施例所提供之可量測光 之色度座標及焭度之方法之步驟方塊圖; 第三圖為本發明之第二較佳實施例所提供之可量測光 之色度座標及亮度之裝置之方塊圖; 第四圖為本發明之第三較佳實施例戶斤提供t可量測光 之色度座標及亮度之裝置之方塊圖;以及 第五圖為本發明之第三較佳實施例所提供之可量測光 之色度座標及亮度之裝置之可程式化單晶片之步驟方塊 201118353 【主要元件符號說明】 [第一較佳實施例] 可量測光之色度座標與亮度之裝置10 光電轉換電路20 低通滤波器24 處理單元30 第二放大器34 光偵測二極體22 第一放大器26 多工處理器32 類比數位轉換器36 運算處理器38 液晶顯示器40 光源裝置50 [第二較佳實施例] 光源裝置50 可量測光之色度座標與亮度之裝置60 光電轉換電路70 光偵測器72 低通濾波器74 第一放大器76 [第三較佳實施例] 光源裝置50 可量測光之色度座標與亮度之裝置80 可程式化單晶片90 16Xt+Yt+Zt converts the three stimulus values \, \ and Zt calculated by the third-party program into corresponding two values X, y, which can also be expressed as one of the two rays emitted by the light source device 5〇 Chromaticity coordinates (x, y). Thereby, the operation processor 38 of the chromaticity coordinate and brightness device 10 of the measurable light outputs the light values emitted by the light source device 50, respectively representing the brightness values Rt of red, blue and green light respectively. , Gt* Bt, and 12 201118353 represent the signals corresponding to the values χ and y of the qe chromaticity coordinates, and the liquid crystal display 4 〇 receives the values and displays the values. It is to be noted that, in this embodiment, the photoelectric conversion circuit 2 is configured to detect the light emitted by the light source device (4) by three of the fine-measuring diodes 22, and output the corresponding red, The function of the green and blue light luminance signals, however, 'the manner in which the function is actually achieved is not limited thereto, and the following may be used in the manner of the second preferred embodiment. As shown in the second figure, the apparatus for chromaticity coordinates and brightness of the measurable light provided by the second preferred embodiment of the present invention is the same as that of the apparatus 1 of the first preferred embodiment. The difference between 〇 is that only the part of the photoelectric conversion circuit is the same as the rest of the device. The photoelectric conversion circuit 70 of the present embodiment includes a photodetector 72 having a detection range covering red, green, and blue wavelengths, and a three-pass filter 74 for processing respective wavelengths of light as provided in the above embodiment. And three first amplifiers 76. The photodetector 72 is configured to detect the light that is emitted by the light source device 5〇, and convert the received optical signals of different wavelengths into electrical signals, and then output to each low pass. The chopper 74 is associated with each of the first amplifiers 76. Thereby, the photoelectric conversion circuit 72 of the embodiment can also detect the light emitted by the light source device 50 and control the switching wheel by the processing unit 30 as described in the first preferred embodiment. The electrical signal corresponding to the red, green and blue light brightness is amplified by the processing unit 3, digital analog conversion and arithmetic processing, and finally by the liquid crystal display 40 as described in the first preferred embodiment. The calculated value display 13 201118353 comes out, and the function of measuring the chromaticity coordinates and brightness of the light emitted by the light source device 5G can be achieved. Furthermore, in the first preferred embodiment, the processing unit 3 is configured to input by the multiplexer 32, the second amplifier 34, the analog-to-digital converter 36, and the arithmetic processor 38. The signal is multiplexed, amplified, and digitally analog converted, and performs the function of the operation. However, the manner in which the function is actually implemented is not limited thereto, and one of the following preferred embodiments may be used. The way it is used. As shown in the fourth figure, the apparatus for chromaticity coordinates and brightness of the measurable light provided by the third preferred embodiment of the present invention is the same as that of the apparatus 10 provided by the first preferred embodiment. The only difference is the partial injury of the treatment unit, the rest being identical to the device 10. The processing unit of this embodiment is a programmable single chip 90, which can compose and store a multiplex processing program, a magnifying private type, an analog-to-digital conversion program, and an arithmetic processing program, respectively performing multiplex processing. Processing, amplification processing, analog digital conversion processing, and arithmetic processing steps, as shown in the fifth figure; that is, the functions of the programs are respectively associated with the multiplex processor 32, the second in the first embodiment The amplifier 34, the analog-to-digital converter 36, and the arithmetic processor 38 are identical. Thus, the programmable single-chip 90 of the present embodiment can also receive the signal output from the photoelectric conversion circuits 20, 70 as described in the first or second preferred embodiment, and perform multiplexing. The functions of the amplification processing, the digital analog conversion, and the arithmetic processing are finally displayed by the liquid crystal display 40 as described in the first preferred embodiment, and the calculated value is displayed, that is, the light source device 5G can be measured by 201118353. The function of the chromaticity coordinates and brightness of the emitted light. Finally, it is to be understood that the constituent elements disclosed in the foregoing embodiments are merely illustrative, and the scope of the present invention is limited, and alternatives or variations of other equivalents should also be Covered by the scope of patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a device for chromaticity coordinates and brightness of a measurable light according to a first preferred embodiment of the present invention; FIG. 2 is a first preferred embodiment of the present invention The block diagram of the method for measuring the chromaticity coordinates and the intensity of the measurable light provided by the example; the third figure is the device for the chromaticity coordinate and the brightness of the measurable light provided by the second preferred embodiment of the present invention Figure 4 is a block diagram of a device for providing t-photometric chromaticity coordinates and brightness of a third preferred embodiment of the present invention; and a fifth preferred embodiment of the present invention Step block for programmable single wafer of chromaticity coordinates and brightness device provided by the example 201118353 [Description of main component symbols] [First preferred embodiment] Chromaticity coordinate and brightness of measurable light Device 10 photoelectric conversion circuit 20 low pass filter 24 processing unit 30 second amplifier 34 light detecting diode 22 first amplifier 26 multiplex processor 32 analog digital converter 36 arithmetic processor 38 liquid crystal display 40 light source device 50 [Second preferred embodiment] light Device 50 Measure the chromaticity coordinate and brightness of light 60 photoelectric conversion circuit 70 photodetector 72 low pass filter 74 first amplifier 76 [third preferred embodiment] light source device 50 measurable light color Degree coordinate and brightness device 80 can be programmed with a single chip 90 16

Claims (1)

201118353 七、申請專利範圍: 1. 一種可量測光之色度座標與亮度之裝置,用以量 測人眼可見光源之色度座標,該裝置包含有: 至少一光偵測器,係用以檢知上述光源,並輸出多數 對應該光源之不同波長範圍之電訊號; 一多工器,用以接收該光偵測器輸出之電訊號,將不 同之電訊號選擇性切換輸出; φ 一類比數位轉換器,係與該多工器電性連接,以接收 該多工器輸出之電訊號’將其轉換為數位訊號後再輸出; 一運算處理器,係與該多工器及類比數位轉換器電性 連接’以控制該多工器切換接收該光偵測器輸出之不同電 訊號’以及接收該類比數位轉換器輸出之數位訊號,將該 些數位訊號轉換出CIE色度座標及亮度之數值再輸出; 以及 一顯示器’係與該運算處理器電性連接,以顯示該處 • 理器運算出之數值。 2. 如申請專利範圍第丨項所述之可量測光之色度座 標與亮度之裴置,係具有三光偵測器,該等光偵測器係為 以光二極體所製成,用以檢知該光源,並分別輪出對應該 光源之紅、綠、藍光亮度之電訊號。 3. 如申請專利範圍第1或2項所述之可量測光之色 度座標與亮度之裝置,其中該運算處理器係為—可程式化 單晶另’該可程式化單晶片儲存有將RGB表色系統轉換 為XYZ表色系統之—參數矩陣。 201118353 4二如申請專利範圍第3項所述之可量測光之色度座 標與免度之裝置’其中該光_器為對應該光源不同波長 範圍輸出不同之電壓訊號’該可程式化單晶片儲存有將不 同波長對應之電壓减轉換為RGB表㈣、統之一轉換 式。 、 5.-種可量測光之色度座標與亮度之裝置,用以量 測人眼可見光源之色度座標,該裝置包含有: 至少一光偵測器,係用以檢知上述光源,並輸出多數 對應β亥光源之不同波長範圍之電訊號; -可程式化單晶片,内部包含有複數個程式,係用以 接收該光制H輸出之電職,並分別以其該等程式依序 對該些電訊號作處理,該等程式依序為: -多工處理程式’係用以將該光偵測器輸出之不 同電訊號選擇性切換輸出; 一類比數位轉換程式,係用以將該多工處理程式 輸出之電訊號,轉換為數位訊號後再輸出;以及 -運算處理喊’制以將該類比數位轉換程式 輸出之數位訊號,運算出CIE色度座標及亮度之數值 再輸出;以及 一顯示器,係與該可程式化單晶片電性連接,用以顯 示該運算處理程式運算出之數值。 •’ 6.如申請專利範圍第5項所述之可量測光之色度座 標與亮度之裝Ϊ,储有三光侧’且該等光偵測器係 為以光二極體所製成,用以檢知該光源,並分別輸出對應 201118353 該光源之紅、綠、藍光亮度之電訊號。 7. —種可量測光之色度座標與亮度之方法,包含下 列步驟: a) 提供一涵蓋紅、綠、藍三原色波長範圍之光源; b) 使用一光譜儀與一積分球,分別量測該光源紅、 綠、藍光波長範圍之光譜,進而得到該光源在RGB表色 系統之三第一刺激值R〇、G〇、B〇 ;201118353 VII. Patent application scope: 1. A device for measuring the chromaticity coordinate and brightness of the light, for measuring the chromaticity coordinates of the visible light source of the human eye, the device comprises: at least one photodetector, used Detecting the light source and outputting a plurality of electrical signals corresponding to different wavelength ranges of the light source; a multiplexer for receiving the electrical signal output by the optical detector, and selectively switching the different electrical signals; φ An analog-to-digital converter is electrically connected to the multiplexer to receive the electrical signal outputted by the multiplexer and convert it into a digital signal and then output; an arithmetic processor, the multiplexer and the analog digital The converter is electrically connected to 'control the multiplexer to switch the different electrical signals received by the optical detector' and receive the digital signals output by the analog digital converter, and convert the digital signals into CIE chromaticity coordinates and brightness The value is output again; and a display is electrically connected to the arithmetic processor to display the value calculated by the processor. 2. For the chromaticity coordinates and brightness of the measurable light as described in the scope of the patent application, there are three light detectors, which are made of optical diodes. The light source is detected and the electrical signals corresponding to the red, green and blue light levels of the light source are respectively rotated. 