201105074 六、發明說明: 【發明所屬之技術領域】 本發明係指一種用於一無線區域網路裝置之前置資料 (Preamble)序列產生方法及相關裝置,尤指一種用於正征8〇211扣 標準之無__職置_置㈣相產生方法及相關裝置。 【先前技術】 無線區域網路(Wireless Local Area Network,WLAN)技術是 熱門的無線通訊技術之一,最早用於軍事用途,近年來廣泛應用於 各種消費性電子產品,如桌上型電腦、筆記型電腦或個人數位助理, 提供大眾更便利及快速的網際網路通訊功能。無線區域網路通訊協 定標準IEEE 802.11系列是由國際電機電子工程師學會(Institute 〇f Electrical and Electronics Engineers,IEHE)所制定,由早期的正四 802.11a、正EE802.Ub、正EE802.llg等,演進至目前主流的ffiEE 802.11η。IEEE 8GZlla/g/n標準冑採用正交分頻$工<201105074 VI. Description of the Invention: [Technical Field] The present invention relates to a method for generating a Preamble sequence of a wireless local area network device and related devices, and more particularly to an indication for the 8正211 There is no deduction standard __ Occupation _ set (four) phase generation method and related devices. [Prior Art] Wireless Local Area Network (WLAN) technology is one of the popular wireless communication technologies. It was first used in military applications and has been widely used in various consumer electronic products in recent years, such as desktop computers and notes. A computer or personal digital assistant that provides the convenience and speed of Internet communication for the general public. The IEEE 802.11 series of wireless LAN protocols is developed by the Institute of Electrical and Electronics Engineers (IEHE) and evolved from the early positive 802.11a, positive EE802.Ub, and positive EE802.llg. Up to now the mainstream ffiEE 802.11η. IEEE 8GZlla/g/n standard 胄 uses orthogonal frequency division &
Frequency-Division Multiplexing,OFDM)調變技術,與正he 802.11a/g標準不同的是,IEEE 8〇2·1ΐη標準使用多輸入多輸出 (Multiple Input Multiple Output ’ ΜΙΜΟ)技術及其它新功能,大幅 改善了資料速率及傳輸吞吐量(Throughput)’同時,通道頻寬由 20MHz 增加為 40MHz。 請參考第1圖,第1圖為習知正ΕΕ802.Πη標準之封包格式示 201105074Frequency-Division Multiplexing (OFDM) modulation technology, unlike the positive he 802.11a/g standard, the IEEE 8〇2·1ΐη standard uses Multiple Input Multiple Output 'ΜΙΜΟ technology and other new functions. Improved data rate and throughput (Throughput)' At the same time, the channel bandwidth is increased from 20MHz to 40MHz. Please refer to Figure 1, the first picture shows the packet format of the conventional 802.Πη standard. 201105074
意圖。如第1圖所示,ΙΕέΕ 802.11η標準之封包係由一前置資料 (Preamble)與待傳輸之資料組合而成,前置資料位於每一封包的 最前端,接續為待傳輸之資料。另外,前置資料為混合格式,可向 下相容於IEEE802.11a/g標準之無線區域網路裝置,其中包含的欄 位依序為傳統短訓練欄位L-STF (Legacy Short Training Field)、傳 統長訓練欄位L-LTF ( Legacy Long Training Field)、傳統訊號欄位 L-SIG (Legacy Signal Field)、高呑吐量訊號攔位 HT_SIG • ( ffigh-ThroughPut Signal Field )、高吞吐量短訓練襴位 HT_STF (High-Throughput Short Training Field )以及 N 個高吞吐量長訓練 欄位 HT-LTF (High-Throughput Long Training Held)。傳統短訓練欄 位L-STF用於封包起始偵測(start-of_packet Detection)、自動增益 控制(Automatic Gain Control,AGC )、初始頻率偏移估測(Frequency Offset Estimation)及初始時間同步(Time Synchr〇nizati〇n);傳統長 訓練欄位L-LTF用於精密之頻率偏移估測及時間同步;傳統訊號攔 鲁位L-SIG攜帶資料速率及封包長度之資訊。高吞吐量訊號攔位 HT-SIG攜帶資料速率之資訊’並且用於自動偵測封包屬於混合格式 或傳統格式,咼吞吐量短訓練欄位HT-STF用於自動增益控制;以 及高吞吐量長訓練攔位HT-LTF用於多輸入多輸出之通道估測。 根據目前的EEEE 802.11η標準’在40MHz通道之前置資料中, 下半部20MHz通道之前置資料與ΙΕΕΕ 802·丨丨吮標準封包之前置資 料相同,上半部20MHz通道之前置資料係複製自下半部2〇MHz通 道之前置資料且相位旋轉90。,如此可以降低訊號傳送端傳送前置 201105074 貝料時的峰均值功率比,提高訊號接收端成功彳貞測封包之機率。 凊參考第2圖,第2圖為習知IEEE 802.11η標準之四送四收 (T4R)之無線通訊系統之一訊號傳送機20之功能方塊圖。訊號 傳送機20包含有一訊號轉換單元2〇〇、循環移位延遲s碰 Delay ’ CSD)處理單元〜CSD_3、保護間隔(㈣酿j, GI)處理單元GI—卜以-心射頻處理單元迎」〜处—4及天線 〜Μ ’其中每一循環移位延遲處理單元、倾間隔處理單元、射頻 處^單元及天線之組合’ _—雜鏈(TYansmitChain)。 訊號轉 、單元200用來進行逆向離散傅利葉轉換(inverse Discrete F〇urjer Transform)以實現正交分頻多工調變,將頻域(FrequencyD〇main)intention. As shown in Figure 1, the 802.11n standard packet is composed of a pre-prepared data (Preamble) and the data to be transmitted. The pre-data is located at the forefront of each packet and is connected to the data to be transmitted. In addition, the pre-data is a mixed format, which can be compatible with the IEEE802.11a/g standard wireless local area network device, and the fields included are the traditional short training field L-STF (Legacy Short Training Field). L-LTF (Legacy Long Training Field), L-SIG (Legacy Signal Field), HT_SIG ( ffigh-ThroughPut Signal Field), high throughput short training HT_STF (High-Throughput Short Training Field) and N high-through-long training field HT-LTF (High-Throughput Long Training Held). The traditional short training field L-STF is used for start-of-packet detection, automatic gain control (AGC), initial frequency offset estimation (Frequency Offset Estimation) and initial time synchronization (Time). Synchr〇nizati〇n); the traditional long training field L-LTF is used for precise frequency offset estimation and time synchronization; the traditional signal blocking L-SIG carries information on data rate and packet length. High-throughput signal interception HT-SIG carries data rate information 'and is used to automatically detect packets in mixed or traditional formats, 咼 short throughput training field HT-STF for automatic gain control; and high throughput long The training block HT-LTF is used for channel estimation of multiple input and multiple output. According to the current EEEE 802.11 η standard, in the 40MHz channel pre-data, the second half of the 20MHz channel pre-data is the same as the 802 802·丨丨吮 standard packet pre-data, the upper half of the 20MHz channel pre-data It is copied from the 2nd MHz channel of the lower half and the phase is rotated by 90. This can reduce the peak-to-average power ratio when the signal transmitting end transmits the front-mounted 201105074 bedding material, and improve the probability that the signal receiving end successfully detects the packet. Referring to FIG. 2, FIG. 2 is a functional block diagram of one of the wireless transmitter systems of the four-four-four-receive (T4R) wireless communication system of the conventional IEEE 802.11n standard. The signal transmitter 20 includes a signal conversion unit 2, a cyclic shift delay s touch Delay 'CSD) processing unit ~ CSD_3, a guard interval ((4) brewing j, GI) processing unit GI - a heart-to-heart RF processing unit welcomes" ~where - 4 and antenna ~ Μ 'each of each cyclic shift delay processing unit, tilt interval processing unit, RF unit ^ unit and antenna combination ' _ - miscellaneous chain (TYansmitChain). The signal is rotated, and the unit 200 is used to perform inverse discrete Fourier transform (inverse Discrete F〇urjer Transform) to implement orthogonal frequency division multiplexing modulation, and the frequency domain (FrequencyD〇main)
輪入序列轉換為時域(Tlme D〇main )正交分頻多工調變符元(〇FDM ymbol)序列。以則置資料而言,輸入至訊號轉換單元測之頻域 ,可為固疋數值之别置資料欄位,如傳統短訓練棚位、傳統長訓 練攔位、高吞吐量_練觀或高料量賴位,或可為已經 ^凡號處理之刖置貝料攔位,如傳統訊號欄位或高吞吐量訊號欄位 等。 如第2圖所不’ -頻域前置資料序列心通過訊號轉換單元2〇〇 轉換為域前㈣料相Sn,接著分職過傳輸鏈卜循環移位 遲處理單兀CSD_x ’加續轉綴(Cydie piefix)祕抗多路徑 輪通道干擾’通過—保護間隔處理單元,於前置資料序列〜 32滅64個_時間長度做為保護間隔,以抵抗符間 201105074 干擾(Inter-symbol Interference);通過一射頻處理單元RF_X轉換為 射頻訊號;最後’由天線Αχ發射至一訊號接收機。 為了實現更高品質的無線區域網路傳輸,相關單位正在制定新 一代的正ΕΕ 802.11 ac標準’係超高吞吐量(very High Throughput, VHT)之無線區域網路標準’通道頻寬由4〇mHz提高至80MHz。 若仿照IEEE 802·11η標準中向下相容之作法,將下半部4〇mHz通 書道之前置資料複製並且相位旋轉9〇。,產生上半部4〇mHz通道之前 置資料,如此所得到的80MHz通道之前置資料的峰均值功率比 (Peak-to-Average P〇wer Rati〇 )將會非常高,影響封包的傳輸品質。 因此,IEEE 802.11ac標準除了必須向下相容於正EE8〇2 lla/g/n標 準之無線區域網路裝置,更應提升封包的傳輸品質。 【發明内容】 目此’本個之主要目的即在於提供—觀於—無線區域網路 瞻裝置之前置資料序列產生方法及相關裝置,使得咖赃心標準The round-in sequence is converted into a time domain (Tlme D〇main) orthogonal frequency division multiplexer (〇FDM ymbol) sequence. In terms of data, the frequency domain input to the signal conversion unit can be used to set the data field of the fixed value, such as traditional short training booth, traditional long training position, high throughput _ training or high. The amount of material is likely to be used, or it can be used for the processing of the bar, such as the traditional signal field or the high-throughput signal field. As shown in Figure 2, the frequency domain pre-data sequence is converted to the pre-domain (4) phase Sn by the signal conversion unit 2, and then the transmission chain is cyclically shifted and the processing unit CSD_x is added. Cydie piefix anti-multipath round channel interference 'pass-protection interval processing unit, in the pre-data sequence ~ 32 off 64 _ time length as a guard interval to resist inter-symbol Interference It is converted to an RF signal by an RF processing unit RF_X; finally, it is transmitted by an antenna 至 to a signal receiver. In order to achieve higher quality wireless LAN transmission, the relevant units are developing a new generation of 802.11 ac standard 'very high throughput (VHT) wireless local area network standard' channel bandwidth by 4〇 The mHz is increased to 80MHz. If the downward compatibility is used in the IEEE 802.11n standard, the data of the lower half of the 4 〇mHz channel is copied and the phase is rotated by 9 〇. , the upper half of the 4 〇 mHz channel pre-data is generated, so the peak-to-average power ratio (Peak-to-Average P〇wer Rati〇) of the obtained 80 MHz channel data will be very high, affecting the transmission of the packet. quality. Therefore, the IEEE 802.11ac standard should not only be compatible with the wireless local area network device of the EE8〇2 lla/g/n standard, but also improve the transmission quality of the packet. SUMMARY OF THE INVENTION The main purpose of this is to provide a view of the wireless local area network device pre-data sequence generation method and related devices, so that the standard of curry
能夠向下相容於IEEE802.lla/g/n標準之無線區域網路裝置,並7"且 提升封包的傳輪品質。 W 無線區域網路 本發明揭露一種前置資料序列產生方法,用於一 系統中產生-封包之—前置㈣序列,該無線區域網 道,刪雜龜枝咖根據該‘ 之貝訊,產生-第-頻域前置資料序列,該第—頻域前^料序列 201105074 包含複數侧域前置:雜子序列,對應_複數個子通道;調整該 j-頻域賴#料相巾每—_前置龍子糊的她,以產生 一第二„頻域前置資料序列;簡第二頻域前置資料序列轉換為一第 :時域前置㈣序列;對該第前置雜序舰浦環移位延 遲處理域生複油延辦域前置資料相;以及對該複數個延 遲時域前置資料相進行錢化運算,以產生―第二日械前置資料 序列,作為該封包之該前置資料序列。 本發明另揭露-種前置資料序列產生裝置,用於一無線區域網 路系統中產生-封包之―前置資料序列,無線區域網路系統之一 通道包含複數個子通道,贿置資料序列產生裝置包含有一序列產 生單兀’用來根據該封包之資訊,產生一第一頻域前置資料序列, 該第一頻域前置資料序列包含複數個頻域前置資料子序列,對應於 該複數個子通道;-相位調整單元,絲破該第-頻域前置資料 序列中每一頻域前置資料子序列的相位,以產生一第二頻域前置資 料序列;一訊號轉換單元,用來將該第二頻域前置資料序列轉換為 第一時域前置資料序列;以及一峰均值功率比調整單元,用來降 低該第一時域前置資料序列之傳送功率的峰均值功率比,以產生一 第二時域前置資料序列’作為該封包之該前置資料序列。 .【實施方式】 凊參考第3圖,第3圖為本發明實施例IEEE 802.11ac標準之四 送四收之無線通訊系統之一訊號傳送機30之功能方塊圖。訊號傳送 201105074 機3〇可為無線區域網路卡、無線區域網路接取點(A⑽也如)、 電腦及行動通碱置如手機或個人數位助理等。職傳送機%包含 有一序列產生單元3〇〇、-相位調整單元3〇2、一訊號轉換單元3〇4、 -峰均值功率_整單元3G6、循環移位延遲處理單元CSD ^〜 CSD_3、保護間隔處理單元GL1〜GI—4、射頻處理單元即―二奸* =天線A1〜A4,其中每-循環移位延遲處理單元、保護間隔處理 單元、射頻處理單元及天線形成一傳輸鏈。 序列產生單το 300、相位調整單元3〇2、訊號轉換單元3〇4及峰 均值功率比織單元3G6之組合,可視為—時域前置資料序列產生 裝置’其產生之時域前置資料序列即正交分頻多工調變符元( Symb〇1)。訊號轉換單元辦係將前置資料序列由頻域轉換為時域。 峰均值功率比調整單元306進一步包含有循環移位延遲處理單元 CSDA_1〜CSDA—4、乘法器Ml〜M4及一加法器31〇。 正EE 802.11ac標準所使用的80MHz通道,可分為四個2〇MHz 子通道。序舰生單元絲產生8GMHz通道之親前置資料序 列’其中頻帶較高的三個2〇MHz子通道之頻域前置資料序列係複製 自頻帶最低之20MHz子通道之頻域前置資料序列,即 802.11a/g標準之一 2〇mHz通道之頻域前置資料序列。由於正邱 802.11a/g標準之20MHz通道包含有64個子載波, 2〇MHz通道之頻域前置資料序列表示為j = 0,l,.,,,63},因此, 序列產生單元3〇〇產生之8〇MHz通填之頻域前置資料序列為 201105074 {*^=\m〇d64,々 = 0,l”..,255}。 在IEEE 802‘llac標準之前置資料各個欄位中,傳統短訓練欄位 L STF傳統長訓練欄位L_LTF、高吞吐量短訓練攔位hT_stf及高 吞吐量長訓練攔位HT_LTF為固定數值,儲存於訊號傳送機3〇的= 憶體(未顯示於第3圖)’因此’序列產生單元3〇〇直接從記憶體取, 知上賴位之20MHz子通道之前置資料序列,據以產生8〇顧2通 道之前置資料序列。另一方面,傳統訊號攔位乙_;51(3及高吞吐量訊 號欄位HT-SIG非固定數值’而是攜帶資料速率及封包長度等資訊, 因此’傳統訊號攔位L-SIG及高呑吐量訊號攔&HT_SIG之2〇mhz 子通道之前置資料序列,係先通過前向錯誤校正編碼(F〇rward Err〇r CorrectionEncoding)、交叉存取(interleaving)及二位元相移鍵控 調變(Binary Phase Shift Keying)等訊號處理程序,再輸出至序列 產生單元300,上述訊號處理程序為本領域具通常知識者所熟知, 在此不詳述。 相位調整單元302輕接於序列產生單元3〇〇,以一乘法器實現, 用來對80MHz通道之頻域前置資料序列進行相位調整,使頻帶較高 之三個20MHz子通道之頻域前置資料序列中,每一 2〇MHz子通道 之頻域前簟資料序列的相位,為相鄰較低頻帶之20MHz子通道之頻 域前置資料序列的相位旋轉90。而得。換言之,相對於最低頻帶之 20MHz子通道之頻域前置資料序列的相位,其它之20MHz子通道 之頻域前置資料序列的相位分別旋轉了 90。、180。、270。。各個20MHz 201105074 子通道之頻域前置資料序列的相位所需旋轉的角度,亦錯存於訊號 傳送機30的記憶體,相位調整單元302從記憶體取得各個2〇miJ 子通道所對應的旋轉角度,以將序列產生單元3〇〇所產生之頻域前 置資料序列調整至合適的相位。相位調整單元3〇2輸出之頻域前置 資料序列表示如下: A = (#/64」&m()d64,^: = 〇,1,.··,255。 ⑴ φ 請參考第4圖,第4圖為本發明實施例IEEE 802.11ac標準之封 包中一 80MHz通道之前置資料序列於頻域上的示意圖。第4圖所示 之前置資料序列’即通過相位調整單元302旋轉相位後的8〇mHz 通道之前置資料序列’其中頻帶最低之20MHz子通道之前置資料序 歹ij{& :灸=0,1,".,63}以S表示,因此四個20MHz子通道之前置資料 序列根據頻帶由低至尚依序為S、jS、一S、一jS。由第4圖可清楚 得知’每一 20MHz子通道之前置資料序列皆與相鄰較低頻帶之 20MHz子通道之前置資料的相位相差90。,因此,第4圖所示之前 置資料,能夠向下相容於IEEE 802.11 a/g標準之20MHz通道或IEEE 802.11η標準之40MHz通道。 訊號轉換單元304耦接於相位調整單元302,與第2圖中訊號 傳送機20之訊號轉換單元200的運作相同,用來進行逆向離散傅利 葉轉換,將頻域前置資料序 換為時域前置資料序列{\^ = 〇,1,...,255},即正交分頻多工調變符 元。訊號轉換單元304進行之轉換表示為 11 (2) 255. 201105074It is compatible with the IEEE802.11a/g/n standard wireless local area network device, and 7" and improves the transmission quality of the packet. W wireless local area network The present invention discloses a pre-data sequence generating method for generating a-packet-pre- (four) sequence in a system, and the wireless area network channel is deleted according to the 'before'. - a first-frequency domain preamble sequence, the first-frequency domain pre-sequence sequence 201105074 includes a complex side domain preamble: a hetero-subsequence sequence, corresponding to _ a plurality of sub-channels; adjusting the j-frequency domain 赖#料相巾- _ pre-positioned the dragon to paste her to generate a second „frequency domain pre-data sequence; the second-frequency domain pre-data sequence is converted into a first: time domain pre- (four) sequence; the first pre-order ship The Puhuan shift delay processing domain regenerates the domain pre-data phase; and performs a credit operation on the plurality of delayed time domain pre-data phases to generate a second second-machine pre-data sequence as the packet The preamble data sequence. The invention further discloses a preamble data sequence generating device, which is used for generating a packet-pre-data sequence in a wireless local area network system, and one channel of the wireless area network system includes a plurality of sub-channels Channel, bribe data sequence generating device Having a sequence generating unit 用来' for generating a first frequency domain preamble sequence according to the information of the packet, the first frequency domain preamble sequence comprising a plurality of frequency domain preamble subsequences corresponding to the complex number a sub-channel; a phase adjustment unit that breaks the phase of each of the frequency domain preamble subsequences in the first-frequency domain preamble sequence to generate a second frequency domain preamble sequence; a signal conversion unit, And converting the second frequency domain preamble sequence into a first time domain preamble sequence; and a peak-to-average power ratio adjustment unit for reducing a peak-to-average power ratio of the transmission power of the first time domain preamble sequence To generate a second time domain preamble sequence 'as the preamble sequence of the packet. [Embodiment] Referring to FIG. 3, FIG. 3 is a fourth embodiment of the IEEE 802.11ac standard according to an embodiment of the present invention. The function block diagram of the signal transmitter 30, which is one of the wireless communication systems. The signal transmission 201105074 can be used for the wireless area network card, the wireless area network access point (A (10), etc.), the computer and the mobile base Mobile phone or personal digital assistant, etc. The job conveyor % includes a sequence generating unit 3, - phase adjusting unit 3 〇 2, a signal converting unit 3 〇 4, - peak mean power _ whole unit 3G6, cyclic shift delay processing Unit CSD ^ ~ CSD_3, guard interval processing unit GL1 ~ GI - 4, radio frequency processing unit - "two traits * = antennas A1 ~ A4," per-cycle shift delay processing unit, guard interval processing unit, radio frequency processing unit and antenna Forming a transmission chain. The combination of the sequence generation unit το 300, the phase adjustment unit 3〇2, the signal conversion unit 3〇4, and the peak-to-average power ratio weaving unit 3G6 can be regarded as a “time domain pre-data sequence generating device” The time domain preamble sequence is the orthogonal frequency division multiplexer (symb〇1). The signal conversion unit converts the preamble sequence from the frequency domain to the time domain. The peak-to-average power ratio adjustment unit 306 further includes cyclic shift delay processing units CSDA_1 CSCSDA-4, multipliers M1 to M4, and an adder 31A. The 80MHz channel used in the EE 802.11ac standard can be divided into four 2〇MHz subchannels. The pre-war data sequence of the 8GMHz channel is generated by the pre-ship unit filaments. The frequency domain preamble sequence of the three 2〇MHz subchannels with higher frequency bands is the frequency domain preamble sequence copied from the lowest 20MHz subchannel of the frequency band. , that is, one of the 802.11a/g standards, a frequency domain preamble sequence of 2 〇 mHz channels. Since the 20MHz channel of the Zhengqiu 802.11a/g standard contains 64 subcarriers, the frequency domain preamble sequence of the 2〇MHz channel is represented as j = 0, l, .,, 63}, therefore, the sequence generating unit 3〇 The frequency domain preamble sequence generated by the 8〇MHz fill is 201105074 {*^=\m〇d64,々= 0,l”..,255}. Before the IEEE 802'llac standard, the data column is set. Among the bits, the traditional short training field L STF traditional long training field L_LTF, high throughput short training block hT_stf and high throughput long training block HT_LTF are fixed values, stored in the signal transmitter 3〇 = memory ( Not shown in Fig. 3) 'Therefore' the sequence generating unit 3 is directly taken from the memory, and the 20 MHz sub-channel pre-data sequence is known to generate the data of the 2 channels before the data. On the other hand, the traditional signal interception B_; 51 (3 and high-throughput signal field HT-SIG non-fixed value 'but carries information such as data rate and packet length, so 'traditional signal interception L-SIG and high The data sequence of the 2〇mhz subchannel of the 呑 量 信号 & HT_SIG is first corrected by forward error Signal processing programs such as coding (F〇rward Err〇r CorrectionEncoding), interleaving (interleaving), and binary phase shift keying (Binary Phase Shift Keying) are output to the sequence generating unit 300, and the above signal processing program It is well known to those skilled in the art and will not be described in detail herein. The phase adjustment unit 302 is lightly connected to the sequence generating unit 3, implemented by a multiplier, and is used to phase the frequency domain preamble sequence of the 80 MHz channel. Adjusting, in the frequency domain preamble sequence of the three 20MHz subchannels with higher frequency bands, the phase of the data domain of each 2〇MHz subchannel is the frequency of the 20MHz subchannel of the adjacent lower frequency band. The phase of the domain preamble sequence is rotated by 90. In other words, the phase of the frequency domain preamble sequence of the other 20 MHz subchannel is rotated relative to the phase of the frequency domain preamble sequence of the 20 MHz subchannel of the lowest frequency band. 90, 180, 270. The angle of rotation required for the phase of the frequency domain preamble sequence of each 20 MHz 201105074 subchannel is also stored in the memory of the signal transmitter 30, phase The whole unit 302 obtains the rotation angle corresponding to each 2〇miJ subchannel from the memory to adjust the frequency domain preamble sequence generated by the sequence generating unit 3〇〇 to an appropriate phase. The phase adjustment unit 3〇2 outputs The frequency domain preamble sequence is expressed as follows: A = (#/64"&m()d64,^: = 〇,1,.··,255. (1) φ Please refer to FIG. 4, which is a schematic diagram of an 80 MHz channel preamble sequence in the frequency domain in the IEEE 802.11ac standard packet according to the embodiment of the present invention. The pre-data sequence shown in Fig. 4 is the 8 〇mHz channel pre-sequence data sequence after the phase adjustment unit 302 rotates the phase. The lowest frequency 20 MHz sub-channel pre-data sequence 歹 ij{& moxibustion =0,1,".,63} is represented by S, so the four 20MHz sub-channel pre-data sequences are S, jS, S, and JS according to the frequency band from low to sequential. It can be clearly seen from Fig. 4 that the pre-data sequence of each 20 MHz sub-channel is 90 different from the phase of the pre-data of the 20 MHz sub-channel adjacent to the lower frequency band. Therefore, the pre-configuration data shown in Figure 4 can be backward compatible with the 20MHz channel of the IEEE 802.11 a/g standard or the 40MHz channel of the IEEE 802.11n standard. The signal conversion unit 304 is coupled to the phase adjustment unit 302 and operates in the same manner as the signal conversion unit 200 of the signal transmitter 20 in FIG. 2 for performing inverse discrete Fourier transform to replace the frequency domain preamble data with the time domain. Set the data sequence {\^ = 〇, 1, ..., 255}, that is, the orthogonal frequency division multiplexed modulation symbol. The conversion by the signal conversion unit 304 is expressed as 11 (2) 255. 201105074
Sn = k^〇 根據式1及式2,可得 255 .2π f^ = Σ k=0 63 Σ^·[^ + , A:=〇 63 ·[ 1 + e^2' + e Λ=0 4. /.赛如64)” + γ v_&(“128)” + ν·δ^Η yf(«+i); ρΜ«+ι) + ^/γ(”+1) (3) 根據式3,當取樣時間n取4之餘數的結果等於0,1,2, 3時 (1 + #+1) + W«+1) + #+1))分別為 n = 0:\l + ej^n+l) ^eMn+l) +ej^{n+l) \ n = l:(l + ej^n+l) +eMn+l) +^(Λ+1) \^ej^+ejn+ej~2 (l + ejn + ej2% + ej 3π \ 0 J3π)=ο n 2: fl + eJ^(n+l) + eJ^n+x) + J^n+l>> f : 3π ., .* 9π \l+〆2 + θ4π + 〆2 1 = o (l + ^'27I+e74it+e7'67t)=4 (4) 歸納得知 \ + ej^n+l) + eMn+l)-^ ej3^n+^ v 0, if wmod4 = 0,1,2 4, if wmod4 = 3 (5) 由式3及式5可知’訊號轉換單元3〇4產生之時域前置資料序 列{〜,《 = 0,1,.",255}中,有四分之三數量的資料數值為〇,如此一來 12 201105074 ::= 峰均值功率比調整私观中的循環移位延遲處理單元 =SDSTTA—4 環移峡频料元输於訊號轉換 序^ s、s、s。循環移位延遲處理單元c觀一卜哪Α4 所使用之延遲時間彼此相異,依序為化、4咐卜4啦、, 255 Σ^β7256 (n+4mi) ^ ^(2) _ y e^A(«+4/7i2+l) ㈣ t, k ^值非唯-解’可概要奴,其巾%、叫、吨、叫為正整 數,可為相同或相異之數值。根據式2及上述延遲日摘,循環移位 延遲處理單元CSDAj〜CSDA_4分職&能㈣序列 … 255 … _Sn = k^〇 According to Equation 1 and Equation 2, we can get 255.2 π f^ = Σ k=0 63 Σ^·[^ + , A:=〇63 ·[ 1 + e^2' + e Λ=0 4. /.赛如64)" + γ v_&("128)" + ν·δ^Η yf(«+i); ρΜ«+ι) + ^/γ("+1) (3) 3. When the sampling time n takes the remainder of 4, the result is equal to 0, 1, 2, 3 (1 + #+1) + W«+1) + #+1)) respectively n = 0:\l + ej ^n+l) ^eMn+l) +ej^{n+l) \ n = l:(l + ej^n+l) +eMn+l) +^(Λ+1) \^ej^+ejn +ej~2 (l + ejn + ej2% + ej 3π \ 0 J3π)=ο n 2: fl + eJ^(n+l) + eJ^n+x) + J^n+l>> f : 3π ., .* 9π \l+〆2 + θ4π + 〆2 1 = o (l + ^'27I+e74it+e7'67t)=4 (4) Inductively know that \ + ej^n+l) + eMn+ l)-^ ej3^n+^ v 0, if wmod4 = 0,1,2 4, if wmod4 = 3 (5) From Equation 3 and Equation 5, the time domain preamble sequence generated by the signal conversion unit 3〇4 is known. {~, "= 0,1,.",255}, there are three-quarters of the data value is 〇, so that 12 201105074 ::= peak-to-average power ratio adjusts the cyclic shift delay in the private view Processing unit=SDSTTA—4 The ring-shifting gorge element is input to the signal conversion sequence ^ s, s, s. The delay time of the cyclic shift delay processing unit c is different from each other, and is sequentially different, 4 咐 4, 255 Σ^β7256 (n+4mi) ^ ^(2) _ ye^ A («+4/7i2+l) (4) t, k ^ value non-only-solution 'can be summarized slave, its towel%, call, ton, called a positive integer, can be the same or different values. According to Equation 2 and the above-mentioned delay date, the cyclic shift delay processing unit CSDAj~CSDA_4 is divided into & capable (four) sequences ... 255 ... _
SS
255 〇 S(3) = ^skeJ^k(n+4m2+2) k—0 255 以及 *s(4) = 歲咖+4w4+3) k=0 2π 乘法器 〜M4及加法器310之目的在於進行正規化(N〇mi此和)運 算’以維持前置資料序列之傳送功率不變。乘法器m1〜M4用來將 循環移位延遲處理單元CSDA—KSDA—4產生之前置資料序列 S(1)、S(2)、S(3)、S(4)分別乘以相對應之正規化係數仍、P2、P3、P4。本 發明不限定正規化係數Pl、P2、P3、P4為特定組合,在傳送功率不 變的條件下,各正規化係數可自由設定士㈣31()祕於乘法器 Ml〜M4,用來將乘法器M1〜M4產生之乘法運算結果相加,產生 13 201105074 一前置資料序列 通過峰均值功率比1 〇之資料數量,動^ « = +/?2J ⑶ +#(4)^ = 0^,,255)。 調整單元遍之運作,前置資料序列&中數值為 值為0之資料數量大幅減少, 車父訊號轉換單元304所輸出之前置資料序列&中數 大幅降低。 減少,因此前置資料序列*^之峰均值功率比 峰均值功率比調整單元3〇6產生之前置資料序列(接著通過 傳,鏈中的循環移也延遲處理單元娜―卜㈣」及保護間隔處 理早兀GI」〜GI—4,進行抗多重路徑干擾及抗符間干擾之訊號處 理並通過射頻處理單元即一卜即―4轉換為射頻訊號,最後由天 線 A4 &射至一訊號接收機。訊號傳送機30之傳輸鏈的運作, 與習知IEEE 802.11離標準之訊號傳送機之傳輸鏈的運作相同, 在此不贅述。 在第2圖之IEEE 802·11η標準之訊號傳送機20中,20MHz或 40MHz通道之辆前置資料序列於通過訊號轉換單元2〇〇轉換為時 域前置貧料序列後’隨即輸出至各傳輸鏈進行處理。在本發明實施 例IEEE 802.11ac標準之訊號傳送機30中,80MHz通道之頻域前置 資料序列不僅在通過訊號轉換單元3〇4之前,先通過相位調整單元 302將較高的三個20MH子通道之頻域前置資料序列旋轉至適當相 位’形成如第4圖所示之前置廣料序列,並且在通過訊號轉換單元 304轉換為時域前置資料序列後,進一步通過峰均值功率比調整單 14 201105074 元鄕,降低傳送功率之峰均值功率比 通道之前置資料不但能夠向下相容謂 = 準·,其峰均值功料也能崎得她触善。 娜心 請參考第5A圖及第5B圖。 :均值:率_單,,訊號轉換==:使 物細時間之 ^過峰均值解_單元撕所產生之8G®mn ^料值功率比對時間之示意圖,其中循環移位延遲處理單元 -〜CSDA—4之延遲時間係根據mi=m2=m3=% = 〇而設 定路乘法器M1〜M4使用之正規化係數Ρι™=7ϊ ’所得 之峰均值功率比接近u。由上可知,使 整 3〇6能夠使80ΜΗζ通 勺值力羊比調整早兀 明顯降低。…晴物撕值功率比 識者傳送機3〇為本發明之一實施例,本領域具通常知 除變化及修飾。舉例來說,相位調整單元302 ''省訊_送機3〇之記憶體中儲存的相位旋轉角度—工 角產圖之刪料序列,亦可根據其它組合之相位旋轉 之二晉-邮它前置資料序列。此時,蝴目位調整單元302產生 =!?不再等於第4圖所示之前置資料序列,訊號轉換單 之知域前置資料序财數值為0之資料數量,可能與前 Γ 15 201105074 $ 3及式4所得不同,因此’學均值功率比調整單元鄕可能須 包3不同數量的循環移位親處理單元及對應之乘法器,以達到降 低峰均值功率比之功效。 啤 為了驗證無線區域娜系統之訊號魏夠正顧測到本發 明所提出之8_通道之#聰4,第3圖之喊傳送㈣ 進行模擬,模擬通道環境為謝_準之通道模型B(ch咖d Model B )。訊號傳送機30傳送1〇〇(H固僅包含8〇麻通道之前置 資料之封包,分職4_ίζ通道之城接㈣及8_z通道之訊 號接收機接收並計算正確_封包賴率,麵於第6圖至第9圖。 80MHz通道可被分割為4個非重疊之2_z子通道,依其頻帶由 低至高為A、B、C、D;80MHZ通道又可分為3個部分重疊之4〇MHz 子通道{A,B}、{B,C}及{C,D}。 第6圖表列40MHz通道之一訊號接收機之一自相關性_器 (Auto-correlation Detector)於各個 40MHz 子通道{A,B}、{B,c}、 {C,D}及各個傳輸鏈之下,基於不同的訊雜比(別明相-驗$255 〇S(3) = ^skeJ^k(n+4m2+2) k—0 255 and *s(4) = aged coffee +4w4+3) k=0 2π multiplier ~M4 and adder 310 The normalization (N〇mi this sum) operation is performed to maintain the transmission power of the preamble sequence unchanged. The multipliers m1 to M4 are used to multiply the pre-set data sequences S(1), S(2), S(3), and S(4) by the cyclic shift delay processing unit CSDA_KSDA-4, respectively, to correspond to corresponding ones. The normalization coefficient is still P2, P3, and P4. The present invention does not limit the normalization coefficients P1, P2, P3, and P4 to a specific combination. Under the condition that the transmission power is constant, each normalization coefficient can be freely set to (4) 31 () secret to the multipliers M1 to M4 for multiplication. The multiplication results generated by the devices M1 to M4 are added to generate 13 201105074. The amount of data of a pre-data sequence passing the peak-to-average power ratio of 1 〇, ^^ = +/?2J (3) +#(4)^ = 0^, , 255). When the adjustment unit is operated, the number of data whose value is 0 in the pre-data sequence & is greatly reduced, and the number of pre-arranged data sequences & output by the parent-child signal conversion unit 304 is greatly reduced. Decrease, so the peak-to-average power ratio of the pre-data sequence *^ produces a pre-data sequence than the peak-to-average power ratio adjustment unit 3〇6 (following, the cyclic shift in the chain also delays the processing unit Na-Bu (4)” and protection The interval processing is earlier than GI"~GI-4, and the signal processing against multipath interference and inter-interference interference is performed and converted into an RF signal by the radio processing unit, that is, the "4", and finally the antenna A4 & The operation of the transmission chain of the signal transmitter 30 is the same as that of the conventional IEEE 802.11 transmission chain of the standard signal transmitter, and will not be described here. The IEEE 802.11n standard signal transmitter in FIG. In 20, the pre-data sequence of the 20 MHz or 40 MHz channel is processed after being converted into a time domain pre-lean sequence by the signal conversion unit 2, and then output to each transmission chain for processing. In the embodiment of the present invention, the IEEE 802.11ac standard In the signal transmitter 30, the frequency domain preamble sequence of the 80 MHz channel not only passes through the phase adjustment unit 302 but also the higher frequency of the three 20 MHz subchannels before passing through the signal conversion unit 3〇4. The pre-data sequence is rotated to the appropriate phase' to form a pre-growth sequence as shown in FIG. 4, and after being converted into a time-domain pre-data sequence by the signal conversion unit 304, further through the peak-to-average power ratio adjustment unit 14 201105074 Yuan Hao, lowering the peak power of the transmission power than the channel before the data can not only be backward compatible = quasi-, and its peak mean value can also be satisfied with her. Please refer to Figure 5A and 5B Fig. : Mean: rate_single, signal conversion==: the average value of the material is over the peak value of the solution. The 8G®mn^ material value of the material is compared with the time, which is the cyclic shift delay processing. The delay time of the unit-~CSDA-4 is set according to mi=m2=m3=%=〇, and the normalized coefficient ΡιTM=7ϊ' used by the path multipliers M1 to M4 is set to be close to u. Therefore, the whole 3〇6 can make the 80ΜΗζ value of the sheep significantly lower than the adjustment of the early morning.... The clearing value of the power is higher than that of the transmitter, which is an embodiment of the invention, and the field is generally known to change and modify. For example, phase adjustment unit 302 '' The phase rotation angle stored in the memory of the machine _3 — — — — 工 工 工 工 工 工 工 工 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位 相位The adjustment unit 302 generates =!? is no longer equal to the pre-sequence data sequence shown in FIG. 4, and the number of data of the signal conversion table is 40. The difference is different, so the 'study average power ratio adjustment unit 鄕 may need to include 3 different numbers of cyclic shift pro-processing units and corresponding multipliers to achieve the effect of reducing the peak-to-average power ratio. In order to verify the signal of the wireless area Na system, Wei Weizheng measured the 8_channel #聪4, the 3rd figure shouting transmission (4) of the present invention, and simulated the channel environment as Xie _ quasi-channel model B ( Ch coffee d Model B). The signal transmitter 30 transmits 1 〇〇 (H solid only contains 8 ramie channel pre-data packets, 4 ζ ζ channel city connection (4) and 8_z channel signal receiver receives and calculates the correct _ packet rate, in Figure 6 to Figure 9. The 80MHz channel can be divided into 4 non-overlapping 2_z subchannels, with the frequency band from low to high being A, B, C, D; 80MHZ channel can be divided into 3 partially overlapping 4 〇MHz sub-channels {A, B}, {B, C}, and {C, D}. Figure 6 shows one of the 40MHz channels, one of the receivers, Auto-correlation Detector, at each 40MHz sub-channel. Channels {A, B}, {B, c}, {C, D} and under each transmission chain, based on different signal-to-noise ratios
Ratio ’ SNR)所量測之封包成功偵測機率(PacketDetecti〇n Probability)之最小值《第7圖表列4〇MHz通道之一訊號接收機之 父互相關性偵測器(Cross-correlation Detector)於各個40MHz子 通缉{A,B}、{B,C}、{C,D}及各個傳輸鏈之下,基於不同的訊雜比 所篁測之封包成功偵測機率之最小值。由第6圖及第7圖可知, 40MHz通道之訊號接收機所量測到的封包成功偵測機率之最小值 201105074 為 XJl這表不即使訊號接收機不支援iEEE8〇2.ilac標 ; 、道訊號接收機也能夠成功偵測出訊號傳送機30所 生之80MHzit道之前置資料序列。第8圖表列8〇應通道之一 訊號接,機之-自相關性_器於各侧專輸鏈之下,基於不同的訊 雜比所制之能成功彳貞峨率之最小值。第9目表列8QMHz通道 之一訊號接收機之-交互相關性偵測器於各個傳輸鍵之下,基於不 同的訊雜比所量剩之封包成功偵測機率之最小值。由第8圖及第9 φ圖可知’ 8〇MHz通道之訊號接收機所量測到的封包成功侧機率之 最^值多數達1GG%,這表示訊號傳送機3()所產生之8麵z通道 之前置資料序列’能夠成功地被8〇MHz通道之訊號接收機所偵測 出。 訊號傳送機30之序列產生單元3〇〇、相位調整單元3〇2、訊妮 轉換單元304及峰均值功率比調整單元306係根據一流程進行運作 鲁產生時域前置資料序列,輸出至傳輸鏈進行處理。請參考第1〇圖, 第10圖為本發明實施例一流程4〇之示意圖,流程4〇用於! 802.11 ac標準之一訊號傳送機,例如第3圖之訊號傳送機3〇,用以 產生80MHz通道之一時域前置資料序列,作為一待傳送封包之前置 資料序列。流程40包含有以下步驟: 步驟400 :開始。 步驟402 :根據一待傳送封包之資訊,產生8〇MHz通道之〜第 一頻域前置資料序列》 步驟404 :調整該第一頻域前置資料序列中每一 20MHz子通道 17 201105074 之一頻域前置資料序列的相位,以產生8〇ΜΉζ通道 之一第二頻域前置資料序列。 ^406 · f該第二_*前置資料序列轉換為-第-時域前置 貧料序列。 ,8對該第一時域前置資料序列進行循環移位延遲處 ,產生N個延遲時域前置資料序列。 /驟41〇 .=該N個延遲時域前置資料序列進行正規化運算, 以產生-第二時域前置資料序列,作為該待傳送封 包之一前置資料序列。 步驟412 :結束。 輯細獅,考前狀訊麟送㈣,在此 ,^調整早70 302係根據步驟404運作,可以前述 賴i位調整單元3G2所根據之四個2〇廳子通道由低至高 一紙相位旋㈣度’較佳地為Q。,。督、肥訊號轉換 早心4係'根據步驟條運作,可以前述式2表示。峰均值功率比 調整單元306之循環移位延遲處理單元CSDA—i〜csda—*係根據 步驟侧運作。由於相位調整單元3〇2所調整之相位,使得第一時 域前置資料序列須根據四個不同的延遲時間進行循環移位延遲處 理,產生四個延遲前置資料序列,如前述SW、s(2)、s⑶、s(4),用以 降低第-時域前置資料序列之傳送功率鱗均值功率比。♦均值功 率比調整單元306之乘法器M1〜M4及加法器31〇係根據步驟41〇 18 201105074 運作,最終產生之第二時域前置資料序列,即是能夠向下相容於 IEEE802.11a/g/n標準,同時具有較佳之峰均值功率比;的前置資料序 列。 須注意的是,流程40不限用於訊號傳送機30中。流程40之步 驟404未限制使用特定的相位旋轉角度,此外,步驟4〇8可根據步 驟404所調整之相位,對應地進行適當數量之循環移位延遲處理, 以降低峰均值功率比。 矣示上所述’本發明根據正EE 802.1 lac標準所提出之前置資料序 列產生裝置及刚置資料序列產生方法,將8〇mHz通道中各個20MHz 子通道之頻域前置資料序列之相位旋轉適當角度,使其向下相容於 IEEE 802.11 a/g/n標準,並且於頻域前置資料序列轉換為時域前置資 料序列後,利用循環移位延遲之運作,有效地降低時域前置資料序 列之峰均值功率比,進而提升傳輸品質。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍 所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為習知IEEE 802.11η標準之封包格式示意圖。 第2圖為習知ΙΕΕΕ說!ln鮮之一訊號傳送機之功能方塊圖。 第3圖為本發明實施例皿謂2 llae標準之—訊號傳送機之功能方 201105074 塊圖。 第4圖為本發明實施例IEEE 802.11ac標準之一 80MHz通道之前置 資料序列於頻域上的示意圖。 第5A圖為第3圖之訊號傳送機中,不使用峰均值功率比調整單元 所得之80MHz通道之前置資料序列的傳送功率之峰均值功率 比對時間之示意圖。 〜 第5B圖為第3圖之訊號傳送機中使用峰均值功率比調整單元所得 之80MHz通道之前置資料序列的傳送功率之峰均值功率比對 時間之示意圖。 第6圖為40MHz通道之一訊號接收機之一自相關性偵測器於各個 40MHz子通道及各個傳輸鏈之下,基於不同的訊雜比所量測之 封包成功偵測機率之最小值之列表。 第7圖為4GMHz通道之—訊號接收機之—交互綱性_器於各個 40MHz子通道及各侧輪鏈之下,不同的雜比所量測之 封包成功偵測機率之最小值之列表。 第8圖為80廳通道之一訊號接收機之一自相關性偵測器於各個傳 輸鏈之下,基於不_訊雜比所量測之封包成功侧機率 小值之列表。 細為80MHz通道之-訊號接收機之—交互相·_器於各個 傳輸鏈之下,基於不同的訊雜比所量測之封包成功_ 最小值之列表。 第10圖為本發明實施例一流程之示意圖。 20 201105074Ratio ' SNR ) The minimum value of the packet detection probability (PacketDetecti〇n Probability). The 7th chart shows the cross-correlation Detector of the signal receiver of the 4〇MHz channel. Under each of the 40MHz sub-compasses {A, B}, {B, C}, {C, D} and each transmission chain, the packets detected based on different signal-to-noise ratios successfully detect the minimum probability. It can be seen from Fig. 6 and Fig. 7 that the minimum detection probability of the packet detected by the signal receiver of the 40 MHz channel is 201105074. This is not the case that the signal receiver does not support the iEEE8〇2.ilac standard; The signal receiver can also successfully detect the pre-sequence data sequence of the 80 MHz channel generated by the signal transmitter 30. The 8th chart column 8 is one of the channels. The signal is connected, and the machine-autocorrelation _ is used under each side of the special transmission chain. The minimum rate of success is based on different signal-to-noise ratios. The ninth table lists the 8QMHz channel. The one-signal receiver-interaction correlation detector is used under each transmission key to detect the minimum probability of the packet based on the different signal-to-noise ratio. From Fig. 8 and Fig. 9 φ, it can be seen that the maximum value of the packet side rate measured by the signal receiver of the 8 〇 MHz channel is mostly 1 GG%, which indicates the 8 sides generated by the signal transmitter 3 (). The z-channel pre-data sequence 'can be successfully detected by the signal receiver of the 8 〇 MHz channel. The sequence generating unit 3〇〇, the phase adjusting unit 3〇2, the signal conversion unit 304 and the peak-to-average power ratio adjusting unit 306 of the signal transmitter 30 operate according to a process to generate a time domain pre-data sequence, and output to the transmission. The chain is processed. Please refer to FIG. 1 , which is a schematic diagram of a process 4 实施 according to an embodiment of the present invention, and the flowchart 4 is used for! A signal transmitter of the 802.11 ac standard, such as the signal transmitter 3 of Figure 3, is used to generate a time domain preamble sequence of an 80 MHz channel as a pre-transmission sequence of data to be transmitted. The process 40 includes the following steps: Step 400: Start. Step 402: Generate a first frequency domain preamble sequence of 8 〇 MHz channel according to information of a to-be-transmitted packet. Step 404: Adjust one of each 20 MHz subchannel 17 of the first frequency domain preamble sequence. The phase of the frequency domain preamble sequence is generated to generate a second frequency domain preamble sequence of one of the 8 channels. ^406 · f The second _* preamble sequence is converted to a -first-time domain pre-depleted sequence. And 8 performing a cyclic shift delay on the first time domain preamble sequence, and generating N delayed time domain preamble sequences. /Step 41〇.= The N delayed time domain preamble sequences are normalized to generate a second time domain preamble sequence as a preamble sequence of the to-be-transmitted packet. Step 412: End. The series of lions, before the test, sent to the news (four), here, the adjustment of the early 70 302 system according to the operation of step 404, the above two sub-adjustment unit 3G2 according to the four 2 〇 hall sub-channel from low to high paper phase The spin (four) degree is preferably Q. ,. Supervisor, Fertilizer Signal Conversion The Early Heart 4 Series' operates according to the step bar and can be expressed by Equation 2 above. The cyclic shift delay processing unit CSDA_i to csda-* of the peak-to-average power ratio adjusting unit 306 operates according to the step side. Due to the phase adjusted by the phase adjustment unit 3〇2, the first time domain preamble sequence is subjected to cyclic shift delay processing according to four different delay times to generate four delayed preamble sequences, such as the aforementioned SW and s. (2), s(3), s(4), used to reduce the transmission power scale average power ratio of the first-time domain preamble sequence. ♦ The multipliers M1 to M4 and the adder 31 of the mean power ratio adjusting unit 306 operate according to steps 41〇18 201105074, and finally generate a second time domain preamble sequence, which is compatible with IEEE802.11a. /g/n standard, with a preferred peak-to-average power ratio; pre-data sequence. It should be noted that the process 40 is not limited to use in the signal transmitter 30. Step 404 of flow 40 does not limit the use of a particular phase rotation angle. Further, step 4〇8 may correspondingly perform an appropriate number of cyclic shift delay processes in accordance with the phase adjusted in step 404 to reduce the peak-to-average power ratio. The present invention describes the phase of the pre-data sequence generating device and the rigid data sequence generating method according to the EE 802.1 lac standard, and the phase of the frequency domain preamble sequence of each 20 MHz subchannel in the 8 〇 mHz channel. Rotate the appropriate angle to make it downward compatible with the IEEE 802.11 a/g/n standard, and after the frequency domain preamble sequence is converted to the time domain preamble sequence, the operation of the cyclic shift delay is used to effectively reduce the time. The peak-to-average power ratio of the domain preamble sequence improves the transmission quality. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. [Simple Description of the Drawing] Fig. 1 is a schematic diagram of a packet format of the conventional IEEE 802.11n standard. Figure 2 shows what Xi Zhi said! Ln fresh one of the signal transmitter block diagram. Fig. 3 is a block diagram of the function of the signal transmitter of the llae standard according to the embodiment of the present invention 201105074. FIG. 4 is a schematic diagram of an 80 MHz channel preamble data sequence in the frequency domain according to an IEEE 802.11ac standard according to an embodiment of the present invention. Fig. 5A is a schematic diagram showing the peak-to-average power comparison time of the transmission power of the 80 MHz channel preamble sequence obtained by the peak-to-average power ratio adjusting unit in the signal transmitter of Fig. 3. ~ Figure 5B is a schematic diagram showing the peak-to-average power versus time of the transmit power of the 80MHz channel preamble sequence obtained using the peak-to-average power ratio adjustment unit in the signal transmitter of Figure 3. Figure 6 shows the minimum detection success rate of the packet measured by the autocorrelation detector of one of the 40MHz channels in each 40MHz subchannel and each transmission chain based on different signal-to-noise ratios. List. Figure 7 is a list of the minimum detection success rate of the packets measured by the different ratios of the 4GMHz channel-signal receiver-interaction _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Figure 8 is a list of the small value of the successful side rate of the packet measured by the autocorrelation detector under one of the transmission channels of one of the 80 hall channels. The 80MHz channel-signal receiver-interactive phase__ is a list of packet success_minimum values measured under different transmission chains based on different signal-to-noise ratios. FIG. 10 is a schematic diagram of a process of an embodiment of the present invention. 20 201105074
【主要元件符號說明】 20、30 訊號傳送機 300 序列產生單元 302 相位調整單元 200、304 訊號轉換單元 306 峰均值功率比調整單元 310 加法器 Ml 〜M4 乘法器 CSD1 〜CSD3 * CSDA_1 〜CSDA—4 循環移位延遲處理單元 GI—1 〜GI_4 保護間隔處理單元 RF—1 〜RF_4 射頻處理單元 A1 〜A4 天線 L-STF 傳統短訓練欄位 L-LTF 傳統長訓練攔位 L-SIG 傳統訊號欄位 HT-SIG 高吞吐量訊號攔位 HT-STF 高吞吐量短訓練攔位 HT-LTF 高吞吐量長訓練攔位 Sk、sn、s、n、S 、S(D、s⑵、s(3)、s(4) 前置資料序列 Pi、P2、P3、P4 正規化係數 40 流程 400、402、404、 406、408、410、412 步驟 21 %[Main component symbol description] 20, 30 signal transmitter 300 sequence generation unit 302 phase adjustment unit 200, 304 signal conversion unit 306 peak-to-average power ratio adjustment unit 310 adder M1 to M4 multiplier CSD1 to CSD3 * CSDA_1 to CSDA-4 Cyclic shift delay processing unit GI-1~GI_4 guard interval processing unit RF-1 to RF_4 RF processing unit A1~A4 Antenna L-STF Traditional short training field L-LTF Traditional long training block L-SIG Traditional signal field HT-SIG High-throughput signal interception HT-STF High-throughput short training block HT-LTF High-throughput long training block Sk, sn, s, n, S, S (D, s(2), s(3), s(4) Pre-data sequence Pi, P2, P3, P4 normalization coefficient 40 Flow 400, 402, 404, 406, 408, 410, 412 Step 21 %