TW201101658A - Boost converting device, boot converter, and the control module thereof - Google Patents
Boost converting device, boot converter, and the control module thereof Download PDFInfo
- Publication number
- TW201101658A TW201101658A TW98120610A TW98120610A TW201101658A TW 201101658 A TW201101658 A TW 201101658A TW 98120610 A TW98120610 A TW 98120610A TW 98120610 A TW98120610 A TW 98120610A TW 201101658 A TW201101658 A TW 201101658A
- Authority
- TW
- Taiwan
- Prior art keywords
- power switch
- output
- capacitor
- voltage
- boost converter
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
201101658 六、發明說明: f發明所屬之技術領域】 本發明是有關於一種升壓轉換器,特別是指一種具有 負電壓輸出的升壓轉換器。 【先前技術】 隨著科技的進步,負電麼電源的應用與需求也越來越 多,例如:音訊放大器或電觸PCI(Peripherai c〇mp〇nentBACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a boost converter, and more particularly to a boost converter having a negative voltage output. [Prior Art] With the advancement of technology, there are more and more applications and requirements for negative power, such as audio amplifiers or PCI (Peripherai c〇mp〇nent).
ime^onnect)切皆需要負電遷才能正常工作。 的負電壓電源可為-個直流/直流轉換器(dc/dc converter),主要是應用於供電給車用電池或是手提式電子 裝置,其令,升降壓型直流/直流轉換器咖㈣⑽ c〇nVerter)適合低功率的應用,但是其中的功率開關卻不易 控制’因此,如何提供一個電路簡單、成本較低且實用性 南的負電壓轉換器則為本案之發明重點。 【發明内容】 囚此,本發明之目的,即在提供 一負電壓輸出的升壓轉換器 厥絲;:本發明升壓轉換器,用以對-輸入電壓進行升 雷片 丨負電壓’其中包含:-功率開關、—儲能 出電容。 第—極體、—第二二極體及一輸 儲-Π開關具有—接收輸入電壓的輸入端及-輸出端; 祕感具有一耦接於功率開關之輸出端的第-端及—接 、第端,儲能電容具有一輕接於功率開關之輸出端的 201101658 第一端及一第二她.哲 λ ,第—二極體的ρ極耦接於餘 第二端且Ν極接妯.铱 i ^ 第』.…體的N極輕接於錯能電容之 山,^出電谷具有一耦接於第二二極體之P極的第— 端及一接地的第二端。 當功率開關導通時,館能電感、错能電容及第一二極 體形=充電迴路’使輸入電堡對儲能電感及儲能電容進 订儲月\反之’當功率開關不導通時,儲能電感、儲能電 容、第二二極體及輸出電容形成一放電迴路,使儲能電感 〇 及儲能電容對輪出雷& ± 丁视出罨谷釋能,且在輸出電容上產生負電 壓。 此外’本發明之另一目的,即在提供一種電路簡單且 成本較低的控制模組。Ime^onnect) cuts need negative relocation to work properly. The negative voltage power supply can be a DC/DC converter, which is mainly used for power supply to the vehicle battery or portable electronic device, and the buck-boost DC/DC converter (4) (10) c 〇nVerter) is suitable for low-power applications, but the power switch is not easy to control. Therefore, how to provide a circuit with simple circuit, low cost and practicality is the focus of this invention. SUMMARY OF THE INVENTION In this case, the object of the present invention is to provide a booster voltage converter with a negative voltage output; the boost converter of the present invention is used for boosting the output voltage of the input voltage. Contains: - power switch, - energy storage capacitor. The first pole body, the second diode body and the one of the storage diode switch have an input end and an output end for receiving an input voltage; the secret sense has a first end connected to the output end of the power switch, and The first end, the storage capacitor has a first end of the 201101658 lightly connected to the output end of the power switch and a second her. Zhe λ, the p-pole of the first diode is coupled to the second end and the drain is connected. Ni ^ The body of the body is lightly connected to the mountain of the faulty capacitor. The power out valley has a first end connected to the P pole of the second diode and a grounded second end. When the power switch is turned on, the hall energy inductance, the fault energy capacitor and the first diode shape=charging circuit make the input electric bunker store the energy storage inductor and the energy storage capacitor to store the moon\or vice versa. When the power switch is not conducting, the storage The inductor, the storage capacitor, the second diode and the output capacitor form a discharge loop, so that the energy storage inductor and the storage capacitor are turned on and off, and the output capacitor is generated. Negative voltage. Further, another object of the present invention is to provide a control module which is simple in circuit and low in cost.