3. The apparatus for chromaticity coordinates and brightness of the measurable light as described in claim 1 or 2, wherein the arithmetic processor is a programmable single crystal and the programmable single wafer is stored Convert the RGB color system to the parameter matrix of the XYZ color system. 201118353 4 2. For the chromaticity coordinates and the degree of freedom of the metering as described in the third paragraph of the patent application, wherein the optical _ _ is a voltage signal corresponding to a different wavelength range of the light source, the programmable signal The wafer is stored with a voltage conversion corresponding to different wavelengths into an RGB table (four), a conversion type. 5. A device for measuring the chromaticity coordinates and brightness of the measurable light for measuring the chromaticity coordinates of the visible light source of the human eye, the device comprising: at least one photodetector for detecting the light source And outputting a plurality of electrical signals corresponding to different wavelength ranges of the beta light source; - a programmable single chip containing a plurality of programs for receiving the optical output of the optical H output, and respectively using the programs The electronic signals are processed in sequence, and the programs are sequentially: - the multiplex processing program is used to selectively switch and output different electrical signals output by the optical detector; and the analog-to-digital conversion program is used Converting the electrical signal outputted by the multiplex processing program into a digital signal and then outputting it; and - computing processing the digital signal outputted by the analog-to-digital conversion program to calculate the CIE chromaticity coordinate and the brightness value. And a display electrically connected to the programmable single chip for displaying the value calculated by the operation processing program. • ' 6. If the chromaticity coordinates and brightness of the measurable light described in item 5 of the patent application range are stored, the three light sides are stored and the photodetectors are made of photodiodes. The light source is detected and the electrical signals corresponding to the red, green and blue light of the light source of 201118353 are respectively output. 7. A method for measuring the chromaticity coordinates and brightness of a light meter, comprising the steps of: a) providing a light source covering the wavelength ranges of three primary colors of red, green and blue; b) measuring using a spectrometer and an integrating sphere, respectively The spectrum of the red, green and blue wavelength ranges of the light source, thereby obtaining the first stimulation values R〇, G〇, B〇 of the light source in the RGB color system; c) 透過CIE 1931二度角色彩相稱函數,將各該光譜 在XYZ表色系統之刺激值相加,得到該光源在XYZ表色 系統之三第二刺激值X〇、Y〇和Z〇 ; d) 將該光源之該等第一刺激值R〇、G〇、B〇,以及該 等第二刺激值X〇、Y〇和Z〇分別代入以下一第一方程式之 R、G、B、X、Y和Z等參數中: X" Rx Gx Bx R Y Ry Gy By G Z Rz Gz Bz_ B 得到以下一參數矩陣: Rx Gx Bx Ry Gy By , Rz Gz Bz 該參數矩陣用以將任一含有三原色波長之光源在 RGB表色系統之刺激值轉換為XYZ表色系統之刺激值; e)利用至少一光偵測器量測出分別對應一待測光源 之紅、綠、藍光亮度的第一電壓Vr、第二電壓Vg,以及 第三電壓Vb ; 201118353 f)利用以下用以轉換該待測光源之紅、綠、藍光亮 度對應電壓與RGB表色系統刺激值之一第二方程式: Rt1 Γν^ι GT =[R,。丨 Β丨jvG, aJ lvB_ X' Rx GX Βχ~ V Yt 二 Ry Gy By 〇t Λ. A Gz Bz Λ. 將步驟e)量測到之該等電壓Vr、Vg、Vb代入該第二 方程式之VR、VG、VB等參數中,得到該待測光源在 RGB表色系統之一第一色度座標(艮,Gt,Bt),即為該 待測光源之紅、綠、藍光的亮度; g)利用以下一第三方程式: 運算出該待測光源於XYZ表色系統之一第二色戶 標(Xt,Yt,Zt) ; x h)利用一第四方程式: v-_ Xt xt+Yt+zt, 以及一第五方程式: y = , xt+Yt+zt 換鼻出該待測光源之一二次元色度座標(X,y ) ^c) adding the stimulus values of the spectra in the XYZ color system through the CIE 1931 second degree color matching function to obtain the second stimulation values X〇, Y〇 and Z〇 of the light source in the XYZ color system; d) substituting the first stimulation values R〇, G〇, B〇 of the light source, and the second stimulation values X〇, Y〇, and Z〇 into the R, G, and B of the first first equation, respectively. Among the parameters X, Y and Z: X" Rx Gx Bx RY Ry Gy By GZ Rz Gz Bz_ B Obtain the following parameter matrix: Rx Gx Bx Ry Gy By , Rz Gz Bz This parameter matrix is used to convert any wavelength containing three primary colors The stimulus value of the light source in the RGB color system is converted into the stimulus value of the XYZ color system; e) the first voltage Vr corresponding to the red, green and blue light brightness of the light source to be tested is measured by using at least one photodetector The second voltage Vg, and the third voltage Vb; 201118353 f) using the following two equations for converting the red, green, and blue light luminance corresponding to the light source to be tested and the RGB color system stimulus value: Rt1 Γν^ι GT = [R,.丨Β丨jvG, aJ lvB_ X' Rx GX Βχ~ V Yt 二 Ry Gy By 〇t Λ. A Gz Bz Λ. Substituting the voltages Vr, Vg, Vb measured in step e) into the second equation In the parameters of VR, VG, VB, etc., the first chromaticity coordinate (艮, Gt, Bt) of the light source to be tested in the RGB color system is obtained, that is, the brightness of the red, green and blue light of the light source to be tested; Using a third-party program: Calculate the source of the light to be measured in the second color of the XYZ color system (Xt, Yt, Zt); xh) using a fourth equation: v-_ Xt xt+Yt+ Zt, and a fifth equation: y = , xt+Yt+zt to change the second-order chromaticity coordinate (X, y ) of the light source to be tested
TW98139213A 2009-11-18 2009-11-18 A novel method and equipment for measuring chromaticity coordinate and intensity of light TWI392859B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98139213A TWI392859B (en) 2009-11-18 2009-11-18 A novel method and equipment for measuring chromaticity coordinate and intensity of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98139213A TWI392859B (en) 2009-11-18 2009-11-18 A novel method and equipment for measuring chromaticity coordinate and intensity of light

Publications (2)

Publication Number Publication Date
TW201118353A true TW201118353A (en) 2011-06-01
TWI392859B TWI392859B (en) 2013-04-11

Family

ID=44935611

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98139213A TWI392859B (en) 2009-11-18 2009-11-18 A novel method and equipment for measuring chromaticity coordinate and intensity of light

Country Status (1)

Country Link
TW (1) TWI392859B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858073A (en) * 2012-09-29 2013-01-02 北京半导体照明科技促进中心 Measuring method and measuring device of output light parameters of lighting device and lighting system
TWI512277B (en) * 2013-01-04 2015-12-11 Taiwan Power Testing Technology Co Ltd Monitor inspection equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111458112B (en) * 2020-06-19 2020-09-15 武汉精立电子技术有限公司 Color coordinate measuring method, device, equipment and storage medium based on Gamma correction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8528982D0 (en) * 1985-11-25 1986-01-02 Univ Liverpool Colour quantification system
US6992803B2 (en) * 2001-05-08 2006-01-31 Koninklijke Philips Electronics N.V. RGB primary color point identification system and method
JP4080812B2 (en) * 2002-08-09 2008-04-23 浜松ホトニクス株式会社 System that can measure chromaticity in visible and invisible regions
TW200812402A (en) * 2006-08-30 2008-03-01 Marketech Int Corp Method for automatically detecting and adjusting grayscale/white balance of a display
TWM328004U (en) * 2007-09-14 2008-03-01 Everlight Electronics Co Ltd Measuring system for measuring characteristic temperature of light-emitting diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858073A (en) * 2012-09-29 2013-01-02 北京半导体照明科技促进中心 Measuring method and measuring device of output light parameters of lighting device and lighting system
TWI512277B (en) * 2013-01-04 2015-12-11 Taiwan Power Testing Technology Co Ltd Monitor inspection equipment

Also Published As

Publication number Publication date
TWI392859B (en) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2014041866A1 (en) Sensor, display device, control program, and recording medium
KR101604424B1 (en) Apparatus for Measuring Luminance and Chrominance Distribution
US11991808B2 (en) Electronic device with ambient light flicker sensor
TW200422597A (en) Color and intensity measuring module for test of light emitting components by automated test equipment
CN102327156A (en) Dental shade mapping
Foster et al. Color constancy in natural scenes explained by global image statistics
TWI234135B (en) Transmission type display device and a method for controlling its display colors
JPH08297054A (en) Color sensation measuring system
WO2014029806A1 (en) Light sensor system and method for processing light sensor signals
TW201118353A (en) A novel method and equipment for measuring chromaticity coordinate and intensity of light
CN105606543A (en) Portable banana maturity detector
US20050219380A1 (en) Digital camera for determining chromaticity coordinates and related color temperature of an object and method thereof
US11592334B2 (en) Photosensors for color measurement
TWI714959B (en) Coffee bean roasting-degree distribution measuring device and method
US8902415B2 (en) Luminous intensity test device
JP6631001B2 (en) Stimulus value direct reading type colorimeter
US10337921B2 (en) Direct-stimulus-valve-reading-type colorimetric photometer
KR101493991B1 (en) Sensor module for vision inspection
TW201721111A (en) Chromatic detector of LED light source
US20210348967A1 (en) Compact Multi-Band Optical Measuring Unit
KR20040002829A (en) Complexion Camera System
CN205484016U (en) Portable banana maturity detector
KR200347051Y1 (en) Complexion Camera System
CN113820010B (en) Illuminance measuring device and method
JP6565174B2 (en) Stimulus value direct-reading colorimeter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees