[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201031822A - Incorporated electric power storage system type wind power generation system - Google Patents

Incorporated electric power storage system type wind power generation system Download PDF

Info

Publication number
TW201031822A
TW201031822A TW098105443A TW98105443A TW201031822A TW 201031822 A TW201031822 A TW 201031822A TW 098105443 A TW098105443 A TW 098105443A TW 98105443 A TW98105443 A TW 98105443A TW 201031822 A TW201031822 A TW 201031822A
Authority
TW
Taiwan
Prior art keywords
power
power generation
wind power
wind
generation system
Prior art date
Application number
TW098105443A
Other languages
Chinese (zh)
Other versions
TWI369445B (en
Inventor
Shinya Oohara
Naoki Hoshino
Takeshi Iwata
Original Assignee
Hitachi Engineering & Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering & Services Co Ltd filed Critical Hitachi Engineering & Services Co Ltd
Priority to TW098105443A priority Critical patent/TW201031822A/en
Publication of TW201031822A publication Critical patent/TW201031822A/en
Application granted granted Critical
Publication of TWI369445B publication Critical patent/TWI369445B/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

In the wind power generation system having electric power storage system to mitigate the output variation, the energy loss caused by charging and discharging the electric power storage system is reduced by means of reducing electric power strength of the charging and discharging of the electric power storage system. The invention comprises a means of deciding the output possible range of next control circle through the maximum value and the minimum value of the output electric power of previous wind power generation device groups and the electric power storage system at a certain period; in the next control circle, a means of deciding the charging and discharging power strength of the foregoing electric power storage system and a power restriction instruction from any one or both wind power generation device groups in the foregoing output possible range by means of receiving the output electric power of the foregoing wind power generation device groups and the electric power storage system.

Description

201031822 六、發明說明: 【發明所屬之技術領域】 本發明,係有關於具備有蓄電系統與風車發電系統之 風力發電系統。 【先前技術】 利用著風力發電裝置群來作爲把存在於自然界的可再 Φ 生的能量變換成電力能量的手段。 風力發電裝置群的能量源,是爲隨時間變動之風的能 量的緣故,風力發電裝置群的發電電力也隨時間變動。 電力系統,係以因應電力需要的大小來調整大型發電 機的發電電力的方式,來保持電力供需的平衡。爲此,如 非專利文獻1所記載般地,在是爲大變動的電源之風力發 電裝置群大量地互連到電力系統的情況下,疑慮有調整力 不足、或是頻率變動擴大。 ® 爲了防止這些情況,例如如專利文獻1所示般地,倂 設蓄電系統到風力發電裝置群,把變動的風力發電裝置群 _ 的發電電力,以對蓄電系統充放電的方式,讓流出到電力 _ 系統的電力變動緩和等的手段遂爲必要。 [專利文獻1]日本特開2007- 1 24780號專利公報 [非專利文獻1 ] 「針對東北系統之風力發電的互連 可能量的檢討結果」,東北電力股份有限公司,日本平成 16 年 9 月 3 日,網址<11111^:]1110://%〜评.1〇11〇让11-epco.co.jp/oshirase/newene/04/pdf/hl8_temp0 1.pdf> 201031822 【發明內容】 [發明欲解決之課題] 如非專利文獻1所示般地,讓成爲和緩對象之電力變 動利用其變動週期來劃分成若干個範圍。特別是被稱爲中 週期範圍之數分鐘〜20分鐘左右的變動,係疑慮有關於 因調整力不足所造成的供需不均衡的擴大、頻率變動的擴 大等。於迴避因這樣的中週期範圍的電力變動所造成的不 @ 良影響方面,緩和該頻率帶的電力變動是有必要的。具體 方面,期望有從任意時間開始之一定期間(例如20分鐘 以內),把輸出電力的輸出變動幅度,抑制在特定的一定 値(例如風力發電系統額定値的10%)以內。201031822 VI. Description of the Invention: [Technical Field] The present invention relates to a wind power generation system including a power storage system and a wind turbine power generation system. [Prior Art] A group of wind power generators is used as a means for converting energy that can be regenerated in nature into electric energy. The energy source of the wind power generation device group is the energy of the wind that changes with time, and the generated power of the wind power generation device group also changes with time. The power system maintains the balance between power supply and demand by adjusting the power generated by large generators in response to the power demand. For this reason, as described in Non-Patent Document 1, when a group of wind power generators that are large power sources are interconnected to the power system in a large amount, there is a concern that the adjustment force is insufficient or the frequency fluctuation is expanded. In order to prevent such a situation, for example, as shown in Patent Document 1, the power storage system is provided to the wind power generation device group, and the generated power of the variable wind power generation device group_ is discharged and discharged to the power storage system. The means of power _ system power mitigation and so on are necessary. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2007- 1 24780 [Non-Patent Document 1] "Review Results of Interconnection Possible Quantity of Wind Power Generation for Northeastern Systems", Tohoku Electric Power Co., Ltd., Japan, Heisei, September 16 On the 3rd, the website <11111^:]1110:%~评.1〇11〇11-epco.co.jp/oshirase/newene/04/pdf/hl8_temp0 1.pdf> 201031822 [Summary] Problem to be Solved by the Invention As shown in Non-Patent Document 1, the fluctuation of the power to be tempered is divided into a plurality of ranges by the fluctuation period. In particular, the change in the period from the minute to the 20-minute period, which is called the mid-cycle range, is related to the expansion of supply and demand imbalance and the increase in frequency fluctuations due to insufficient adjustment force. It is necessary to mitigate the power fluctuation of the frequency band in order to avoid the influence of the power fluctuation caused by such a medium cycle range. Specifically, it is desirable to suppress the output fluctuation range of the output power within a certain period (for example, 10% of the rated value of the wind power generation system) for a certain period of time (for example, within 20 minutes) from any time.

作爲緩和中週期範圍的電力變動之手段,例如如專利 文獻1所示般地,具有針對風力發電裝置群的發電電力之 平均値來設定特定的範圍,僅在逸脫該範圍時進行蓄電池 的充放電之手段。 G 但是,在使用如專利文獻1所示的控制方式之情況下 ,爲了緩和應作爲對象之中週期範圍的變動,因爲使用所 謂的發電電力的平均値之簡易的輸出目標値的緣故,疑慮 有產生了無助於在中週期範圍的變動和緩方面之不必要的 蓄電池的充放電。 於蓄電池的充放電操作方面,一定伴隨有在蓄電池內 部的損失。爲此,無助於變動和緩之蓄電池的充放電,遂 增大了損失,有著無法最大限度有效地利用自然能源之虞 -6 - 201031822 本發明,其目的在於在具備有蓄電池之風力發電系統 中,抑制特定頻率範圔的輸出變動,且減少隨著蓄電池的 充放電所造成的電力損失。 [解決課題之手段] 在本發明中,由一定期間之過去的風力發電裝置群與 • 蓄電系統的輸出電力之最大値與最小値,來決定下個控制 期間(控制週期)之輸出可能範圍。在下個控制期間中, 於前述輸出電力可能範圍內,以滿足風力發電裝置群與蓄 電系統之蓄電系統的和的方式,來決定其中一方或是兩方 之蓄電池的充放電電力、與電力限制指令。 又在本發明中,風力發電系統具有接收來自氣象預測 之發電電力預測値,因應前述發電電力預測値,來決定其 中一方或是兩方之蓄電系統的充電率指令與電力限制指令 [發明效果] 可以抑制作爲抑制對象之頻率帶的輸出電力變動,減 低了隨著蓄電池的充放電之損失。 【實施方式】 本發明之風力發電系統,係由特定期間T1之過去的 風力發電裝置群與蓄電系統的輸出電力之和的最大値與最 201031822 小値,來設定下個控制週期T2之未來輸出可能範圍R。 蓄電系統,係在風力發電裝置群的發電電力逸脫出前述輸 出可能範圍R的情況、或者是僅在蓄電池的充電率從充電 率的目標範圍逸脫開的情況下,進行充放電動作。風力發 電系統,係在每個該控制週期T2更新前述輸出可能範圍 〇 又,本發明之風力發電系統,係由特定期間T1之過 去的風力發電裝置群與蓄電系統的輸出電力的最小値與蓄 @ 電池的可充電電力,來演算下個特定時間T3之未來的電 力限制指令;以一台以上的風力發電裝置所構成的風力發 電裝置群,係在於特定時間的未來中,把風力發電裝置群 的發電電力限制在前述限制指令以下。 [實施例1] 關於本發明的第一實施例,使用圖1〜圖17來說明 〇 關於成爲本發明的對象之風力發電系統的構成,使用 圖1來說明。本發明之風力發電系統係以風力發電裝置群 1、蓄電系統2、上位控制器3、互連變壓器4來構成。風 力發電系統,係互連到電力系統5,把發電電力送電到電 力系統5。於風力發電裝置群的互連點,設置有計測風力 發電裝置群的發電電力PW之電力計6。又,於蓄電系統 的互連點,設置有計測蓄電系統的充放電電力PB之電力 計7。尙且,有關風力發電系統的輸出電力ps、PW、與 -8 - 201031822 PB,成立數學式1之關係。For example, as shown in Patent Document 1, a specific range is set for the average power generation of the wind power generation device group, and the battery is charged only when the range is escaped. The means of discharge. G. In the case of using the control method as described in the patent document 1, in order to alleviate the fluctuation of the cycle range as the target, the simple output target of the so-called average power generation is used, and there are doubts. There is an unnecessary charge and discharge of the battery which does not contribute to the fluctuation and slowness of the medium cycle range. In the charge and discharge operation of the battery, there must be a loss inside the battery. For this reason, it does not contribute to the change and relaxation of the charging and discharging of the battery, the loss is increased, and the natural energy cannot be utilized to the maximum extent. 虞-6 - 201031822 The present invention is aimed at a wind power generation system having a battery. The output variation of a specific frequency range is suppressed, and the power loss caused by charging and discharging of the battery is reduced. [Means for Solving the Problem] In the present invention, the output possible range of the next control period (control period) is determined by the maximum and minimum output power of the wind power generation device group and the power storage system in a predetermined period of time. In the next control period, the charge/discharge power and the power limit command of the battery of one or both of the batteries are determined within a range of the output power possible to satisfy the sum of the wind power generation device group and the power storage system of the power storage system. . Further, in the present invention, the wind power generation system has a charge rate command and a power limit command for determining one or both of the power storage systems in response to the power generation power prediction 气象 from the weather forecast. It is possible to suppress the fluctuation of the output power of the frequency band to be suppressed, and to reduce the loss of charge and discharge with the battery. [Embodiment] The wind power generation system of the present invention sets the future output of the next control cycle T2 by the maximum 値 and 201031822 of the sum of the output of the wind power generation device group and the power storage system in the past period T1. Possible range R. In the power storage system, the charging/discharging operation is performed when the generated electric power of the wind power generating device group escapes from the output possible range R or when the charging rate of the battery escapes from the target range of the charging rate. In the wind power generation system, the output possible range is updated every control period T2. The wind power generation system of the present invention is the minimum output and storage power of the wind power generation device group and the power storage system in the past by the specific period T1. @ Battery's rechargeable power to calculate the future power limit command for the next specific time T3; the wind power plant group consisting of one or more wind power generators is for the wind power generation group in the future at a specific time The power generation power is limited to the aforementioned limit command. [Embodiment 1] A first embodiment of the present invention will be described with reference to Fig. 1 to Fig. 17. A configuration of a wind power generation system to which the present invention is applied will be described with reference to Fig. 1 . The wind power generation system of the present invention is constituted by a wind power generation device group 1, a power storage system 2, an upper controller 3, and an interconnection transformer 4. The wind power generation system is interconnected to the power system 5 to transfer the generated power to the power system 5. At the interconnection point of the wind power generation device group, a power meter 6 for measuring the generated power PW of the wind power generation device group is provided. Further, a power meter 7 for measuring the charge/discharge power PB of the power storage system is provided at an interconnection point of the power storage system. Moreover, regarding the output power ps, PW, and -8 - 201031822 PB of the wind power generation system, the relationship of the mathematical formula 1 is established.