本發明控制模組,適合與—直流/直流轉換器(DC/DC ⑽ver㈣配合使用,該直流/直流轉換器具有-功率開關, 該控制模組包含:-比較器及-比例積分控制器。 比較器用以將直流/直流轉換器的輸出電壓與一參考電 壓進行比較’並輸出一數位邏輯訊號;比例積分控制器根U 據數位邏輯訊號產生__控制功率開關啟閉的控制訊號。 較佳地,控制模組還包含一耦接於直流/直流轉換器的 一輸出端與比較器之間的分壓器,用以根據一分壓比例將 輸出端的電壓進行分壓。 較佳地’控制模組還包含一耦接於比例積分控制器與 直流/直流轉換器的功率開關之間的閘極驅動器,用以將控 制訊號轉換成足以驅動功率開關的驅動訊號。 201101658 、此外,本發明之另一目的,即在提供一種電路簡單、 成本較低且提供-負電壓輸出的升壓轉換裝置。 本心月升壓轉換裝置包含:一升壓轉換器及一控制模 組。其中,升壓轉換器包含:一功率開關、一健能電感、 儲能電各帛-二極體、-第二二極體及一輸出電 容0The control module of the invention is suitable for use with a DC/DC converter (DC/DC (10) ver (4), the DC/DC converter has a power switch, and the control module comprises: - a comparator and a proportional integral controller. The device is configured to compare the output voltage of the DC/DC converter with a reference voltage and output a digital logic signal; the proportional integral controller generates a control signal for controlling the power switch to be turned on and off according to the digital logic signal. Preferably, The control module further includes a voltage divider coupled between an output of the DC/DC converter and the comparator for dividing the voltage of the output according to a voltage division ratio. Preferably, the control mode The group further includes a gate driver coupled between the proportional integral controller and the power switch of the DC/DC converter for converting the control signal into a driving signal sufficient to drive the power switch. 201101658 Further, another aspect of the present invention A purpose is to provide a boost converter that is simple in circuit, low in cost, and provides a negative voltage output. The present monthly boost converter includes: one liter The converter, and wherein a group control mode, a boost converter comprising: a power switch, an inductor can be healthy, the electric storage each silk - diode, - a second diode and an output capacitor 0
/率開關具有-接收輸入電壓的輸入端及-輸出端; 儲犯電感具有耦接於功率開關之輸出端的第一端及一接 地的第一端’儲能電容具有一辆接於功率開關之輸出端的 第端及第—端,第一二極體的p極輕接於儲能電容之 第二端且N極接地;第二二極體的N_接於儲能電容之 第二端;輸出電容具有__麵接於第二二極體之p極的第一 端及一接地的第二端。 當功率開關導通時,儲能電感、儲能電容及第一二極 體形成-充電迴路,使輸人電壓對儲能電感及儲能電容進 行儲能;反之,當功率開關不導通時,儲能電感、儲能電 容、第二二極體及輸出電容形成—放電迴路,使儲能電感 及儲能電容對輸出電容釋能,且在輸出電容上產生負電 壓。而控制模組用以根據升壓轉換器所輸出之負電壓對應 控制功率開關的啟閉。 進一步地,控制模組的内部架構可如同上述控制模組 包含:-分壓器、一比較器、—比例積分控制器及一問極 驅動器。 本發明之功效在於,可以提供一個電路簡單、成本較 201101658 低且實用性高的負電壓電源。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效’在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖1,為本發明升壓轉換裝置之較佳實施例,該升 廢轉換裝置1GG用以對—輸人電壓^進行升壓轉換以輸出一 負電壓,其中包含一升壓轉換器⑺〇〇st c〇nverter)1及一控 制模組2。 汁靨轉換器 巴枯一功率開關 能電容、一第一二極體' 第二二極體£)a及一輸出電容 功率開關心為N型金氧半場效電晶體(N-MOS)並且有一 ==的輸入端1〇1及—輸出…輸入電㈣ 〜之A 5伏特,然而’功率開關夂亦可為p 半場效電晶體(P-MOS)。儲能電感乙具有一耗接二=氧 夂之輸出端102的第一端1〇3 、率開關 m ., 接地的第二端104;儲能 電具有-耦接於功率開關 及-第二端1〇6。第一二極體…出:102的弟-端1〇5 第二端⑽的p極107及一接地Π —輕接於儲能電容W 且亡〜 接地的N極108 ;第二-搞脚The / rate switch has an input terminal for receiving the input voltage and an output terminal; the storage inductor has a first end coupled to the output end of the power switch and a grounded first end. The storage capacitor has a power switch connected to the power switch. The first end and the first end of the output end, the p pole of the first diode is lightly connected to the second end of the storage capacitor and the N pole is grounded; the N_ of the second diode is connected to the second end of the storage capacitor; The output capacitor has a first end connected to the p-pole of the second diode and a second end connected to the ground. When the power switch is turned on, the energy storage inductor, the storage capacitor and the first diode form a charging circuit, so that the input voltage stores energy for the energy storage inductor and the storage capacitor; conversely, when the power switch is not turned on, the storage The inductor, the storage capacitor, the second diode, and the output capacitor form a discharge loop that causes the storage inductor and the storage capacitor to release the output capacitor and generate a negative voltage on the output capacitor. The control module is configured to control the opening and closing of the power switch according to the negative voltage outputted by the boost converter. Further, the internal structure of the control module can be similar to the above control module: - a voltage divider, a comparator, a proportional integral controller, and a gate driver. The effect of the present invention is that it can provide a negative voltage power supply with a simple circuit and a low cost and high practicality compared with 201101658. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments. Referring to FIG. 1, a preferred embodiment of a boost converter device of the present invention is used for boost-converting a load voltage to output a negative voltage, including a boost converter (7). 〇st c〇nverter) 1 and a control module 2. The juice 靥 converter has a power switch capacitor, a first diode 'second diode') and an output capacitor power switch is an N-type MOS field-effect transistor (N-MOS) and has a == Input 1〇1 and - Output... Input power (4) ~ A 5 volts, however 'Power switch 夂 can also be p half-field effect transistor (P-MOS). The energy storage inductor B has a first end 1〇3 of the output terminal 102 that consumes two=oxygen, a rate switch m., a grounded second end 104; the energy storage device has a coupling to the power switch and the second End 1〇6. The first diode ... out: 102 brother - end 1 〇 5 second end (10) p pole 107 and a ground Π - lightly connected to the storage capacitor W and died ~ grounded N pole 108; second - engage the foot
”有-耦接於儲能電容ς之第二 --極體A 極⑽。輸出電容。。具有一耦接 極109及一 p 第-端⑴,及一接地的第體;-MU0的 第一端111為升麼轉換器1的輪出端。、輪出電容C。的 201101658 接著,將詳細說明升壓轉換器i中各個元件的作動及 如何輸出負電壓,且在本實施例中,升壓 在連續導通模式(Continuous c〇nducti〇n M〇de,CCM),因 此升壓轉換器1將有兩個操作模式,以下將分別進行說 明。當然,升壓轉換器丨亦可操作在不連續導通模式 (D1SC〇ntinuous Conducti〇n M〇de,DCM)或是邊界導通模式 (Boundary Conduction Mode ’ BCM),不以連續導通模 限。 、工兩 Ο Ο 配合參閱圖2,當功率開關夂為導通狀態時,升壓轉換 器1進人第—操作模式:輸人電心開始對儲能電^及儲 能電容Q進行充電(儲能),此時,第一二極體乃,的p極旧 的電壓高於其N極108㈣壓而導通,第二二極Μ會因 為其Ρ極110的電壓低於其Ν極109的電麼而截止。值得 一提的是’在第—操作模式下,㈣電容㈣跨電壓會被充 電至輸入電壓V,.。 今=Vi 換言之,在第'操作模式了,升壓轉換H 1會有二個 充電路位.第^㉟徑X為輸人電壓Vi通過功率開關心及儲能 電感I至地’第—路徑π為輸入電壓、通過功率開關$、儲 能電容Q及第-二極體D/至地。二個路徑!及u的充電電 流方向如圖2之虛線所示,且符合以下方程式⑴:"There is - coupled to the second of the storage capacitor - - the polar body A pole (10). The output capacitor has a coupling pole 109 and a p first end (1), and a grounded body; - MU0 One end 111 is the wheel-out terminal of the converter 1 and the circuit capacitor C. 201101658 Next, the operation of each element in the boost converter i and how to output a negative voltage will be described in detail, and in this embodiment, The boost is in continuous conduction mode (CCM), so the boost converter 1 will have two modes of operation, which will be described separately below. Of course, the boost converter can also operate in Discontinuous conduction mode (D1SC〇ntinuous Conducti〇n M〇de, DCM) or Boundary Conduction Mode 'BCM), not continuous conduction mode. 工, Ο Ο 配合 Refer to Figure 2, when the power switch When the 夂 is in the on state, the boost converter 1 enters the first operation mode: the input power unit starts to charge the energy storage circuit and the storage capacitor Q (storage energy), at this time, the first diode is, The p-electrode voltage is higher than its N-pole 108 (four) voltage, and the second diode is due to its The voltage of the drain 110 is lower than the voltage of the drain 109. It is worth mentioning that in the first operation mode, (four) the capacitor (four) cross voltage will be charged to the input voltage V, . In the 'operation mode', the boost converter H 1 has two charging paths. The ^35 path X is the input voltage Vi through the power switch core and the energy storage inductor I to the ground 'the path π is the input voltage, Pass the power switch $, the storage capacitor Q and the diode-D diode to ground. The direction of the charging current of the two paths! and u is shown by the dotted line in Figure 2 and conforms to the following equation (1):
C dt K 5ν; (1) 其中,h為輸入電壓'所輸出的電流 h 為通過儲能電感 201101658 的電"'L Vi為儲能電容G中所储存的電壓,V。為升壓轉換器 1的輸出電壓’ <為跨接於輸出電容c。的一負載(圖未示)。 配合參_ 3’當功率開關&為非導通狀態時,升壓轉 換器1進入第_操作模式:儲能電感1及儲能電容q對 電令c。進^•充電,第::極體a的p極iig電壓高於其n 極109的電壓’因此’第二二極體A為導通,而第—二極體 為e N極108電壓高於其"爸1〇7電壓而截止。值得 提的是,由於儲能電感[的瞬間電流方向不變,使得功率 開關心從導通狀態進人非導通狀態時,電感電流^會以逆時 針方向對輸出電容C。進行充電,如圖3之虛線方向所示。因 此在升壓轉換器i為第一操作模式時輸出電容^同樣會 以逆時針的方向對負載進行放電。 在第二操作模式下,升壓轉換器i只有一個充放電路 徑,且會符合以下方程式(2): :v<-v0 dt (2) h=-ib 其中’ 4為流經儲能電容Q的電流。 整體來說,本實施例之升壓轉換器丄在第一操作模式 :,利用輸出電容W儲存的能量供應負電壓輸出;在第二 操作模式下,則是藉由儲能電感£與儲能電容&對輸出電容 進行充電。此外’透過功率開關&的責任週期D(㈣ cycle) #可調整升壓轉換器丨所輸出之負電壓匕的大小, 其輸^電^與輸出電壓d係會符合以下方程式⑺: vi (3) 201101658 在本實施例中,輸入電^為5伏特輸 壓厂。疋取絕對值進行運算。 出電 此外,在本實施例中,升壓轉換器1的規格如下: (1)輸入電壓R為5V ; (2) 輸出電壓匕為12V(取絕對值); (3) 輸出功率為24w;C dt K 5ν; (1) where h is the input voltage 'output current h is the energy stored by the energy storage inductor 201101658 " 'L Vi is the voltage stored in the storage capacitor G, V. The output voltage ' of the boost converter 1' is connected across the output capacitor c. A load (not shown). When the power switch & is in a non-conducting state, the boost converter 1 enters the _th operation mode: the energy storage inductor 1 and the storage capacitor q are opposite to the power supply c. In the charging, charging: the polarity of the p-electrode iig of the polar body a is higher than the voltage of the n-pole 109. Therefore, the second diode A is turned on, and the voltage of the second-pole is higher than that of the e-pole 108. Its " dad 1 〇 7 voltage and cut off. It is worth mentioning that, because the instantaneous current direction of the energy storage inductor is constant, the inductor current will enter the non-conducting state from the conduction state, and the inductor current will counterclockwise to the output capacitor C. Charging is performed as shown by the dotted line in FIG. Therefore, when the boost converter i is in the first mode of operation, the output capacitor ^ also discharges the load in a counterclockwise direction. In the second mode of operation, the boost converter i has only one charge and discharge path and will conform to the following equation (2): :v<-v0 dt (2) h=-ib where '4 is the storage capacitor Q Current. In general, the boost converter of this embodiment is in the first mode of operation: the energy stored by the output capacitor W is used to supply a negative voltage output; in the second mode of operation, the energy storage inductor is charged and stored. Capacitor & Charges the output capacitor. In addition, the duty cycle D ((4) cycle) through the power switch & can adjust the magnitude of the negative voltage 输出 output by the boost converter ,, and its output voltage and output voltage d will conform to the following equation (7): vi ( 3) 201101658 In this embodiment, the input power is a 5 volt pressure transmission plant. Take the absolute value to calculate. In addition, in the present embodiment, the specifications of the boost converter 1 are as follows: (1) The input voltage R is 5V; (2) The output voltage 匕 is 12V (absolute value); (3) The output power is 24w;
(4) 功率開關夂的開關頻率為l95kHz ; (5) 升壓轉換器丨操作在連續 史M導通模式下的最小輪出功 率匕min為3.6W ;及 ⑹最大峰對峰(peak_tG_peak)輸出電壓的連朴ip*) △v。為6〇mV。(以上單位v:伏特,w:瓦特) 接著’配合上述規格’針對儲能電感£、儲能電容0 輸出電容Q進行設計。在本實施财,儲能電容^符合下 列方程式(4):(4) The switching frequency of the power switch l is l95kHz; (5) The minimum output power 升压min of the boost converter 丨 operating in the continuous history M conduction mode is 3.6W; and (6) the maximum peak-to-peak (peak_tG_peak) output voltage The even ip*) △v. It is 6〇mV. (The above unit v: volt, w: watt) Then 'with the above specifications' is designed for the storage inductor £ and the storage capacitor 0 output capacitor Q. In this implementation, the storage capacitor ^ meets the following equation (4):
Cb = ^o-rated * - 〇)Cb = ^o-rated * - 〇)
值得一提的是 點假設: 儲能電容C6符合方程式(4)需有以下三 ⑴在第二操作模式下,儲能電容Q維持一個常數電 壓’其常數電壓為輸入電壓γ; ⑻儲能電容C;在充電及放電之間所產生的能量誤差ε 為0.1% ;及 (m)在不同的負載下,輸入功率皆等於輸出功率。 因此’帶入所有規格參數的數值’可得儲能電容。為 9 201101658 855pF。換言之,儲能電容Q的數值只要大於855μρ即可, 而本實施例是設計為1 OOOpF,但不以此為限。 而且,儲能電感1及輸出電容c。則是分別符合下列方程 式(5)及(6): L ν02·(1-Ργ (5) c — 130// 户一 °~(l-D)-V0Av0 (6) 同樣地,帶入所有規格參數的數值,可得儲能電感尤及 輸出電容(^的最小值分別為7.4μΗ及1560μΡ。本實施例是 分別設計為ΙΟμΗ及2200pF。 再參閱圖1,本實施例之控制模組2包含一分壓器 (voltage divider)21、一 比較器(comparat〇r)22、一比例積分 (Proportional Integra卜PI)控制器23及一閘極驅動器(料^ driver)24。 分壓器21耦接於升壓轉換器丨的輸出端(即輸出電容& 的第一端111),用以接收輸出電壓K ,並且根據一分壓比例 將其進行分壓’此外,為了使邏輯電路正常運作,分壓器 21還會將輸出電壓轉換成正電壓輸出。比較器22麵接於 分壓器21,用以接收分壓器21的輸出電壓,並與一參考電 壓相互比較而輸出一數位邏輯訊號,即邏輯1及邏輯〇所 組成之資料流(data stream);比例積分控制器23輕接於比較 器22,用以根據數位邏輯訊號輸出—控制訊號以決定功 率開關夂的責任週期Z);閘極驅動器24耦接於比例積分控 制器23,用以將控制訊號轉換成足以驅動功率開關5啟閉 10 201101658 的驅動訊號。 換言之,分壓器21接收升壓轉換器丨的輸出電壓κ, 透過比較器22比較後傳送至比例積分控制器23,比例積分 控制器23根據輸出電壓&產生下一週期的功率開關夂的責 任週期β,以維持輸出電壓G為_12伏特。特別說明的是, 本實施例之比較器21利用輸出電壓κ與參考電壓進行多次 比較,而產生串列式的控制訊號(即資料流),以取代類比數 位轉換器(Analog-to-Digital Converter,ADC)。 在本實施例中,tU列積分控制n 23是應用於場效邏輯 陣列(Field Programmable Gate Array,FpGA),且比例積分 控制器23令的參數值\及七分別為〇 5及〇 〇625,但以上均 不以實施例為限。 參閱圖4,為升壓轉換裝置1〇〇的輸出電壓κ、電感電 流4及閘極驅動器24所輸出的驅動訊號之波形圖,其中是 利用模擬軟體IsSpice所產生的模擬結果。此外,輸出電壓 G是以正電壓來表示(絕對值)。 由圖4可知,升壓轉換裝置1〇〇透過控制模組2的控 制’適當地調整功率開關&的責任週期,使得輸出電壓匕維 持-個岐的伏特(負)電愿輸出,而驅動功率開關心啟 閉的驅動訊號之振幅為20伏特。 综上所述,本發明升壓轉換裝置1〇〇藉由升壓轉換器工 及控制模組2的配合而產生一固定的負電壓輸出,且控制 模組2中利用比較器來取代類比數位轉換器’因此,本發 明之升壓轉換裝置100不僅電路簡單且成本較低,更適合 11 201101658 產業上的利用。 惟以上所述者’僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一電路圖,說明本發明升壓轉換裝置之較佳實 施例; 圖2是一示意圖,說明升壓轉換器於第一操作模式下 的三個充放電路徑; 圖3是一示意圖,說明升壓轉換器於第二操作模式下 的放電路徑;及 圖4是一波形圖,說明升壓轉換裝置的輸出電壓匕、電 感電流&及驅動訊號之模擬結果。 12 201101658 【主要元件符號說明】 100… •…升壓轉換裝置 109… •••Ν極(第二二極體) 1…… •…升壓轉換器 110… ••••Ρ極(第二二極體) 101… •…輸入端 111… •…第端(輸出電容) 102… •…輸出端 112… •…第二端(輸出電容) 103… …·第 端(儲能電感) 2 ··.... •…控制模組 104… •…第二端(儲能電感) 21 ••… •…分壓器 105… …·第一端(儲能電容) 22…… •…比較器 106… •…第二端(儲能電容) 23…… •…比例積分控制器 107… •…P極(第一二極體) 24…… …·閘極驅動器 108… _···Ν極(第一二極體) ❹ 13It is worth mentioning that the assumption is as follows: The storage capacitor C6 conforms to equation (4) and needs to have the following three (1) In the second operation mode, the storage capacitor Q maintains a constant voltage 'the constant voltage is the input voltage γ; (8) the storage capacitor C; the energy error ε generated between charging and discharging is 0.1%; and (m) the input power is equal to the output power under different loads. Therefore, the value of 'take all the specifications' can be used to obtain the storage capacitor. For 9 201101658 855pF. In other words, the value of the storage capacitor Q is only required to be greater than 855 μρ, but the embodiment is designed to be 1 OOOpF, but not limited thereto. Moreover, the energy storage inductor 1 and the output capacitor c. Then, the following equations (5) and (6) are respectively satisfied: L ν02·(1-Ργ (5) c — 130// household one°~(lD)-V0Av0 (6) Similarly, all the parameters are brought in. The value of the energy storage inductor and the output capacitor (the minimum value of ^5 is 7.4μΗ and 1560μΡ respectively. This embodiment is designed as ΙΟμΗ and 2200pF respectively. Referring to Figure 1, the control module 2 of the embodiment includes one point. A voltage divider 21, a comparator (comparat〇r) 22, a proportional integral (PI) controller 23, and a gate driver (device driver) 24. The voltage divider 21 is coupled to the riser The output of the voltage converter ( (ie, the first end 111 of the output capacitor &) is used to receive the output voltage K and divide it according to a voltage division ratio. In addition, in order to make the logic circuit operate normally, the voltage divider The comparator 21 also converts the output voltage into a positive voltage output. The comparator 22 is connected to the voltage divider 21 for receiving the output voltage of the voltage divider 21 and comparing with a reference voltage to output a digital logic signal, that is, logic. 1 and logical stream composed of data stream; proportional integral control 23 is connected to the comparator 22 for outputting a control signal according to the digital logic signal to determine the duty cycle Z) of the power switch ;; the gate driver 24 is coupled to the proportional integral controller 23 for converting the control signal into sufficient The driving power switch 5 turns on and off the driving signal of the 201101658. In other words, the voltage divider 21 receives the output voltage κ of the boost converter ,, compares it by the comparator 22, and transmits it to the proportional-integral controller 23, which is based on the output. The voltage & generates a duty cycle β of the power switch 下一 of the next cycle to maintain the output voltage G at _12 volts. In particular, the comparator 21 of the present embodiment uses the output voltage κ to perform multiple comparisons with the reference voltage. The serial control signal (ie, data stream) is generated instead of the analog-to-digital converter (ADC). In this embodiment, the tU column integral control n 23 is applied to the field effect logic array. (Field Programmable Gate Array, FpGA), and the parameter values \ and VII of the proportional integral controller 23 are 〇5 and 〇〇625, respectively, but the above are not limited by the embodiment. 4 is a waveform diagram of the output voltage κ, the inductor current 4, and the driving signal outputted by the gate driver 24 of the boost converter device 1 , which is a simulation result generated by using the analog software IsSpice. G is expressed by a positive voltage (absolute value). As can be seen from Fig. 4, the boost converter 1 〇〇 is appropriately adjusted by the control of the control module 2 to adjust the duty cycle of the power switch & The volt (negative) power of the cymbal is expected to be output, and the amplitude of the driving signal for driving the power switch to open and close is 20 volts. In summary, the boost converter device 1 of the present invention generates a fixed negative voltage output by the cooperation of the boost converter and the control module 2, and the comparator module is used in the control module 2 to replace the analog digital position. Converter ' Therefore, the boost converter device 100 of the present invention is not only simple in circuit but also low in cost, and is more suitable for use in the industry of 11 201101658. However, the above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention, All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing a preferred embodiment of a boost converter of the present invention; FIG. 2 is a schematic diagram showing three charge and discharge paths of a boost converter in a first mode of operation; 3 is a schematic diagram illustrating the discharge path of the boost converter in the second mode of operation; and FIG. 4 is a waveform diagram illustrating the simulation results of the output voltage 匕, the inductor current & and the drive signal of the boost converter. 12 201101658 [Description of main component symbols] 100... •...Boost converter 109... •••Ν pole (second diode) 1... •...Boost converter 110... ••••Ρpole (second Diode) 101... •...Input terminal 111... •...terminal (output capacitor) 102... •...output 112... •...second terminal (output capacitor) 103... ...·terminal (storage inductor) 2 · ·.... •...control module 104... •...second end (storage inductor) 21 ••... •...divider 105... ...first end (storage capacitor) 22... •... comparator 106... •...Second end (storage capacitor) 23... •...Proportional integral controller 107... •...P pole (first diode) 24... ...·gate driver 108... _···bungee (first diode) ❹ 13
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98120610A TW201101658A (en) | 2009-06-19 | 2009-06-19 | Boost converting device, boot converter, and the control module thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98120610A TW201101658A (en) | 2009-06-19 | 2009-06-19 | Boost converting device, boot converter, and the control module thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201101658A true TW201101658A (en) | 2011-01-01 |
TWI376866B TWI376866B (en) | 2012-11-11 |
Family
ID=44837083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98120610A TW201101658A (en) | 2009-06-19 | 2009-06-19 | Boost converting device, boot converter, and the control module thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201101658A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102710121A (en) * | 2012-05-31 | 2012-10-03 | 南京航空航天大学 | Non-isolation type switching electric capacity adjuster for soft switch |
AT512738A1 (en) * | 2012-03-15 | 2013-10-15 | Fachhochschule Technikum Wien | Inductive charge pump with reduced output impedance |
WO2014086096A1 (en) * | 2012-12-06 | 2014-06-12 | 东林科技股份有限公司 | Alternating-direct current conversion device and power factor correction method therefor |
CN114340085A (en) * | 2022-03-11 | 2022-04-12 | 浙江芯昇电子技术有限公司 | Photoelectric smoke sensor driving circuit and driving method thereof |
-
2009
- 2009-06-19 TW TW98120610A patent/TW201101658A/en unknown
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT512738A1 (en) * | 2012-03-15 | 2013-10-15 | Fachhochschule Technikum Wien | Inductive charge pump with reduced output impedance |
AT512738B1 (en) * | 2012-03-15 | 2014-04-15 | Fachhochschule Technikum Wien | Inductive charge pump with reduced output impedance |
CN102710121A (en) * | 2012-05-31 | 2012-10-03 | 南京航空航天大学 | Non-isolation type switching electric capacity adjuster for soft switch |
CN102710121B (en) * | 2012-05-31 | 2015-01-14 | 南京航空航天大学 | Non-isolation type switching electric capacity adjuster for soft switch |
WO2014086096A1 (en) * | 2012-12-06 | 2014-06-12 | 东林科技股份有限公司 | Alternating-direct current conversion device and power factor correction method therefor |
GB2522820A (en) * | 2012-12-06 | 2015-08-05 | Hep Tech Co Ltd | Alternating-direct current conversion device and power factor correction method therefor |
GB2522820B (en) * | 2012-12-06 | 2020-05-13 | Hep Tech Co Ltd | AC/DC converter and method of correcting power factor |
CN114340085A (en) * | 2022-03-11 | 2022-04-12 | 浙江芯昇电子技术有限公司 | Photoelectric smoke sensor driving circuit and driving method thereof |
CN114340085B (en) * | 2022-03-11 | 2022-06-10 | 浙江芯昇电子技术有限公司 | Photoelectric smoke sensor driving circuit and driving method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI376866B (en) | 2012-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10063147B2 (en) | Multiple output boost DC-DC power converter | |
CN104205596B (en) | Switching power unit | |
CN104956580B (en) | In Asynchronous Mode using synchronous converter with prevent battery charge during electric current it is reverse | |
CN202798467U (en) | DC/DC converter, power supply device applying DC/DC converter, and electronic device | |
US20120299553A1 (en) | Bidirectional hysteretic power converter | |
US20100039085A1 (en) | Buck boost function based on a capacitor bootstrap input buck converter | |
JP2013070470A (en) | Dc/dc converter | |
Wang et al. | A novel control scheme of synchronous buck converter for ZVS in light-load condition | |
JP5366032B2 (en) | Ramp signal generation circuit and ramp signal adjustment circuit | |
TW200417118A (en) | Control IC for low power auxiliary supplies | |
KR101005463B1 (en) | Dc/dc converter and driving method thereof | |
TW201101658A (en) | Boost converting device, boot converter, and the control module thereof | |
TWI438600B (en) | Power off delay circuit and power supply system | |
TW201121362A (en) | LED driver and driving method | |
CN104980133B (en) | The method and related circuit of the base current of the bipolar junction-type transistor for emitter switch of overdriving | |
TW201109876A (en) | A method of reducing IC pin of pulse width modulation regulator integrate chip, and the pulse width modulation regulator integrate chip and the circuit thereof | |
TW201101659A (en) | Boost/buck converting device, boost/buck converter, and control module thereof | |
JP6274289B1 (en) | Power circuit | |
JP2014033494A (en) | Power circuit | |
JP5599911B2 (en) | Common core power factor improved resonant converter | |
TWI795258B (en) | Gate driver circuit for a power supply voltage converter | |
TWI441430B (en) | High step-up dc-dc converter with leakage inductance energy recycled | |
Pham-Nguyen et al. | An 86.7%-efficient three-level boost converter with active voltage balancing for thermoelectric energy harvesting | |
TWI444811B (en) | High boost ratio circuit | |
TW201232988A (en) | A self powered feed forward charging circuit and design methodology for the protection of electrical energy storage devices |