(數學式 1) PS = PW + PB 有關於構成風力發電系統之風力發電裝置群1,說明 於以下。風力發電裝置群1,係藉由1台以上的風力發電 裝置 1-1-1、1-1-2.....l-1-n、與 SCADA1-1 所構成。 0 SCADA1-1,係擔任收集風力發電裝置群的運轉狀況、或 發電電力等的運轉資訊之任務。同時,SCADA1 -1,係由 上位控制器,接收風力發電裝置群1的發電電力的限制指 令PLC,各個風力發電裝置1-1-1.....l-1-n的發電電力 之和,係以變成PLC以下的方式,將各個電力限制指令 PLC1、PLC2.....PLCn賦予到各個風力發電裝置 1-1-1 、…、1 -1 - η 上。 有關於風力發電裝置1_1_1.....1·1-η,使用圖2、 ® 圖3、圖4、圖5來說明之。圖2,係表示風力發電裝置 之一型態之圖。風力發電裝置,係利用葉片1-1-1-1來受 風,把風的能量變換成迴轉能量。迴轉能量,係傳達到發 電機1-1-1-4。在圖1,作爲發電機1-1-1-4,揭示有直流 激磁式同步發電機1-1-1-4。直流激磁式同步發電機1-卜 1-4的定子,係透過交直流變換器1-1-1-5、變換器1-1-1-6,互連到系統。又,直流激磁式同步發電機1-1-1-4的 迴轉子,也透過激磁裝置1-卜1·9連接到系統,利用控制 激磁裝置1-1-1-9且調節直流激磁電流的強弱的方式,來 -9- 201031822 實現可變速運轉。圖3,係作爲發電機,使用交流激磁式 同步發電機1-1-1 a-4的風力發電裝置之例。又,圖4,係 作爲發電機,使用永久磁鐵式同步發電機l-l-lb-3的風 力發電裝置之例。圖2、圖3、圖4之風力發電裝置群, 係利用調整任一個電力變換器與葉片的傾斜角的方式,來 可以可變速運轉。又該些風力發電裝置,係可以利用傾斜 角的控制、與電力變換器的控制之組合的方式,把該發電 電力限制在特定値以下。又,圖5,係作爲發電機,使用 參 感應發電機1-1-1 c-4的風力發電裝置之例。於圖5所示之 風力發電裝置,係不透過感應發電機1-1-1 c-4的固定子、 電力變換器,直接互連到電力系統。使用該感應發電機 1- l-lc-4之風力發電裝置,也利用控制傾斜角的方式,可 以把該發電電力限制在特定値以下。風力發電裝置群1, 係利用如圖2、圖3、圖4、圖5所示之任一種類的風力 發電裝置、或者是將這些的組合來構成。 接著說明有關構成風力發電系統之蓄電系統2。蓄電 @ 系統2,係藉由一台以上的蓄電裝置2-2-1、2-2-2..... 2- 2-m所構成。有關各個蓄電裝置,使用圖6來說明。蓄 電裝置2-1-1,係以複數個二次電池2-1-1-1、變換器2-1-1-2、互連變壓器2-1-1-3、斷路器2-1-1-4等所構成。二 次電池,爲鉛蓄電池、鈉硫電池、氧化還原液流電池、鋰 離子電池、鎳氫電池、鋰離子電容之任一種,或者是由這 些組合構成。尙且,圖6係表示有作爲蓄電裝置而使用二 次電池之例子,但是作爲二次電池的替代方案,以使用有 -10- 201031822 雙電層電容、或電容器之型態,或者是,二次電池與電容 的組合,抑或是其他蓄電元件的組合來構成,也是跟本發 明的效果相同的。又,作爲蓄電裝置,使用飛輪等的可以 把電能儲存成動能的系統的話,也不會失去本發明的效果 。蓄電裝置2-2-1、2-2-2.....2-2-m,係依據來自各個 上位控制器3的充放電電力指令,來可以對風力發電裝置 群的發電電力進行充電、或者是對已儲存的電力進行放電 Φ 。又,蓄電裝置2-2-1、2-2-2.....2-2-m,係先計測各 個蓄電池的充電率SOC,把SOC的値傳遞到上位控制器3 〇 將蓄電系統2倂設到風力發電裝置群1的風力發電系 統,係經由蓄電系統的充放電動作,來可以緩和變動大的 風力發電裝置群之發電電力變動,是謂對系統難以給予不 良影響之風力發電系統。 另一方面,於蓄電池的充放電動作方面,因爲電力變 • 換器的損失、在蓄電池內部的損失等,必然伴隨有損失。 爲了盡可能地活用自然能源,是希望盡可能地減少對蓄電 池充放電的電力量。 .因此,爲了兼顧電力變動的緩和與自然能源的有效利 用,是有必要盡可能地減少不寄予變動和緩之不必要的充 放電動作。 風力發電裝置群所輸出的發電電力變動,橫跨存在於 寬廣的頻率帶上。特別是,被稱爲中週期範圍之數分鐘〜 20分鐘左右的變動,係疑慮有關於因電力系統的調整力 -11, 201031822 不足所造成的供需不均衡的擴大、頻率變動的擴大等。於 迴避因這樣的中週期範圍的電力變動所造成的不良影響方 面,緩和該頻率帶的電力變動是有必要的。具體方面,從 任意時間開始之一定期間(例如20分鐘以內)之間,把 發電電力的輸出變動,常態地抑制在一定値(例如風力發 電系統額定的10%以下)以內,亦即抑制在輸出電力的 容許變動幅度以內是爲有效。 風力發電系統的電力變動爲額定値的10%以下程度 Θ 的話,也在大量互連風力發電裝置群的情況下’是可以減 少對系統的影響。以下,說明有關把從任意時刻開始20 分鐘間的電力變動抑制在風力發電系統額定的10%以下 的控制方式。 爲了把20分鐘間的電力變動,一邊抑制在風力發電 系統額定的10%以下,且盡可能地減少對蓄電池的充放 電電力量方面,實現如圖7所示的控制者爲佳。亦即,由 從特定的期間(在圖7爲19分鐘間)前直到現在的時刻t Θ 之風力發電系統的輸出電力PS的輸出變動幅度’設定下 個控制期間(在圖7爲1分鐘間)之PS的輸出可能範圍 R。具體方面,把特定的期間之過去(在圖7爲19分鐘間 )的PS的最小値PSmin加上10%,設定成範圍R的上限 ,把特定的期間之過去的PS的最大値PSmax減掉10%, 設定成範圍R的下限。(Mathematical Formula 1) PS = PW + PB The wind power generation device group 1 constituting the wind power generation system will be described below. The wind turbine generator group 1 is composed of one or more wind power generators 1-1-1, 1-1-2, ..., l-1-n, and SCADA1-1. 0 SCADA1-1 is a task for collecting operational status of a wind power plant group or operation information such as power generation. At the same time, SCADA1 -1 is the upper controller, and receives the limit command PLC of the generated power of the wind power generation group 1, and the sum of the generated powers of the respective wind power generation devices 1-1-1.....l-1-n Each of the power limitation commands PLC1, PLC2, ..., PLCn is applied to each of the wind power generators 1-1-1, ..., 1 -1 - η in such a manner as to become PLC or less. The wind power generators 1_1_1.....1·1-n are described using FIG. 2, FIG. 3, FIG. 4, and FIG. Fig. 2 is a view showing a state of a wind power generator. In the wind turbine generator, the blades 1-1-1-1 are used to receive wind, and the wind energy is converted into swing energy. The gyroscopic energy is transmitted to the generator 1-1-1-4. In Fig. 1, as a generator 1-1-1, a direct current type synchronous generator 1-1-1 is disclosed. The stator of the DC-excited synchronous generator 1-Bu 1-4 is interconnected to the system through an AC/DC converter 1-1-1-5 and a converter 1-1-1-6. Moreover, the return rotor of the DC-excited synchronous generator 1-1-1-4 is also connected to the system through the excitation device 1-Bu-1, and the DC excitation current is adjusted by controlling the excitation device 1-1-1-9. The way of strength and weakness, come to -9- 201031822 to achieve variable speed operation. Fig. 3 shows an example of a wind power generator using an AC-excited synchronous generator 1-1-1 a-4 as a generator. Further, Fig. 4 shows an example of a wind power generator using a permanent magnet type synchronous generator l-1 - lb-3 as a generator. The wind power generator group of Fig. 2, Fig. 3, and Fig. 4 can be operated at a variable speed by adjusting the inclination angle of any of the power converters and the blades. Further, in these wind power generators, the power generation power can be limited to a specific value or less by a combination of the control of the inclination angle and the control of the power converter. Further, Fig. 5 shows an example of a wind power generator using a reference generator 1-1-1 c-4 as a generator. The wind power generation device shown in Fig. 5 is directly connected to the power system without passing through the stator and power converter of the induction generator 1-1-1 c-4. The wind power generator using the induction generator 1-l-lc-4 can also limit the generated power to a certain value or less by controlling the tilt angle. The wind power generator group 1 is configured by using any of the types of wind power generators as shown in Figs. 2, 3, 4, and 5 or a combination of these. Next, the power storage system 2 constituting the wind power generation system will be described. Power storage @ System 2 is constituted by one or more power storage devices 2-2-1, 2-2-2..... 2- 2-m. Each power storage device will be described with reference to FIG. 6 . The power storage device 2-1-1 is composed of a plurality of secondary batteries 2-1-1-1, an inverter 2-1-1-2, an interconnection transformer 2-1-1-3, and a circuit breaker 2-1-- 1-4 and so on. The secondary battery is either a lead storage battery, a sodium sulfur battery, a redox flow battery, a lithium ion battery, a nickel hydrogen battery, or a lithium ion capacitor, or is composed of these combinations. In addition, FIG. 6 shows an example in which a secondary battery is used as a power storage device. However, as an alternative to the secondary battery, an electric double layer capacitor or a capacitor type of -10-201031822 is used, or The combination of the secondary battery and the capacitor, or a combination of other storage elements, is also the same as the effect of the present invention. Further, when the power storage device uses a system such as a flywheel that can store electric energy as kinetic energy, the effect of the present invention is not lost. The power storage devices 2-2-1, 2-2-2, . . . 2-2-m can charge the generated power of the wind power generator group based on the charge/discharge power commands from the respective upper controllers 3. Or discharge the stored power Φ. Further, the power storage devices 2-2-1, 2-2-2, . . . 2-2-m measure the charging rate SOC of each battery first, and transmit the SOC 値 to the upper controller 3 〇 the power storage system In the wind power generation system of the wind turbine generator group 1, the power generation power fluctuation of the wind turbine generator group having a large fluctuation can be alleviated by the charge and discharge operation of the power storage system, and the wind power generation system which is difficult to adversely affect the system . On the other hand, in the charge and discharge operation of the battery, there is a loss due to the loss of the power converter, the loss inside the battery, and the like. In order to utilize natural energy as much as possible, it is desirable to reduce the amount of electricity charged and discharged to the battery as much as possible. Therefore, in order to balance the mitigation of power fluctuations with the effective use of natural energy, it is necessary to reduce unnecessary charging and discharging operations that do not require changes and slowdowns. The fluctuation of the generated power output by the wind power generation device group spans over a wide frequency band. In particular, the change in the period of the medium-cycle period, which is a few minutes to about 20 minutes, is related to the expansion of supply and demand imbalance and the increase in frequency fluctuations due to insufficient adjustment of the power system -11, 201031822. It is necessary to mitigate the power fluctuations in the frequency band due to the adverse effects caused by the power fluctuations in such a medium cycle range. Specifically, the output of the generated electric power is fluctuated between a certain period of time (for example, within 20 minutes) from any time, and is normally suppressed within a certain range (for example, 10% or less of the rated value of the wind power generation system), that is, the output is suppressed. Within the allowable range of variation of electricity is effective. In the case where the power fluctuation of the wind power generation system is less than 10% of the rated value Θ, in the case where a large number of wind power generation devices are interconnected, it is possible to reduce the influence on the system. Hereinafter, a control method for suppressing a power fluctuation between 20 minutes from an arbitrary time to 10% or less of the rated value of the wind power generation system will be described. In order to control the power fluctuations for 20 minutes, it is preferable to suppress the amount of charge and discharge of the battery as much as possible while reducing the rated power of the wind power generation system by 10% or less. That is, the next control period is set by the output fluctuation range of the output power PS of the wind power generation system from the time before the specific period (between 19 minutes in FIG. 7) and the present time (in FIG. 7 is 1 minute). The output of the PS may be in the range R. Specifically, the minimum 値PSmin of the PS of the past period (between 19 minutes in FIG. 7) is added to 10%, and the upper limit of the range R is set, and the maximum 値PSmax of the past PS of the specific period is subtracted. 10%, set to the lower limit of the range R.

下個控制期間(在圖7爲1分鐘間),係以把P S限 制在該範圍內的方式,來調整蓄電系統的充放電電力PB -12- 201031822 。蓄電系統2進行充放電,是在風力發電裝置群1的發電 電力,是否逸脫了前述範圍的情況,或者是蓄電系統2的 SOC,僅是沒落在充電率目標範圍內的情況下。以這樣地 進行蓄電系統2的充放電電控制的方式’變成可以把風力 發電系統的輸出電力PS之20分鐘間的電力變動,一邊常 態地抑制在1 〇 %以下,且減少蓄電池的充放電電力量。 尙且,作爲緩和風力發電系統的電力變動之其他手段 Φ ,可以利用風力發電裝置群的電力限制。亦即,在風速急 遽地增加的期間,以使用風力發電裝置的電力限制功能的 方式,來限制風力發電裝置群1的發電電力PW的上升, 是可以來進行緩和的。但是,電力限制功能,係把本來可 以利用之風的能量,以調整傾斜角來逃避的方式來去實現 。因此,就有效地利用自然能源方面而言,是希望盡可能 地不要去使用電力限制功能。 因此,作爲抑制風力發電系統的輸出電力PS的急遽 ® 增加的手段,是希望盡可能地利用蓄電系統2的充電。充 電到蓄電系統2的電力,是因爲雖然損失掉一部份,但可 以有效利用在放電上。因此,有效地利用自然能源方面, 利用蓄電池的充電功能,盡可能地蓄電,僅將蓄不了電的 多餘電力,利用電力限制功能來進行抑制是有必要的。 以下,有關於最小限度地抑制蓄電池的充放電電力量 之控制方式,以及,利用蓄電系統2的充電功能,來實現 盡可能地不使用電力限制功能的控制方式之風力發電系統 ,詳細地進行說明。 -13- 201031822 圖8,係表示構成本發明之風力發電系統的上位控制 器3之控制構成之圖。上位控制器3,係由風力發電裝置 群的發電電力PW、蓄電系統的充放電電力PB、蓄電裝置 的充電率 SOC1、SOC2.....SOCm,來決定蓄電池裝置 的充放電電力指令PBC1、PBC2.....PBCm、與風力發 電裝置群1的電力限制指令PLC。上位控制器3,係在 SOC目標値演算部3-1中,演算蓄電系統2的充電率目標 値SOCT。又,上位控制器3,係利用對PW與PB進行加 ❹ 運算,來演算風力發電系統的輸出電力PS。上位控制器3 ,係在最大値•最小値演算部3-2中,演算過去19分鐘 間之PS的最大値PSMax與最小値PSMin。又上位控制器 3,係在充放電電力指令演算部3-3中,演算蓄電系統的 充放電電力指令PBC。充放電電力指令PBC,係在充放電 電力指令分配部3-5中,分配到對各個蓄電裝置2-1-1、 2-1-2.....2-1-m之充放電電力指令PBC1、PBC2..... PBCm,傳遞到各個蓄電裝置。尙且有關蓄電系統的充放 © 電電力指令PBC、對各個蓄電裝置的充放電電力指令 PBC1 ' PBC2.....PBCm方面,成立如數學式2所示之 關係。 (數學式 2) PBC = PBC1+PBC2 + PBC3 + ·.· +PBCm 上位控制器3,係在電力限制指令演算部3-4中,演 算風力發電裝置群的電力限制指令PLC。 -14- 201031822 接著’有關SOC目標値演算部3-1的動作,使用圖9 詳細說明之。SOC目標値演算部3-1,係由風力發電裝置 群1的發電電力PW,演算蓄電系統2的充電率目標値 SOCT。作爲蓄電系統2的充電率目標値,如圖9所示般 地’ PW與SOCT爲先把一對一對應的値保持在內部,以 參照該內部値的方式,決定SOCT。尙且決定S〇ct的方 法,如圖9所示般地,不一定要依存到pw,例如不依存 Φ 到pw地以一定値的方式也不會失去本發明的效果。 接著有關最大値·最小値演算部3-2的動作,使用圖 1 〇詳細說明之。最大値·最小値演算部3 - 2,係把從現在 的時刻到一定期間的過去的P S保存到內部記憶體。又, 最大値•最小値演算部3 -2,係針對從現在的時刻到一定 期間的過去的PS之最大値PSMax與PSMin進行演算。 接著,有關充放電電力指令演算部3-3的動作,使用 圖11詳細說明之。充放電電力指令演算部3-3,係在 ® SOC管理控制部3-3-1中,作成SOC管理用的充放電電 力指令的中間値PBS0C。充放電電力指令演算部3-3,係 作成把PW加到PBS0C的値PBC1,在此利用使限制器3-3-2與限制器3_3-3作用,求出充放電電力指令的中間値 PBC3。充放電電力指令演算部3-3,係利用從中間値 PBC3減掉PW,來求出充放電電力指令PBC。第一個限制 器3-3-2,係把上限値設定成將風力發電系統額定的10% 加算到PSMin的値,把下限値設定成從PSMax減掉風力 發電系統額定的10%的値。經由該限制器3-3-2的效果’ -15- 201031822 於任意的20分鐘間斷面’可以把風力發電系統的輸出電 力PS的變動抑制在10%以下。又,風力發電裝置群的發 電電力PW,爲收斂到限制器的範圍內時,蓄電系統不用 充放電,可以避免掉不必要的充放電。第二個限制器3 - 3 -3,係把上限値設定成風力發電系統額定1〇〇%,把下限 値設定成〇%。經由限制器3-3-3的效果,風力發電系統 的輸出電力PS超過風力發電系統的額定、或者是ps變 成負値的話,可以防止風力發電系統變成充電狀態。 ⑩ 接著,有關SOC管理控制部3-3-1的動作,使用圖 12說明之。SOC管理控制部3-3-1,作成把各蓄電裝置2- 1-1、2-1-2.....2-卜m的充電率接近到目標充電率之充 放電電力指令。具體而言,如SOC管理控制部3-3-1-1所 示般地,比較蓄電裝置的充電率的測定値SOC1與充電率 的目標値SOCT。此時,SOC1比SOCT +死帶(dead band )(例如2%)還要大的話,把風力發電系統額定的10% 的放電電力指令作成當作充放電電力指令PBSOCT1。同 ® 樣地,SOC1比SOCT·死帶(dead band)(例如2% )還 要小的話,把風力發電系統額定的10%的充電電力指令 作成當作充放電電力指令 PBSOCT1。SOC1爲收斂到 SOCT土死帶內的話,把0[kW]當作作爲PBSOCT1。SOC管 理控制部3-3-1,係針對全部的蓄電裝置2-1-1、2-1-2、 …、2-1-m實施該演算,經由加算已得到的充放電電力指 令 PBSOCT1 > PBSOCT2.....PBSOCTm 的方式,作成蓄 電系統的充放電電力指令PBCSOC。以進行這樣的控制動 -16- 201031822 作的方式,可以防止蓄電池之不必要的充放電。 接著,有關電力限制指令演算部3-4的動作,使用圖 13說明之。電力限制指令演算部3-4,係在可充電電力演 算部3-4-1中,由蓄電系統2的充電率SOC,蓄電系統演 算可充電的電力値PBChargeMax。電力限制指令演算部 3-4,係把已加算了過去19分鐘間之風力發電系統的輸出 電力的最小値PSMin與PBChargeMax、P2 (例如風力發 • 電系統額定的10%。以與輸出電力的容許變動幅度的關 連來設定。)的値,作爲風力發電裝置群的電力限制指令 PLC。 以如此決定PLC的方式,既使風力發電裝置群1的 發電電力PS急遽增加的情況下,盡可能地讓蓄電池充電 ,僅將充不進的電力以電力限制功能來進行限制。同時, 於任意的20分鐘間斷面,可以把風力發電系統的輸出電 力PS的變動抑制在10%以下。 ^ 接著,有關可充電電力演算部3-4-1的動作,使用圖 14說明之。可充電電力演算部3-4-1,係由各個蓄電裝置 2-1-1、2-1-2.....2-卜m的可充電電力値,來演算蓄電 .系統2的可充電電力PBChargeMax。具體而言,在可充電 電力演算部3-4-1-1中,由蓄電裝置2-1-1的充電率測定 値 SOC1,來演算蓄電裝置 2-1-1 的可充電電力 PBChargeMaxl。二次電池等的蓄電裝置2-1-1、2-1-2、… 、2-1-m,係利用SOC變化可充電的範圍。可充電電力演 算部3-4-1-1,係先把對應到蓄電裝置2-1-1、2-1-2、… -17- 201031822 、2-1 -m的特性之可充放電範圍儲存到記憶體內,對應充 電池的測定値 SOC,把所對應的可充電電力値 PBChargeMaxl從記憶體讀出來。可充電電力演算部3-4-1 ,係針對全部的蓄電裝置2-1-1、2-1-2.....2-1-m實施 該演算,經由加算已得到的可充電電力PBChargeMaxl、 PBChargeMax2、…、PBChargeMaxm的方式,演算蓄電系 統2的可充電電力PBChargeMax。尙且,在圖14僅由蓄 電裝置的充電率SOC來決定PBChargeMax,但是考慮了 參 蓄電裝置的溫度、蓄電裝置的使用年數、或總充放電電力 量等,來補正PBChargeMax也是可以的。 接著,有關本發明的風力發電系統的作動例,以下說 明之。圖15,係把本發明的蓄電系統2之變動緩和動作 ,利用模擬所求得的結果。圖15之上段的圖面,係表示 有風力發電裝置群1的發電電力PW、風力發電系統的輸 出電力PS、PS的輸出可能範圍R。在圖15中,輸出可能 範圍R係把20分鐘間的變動,以變成風力發電系統的1〇 0 %以下的方式來先行設定,若在該範圍內的話,從任意的 時刻開始的20分鐘間內,把風力發電系統的變動抑制在 10%以下。圖15所示之風力發電系統的輸出電力PS,係 常時地收斂在該輸出可能範圍R,實現了輸出變動20分 鐘間10%以內。圖15之下段的圖面,係表示有蓄電系統 2的充放電電力PB、與蓄電系統2的充電率SOC。尙且 ,在圖15的模擬中,把蓄電系統2的充電率目標値範圍 設定在(50%±2%=4 8%〜52%)。在比圖15的時刻 -18- 201031822 3 [hour]還要前面的時刻,因爲20分鐘間的變動幅度在l〇 %以下,且SOC爲收斂在充電率目標範圍,故蓄電系統2 不進行充放電。因此,盡可能地不進行蓄電池的充放電, 可以達成本發明的課題。又,在時刻4.5[hour]前後,也 無關於風力發電裝置群1的發電電力PW收斂在輸出可能 範圍R內地,蓄電池進行充電動作。在此,是爲把蓄電系 統2的充電率SOC收斂在充電率目標範圍內的動作,經 Φ 由該充電動作,可以把SOC收斂在充電率目標範圍內。 又,也於該SOC管理的充電操作之際,PS係以讓20分 鐘間的變動幅度在10%以內的方式來動作。 接著使用圖1 6,說明有關本發明之電力限制控制的 風力發電系統的作動例。圖16,係把本發明的電力限制 控制之變動緩和動作,利用模擬所求得的結果。圖1 6之 上段的圖面,係表示有風力發電裝置群的發電電力PW、 風力發電系統的輸出電力PS、風力發電裝置群1的電力 ❿ 限制指令PLC、不進行風車的限制時的風力發電裝置群1 的發電電力PW0。風力發電裝置群1的發電電力,係先從 時刻1.0[hour]前後開始上升,上升後經由蓄電系統的充 電動作,把20分鐘間的變動幅度抑制在10%以內。在時 刻2_0[hour]前後,蓄電系統2的充電率達到1〇〇[% ]。蓄 電系統2係因爲充電率在100[%]以上的話無法進行充電 動作的緣故,在時刻2.0[hour]利用風力發電裝置群1的 電力限制功能,來抑制發電電力PW。經由依存在該蓄電 系統2的SOC之電力限制功能,以優先進行蓄電系統2 -19 - 201031822 的充電動作之方式來盡可能地不使用電力限制功能,是謂 有效利用自然能源,滿足了本發明。 接著,有關本發明的效果,使用圖17說明之。圖17 ,係把本發明適用在實際存在的風力發電系統的情況下的 效果,藉由模擬所求出之結果。具體而言,以約1年份的 未倂設蓄電系統之實際存在的風力發電系統的發電輸出資 料爲本,把倂設蓄電系統時的動作,以數値模擬的方式所 求出的結果。模擬方面,把蓄電系統的MW容量,來當作 @ 風力發電系統的額定容量的90%,MWh容量視爲無限大 。亦即,蓄電系統可以常態90%的放電、90%的充電。 在模擬方面,因爲比較對象的緣故,於本發明之其他的蓄 電池控制上,是爲公知技術的風力發電系統的輸出電力 PS,爲以追蹤跟從到風力發電裝置群1的發電電力PW之 一次延遲的方式來進行蓄電池的充放電之控制方式的話, 關於僅在逸脫PW的一次延遲追蹤跟從+固定寬度的情況 下對蓄電池進行充放電的控制,也進行了評價。 〇 圖17爲整理過有關模擬結果之圖,表示有逸脫頻率 、蓄電池的總充電電力量、總放電電力量、因蓄電池充放 電所造成的損失。尙且,所謂逸脫頻率,指的是在從任意 的時刻開始之20分鐘間內,風力發電系統的風力發電系 統PS變動得比10%還要大的事態現象之發生頻率。又, 損失,係由蓄電池的總放電電力量,假定蓄電池的充放電 效率爲70% —定,所求出的値。在一次延遲追蹤跟從、 以及一次延遲追蹤跟從+固定寬度控制方面,有著以一次 -20- 201031822 延遲的時間常數爲180分鐘以上來達成逸脫率0.0[%]之 案例。在這些達成逸脫率0.0[%]之案例中,即使在充放 電效率爲最少的情況下,產生的損失爲5.8[%]。另一方 面,實施了本發明的情況下,逸脫頻率爲〇.〇[%],且損 失爲2.1 [%],是非常少的。因此,針對是爲本發明課題 之所謂減少蓄電系統的充放電電力量、使減少因蓄電系統 的充放電所造成的損失之課題,是可以確定滿足的。 〇 尙且,本發明之風力發電系統的構成,係並非限定於 圖1,上位控制器3也兼具有蓄電系統的控制裝置的功能 的話,也跟本發明的效果是相同的。同樣地,上位控制器 3也兼具風力發電裝置群1的SCADA1-1的功能的話,也 不會失去本發明的效果。又,也在風力發電裝置群不持有 SCADA1-1地,上位控制器3直接賦予電力限制指令於各 個風力發電裝置 1-1-1、1-1-2.....l-1-n的型態下,也 不會失去本發明的效果。 # 又,本發明之風力發電裝置,係沒有必要全部之各個 風車皆持有電力限制功能;代替電力限制功能,利用了切 換各個風車的運轉•停止狀態的方式,來作爲風力發電裝 置群全體,去採取具有把發電電力限制在特定値以下的功 能之構成的話,本發明是可以實施的。 又,在本實施例,把變動緩和對象的電力變動’限定 在數分鐘〜20分鐘左右之頻率帶;但是,應當變動和緩 的頻率帶因爲每個電力系統都不盡相同的緣故,經由對應 電力系統來改變控制常數的方式,可以實現與本發明同樣 -21 - 201031822 的效果。 在本實施例’發電電力PW先收斂到輸出可能範圍R 內,且且充電率SOC收斂在充電率目標範圍的期間,蓄 電系統2不進行充放電。蓄電系統不進行充放電的期間, 也可以停止構成蓄電系統2之變換器2-1-1-2的補記電源 。具體而言,進行停止構成變換器2-1-1-2之氣冷用風扇 、停止供給控制電源、停止半導體元件的切換動作。利用 該補機電源的停止動作,可以減少蓄電系統2恆常產生的 @ 損失,可以更有效地利用自然能源。In the next control period (between 1 minute in Fig. 7), the charge/discharge power PB -12-201031822 of the power storage system is adjusted in such a manner that P S is limited to the range. When the power storage system 2 performs charging and discharging, whether the power generated by the wind turbine generator group 1 has escaped the above range or the SOC of the power storage system 2 is only within the charging rate target range. In such a manner that the charging/discharging electric power control of the electric storage system 2 is performed, the electric power fluctuation of the output power PS of the wind power generation system can be suppressed to 1% or less, and the charge and discharge power of the battery is reduced. the amount. Moreover, as another means of mitigating the power fluctuation of the wind power generation system Φ, the power limitation of the wind power generation device group can be utilized. In other words, during the period in which the wind speed is rapidly increased, the increase in the generated electric power PW of the wind turbine generator group 1 can be restricted by using the power limiting function of the wind power generator, and the mitigation can be made. However, the power limiting function is realized by evading the energy of the wind that can be utilized by adjusting the tilt angle. Therefore, in terms of the effective use of natural energy, it is desirable to avoid using the power limitation function as much as possible. Therefore, as means for suppressing the increase in the output power PS of the wind power generation system, it is desirable to utilize the charging of the power storage system 2 as much as possible. The power charged to the power storage system 2 is because, although a part is lost, it can be effectively utilized in discharging. Therefore, in the effective use of natural energy, it is necessary to use the charging function of the battery to store electricity as much as possible, and to suppress only the excess power that cannot be stored, using the power limiting function. In the following, a control method for minimizing the amount of charge/discharge power of the battery, and a wind power generation system that realizes a control method that does not use the power limiting function as much as possible by using the charging function of the power storage system 2 will be described in detail. . -13- 201031822 Fig. 8 is a view showing a control configuration of the upper controller 3 constituting the wind power generation system of the present invention. The host controller 3 determines the charge/discharge power command PBC1 of the battery device from the generated power PW of the wind power generation device group, the charge/discharge power PB of the power storage system, and the charge rate SOC1, SOC2, . . . , SOCm of the power storage device. PBC2.....PBCm and the power limit command PLC of the wind power generator group 1. The host controller 3 calculates the charging rate target 値SOCT of the power storage system 2 in the SOC target 値 calculation unit 3-1. Further, the upper controller 3 calculates the output power PS of the wind power generation system by performing a 加 calculation on the PW and the PB. The upper controller 3 calculates the maximum 値PSMax and the minimum 値PSMin of the PS in the past 19 minutes in the maximum 値•minimum calculation unit 3-2. Further, the upper controller 3 calculates the charge/discharge power command PBC of the power storage system in the charge/discharge power command calculation unit 3-3. The charge/discharge power command PBC is distributed to the charge/discharge power of each of the power storage devices 2-1-1, 2-1-2.....2-1-m in the charge/discharge power command distribution unit 3-5. The commands PBC1, PBC2, ..., PBCm are transmitted to the respective power storage devices. In addition, regarding the charge and discharge of the power storage system, the relationship between the electric power command PBC and the charge/discharge power command PBC1 ' PBC2.....PBCm for each power storage device is established as shown in Mathematical Formula 2. (Math 2) PBC = PBC1 + PBC2 + PBC3 + ··· + PBCm The host controller 3 is a power limit command calculation unit 3-4 that calculates the power limit command PLC of the wind power generator group. -14- 201031822 Next, the operation of the SOC target 値 calculation unit 3-1 will be described in detail using FIG. 9. The SOC target 値 calculation unit 3-1 calculates the charging rate target 値 SOCT of the electric storage system 2 from the generated electric power PW of the wind power generation unit group 1. As the charging rate target 蓄 of the power storage system 2, as shown in Fig. 9, 'PW and the SOCT are first held in a one-to-one correspondence, and the SOCT is determined in consideration of the internal enthalpy. Further, the method of determining S ct is not necessarily dependent on pw as shown in Fig. 9. For example, the effect of the present invention is not lost without depending on Φ to pw. Next, the operation of the maximum 値·minimum 値 calculation unit 3-2 will be described in detail using FIG. 1 . The maximum 値·minimum 値 calculation unit 3 - 2 stores the past P S from the current time to a certain period to the internal memory. Further, the maximum 値•minimum calculation unit 3-2 calculates the maximum 値PSMax and PSMin of the past PS from the current time to a certain period. Next, the operation of the charge/discharge power command calculation unit 3-3 will be described in detail with reference to Fig. 11 . The charge/discharge power command calculation unit 3-3 creates an intermediate PBS0C for the SOC management charge/discharge power command in the SOC management control unit 3-3-1. The charge/discharge power command calculation unit 3-3 is configured to add PW to the 値PBC1 of the PBS0C. Here, the limiter 3-3-2 and the limiter 3_3-3 are operated to obtain the intermediate 値PBC3 of the charge/discharge power command. . The charge/discharge power command calculation unit 3-3 obtains the charge/discharge power command PBC by subtracting the PW from the middle 値 PBC3. The first limiter 3-3-2 sets the upper limit 成 to add 10% of the rated rating of the wind power system to the PS of the PSMin, and sets the lower limit 値 to the 10 of 10% of the rated rating of the wind power system from PSMax. The variation of the output power PS of the wind power generation system can be suppressed to 10% or less by the effect ' -15 - 201031822 of the limiter 3-3-2 in an arbitrary cross section of 20 minutes. Further, when the power generation electric power PW of the wind power generation device group is converged within the range of the limiter, the electric storage system does not need to be charged and discharged, and unnecessary charging and discharging can be avoided. The second limiter 3 - 3 - 3 sets the upper limit 成 to 1风力% of the wind power generation system and the lower limit 値 to 〇%. By the effect of the limiter 3-3-3, if the output power PS of the wind power generation system exceeds the rating of the wind power generation system or the ps becomes negative, the wind power generation system can be prevented from becoming charged. Next, the operation of the SOC management control unit 3-3-1 will be described with reference to Fig. 12 . The SOC management control unit 3-3-1 creates a charge/discharge power command for bringing the charge rates of the respective power storage devices 2-1-1, 2-1-2, ..., 2-m to the target charge rate. Specifically, as measured by the SOC management control unit 3-3-1-1, the measurement 値SOC1 of the charging rate of the power storage device and the target 値SOCT of the charging rate are compared. At this time, if SOC1 is larger than the SOCT + dead band (for example, 2%), the 10% discharge power command of the wind power generation system is made to be the charge/discharge power command PBSOCT1. In the same way, if the SOC1 is smaller than the SOCT·dead band (for example, 2%), the 10% rated charging power command of the wind power generation system is made to be the charge/discharge power command PBSOCT1. When SOC1 converges to the SOCT soil dead zone, 0 [kW] is regarded as PBSOCT1. The SOC management control unit 3-3-1 performs the calculation for all of the power storage devices 2-1-1, 2-1-2, ..., 2-1-m, and adds the obtained charge and discharge power command PBSOCT1 &gt The PBSOCT2.....PBSOCTm method is used to generate the charge and discharge power command PBCSOC of the power storage system. In such a manner that such a control action is made, it is possible to prevent unnecessary charging and discharging of the battery. Next, the operation of the power limitation command calculation unit 3-4 will be described with reference to Fig. 13 . The power limitation command calculation unit 3-4 is based on the charge rate SOC of the power storage system 2 in the chargeable power calculation unit 3-4, and the power storage system calculates the chargeable power 値PBChargeMax. The power limit command calculation unit 3-4 is configured to add the minimum 値PSMin and PBChargeMax, P2 of the output power of the wind power generation system in the past 19 minutes (for example, 10% of the rated rated value of the wind power generation system). It is set as the power limit command PLC of the wind turbine generator group. In such a manner as to determine the PLC, even if the generated power PS of the wind turbine generator group 1 is rapidly increased, the battery is charged as much as possible, and only the power that is not charged is limited by the power limiting function. At the same time, the variation of the output power PS of the wind power generation system can be suppressed to 10% or less in an arbitrary 20-minute cross section. Next, the operation of the chargeable electric power calculation unit 3-4-1 will be described with reference to Fig. 14 . The chargeable power calculation unit 3-4-1 calculates the power storage by the chargeable power 値 of each of the power storage devices 2-1-1, 2-1-2, . . . Charging power PBChargeMax. Specifically, in the chargeable power calculation unit 3-4-1-1, the chargeable power PBChargeMax1 of the power storage device 2-1-1 is calculated from the charge rate measurement 値 SOC1 of the power storage device 2-1-1. Power storage devices 2-1-1, 2-1-2, ..., 2-1-m such as secondary batteries are ranges that can be charged by SOC change. The chargeable power calculation unit 3-4-1-1 is a chargeable and dischargeable range corresponding to the characteristics of the power storage devices 2-1-1, 2-1-2, ... -17-201031822, 2-1 -m. Stored in the memory, corresponding to the measurement 値SOC of the rechargeable battery, the corresponding rechargeable power 値PBChargeMaxl is read from the memory. The chargeable power calculation unit 3-4-1 performs the calculation for all of the power storage devices 2-1-1, 2-1-2, . . . , 2-1-m, and adds the obtained rechargeable power. In the manner of PBChargeMaxl, PBChargeMax2, ..., PBChargeMaxm, the chargeable power PBChargeMax of the power storage system 2 is calculated. Further, although PBChargeMax is determined only by the charging rate SOC of the power storage device in Fig. 14, it is also possible to correct PBChargeMax in consideration of the temperature of the power storage device, the number of years of use of the power storage device, or the total charge/discharge power amount. Next, an operation example of the wind power generation system according to the present invention will be described below. Fig. 15 shows the results obtained by the simulation by mitigating the fluctuation of the electric storage system 2 of the present invention. The upper surface of Fig. 15 shows the output possible range R of the generated electric power PW of the wind turbine generator group 1 and the output electric power PS and PS of the wind power generation system. In Fig. 15, the output possible range R is set to be changed to 20% or less of the wind power generation system in a range of 20 minutes, and if it is within the range, 20 minutes from an arbitrary time. In the meantime, the fluctuation of the wind power generation system is suppressed to 10% or less. The output power PS of the wind power generation system shown in Fig. 15 constantly converges in the output possible range R, and the output variation is within 10% of 20 minutes. The lower surface of Fig. 15 shows the charge/discharge power PB of the power storage system 2 and the charge rate SOC of the power storage system 2. Further, in the simulation of Fig. 15, the charging rate target 値 range of the power storage system 2 is set to (50% ± 2% = 4 8% to 52%). At the time before the time -18-201031822 3 [hour] of Fig. 15, since the fluctuation range between 20 minutes is less than 10%, and the SOC is converged in the charging rate target range, the power storage system 2 does not charge. Discharge. Therefore, the problem of the present invention can be achieved without charging and discharging the battery as much as possible. Further, before and after the time of 4.5 [hour], the generated electric power PW of the wind turbine generator group 1 does not converge in the output possible range R, and the battery performs the charging operation. Here, in order to converge the charging rate SOC of the power storage system 2 within the charging rate target range, the SOC can be converged within the charging rate target range by the charging operation. Further, in the charging operation of the SOC management, the PS system operates so that the fluctuation range between 20 minutes is within 10%. Next, an operation example of the wind power generation system relating to the power limitation control of the present invention will be described using Fig. 16. Fig. 16 is a view showing the results obtained by the simulation by mitigating the fluctuation of the power limitation control of the present invention. The upper surface of Fig. 16 shows the generated electric power PW of the wind turbine generator group, the output electric power PS of the wind power generation system, the electric power 限制 limit command PLC of the wind power generator group 1, and the wind power generation when the wind turbine is not restricted. The generated power PW0 of the device group 1. The generated electric power of the wind turbine generator group 1 starts to rise from before and after the time 1.0 [hour], and rises and then the fluctuation range of the power storage system is suppressed to within 10% within 20 minutes. Before and after 2_0 [hour], the charging rate of the power storage system 2 reaches 1 〇〇 [%]. In the case of the power storage system 2, the charging operation cannot be performed when the charging rate is 100 [%] or more, and the power generation function PW is suppressed by the power limiting function of the wind turbine generator group 1 at time 2.0 [hour]. By using the power limiting function of the SOC of the power storage system 2, the power limiting function is not used as much as possible in order to preferentially perform the charging operation of the power storage system 2 -19 - 201031822, and the natural energy is effectively utilized, and the present invention is satisfied. . Next, the effect of the present invention will be described using FIG. Fig. 17 is a view showing the results obtained by applying the present invention to the actual wind power generation system by simulation. Specifically, the power generation output data of the wind power generation system actually existing in the power storage system in which the power storage system is not installed is used, and the operation obtained when the power storage system is installed is numerically simulated. In terms of simulation, the MW capacity of the power storage system is regarded as 90% of the rated capacity of the @ wind power system, and the MWh capacity is regarded as infinite. That is, the power storage system can be normally discharged by 90% and charged by 90%. In terms of simulation, because of the comparison object, in the other battery control of the present invention, the output power PS of the wind power generation system of the prior art is a delay of tracking the following power generation power PW to the wind power generation device group 1. In the method of controlling the charge and discharge of the battery, the control for charging and discharging the battery only when the one-time delay tracking of the escape PW follows the + fixed width is also evaluated. 〇 Figure 17 is a diagram of the simulation results, showing the escape frequency, the total charge power of the battery, the total discharge power, and the loss due to battery charge and discharge. Moreover, the so-called escape frequency refers to the frequency of occurrence of a phenomenon in which the wind power generation system PS of the wind power generation system fluctuates more than 10% in 20 minutes from an arbitrary time. Further, the loss is determined by the total discharge power amount of the battery, assuming that the charge/discharge efficiency of the battery is 70%. In the case of one delay tracking follow-up, and one delay tracking followed by + fixed width control, there is a case where the time constant of delay of -20-201031822 is 180 minutes or more to achieve an escape rate of 0.0 [%]. In these cases where the escape rate was 0.0 [%], the loss was 5.8 [%] even when the charge and discharge efficiency was the lowest. On the other hand, in the case where the present invention is implemented, the escape frequency is 〇.〇 [%], and the loss is 2.1 [%], which is very small. Therefore, it is possible to determine that the amount of charge/discharge power of the power storage system is reduced and the loss due to charge and discharge of the power storage system is reduced. Further, the configuration of the wind power generation system of the present invention is not limited to that shown in Fig. 1, and the function of the control device of the power storage system is also the same as that of the present invention. Similarly, when the upper controller 3 also functions as the SCADA 1-1 of the wind turbine generator group 1, the effects of the present invention are not lost. Further, in the case where the wind power generator group does not hold SCADA1-1, the host controller 3 directly gives an electric power limitation command to each of the wind power generators 1-1-1, 1-1-2, . . . In the form of n, the effect of the present invention is not lost. In addition, in the wind turbine generator of the present invention, it is not necessary for all of the windmills to have the power limiting function; instead of the power limiting function, the wind power generation device group is used as a whole for the wind power generation device group by switching the operation and stop states of the respective wind turbines. The present invention can be implemented by adopting a configuration having a function of limiting the generated power to a specific value or less. Further, in the present embodiment, the power fluctuation 'of the fluctuation mitigation object is limited to a frequency band of several minutes to 20 minutes; however, the frequency band that should be changed gently is different for each power system, and the corresponding power is passed. The effect of the system to change the control constant can achieve the same effect as the present invention - 21 - 201031822. In the present embodiment, the generated electric power PW first converges in the output possible range R, and the charging rate SOC converges in the charging rate target range, and the electric storage system 2 does not perform charging and discharging. While the power storage system is not being charged or discharged, the supplementary power supply of the inverter 2-1-1-2 constituting the power storage system 2 may be stopped. Specifically, the air-cooling fan constituting the inverter 2-1-1-2 is stopped, the supply of the control power source is stopped, and the switching operation of the semiconductor element is stopped. By the stop operation of the power supply, the @ loss caused by the power storage system 2 can be reduced, and natural energy can be utilized more effectively.

如以上說明般地,經由使用本發明,可以抑制風力發 電系統的輸出變動,同時也可以減低因蓄電系統2的充放 電所導致的損失。又,經由使用本發明,可以減低因電力 限制所造成的損失。又,因爲本發明的效果,可以減低蓄 電系統2的充放電電力量的緣故,使得可以減作爲低蓄電 系統2必要的蓄電池容量,容易地導入本發明的型態之蓄 電系統倂設型風力發電系統。又,經由本發明的效果,可 G 以減低蓄電系統2的充放電電力量的緣故,可以比以前更 能延長蓄電裝置的壽命。因此,在使用本發明下,可以比 先前技術更有效地利用自然能源。 [實施例2] 關於本發明的第二實施例,使用圖18、圖19、圖20 來說明。 與本發明之實施例1不同的是’風力發電系統持有特 -22- 201031822 定的輸出電力上限指令PMaxC,讓風力發電系統的輸出 値在平時變成輸出電力上限指令PMaxC以下的方式’組 合了風力發電裝置群的電力限制與蓄電系統的充電來進行 動作。把與本發明的實施例1的構成相異的部分,使用圖 18、圖19、圖20來說明。 使用圖18,說明有關本實施例之充放電指令演算部 3a-3。本實施例之充放電指令演算部3a-3,與實施例1之 • 充放電指令演算部3-3相異的部分爲,限制器3a-3-3的上 限値,並不爲風力發電系統的額定,而是定爲就是風力發 電系統的額定以下的値之輸出電力上限指令PMaxC (在 本實施例爲風力發電系統額定的70%)之點。在本實施 例之充放電指令演算部3 a-3的其他部分,因爲與實施例1 的充放電指令演算部3-3相同的緣故,故省略說明之。 使用圖19,說明有關本實施例之電力限制指令演算 部3a-4。本實施例之電力限制指令演算部3a-4,與實施 ^ 例1之電力限制指令演算部3-4相異的部分,爲新增加了 最小値選擇演算部3a-4-2這一點。最小値選擇演算部3a-4·2,係比較(PSMin+ 10% )與PMaxC ’選擇其中任一 個較小的一方。在本實施例之電力限制指令演算部3 a-4 的其他部分,因爲與實施例1的電力限制指令演算部3 _4 相同的緣故,故省略說明之。 經由圖18、及圖19的控制構成,實施例2的風力發 電系統,係其輸出電力電力値常時地抑制在PMaxC以下 -23- 201031822 關於成爲本發明之實施例2的構成之控制動作與效果 ,使用圖20來說明。在倂設蓄電系統之風力發電裝置群 中,蓄電系統2的成本佔風力發電系統全體的成本之比例 ,一般來說較高。該蓄電池系統2的成本,有著妨礙導入 蓄電系統併設型風力發電裝置群之虞。 容易地導入蓄電系統倂設型風力發電裝置群方面,期 望有盡可能地減少蓄電系統2的容量。但是,減少蓄電系 統2的容量的話,風力發電系統的輸出電力PS的變動會 @ 有擴大的傾向。例如,把蓄電系統的額定充放電電力値( 最大充放電電力値),作爲風力發電系統額定値的60% 之情況的作動例,表示於圖20。尙且,蓄電系統的額定 充放電電力値,係一般而言,相等於蓄電系統的變換器容 量。 在圖20(a)、圖20 ( b )中,假定風力發電系統附 近的風速緩緩地增加,之後,就時間方面急遽地減少之情 況。圖20(a) ’係表示有藉由在實施例1所說明之方法 @ 來控制電力之情況的電力與充電率SOC之時間變化的圖 。風力發電裝置群1的發電電力PW,係對應風速而緩緩 地增加,之後,就時間方面急遽地減少。發電電力PW之 增加時,經由蓄電系統2的充電動作、與風力發電裝置群 1的電力限制動作,可以把變動率抑制在一定値以下(在 本實施例,20分鐘間的PS的變動幅度爲10%以下)。但 是’於風車輸出PW急遽減少的時候,經由蓄電系統2的 放電動作’來緩和PS的變動是有必要的,但是因爲蓄電 -24- 201031822 系統的額定容量只有風力發電系統的60%的緣故,無法 把PS的變動率抑制在一定値以下,產生了較大的變動。 圖20 ( b ),係表示有進行了本實施例的控制動作之 情況的電力與充電率SOC之時間變化的圖。在本實施例 ’把風力發電系統的輸出電力上限指令PMaxC,設定成 蓄電系統的額定電力値的(60%) +10%。風力發電系統 的輸出電力PS,係利用風力發電裝置群1的電力限制動 ® 作、與蓄電系統2的充電動作,常時地抑制在PMaxC以 下。因此,既使在風速急遽地減少、風力發電裝置群1的 發電電力PW急遽地減少的情況下,經由蓄電系統2的放 電動作,可以把最大變動幅度抑制在10% ( = PMaxC — 蓄電系統額定値)以下。經由這些,可以把風力發電系統 的輸出電力之變動,抑制在一定値以下(在本實施例把 2〇分鐘間的PS的變動幅度抑制在10%以下)。 如本實施例所示般地,經由把風力發電系統的輸出電 W 力PS,以風力發電裝置群1的電力限制功能、以及蓄電 系統2的充電功能,常時地處於特定値以下的方式,蓄電 系統2的額定容量,既使比風力發電裝置群1的額定容量 還要小的情況下,可以把變動率抑制在一定値以下。經由 該效果,可以減少蓄電系統2的容量,可以容易地導入蓄 電池倂設型風力發電系統,可以有效利用自然能源。 [實施例3] 關於本發明的第三實施例,使用圖21〜圖27來說明 -25- 201031822 本實施例與第一實施例和第二實施例不同之處,係風 力發電系統在風力發電裝置群1的電力限制控制、以及蓄 電系統2的充放電控制方面,是利用根據氣象預測之風力 發電裝置群1的發電電力預測値這一點。 關於本發明之風力發電系統的構成,使用圖21來說 明。如圖21所示之本實施例的風力發電系統的構成要件 中,與圖1編號爲相同的元件,是爲同樣的構成要件的緣 @ 故,故省略說明之。在本實施例的風力發電系統中,上位 控制器3b,爲透過訊號線8,從發電電力預測事業者9接 收風力發電系統的發電電力預測値PP。發電電力預測事 業者9,係從過去的氣象資料、地形資料、風力發電系統 之現在的運轉狀況、風力發電系統之過去的運轉資料,來 預測未來的發電電力P P。 關於上位控制器3b的構成,使用圖22、圖23、圖 24、圖25來說明。在本實施例的上位控制器3b的構成之 @ 中,與實施例1的上位控制器3(圖8)的相異之處,係 僅在蓄電系統SOC目標値演算部3b-l、蓄電系統充放電 電力指令演算部3 b-3、風力發電裝置群電力限制指令演 算部3b-4。上位控制器3b的構成要件中,有關其他的部 分係與實施例1相同的緣故,故省略說明之。 有關本實施例的SOC目標値演算部3b-l的動作,使 用圖22說明之。圖22之內,3 b-1-1的動作,係進行與實 施例1的SOC目標値演算部3-1同樣的動作的緣故,故 -26- 201031822 省略說明之。SOC目標値演算部3b-l,係在內部的電力 預測値變動率演算部3 b-1-2中,在最近的將來中,探究 發電電力預測値PP大幅度變動的事態現象。發電電力預 測値PP在最近的將來中急遽增加的情況下,把SOC目標 値設小。又,發電電力預測値PP在最近的將來中急遽減 少的情況下,把S0C目標値設大。若最近的將來中發電 電力預測値PP沒有急遽變化的話,S0C目標値,係與實 施例1同樣地,由風力發電裝置群的發電電力PW來決定 之。在本實施例,風力發電系統,係持有以這樣般地依照 蓄電系統2的SOC目標値演算部3b-l的動作,把S0C的 目標値S0CT根據發電電力預測値PP來變化之手段。 接著,有關本實施例的充放電電力指令演算部3b-3 的動作,使用圖23說明之。在如圖23所示的充放電電力 指令演算部3b-3之中,與如圖11所示的充放電電力指令 演算部3-3其編號爲相同的構成要件,係進行與實施例1 ® 同樣的動作的緣故,故省略說明之。本實施例之充放電電 力指令演算部3b-3,係在限制器3b-3-3中,把上限値設 定成不是風力發電系統額定値,而是輸出電力上限指令 PMaxC。PMaxC ,係在發電系統上限値演算部3b-3-4中, 由風力發電裝置群輸出電力預測値PP來演算。 接著,有關本實施例的電力限制指令演算部3b-4的 動作,使用圖24說明之。在如圖24所示的風力發電裝置 群電力限制指令演算部3b-4之中,與如圖13所示的風力 發電裝置群電力限制指令演算部3-4其編號爲相同的構成 -27- 201031822 要件,係進行與實施例1同樣的動作的緣故’故省略說明 之。本實施例的風力發電裝置群電力限制指令演算部3b_ 4,係在最小値選擇演算部3b-4-2中,比較(PSMin+ 10 % )與PMaxC,選擇其中任一個較小的一方。PMaxC ’係 在輸出電力上限値指令演算部3b-4-3中,由風力發電裝 置群輸出電力預測値PP來演算。 有關發電系統上限値演算部3b-3-4以及發電系統上 限値演算部3b-4-3的動作,使用圖25說明之。發電系統 觴 上限値演算部3b-3-4 ( 3b-4-3 ),係由發電電力預測値PP ,來探究在未來中發電電力預測値PP急遽地減少的事態 現象,對應於此,作成輸出電力上限指令PMaxC。具體 而言,直至PP急遽地減少的時刻,緩緩地減少PMaxC。 尙且,早期減少PMaxC,係例如以1〇[% ]/ 20[分]之一定 的比例來減少,且在PP急遽地減少之時刻中,以PMaxC 成爲蓄電系統2的額定容量的方式,來設定PMaxC。尙 且,在PP沒有急遽變化的時間帶中,PMaxC係設定成風 @ 力發電系統額定値。 在本實施例,風力發電裝置群,係持有利用充放電電 力指令演算部3b-3、電力限制指令演算部3b_4、以及上 限値演算部3b-3-4的動作,把風力發電裝置群的輸出電 力上限指令PMaxC,藉由根據氣象預測之風車發電電力 預測値PP來變化之手段,以及把風力發電系統的輸出電 力,利用風力發電裝置群1的電力限制功能、與蓄電系統 2的充電動作,來抑制到前述PMaxC以下的手段。 -28- 201031822 關於進行本發明之實施例的情況之控制動作的例子與 效果,使用圖26、圖27來說明。圖26(a)、圖26(b ),係表示風力發電系統附近的風速急遽地增加之現象之 作動例;圖27(a)、圖27(b) ’係表示風力發電系統 附近的風速急遽地減少之現象之作動例。 使用圖26(a)、圖26(b),說明有關風速急速地 增大之情況的動作。尙且,在本實施例,作爲蓄電系統2 Φ ’是假定使用是爲二次電池之鉛蓄電池、納硫電池、或鋰 電池之情況。一般而言二次電池,·係具有在充電率SOC 在較高的狀態中,可充電電力的大小會減少之性質。爲此 ,在進行爲了變動和緩之蓄電系統2的充電動作的情況下 ’經由把蓄電系統2的充電率SOC控制較低的方式,期 望有把可充電電力的振幅値事先設定在較大的値。 圖2 6 ( a ),係進行如本發明的實施例1所示的控制 之情況的作動例。在圖26 ( a ),風力發電系統,係把 O SOC目標値,對應風力發電裝置群的發電電力PW來變化 。爲此,隨著發電電力PW的增加,充電率SOC也增大 。充電率SOC變成較高的値的話,因爲可充電電力的振 幅赛小的緣故,僅在蓄電系統2的充電動作下變成沒辦法 緩和變動率。爲了把風力發電系統輸出電力PS的變動率 抑制在一定値以下,風力發電系統係把在蓄電系統2充不 進的電力,利用風力發電裝置群1的電力限制功能來抑制 掉。因此,產生了因電力限制所導致的自然能源的損失。 圖26 ( b ),係進行如本發明的實施例3所示的控制 -29- 201031822 之情況的作動例。圖26 ( b ),係隨著如圖22所示之 SOC目標値演算部3b-l的動作,在發電電力PW急遽增 加之前,把SOC目標値SOCT設定成0[%]。經由該效果 ,在PW急遽增加的跟前,SOC事先減少到直至〇[%]附 近,既使PW急遽增加後的期間中,變成可以把SOC保 持在較低的値。經由保持SOC在較低的方式,蓄電系統 的可充電電力的振幅增大,不用進行電力限制,僅以蓄電 系統2的充電動作,變成可以把PS的變動率抑制在一定 ⑩ 値以下。充電到蓄電系統2的電力,係可以把大部分放電 到系統上,與利用電力限制來抑制變動之圖26 ( a )之情 況相比,可以有效地活用自然能源。 接著,使用圖27,說明有關風速急速地減少之情況 的動作。在圖27(a)、圖27(b),蓄電系統2的變換 器額定,假定爲風力發電裝置群1的50[%]之情況。圖 27 ( a ),係進行如本發明的實施例1所示的控制之情況 的作動例。隨著風速的急遽減少,風力發電裝置群1的發 @ 電電力PW也急遽減少。PW急遽減少之際,風力發電系 統係爲了緩和輸出電力PS的變動的緣故,利用蓄電系統 2來進行放電動作,但是因爲蓄電系統2的額定容量只有 50%的緣故,無法緩和變動,產生了較大的變動。 另一方面,圖27(b),係進行如本發明的實施例3 所示的控制之情況的作動例。在圖27(b),風力發電系 統’係如圖2 2所示般地對應到根據氣象預測的發電電力 預測値PP,使SOC目標値變化的同時,如圖23所示般 -30- 201031822 地對應到PP,使風力發電系統的輸出電力PS的輸出電力 上限指令PMaxC變化。在風力發電裝置群的發電電力PW 急遽減少的跟前,變成可以以把SOC目標値設定在100[ %]的方式,在發電電力PW.急遽減少後,把對變動和緩 之必要的放電電力能量,事先地確保到蓄電系統2。又, 直至PW急遽減少時,經由把輸出電力上限指令PMaxC 事先減少到蓄電系統2的變換器容量左右的動作,在發電 © 電力PW急遽減少後的當下,利用蓄電系統2的放電動作 ’變成可以把輸出電力PS的變動率緩和在一定値以下( 在本實施例,20分鐘間的PS的變動幅度爲10%以下)。 經由該效果’變成容易地導入蓄電池倂設型風力發電裝置 群,可以有效利用自然能源。 尙且作爲如圖21所示之訊號線8,以LAN、WAN等 的網路’或是專用線等來構成。又,本發明的效果,係不 使用訊號線8 ’也在利用無線訊號等來接收發電電力預測 ® 値PP的型態下’與本發明的效果相同。 如以以上所說明般地,本發明的風力發電系統,係持 有根據風力發電裝置群1的發電電力預測値PP,使蓄電 系統2的充電率目標値SOCT變化之手段,以及根據前述 SOCT,使蓄電系統2的充電率SOC變化之手段。又,本 發明的風力發電系統,係持有根據風力發電裝置群〗的發 電電力預測値PP’使風力發電系統的輸出電力上限指令 PMaxC變化之手段’以及根據前述PMaxc,使輸出電力 PS抑制到PMaxC以下之手段。經由本發明的效果,既使 201031822 在風速急遽增加的條件下,可以迴避因電力限制所致的能 量的損失,可以有效地利用自然能源。又,在風速急遽減 少的條件下,既使在蓄電系統2的額定容量變小的情況下 ,變成可以緩和輸出電力PS的變動。由此,變成容易導 入蓄電池倂設型風力發電系統,變成可以有效地利用自然 能源。 [實施例4] ❿ 關於本發明的第四實施例,使用圖28、圖29來說明 。本實施例之風力發電系統之基本的構成,係與實施例1 同樣的緣故,故省略詳細的說明。本實施例之最大的特徵 ,係風力發電裝置群1之發電電力PW的變動比較小的時 候,以風力發電系統的輸出電力PS追蹤跟從到發電電力 PW的一次延遲指令的方式來讓蓄電池進行充放電,風力 發電裝置群1的發電電力PW的變動,超過變成基準的幅 度的時候,不去追蹤跟從到一次延遲指令,以收斂到把 © PS成爲基準的幅度之中的方式,讓蓄電池進行充放電。 有關本實施例的控制系,使用圖28說明之。圖28, 係表示本實施例之上位控制器3之充放電電力指令演算部 3-3c的控制系之圖。本實施例之上位控制器3之其他的控 制系,因爲與實施例1相同的緣故,故省略說明之。 充放電電力指令演算部3-3c,係在一次延遲演算部 3-3C-5中,作成已施以一次延遲演算到風力發電裝置群1 的發電電力PW之中間値PWLPF。充放電電力指令演算部 -32- 201031822 3-3c,係在SOC管理控制部3-3-1中,作成SOC管理用 的充放電電力指令的中間値PBSOC。充放電電力指令演 算部3-3,係作成把PWLPF加到PBSOC的値PBC1,在此 利用使限制器3-3-2與限制器3-3-3作用,求出充放電電 力指令的中間値PBC3。充放電電力指令演算部3-3,係 利用從中間値PBC3減掉PW,來求出充放電電力指令 PBC。第一個限制器3-3-2,係把上限値設定成將風力發 9 電系統額定的10%加算到PSMin的値,把下限値設定成 從PSMax減掉風力發電系統額定的10%的値。經由該限 制器3-3-2的效果,於任意的20分鐘間斷面,可以把風 力發電系統的輸出電力PS的變動抑制在10%以下。 有關本發明的效果,使用圖29說明之。圖29,係表 示如本實施例所示之風力發電系統的作動例之圖。本實施 例的風力發電系統,係讓風力發電系統的輸出電力PS的 變動,作成在20分鐘間10%以內之這般的輸出可能範圍 • R。PWLPF爲收斂在前述輸出可能範圍R內的情況下,以 風力發電系統的發電電力PS追蹤跟從到PWLPF的方式, 來控制蓄電系統2的充放電電力。PWLPF爲逸脫出前述 輸出可能範圍R的情況下,以讓PS與輸出可能範圍R的 上限、或者是下限一致的方式,來控制蓄電系統2的充放 電電力。 經由把如本實施例所示的控制運用到風力發電系統的 方式,既使一次延遲追蹤跟從的時間常數爲較小的値,也 可以把風力發電系統的發電電力PS的變動抑制在特定値 -33- 201031822 以下。經由該效果,與僅進行一次延遲追蹤跟從的動作之 情況相比,變成可以使蓄電系統2的充放電電力量減少。 因爲蓄電系統2的充放電電力量減少的緣故,可以使得產 生在蓄電系統2的損失減少,關係到自然能源之有效方面 [實施例5] 在本發明的第五實施例中,使用圖30、圖31、圖32 _ 、圖33、圖34來說明之。與本發明之實施例2不同的是 ,把風力發電系統的輸出電力上限指令PM ax C,由蓄電 系統2的儲能來決定之。 把與本發明的實施例2的構成相異的部分,使用圖 30、圖31、圖32、圖33來說明。使用圖30,說明有關 本實施例之充放電指令演算部3d-3。本實施例之充放電 指令演算部3d-3,與實施例1之充放電指令演算部3a-3 相異的部分爲,限制器3d-3-3的上限値PMaxC,並不爲 © 特定値,而是由蓄電系統2的充電率SOC來決定之點。 在本實施例之充放電指令演算部3 d-3的其他部分,因爲 與實施例2的充放電指令演算部3 a-3相同的緣故,故省 略詳細的說明之。 接著使用圖3 1,說明有關本實施例之電力限制指令 演算部3d-4。本實施例之電力限制指令演算部3d-4,與 實施例1之電力限制指令演算部3 a-4相異的部分爲,把 輸出電力上限値PMaxC,並不爲特定値,而是由蓄電系 -34- 201031822 統2的充電率SOC來決定之點。在本實施例之電力限制 指令演算部3d-4的其他部分,因爲與實施例2的充放電 指令演算部3 d-4相同的緣故,故省略詳細的說明之。 接著使用圖32,說明有關輸出電力上限指令演算部 3d-3-4 ( 3d-4-3 )的動作。輸出電力上限指令演算部3(1-3-4 ( 3d-4-3 ),係首先在儲能演算部3d-3-4-l中,蓄電系 統2由蓄電系統2的充電率SOC來演算可放電的儲能E ® 。輸出電力上限指令演算部3d-3-4 ( 3d-4-3 ),係把對應 到儲能E的輸出電力上限指令PMaxC預先記憶到內部, 在輸出電力上限指令選擇部3d-3-4-2中,選擇PMaxC。 圖33,係表示儲能E與輸出電力上限指令PMaxC之 關係。蓄電系統,爲由電力PMaxC,藉由變動和緩的制 約(10%/20分鐘)的變化率來進行放電的情況下,把 變成必要之總放電能量作爲EPMaxC。此時,在EPMaxC ' E之間,持有如數學式3所示之關係。 參As described above, by using the present invention, it is possible to suppress fluctuations in the output of the wind power generation system, and it is also possible to reduce the loss due to charging and discharging of the power storage system 2. Further, by using the present invention, it is possible to reduce the loss due to the power limitation. In addition, the effect of the present invention can reduce the amount of charge/discharge power of the power storage system 2, so that the battery capacity required for the low power storage system 2 can be reduced, and the power storage system of the present invention can be easily introduced into the wind power generation system. system. Moreover, according to the effect of the present invention, it is possible to reduce the charge/discharge power amount of the power storage system 2, and it is possible to extend the life of the power storage device more than before. Therefore, under the use of the present invention, natural energy can be utilized more efficiently than the prior art. [Embodiment 2] A second embodiment of the present invention will be described with reference to Figs. 18, 19, and 20. The difference from the first embodiment of the present invention is that the wind power generation system holds the output power upper limit command PMaxC defined by the special -22-201031822, and the output of the wind power generation system is changed to the output power upper limit command PMaxC. The power limitation of the wind power generation device group and the charging of the power storage system operate. A portion different from the configuration of the first embodiment of the present invention will be described with reference to Figs. 18, 19 and 20. The charge and discharge command calculation unit 3a-3 of this embodiment will be described with reference to Fig. 18 . The charge/discharge command calculation unit 3a-3 of the present embodiment differs from the charge/discharge command calculation unit 3-3 of the first embodiment in that the upper limit 限制 of the limiter 3a-3-3 is not a wind power generation system. The rating is determined to be the point of the output power cap command PMaxC (in this embodiment, the rated 70% of the wind power system) of the wind power system. The other parts of the charge and discharge command calculation unit 3a-3 of the present embodiment are the same as those of the charge and discharge command calculation unit 3-3 of the first embodiment, and thus the description thereof will be omitted. The power limit command calculation unit 3a-4 of the present embodiment will be described with reference to Fig. 19 . The power limitation command calculation unit 3a-4 of the present embodiment differs from the power limitation command calculation unit 3-4 of the first embodiment in that the minimum selection calculation unit 3a-4-2 is newly added. The minimum 値 selection calculation unit 3a-4·2 selects one of the smaller ones (PSMin+10%) and PMaxC'. The other parts of the power limit command calculation unit 3a-4 of the present embodiment are the same as those of the power limit command calculation unit 3_4 of the first embodiment, and thus the description thereof will be omitted. In the wind power generation system of the second embodiment, the output power of the wind power generation system of the second embodiment is suppressed to be equal to or lower than PMaxC -23-201031822. The control operation and effect of the configuration of the second embodiment of the present invention are as follows. This will be described using FIG. In the wind power plant group in which the power storage system is installed, the cost of the power storage system 2 is generally higher than the cost of the entire wind power generation system. The cost of the battery system 2 has a hindrance to the introduction of the power storage system and the formation of the wind power generation device group. It is desirable to reduce the capacity of the power storage system 2 as much as possible in order to easily introduce the power storage system-integrated wind power generation device group. However, if the capacity of the power storage system 2 is reduced, the fluctuation of the output power PS of the wind power generation system tends to increase. For example, an example of the operation in the case where the rated charging/discharging electric power 値 (maximum charging/discharging electric power 値) of the electric storage system is 60% of the rated enthalpy of the wind power generation system is shown in FIG. Moreover, the rated charge and discharge power of the power storage system is generally equivalent to the converter capacity of the power storage system. In Figs. 20(a) and 20(b), it is assumed that the wind speed in the vicinity of the wind power generation system is gradually increased, and thereafter, the situation is drastically reduced in terms of time. Fig. 20 (a) is a diagram showing temporal changes in electric power and charging rate SOC in the case where electric power is controlled by the method @ described in the first embodiment. The generated electric power PW of the wind turbine generator group 1 gradually increases in accordance with the wind speed, and thereafter, it is drastically reduced in terms of time. When the generated power PW is increased, the fluctuation rate can be suppressed to a certain value or less by the charging operation of the power storage system 2 and the power limiting operation of the wind turbine generator group 1 (in the present embodiment, the fluctuation range of the PS during 20 minutes is 10% or less). However, it is necessary to alleviate the fluctuation of the PS through the discharge operation of the power storage system 2 when the wind turbine output PW is drastically reduced, but since the rated capacity of the power storage-24-201031822 system is only 60% of the wind power generation system, It is impossible to suppress the variation rate of the PS below a certain value, and a large change has occurred. Fig. 20 (b) is a view showing temporal changes in electric power and charging rate SOC in the case where the control operation of the present embodiment is performed. In the present embodiment, the output power upper limit command PMaxC of the wind power generation system is set to (60%) + 10% of the rated power 値 of the power storage system. The output power PS of the wind power generation system is constantly suppressed by PMaxC by the power limiting operation of the wind turbine generator group 1 and the charging operation of the power storage system 2. Therefore, even when the wind speed is drastically reduced and the generated electric power PW of the wind turbine generator group 1 is drastically reduced, the maximum fluctuation range can be suppressed to 10% via the discharge operation of the electric storage system 2 (= PMaxC - the rated value of the electric storage system値) Below. As a result, the fluctuation of the output power of the wind power generation system can be suppressed to a certain value or less (in the present embodiment, the fluctuation range of the PS within 2 minutes is suppressed to 10% or less). As shown in the present embodiment, the electric power limiting function of the wind power generation device group 1 and the charging function of the electric storage system 2 are constantly stored in a manner of being less than or equal to a specific value by the output electric power PS of the wind power generation system. When the rated capacity of the system 2 is smaller than the rated capacity of the wind turbine generator group 1, the fluctuation rate can be suppressed to a certain value or less. By this effect, the capacity of the power storage system 2 can be reduced, and the battery-mounted wind power generation system can be easily introduced, and natural energy can be utilized effectively. [Embodiment 3] A third embodiment of the present invention will be described with reference to Figs. 21 to 27 - 25 - 201031822 This embodiment differs from the first embodiment and the second embodiment in that a wind power generation system is in wind power generation. The power limitation control of the device group 1 and the charge and discharge control of the power storage system 2 are based on the predicted power generation of the wind power generation device group 1 based on weather prediction. The configuration of the wind power generation system of the present invention will be described using Fig. 21 . In the components of the wind power generation system of the present embodiment shown in Fig. 21, elements that are the same as those in Fig. 1 are the same constituent elements, and therefore their description will be omitted. In the wind power generation system of the present embodiment, the upper controller 3b receives the power generation electric power prediction 値PP of the wind power generation system from the power generation electric power prediction company 9 through the signal line 8. The power generation electric power forecasting person 9 predicts the future generated electric power P P from the past meteorological data, the topographical data, the current operating state of the wind power generation system, and the past operational data of the wind power generation system. The configuration of the upper controller 3b will be described with reference to Figs. 22, 23, 24, and 25. In the configuration of the upper controller 3b of the present embodiment, the difference from the upper controller 3 (FIG. 8) of the first embodiment is only in the power storage system SOC target 値 calculation unit 3b-1, and the power storage system. The charge/discharge power command calculation unit 3 b-3 and the wind turbine generator group power limit command calculation unit 3b-4. Among the components of the upper controller 3b, the other components are the same as those of the first embodiment, and thus the description thereof will be omitted. The operation of the SOC target 値 calculation unit 3b-1 of the present embodiment will be described with reference to Fig. 22 . In Fig. 22, the operation of 3 b-1-1 is performed in the same manner as the SOC target 値 calculation unit 3-1 of the first embodiment, and therefore -26-201031822 will be omitted. The SOC target 値 calculation unit 3b-1 is an internal power prediction/rate change rate calculation unit 3 b-1-2, and in the near future, investigates a phenomenon in which the power generation electric power prediction 値PP greatly changes. The power generation power forecast 値PP has a small increase in the SOC target in the near future. In addition, when the power generation electric power forecast 値PP is drastically reduced in the near future, the S0C target is set to be large. The S0C target is determined by the generated electric power PW of the wind power generation device group in the same manner as in the first embodiment, if the power generation electric power prediction 値PP does not change rapidly in the near future. In the present embodiment, the wind power generation system is configured to change the target 値S0CT of the SOC according to the power generation electric power prediction 値PP in accordance with the operation of the SOC target 値 calculation unit 3b-1 of the electric storage system 2. Next, the operation of the charge and discharge electric power command calculation unit 3b-3 of the present embodiment will be described with reference to FIG. In the charge/discharge power command calculation unit 3b-3 shown in FIG. 23, the same components as those of the charge/discharge power command calculation unit 3-3 shown in FIG. 11 are the same as those in the first embodiment. For the sake of the same operation, the description is omitted. The charge/discharge power command calculation unit 3b-3 of the present embodiment sets the upper limit 値 in the limiter 3b-3-3 so as not to be the rated value of the wind power generation system but to output the power upper limit command PMaxC. PMaxC is calculated by the wind power generation device group output power prediction 値PP in the power generation system upper limit calculation unit 3b-3-4. Next, the operation of the power limitation command calculation unit 3b-4 of the present embodiment will be described with reference to Fig. 24 . In the wind turbine generator group power limit command calculation unit 3b-4 shown in FIG. 24, the wind turbine generator group power limit command calculation unit 3-4 shown in FIG. The requirements of the 201031822 are the same as those of the first embodiment, and the description thereof will be omitted. The wind power generation device group power limitation command calculation unit 3b_4 of the present embodiment compares (PSMin + 10%) and PMaxC with the minimum value selection calculation unit 3b-4-2, and selects one of the smaller ones. In the output power upper limit 値 command calculation unit 3b-4-3, the PMaxC ’ is calculated by the wind power generation unit group output power prediction 値PP. The operation of the power generation system upper limit 値 calculation unit 3b-3-4 and the power generation system upper limit calculation unit 3b-4-3 will be described with reference to Fig. 25 . The power generation system 觞 upper limit 値 calculation unit 3b-3-4 (3b-4-3) is based on the power generation electric power prediction 値PP, and investigates the phenomenon that the power generation electric power prediction 値PP is drastically reduced in the future, and accordingly, it is created. The power upper limit command PMaxC is output. Specifically, PMaxC is gradually reduced until the time when the PP is drastically reduced. In addition, the PMaxC is reduced in the early stage by a certain ratio of 1 〇 [% ] / 20 [minutes], and the PMaxC becomes the rated capacity of the power storage system 2 at the time when the PP is drastically reduced. Set PMaxC.且 Moreover, in the time zone where the PP does not change rapidly, the PMaxC system is set to the wind power system rated 値. In the present embodiment, the wind power generation device group holds the operation of the charge/discharge electric power command calculation unit 3b-3, the electric power limitation command calculation unit 3b_4, and the upper limit 値 calculation unit 3b-3-4, and the wind power generation device group The output power upper limit command PMaxC is changed by the wind power generation power prediction 値PP based on the weather prediction, and the power output of the wind power generation system 1 and the power storage system 2 are charged. To suppress the above PMaxC means. -28- 201031822 An example and effect of the control operation in the case of carrying out the embodiment of the present invention will be described with reference to Figs. 26 and 27 . 26(a) and 26(b) show an example of an operation in which the wind speed in the vicinity of the wind power generation system is rapidly increased; and Figs. 27(a) and 27(b) show the rapid wind speed near the wind power generation system. An example of the phenomenon of land reduction. The operation of the case where the wind speed is rapidly increased will be described with reference to Figs. 26(a) and 26(b). Further, in the present embodiment, the power storage system 2 Φ ' is assumed to be a lead storage battery, a sodium sulfide battery, or a lithium battery which is a secondary battery. In general, a secondary battery has a property that the magnitude of the chargeable power is reduced in a state where the charge rate SOC is high. For this reason, in the case where the charging operation of the power storage system 2 is performed for the sake of the fluctuation, it is desirable to set the amplitude 値 of the rechargeable power to be large in advance by controlling the charging rate SOC of the power storage system 2 to be low. . Fig. 2 6 (a) is an operation example in the case of performing the control shown in the embodiment 1 of the present invention. In Fig. 26 (a), the wind power generation system changes the O SOC target to the generated power PW of the wind power generation device group. For this reason, as the generated power PW increases, the charging rate SOC also increases. When the charging rate SOC becomes high, the amplitude of the chargeable electric power is small, and it is impossible to alleviate the fluctuation rate only under the charging operation of the electric storage system 2. In order to suppress the fluctuation rate of the wind power generation system output power PS to a certain level or less, the wind power generation system suppresses the power that is not charged in the power storage system 2 by the power limiting function of the wind power generation device group 1. Therefore, the loss of natural energy due to power limitation occurs. Fig. 26 (b) is an operation example of the case where the control -29-201031822 as shown in the embodiment 3 of the present invention is performed. In the operation of the SOC target 値 calculation unit 3b-1 shown in Fig. 22, the SOC target 値SOCT is set to 0 [%] before the power generation power PW increases sharply. By this effect, the SOC is reduced to the vicinity of 〇[%] before the sudden increase in PW, and the SOC can be kept low even during the period in which the PW is increased rapidly. By keeping the SOC low, the amplitude of the chargeable power of the power storage system is increased, and the power limitation is not required. Only the charging operation of the power storage system 2 can suppress the fluctuation rate of the PS to 10 値 or less. The electric power charged to the electric storage system 2 can discharge most of the electric power to the system, and the natural energy can be effectively utilized as compared with the case of Fig. 26 (a) which uses electric power limitation to suppress the fluctuation. Next, the operation of the case where the wind speed is rapidly reduced will be described with reference to Fig. 27 . In Figs. 27(a) and 27(b), the converter rating of the power storage system 2 is assumed to be 50 [%] of the wind turbine generator group 1. Fig. 27 (a) is an operation example of the case where the control shown in the first embodiment of the present invention is performed. As the wind speed is rapidly reduced, the electric power PW of the wind power generator group 1 is also rapidly reduced. When the PW is rapidly reduced, the wind power generation system performs the discharge operation by the power storage system 2 in order to alleviate the fluctuation of the output power PS. However, since the rated capacity of the power storage system 2 is only 50%, the fluctuation cannot be alleviated, resulting in a comparison. Big change. On the other hand, Fig. 27 (b) is an operation example in the case of performing the control shown in the third embodiment of the present invention. In Fig. 27(b), the wind power generation system corresponds to the power generation electric power prediction 値PP according to the weather prediction as shown in Fig. 22, and the SOC target 値 is changed, as shown in Fig. 23 -30- 201031822 The ground corresponds to the PP, and the output power upper limit command PMaxC of the output power PS of the wind power generation system is changed. In the case where the SOC target 値 is set to 100 [%] in the case where the SOC target 値 is set to 100 [%], the UPS target 値 is set to 100 [%], and the discharge electric energy necessary for the fluctuation and the mitigation is made. It is ensured to the power storage system 2 in advance. In addition, when the PW is reduced, the output power upper limit command PMaxC is reduced to the inverter capacity of the power storage system 2 in advance, and the discharge operation of the power storage system 2 becomes possible after the power generation © the power PW is suddenly reduced. The fluctuation rate of the output power PS is reduced to a certain value or less (in the present embodiment, the fluctuation range of the PS during 20 minutes is 10% or less). By this effect, it becomes easy to introduce a battery-mounted wind turbine generator group, and natural energy can be utilized effectively. Further, as the signal line 8 shown in Fig. 21, a network such as a LAN or a WAN or a dedicated line or the like is used. Further, the effect of the present invention is the same as the effect of the present invention in that the signal line 8' is not used to receive the generated power prediction ® 値PP by using a wireless signal or the like. As described above, the wind power generation system of the present invention has means for changing the charging rate target 値SOCT of the power storage system 2 based on the power generation electric power prediction 値PP of the wind power generation device group 1, and according to the aforementioned SOCT. A means for changing the charging rate SOC of the power storage system 2. Moreover, the wind power generation system of the present invention holds the means for changing the output power upper limit command PMaxC of the wind power generation system based on the power generation electric power prediction 値PP' of the wind power generation device group, and suppresses the output electric power PS by the PMaxc The following means of PMaxC. According to the effect of the present invention, even if the wind speed is rapidly increased under the condition that the wind speed is rapidly increased, the energy loss due to the power limitation can be avoided, and the natural energy can be effectively utilized. Further, even under the condition that the wind speed is rapidly reduced, even when the rated capacity of the power storage system 2 is reduced, the fluctuation of the output power PS can be alleviated. As a result, it becomes easy to introduce a battery-mounted wind power generation system, and natural energy can be utilized effectively. [Embodiment 4] A fourth embodiment of the present invention will be described with reference to Figs. 28 and 29 . The basic configuration of the wind power generation system of the present embodiment is the same as that of the first embodiment, and thus detailed description thereof will be omitted. The most important feature of the present embodiment is that when the fluctuation of the generated electric power PW of the wind turbine generator group 1 is relatively small, the battery is charged so that the output power PS of the wind power generation system follows the one-step delay command from the generated electric power PW. When the fluctuation of the generated electric power PW of the wind turbine generator group 1 exceeds the range of the reference power, the battery is charged by not following the tracking delay command to converge to the range in which the PS is the reference. Discharge. The control system of this embodiment will be described using FIG. Fig. 28 is a view showing the control system of the charge and discharge electric power command calculation unit 3-3c of the upper controller 3 of the present embodiment. Since the other control systems of the upper controller 3 of the present embodiment are the same as those of the first embodiment, the description thereof will be omitted. The charge/discharge power command calculation unit 3-3c creates the intermediate 値PWLPF of the generated power PW that has been subjected to the primary delay calculation to the wind turbine generator group 1 in the primary delay calculation unit 3-3C-5. In the SOC management control unit 3-3-1, the charge/discharge power command calculation unit -32-201031822 3-3c creates an intermediate 値 PBSOC for the charge/discharge power command for SOC management. The charge/discharge power command calculation unit 3-3 is configured to add PWLPF to the 値PBC1 of the PBSOC, and here, the limiter 3-3-2 and the limiter 3-3-3 are operated to obtain the middle of the charge/discharge power command.値PBC3. The charge/discharge power command calculation unit 3-3 obtains the charge/discharge power command PBC by subtracting the PW from the middle 値PBC3. The first limiter 3-3-2 sets the upper limit 成 to add 10% of the wind power rating to the PSMin, and sets the lower limit 成 to 10% of the rated wind power system from PSMax. value. By the effect of the limiter 3-3-2, the variation of the output power PS of the wind power generation system can be suppressed to 10% or less in an arbitrary 20-minute cross section. The effect of the present invention will be described using FIG. Fig. 29 is a view showing an operation example of the wind power generation system as shown in the embodiment. In the wind power generation system of the present embodiment, the fluctuation of the output power PS of the wind power generation system is made such that the output possible range is within 10% within 20 minutes. When the PWLPF converges within the aforementioned output possible range R, the charge/discharge power of the power storage system 2 is controlled such that the generated power PS of the wind power generation system follows the approach to the PWLPF. When the PWLPF is out of the output possible range R, the charging/discharging electric power of the electric storage system 2 is controlled such that the PS matches the upper limit of the output possible range R or the lower limit. By applying the control as shown in this embodiment to the wind power generation system, even if the time constant of the one-time delay tracking follows is small, the fluctuation of the generated power PS of the wind power generation system can be suppressed to a specific 値- 33- 201031822 Below. By this effect, the amount of charge/discharge power of the power storage system 2 can be reduced as compared with the case where only one delay tracking follow-up operation is performed. Since the amount of charge and discharge power of the power storage system 2 is reduced, the loss generated in the power storage system 2 can be reduced, which is related to the effective aspect of natural energy. [Embodiment 5] In the fifth embodiment of the present invention, FIG. 30 is used. 31, 32, 33, and 34 are explained. Different from the second embodiment of the present invention, the output power upper limit command PM ax C of the wind power generation system is determined by the energy storage of the power storage system 2. A portion different from the configuration of the second embodiment of the present invention will be described with reference to Figs. 30, 31, 32, and 33. The charge and discharge command calculation unit 3d-3 of this embodiment will be described with reference to Fig. 30. The charge/discharge command calculation unit 3d-3 of the present embodiment differs from the charge and discharge command calculation unit 3a-3 of the first embodiment in that the upper limit 値PMaxC of the limiter 3d-3-3 is not ©. However, it is determined by the charging rate SOC of the power storage system 2. The other portions of the charge and discharge command calculation unit 3d-3 of the present embodiment are the same as those of the charge and discharge command calculation unit 3a-3 of the second embodiment, and therefore will not be described in detail. Next, the power limitation command calculation unit 3d-4 of the present embodiment will be described using Fig. 3 1. The power limitation command calculation unit 3d-4 of the present embodiment differs from the power limitation command calculation unit 3a-4 of the first embodiment in that the output power upper limit 値PMaxC is not specific but is stored. Department-34- 201031822 System 2 charging rate SOC to determine the point. The other parts of the power limitation command calculation unit 3d-4 of the present embodiment are the same as those of the charge and discharge command calculation unit 3d-4 of the second embodiment, and thus detailed description thereof will be omitted. Next, the operation of the output power upper limit command calculation unit 3d-3-4 (3d-4-3) will be described with reference to Fig. 32. The output power upper limit command calculation unit 3 (1-3-4 (3d-4-3) first calculates the charge system SOC of the power storage system 2 in the energy storage calculation unit 3d-3-4-1. Dischargeable energy storage E ® . Output power upper limit calculation unit 3d-3-4 ( 3d-4-3 ), the output power upper limit command PMaxC corresponding to the energy storage E is pre-memorized internally, and the output power upper limit command is output. In the selection unit 3d-3-4-2, PMaxC is selected. Fig. 33 shows the relationship between the energy storage E and the output power upper limit command PMaxC. The power storage system is controlled by the power PMaxC by the fluctuation (10%/20) When the rate of change of the minute is to be discharged, the total discharge energy that becomes necessary is taken as EPMaxC. At this time, between EPMaxC 'E, the relationship as shown in Mathematical Formula 3 is held.

(數學式3) 總放電能量EPMaxC〈儲能E 利用持有如數學式3所示之關係,既使在風力發電裝 置群1的發電電力急遽減少的情況下,利用蓄電系統2的 放電,變成可以把輸出電力的變動抑制在規定値(10%/ 2〇分鐘)以下。 有關本發明的效果,使用圖34說明之。圖34,係在 時刻t0中,表示有風力發電裝置群的發電電力PW急遽 -35- 201031822 減少的事態現象。圖34(a),係表示有關如實施例1所 示之沒有輸出電力上限的情況之動作之圖。在圖34(a) ,直至時刻to的期間中,因應發電電力增加的狀況’ SOC目標範圍也增加。如圖34 ( a)所示般地,於SOC追 蹤跟從到SOC目標範圍方面,有著產生時間方面的延遲 之情況。因此,有著產生於放電之必要的儲能不足的事態 現象之情況。在圖34(a),於時刻t0中風車輸出急遽減 少,爲了之後的電力變動緩和,蓄電系統2進行放電動作 _ 。但是在時刻tl中,SOC達到0% (儲能不足)的緣故 ,無法進行放電動作,產生了較大的電力變動。 另一方面,在如圖3 4 ( b )所示的本實施例的控制方 式下,對應蓄電系統的儲能(或者是S0C),使輸出電力 上限PMaxC變化。經由該PMaxC的效果,也在時刻t0中 輸出電力PS爲較小的値,既使在時刻t0中風車輸出急遽 減少,蓄電系統2雖然進行放電但可以事先確保了充分的 儲能,可以利用放電動作把電力變動抑制在規定値以下。 〇 尙且,如本實施例所示之風力發電系統的輸出電力 PS的限制方法,並不爲如實施例1所示之限定在蓄電池 的充放電控制上,作爲蓄電池的控制方式,使用追蹤跟從 到發電電力PW的一次延遲訊號等之別的控制方法也是可 以的。 如本實施例所示般地,經由把風力發電系統的輸出電 力PS,對應到蓄電系統2的儲能來進行限制的方式,既 使發生風力發電裝置群1的發電電力急遽減少的事態現象 -36-(Equation 3) The total discharge energy EPMaxC<energy storage E is obtained by the discharge of the electric storage system 2 when the electric power generated by the wind turbine generator group 1 is suddenly reduced by the relationship shown in the mathematical expression 3 The fluctuation of the output power can be suppressed to a predetermined value (10% / 2 〇 minutes) or less. The effect of the present invention will be described using FIG. Fig. 34 shows a situation in which the power generation electric power PW of the wind power generation device group is suddenly reduced from -35 to 201031822 at time t0. Fig. 34 (a) is a diagram showing the operation of the case where there is no upper limit of the output power as shown in the first embodiment. In the period from time to time in Fig. 34(a), the SOC target range is also increased in response to the situation in which the generated power is increased. As shown in Fig. 34 (a), there is a delay in the generation of the SOC tracking follow-up to the SOC target range. Therefore, there is a situation in which a phenomenon of insufficient energy storage necessary for discharge is caused. In Fig. 34(a), the wind turbine output is suddenly reduced at time t0, and the power storage system 2 performs a discharge operation _ in order to alleviate the subsequent power fluctuation. However, at time t1, the SOC reaches 0% (sufficient energy storage), the discharge operation cannot be performed, and a large power fluctuation occurs. On the other hand, in the control mode of the present embodiment as shown in Fig. 34 (b), the output power upper limit PMaxC is changed corresponding to the energy storage (or S0C) of the power storage system. According to the effect of the PMaxC, the output power PS is also small at the time t0, and the wind turbine output is suddenly reduced at the time t0, and the electric storage system 2 performs electric discharge, but sufficient energy storage can be secured in advance, and discharge can be utilized. The operation suppresses the power fluctuation below the predetermined threshold. Moreover, the method of limiting the output power PS of the wind power generation system as shown in this embodiment is not limited to the charge and discharge control of the battery as shown in the first embodiment, and the tracking method is used as the control mode of the battery. Other control methods such as one-time delay signal to the generated power PW are also possible. As shown in the present embodiment, the output power PS of the wind power generation system is limited in accordance with the energy storage of the power storage system 2, and the situation in which the power generation of the wind power generation device group 1 is suddenly reduced is caused. 36-

201031822 ,也可以更確實地,把電力的變動率抑制在規 經由該效果,可以容易地導入發電所,可以有 能源。 [實施例6] 關於本發明的第六實施例,使用圖35、圖 。把本實施例的風力發電系統之構成表示於圖 ❿ 35中的構成要件中,編號與實施例1相同者, 樣的構成用。本實施例之最大的特徵,係把構拭 2之各蓄電裝置2-1-1、2-1-2.....2-1-m的充 ,控制到各自相異的値上。 在本實施例,作爲構成蓄電裝置之蓄電池, 用是爲二次電池之鉛蓄電池、納硫電池、或鋰罨 。二次電池,係利用其特性,依存到s O C,讓瓦 力値變化。一般而言,有著蓄電池的SOC爲® 充電電力的振幅減少,相反地SOC爲較低時, 力的振幅減少之傾向。圖36,係表示構成圖35 置 2-1-1、2-1-2.....2-1-m 的充電率 SOC、β 電力之圖。蓄電裝置2-1-1、2-1-2、…、2-1-m SOC,爲持有如圖36般的特性之情況下,以把 置的充電率控制在相異的値的方式,可以使可充 的範圍增大。 使用圖37(a)與圖37(b),來說明有 之效果。在本實施例,蓄電系統2,係以計有 値以下。 利用自然 36來說明 30。在圖 係表示同 5蓄電系統 電率S0C 是假定使 〖池之情況 「充放電電 ;高時,可 可放電電 之蓄電裝 【可充放電 的充電率 丨各蓄電裝 i放電電力 丨本實施例 10個的蓄 -37- 201031822 電裝置2-1-1、2-1-2.....2-1-10所構成。又,各蓄電裝 置的容量,以額定600 [kWh]來爲之。圖37(a),係表示 把蓄電裝置的SOC全部控制在同樣的値(=40%)之情 況。該情況下,由各蓄電裝置的SOC與可充放電電力的 關係(圖36),在蓄電系統全體的可充電電力爲40%、 可放電電力爲40%。另一方面,圖37(b),係把蓄電裝 置的SOC依各個蓄電裝置來作變化之情況。具體而言, 爲在蓄電裝置2-1-1〜2-1-6之6個蓄電裝置中,把SOC _ 控制在60%,把剩下的4個控制在SOC 10%內之情況。 蓄電系統2蓄積在全體之能源量’爲2400 [kWh],與統一 SOC的情況相同。該情況下,在蓄電系統全體的可充電電 力爲40%,但是可放電電力擴大到64%。利用可放電電 力的增大,經由蓄電系統2的充放電動作,使可以變動和 緩的範圍擴大。 如圖35所示之上位控制器3d,係保持滿足蓄電系統 2的平均的SOC爲一定的條件,或者是儲能爲一定的條件 參 下,在蓄電系統2全體之可充放電電力,爲以變成最大的 方式,來決定各蓄電池2-1-1.....2-1-10的SOC目標値 〇 經由本實施例的效果,使蓄電系統2的可充放電電力 範圍擴大,使利用充放電動作讓變動和緩的範圍擴大。爲 此,爲了變動和緩,可以削減在風力發電系統上之必要的 蓄電系統2的容量。經由蓄電系統的容量削減,變成容易 地導入蓄電池倂設型風力發電系統,關係到了自然能源的 -38- 201031822 有效利用上。 [產業上的可利用性] 本發明,係於風力發電裝置群的替代方案上,也可以 適用在輸出電力的變動爲較大之其他的發電系統上。具體 而言,在替代風力發電裝置群方面,是可以適用在太陽光 發電系統、波浪發電系統、或者是把這些組合起來的發電 φ 系統等上。 【圖式簡單說明】 圖1表示本發明之第一實施型態之風力發電系統的構 成之圖。 圖2表示本發明之第一實施型態之風力發電裝置的其 中一例之圖。 圖3表示本發明之第一實施型態之風力發電裝置的其 Φ 中一例之圖。 圖4表示本發明之第一實施型態之風力發電裝置的其 中一例之圖。 圖5表示本發明之第一實施型態之風力發電裝置的其 中一例之圖。 圖6表示本發明之第一實施型態之蓄電裝置的其中一 例之圖。 圖7表示本發明之第一實施型態之風力發電系統的輸 出電力之圖。 -39- 201031822 圖8說明本發明之第一實施型態之上位控制器的控制 系統之圖。 圖9表示本發明之第一實施型態之充電率目標値作成 手段之圖。 圖1 0表示本發明之第一實施型態之最大値·最小値 演算手段之圖。 圖11表示本發明之第一實施型態之充放電電力指令 作成手段之圖。 @ 圖12表示本發明之第一實施型態之充電率管理手段 之圖。 圖13表示本發明之第一實施型態之電力限制指令作 成手段之圖。 圖14表示本發明之第一實施型態之可充電電力演算 手段之圖。 圖15表示本發明之第一實施型態之風力發電系統的 作動例之圖。 圖16表示本發明之第一實施型態之風力發電系統的 作動例之圖。 圖17表示本發明之第一實施型態之本發明的效果之 圖。 圖18表示本發明之第二實施型態之充放電電力指令 作成手段之圖。 圖1 9表示本發明之第二實施型態之電力限制指令作 成手段之圖。 -40- 201031822 圖20(a)表示本發明之第二實施型態之不設定系統 輸出上限的情況之風力發電系統的作動例之圖。 圖20(b)表示本發明之第二實施型態之已設定系統 輸出上限的情況之風力發電系統的作動例之圖。 圖21表示本發明之第三實施型態之風力發電系統的 構成之圖。 圖22表示本發明之第三實施型態之充電率目標値作 φ 成手段之圖。 圖23表示本發明之第三實施型態之充放電電力指令 作成手段之圖。 圖24表示本發明之第三實施型態之電力限制指令作 成手段之圖。 圖25表示本發明之第三實施型態之輸出電力上限値 演算手段之圖。 圖26(a)表示本發明之第三實施型態之風力發電系 ® 統之不使用發電電力預測値之情況的作動例之圖。 圖26(b)表示本發明之第三實施型態之風力發電系 統之已使用發電電力預測値之情況的作動例之圖。 圖27(a)表示本發明之第三實施型態之風力發電系 統之不使用發電電力預測値之情況的作動例之圖。 圖27(b)表示本發明之第三實施型態之風力發電系 統之已使用發電電力預測値之情況的作動例之圖。 圖28表示本發明之第四實施型態之充放電電力指令 作成手段之圖。 -41 - 201031822 圖29表示本發明之第四實施型態之風力發電系統的 作動例之圖。 圖30表示本發明之第五實施型態之充放電電力指令 作成手段之圖。 圖31表示本發明之第五實施型態之電力限制指令作 成手段之圖。 圖3 2表示本發明之第五實施型態之電力限制指令作 成手段之圖。 @ 圖33說明本發明之第五實施型態之儲能與電力限制 指令之關係之圖。 圖34(a)表示本發明之實施型態之實施例一的控制 動作之圖。 圖34(b)表示本發明之實施型態之實施例五的控制 動作之圖。 圖35表示本發明之第六實施型態之風力發電系統的 構成之圖。 β 圖36表示本發明之第六實施型態之蓄電裝置的充放 電可能範圍之圖。 圖37(a)表示本發明之第六實施型態之以往的充電 率控制之圖。 圖37(b)表示本發明之第六實施型態之本發明的充 電率控制之圖。 【主要元件符號說明】 -42- 201031822 1 :風力發電裝置群201031822, it is also possible to suppress the rate of change of electric power more reliably. This effect can be easily introduced into a power generation station, and energy can be supplied. [Embodiment 6] With regard to the sixth embodiment of the present invention, Fig. 35 and Fig. are used. The configuration of the wind power generation system of the present embodiment is shown in the configuration of Fig. 35, and the same reference numerals are used for the configuration of the first embodiment. The most important feature of this embodiment is that the charge of each of the power storage devices 2-1-1, 2-1-2, ..., 2-1-m of the wiper 2 is controlled to be different from each other. In the present embodiment, as the battery constituting the power storage device, a lead storage battery, a sodium sulfide battery, or lithium crucible which is a secondary battery is used. The secondary battery uses its characteristics to depend on s O C to change the wattage. In general, the SOC of the battery is reduced by the amplitude of the charging power, and conversely, when the SOC is low, the amplitude of the force tends to decrease. Fig. 36 is a view showing the charging rate SOC and ? power constituting the 2-1-1, 2-1-2, ..., 2-1-m of Fig. 35; The power storage devices 2-1-1, 2-1-2, ..., 2-1-m SOC are controlled in such a manner that the charging rate is controlled to be different in the case of holding the characteristics as shown in Fig. 36. , can increase the range of the charge. The effects will be described with reference to Figs. 37(a) and 37(b). In the present embodiment, the power storage system 2 is hereinafter referred to as 値. Use Nature 36 to illustrate 30. In the figure, the electric power rate S0C of the same power storage system is assumed to be "charge and discharge in the case of the pool; when the battery is high, the storage device of the cocoa discharge electric charge" can be charged and discharged, the charging rate is 丨, each of the electric storage devices, and the electric discharge device is discharged. The storage capacity of -37- 201031822 is composed of 2-1-1, 2-1-2.....2-1-10. The capacity of each power storage device is rated at 600 [kWh]. Fig. 37(a) shows a case where all of the SOC of the power storage device is controlled to the same 値 (= 40%). In this case, the relationship between the SOC of each power storage device and the chargeable/dischargeable power (Fig. 36), The chargeable electric power of the entire power storage system is 40%, and the dischargeable electric power is 40%. On the other hand, Fig. 37(b) shows a case where the SOC of the power storage device is changed depending on each power storage device. Specifically, In the six power storage devices of the power storage devices 2-1-1 to 2-1-6, the SOC_ is controlled to 60%, and the remaining four are controlled within the SOC 10%. The power storage system 2 is accumulated in the entire The amount of energy ' is 2400 [kWh], which is the same as the case of unified SOC. In this case, the total chargeable power in the power storage system is 40%, but the dischargeable power The expansion of the power storage system 2 increases the range that can be changed by the charge and discharge operation of the power storage system 2. As shown in Fig. 35, the upper controller 3d maintains the average of the power storage system 2. The SOC is a certain condition, or the energy storage is a constant condition, and the chargeable and dischargeable power of the entire power storage system 2 is determined to be the maximum, and each battery is determined to be 2-1-1.....2 By the effect of the present embodiment, the range of the chargeable/dischargeable electric power of the electric storage system 2 is expanded, and the range of fluctuation and relaxation is expanded by the charge and discharge operation. Therefore, in order to reduce the fluctuation, it is possible to reduce the SOC target. The capacity of the power storage system 2, which is necessary for the wind power generation system, is easily introduced into the battery-mounted wind power generation system through the capacity reduction of the power storage system, and is related to the effective use of natural energy -38- 201031822. [Advantages] The present invention can be applied to another power generation system in which fluctuations in output power are large, in addition to the alternative to the wind power generation device group. Specifically, The generation of the wind power generation device group can be applied to a solar power generation system, a wave power generation system, or a power generation φ system in which these are combined. [Schematic Description] FIG. 1 shows a first embodiment of the present invention. Fig. 2 is a view showing an example of a wind power generator according to a first embodiment of the present invention. Fig. 3 is a view showing an example of Φ of the wind power generator according to the first embodiment of the present invention. Fig. 4 is a view showing an example of a wind power generator according to a first embodiment of the present invention. Fig. 5 is a view showing an example of the wind power generator of the first embodiment of the present invention. Fig. 6 is a view showing an example of a power storage device according to a first embodiment of the present invention. Fig. 7 is a view showing the output power of the wind power generation system of the first embodiment of the present invention. -39- 201031822 Figure 8 is a diagram showing the control system of the upper controller of the first embodiment of the present invention. Fig. 9 is a view showing a charging rate target forming means according to the first embodiment of the present invention. Fig. 10 is a view showing the maximum 値·minimum 演 calculation means of the first embodiment of the present invention. Fig. 11 is a view showing a charging/discharging electric power command generating means according to the first embodiment of the present invention. @ Figure 12 is a view showing a charging rate management means of the first embodiment of the present invention. Fig. 13 is a view showing a means for forming a power limit command according to the first embodiment of the present invention. Fig. 14 is a view showing the charging power calculation means of the first embodiment of the present invention. Fig. 15 is a view showing an operation example of the wind power generation system of the first embodiment of the present invention. Fig. 16 is a view showing an operation example of the wind power generation system of the first embodiment of the present invention. Fig. 17 is a view showing the effect of the present invention in the first embodiment of the present invention. Fig. 18 is a view showing a charging/discharging electric power command generating means according to a second embodiment of the present invention. Fig. 19 is a view showing a means for forming a power limit command according to a second embodiment of the present invention. -40- 201031822 Fig. 20(a) is a view showing an operation example of the wind power generation system in the case where the upper limit of the system is not set in the second embodiment of the present invention. Fig. 20 (b) is a view showing an operation example of the wind power generation system in the case where the upper limit of the system has been set in the second embodiment of the present invention. Fig. 21 is a view showing the configuration of a wind power generation system according to a third embodiment of the present invention. Fig. 22 is a view showing the charging rate target φ forming means of the third embodiment of the present invention. Fig. 23 is a view showing a charging/discharging electric power command generating means according to a third embodiment of the present invention. Fig. 24 is a view showing a means for forming a power limit command according to a third embodiment of the present invention. Fig. 25 is a view showing the output power upper limit 演 calculation means of the third embodiment of the present invention. Fig. 26 (a) is a diagram showing an operation example of the case where the wind power generation system of the third embodiment of the present invention does not use the power generation electric power prediction. Fig. 26 (b) is a diagram showing an operation example of the case where the power generation electric power prediction system of the third embodiment of the present invention has been used. Fig. 27 (a) is a diagram showing an operation example of a case where the power generation electric power prediction system is not used in the wind power generation system according to the third embodiment of the present invention. Fig. 27 (b) is a diagram showing an operation example of the case where the power generation electric power prediction system of the third embodiment of the present invention is used. Fig. 28 is a view showing a charging/discharging electric power command generating means according to a fourth embodiment of the present invention. -41 - 201031822 Fig. 29 is a view showing an operation example of the wind power generation system of the fourth embodiment of the present invention. Fig. 30 is a view showing a charging/discharging electric power command generating means according to a fifth embodiment of the present invention. Fig. 31 is a view showing a means for forming a power limit command according to a fifth embodiment of the present invention. Fig. 3 is a view showing a means for forming a power limit command according to a fifth embodiment of the present invention. @ Figure 33 is a view showing the relationship between the energy storage and the power limitation command of the fifth embodiment of the present invention. Fig. 34 (a) is a view showing the control operation of the first embodiment of the embodiment of the present invention. Fig. 34 (b) is a view showing the control operation of the fifth embodiment of the embodiment of the present invention. Fig. 35 is a view showing the configuration of a wind power generation system according to a sixth embodiment of the present invention. Fig. 36 is a view showing a possible range of charge and discharge of the electrical storage device of the sixth embodiment of the present invention. Fig. 37 (a) is a view showing a conventional charging rate control of a sixth embodiment of the present invention. Fig. 37 (b) is a view showing the charge rate control of the sixth embodiment of the present invention. [Explanation of main component symbols] -42- 201031822 1 : Wind power generation unit group

1-1 : SCADA 1-1-1、1-1-2.....l-1-n:風力發電裝置 1-1-1-1、l-1-la-l、l-1-lb-l、1 -1 - 1c-1 :葉片 1-1-1-2、l-l-la-2、l-l-lb-2、l-1-lc-:風速計 1-1-1-3、 l-l-la-3、 l-l-lb-3、 l-1-lc-:變速齒輪 1-1-1-4 :直流激磁式同步發電機 Φ l-l-la-4 :交流激磁式同步發電機 l-l-lb-4:永磁式發電機或是感應發電機 l-l-lc-4 :感應發電機 1-1-1-5 、 1-1-1-6 、 l-l-la-6 、 l-l-lb-6 、 2-1-1-2 :電 力變換器 1- 1-1-7、l-l-la-7、l-l-lb-7、l-l-lc-7:互連變壓器 卜1-1-8、l-l-la-8、l-l-lb-8、1 -1 -1c-8、2-1-1-4 : 斷路器 # 1-1-1-9:激磁裝置 2 :蓄電系統 2- 1-1、2-1-2.....2-2-m:蓄電裝置 2 -1 -1 -1 :二次電池 2- 1-1-3、4 :互連變壓器 3、3 a、3 b、3 d :上位控制器 3- 1 : SOC目標値演算部 3b-l-l : SOC目標値演算部 3 b-1-2 :電力預測値變動率演算部 -43- 201031822 3b-l-3 :切換器 3-2 :最大値•最小値演算部 3-3、 3a-3、 3b-3、 3c-3、 3d-3:充放電電力指令演算 部 3-3-1: SOC管理控制部 3-3-1-1、3-3-1-2.....3-3-1-m:充放電電力指令演 算部 3-3-2、3-3-3、3a-3-3、3d-3-3:限制器 3b-3-4、3d-3-4 :輸出電力上限指令演算部 3d-3-4-l :儲能演算部 3b-3-4-2:輸出電力上限指令選擇部 3-3C-5 : —次延遲演算部 3-4、3a-4、3b-4、3d-4 :電力限制指令演算部 3-4-1 :可充電電力演算部 3a-4-2、3b-4-2、3d-4-2 :最小値選擇演算部 3b-4-3、3d-4-3 :輸出電力上限指令演算部 3-4-1-1、3-4-1-2、…、3-4-1-m:可充電電力演算部 3-5 :充放電電力指令分配部 5 :電力系統 6 :電力計 7 :電力系 8 :訊號線 9 :發電電力預測業者1-1 : SCADA 1-1-1, 1-1-2.....l-1-n: wind power generators 1-1-1, l-1-la-l, l-1- Lb-l, 1 -1 - 1c-1: blades 1-1-1-2, ll-la-2, ll-lb-2, l-1-lc-: anemometer 1-1-1-3, Ll-la-3, ll-lb-3, l-1-lc-: shifting gear 1-1-1-4: DC-excited synchronous generator Φ ll-la-4 : AC-excited synchronous generator ll- Lb-4: permanent magnet generator or induction generator ll-lc-4: induction generators 1-1-1-5, 1-1-1-6, ll-la-6, ll-lb-6 2-1-1-2 : Power converter 1-1-1-7, ll-la-7, ll-lb-7, ll-lc-7: interconnection transformer 1-1-8, ll- La-8, ll-lb-8, 1 -1 -1c-8, 2-1-1-4 : Circuit breaker # 1-1-1-9: Excitation device 2 : Power storage system 2- 1-1, 2 -1-2.....2-2-m: Power storage device 2 -1 -1 -1 : Secondary battery 2 - 1-1-3, 4 : Interconnecting transformer 3, 3 a, 3 b, 3 d : upper controller 3- 1 : SOC target 値 calculation unit 3b-ll : SOC target 値 calculation unit 3 b-1-2 : power prediction 値 variation rate calculation unit -43- 201031822 3b-l-3 : switch 3 -2 : Maximum 値 • Minimum 値 Calculation Unit 3-3, 3a-3, 3b-3, 3c-3, 3d-3: Charge and Discharge Power Command Calculation Unit 3-3-1: SOC Management Department 3-3-1-1, 3-3-1-2.....3-3-1-m: charge/discharge power command calculation unit 3-3-2, 3-3-3, 3a- 3-3, 3d-3-3: Limiter 3b-3-4, 3d-3-4: Output power upper limit command calculation unit 3d-3-4-l: Energy storage calculation unit 3b-3-4-2: Output power upper limit command selection unit 3-3C-5: - Secondary delay calculation unit 3-4, 3a-4, 3b-4, 3d-4: Power limitation command calculation unit 3-4-1: Chargeable power calculation unit 3a -4-2, 3b-4-2, 3d-4-2: Minimum 値 Selection Calculation Unit 3b-4-3, 3d-4-3: Output Power Upper Limit Command Calculation Unit 3-4-1-1, 3- 4-1-2, ..., 3-4-1-m: Charging Power Calculation Unit 3-5: Charging and Discharging Power Command Assignment Unit 5: Power System 6: Power Meter 7: Power System 8: Signal Line 9: Power Generation Power forecaster

-44--44-

Claims (1)

201031822 七、申請專利範面: 1. 一種風力發電系統,係具有由1台以上的風力發 電裝置所構成之風力發電裝置群,以及由1台以上的蓄電 裝置所構成之蓄電系統;其特徵在於: 前述風力發電系統係具備有:紀錄前述風力發電裝置 群的發電電力與前述蓄電系統的充放電電力量之和的輸出 電力之輸出電力記錄手段,和 〇 檢測前述風力發電裝置群的發電電力之發電電力檢測 部; 把從過去至現在爲止的特定期間當作第一期間,把從 現在至未來爲止之另外的特定期間當作第二期間; 具備有:使用被紀錄在前述輸出電力記錄手段之前述 第一期間的前述輸出電力的資訊以及現在的前述發電電力 檢測部的檢測値之資訊,來演算前述第二期間的前述蓄電 池系統的充放電電力指令之充放電電力指令演算手段,和 ® 讓前述蓄電系統依照前述充放電電力指令來控制充放 電電力之充放電電力控制手段。 2. 如申請專利範圍第1項所記載之風力發電系統, 其中: 前述風力發電系統,係具備有:求得前述第一期間之 前述輸出電力的最大値與最小値之手段,和 由前述最大値與前述最小値求得前述第二期間之前述 輸出電力的輸出範圍之手段,和 於前述第二期間,在前述風力發電裝置群的發電電力 -45- 201031822 逸脫出前述輸出範圍的情況下,由從前述輸出範圍所逸脫 出的電力來演算前述蓄電系統的前述充放電電力指令之手 段。 3·如申請專利範圍第2項所記載之風力發電系統, 其中: 前述風力發電系統,係具備有:演算前述蓄電系統的 充電率之充電率目標範圍的手段,和 在前述風力發電裝置群的發電電力是否逸脫出前述輸 0 出範圍的情況、或者是前述蓄電系統的前述充電率逸脫出 前述充電率目標範圍的情況下,讓前述蓄電系統充放電之 手段。 4.如申請專利範圍第2項所記載之風力發電系統, 其中: 前述風力發電系統,係具備有:演算對前述風力發電 裝置群的發電電力施以一次延遲演算之第一値的手段,和 在前述第一値在前述輸出範圍之中的情況,以把前述 d 風力發電系統的輸出電力追蹤跟從到前述第一値的方式, 來進行前述蓄電系統的充放電電力之手段,和 在前述第一値逸脫出前述輸出範圍的情況,以把前述 風力發電系統的輸出電力追蹤跟從到前述輸出範圍的上限 或是下限的方式,來作成前述蓄電系統的充放電指令之手 段。 5 ·如申請專利範圍第3項或第4項所記載之風力發 電系統,其中: -46- 201031822 具備有針對前述蓄電系統的前述充電率目標範圍,是 由前述風力發電裝置群的發電電力來決定之手段。 6. 如申請專利範圍第1項或第2項所記載之風力發 電系統,其中·· 前述第一期間爲20分鐘以下之一定値,前述第二期 間爲1分鐘以下之一定値。 7. 如申請專利範圍第2項所記載之風力發電系統, # 其中: 前述輸出範圍的上限値,爲把第一特定値加運算到前 述最小値之値;前述輸出範圍的下限値,爲把前述第一特 定値從前述最大値減運算掉之値;前述第一特定値係以與 前述風力發電系統的輸出電力的容許變動幅度相關連來做 設定之一定値。 8. 如申請專利範圍第1項或第2項所記載之風力發 電系統,其中: ® 前述風力發電系統,係具備有:接收預測前述風力發 電裝置群之未來的發電電力之發電電力預測値的手段,和 因應前述發電電力預測値來調節前述充電率目標範圍 之手段。 9. 如申請專利範圍第1項或第2項所記載之風力發 電系統,其中: 前述風力發電系統,係具備有作成前述風力發電裝置 群的電力限制指令之手段; 前述風力發電裝置群,係具備有把發電電力限制到前 -47- 201031822 述電力限制指令以下之發電限制手段。 10. 如申請專利範圍第1項所記載之風力發電系統, 其中: 前述風力發電系統,係具備有作成前述風力發電裝置 群的電力限制指令之手段,和 求得前述第一期間之前述輸出電力的最小値之手段, 和 演算前述蓄電系統的可充電電力之手段; @ 前述風力發電裝置群,係具備有把前述風力發電裝置 群的發電電力限制到前述電力限制指令以下之手段; 作成前述電力限制指令之手段,係把以前述最小値與 前述可充電電力與前述風力發電系統的輸出電力的容許變 動幅度相關連來做設定的特定値的和,來作爲前述電力限 制指令。 11. 如申請專利範圍第1項所記載之風力發電系統, 其中: G 前述風力發電系統,係具備有演算前述風力發電裝置 群的電力限制指令之手段; 前述風力發電裝置群,係具備有把前述風力發電裝置 群的發電電力限制到前述電力限制指令以下之手段; 前述風力發電系統,係持有接收前述風力發電系統的 發電電力預測値之手段,和 因應前述發電電力預測値,使前述電力限制指令變化 之手段。 -48- 201031822 12.如申請專利範圍第ι〇項或第11 發電系統,其中: 前述風力發電系統,係具備有演算前 力上限指令之手段,和 利用前述蓄電系統的充電動作與前述 的電力限制指令,把前述輸出電力限制在 限指令以下之手段。 0 13 ·如申請專利範圍第1 2項所記載 ,其中: 前述輸出電力上限指令爲一定値,且 群的發電電力額定値以下,而且爲構成前 換器的額定容量以上。 1 4.如申請專利範圍第1 2項所記載 ,其中: 把前述輸出電力上限指令調節對應到 籲測値。 1 5 .如申請專利範圍第1 2項所記載 ,其中: 把前述輸出電力上限指令調節對應到 充電率、或者是前述蓄電系統的儲能。 項所記載之風力 述輸出電力的電 風力發電裝置群 前述輸出電力上 之風力發電系統 爲風力發電裝置 述蓄電系統之變 之風力發電系統 前述發電電力預 之風力發電系統 前述蓄電系統的 -49-201031822 VII. Application for a patent model: 1. A wind power generation system comprising a wind power generation device group comprising one or more wind power generation devices, and a power storage system comprising one or more power storage devices; The wind power generation system includes an output power recording means for recording output power of a sum of a power generation electric power of the wind power generation device group and a charge/discharge power amount of the power storage system, and detecting a power generation power of the wind power generation device group. a generated power detecting unit; the specific period from the past to the present is regarded as the first period, and the other specific period from now to the future is regarded as the second period; and the use is recorded in the output power recording means The information on the output power of the first period and the information of the detection of the generated power detection unit to calculate the charge/discharge power command calculation means of the charge and discharge power command of the battery system in the second period, and The foregoing power storage system is in accordance with the aforementioned charging and discharging power command Charge-discharge electric power system of the charge-discharge power control means. 2. The wind power generation system according to claim 1, wherein: the wind power generation system includes means for obtaining a maximum 値 and a minimum 前述 of the output power in the first period, and And the means for obtaining the output range of the output power of the second period in the foregoing minimum period, and in the case of the second period, in the case where the power generation power of the wind power generation device group -45-201031822 escapes the output range The means for calculating the charge/discharge power command of the power storage system by the electric power that escapes from the output range. 3. The wind power generation system according to the second aspect of the invention, wherein: the wind power generation system includes means for calculating a charging rate target range of a charging rate of the power storage system, and the wind power generation device group Whether the generated electric power escapes from the above-described range of the output, or when the charging rate of the electric storage system escapes the target range of the charging rate, the electric storage system is charged and discharged. 4. The wind power generation system according to the second aspect of the invention, wherein: the wind power generation system includes: means for calculating a first time of performing a one-time delay calculation on the generated electric power of the wind power generation device group, and In the case where the first 値 is in the output range, the means for performing the charging and discharging power of the power storage system by following the output power tracking of the d wind power generation system to the first ,, and In the case where the output range is removed, the charge/discharge command of the power storage system is created by following the output power tracking of the wind power generation system to the upper limit or the lower limit of the output range. 5. The wind power generation system according to the third or fourth aspect of the patent application, wherein: -46-201031822 includes the aforementioned charging rate target range for the power storage system, which is generated by the wind power generation group The means of decision. 6. The wind power generation system according to the first or second aspect of the patent application, wherein the first period is a predetermined value of 20 minutes or less, and the second period is a predetermined value of 1 minute or less. 7. The wind power generation system as recited in claim 2, wherein: the upper limit of the output range 为 is to add the first specific 値 to the minimum 値; the lower limit 前述 of the output range is The first specific enthalpy is calculated from the maximum enthalpy subtraction; the first specific enthalpy is set to be constant in association with the allowable fluctuation range of the output power of the wind power generation system. 8. The wind power generation system according to the first or second aspect of the invention, wherein: the wind power generation system includes: a power generation power prediction that predicts a future generation power of the wind power generation device group; Means, and means for adjusting the aforementioned charging rate target range in response to the aforementioned power generation electric power prediction. 9. The wind power generation system according to claim 1 or 2, wherein: the wind power generation system includes means for creating a power limitation command for the wind power generation device group; and the wind power generation device group It has a power generation restriction means that limits the power generation to the power limit command of the previous -47-201031822. 10. The wind power generation system according to claim 1, wherein: the wind power generation system includes means for creating a power limitation command for the wind power generation device group, and obtaining the output power of the first period And the means for calculating the chargeable power of the power storage system; the wind power generation device group is provided with means for limiting the generated power of the wind power generation device group to less than the power limit command; The means for restricting the command is to use the sum of the minimum 値 and the allowable variability of the chargeable power and the allowable fluctuation range of the output power of the wind power generation system as the power limit command. 11. The wind power generation system according to claim 1, wherein: the wind power generation system includes means for calculating a power limit command of the wind power generation device group; and the wind power generation device group is provided with The power generation power of the wind power generation device group is limited to a power failure command or less; the wind power generation system is configured to hold a power generation power prediction parameter of the wind power generation system, and to generate the power according to the power generation power prediction parameter A means of limiting the change of instructions. -48- 201031822 12. For the application of the patent scope or the eleventh power generation system, wherein: the wind power generation system is provided with means for calculating a pre-calculation upper limit command, and charging operation using the foregoing power storage system and the aforementioned electric power Limit the instruction to limit the aforementioned output power to the limit command. 0 13 • As described in item 12 of the patent application, wherein: the output power upper limit command is constant, and the group's generated power is rated below , and is equal to or greater than the rated capacity of the front-end converter. 1 4. As described in item 12 of the patent application, wherein: the aforementioned output power upper limit command is adjusted to correspond to the test. In the case of claim 12, wherein the output power upper limit command is adjusted to correspond to the charging rate or the energy storage of the power storage system. The wind power generation system described in the item is an electric wind power generation device group that outputs electric power. The wind power generation system on the output electric power is a wind power generation system. The wind power generation system that changes the electric storage system. The wind power generation system that generates the electric power is the same as the electric power storage system.
TW098105443A 2009-02-20 2009-02-20 Incorporated electric power storage system type wind power generation system TW201031822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098105443A TW201031822A (en) 2009-02-20 2009-02-20 Incorporated electric power storage system type wind power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098105443A TW201031822A (en) 2009-02-20 2009-02-20 Incorporated electric power storage system type wind power generation system

Publications (2)

Publication Number Publication Date
TW201031822A true TW201031822A (en) 2010-09-01
TWI369445B TWI369445B (en) 2012-08-01

Family

ID=44854649

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098105443A TW201031822A (en) 2009-02-20 2009-02-20 Incorporated electric power storage system type wind power generation system

Country Status (1)

Country Link
TW (1) TW201031822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418119B (en) * 2010-10-01 2013-12-01 Univ Nat Sun Yat Sen Wind generation system with pmsg using intelligent maximum power tracking controller
TWI570324B (en) * 2012-03-20 2017-02-11 渥班資產公司 Method for configuring a wind power generation facility and wind power generation facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418119B (en) * 2010-10-01 2013-12-01 Univ Nat Sun Yat Sen Wind generation system with pmsg using intelligent maximum power tracking controller
TWI570324B (en) * 2012-03-20 2017-02-11 渥班資產公司 Method for configuring a wind power generation facility and wind power generation facility

Also Published As

Publication number Publication date
TWI369445B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5055407B2 (en) Control method of power generation system using renewable energy
JP5526079B2 (en) Wind power generation system and method for adding wind power generator in wind power generation system
Jiang et al. A battery energy storage system dual-layer control strategy for mitigating wind farm fluctuations
KR101183751B1 (en) Power storage device of power generation system and operation method thereof
JP4759587B2 (en) Wind farm
JP4992134B2 (en) Control method and apparatus of photovoltaic power generation system
CN103023066A (en) Optimal configuration method suitable for energy storage power of electrical power system with wind electricity
KR101168971B1 (en) Wind power generation system with power storage system
Nguyen et al. Power management approach to minimize battery capacity in wind energy conversion systems
KR20160028341A (en) Power assist system
EP2230403B1 (en) Wind power generation system of a type provided with power storage system
JP5576826B2 (en) Wind power generator group control system and control method
US20130144450A1 (en) Generator system
Karmiris et al. Control method evaluation for battery energy storage system utilized in renewable smoothing
Canevese et al. Impact of fast primary regulation and synthetic inertia on grid frequency control
JP2014140281A (en) Control device, method, and program, and natural energy power generation device comprising the same
JP2013219941A (en) Control method and control device of power generation system using renewable energy
WO2011093419A1 (en) Power supply method, computer-readable recording medium, and power generation system
WO2019193837A1 (en) Power generating system and its control method
JP5738219B2 (en) Output smoothing device, output smoothing method, and program
Amin et al. Frequency response of synchronous generators and battery energy storage systems: A comparative study
KR101155539B1 (en) Method for controlling power generation system using renewable energy
TW201031822A (en) Incorporated electric power storage system type wind power generation system
Budh et al. Smoothing control for BESS based hybrid renewable energy system
Bhuiyan et al. Modeling, simulation, and performance analysis of power management strategies for an islanded microgrid

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees