[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201027830A - Li-ni composite oxide particle powder for non-aqueous electrolyte secondary battery and method for production thereof, and non-aqueous electrolyte secondary battery - Google Patents

Li-ni composite oxide particle powder for non-aqueous electrolyte secondary battery and method for production thereof, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
TW201027830A
TW201027830A TW098130544A TW98130544A TW201027830A TW 201027830 A TW201027830 A TW 201027830A TW 098130544 A TW098130544 A TW 098130544A TW 98130544 A TW98130544 A TW 98130544A TW 201027830 A TW201027830 A TW 201027830A
Authority
TW
Taiwan
Prior art keywords
composite oxide
particles
core
particle powder
storage
Prior art date
Application number
TW098130544A
Other languages
Chinese (zh)
Other versions
TWI502793B (en
Inventor
Kazuhiko Kikuya
Teruaki Santoki
Hideaki Sadamura
Kenji Ogisu
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Publication of TW201027830A publication Critical patent/TW201027830A/en
Application granted granted Critical
Publication of TWI502793B publication Critical patent/TWI502793B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Disclosed is a high-capacity lithium nickelate having excellent thermal stability during charging and excellent stability at high temperatures. Specifically disclosed is a Li-Ni composite oxide particle powder for a non-aqueous electrolyte secondary battery, which is characterized in that a secondary particle of a Li-Ni-Mn composite oxide (which serves as a core) has a composition represented by the formula: Lix1Ni1-y1-z1-w1Coy1Mnz1M1w1O2-vKv, the particle surface of the secondary particle is coated with a Li-Ni composite oxide having a composition represented by the formula: Lix2Ni1-y2-z2Coy2M2z2O2 [wherein x2, y2 and z2 meet the requirements represented by the formulae: 0.98=x2=1.05, 0.15=y2=0.2 and 0=z2=0.05; and M2 represents at least one metal selected from Al, Mg, Zr and Ti] or the Li-Ni composite oxide is present in the vicinity of the surface of the secondary particle in such a manner that the average particle diameter of the composite particle is larger by 1.1 times or more than that of the secondary particle (which serves as a core), and the weight percentage of the particles that coat the core particles or the weight percentage of the particles present in the vicinity of the surfaces of the core particles is 10 to 50% inclusive relative to the weight of the core particles.

Description

201027830 六、發明說明: 【發明所屬之技術領域】 本發明係提供一種在充電時熱安定性及高溫安定性均 優良之高容量之Li-Ni複合氧化物粒子粉末。 【先前技術】 近年來,AV機器或電腦等之電子機器正朝向可攜帶 φ 化、無電線化在急速地進展中,此等之驅動用電源係高度 要求爲小型、輕量且具有高能量密度之蓄電池。此外,近 年來基於對地球環境之考量,電動汽車、油電混合車正進 - 行開發並已實用化,從而對於在大型用途上其保存特性優 , 良之鋰離子蓄電池之要求越來越高。而在此種狀況下,該 具有充放電容量大,且保存特性佳之優點的鋰離子蓄電池 ,則最受矚目。 傳統上,在具有4V級電壓之高能量型之鋰離子蓄電 ® 池上有用之正極活性物質,一般而言,已知有尖晶石型構 造之LiMn204、曲折層狀構造之LiMn02、層狀岩鹽型構 造之LiCo02、LiNi02等,其中,又以使用LiNi02之鋰離 子蓄電池,其係具有高度之充放電容量之電池而受到注目 。然而,此種材料,由於其充電時之熱安定性及充放電循 環耐久性差之緣故,仍被要求須進一步改善其特性。 亦即’ LiNi〇2在將鋰去除時,Ni3 +會變成Ni4 +而產生 楊-泰勒畸變’在將Li去除0.45之區域內會由六方晶變成 單斜晶’進一步去除時,則會由單斜晶變成六方晶之結晶 -5- 201027830 構造。因此,藉由重複充放電反應,結晶構造會變得不安 定,循環特性變差,再因爲與氧氣釋放之電解液的反應等 產生,從而電池之熱安定性及保存特性變差者,即爲其特 徵所在。爲解決此課題起見,有在LiNi02之Ni之一部中 進行添加Co及A1之材料之硏究,惟尙未得到可解決此等 課題之材料,因此仍在追求結晶性更高之Li-Ni複合氧化 物。 此外,在Li-Ni複合氧化物之製造方法中,爲得到高 _ 塡充性且結晶構造安定之Li-Ni複合氧化物,必須使用物 性、結晶性及雜質量均受控制之Ni複合氫氧化物粒子, 再以未發生Ni2 +混入於Li位置爲條件而進行燒成。 - 亦即,非水電解質蓄電池用之正極活性物質,係要求 _ 爲高塡充性且結晶構造安定,又在充電狀態下具有優良熱 安定性之Li-Ni複合氧化物。 傳統上,爲改善結晶構造之安定化、充放電循環特性 等各種特性起見,對於LiNi02粉末進行了各種之改良。 @ 舉例而言,有在LiNiA102表面上被覆Li-Ni-Co-Mn複合氧 化物,以改良循環特性及熱安定性之技術(專利文獻1);有 材料之種類不同,惟將Li-Co複合氧化物與Li-Ni-Co-Mn複 合氧化物加以混合,以改善Li-€o複合氧化物之充放電循 環特性及熱安定性之技術(專利文獻2);有在Li-C〇複合 氧化物上藉由使碳酸鋰、Ni(OH)2、Co(OH)2、碳酸錳產生 懸浮,或將Li-Ni-Co-Mn複合氧化物以機械處理進行被覆 ,從而改善Li-C〇複合氧化物之充放電循環特性及高溫特 -6- 201027830 性之技術(專利文獻3及專利文獻4);有將Li-Co複合氧 化物、Li-Ni複合氧化物、Li-Mn複合氧化物以蕊粒子及 被覆粒子而形成複合化粒子,以達成高塡充性、高能量密 度之技術(專利文獻5);有藉由將Li-C〇複合氧化物之表 面以Li-Ni複合氧化物加以被覆,以抑制Co在電解液之 溶離之技術(專利文獻6)等。 先行技術文獻 〇 專利文獻1:特開20 04-127694號公報 專利文獻2:特開2005-317499號公報 專利文獻3:特開2006-331943號公報 專利文獻4:特開2007-48711號公報 • 專利文獻5:特開平9-35715號公報 專利文獻6:特開2000-195517號公報 【發明內容】 ® 發明之揭示 發明所欲解決之課題 關於非水電解質蓄電池用之正極活性物質,現在最需 要者爲:能兼顧改善了充電時之熱安定性以及高容量化及 高溫安定性之Li-Ni複合氧化物’惟尙未獲得能滿足完全 充分要求之材料。 解決課題之手段 亦即’本發明者們,爲達成上述目的,將具有正極及 201027830 能將鋰金颶或鋰離子吸收釋放之材料所成之負極的非水電 解質蓄電池中,前述正極之活性物質’係非水電解質蓄電 池用Li-Ni複合氧化物粒子粉末,其特徵爲在作爲核之二 次粒子之組成係 LinNh.y 丨-zl-wlCoylMnzlMlwl02-vKv(l < xlgl.3,OSylSO.33,0.2SzlS0.33,0Swl<0.1,〇$ v S 0.05,Ml係選自A1、Mg之至少一種之金屬以及K係 選自F·、Ρ〇43·之至少一種陰離子)之Li-Ni-Mn複合氧化物 中,於該二次粒子之粒子表面或表面附近,其係以組成爲 @ Lix2Nii.y2-Z2Coy2M2z2〇2(0.98 ^ x2 ^ 1.05 > 0.15^ y2 ^ 0.2 ,0Sz2S0_05,M2 係選自 Al、Mg、Zr、Ti 之至少一種 金屬)之Li-Ni複合氧化物加以被覆或使之存在之非水電解 質蓄電池用Li-Ni複合氧化物粒子粉末;該非水電解質蓄 . 電池用Li-Ni複合氧化物粒子粉末之複合粒子之平均粒子 徑係作爲核之二次粒子之平均粒子徑之1.1倍以上,且相 對於作爲核之粒子之被覆粒子或在表面附近所存在之Li-Ni 複合 氧化物 粒子之 重量百 分率係 10%以上 50%以下者 ( ® 本發明1 )。 此外,本發明係本發明1之非水電解質蓄電池用Li-Ni 複合氧化物粒子粉末,其中在將該Li-Ni複合氧化物作爲 正極活性物質而使用,且使用鋰金屬或可吸收釋放鋰離子 之材料所成負極,所成之非水電解質蓄電池中,於4.3 V 充電狀態下,保存1週後殘存之放電容量相對於保存前之 放電容量係95%以上者(本發明2)。 此外,本發明係本發明1之非水電解質蓄電池用Li-Ni -8- 201027830 複合氧化物粒子粉末,其中在將該Li-Ni複合氧化物作爲 正極活性物質而使用,且使用鋰金屬或可吸收釋放鋰離子 之材料所成負極,所成之非水電解質蓄電池中,於4.3 V 充電狀態下,60°C下保存1週後在電解液中之錳離子之溶 離量,將該Li-Ni複合氧化物改以作爲核之Li-Ni-Mn複合 氧化物,作爲正極活性物質使用之情況相比時,係80%以 下者(本發明3)。 φ 此外,本發明係本發明1之非水電解質蓄電池用Li-Ni[Technical Field] The present invention provides a high-capacity Li-Ni composite oxide particle powder which is excellent in thermal stability and high-temperature stability at the time of charging. [Prior Art] In recent years, electronic equipment such as AV equipment and computers are rapidly moving toward portable φ and non-wire, and such driving power supplies are required to be small, lightweight, and have high energy density. Battery. In addition, in recent years, based on the consideration of the global environment, electric vehicles and hybrid electric vehicles have been developed and put into practical use, so that the requirements for lithium ion batteries with superior storage characteristics for large-scale applications are becoming higher and higher. Under such circumstances, the lithium ion secondary battery having the advantages of large charge and discharge capacity and excellent storage characteristics is attracting the most attention. Conventionally, a positive electrode active material useful in a high-energy lithium ion storage battery cell having a voltage of 4 V is generally known as a spinel structure LiMn204, a zigzag layered LiMn02, and a layered rock salt type. LiCo02, LiNiO2, and the like are constructed, and a lithium ion secondary battery using LiNi02, which is a battery having a high charge and discharge capacity, has been attracting attention. However, such materials are still required to further improve their characteristics due to their thermal stability during charging and poor charge and discharge cycle durability. That is, when LiNi〇2 removes lithium, Ni3 + will become Ni4 + and the Young-Taylor distortion will be changed from hexagonal crystal to monoclinic crystal in the region where Li is removed by 0.45. The slant crystal becomes a crystal of hexagonal crystal-5- 201027830. Therefore, by repeating the charge and discharge reaction, the crystal structure becomes unstable, the cycle characteristics are deteriorated, and the reaction with the oxygen-releasing electrolyte or the like causes the thermal stability and storage characteristics of the battery to deteriorate. Its characteristics. In order to solve this problem, there is a study of adding Co and A1 materials to one part of Ni of NiNi02, but there is no material that can solve these problems, so Li-, which is more crystalline, is still being pursued. Ni composite oxide. Further, in the method for producing a Li-Ni composite oxide, in order to obtain a Li-Ni composite oxide having a high 塡 性 且 and a crystal structure, it is necessary to use a Ni-composite hydroxide which is controlled in physical properties, crystallinity, and impurity quality. The particles were fired on the condition that Ni 2 + was not mixed in the Li position. In other words, the positive electrode active material for a non-aqueous electrolyte battery is a Li-Ni composite oxide which is required to be highly entangled and has a stable crystal structure and excellent thermal stability in a charged state. Conventionally, various improvements have been made to the LiNi02 powder in order to improve various characteristics such as stability of the crystal structure and charge/discharge cycle characteristics. @ For example, Li-Ni-Co-Mn composite oxide is coated on the surface of LiNiA102 to improve cycle characteristics and thermal stability (Patent Document 1); Li-Co composite is available depending on the type of material A technique in which an oxide and a Li-Ni-Co-Mn composite oxide are mixed to improve charge-discharge cycle characteristics and thermal stability of a Li-Co composite oxide (Patent Document 2); there is a composite oxidation in Li-C〇 Improving Li-C 〇 composite by suspending lithium carbonate, Ni(OH) 2, Co(OH) 2, manganese carbonate, or coating Li-Ni-Co-Mn composite oxide by mechanical treatment The charge-discharge cycle characteristics of the oxide and the technique of the high-temperature special -6-201027830 (Patent Document 3 and Patent Document 4); the Li-Co composite oxide, the Li-Ni composite oxide, and the Li-Mn composite oxide are A technique in which a core particle and a particle are coated to form a composite particle to achieve high enthalpy and high energy density (Patent Document 5); and the surface of the Li-C lanthanum composite oxide is made of Li-Ni composite oxide A technique of coating to suppress dissolution of Co in an electrolytic solution (Patent Document 6). Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Problem to be Solved by the Invention] The present invention relates to a positive electrode active material for a nonaqueous electrolyte secondary battery, which is most needed now. For the Li-Ni composite oxide which improves the thermal stability during charging and the high capacity and high temperature stability, it is not possible to obtain a material that satisfies the full requirements. In order to achieve the above object, the inventors of the present invention have an active material of the positive electrode in a nonaqueous electrolyte secondary battery having a positive electrode and a negative electrode formed of a material capable of absorbing and releasing lithium metal lanthanum or lithium ions in 201027830. A Li-Ni composite oxide particle powder for a non-aqueous electrolyte battery, characterized in that it is a composition of secondary particles as a core, LinNh.y 丨-zl-wlCoylMnzlMlwl02-vKv(l <xlgl.3, OSylSO.33 , 0.2SzlS0.33, 0Swl < 0.1, 〇$ v S 0.05, Ml is a metal selected from at least one of A1 and Mg, and Li-Ni-selected from at least one anion of F·, Ρ〇 43·) In the Mn composite oxide, the composition is @ Lix2Nii.y2-Z2Coy2M2z2〇2 (0.98 ^ x2 ^ 1.05 > 0.15^ y2 ^ 0.2 , 0Sz2S0_05, M2) in the vicinity of the surface or surface of the particle of the secondary particle. Li-Ni composite oxide particle powder for non-aqueous electrolyte storage battery coated or otherwise present in a Li-Ni composite oxide of at least one metal of Al, Mg, Zr, Ti; the non-aqueous electrolyte storage battery Li-Ni Composite particle of Ni composite oxide particle powder The particle diameter is 1.1 times or more the average particle diameter of the secondary particles of the core, and the weight percentage of the Li-Ni composite oxide particles present in the coated particles as the core particles or in the vicinity of the surface is 10% or more. % or less ( ® invention 1). Further, the present invention is the Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention, wherein the Li-Ni composite oxide is used as a positive electrode active material, and lithium metal or absorbable lithium ion is used. In the non-aqueous electrolyte storage battery, the discharge capacity remaining after one week of storage in the charge state of 4.3 V is 95% or more with respect to the discharge capacity before storage (Invention 2). Further, the present invention is a Li-Ni-8-201027830 composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention, wherein the Li-Ni composite oxide is used as a positive electrode active material, and lithium metal or lithium metal is used. The amount of dissolved manganese ions in the electrolyte after storage for one week at 60 ° C in a non-aqueous electrolyte storage battery, which is a negative electrode formed by a material that releases lithium ions, is used to charge the Li-Ni. When the composite oxide is changed to a Li-Ni-Mn composite oxide as a core, it is 80% or less as compared with the case where it is used as a positive electrode active material (Invention 3). In addition, the present invention is a Li-Ni for a nonaqueous electrolyte secondary battery of the present invention.

複合氧化物粒子粉末,其中在將該Li-Ni複合氧化物作爲 正極活性物質而使用,且使用鋰金屬或可吸收釋放鋰離子 之材料所成負極,所成之非水電解質蓄電池中,於4.3 V . 至3.0 V之範圍內,其0.2 mA/cm2之充放電速度下之放電 容量,將該Li-Ni複合氧化物改以作爲核之Li-Ni-Mn複合 氧化物,作爲正極活性物質使用之情況相比時,係 3 mAh/g以上而升高者(本發明4)。 ® 此外,本發明係本發明1之非水電解質蓄電池用Li-Ni 複合氧化物粒子粉末,其中在將該Li-Ni複合氧化物作爲 正極活性物質而使用,且使用鋰金屬或可吸收釋放鋰離子 之材料所成負極,所成之非水電解質蓄電池中,以4.5 V 充電狀態之差示熱分析在200°C〜3 1(TC之範圍所示之產熱 最大峰部,相較於將該Li-Ni複合氧化物改以作爲核之 Li-Ni-Mn複合氧化物,作爲正極活性物質使用時,其溫度 之降低係3 2 °C以內者(本發明5)。 此外,本發明係本發明1〜5之任一者中之非水電解 -9 - 201027830 質蓄電池用Li-Ni複合氧化物粒子粉末之製造方法,於本 發明1〜5之任一者之Li-Ni複合氧化物粒子粉末之製造 方法中,其特徵係在作爲核之Li-Ni-Μη複合氧化物之二 次粒子之表面或表面附近,將Li-Ni複合氧化物藉由濕式 之化學性處理或乾式之機械性處理,或進一步在氧氣環境 ^ 下施加700°C以上熱處理,而使其被覆或存在者(本發明6) ' 〇 此外,本發明係本發明6之非水電解質蓄電池用Li-Ni φ 複合氧化物粒子粉末之製造方法,其中係將作爲核之粒子 於水中加以懸浮攪拌,再添加硫酸鎳、硫酸鈷混合液及鹼 性溶液,同時控制其p Η値在1 1 . 〇以上,於得到以N i - C 〇 . 複合氫氧化物將表面被覆之中間體後,藉由將Li化合物 * 及A1化合物混合而進行化學性處理,進一步在氧氣環境 下’以700°C以上施加熱處理者(本發明7)。 此外,本發明係本發明6之非水電解質蓄電池用Li-Ni 複合氧化物粒子粉末之製造方法,其中係添加硫酸鎳、硫 〇 酸鈷混合液及鹸性溶液,同時控制其pH値,使其生成 Ni-C〇複合氫氧化物,再將其磨碎使得所得到之Ni-C〇複 合氫氧化物之平均粒子徑在2μηι以下後,藉由作爲核粒子 · 之Li-Ni-Mn複合氧化物及高速攪拌混合機之機械化學反 ' 應使其存在於粒子表面,然後,藉由將Li化合物及A1化 合物合而進行乾式之機械性處理,進一步在氧氣環境下 ’以7〇〇°C以上施加熱處理者(本發明8)。 此外,本發明係一種非水電解質蓄電池,其特徵係使 -10- 201027830 用含有本發明1〜5之任一者中之非水電解質蓄電池用Li-Ni複合氧化物粒子粉末所成之正極活性物質的正極。 發明之效果 本發明之Li-Ni複合氧化物粒子粉末,其在負極使用 鋰金屬或可吸收釋放鋰離子之材料時,於4.3 V充電狀態 下,保存1週後之殘存放電容量相對於保存前之放電容量 〇 在95%以上,且保存1週後之電解液中之錳離子溶離量相 對於作爲核之 Li-Ni-Mn複合氧化物之錳離子溶離量在 8 0%以下之故,因此可提升鋰離子電池之高溫保存特性。 ' 此外,本發明之Li-Ni複合氧化物粒子粉末,在作爲 * 正極活性物質使用時,並將鋰金屬或可吸收釋放鋰離子之 材料所成者作爲負極而使用,所成之非水電解質蓄電池中 ,於4.3 V至3.0 V之範圍內,其以0.2 mA/cm2之充放電 速度所進行之放電容量,相較於將該Li-Ni複合氧化物改 ® 以作爲核之Li-Ni-Mn複合氧化物,作爲正極活性物質使 用而進行比較時,由於高達3 mAh/g以上之故,因此可提 升鋰離子電池之放電容量。 進一步,本發明之Li-Ni複合氧化物粒子粉末,在作 爲正極活性物質使用時,並將鋰金屬或可吸收釋放鋰離子 之材料所成者作爲負極而使用,所成之非水電解質蓄電池 中’以4.5 V充電狀態之差示熱分析在200°C〜3 10°C之範 圍所示之產熱最大峰部,相較於將該Li-Ni複合氧化物改 以作爲核之Li-Ni-Mn複合氧化物,作爲正極活性物質使 -11 - 201027830 用而進行比較時’其溫度之降低係32°C以內者,因此可維 持鋰離子電池之熱安定性。 進一步,本發明之Li-Ni複合氧化物粒子粉末,其藉 由在作爲核之Li-Ni-Mn複合氧化物之二次粒子之粒子表 面或表面附近,將Li-Ni複合氧化物以濕式之化學性處理 或乾式之機械性處理,或進一步施加熱處理,可繼續維持 充電時之安全性,而製造高溫保存特性及放電容量獲得提 升之Li-Ni複合氧化物粒子粉末。 因此,本發明之Li-Ni複合氧化物粒子粉末,其非常 適合作爲非水電解質蓄電池用之正極活性物質而使用。 【實施方式】 # 實施發明之最佳型態 以下茲詳細地說明本發明之構成。 首先,關於本發明之非水電解質蓄電池用Li-Ni複合 氧化物粒子粉末加以說明。 〇 本發明之非水電解質蓄電池用Li-Ni複合氧化物粒子 粉末,其係以具有特定組成之Li-Ni-Mn複合氧化物之二 次粒子作爲核,並在該二次粒子之粒子表面或粒子表面附 ^ 近,使具有特定組成之Li-Ni複合氧化物粒子產生被覆或 存在者。亦即,係將作爲核之二次粒子之表面全體被覆於 具有特定組成之Li-Ni複合氧化物粒子者,或在作爲核之 二次粒子之表面附近或粒子表面之一部上,使具有特定組 成之Li-Ni複合氧化物粒子存在或產生被覆者。 -12- 201027830 作爲核之 Li-Ni-Mn複合氧化物之組成,係以 LixiNii-yi-zi-wiC〇yi Μ π ζ 1 Μ lwi〇2-vKv(l χΐ ^ 1.3 ' 0 = y 1 ^ 0.33,0.2SzlS0.33,0Swl<0.1’ OgvSO.05,ΜΙ 係選 自 Al、Mg之至少一種之金屬以及Κ係選自F·、Ρ〇43·之 至少一種陰離子)爲較佳。 組成範圍如在前述範圍外時,其欲得到Li-Ni-Mn複 合氧化物之特徵之充電時熱安定性或高放電容量,就會變 # 得困難。 所被覆或存在之粒子粉末之組成,係以 (0.98S x2S 1.05,0.15S y2S 0.2,0$ Z2S 0.05,M2 係選 自Al、Mg、Zr、Ti之至少一種金屬)爲較佳。 . 組成範圍如在前述範圍外時,其欲得到高放電容量及 高溫安定性,就會變得困難。 此外,藉由F_、P043_之存在,由於作爲核之粒子在 充電時之熱安定性可以提高,因此Li-Ni複合氧化物粒子 ® 粉末在充電時之熱安定性就可以進一步獲得改善。K之組 成(v)如在前述範圍外時,Li-Ni複合氧化物之放電容量就 會降低。 在本發明中,相對於前述作爲核之二次粒子之被覆或 使其存在之Li-Ni複合氧化物,其重量百分率係滿足10% 以上50%以下者。 重量百分率如未達10%時,在高溫保存時電解液中之 錳會溶離,且在高溫保存特性變差時’高容量化還會變得 困難。另一方面,重量百分率如超過5〇 %時,將無法改善 -13- 201027830 其在4.5 V充電狀態下之熱安定性。 爲兼顧高溫保存特性及熱安定性之改善以及高容量化 起見,其係以重量百分率儘可能接近50%者爲較佳。使其 被覆或存在之量,係以20%以上50%以下爲較佳,並以 25%〜50 %爲最佳。 本發明之非水電解質蓄電池用Li-Ni複合氧化物粒子 粉末之平均粒子徑,相對於作爲核之Li-Ni-Mn複合氧化 物之平均粒子徑,係控制在1.1倍以上者。平均粒子徑之 參 比如未達1.1倍時,將無使Li-Ni複合氧化物被覆或附著 之效果。較佳之粒子徑比係1 · 2以上,最佳者則係1 .3〜 2.0。 此外,本發明之非水電解質蓄電池用Li-Ni複合氧化 . 物粒子粉末之平均粒子徑(以雷射繞射·散射法進行測定), 係以3〜20μιη爲較佳。平均粒子徑如在3μιη以下時,在 將Li-Ni複合氧化物作成電極漿料時之分散性會變差。如 超過20μιη時,由於電極之厚度變厚,速率特性變差,從 參 而放電容量會降低。 以下所記載之實施型態,係使用本發明之非水電解質 蓄電池用Li-Ni複合氧化物粒子粉末作爲正極活性物質而 使用,且將鋰金屬或可吸收釋放鋰離子之材料所成者作爲 負極而使用,所成之非水電解質蓄電池中之態樣。 本發明之非水電解質蓄電池用Li-Ni複合氧化物粒子 粉末,在負極上將鋰金屬或可吸收釋放鋰離子之材料所成 者作爲負極而使用時,於4.3 V充電狀態下,其保存1週 -14- 201027830 後之殘存放電容量係以相對於保存前之放電容量能維持在 95%以上者爲較佳,並以接近於100%者爲最佳。 本發明之非水電解質蓄電池用Li-Ni複合氧化物粒子 粉末,在負極上將鋰金屬或可吸收釋放鋰離子之材料所成 者作爲負極而使用時,於4.3 V充電狀態下,其60°C下保存 1週後在電解液中之錳離子之溶離量,相較於將該Li_Ni 複合氧化物改以作爲核之Li-Ni-Mn複合氧化物’作爲正 〇 極活性物質使用而進行比較時,係以80%以下者爲較佳。 锰離子之溶離量如超過80%時,蓄電池之高溫保存時之殘 存放電容量會降低。更佳之錳離子之溶離量係75%以下, 最佳者則以接近於〇%附近者爲理想。 . 本發明之非水電解質蓄電池用Li-Ni複合氧化物粒子 粉末,在負極上將鋰金屬或可吸收釋放鋰離子之材料所成 者作爲負極而使用時,於4.3 V至3.0 V之範圍內,其0.2 mA/cm2之充放電速度下之放電容量,相較於將該Li-Ni複 ® 合氧化物改以作爲核之Li-Ni-Mn複合氧化物,作爲正極 活性物質使用而進行比較時,係3 mAh/g以上而升高者爲 較佳,並以5 mAh/g爲更佳,且以越高可能者爲最佳。 本發明之非水電解質蓄電池用Li-Ni複合氧化物粒子 粉末,在負極上將鋰金屬或可吸收釋放鋰離子之材料所成 者作爲負極而使用時,相對於在表面附近所被覆或存在之 Li-Ni複合氧化物,其以4.5 V充電狀態之差示熱分析在 200 °C〜310 °C之範圍所示之產熱最大峰部,相較於將該 Li-Ni複合氧化物改以作爲核之Li-Ni-Mn複合氧化物,作 -15- 201027830 爲正極活性物質使用而進行比較時’其溫度之降低係32 °C 以內者爲較佳,更佳者爲20°C以內’最佳者則爲無降低者 〇 在本發明中所謂之表面附近,係指將粒子假定爲球狀 且將粒子徑作成直徑時,由表面起算至相當於半徑(粒子 徑之1/2)之25 %左右之部分。 接著,再就本發明之非水電解質蓄電池用Li-Ni複合 氧化物粒子粉末之製造方法加以說明。 參 本發明之Li-Ni複合氧化物粒子粉末,係於作爲核之 Li-Ni-Mn複合氧化物二次粒子之粒子表面或表面附近,將 使之被覆或存在之Li-Ni複合氧化物藉由濕式之化學性處 · 理或乾式之機械性處理,再於作爲核之二次粒子之粒子表 . 面及/或表面附近使Li-Ni複合氧化物粒子產生存在者,並 可視需要進而在氧氣環境下,一般爲7〇〇°C以上,較佳爲 73 0°C以上,施加2小時以上之熱處理》 作爲核之Li-Ni-Mn複合氧化物及使之被覆或存在之 〇 粒子之Li-Ni複合氧化物,可以通常之方法而得到,例如 ,可以固相法或濕式法與鋰鹽進行混合,並在空氣環境下 以750 °C〜1 000 °C燒成而製得。 此外,如本發明中,使F·或P043_存在時,在將爲得 到作爲核之Li-Ni複合氧化物而使用之複合氫氧化物與鋰 鹽,利用乾式或濕式進行混合時,可添加所定量之LiF或 Li3P〇4而得到。 作爲核之二次粒子及使之被覆或存在之粒子之複合化 -16- 201027830 方法,其並無特別之限制,可以濕式之化學性處理或乾式 之機械性處理而進行。舉例而言,在濕式之化學性處理中 ,可將作爲核之粒子懸浮於含有形成使之被覆或存在之粒 子之元素的酸溶液中,再中和並進行熱處理之方法;或可 於純水或有機溶劑中將使之被覆或存在之粒子進行懸浮後 ,再以熱處理將粒子進行複合化者。在機械性處理中,可 將作爲核之二次粒子及使之被覆或存在之粒子於所定之空 Φ 隙間,一面施加壓縮裁斷力,一面進行粒子複合化。此外 ,亦可使用可在高速進行混合·攪拌之裝置。在濕式之化 學性處理或乾式之機械性處理中,一般係以氧氣環境下 k 700〜8 5 0°C,較佳係以720〜820°C進行者爲理想。 - 其次,茲就使用由本發明之非水電解質蓄電池用Li-Ni 複合氧化物粒子粉末所成之正極活性物質的正極,加以說 明。 如使用本發明之正極活性物質製造正極時,其係依據 β —般方法,添加導電劑及結著劑並混合。導電劑較佳有乙 炔碳黑、碳黑、石墨等,結著劑較佳有聚四氟乙烯、聚氟 化亞乙烯等。 使用本發明之正極活性物質所製造之蓄電池,可由前 述正極、負極及電解質所構成。 負極活性物質,可使用鋰金屬、鋰/鋁合金、鋰/錫合 金或石墨等。 此外,電解液之溶劑,除碳酸乙烯酯/碳酸二酯之組 合外,並可使用包含碳酸丙烯酯、碳酸二甲酯等之碳酸酯 -17- 201027830 類、或二甲氧基乙烷等之醚類中,至少一種之有機溶劑。 進一步,電解質,並可於上述溶劑中,在六氟化磷酸 鋰以外,使用過氯酸鋰、四氟硼酸鋰等之鋰鹽之至少一種 並加以溶解使用。 作用 非水電解質蓄電池之熱安定性不足之原因,例如有氧 脫離溫度過低。此種氧脫離之原因,例如有在充電狀態下 ❿ 由於構造上之不安定,使得氧氣從電極表面產生脫離。此 外,高溫保存安定性不足之原因,例如有Co或Μη之溶 離所導致者。 β 爲抑制前述課題,非水電解質蓄電池用之正極活性物 . 質,其表面改質就很重要,在先前技術(技術文獻1〜4)中 已進行過改善,例如專利文獻1中,其核粒子之組成係 Li-Ni-Mn複合氧化物,惟在作爲核之粒子之充放電效率變 差之同時,其並無被覆狀態及被覆比例之記載,亦未考慮 © 到被覆所致之熱安定性改善及高溫保存特性之改善。此外 ,專利文獻2中,其係藉由Li-Ni-Co-Mn複合氧化物混合 於Li-Co複合氧化物以改善熱安定性,惟其並未考慮到 Li-Ni-Μη複合氧化物之高溫保存特性之改善。此外,專利 文獻3中,係藉由將Li-Ni-Co-Mn複合氧化物以表面被覆 於Li-Co複合氧化物;專利文獻4中,係藉由在Co複合 氧化物之表面形成由鋰、鎳、鈷、錳金屬所成之被覆層, 從而改善高容量化及循環特性、高溫保存特性,惟其並未 -18 - 201027830 考慮到表面之Μη元素之溶離抑制及充電時之高溫保持特 性之改善。專利文獻5中,係形成將Li-C〇複合氧化物、 Li-Ni複合氧化物、Li-Mn複合氧化物作爲蕊粒子及被覆 粒子所成之複合化粒子,並改善其塡充性及能量密度,惟 其除了蕊粒子及被覆粒子之組成之記載不明確以外,亦未 考慮到高溫保存特性之改善。專利文獻6中,係藉由將 Li-Co複合氧化物之表面以Li-Ni複合氧化物加以被覆, Φ 而抑制Co在電解液中之溶離,惟其係針對充電時欠缺熱 安定性之Li-C〇複合氧化物之Co溶離而加以抑制之技術 ,並未考慮到兼顧高溫保存特性之改善及熱安定性。 ^ 因此,在本發明中,藉由:在作爲核之二次粒子之 . 組成係 LixlNii.yl.zl_wlCoyiMnziMlwl〇2.vKv(l < xl S 1.3 ,y 1 ^ 0.33 > 0.2^ zl^ 0.33 > w 1 < 0.1 ' 0 ^ v ^ 0.05,Ml係選自Al、Mg之至少一種之金屬以及K係選 自F_、P043·之至少一種陰離子)之Li-Ni-Mn複合氧化物 β 中,於該二次粒子之粒子表面或表面附近,其係以組成 爲 LiuNh-ymCoyzMZuOzCOJS 刍 x2 $ 1.05,0‘1 5 S y2 S 0.2,0$ζ2$〇.〇5,M2 係選自 Al、Mg、Zr、Ti 之至少一 種金屬)之Li-Ni複合氧化物,使得所得到之複合粒子之粒 子徑以作爲核之粒子之粒子徑之1.1倍以上而被覆或存在 ,且在相對於核粒子之被覆粒子或在表面附近所存在之粒 子之重量百分率係10%以上50%以下者,即可改善高溫保 存時之殘存放電容量之降低及Μη溶離量,並改善其高溫 保存特性》 -19- 201027830 此外,在本發明中,藉由使Li-Ni複合氧化物粒子粉 末爲前述構成者,相較於將該Li-Ni複合氧化物改以作爲 核之Li-Ni-Mn複合氧化物,作爲正極活性物質使用而進 行比較時,可高達3 mAh/g以上之放電容量,並可達成電 池之高容量化。 再者,本發明之Li-Ni複合氧化物粒子粉末,在作爲 核之Li-Ni-Mn複合氧化物二次粒子之粒子表面或表面附 近,將Li-Ni複合氧化物藉由濕式之化學性處理或乾式之 ❹ 機械性處理,或進一步施加熱處理,其以4.5 V充電狀態 之差示熱分析在200°C〜310°C之範圍所示之產熱最大峰部 ,相較於將該Li-Ni複合氧化物改以作爲核之Li-Ni-Mn複 - 合氧化物,作爲正極活性物質使用而進行比較時,其溫度 . 之降低可抑制在32 °C以內,且可兼顧髙容量化及充電時之 安全性。 實施例 _ 本發明之代表性實施型態,係如以下所示者。a composite oxide particle powder which is used as a positive electrode active material and which uses a lithium metal or a material capable of absorbing and releasing lithium ions to form a negative electrode, and is formed in a nonaqueous electrolyte secondary battery. V. In the range of 3.0 V, the discharge capacity at a charge and discharge rate of 0.2 mA/cm2, the Li-Ni composite oxide is changed to a Li-Ni-Mn composite oxide as a core, and used as a positive electrode active material. In the case of the case, it is elevated by 3 mAh/g or more (Invention 4). In addition, the present invention is a Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention, wherein the Li-Ni composite oxide is used as a positive electrode active material, and lithium metal or absorbable lithium is used. In the non-aqueous electrolyte battery, the difference between the state of charge of 4.5 V and the state of charge of the battery is 200 ° C to 31 (the maximum peak of heat generation shown in the range of TC). When the Li-Ni composite oxide is changed to a Li-Ni-Mn composite oxide as a core, when the temperature is lowered to 32 ° C as a positive electrode active material (Invention 5), the present invention is also The method for producing a Li-Ni composite oxide particle powder for a storage battery according to any one of the inventions 1 to 5, wherein the Li-Ni composite oxide according to any one of the inventions 1 to 5 In the method for producing a particle powder, the Li-Ni composite oxide is chemically treated by a wet type or a dry type in the vicinity of a surface or a surface of a secondary particle of a Li-Ni-Μη composite oxide as a core. Mechanical treatment, or further in the oxygen environment ^ The present invention is a method for producing a Li-Ni φ composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention, which is a heat treatment at 700 ° C or higher, and is coated or present (the present invention 6). The particles as a core are suspended and stirred in water, and then a mixture of nickel sulfate and cobalt sulfate and an alkaline solution are added, and at the same time, p Η値 is controlled to be above 1 1 〇, and N i - C 〇. composite hydroxide is obtained. After the surface-coated intermediate is chemically treated by mixing the Li compound* and the A1 compound, the heat treatment is applied at 700 ° C or higher in an oxygen atmosphere (Invention 7). A method for producing a Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery according to Invention 6, wherein a mixture of nickel sulfate and cobalt thiocyanate and an inert solution are added, and the pH is controlled to form Ni-C〇. After compounding the hydroxide and grinding it so that the obtained Ni-C〇 composite hydroxide has an average particle diameter of 2 μm or less, the Li-Ni-Mn composite oxide as a core particle and high-speed stirring and mixing are mixed. Machine The mechanochemical reaction should be carried out on the surface of the particles, and then subjected to a dry mechanical treatment by combining the Li compound and the A1 compound, and further applying a heat treatment at 7 ° C or higher in an oxygen atmosphere (the present invention) In addition, the present invention is a non-aqueous electrolyte storage battery, which is characterized in that it is made of Li-Ni composite oxide particle powder for a non-aqueous electrolyte storage battery according to any one of the inventions 1 to 5 of -10-201027830. The positive electrode of the positive electrode active material. The effect of the invention is that the Li-Ni composite oxide particle powder of the present invention is stored in a charged state of 4.3 V in a charged state of 1.5 V when the negative electrode is made of lithium metal or a material capable of absorbing and releasing lithium ions. The residual storage capacity is more than 95% with respect to the discharge capacity before storage, and the amount of dissolved manganese ions in the electrolyte after one week of storage is relative to the amount of manganese ions dissolved in the Li-Ni-Mn composite oxide as a core at 8 Below 0%, it can improve the high temperature storage characteristics of lithium ion batteries. In addition, the Li-Ni composite oxide particles of the present invention are used as a negative electrode when used as a positive electrode active material, and a non-aqueous electrolyte is used as a negative electrode of lithium metal or a material capable of absorbing and releasing lithium ions. In the battery, in the range of 4.3 V to 3.0 V, the discharge capacity at a charge and discharge rate of 0.2 mA/cm 2 is compared with the Li-Ni composite oxide as a core Li-Ni- When the Mn composite oxide is used as a positive electrode active material for comparison, since it is as high as 3 mAh/g or more, the discharge capacity of the lithium ion battery can be improved. Further, the Li-Ni composite oxide particle powder of the present invention is used as a negative electrode when a lithium metal or a material capable of absorbing and releasing lithium ions is used as a positive electrode active material, and is used in a nonaqueous electrolyte secondary battery. 'The differential thermal analysis of the 4.5 V state of charge shows the maximum peak of heat generation in the range of 200 ° C to 3 10 ° C compared to the Li-Ni composite oxide as the core Li-Ni When the -Mn composite oxide is used as a positive electrode active material for comparison with -11 - 201027830, the decrease in temperature is within 32 ° C, so that the thermal stability of the lithium ion battery can be maintained. Further, the Li-Ni composite oxide particle powder of the present invention has a Li-Ni composite oxide in a wet state by a particle surface or a surface of a secondary particle of a Li-Ni-Mn composite oxide as a core. The chemical treatment or the dry mechanical treatment or the further application of the heat treatment can continue to maintain the safety at the time of charging, and produce a Li-Ni composite oxide particle powder having improved high-temperature storage characteristics and discharge capacity. Therefore, the Li-Ni composite oxide particles of the present invention are very suitable for use as a positive electrode active material for a nonaqueous electrolyte secondary battery. [Embodiment] # BEST MODE FOR CARRYING OUT THE INVENTION The constitution of the present invention will be described in detail below. First, the Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention will be described. The Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention, which is a secondary particle of a Li—Ni—Mn composite oxide having a specific composition as a core, and on the surface of the particle of the secondary particle or The surface of the particles is attached to cause the Li-Ni composite oxide particles having a specific composition to be coated or present. That is, the entire surface of the secondary particles as the core is coated on the Li-Ni composite oxide particles having a specific composition, or on the surface of the secondary particles as the core or on one of the surface of the particles, so as to have The Li-Ni composite oxide particles of a specific composition are present or generate a coating. -12- 201027830 As a composition of the core Li-Ni-Mn composite oxide, it is LixiNii-yi-zi-wiC〇yi Μ π ζ 1 Μ lwi〇2-vKv(l χΐ ^ 1.3 ' 0 = y 1 ^ 0.33, 0.2SzlS0.33, 0Swl < 0.1' OgvSO.05, a metal selected from the group consisting of at least one of Al and Mg, and at least one anion selected from the group consisting of F· and 43· are preferable. When the composition range is outside the above range, the thermal stability or high discharge capacity at the time of charging which is characteristic of the Li-Ni-Mn composite oxide is difficult to be obtained. The composition of the particle powder to be coated or present is preferably (0.98S x 2S 1.05, 0.15S y2S 0.2, 0$ Z2S 0.05, and M2 is selected from at least one metal of Al, Mg, Zr, Ti). When the composition range is outside the above range, it becomes difficult to obtain high discharge capacity and high temperature stability. Further, by the presence of F_ and P043_, since the thermal stability of the particles as the core at the time of charging can be improved, the thermal stability of the Li-Ni composite oxide particles ® powder upon charging can be further improved. When the composition of K is (v) outside the above range, the discharge capacity of the Li-Ni composite oxide is lowered. In the present invention, the weight percentage of the Li-Ni composite oxide which is coated or made of the secondary particles as the core is 10% or more and 50% or less. When the weight percentage is less than 10%, the manganese in the electrolytic solution is dissolved at the time of high-temperature storage, and when the high-temperature storage characteristics are deteriorated, it becomes difficult to increase the capacity. On the other hand, if the weight percentage exceeds 5%, it will not improve -13- 201027830 its thermal stability under 4.5 V state of charge. In order to achieve both high-temperature storage characteristics and improvement in thermal stability and high capacity, it is preferred that the weight percentage is as close as possible to 50%. The amount to be coated or present is preferably 20% or more and 50% or less, and preferably 25% to 50%. The average particle diameter of the Li-Ni composite oxide particles for a non-aqueous electrolyte secondary battery of the present invention is controlled to 1.1 times or more with respect to the average particle diameter of the Li-Ni-Mn composite oxide as a core. When the average particle diameter is less than 1.1 times, the effect of coating or adhering the Li-Ni composite oxide is not obtained. Preferably, the particle diameter ratio is 1 or more, and the best is 1.3 to 2.0. Further, in the nonaqueous electrolyte secondary battery of the present invention, the average particle diameter (measured by a laser diffraction/scattering method) of the particle powder of the particles is preferably 3 to 20 μm. When the average particle diameter is 3 μm or less, the dispersibility in the case where the Li-Ni composite oxide is used as the electrode slurry is deteriorated. When the thickness exceeds 20 μm, the thickness characteristics of the electrode become thick, and the rate characteristics deteriorate, and the discharge capacity decreases. In the embodiment described below, the Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention is used as a positive electrode active material, and a lithium metal or a material capable of absorbing and releasing lithium ions is used as a negative electrode. And the use of the non-aqueous electrolyte battery in the form. When the Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention is used as a negative electrode in a lithium metal or a material capable of absorbing and releasing lithium ions on a negative electrode, it is stored in a charged state of 4.3 V. The residual storage capacity after week-14-201027830 is preferably maintained at 95% or more with respect to the discharge capacity before storage, and is preferably as close as 100%. The Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention is used as a negative electrode when a lithium metal or a material capable of absorbing and releasing lithium ions is used as a negative electrode, and is 60° in a charged state of 4.3 V. The amount of dissolved manganese ions in the electrolyte after 1 week of storage under C is compared with the use of the Li-Ni composite oxide as the core of the Li-Ni-Mn composite oxide as a positive electrode active material. When it is 80% or less, it is preferable. When the dissolved amount of manganese ions exceeds 80%, the storage capacity of the residual storage of the battery during high temperature storage is lowered. More preferably, the dissolved amount of manganese ions is 75% or less, and the best one is preferably close to 〇%. The Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention is used in a range of 4.3 V to 3.0 V when a lithium metal or a material capable of absorbing and releasing lithium ions is used as a negative electrode on a negative electrode. The discharge capacity at a charge and discharge rate of 0.2 mA/cm2 is compared with the Li-Ni complex oxide as a core, and is used as a positive electrode active material for comparison. When it is 3 mAh/g or more, it is preferable to increase it, and 5 mAh/g is more preferable, and the higher the possibility is the best. The Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention is used as a negative electrode when a lithium metal or a material capable of absorbing and releasing lithium ions is used as a negative electrode, and is coated or present in the vicinity of the surface. Li-Ni composite oxide, which shows the maximum peak of heat generation in the range of 200 ° C to 310 ° C in the thermal analysis of the state of charge of 4.5 V, compared to the Li-Ni composite oxide As a core Li-Ni-Mn composite oxide, when -15-201027830 is used for comparison with a positive electrode active material, the decrease in temperature is preferably within 32 ° C, and more preferably within 20 ° C. The best one is the non-reducing one. In the vicinity of the surface in the present invention, the particle is assumed to be spherical and the particle diameter is made into a diameter, from the surface to the equivalent radius (1/2 of the particle diameter). About 25% of the part. Next, a method for producing the Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention will be described. The Li-Ni composite oxide particle powder of the present invention is used in the vicinity of the surface or surface of the particle of the Li-Ni-Mn composite oxide secondary particle as a core, and the Li-Ni composite oxide which is coated or present is used. The wet chemical or dry mechanical treatment is carried out, and the Li-Ni composite oxide particles are generated in the vicinity of the surface and/or the surface of the particles as the secondary particles of the core, and may be further if necessary. In an oxygen atmosphere, generally 7 〇〇 ° C or higher, preferably 73 ° C or higher, heat treatment for 2 hours or more. Li-Ni-Mn composite oxide as a core and ruthenium particles coated or present therein The Li-Ni composite oxide can be obtained by a usual method, for example, by mixing with a lithium salt by a solid phase method or a wet method, and firing at 750 ° C to 1 000 ° C in an air atmosphere. . Further, in the present invention, when F· or P043_ is present, when the composite hydroxide and the lithium salt used to obtain the Li-Ni composite oxide as the core are mixed by dry or wet, It is obtained by adding a quantitative amount of LiF or Li3P〇4. The method of combining the secondary particles of the core and the particles coated or existing is not particularly limited, and may be carried out by wet chemical treatment or dry mechanical treatment. For example, in a wet chemical treatment, a particle as a core may be suspended in an acid solution containing an element forming a particle to be coated or present, and then neutralized and heat-treated; or may be pure The particles which are coated or present in water or an organic solvent are suspended, and then the particles are composited by heat treatment. In the mechanical treatment, the secondary particles which are the core and the particles which are coated or present may be subjected to particle recombination while applying a compressive cutting force between the predetermined gaps. Further, a device capable of mixing and stirring at a high speed can also be used. In the wet chemical treatment or the dry mechanical treatment, it is generally preferred to carry out k 700 to 850 ° C in an oxygen atmosphere, preferably at 720 to 820 ° C. - The positive electrode of the positive electrode active material formed from the Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery of the present invention will be described. When a positive electrode is produced by using the positive electrode active material of the present invention, a conductive agent and a binder are added and mixed according to a general method. The conductive agent is preferably acetylene black, carbon black, graphite or the like, and the binder is preferably polytetrafluoroethylene or polyfluoroethylene. The battery produced by using the positive electrode active material of the present invention may be composed of the above-mentioned positive electrode, negative electrode and electrolyte. As the negative electrode active material, lithium metal, lithium/aluminum alloy, lithium/tin alloy or graphite can be used. Further, as the solvent of the electrolytic solution, in addition to the combination of ethylene carbonate/carbonic acid diester, a carbonate containing propylene carbonate, dimethyl carbonate or the like, or a dimethoxyethane or the like may be used. Among the ethers, at least one organic solvent. Further, the electrolyte may be used by dissolving at least one of lithium salts such as lithium perchlorate or lithium tetrafluoroborate in addition to lithium hexafluorophosphate in the above solvent. Action The reason for the insufficient thermal stability of the nonaqueous electrolyte battery is, for example, that the aerobic desorption temperature is too low. The reason for such oxygen detachment is, for example, that in the state of charge, 氧气 is destabilized from the surface of the electrode due to structural instability. In addition, the reason for insufficient stability in high-temperature storage, such as those caused by the dissolution of Co or Μη. In order to suppress the above-mentioned problems, the surface active material of the positive electrode active material for a non-aqueous electrolyte battery is important, and has been improved in the prior art (Technical Documents 1 to 4). For example, in Patent Document 1, the core thereof The composition of the particles is a Li-Ni-Mn composite oxide, but the charge and discharge efficiency of the particles as a core is deteriorated, and the state of the coating and the ratio of the coating are not described, and the thermal stability due to the coating is not considered. Improvement in properties and improvement in high temperature storage characteristics. Further, in Patent Document 2, a Li-Ni-Co-Mn composite oxide is mixed with a Li-Co composite oxide to improve thermal stability, but the high temperature of the Li-Ni-Μn composite oxide is not considered. Save the improvement of features. Further, in Patent Document 3, the Li-Ni-Co-Mn composite oxide is coated on the surface of the Li-Co composite oxide, and in Patent Document 4, lithium is formed on the surface of the Co composite oxide. a coating layer made of nickel, cobalt, or manganese metal to improve high capacity, cycle characteristics, and high temperature storage characteristics, but it is not -18 - 201027830. Considering the dissolution inhibition of the Μ element on the surface and the high temperature retention characteristics during charging improve. In Patent Document 5, a composite particle composed of a Li—C〇 composite oxide, a Li—Ni composite oxide, and a Li—Mn composite oxide as core particles and coated particles is formed, and the chargeability and energy thereof are improved. Density, except that the description of the composition of the core particles and the coated particles is not clear, and the improvement of the high-temperature storage characteristics is not considered. In Patent Document 6, the surface of the Li-Co composite oxide is coated with a Li-Ni composite oxide, and Φ suppresses the elution of Co in the electrolytic solution, but it is directed to Li- lacking thermal stability during charging. The technique of suppressing the dissolution of Co in the composite oxide of C , does not take into consideration the improvement of the high-temperature storage characteristics and the thermal stability. ^ Therefore, in the present invention, by the composition of the secondary particle as a core, LixlNii.yl.zl_wlCoyiMnziMlwl〇2.vKv(l < xl S 1.3 , y 1 ^ 0.33 > 0.2^ zl^ 0.33 > w 1 < 0.1 ' 0 ^ v ^ 0.05, Ml is a Li-Ni-Mn composite oxide β selected from a metal of at least one of Al and Mg, and a K-based one selected from at least one anion of F_ and P043· In the vicinity of the surface or surface of the particle of the secondary particle, the composition is LiuNh-ymCoyzMZuOzCOJS 刍x2 $ 1.05,0'1 5 S y2 S 0.2,0$ζ2$〇.〇5, M2 is selected from Al a Li-Ni composite oxide of at least one metal of Mg, Zr, and Ti, such that the particle diameter of the obtained composite particle is coated or exists 1.1 times or more of the particle diameter of the particle as a core, and is relative to the core When the weight percentage of the coated particles or the particles present in the vicinity of the surface is 10% or more and 50% or less, the reduction of the storage capacity at the time of high-temperature storage and the 溶 溶 solute amount can be improved, and the high-temperature storage characteristics can be improved. - 201027830 Further, in the present invention, by making the Li-Ni composite oxide particles powder The composition of the Li-Ni composite oxide is changed to a Li-Ni-Mn composite oxide as a core, and when used as a positive electrode active material, the discharge capacity can be as high as 3 mAh/g or more. The battery can be increased in capacity. Further, in the Li-Ni composite oxide particle powder of the present invention, the Li-Ni composite oxide is wet-processed in the vicinity of the surface or surface of the particle of the Li-Ni-Mn composite oxide secondary particle as a core. Sexual treatment or dry treatment, mechanical treatment, or further heat treatment, which shows the maximum peak of heat generation in the range of 200 ° C to 310 ° C in the thermal analysis of the 4.5 V state of charge. When the Li-Ni composite oxide is changed to a Li-Ni-Mn complex oxide as a core, when the cathode active material is used as a positive electrode active material, the decrease in temperature can be suppressed to within 32 ° C, and the tantalum capacity can be considered. Safety when charging and charging. EXAMPLES _ Representative embodiments of the present invention are as follows.

Li-Ni複合氧化物之組成,係使用誘導電漿發光分光 法ICP-7500[島津製作所(股)製]進行分析並確認。 平均粒子徑係使用雷射式粒度分布測定裝置LMS-3 0[SEISHIN(股)製],並以濕式雷射法測定之體積基準之平 均粒子徑。 所被覆或存在之粒子之存在狀態,係使用附有能量分 散型X射線分析裝置之掃描電子顯微鏡SEM-EPMA0[(股) -20- 201027830 日立高科技製]進行觀察。 使用Li-Ni複合氧化物粒子以鈕釦型電池進行初期充 放電特性及高溫保存特性之評價。 首先,將正極活性物質之Li-Ni複合氧化物90重量% 、導電材之乙炔碳黑3重量%、石墨KS-6之3重量%、及 黏合劑之溶解於N-甲基吡咯烷酮之聚氟化亞乙烯4重量% 加以混合後,塗佈於A1金屬箔並於150°C下乾燥。將該薄 9 片打穿爲16 ηιπιφ後,以1 t/cm2壓著,而作成電極厚度 爲5 0μιη之物用於正極。負極則作成打穿爲16 ιηιηφ之金 屬鋰,電解液係使用溶解了 1 mol/1之LiPF6之EC與 ' DMC在體積比1:2進行混合之溶液,而作成CR2 03 2型 . 鈕釦型電池。爲進行比較,將正極活性物質由上述Li-Ni 複合氧化物改爲作爲核之Li-Ni-Mn複合氧化物,並作成 鈕釦型電池。 初期充放電特性,係於室溫下充電至4.3 V以0.2 β mA/cm2進行後,放電至3.0 V並以0.2 mA/cm2進行,再 測定此時之初期充電容量、初期放電容量及初期效率。 高溫保存特性,係與初期充放電特性評價同樣地進行 ,作成CR2032型鈕釦型電池,進行初期之充放電後,在 第二次之充電達4.3 V並以10小時充電完畢之情形下通 電流,在該狀態下以60°C之恆溫槽中保存1週後,在室溫 下就3_0 V爲止、0.2 mA/cm2進行放電時之殘存放電容量 〇 高溫保存後之電解液之Μη溶離量,係與初期充放電 -21 - 201027830 特性評價同樣地進行,作成CR20 3 2型鈕釦型電池,進行 初期之充放電後,在第二次之充電達4.3 V並以10小時 充電完畢之情形下通電流,在該狀態下以60 °C之恆溫槽中 保存1週後,在該狀態下將鈕釦型電池分解並取出電解液 ,使用誘導電漿發光分光法ICP-7500[島津製作所(股)製] 進行分析並確認。The composition of the Li-Ni composite oxide was analyzed and confirmed using an induced plasma luminescence spectrophotometer ICP-7500 [manufactured by Shimadzu Corporation). The average particle diameter is a laser particle size distribution measuring apparatus LMS-3 0 [manufactured by SEISHIN Co., Ltd.], and the average particle diameter of the volume basis measured by a wet laser method. The state of existence of the coated or existing particles was observed using a scanning electron microscope SEM-EPMA0 [(unit) -20-201027830 Hitachi High-Tech] equipped with an energy dispersive X-ray analyzer. The initial charge and discharge characteristics and the high temperature storage characteristics of the Li-Ni composite oxide particles were evaluated using a button type battery. First, 90% by weight of the Li-Ni composite oxide of the positive electrode active material, 3% by weight of the acetylene black of the conductive material, 3% by weight of the graphite KS-6, and the polyfluoride of the binder dissolved in the N-methylpyrrolidone After mixing 4% by weight of vinylidene, it was applied to an A1 metal foil and dried at 150 °C. After the thin 9 sheets were punched into 16 ηιπιφ, they were pressed at 1 t/cm 2 to prepare an electrode having an electrode thickness of 50 μm for the positive electrode. The negative electrode is made of metal lithium which is broken into 16 ιηιηφ, and the electrolyte is a solution in which EC of 1 mol/1 of LiPF6 is mixed with 'DMC at a volume ratio of 1:2, and CR2 03 2 type is formed. Button type battery. For comparison, the positive electrode active material was changed from the above Li-Ni composite oxide to a Li-Ni-Mn composite oxide as a core, and a button type battery was fabricated. The initial charge and discharge characteristics were charged to 4.3 V at room temperature at 0.2 β mA/cm 2 , then discharged to 3.0 V and at 0.2 mA/cm 2 , and then the initial charge capacity, initial discharge capacity, and initial efficiency were measured. . The high-temperature storage characteristics were carried out in the same manner as the evaluation of the initial charge and discharge characteristics, and a CR2032 type button type battery was fabricated. After the initial charge and discharge, the current was charged at a voltage of 4.3 V for the second time and charged in 10 hours. After storing in a thermostat at 60 ° C for one week in this state, the storage capacity at the time of discharge at 3 _0 V and 0.2 mA/cm 2 at room temperature, and the amount of Μ 溶 dissolved in the electrolyte after high-temperature storage, In the same manner as the initial charge-discharge-21 - 201027830 characteristic evaluation, a CR20 3 2 type button type battery was fabricated, and after the initial charge and discharge, the second charge was 4.3 V and the charge was completed in 10 hours. After the current is stored in the thermostat at 60 ° C for one week in this state, the button-type battery is decomposed and the electrolyte is taken out in this state, and the induced plasma luminescence spectrometry ICP-7500 is used [Shimadzu Corporation] )] Analyze and confirm.

Li-Ni複合氧化物粒子之安全性之評價,係與初期充 放電特性評價同樣地進行,作成CR2 032型鈕釦型電池’ 進行初期之充放電後,在第二次之充電達4.5 V並以10 小時充電完畢之情形下通電流,在該狀態下將鈕釦型電池 分解並取出正極,在A1耐壓電池中,於電解液共存下加 - 以密閉,再由室溫至400°C以5°C /min之掃描速度就差示 . 熱分析進行測定。 比較例1 : 將2 mol/l之硫酸鎳及硫酸鈷及硫酸錳混合而成Νί = 參 Co : Μη = 3 3 : 3 3 : 3 3之水溶液,以及5.0 mol/1之氨水溶 液,同時地供應於反應槽內。 反應槽以羽毛型攪拌機經常地加以攪拌,同時自動供 給2 mol/Ι之氫氧化鈉水溶液使其pH値=11.5±0.5。所生 成之Ni-Co-Mn氫氧化物經溢流,以連結於溢流管之濃縮 槽進行濃縮,再對反應槽進行循環,以40小時反應使反 應槽及沈降槽中之Ni-Co-Mn氫氧化物濃度達到4 mol/1爲 止0 -22- 201027830 反應後,將取出之懸浮液,使用壓濾機以相對於 Ni-Co-Μη氫氧化物之重量爲10倍之水進行水洗後,進行 乾燥,而製得Ni: Co: Μη =33: 33: 33之平均二次粒子 徑爲9·5μιη之Ni-Co-Mn氫氧化物粒子。Ni-Co-Mn氫氧化 物粒子及碳酸鋰,係以莫爾比爲Li/(Ni + Co + Mn) = 1.05而 進行混合。 將此混合物在氧氣環境下,以92 5 °C燒成4小時,再 ® 分解磨碎。所得到之燒成物之化學組成,依ICP分析之結 果,係 Li1.05Ni0.33Co0.33Mn0.33O2。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 ' 行差示熱分析之結果,其發熱最大峰部溫度係291 °C。此 • 外,該 Li-Ni複合氧化物粒子粉末之放電容量係156 mAh/g,而在60°C下保存1週後之殘存放電容量係147 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 27 ppm ° 比較例5 除了 Ni-Co-Mn氫氧化物粒子及碳酸鋰及氟化鋰, 係以莫爾比爲 Li/(Ni + Co + Mn)=1.05而進行混合以外, 其餘均與比較例 1同樣地進行操作,而製得組成爲 Li1.05Ni0.33Co0.33Mn0.33O1.95FQ.05 之 Li-Ni-Mn 複合氧化物 〇 該 Li-Ni複合氧化物粒子粉末之放電容量係154 mAh/g,而在60°C下保存1週後之殘存放電容量係143 23- 201027830 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 26 ppm 〇 比較例6 除了 Ni-Co-Mn氫氧化物粒子及碳酸鋰及磷酸鋰, 係以莫爾比爲 Li/(Ni + Co + Mn)=1.05而進行混合以外, 其餘均與比較例 1同樣地進行操作,而製得組成爲 Li 1.〇sNio.33C〇〇.33Mn〇.33〇 1 ·95(P〇4)〇.〇5 之 Li-Ni-Mn 複合氧 化物。 該 Li-Ni複合氧化物粒子粉末之放電容量係 153 mAh/g,而在60°C下保存1週後之殘存放電容量係140 - mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 . 24 ppm 〇 比較例7 除了硫酸鎳及硫酸鈷及硫酸錳係混合成Ni: Co: Μη β =50 : 20 : 30之水溶液,並將混合物在空氣環境下以950 °C燒成4小時以外,其餘均與比較例1同樣地進行操作’ 而製得組成爲 Lii.Q5Ni〇.5QC〇().2()Mn〇.3C)〇2 之 Li-Ni-Mn 複合 氧化物。 該 Li-Ni複合氧化物粒子粉末之放電容量係 167 mAh/g,而在60°C下保存1週後之殘存放電容量係155 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 2 4 ppm ° -24- 201027830 比較例8 除了 Ni-Co-Mn氫氧化物粒子及碳酸鋰及氟化鋰’ 係以莫爾比爲 Li/(Ni + Co + Mn)=1.05而進行混合以外’ 其餘均與比較例 7同樣地進行操作,而製得組成爲 Lii.〇5Ni〇.5〇Co〇.2()Mn〇.3〇〇i.95F〇.〇5 之 Li-Ni-Mn 複合氧化物 〇 〇 該Li-Ni複合氧化物粒子粉末之放電容量係165 mAh/g,而在60°C下保存1週後之殘存放電容量係155 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 - 23 ppm ° 比較例9 除了 Ni-Co-Mn氫氧化物粒子及碳酸鋰及磷酸鋰, 係以莫爾比爲 Li/(Ni + Co + Mn)=1.05而進行混合以外, ® 其餘均與比較例 7同樣地進行操作,而製得組成爲 L i 1. 〇 5 N i 〇 · 5 〇 C 〇。. 2 ο Μ η 〇. 3 〇 〇 1.9 5 (P 〇 4) ο. 〇 5 之 Li-Ni-Mn 複合氧 化物。 該 Li-Ni複合氧化物粒子粉末之放電容量係 163 mAh/g,而在60°C下保存1週後之殘存放電容量係152 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 23 ppm 〇 比較例10 -25- 201027830 除了硫酸鎳及硫酸鈷及硫酸錳係混合成Ni: Co: Μη = 60: 20: 20之水溶液,並將混合物在空氣環境下以830 °C燒成4小時以外,其餘均與比較例1同樣地進行操作, 而製得組成爲[丨1.〇51^().6()(^0。.2(^11。.2()〇2之1^-1^-^411複合 氧化物。 該 Li-Ni複合氧化物粒子粉末之放電容量係174 mAh/g,而在60°C下保存1週後之殘存放電容量係163 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 0 22 ppm 〇 比較例1 1 除了 Ni-Co-Mn氫氧化物粒子及碳酸鋰及氟化鋰, 係以莫爾比爲 Li/(Ni + Co + Mn)=1.05而進行混合以外, 其餘均與比較例1〇同樣地進行操作,而製得組成爲 Lii.〇5Ni〇.6〇Co〇.2()MnQ.2()〇i.95F〇.〇5 之 Li-Ni-Mn 複合氧化物 〇 該 Li-Ni複合氧化物粒子粉末之放電容量係172 mAh/g,而在60°C下保存1週後之殘存放電容量係160 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 2 0 p p m ° 比較例12 除了 Ni-Co-Mn氫氧化物粒子及碳酸鋰及磷酸鋰, 係以莫爾比爲 Li/(Ni + Co + Mn)=l .05而進行混合以外, -26- 201027830 其餘均與比較例ίο同樣地進行操作,而製得組成爲 L i 1. 〇 5 N i。. 6 〇 C 〇。. 2 ο Μ η。. 2 〇 〇 1.9 5 (P 〇 4) 〇.。5 之 Li-Ni-Mn 複合氧 化物。 該 Li-Ni複合氧化物粒子粉末之放電容量係171 mAh/g,而在60t下保存1週後之殘存放電容量係158 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 2 1 ppm。 參 比較例1 3 除了硫酸鎳及硫酸鈷及硫酸錳及硫酸鋁係混合成Ni: ' Co: Μη: Al=33: 24: 33: 9 之水溶液,並將 Ni-Co-Mn-Al - 氫氧化物粒子與碳酸鋰以莫爾比爲Li/(Ni + Co + Mn + Al)=1.01 而進行混合以外,其餘均與比較例1同樣地進行操作’而製 得組成爲 Li1.GiNi0.33Co0.24Mn0.33Al0.09O2 之 Li-Ni-Mn 複合 氧化物。 ❹ 該 Li-Ni複合氧化物粒子粉末之放電容量係 152 mAh/g,而在60°C下保存1週後之殘存放電容量係H2 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 26 ppm 〇 比較例14 除了 Ni-Co-Mn-Al氫氧化物粒子及碳酸鋰及氟化鋰 ,係以莫爾比爲Li/(Ni + c〇 + Mn + Al)=1·01而進行混合以 外,其餘均與比較例13同樣地進行操作,而製得組成爲 -27- 201027830The evaluation of the safety of the Li-Ni composite oxide particles was carried out in the same manner as in the evaluation of the initial charge and discharge characteristics, and the CR2 032 button type battery was fabricated. After the initial charge and discharge, the second charge was 4.5 V and When the charging is completed in 10 hours, the current is turned on. In this state, the button type battery is decomposed and the positive electrode is taken out, and in the A1 pressure-resistant battery, the electrolyte is added in the presence of the electrolyte to be sealed, and then from room temperature to 400 ° C. The measurement was performed by differential analysis at a scanning speed of 5 ° C / min. Comparative Example 1: Mixing 2 mol/l of nickel sulfate, cobalt sulfate and manganese sulfate to form an aqueous solution of Coί = :η = 3 3 : 3 3 : 3 3 and an aqueous solution of 5.0 mol/1 of ammonia, simultaneously It is supplied in the reaction tank. The reaction vessel was frequently stirred with a feather mixer while automatically supplying a 2 mol/Ι aqueous sodium hydroxide solution to have a pH of =1 1.5 ± 0.5. The generated Ni-Co-Mn hydroxide is overflowed, concentrated in a concentration tank connected to the overflow pipe, and then the reaction tank is circulated, and the reaction tank and the Ni-Co- in the sedimentation tank are reacted for 40 hours. After the Mn hydroxide concentration reaches 4 mol/1, 0 -22- 201027830, after the reaction, the taken suspension is washed with water using a filter press at 10 times the weight of the Ni-Co-Μη hydroxide. Drying was carried out to obtain Ni-Co-Mn hydroxide particles having an average secondary particle diameter of 9.5 μm of Ni: Co: Μη = 33: 33:33. The Ni-Co-Mn hydroxide particles and lithium carbonate were mixed with a molar ratio of Li/(Ni + Co + Mn) = 1.05. The mixture was fired at 92 5 ° C for 4 hours in an oxygen atmosphere, and then decomposed and ground. The chemical composition of the obtained fired product was Li1.05Ni0.33Co0.33Mn0.33O2 according to the result of ICP analysis. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a charge state of 4.5 V, and the maximum peak temperature of the heat generation was 291 °C. In addition, the discharge capacity of the Li-Ni composite oxide particles was 156 mAh/g, and the residual storage capacity after storage for one week at 60 ° C was 147 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 27 ppm °. Comparative Example 5 In addition to Ni-Co-Mn hydroxide particles and lithium carbonate and lithium fluoride, the molar ratio is Li/(Ni + Li-Ni-Mn composite oxide 组成 having a composition of Li1.05Ni0.33Co0.33Mn0.33O1.95FQ.05 was prepared in the same manner as in Comparative Example 1, except that Co + Mn) was 1.05. The discharge capacity of the Li-Ni composite oxide particles was 154 mAh/g, and the residual storage capacity after storage for one week at 60 ° C was 143 23 - 201027830 mAh / g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage was 26 ppm. Comparative Example 6 In addition to Ni-Co-Mn hydroxide particles and lithium carbonate and lithium phosphate, the molar ratio was Li/(Ni + Co The mixture was mixed in the same manner as in Comparative Example 1 except that the mixture was mixed with Mn) = 1.05, and the composition was Li 1.〇sNio.33C〇〇.33Mn〇.33〇1·95(P〇4)〇 . Li-Ni-Mn composite oxide of 〇5. The discharge capacity of the Li-Ni composite oxide particles was 153 mAh/g, and the storage capacity after storage for one week at 60 ° C was 140 - mAh / g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 24 ppm 〇Comparative Example 7 except that nickel sulfate, cobalt sulfate, and manganese sulfate are mixed into an aqueous solution of Ni:Co: Μη β = 50 : 20 : 30, and The mixture was fired at 950 ° C for 4 hours in an air atmosphere, and the rest was operated in the same manner as in Comparative Example 1 to obtain a composition of Lii.Q5Ni〇.5QC〇(2) Mn〇.3C. Li-Ni-Mn composite oxide of 〇2. The discharge capacity of the Li-Ni composite oxide particles was 167 mAh/g, and the storage capacity after storage for one week at 60 ° C was 155 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 2 4 ppm ° -24 - 201027830 Comparative Example 8 except that Ni-Co-Mn hydroxide particles and lithium carbonate and lithium fluoride are in the molar ratio Li/(Ni + Co + Mn) = 1.05 and mixing was carried out, and the rest was operated in the same manner as in Comparative Example 7, and the composition was Lii.〇5Ni〇.5〇Co〇.2()Mn〇.3 Li-Ni-Mn composite oxide of 〇〇i.95F〇.〇5 The discharge capacity of the Li-Ni composite oxide particle powder is 165 mAh/g, and remains after being stored at 60 ° C for one week. The discharge capacity was 155 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is - 23 ppm °. Comparative Example 9 In addition to Ni-Co-Mn hydroxide particles and lithium carbonate and lithium phosphate, the molar ratio is Li/(Ni + The mixture was operated in the same manner as in Comparative Example 7 except that the mixture was mixed with Co + Mn) = 1.05, and the composition was obtained as L i 1. 〇5 N i 〇 · 5 〇C 〇 . 2 ο Μ η 〇. 3 〇 〇 1.9 5 (P 〇 4) ο. Li 5 Li-Ni-Mn complex oxide. The discharge capacity of the Li-Ni composite oxide particles was 163 mAh/g, and the storage capacity after storage for one week at 60 ° C was 152 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 23 ppm 〇 Comparative Example 10 -25- 201027830 In addition to nickel sulfate and cobalt sulfate and manganese sulfate, an aqueous solution of Ni: Co: Μη = 60: 20: 20 is mixed. The mixture was fired at 830 ° C for 4 hours in an air atmosphere, and the rest was operated in the same manner as in Comparative Example 1, and the composition was obtained as [丨1.〇51^().6()(^0 .2(^11..2()〇2 of 1^-1^-^411 composite oxide. The discharge capacity of the Li-Ni composite oxide particle powder is 174 mAh/g, and at 60 ° C After 1 week of storage, the residual storage capacity was 163 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high temperature storage was 0 22 ppm 〇Comparative Example 1 1 Except Ni-Co-Mn hydroxide particles and lithium carbonate And lithium fluoride was mixed in the same manner as in Comparative Example 1 except that the molar ratio was Li/(Ni + Co + Mn) = 1.05, and the composition was Lii.〇5Ni〇. 6〇Co〇.2()MnQ.2()〇i.95F〇.〇5 Li-Ni-Mn composite oxide 〇 The discharge capacity of the Li-Ni composite oxide particle powder is 172 mAh/g, and Residue storage after storage for 1 week at 60 ° C The capacity is 160 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high temperature storage is 20 ppm. Comparative Example 12 In addition to Ni-Co-Mn hydroxide particles and lithium carbonate and lithium phosphate, Except that Li/(Ni + Co + Mn) = 1.05 was mixed, -26-201027830 was operated in the same manner as in Comparative Example ί, and the composition was obtained as L i 1. 〇5 N i . 6 〇C 〇.. 2 ο Μ η.. 2 〇〇1.9 5 (P 〇4) 〇.5 Li-Ni-Mn composite oxide. Discharge capacity of the Li-Ni composite oxide particle powder 171 mAh/g, and the residual storage capacity after storage for 1 week at 60t was 158 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high temperature storage was 2 1 ppm. Reference Example 1 3 Except for nickel sulfate And cobalt sulfate, manganese sulfate and aluminum sulfate are mixed into an aqueous solution of Ni: 'Co: Μη: Al=33: 24: 33: 9, and Ni-Co-Mn-Al-hydroxide particles and lithium carbonate are Li was prepared in the same manner as in Comparative Example 1 except that the ratio was Li/(Ni + Co + Mn + Al)=1.01, and Li having a composition of Li1.GiNi0.33Co0.24Mn0.33Al0.09O2 was obtained. -Ni -Mn composite oxide.放电 The discharge capacity of the Li-Ni composite oxide particles was 152 mAh/g, and the storage capacity after storage for one week at 60 ° C was H2 mAh/g. Further, the amount of manganese dissolved in the electrolytic solution after high-temperature storage was 26 ppm. Comparative Example 14 In addition to Ni-Co-Mn-Al hydroxide particles and lithium carbonate and lithium fluoride, the molar ratio was Li/( The mixture was operated in the same manner as in Comparative Example 13 except that the mixture was mixed with Ni + c 〇 + Mn + Al) = 1·01, and the composition was -27 - 201027830.

Li1.01Ni0.33Co0.24Mn0.33Al0.09O1.95F0.〇5 之 Li-Ni-Mn 複合氧 化物。 該 Li-Ni複合氧化物粒子粉末之放電容量係150 mAh/g,而在60°C下保存1週後之殘存放電容量係140 inAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 25 ppm 0 比較例1 5 φ 除了 Ni-Co-Mn-Al氫氧化物粒子及碳酸鋰及磷酸鋰 ,係以莫爾比爲 Li/(Ni + Co + Mn + Al)=l .01而進行混合以 外,其餘均與比較例13同樣地進行操作,而製得組成爲 - L i 1. 〇 1N i 〇. 3 3 C 〇 〇. 2 4 Μ η 〇. 3 3 A1 〇. 〇 9 〇 1.9 5 ( P 〇 4 )。. 〇 5 之 L i - N i - Μ η 複 合氧化物。 該 Li-Ni複合氧化物粒子粉末之放電容量係 149 mAh/g,而在60°C下保存1週後之殘存放電容量係138 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 @ 24 ppm 〇 · 比較例1 6 除了硫酸鎳及硫酸鈷及硫酸錳及硫酸鎂係混合成Ni: Co :Μη : Mg= 33 : 24 : 33 : 9 之水溶液,並將 Ni-Co-Mn-Mg 氫氧化物粒子與碳酸鋰以莫爾比爲Li/(Ni + Co + Mn + Mg) = l .01 而進行混合以外,其餘均與比較例1同樣地進行操作,而製 得組成爲1^1.0丨1^0.33(:00.24]^11〇.33\^〇.0902 之1^-]^-\111複 -28- 201027830 合氧化物。 該 Li-Ni複合氧化物粒子粉末之; m Ah/g,而在60 °C下保存1週後之殘存 mAh/g。進一步,高溫保存後之電解液中 25 ppm ° 比較例1 7 Φ 除了 Ni-Co-Mn-Mg氫氧化物粒子及 ,係以莫爾比爲 Li/(Ni + Co + Mn + Mg)=1.01 ,其餘均與比較例1 6同樣地進行操作Li-Ni-Mn composite oxide of Li1.01Ni0.33Co0.24Mn0.33Al0.09O1.95F0.〇5. The discharge capacity of the Li-Ni composite oxide particles was 150 mAh/g, and the storage capacity after storage for one week at 60 ° C was 140 inAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 25 ppm 0. Comparative Example 1 5 φ In addition to Ni-Co-Mn-Al hydroxide particles and lithium carbonate and lithium phosphate, the molar ratio is Li/ The same procedure as in Comparative Example 13 was carried out except that (Ni + Co + Mn + Al) = 1.01, and the composition was obtained as -L i 1. 〇1N i 〇. 3 3 C 〇〇. 2 4 Μ η 〇. 3 3 A1 〇. 〇9 〇1.9 5 ( P 〇4 ). L 5 L i - N i - Μ η complex oxide. The discharge capacity of the Li-Ni composite oxide particles was 149 mAh/g, and the storage capacity after storage for one week at 60 ° C was 138 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is @24 ppm 比较·Comparative Example 1 6 In addition to nickel sulfate and cobalt sulfate, and manganese sulfate and magnesium sulfate are mixed into Ni: Co : Μ : Mg = 33 : 24 An aqueous solution of 33:9, and the Ni-Co-Mn-Mg hydroxide particles and lithium carbonate are mixed with a molar ratio of Li/(Ni + Co + Mn + Mg) = 1.01, and the rest are The operation was carried out in the same manner as in Comparative Example 1, and the composition was 1^1.0丨1^0.33(:00.24]^11〇.33\^〇.0902 1^-]^-\111 complex-28- 201027830 Oxide. The Li-Ni composite oxide particle powder; m Ah/g, and remains at mAh/g after storage for 1 week at 60 ° C. Further, 25 ppm of the electrolyte after high temperature storage Comparative Example 1 7 Φ In addition to the Ni-Co-Mn-Mg hydroxide particles and the molar ratio of Li/(Ni + Co + Mn + Mg) = 1.01, the rest were operated in the same manner as in Comparative Example 16.

Li 1 . 〇 1 N i 0.3 3 C 0〇 . 2 4 Mn〇 . 3 3 M g 〇 . 09 〇 1 . 9 5F0.05 i. • 氧化物。 該 Li-Ni複合氧化物粒子粉末之] mAh/g,而在6〇°C下保存1週後之殘存 mAh/g。進一步,高溫保存後之電解液中 比較例1 8 除了 Ni-Co-Mn-Mg氫氧化物粒子及 ,係以莫爾比爲 Li/(Ni + Co + Mn + Mg) = l.C 外,其餘均與比較例1 6同樣地進行操作Li 1 . 〇 1 N i 0.3 3 C 0〇 . 2 4 Mn〇 . 3 3 M g 〇 . 09 〇 1 . 9 5F0.05 i. • Oxide. The Li-Ni composite oxide particle powder was mAh/g, and mAh/g remained after storage for one week at 6 °C. Further, in Comparative Example 1 8 in the electrolytic solution after high-temperature storage, except for the Ni-Co-Mn-Mg hydroxide particles and the molar ratio of Li/(Ni + Co + Mn + Mg) = lC, the others were The operation was carried out in the same manner as in Comparative Example 16.

Li1.oiNio.33COo.24Mno.33Mg 〇.〇9〇1.95(P〇4)C 複合氧化物。 該 Li-Ni複合氧化物粒子粉末之; 女電容量係 148 放電容量係1 3 5 之鍾溶離量,係 碳酸鋰及氟化鋰 而進行混合以外 ,而製得組成爲 :Li-Ni-Mn 複合 女電容量係 147 放電容量係1 3 6 之錳溶離量,係 碳酸鋰及磷酸鋰 1而進行混合以 ,而製得組成爲 .05 之 Li-Ni-Mn 女電容量係 146 -29- 201027830 mAh/g,而在60°C下保存1週後之殘存放電容量係135 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 2 3 ppm ° 比較例19 除了硫酸鎳及硫酸鈷及硫酸錳及硫酸鋁及硫酸鎂係 混合成 Ni : Co : Mn : A1 : Mg= 3 3 : 24 : 33 : 5 : 4 之水 溶液,並將Ni-Co-Mn-Al-Mg氫氧化物粒子與碳酸鋰以莫 _ 爾比爲 Li/(Ni + Co + Mn + Al + Mg)=l .01而進行混合以外, 其餘均與比較例1同樣地進行操作,而製得組成爲Li1.oiNio.33COo.24Mno.33Mg 〇.〇9〇1.95(P〇4)C composite oxide. The Li-Ni composite oxide particle powder; the female electric capacity system 148 discharge capacity is 1 3 5 bell dissolved amount, which is mixed with lithium carbonate and lithium fluoride, and the composition is: Li-Ni-Mn The compound female capacity 147 discharge capacity is the amount of manganese dissolved in 1 3 6 , which is mixed with lithium carbonate and lithium phosphate 1 to obtain a Li-Ni-Mn female capacity system 146 -29- 201027830 mAh / g, and stored at 60 ° C for 1 week, the residual storage capacity is 135 mAh / g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 2 3 ppm ° Comparative Example 19 except that nickel sulfate and cobalt sulfate and manganese sulfate, and aluminum sulfate and magnesium sulfate are mixed to form Ni : Co : Mn : A1 : Mg= 3 3 : 24 : 33 : 5 : 4 aqueous solution, and Ni-Co-Mn-Al-Mg hydroxide particles and lithium carbonate in Mo ratio is Li / (Ni + Co + Mn + Al + Mg) The same procedure as in Comparative Example 1 was carried out except that mixing was carried out at =l.01, and the composition was obtained.

Lii .01Ni0.33Co0.24Mn0.33 Al〇.〇5Mg〇.〇4〇2 之 Li-Ni-Mn 複合氧 - 化物。 . 該 Li-Ni複合氧化物粒子粉末之放電容量係147 mAh/g ’而在60 °C下保存1週後之殘存放電容量係135 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 24 ppm。 比較例2 0 除了 Ni-Co-Mn-Al-Mg氫氧化物粒子及碳酸鋰及氟化 鋰’係以莫爾比爲Li/(Ni + Co + Mn + Al + Mg)=l.〇l而進行混 合以外,其餘均與比較例19同樣地進行操作,而製得組 成爲 Li^wNi。.33Co0.24Mn0.33Al0.05Mg。. 0 40,.9^0.05 之 Li-Ni-Mn 複合氧 化物。 該Li-Ni複合氧化物粒子粉末之放電容量係145 -30- 201027830 mAh/g,而在60°C下保存1週後之殘存放電容量係133 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 22 ppm 〇 比較例21 除了 Ni-Co-Mn-Al-Mg氫氧化物粒子及碳酸鋰及磷酸 鋰,係以莫爾比爲Li/(Ni + Co + Mn + Al + Mg)=l .01而進行混 © 合以外,其餘均與比較例1 9同樣地進行操作,而製得組 成爲 L i 1.0 1 N i 〇 . 3 3 C Ο 〇 · 2 4 Mn〇 . 3 3 A 1 〇 . 〇 5 M go . 04 〇 1.9 5 ( P 〇 4 ) 0.0 5 之 Li-Ni-Mn複合氧化物。 -該 Li-Ni複合氧化物粒子粉末之放電容量係143 mAh/g,而在60°C下保存1週後之殘存放電容量係132 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 2 3 ppm ° ®實施例1 : 將2 mol/1之硫酸鎳及硫酸鈷及硫酸錳混合而成Ni: Co: Mn=33: 33: 33之水溶液,以及5.0 mol/1之氨水溶 液,同時地供應於反應槽內。 反應槽以羽毛型攪拌機經常地加以攪拌,同時自動供 給2 mol/Ι之氫氧化鈉水溶液使其pH値=11.5±0.5。所生 成之Ni-Co-Mn氫氧化物經溢流,以連結於溢流管之濃縮 槽進行濃縮,再對反應槽進行循環,以40小時反應使反 應槽及沈降槽中之Ni-Co-Mn氫氧化物濃度達到4 mol/1爲 -31 - 201027830 止。 反應後,將取出之懸浮液,使用壓濾機以相對於Ni-Co-Mn氫氧化物之重量爲10倍之水進行水洗後,進行乾 燥,而製得Ni: Co: Μη =33: 33: 33之平均二次粒子徑 爲9.5μιη之Ni-Co-Mn氫氧化物粒子。Ni-Co-Mn氫氧化物 粒子及碳酸鋰,係以莫爾比爲Li/(Ni + Co + Mn) = 1.05而進 行混合。 將此混合物在氧氣環境下,以925°C燒成4小時,再 0 分解磨碎。所得到之燒成物之化學組成,依ICP分析之結 果’係 Li1.05Ni0.33Co0.33Mn0.33O2’ 其平均粒子徑係 9.6μιη 。將該Li-Ni-Mn複合氧化物當成作爲核之二次粒子粉末 - 而使用。 將該二次粒子粉末3 00 g懸浮於水中,再將2 mol/Ί 之硫酸鎳及硫酸鈷已混合成Ni: Co = 84: 16之混合水溶液 ,以及5.0 m〇l/l氨水溶液,同時供應於反應槽內。 反應槽以羽毛型攪拌機經常地加以攪拌,同時自動供 ® 給2 mol/1之氫氧化鈉水溶液使其pH値=11.5 ±0.5。所生 成之 Ni-Co 氫氧化物,相對於 Lii.05Nio.33Coo.33Mno.33O2 ,係成爲重量百分率爲10 wt %者。 將該懸浮液,使用壓濾機以相對於Li-Ni-Mn氫氧化 物之重量爲10倍之水進行水洗後,進行乾燥,而製得以 Ni-Co氨氧化物加以被覆之Li1.05Ni0.33Co0.33Mn0.33O2中間 體。 將經Ni-Co氫氧化物被覆之LirwNimComMiimCh -32- 201027830 中間體,以及事先以磨碎機進行過粒度調整之氫氧化鋰及 氫氧化鋁,以莫爾比爲Li/(表面之Ni + C〇 + Al) = 0.98而進 行混合。 將此混合物在氧氣環境下,以75 0 °C燒成10小時’而 製得在作爲核之Lh.05Ni0.33Co0.33Mn0.33O2之二次粒子之 粒子表面上,有Lio.98Nio.8oCOo.i5AlQ.0502以10重量%加 以被覆之平均粒子徑爲1〇.6μιη之Li-Ni複合氧化物粒子 © 粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係290°C。此 ‘外,該 Li-Ni複合氧化物粒子粉末之放電容量係160 mAh/g,而在60°C下保存1週後之殘存放電容量係155 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 2 1 p p m 〇 實施例2 除了用以被覆之Ni-Co氫氧化物相對於 Lii.Q5Ni〇.33C〇C).33Mn().33〇2 ’ 以重量百分率計,係成爲 30 wt% 以外,其餘均與實施例1相同地進行操作,而製得在作爲 核之1^.05^^0.33(^0().331^11().3302之二次粒子之粒子表面上 ,有 Li〇.98Ni().8〇C〇().i5Al().()5〇2 以 30 重量 % 加以被覆之平 均粒子徑爲11.0μιη之Li-Ni複合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係28厂C。此 -33- 201027830 外,該Li-Ni複合氧化物粒子粉末之放電容量係167 mAh/g,而在60°C下保存1週後之殘存放電容量係161 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 19 ppm ° 實施例3 除了用以被覆之 Ni-Co 氫氧化物相對於 Li1.05Ni0.33Co0.33M1iG.33O2,以重量百分率計,係成爲 50 wt%以外,其餘均與實施例1相同地進行操作,而製得在 作爲核之LiK05Ni0.33Co0.33Mn0.33O2之二次粒子之粒子表 面上,有Lio.98NiuoCou5Alo.a5O2以50重量%加以被覆 - 之平均粒子徑爲13_〇μιη之Li-Ni複合氧化物粒子粉末。 . 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係259°C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係 176 mAh/g,而在60°C下保存1週後之殘存放電容量係170 φ mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 18 ppm 〇 實施例4 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn氫氧化 物粒子及碳酸鋰及氟化鋰,係以莫爾比爲Li/(Ni + Co + Mn)=1.05 而進行混合以外,其餘均與實施例3同樣地進行操作, 而製得在作爲核之 Li1.Q5Nio.33Co0.33Mno.33O1.95Fo.o5 之― -34- 201027830 次粒子之粒子表面上,有Lio.98Nio.8oCoo.MAlo.0 502以50 重量%加以被覆之平均粒子徑爲13·5μιη之Li-Ni複合氧化 物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係292°C。此 外,該Li-Ni複合氧化物粒子粉末之放電容量係158 mAh/g,而在60°C下保存1週後之殘存放電容量係I50 ❻ mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 18 ppm ° 實施例5 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn氫氧 化物粒子及碳酸鋰及氟化鋰’係以莫爾比爲Li/(Ni+Co+Mn)=l_〇5 而進行混合以外,其餘均與實施例3同樣地進行操作’ 而製得在作爲核之 Lii.〇5Ni〇.33C〇〇.33Mn〇.33〇1.95(P〇4)0.05 之一次 粒子之粒子表面上,有Li〇.98Ni〇.8()C〇().i5Al().〇5〇2以50重 量%加以被覆之平均粒子徑爲13.2μπι之Li-Ni複合氧化物 粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果’其發熱最大峰部溫度係295 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係157 mAh/g,而在60°C下保存1週後之殘存放電容量係151 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 15 ppm ° -35- 201027830 實施例6 與實施例1同樣地進行操作,而製得核之組成爲 Lii.〇5Ni〇.33Co〇.33Mn〇.3302 之平均粒子徑爲 9.6μπι 之 Li-Ni-Mn 複合氧化物。 將2 mol/1之硫酸鎳及硫酸鈷混合而成Ni: C〇=84: 16之水溶液,以及5.0 mol/1之氨水溶液,同時地供應於 反應槽內。 ❿ 反應槽以羽毛型攪拌機經常地加以攪拌,同時自動供 給2 mol/1之氫氧化鈉水溶液使其pH値=1 1.5±0.5。所生 成之Ni-Co氫氧化物經溢流,以連結於溢流管之濃縮槽進 - 行濃縮,再對反應槽進行循環,以40小時反應使反應槽 . 及沈降槽中之Ni-Co氫氧化物濃度達到4 mol/1爲止。 將該懸浮液使用壓濾機以相對於Ni-Co氫氧化物之重 量爲10倍之水進行水洗後,進行乾燥,並以氣流粉碎機 進行粉碎,而製得平均粒子徑爲1.8μχη之Ni : Co= 84 : 9 16之Ni-Co氫氧化物粒子。 在此,對於作爲核之Lh.05Ni0.33Co0.33Mn0.33O2,進 一步混合平均粒子徑爲1.8μπι之NiG.84C〇().16(OH)2使其重 量百分率成爲50%,再使用機械性磨碎機進行30分鐘之 機械性處理,而製得以 Ni-Co氫氧化物加以被覆之 Li1.05Nio.33Coo.33Mno.33O2 中間體。 將經Ni-Co氫氧化物被覆之Lh.osNimCoo.nMno.uCb中 間體,以及事先以磨碎機進行過粒度調整之氫氧化鋰及氫 -36- 201027830 氧化鋁,以莫爾比爲Li/(表面之Ni + C〇 + Al) = 0.98而進行 混合。 將此混合物在氧氣環境下,以75 0°C燒成10小時,而 製得在作爲核之LiK05Ni0.33Co0.33MnQ.33O2之二次粒子之 粒子表面上,有 Li〇.98Ni〇.8〇C〇Q.i5Al().()5〇2 以 50 重量 %加 以被覆之平均粒子徑爲13·1μιη之Li-Ni複合氧化物粒子 粉末。 © 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係29 8 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係159 ' mAh/g,而在60°C下保存1週後之殘存放電容量係154 • mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 17 ppm 〇 實施例7 除了 Ni-Co-Mn氫氧化物粒子及碳酸鋰及氟化鋰,係 以莫爾比爲Li/(Ni + Co + Mn) = 1.05而進行混合以外,其餘 均與實施例 6同樣地進行操作,而製得在作爲核之 Li1.05Ni0.33CO0.33Mn0.33Ol.95F0.〇5 之二次粒子之粒子表面上 ,有Li0.98Ni0.80Con5Al0.05O2以50重量%加以被覆之平 均粒子徑爲13·0μιη之Li-Ni複合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係290 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係158 37- 201027830 mAh/g,而在6(TC下保存1週後之殘存放電容量係151 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 14 ppm 〇 實施例8 除了 Ni-Co-Mn氫氧化物粒子及碳酸鋰及氟化鋰,係 以莫爾比爲Li/(Ni + Co + Mn) = 1.05而進行混合以外,其餘 均與實施例 6同樣地進行操作,而製得在作爲核之 @ Lii.G5Ni〇.33C〇().33Mn().33〇l.95(P〇4)().()5 之二次粒子之粒子表 面上,有 Li〇.98Ni().8()C〇().i5Al().()5〇2 以 50 重量 %加以被覆 之平均粒子徑爲13·3μιη之Li-Ni複合氧化物粒子粉末。 - 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 _ 行差示熱分析之結果,其發熱最大峰部溫度係295 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係 157 mAh/g,而在60°C下保存1週後之殘存放電容量係152 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 〇 16 ppm ° 實施例9 在Li-Ni-Mn複合氧化物之製造中,除了將2 mol/1之硫 酸鎳及硫酸鈷及硫酸錳混合而成Ni: Co: Mn= 50 : 20 : 30之 水溶液,並將此混合物在氧氣環境下,以950°C燒成4小時 ,以及將經 Ni-Co 氣氧化物被覆之 Lii.{j5Ni〇.5()C〇().2GMn().3〇〇2 中間體,及事先以磨碎機進行過粒度調整之氫氧化鋰及氫 -38- 201027830 氧化鋁’以莫爾比爲Li/(表面之Ni + C〇 + Al + Mg) = 0.98而進 行混合以外,其餘均與實施例3同樣地進行操作,而製得 在作爲核之 Lii.〇5Ni〇.5〇C〇Q.2()Mn〇.3()〇2之二次粒子之粒子 表面上,有1^。.981^〇.8()〇0。.15八1。.()4^§().〇102以50重量%加 以被覆之平均粒子徑爲13.4μιη之Li-Ni複合氧化物粒子 粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 〇 行差示熱分析之結果,其發熱最大峰部溫度係285 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係171 mAh/g,而在60°C下保存1週後之殘存放電容量係166 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 1 7 ppm ° 實施例1〇 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn 氫氧化物粒子及碳酸鋰及氟化鋰,係以莫爾比爲 Li/(Ni+Co+Mn)=1.05而進行混合以外,其餘均與實施例9同樣 地進行操作,而製得在作爲核之Lii.G5Ni〇.5GC〇().2()Mn〇.3()〇i.95F〇.〇5 之二次粒子之粒子表面上,有 Lio.wNio.sQCoG.MAlo.MMgQ.QiO2 以50重量%加以被覆之平均粒子徑爲13·3μηι之Li-Ni複 合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係287°C。此 外,該Li-Ni複合氧化物粒子粉末之放電容量係169 -39- 201027830 mAh/g,而在60°C下保存1週後之殘存放電容量係163 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 15 ppm 〇 實施例11 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn 氫氧化物粒子及碳酸鋰及磷酸鋰,係以莫爾比爲 Li/(Ni+Co+Mn)=1.05而進行混合以外,其餘均與實施例9同樣 φ 地進行操作,而製得在作爲核之 Lii.Q5Ni〇.5()C〇().2()Mn().3()〇l.95(P〇4)0.05 之二次粒子之粒子表面上,有 Li〇.98Ni〇.8〇C〇Q.i5Al().〇4Mg().〇i〇2 以50重量%加以被覆之平均粒子徑爲13·4μιη之Li-Ni複 合氧化物粒子粉末。 . 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係285 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係167 mAh/g,而在601下保存1週後之殘存放電容量係161 ® mAh/g。進一步,高溫保存後之電解液中之錳溶離量’係 1 8 ppm 〇 實施例1 2 在Li-Ni-Mn複合氧化物之製造中,除了將2 mol/1 之硫酸鎳及硫酸鈷及硫酸錳混合而成Ni : Co : Mn= 60 :20: 20之水溶液,並將此混合物在氧氣環境下’以 830°C燒成4小時;以及將經Ni-C0氫氧化物被覆之 -40- 201027830Lii.01Ni0.33Co0.24Mn0.33 Al〇.〇5Mg〇.〇4〇2 Li-Ni-Mn complex oxygenate. The discharge capacity of the Li-Ni composite oxide particles was 147 mAh/g', and the storage capacity after storage for one week at 60 °C was 135 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high temperature storage was 24 ppm. Comparative Example 2 0 In addition to Ni-Co-Mn-Al-Mg hydroxide particles and lithium carbonate and lithium fluoride, the Mohr ratio is Li/(Ni + Co + Mn + Al + Mg) = 1. 〇l Except for mixing, the rest was operated in the same manner as in Comparative Example 19, and the composition was Li^wNi. .33Co0.24Mn0.33Al0.05Mg. . 0 40,.9^0.05 Li-Ni-Mn complex oxide. The discharge capacity of the Li-Ni composite oxide particles was 145 -30 to 201027830 mAh/g, and the storage capacity after storage for one week at 60 ° C was 133 mAh/g. Further, the amount of manganese dissolved in the electrolytic solution after high-temperature storage was 22 ppm. Comparative Example 21 Except Ni-Co-Mn-Al-Mg hydroxide particles and lithium carbonate and lithium phosphate, the molar ratio was Li/ (Ni + Co + Mn + Al + Mg) = 1.01, except that the mixture was mixed, and the same operation as in Comparative Example 19 was carried out to obtain a composition of L i 1.0 1 N i 〇. 3 3 C Ο 〇· 2 4 Mn〇. 3 3 A 1 〇. 〇5 M go . 04 〇1.9 5 ( P 〇4 ) 0.0 5 of Li-Ni-Mn composite oxide. The discharge capacity of the Li-Ni composite oxide particles was 143 mAh/g, and the storage capacity after storage for one week at 60 ° C was 132 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 2 3 ppm ° ® Example 1: Mixing 2 mol/1 of nickel sulfate and cobalt sulfate and manganese sulfate to form Ni: Co: Mn=33: 33 An aqueous solution of 33 and a 5.0 mol/1 aqueous ammonia solution were simultaneously supplied to the reaction tank. The reaction vessel was frequently stirred with a feather mixer while automatically supplying a 2 mol/Ι aqueous sodium hydroxide solution to have a pH of =1 1.5 ± 0.5. The generated Ni-Co-Mn hydroxide is overflowed, concentrated in a concentration tank connected to the overflow pipe, and then the reaction tank is circulated, and the reaction tank and the Ni-Co- in the sedimentation tank are reacted for 40 hours. The Mn hydroxide concentration reaches 4 mol/1 for -31 - 201027830. After the reaction, the taken-out suspension was washed with water using a filter press at 10 times the weight of the Ni-Co-Mn hydroxide, and then dried to obtain Ni: Co: Μη = 33: 33 : Ni-Co-Mn hydroxide particles having an average secondary particle diameter of 9.5 μm. The Ni-Co-Mn hydroxide particles and lithium carbonate were mixed with a molar ratio of Li/(Ni + Co + Mn) = 1.05. The mixture was fired at 925 ° C for 4 hours in an oxygen atmosphere, and then decomposed and ground. The chemical composition of the obtained fired product was analyzed by ICP as "Li1.05Ni0.33Co0.33Mn0.33O2', and its average particle diameter was 9.6 μm. This Li-Ni-Mn composite oxide was used as a secondary particle powder as a core. The secondary particle powder 300 g was suspended in water, and 2 mol/Ί of nickel sulfate and cobalt sulfate were mixed to form a mixed aqueous solution of Ni:Co=84:16, and 5.0 m〇l/l of aqueous ammonia solution, while It is supplied in the reaction tank. The reaction tank was frequently stirred with a feather mixer while being automatically supplied with a 2 mol/1 aqueous sodium hydroxide solution to have a pH of =11.5 ±0.5. The Ni-Co hydroxide produced was compared with Lii.05 Nio.33 Coo. 33 Mno.33O2 to a weight percentage of 10 wt%. The suspension was washed with water using a filter press at 10 times the weight of the Li-Ni-Mn hydroxide, and then dried to obtain Li1.05Ni0 coated with Ni-Co ammonia oxide. 33Co0.33Mn0.33O2 intermediate. LiirwNimComMiimCh -32- 201027830 intermediate coated with Ni-Co hydroxide, and lithium hydroxide and aluminum hydroxide previously adjusted by particle size in an attritor, with molar ratio of Li/(Ni + C on the surface) 〇+ Al) = 0.98 and mix. The mixture was fired at 75 ° C for 10 hours in an oxygen atmosphere to obtain a particle on the surface of the secondary particle of Lh.05Ni0.33Co0.33Mn0.33O2 as a core, having Lio.98Nio.8oCOo. i5AlQ.0502 Li-Ni composite oxide particles © powder coated with 10% by weight and having an average particle diameter of 1 〇.6 μm. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 290 °C. In addition, the discharge capacity of the Li-Ni composite oxide particles was 160 mAh/g, and the storage capacity after storage for one week at 60 ° C was 155 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 2 1 ppm 〇 Example 2 except for the Ni-Co hydroxide to be coated with respect to Lii.Q5Ni〇.33C〇C).33Mn().33 〇2' is the same as in Example 1 except that it is 30 wt% by weight, and is produced as 1^.05^^0.33(^0().331^11( On the surface of the particles of the secondary particles of .3302, Li〇.98Ni().8〇C〇().i5Al().()5〇2 is coated with 30% by weight and the average particle diameter is 11.0 μm. Li-Ni composite oxide particle powder. The result of differential thermal analysis of the Li-Ni composite oxide particle powder under a state of charge of 4.5 V, the maximum peak temperature of the heat generation is 28 plant C. This is -33-201027830, The discharge capacity of the Li-Ni composite oxide particle powder was 167 mAh/g, and the residual storage capacity after storage for one week at 60 ° C was 161 mAh/g. Further, the manganese dissolution in the electrolyte after high temperature storage The amount is 19 ppm ° Example 3 except that the Ni-Co hydroxide used for coating is 50 wt% based on the weight percentage of Li1.05Ni0.33Co0.33M1iG.33O2. Except that the same operation as in Example 1 was carried out, on the surface of the particles of the secondary particles of LiK05Ni0.33Co0.33Mn0.33O2 as a core, Lio.98NiuoCou5Alo.a5O2 was coated at 50% by weight. The Li-Ni composite oxide particle powder having an average particle diameter of 13 〇μιη. The result of differential thermal analysis of the Li-Ni composite oxide particle powder under a state of charge of 4.5 V, the maximum peak temperature of the heating is 259. Further, the discharge capacity of the Li-Ni composite oxide particles was 176 mAh/g, and the storage capacity after storage for one week at 60 ° C was 170 φ mAh/g. Further, after storage at a high temperature The amount of manganese dissolved in the electrolyte is 18 ppm. Example 4 In the manufacture of Li-Ni-Mn composite oxide, in addition to Ni-Co-Mn hydroxide particles and lithium carbonate and lithium fluoride, Moor The mixture was operated in the same manner as in Example 3 except that Li/(Ni + Co + Mn) = 1.05 was mixed, and Li1.Q5Nio.33Co0.33Mno.33O1.95Fo.o5 as a core was obtained. ― -34- 201027830 The particle surface of the sub-particle has Lio.98Nio.8oCoo.MAlo.0 502 added by 50% by weight A Li-Ni composite oxide particle powder having an average particle diameter of 13.5 μm was coated. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 292 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 158 mAh/g, and the residual storage capacity after storage for one week at 60 ° C was I50 mA mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 18 ppm °. Example 5 In the production of Li-Ni-Mn composite oxide, in addition to Ni-Co-Mn hydroxide particles and lithium carbonate and fluorination In the case where lithium was mixed with a molar ratio of Li/(Ni+Co+Mn)=l_〇5, the operation was carried out in the same manner as in Example 3, and Lii.〇5Ni〇 was obtained as a core. .33C〇〇.33Mn〇.33〇1.95(P〇4)0.05 The particle of the primary particle has Li〇.98Ni〇.8()C〇().i5Al().〇5〇2 to 50 The Li-Ni composite oxide particle powder having an average particle diameter of 13.2 μm coated with a weight % was coated. The results of the differential thermal analysis of the Li-Ni composite oxide particles at a state of charge of 4.5 V were as follows: the maximum peak temperature of the heat generation was 295 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 157 mAh/g, and the storage capacity after storage for one week at 60 ° C was 151 mAh/g. Further, the amount of manganese dissolved in the electrolytic solution after high-temperature storage was 15 ppm ° -35 - 201027830. Example 6 was operated in the same manner as in Example 1, and the composition of the core was Lii.〇5Ni〇.33Co〇. A Li-Ni-Mn composite oxide having an average particle diameter of Mn of 3Mn 〇3302 of 9.6 μm. 2 mol/l of nickel sulfate and cobalt sulfate were mixed to form an aqueous solution of Ni:C〇=84:16, and an aqueous solution of 5.0 mol/1 of ammonia was simultaneously supplied to the reaction tank. ❿ The reaction tank is frequently stirred with a feather mixer while automatically supplying a 2 mol/1 aqueous sodium hydroxide solution to pH 値=1 1.5±0.5. The generated Ni-Co hydroxide is overflowed, concentrated in a concentration tank connected to the overflow pipe, and then circulated to the reaction tank to react the reaction tank for 40 hours and the Ni-Co in the sedimentation tank. The hydroxide concentration reached 4 mol/1. The suspension was washed with water using a filter press at 10 times the weight of the Ni-Co hydroxide, dried, and pulverized by a jet mill to obtain Ni having an average particle diameter of 1.8 μχη. : Co = 84 : 9 16 Ni-Co hydroxide particles. Here, for the core Lh.05Ni0.33Co0.33Mn0.33O2, NiG.84C〇().16(OH)2 having an average particle diameter of 1.8 μm is further mixed to have a weight percentage of 50%, and then mechanical properties are used. The grinder was mechanically treated for 30 minutes to prepare a Li1.05 Nio.33 Coo.33 Mno.33O2 intermediate coated with Ni-Co hydroxide. The Lh.osNimCoo.nMno.uCb intermediate coated with Ni-Co hydroxide, and lithium hydroxide and hydrogen-36-201027830 alumina which have been previously subjected to particle size adjustment by an attritor, with a molar ratio of Li/ (Ni + C 〇 + Al on the surface) = 0.98 and mixed. The mixture was fired at 75 ° C for 10 hours in an oxygen atmosphere to obtain Li 〇.98 Ni 〇.8 表面 on the surface of the particles of the secondary particles of LiK05Ni0.33Co0.33MnQ.33O2 as a core. C〇Q.i5Al().()5〇2 Li-Ni composite oxide particle powder having an average particle diameter of 13.1 μm coated at 50% by weight. © As a result of differential thermal analysis of the Li-Ni composite oxide particle powder at a state of charge of 4.5 V, the maximum peak temperature of the heat generation was 29 8 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 159 'mAh/g, and the storage capacity after storage for one week at 60 ° C was 154 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 17 ppm. Example 7 In addition to Ni-Co-Mn hydroxide particles and lithium carbonate and lithium fluoride, the molar ratio is Li/(Ni + The surface of the particles of the secondary particles of Li1.05Ni0.33CO0.33Mn0.33Ol.95F0.〇5 as the core was prepared in the same manner as in Example 6 except that the mixture was mixed with Co + Mn) = 1.05. In the above, Li-Ni composite oxide particle powder having an average particle diameter of 13.0 μm coated with Li0.98Ni0.80Con5Al0.05O2 at 50% by weight was used. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 290 °C. Further, the discharge capacity of the Li-Ni composite oxide particle powder was 158 37-201027830 mAh/g, and the residual storage capacity after storage for 6 weeks at TC was 151 mAh/g. Further, the electrolysis after high temperature storage The amount of manganese dissolved in the liquid is 14 ppm. Example 8 In addition to Ni-Co-Mn hydroxide particles and lithium carbonate and lithium fluoride, the molar ratio is Li/(Ni + Co + Mn) = 1.05. Except for mixing, the rest were operated in the same manner as in Example 6 to obtain @Lii.G5Ni〇.33C〇().33Mn().33〇l.95(P〇4)() as a core. On the surface of the particles of the secondary particles of (5), Li〇.98Ni().8()C〇().i5Al().()5〇2 is coated with 50% by weight and the average particle diameter is 13· 3 μιηη Li-Ni composite oxide particle powder - The Li-Ni composite oxide particle powder was subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 295 ° C. The discharge capacity of the Li-Ni composite oxide particles was 157 mAh/g, and the storage capacity after storage for one week at 60 ° C was 152 mAh/g. Further, the manganese solution in the electrolyte after high temperature storage Amount, 〇16 ppm ° Example 9 In the manufacture of Li-Ni-Mn composite oxide, except that 2 mol/1 of nickel sulfate and cobalt sulfate and manganese sulfate are mixed to form Ni: Co: Mn = 50 : 20 : 30 aqueous solution, and the mixture was fired at 950 ° C for 4 hours in an oxygen atmosphere, and Lii. {j5Ni〇.5()C〇().2GMn (coated with Ni-Co gas oxide) ).3〇〇2 Intermediate, and lithium hydroxide and hydrogen which have been previously subjected to particle size adjustment by an attritor-38-201027830 Alumina' with a molar ratio of Li/(Ni + C〇 + Al + Mg on the surface) In addition to the mixing of 0.98, the same operation as in Example 3 was carried out, and Lii.〇5Ni〇.5〇C〇Q.2()Mn〇.3()〇2 as a core was obtained. On the surface of the particles of the secondary particles, there is 1^..981^〇.8()〇0..15八1..()4^§(). The average particle diameter of 〇102 coated with 50% by weight is 13.4 μm of Li-Ni composite oxide particle powder. The Li-Ni composite oxide particle powder was subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 285 ° C. The Li-Ni composite oxide particle powder is placed System capacity 171 mAh / g, while the remaining storage capacity after 1 week of discharge line 166 mAh / g at 60 ° C. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 1 7 ppm °. In the manufacture of Li-Ni-Mn composite oxide, in addition to Ni-Co-Mn hydroxide particles and lithium carbonate, Lithium fluoride was prepared in the same manner as in Example 9 except that the molar ratio was Li/(Ni + Co + Mn) = 1.05, and Lii.G5Ni〇.5GC was obtained as a core. 〇().2()Mn〇.3()〇i.95F〇.〇5 The particle of the secondary particle has an average of 50% by weight of Lio.wNio.sQCoG.MAlo.MMgQ.QiO2 A Li-Ni composite oxide particle powder having a particle diameter of 13·3 μηι. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 287 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 169 - 39 - 201027830 mAh / g, and the residual storage capacity after storage for one week at 60 ° C was 163 mAh / g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 15 ppm. Example 11 In the production of Li-Ni-Mn composite oxide, in addition to Ni-Co-Mn hydroxide particles and lithium carbonate and lithium phosphate The mixture was operated in the same manner as in Example 9 except that the molar ratio was Li/(Ni+Co+Mn)=1.05, and Lii.Q5Ni〇.5() was obtained as the core. On the surface of the particles of C二次().2()Mn().3()〇l.95(P〇4)0.05, there are Li〇.98Ni〇.8〇C〇Q.i5Al() 〇4Mg().〇i〇2 Li-Ni composite oxide particle powder having an average particle diameter of 13.4 μm coated at 50% by weight. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 285 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 167 mAh/g, and the storage capacity after storage for one week at 601 was 161 ® mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 1 8 ppm. Example 1 2 In the production of Li-Ni-Mn composite oxide, in addition to 2 mol/1 of nickel sulfate and cobalt sulfate and sulfuric acid Manganese is mixed into an aqueous solution of Ni:Co: Mn=60:20:20, and the mixture is fired at 830 ° C for 4 hours in an oxygen atmosphere; and -40-coated with Ni-C0 hydroxide 201027830

Lii.()5Ni〇.6()C〇〇.2GMn().2()〇2中間體,及事先以磨碎機進行過粒 度調整之氫氧化鋰及氫氧化鎂及氧化鉻,以莫爾比爲Li/( 表面之Ni + Co + Al + Mg + Zr) = 0.98而進行混合以外,其餘均 與實施例 3同樣地進行操作,而製得在作爲核之 Lii.〇5Ni〇.6()Cc)().2()Mn().2()〇2 之一次粒子之粒子表面上’有 Li〇.98Ni〇.8〇C〇Q.i5Al〇.〇3Mg〇.C)iZr〇.〇i〇2 以 50 重量 %加以被 覆之平均粒子徑爲13.6μιη之Li-Ni複合氧化物粒子粉末 〇 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係278 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係 184 mAh/g,而在60°C下保存1週後之殘存放電容量係177 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 17 ppm 〇 ®實施例13 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn 氫氧化物粒子及碳酸鋰及氟化鋰,係以莫爾比爲 Li/(Ni+Co+Mn)=1.05而進行混合以外,其餘均與實施例12同樣 地進行操作’而製得在作爲核之Lii_G5Ni〇.6()C〇G.2()MnG.2()〇丨.95F0.05 之二次粒子之粒子表面上,有 Li〇.98Ni〇.8〇C〇〇.丨 5Al0.03Mg0.01Zr0.01O2 以50重量%加以被覆之平均粒子徑爲13·7μιη之Li-Ni複 合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 201027830 行差示熱分析之結果’其發熱最大峰部溫度係279C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係183 mAh/g,而在60 °C下保存1週後之殘存放電容量係175 mAh/g。進一步,高溫保存後之電解液中之錳溶離量’係 1 5 ppm 〇 實施例14 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn 氫氧化物粒子及碳酸鋰及磷酸鋰’係以莫爾比爲 Li/(Ni+Co+Mn)=1.05而進行混合以外,其餘均與實施例12同樣 地進行操作,而製得在作爲核之 Lii.Q5Ni(».6()C〇().2()Mn().2()〇i.95(P〇4)0.05 之二次粒子之粒子表面上,有 Li〇.98Ni().8()Co〇.i5Al〇.{)3Mg().()iZr().〇i〇2 以50重量%加以被覆之平均粒子徑爲13.8μπι之Li-Ni複 合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4·5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係274°C。此 外,該Li-Ni複合氧化物粒子粉末之放電容量係181 mAh/g,而在60 °C下保存1週後之殘存放電容量係175 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 16 ppm 〇 實施例1 5 在Li-Ni-Μη複合氧化物之製造中,除了將2 mol/1之 硫酸鎳及硫酸鈷及硫酸錳及硫酸鋁混合而成Ni: Co: Μη: A1 -42- 201027830 =33 : 24 : 33 : 9之水溶液,將Ni-Co-Mn-Al氫氧化物粒子及 碳酸鋰以莫爾比爲Li/(Ni + C〇 + Mn + Al)=1.01而進行混合,並 將2 mol/Ι之硫酸鎳及硫酸鈷混合而成Ni : Co= 79 : 21之水 溶液,以及將經Ni : Co= 79 : 21之Ni-C〇氫氧化物被覆之 LiKtnNimCoo.^Mno.^Alo.^C^中間體,及事先以磨碎機進行 過粒度調整之氫氧化鋰及氫氧化鋁及氫氧化鎂及氧化鉻及氧 化鈦,以莫爾比爲Li/(表面之Ni + Co + Al + Mg + Zr + Ti)=1.05而 β 進行混合以外,其餘均與實施例3同樣地進行操作,而製得 在作爲核之Lii.oiNimCoo.MMnmAlo.wC^之二次粒子之粒子 表面上,有 Lii.05Ni0.75Co0.20Al0.02Mg0.01ZrG.01Ti0.01O2 以 50重量%加以被覆之平均粒子徑爲13.0μιη之Li-Ni複合 - 氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係300°C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係165 β mAh/g,而在60°C下保存1週後之殘存放電容量係159 mAh/g。進一步,高溫保存後之電解液中之鐘溶離量,係 19 ppm 〇 實施例1 6 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn-Al 氫氧化物粒子及碳酸鋰及氟化鋰’係以莫爾比爲 Li/(Ni+Co+Mn+Al)=1.01而進行混合以外,其餘均與實施例15同樣 地進行操作,而製得在作爲核之Lii.。丨NimCoQ.MMnQ.MAiG.wOl.psFo.o5 -43- 201027830 之二次粒子之粒子表面上,有 Lii.〇5Ni〇.75C〇Q.2()Al().()2Mg〇.()iZr().()iTi().〇i〇2 以50重量%加以被覆之平均粒子徑爲13.2μιη之Li-Ni複 合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係295 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係 163 mAh/g,而在60°C下保存1週後之殘存放電容量係157 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 ® 15 ppm 〇 實施例1 7 * 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn-Al氫 — 氧化物粒子及碳酸鋰及磷酸鋰,係以莫爾比爲 Li/(Ni+Co+Mn+Al)=1.01而進行混合以外,其餘均與實施例15同樣 地進行操作,而製得在作爲核之 Lii.GiNi〇.33C〇G.24Mn().33AlG.()9〇1.95(P〇4)0.05 之二次粒子之粒子表面上,有 Lii.〇5Ni〇.75C〇〇.2〇Al〇.〇2Mg〇.〇 丨 Zr〇.〇 丨 Ti〇.〇i〇2 以50重量%加以被覆之平均粒子徑爲13.3μιη之Li-Ni複 合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係290°C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係162 mAh/g,而在60 °C下保存1週後之殘存放電容量係157 mAh/g。進一步,高溫保存後之電解液中之鍾溶離量,係 15 ppm 〇 -44 - 201027830 實施例1 8 在Li-Ni-Mn複合氧化物之製造中,除了將2 mol/1之 硫酸鎳及硫酸鈷及硫酸錳及硫酸鋁混合而成Ni: Co: Μη :Mg=33: 24: 33: 9 之水溶液,將 Ni-Co-Mn-Mg 氫氧 化物粒子及碳酸鋰以莫爾比爲Li/(Ni + C〇 + Mn + Mg)=1.01而 進行混合,並將2 mol/1之硫酸鎳及硫酸鈷混合而成ΝΪ: Φ Co = 79 : 21之水溶液,以及將經Ni : Co= 79 : 21之Ni-Co 氨氧化物被覆之 Li1.01Ni0.33Co0.24Mn0.33Mg0.09O2 中間 體,及事先以磨碎機進行過粒度調整之氫氧化鋰及氫氧化 ' 鋁及氫氧化鎂及氧化錐及氧化鈦,以莫爾比爲Li/(表面之 - Ni + Co + Al+Mg+Zr+Ti)=1.05而進行混合以外,其餘均與實施例3 同樣地進行操作,而製得在作爲核之Li^NiojsCoo.MMn^Mgo.MOa 之二次粒子之粒子表面上,有 Lii.G5Ni〇.75C〇G.2()AlG.()2Mg〇.〇iZr().〇iTiG.〇i〇2 以50重量%加以被覆之平均粒子徑爲13.1μιη之Li-Ni複 β 合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係292 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係163 mAh/g,而在60°C下保存1週後之殘存放電容量係156 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 17 ppm 〇 實施例1 9 -45- 201027830 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn-Mg 氫氧化物粒子及碳酸鋰及氟化鋰’係以莫爾比爲 Li/(Ni+Co+Mn+Mg)=;L01而進行混合以外,其餘均與實施例18同樣 地進行操作,而製得在作爲核之Li1.01Ni0.33Co0.24Mn0.33Mg0.09O丨.95F0.05 之二次粒子之粒子表面上’有 Lii.〇5Ni〇.75C〇〇.2〇Al〇.〇2Mg〇.〇iZr〇.〇iTi〇.〇i〇2 以50重量%加以被覆之平均粒子徑爲13·0μιη之Li-Ni複 合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 〇 行差示熱分析之結果,其發熱最大峰部溫度係294°C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係 162 mAh/g,而在60°C下保存1週後之殘存放電容量係156 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 - 18 ppm 〇 實施例20 在Li-Ni-Mn複合氧化物之製造中,除了 Ni-Co-Mn-Mg β 氫氧化物粒子及碳酸鋰及磷酸鋰,係以莫爾比爲 Li/(Ni + Co + Mn + Mg) = 1.0 1而進行混合以外,其餘均與 實施例 18同樣地進行操作,而製得在作爲核之 Lii.〇iNi〇.33C〇〇.24Mn().33Mg〇.()9〇1.95(P〇4)0.()5 之一次粒子之粒子表面上, 有 Lii.〇5Ni〇.75C〇G.2〇Al〇_〇2Mg〇.〇iZr〇.〇iTi(3.〇i〇2 以 50 重量 % 加以被覆之平均粒子徑爲13.4μιη之Li-Ni複合氧化物粒 子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 -46- 201027830 行差示熱分析之結果,其發熱最大峰部溫度係305 °C。此 外,該Li-Ni複合氧化物粒子粉末之放電容量係160 mAh/g,而在60°C下保存1週後之殘存放電容量係155 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 17 ppm ° 實施例21 β 在Li-Ni-Mn複合氧化物之製造中,除了將2 mol/1 之硫酸鎳及硫酸鈷及硫酸錳及硫酸鋁及硫酸鎂混合而成 Ni : Co: Μη: Al: Mg= 33 : 24: 33: 5: 4 之水溶液’ 將Ni-Co-Mn-Al-Mg氫氧化物粒子及碳酸鋰以莫爾比爲 • Li/(Ni + Co + Mn + Al + Mg) = l.〇l而進行混合以外,其餘均 與實施例 3同樣地進行操作,而製得在作爲核之 Lh.cnNimComMnmAlo.osMgo.iMOa 之二次粒子之粒子 表面上,有 L i 1.。5 N i 〇. 7 5 C 〇 〇. 2。A1。.。2 M g 〇. 〇 1Z r。.❶ 1 T i 〇.。1 Ο 2 以 β 50重量%加以被覆之平均粒子徑爲13·3μιη之Li-Ni複合 氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係306 °C。此 外,該Li-Ni複合氧化物粒子粉末之放電容量係164 mAh/g,而在60 °C下保存1週後之殘存放電容量係159 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 16 ppm 〇 -47- 201027830 實施例22 在 Li-Ni-Mn複合氧化物之製造中,除了 Ni_Co-Mn-Al-Mg 氫氧化物粒子及碳酸鋰及氟化鋰,係以莫爾比爲 Li/(Ni + Co + Mn + Al + Mg)=l .01而進行混合以外,其餘均與 實施例 21同樣地進行操作,而製得在作爲核之 Li1.01Ni0.33Co0.24Mn0.33Al0.05Mg0.04O1.95F0.05 之二次粒子之粒子表面上 ,有 Li 1.。5Ni。.75C〇。_2。A1。.。2Mg。.。1Zr。.。1 Ti。.。1 〇2 以 50 重量 %加以被覆之平均粒子徑爲1 3 ·2μπι之Li-Ni複合氧化物粒 子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係305°C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係 163 mAh/g,而在60°C下保存1週後之殘存放電容量係158 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 17 ppm 〇 ' 實施例23 除了 Ni-Co-Mn-Al-Mg氫氧化物粒子及碳酸鋰及磷酸 鋰,係以莫爾比爲Li/(Ni + Co + Mn + Al + Mg)=l.〇l而進行混 合以外,其餘均與實施例21同樣地進行操作,而製得在 作爲核之 Lii.〇iNi〇.33C〇〇.24Mn〇.33Al〇.〇5Mg〇.〇4〇i.95(P〇4)0.05 之一次粒子之粒子表面上,有 Li丨.GsNidsCoGjoAlo.i^Mgo.oiZro.GiTio.oiC^ 以50重量%加以被覆之平均粒子徑爲13.1 μπι之Li-Ni複 合氧化物粒子粉末。 201027830 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係3 03 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係161 mAh/g,而在60 °C下保存1週後之殘存放電容量係157 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 16 ppm 〇 β 比較例2 除了所被覆之Ni-C〇氫氧化物,相對於Lii.05Ni0.33Co0.33Mn0.33O2 ,以重量百分率計,係成爲5 wt%以外,其餘均與實施 ' 例 1 同樣地進行操作,而製得在作爲核之Lii.()5Ni〇.6()C〇〇.2GMn().2()〇2 intermediate, and lithium hydroxide and magnesium hydroxide and chromium oxide which have been previously subjected to particle size adjustment by an attritor, to Mo In the same manner as in Example 3 except that the ratio of Li/(Ni + Co + Al + Mg + Zr) on the surface was 0.98, Lii.〇5Ni〇.6 was obtained as a core. ()Cc)().2() Mn().2()〇2 The particle of the primary particle has 'Li〇.98Ni〇.8〇C〇Q.i5Al〇.〇3Mg〇.C)iZr 〇.〇i〇2 Li-Ni composite oxide particle powder having an average particle diameter of 13.6 μm coated with 50% by weight 〇 The Li-Ni composite oxide particle powder was subjected to differential thermal analysis at a state of charge of 4.5 V As a result, the maximum peak temperature of the heat generation was 278 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 184 mAh/g, and the residual storage capacity after storage at 60 ° C for one week was 177 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 17 ppm 〇® Example 13 In the manufacture of Li-Ni-Mn composite oxide, except for Ni-Co-Mn hydroxide particles and lithium carbonate and fluorine In the same manner as in Example 12 except that the molar ratio of Li/(Ni+Co+Mn)=1.05 was mixed, the lithium was obtained as Lii_G5Ni〇.6()C as a core. 〇G.2() MnG.2()〇丨.95F0.05 on the surface of the particles, there are Li〇.98Ni〇.8〇C〇〇.丨5Al0.03Mg0.01Zr0.01O2 at 50 weight The Li-Ni composite oxide particle powder having an average particle diameter of 13·7 μm was coated with %. The Li-Ni composite oxide particles were subjected to differential thermal analysis at 201027830 in a state of charge of 4.5 V. The maximum peak temperature of the heat generation was 279C. Further, the discharge capacity of the Li-Ni composite oxide particles was 183 mAh/g, and the residual storage capacity after storage for one week at 60 °C was 175 mAh/g. Further, the amount of manganese elution in the electrolytic solution after high-temperature storage is 1 5 ppm. Example 14 In the production of Li-Ni-Mn composite oxide, in addition to Ni-Co-Mn hydroxide particles and lithium carbonate and phosphoric acid Lithium was used in the same manner as in Example 12 except that the molar ratio of Li/(Ni+Co+Mn)=1.05 was mixed, and Lii.Q5Ni(».6( ) C〇().2()Mn().2()〇i.95(P〇4)0.05 The particle of the secondary particle has Li〇.98Ni().8()Co〇.i5Al ).{)3Mg().()iZr().〇i〇2 A Li-Ni composite oxide particle powder having an average particle diameter of 13.8 μm coated with 50% by weight. As a result of differential thermal analysis of the Li-Ni composite oxide particles in a state of charge of 4.5 V, the maximum peak temperature of the heat generation was 274 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 181 mAh/g, and the residual storage capacity after storage for one week at 60 °C was 175 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 16 ppm 〇 Example 15 In the manufacture of Li-Ni-Μη composite oxide, in addition to 2 mol/1 of nickel sulfate and cobalt sulfate and manganese sulfate And aluminum sulfate mixed with Ni: Co: Μη: A1 -42- 201027830 =33 : 24 : 33 : 9 aqueous solution, Ni-Co-Mn-Al hydroxide particles and lithium carbonate in molar ratio of Li / Mixing (Ni + C〇 + Mn + Al) = 1.01, and mixing 2 mol / Ι of nickel sulfate and cobalt sulfate to form an aqueous solution of Ni : Co = 79 : 21, and passing Ni : Co = 79 : 21 Ni-C 〇 hydroxide-coated LiKtnNimCoo.^Mno.^Alo.^C^ intermediate, and lithium hydroxide and aluminum hydroxide and magnesium hydroxide and chromium oxide which have been previously sized by an attritor And the titanium oxide was prepared in the same manner as in Example 3 except that the molar ratio was Li/(Ni + Co + Al + Mg + Zr + Ti on the surface) = 1.05 and β was mixed. On the surface of the particles of the secondary particle of Lii.oiNimCoo.MMnmAlo.wC^, the average particle diameter of Lii.05Ni0.75Co0.20Al0.02Mg0.01ZrG.01Ti0.01O2 coated at 50% by weight is 13.0μ. η of the Li-Ni composite - oxide particles. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 300 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 165 β mAh/g, and the residual storage capacity after storage for one week at 60 ° C was 159 mAh/g. Further, the amount of elution in the electrolyte after high-temperature storage is 19 ppm 〇 Example 16 In the manufacture of Li-Ni-Mn composite oxide, except for Ni-Co-Mn-Al hydroxide particles and lithium carbonate In the same manner as in Example 15, except that the lithium fluoride was mixed with a molar ratio of Li/(Ni + Co + Mn + Al) = 1.01, Lii. was obtained as a core.丨NimCoQ.MMnQ.MAiG.wOl.psFo.o5 -43- 201027830 The surface of the particles of the secondary particles is Lii.〇5Ni〇.75C〇Q.2()Al().()2Mg〇.() iZr().()iTi().〇i〇2 A Li-Ni composite oxide particle powder having an average particle diameter of 13.2 μm coated at 50% by weight. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 295 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 163 mAh/g, and the residual storage capacity after storage for one week at 60 °C was 157 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 15 15 ppm 〇 Example 1 7 * In the manufacture of Li-Ni-Mn composite oxide, except for Ni-Co-Mn-Al hydrogen-oxide particles And Lithium carbonate and lithium phosphate were mixed in the same manner as in Example 15 except that the molar ratio was Li/(Ni + Co + Mn + Al) = 1.01, and Lii was obtained as a core. .GiNi〇.33C〇G.24Mn().33AlG.()9〇1.95(P〇4)0.05 The particle of the secondary particle has Lii.〇5Ni〇.75C〇〇.2〇Al〇. 〇2Mg〇.〇丨Zr〇.〇丨Ti〇.〇i〇2 Li-Ni composite oxide particle powder having an average particle diameter of 13.3 μm coated at 50% by weight. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 290 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 162 mAh/g, and the residual storage capacity after storage for one week at 60 °C was 157 mAh/g. Further, the amount of time dissolved in the electrolyte after high-temperature storage is 15 ppm 〇-44 - 201027830. Example 1 8 In the manufacture of Li-Ni-Mn composite oxide, in addition to 2 mol/1 of nickel sulfate and sulfuric acid Cobalt and manganese sulfate and aluminum sulfate are mixed to form an aqueous solution of Ni: Co: Μ : Mg = 33: 24: 33: 9, and Ni-Co-Mn-Mg hydroxide particles and lithium carbonate are in molar ratio of Li/ (Ni + C〇 + Mn + Mg) = 1.01 and mixed, and 2 mol / 1 of nickel sulfate and cobalt sulfate were mixed to form a ΝΪ: Φ Co = 79: 21 aqueous solution, and will pass Ni: Co = 79 : 21 Ni-Co ammonia oxide coated Li1.01Ni0.33Co0.24Mn0.33Mg0.09O2 intermediate, and lithium hydroxide and hydroxide 'aluminum and magnesium hydroxide previously granulated by an attritor and oxidized The cone and the titanium oxide were mixed in the same manner as in Example 3 except that the molar ratio was Li/(Ni + Co + Al + Mg + Zr + Ti) = 1.05. On the surface of the particles of the secondary particle of Li^NiojsCoo.MMn^Mgo.MOa, there are Lii.G5Ni〇.75C〇G.2()AlG.()2Mg〇.〇iZr().〇iTiG.〇 I〇2 averaged at 50% by weight Diameter sub-Li-Ni complex oxide particles 13.1μιη β of engagement. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 292 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 163 mAh/g, and the residual storage capacity after storage for one week at 60 °C was 156 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 17 ppm 〇 Example 19 - 45 - 201027830 In the manufacture of Li-Ni-Mn composite oxide, except for Ni-Co-Mn-Mg hydroxide The particles, lithium carbonate, and lithium fluoride were processed in the same manner as in Example 18 except that the molar ratio was Li/(Ni + Co + Mn + Mg) = L01, and the other was obtained. The particle of the secondary particle of Li1.01Ni0.33Co0.24Mn0.33Mg0.09O丨.95F0.05 has Lii.〇5Ni〇.75C〇〇.2〇Al〇.〇2Mg〇.〇iZr〇 〇iTi〇.〇i〇2 Li-Ni composite oxide particle powder having an average particle diameter of 13.0 μm coated at 50% by weight. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 294 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 162 mAh/g, and the storage capacity after storage for one week at 60 ° C was 156 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is - 18 ppm 〇 Example 20 In the production of Li-Ni-Mn composite oxide, except for Ni-Co-Mn-Mg β hydroxide particles and carbonic acid Lithium and lithium phosphate were prepared in the same manner as in Example 18 except that the molar ratio was Li/(Ni + Co + Mn + Mg) = 1.0 1 , and Lii was obtained as a core. 〇iNi〇.33C〇〇.24Mn().33Mg〇.()9〇1.95(P〇4)0.()5 The particle of the primary particle has Lii.〇5Ni〇.75C〇G.2 〇Al〇_〇2Mg〇.〇iZr〇.〇iTi(3.〇i〇2 Li-Ni composite oxide particle powder having an average particle diameter of 13.4 μm coated with 50% by weight. The Li-Ni composite oxidation The particle powder was subjected to a differential thermal analysis of -46-201027830 at a charge state of 4.5 V, and the maximum peak temperature of the heat generation was 305 ° C. Further, the discharge capacity of the Li-Ni composite oxide particle powder was 160 mAh. /g, and the residual storage capacity after storage for one week at 60 ° C is 155 mAh / g. Further, the amount of manganese dissolved in the electrolyte after high temperature storage is 17 ppm ° Example 21 β in Li-Ni In the production of the -Mn composite oxide, in addition to mixing 2 mol/1 of nickel sulfate and cobalt sulfate, and manganese sulfate, and aluminum sulfate and magnesium sulfate, Ni: Co: Μη: Al: Mg = 33 : 24: 33: 5 : 4 aqueous solution ' Mixing Ni-Co-Mn-Al-Mg hydroxide particles and lithium carbonate with a molar ratio of Li/(Ni + Co + Mn + Al + Mg) = l.〇l The rest were operated in the same manner as in Example 3, and on the surface of the particles of the secondary particles of Lh.cnNimComMnmAlo.osMgo.iMOa as a core, there was L i 1. 5 N i 〇. 7 5 C 〇 〇.2.A1..2 M g 〇. 〇1Z r..❶ 1 T i 〇..1 Ο 2 Li-Ni composite oxide having an average particle diameter of 13.3 μηη coated with β 50% by weight The powder of the Li-Ni composite oxide particles was subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 306 ° C. Further, the discharge of the Li-Ni composite oxide particles was discharged. The capacity is 164 mAh/g, and the residual storage capacity after storage for one week at 60 °C is 159 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high temperature storage is 16 ppm 〇-47. - 201027830 Example 22 In the production of Li-Ni-Mn composite oxide, in addition to Ni_Co-Mn-Al-Mg hydroxide particles and lithium carbonate and lithium fluoride, the molar ratio is Li/(Ni + Co + Mn + Al + Mg) = 1.01, except that the mixture was mixed, and the same operation as in Example 21 was carried out to obtain Li1.01Ni0.33Co0.24Mn0.33Al0.05Mg0.04O1.95F0 as a core. On the surface of the particles of the secondary particles of 05, there is Li 1. 5Ni. .75C〇. _2. A1. . . . 2Mg. . . . 1Zr. . . . 1 Ti. . . . 1 〇 2 Li-Ni composite oxide particle powder having an average particle diameter of 1 3 · 2 μm covered with 50% by weight. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 305 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 163 mAh/g, and the residual storage capacity after storage for one week at 60 °C was 158 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 17 ppm 实施'. Example 23 Except Ni-Co-Mn-Al-Mg hydroxide particles and lithium carbonate and lithium phosphate, Mo ratio is Li In the same manner as in Example 21, except that the mixture was mixed with (Ni + Co + Mn + Al + Mg) = 1. 〇l, Lii.〇iNi〇.33C〇〇 was obtained as a core. 24Mn〇.33Al〇.〇5Mg〇.〇4〇i.95(P〇4)0.05 The particle of the primary particle has Li丨.GsNidsCoGjoAlo.i^Mgo.oiZro.GiTio.oiC^ at 50% by weight The Li-Ni composite oxide particle powder having an average particle diameter of 13.1 μm was coated. 201027830 The Li-Ni composite oxide particle powder was subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 303 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 161 mAh/g, and the residual storage capacity after storage for one week at 60 °C was 157 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 16 ppm 〇β Comparative Example 2 except for the Ni-C 〇 hydroxide coated, relative to Lii.05Ni0.33Co0.33Mn0.33O2, by weight percentage , except for 5 wt%, the rest were operated in the same manner as in the case of Example 1, and were produced as a core.

Lh.05Ni0.33Co0.33Mnc.33O2之二次粒子之粒子表面上,有On the surface of the particles of the secondary particles of Lh.05Ni0.33Co0.33Mnc.33O2, there are

Li〇.98Ni〇.8〇C〇().15Al().()5〇2以5重量%加以被覆之平均粒子 徑爲9.8 μιη之Li-Ni複合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 ® 行差示熱分析之結果,其發熱最大峰部溫度係290°C。此 外,該Li-Ni複合氧化物粒子粉末之放電容量係157 mAh/g,而在60°C下保存1週後之殘存放電容量係153 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 2 5 ppm 〇 比較例3 除了所被覆之Ni-Co氫氧化物,相對於 Lii.〇5Ni〇.33C〇Q.33Mn().33〇2’ 以重量百分率 S十,係成爲 60 -49· 201027830 wt%以外,其餘均與實施例1同樣地進行操作,而製得在 作爲核之LiK05Ni0.33Co0.33Mn0.33O2之二次粒子之粒子表 面上,有 Li〇.98Ni〇.8〇C〇G.i5Al〇.()5〇2 以 60 重量 %加以被覆 之平均粒子徑爲13.5μηι之Li-Ni複合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉未在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係253 °C。此 外,該 Li-Ni複合氧化物粒子粉末之放電容量係178 mAh/g,而在60°C下保存1週後之殘存放電容量係170 φ mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 1 2 ppm 〇 比較例4 . 除了對於作爲核之 Liho5Nio.33Coo.33Mno.33O2,係混 合平均粒子徑5·0μηι之NiQ.84CoQ.16(〇H)2使其成爲重量百 分率50%,並使用機械性磨碎機進行30分鐘之機械性處 理外,其餘均與實施例6同樣地進行操作,而製得平均粒 〇 子徑爲7.3μιη之Li-Ni複合氧化物粒子粉末。 該Li-Ni複合氧化物粒子粉末在4.5 V充電狀態下進 行差示熱分析之結果,其發熱最大峰部溫度係2 79 °C。此 外,該Li-Ni複合氧化物粒子粉末之放電容量係157 mAh/g,而在60°C下保存1週後之殘存放電容量係148 mAh/g。進一步,高溫保存後之電解液中之錳溶離量,係 24 ppm 0 在實施例1〜23及比較例1〜21所得到之Li-Ni複合 -50- 201027830 氧化物之作爲核之粒子之組成、在表面或表面附近所被覆 或使之存在之粒子之組成、所被覆或使之存在之粒子之重 量百分率、平均粒子徑、初期放電容量、高溫保存後之殘 存容量率、Μη溶離量、Μη溶離率、最大發熱峰部溫度, 均如表1〜表4所示者。Li〇.98Ni〇.8〇C〇().15Al().()5〇2 A Li-Ni composite oxide particle powder having an average particle diameter of 9.8 μm coated with 5% by weight. The Li-Ni composite oxide particle powder was subjected to differential thermal analysis at a charge state of 4.5 V, and the maximum peak temperature of the heat generation was 290 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 157 mAh/g, and the residual storage capacity after storage for one week at 60 °C was 153 mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 2 5 ppm 〇 Comparative Example 3 except for the Ni-Co hydroxide coated, relative to Lii.〇5Ni〇.33C〇Q.33Mn().33 〇2' was operated in the same manner as in Example 1 except that it was 60-49·201027830 wt%, and the secondary particles of LiK05Ni0.33Co0.33Mn0.33O2 as a core were obtained. On the surface of the particles, there were Li〇.98Ni〇.8〇C〇G.i5Al〇.()5〇2 Li-Ni composite oxide particle powder having an average particle diameter of 13.5 μm covered with 60% by weight. The Li-Ni composite oxide particles were not subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 253 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 178 mAh/g, and the residual storage capacity after storage for one week at 60 °C was 170 φ mAh/g. Further, the amount of manganese dissolved in the electrolyte after high-temperature storage is 1 2 ppm 〇 Comparative Example 4. Except for Liho5Nio.33Coo.33Mno.33O2 as a core, NiQ.84 CoQ.16 with a mixed average particle diameter of 5·0μηι (〇H) 2, which was made into a weight percentage of 50%, and mechanically treated for 30 minutes using a mechanical grinder, and the same operation as in Example 6 was carried out to obtain an average particle diameter of 7.3. A powder of Li-Ni composite oxide particles of μιη. The Li-Ni composite oxide particles were subjected to differential thermal analysis at a state of charge of 4.5 V, and the maximum peak temperature of the heat generation was 2,79 °C. Further, the discharge capacity of the Li-Ni composite oxide particles was 157 mAh/g, and the storage capacity after storage for one week at 60 ° C was 148 mAh/g. Further, the amount of manganese dissolved in the electrolytic solution after the high-temperature storage is 24 ppm 0. The composition of the particles of the Li-Ni composite-50-201027830 oxide obtained in Examples 1 to 23 and Comparative Examples 1 to 21 The composition of the particles coated or otherwise present on or near the surface, the weight percentage of the particles coated or otherwise present, the average particle diameter, the initial discharge capacity, the residual capacity after storage at high temperature, the 溶η dissolved amount, Μη The dissolution rate and the maximum peak temperature of the heat generation are as shown in Tables 1 to 4.

-51 - 201027830 £ 時間 (hr) o o 〇 ο ο ο i o o o ο 〇 ο o o o O o o Ο ο m 蹊 溫度 CC7 s 卜 s fs. 8 卜 S r- s r· i % 爸 1 i e % 1 no 790 寒 7抑 η 被覆粒子 D50 1 1 ί 1 1 η 5 n 1 1 1 i I 1 i i 1 i 1 I 1 1 I i η S P ΟΛΟ 0Λ0 Μ0 ΟΛΟ 0.00 ω» 0Λ0 ΟΛΟ 1 OjOO ΟΛΟ ϊ I i 0.01 1 § 1 O i 0Λ1 N 0.00 0Λ0 〇.〇〇 οοο αοο 1 i 0.00 0.00 αοο 0.00 lML 0,01 〇 00i 細 1 0.01 i i 趣」 0.01 1 5 ΟΛΟ ω» α» ΟΛΟ (WO MO 0·00 ΟΛΟ i αοι i 0Λ1 I E 0识 1 0讲 5 O 1 0Λ1 ο» oos οχ» 0.06 0.05 006 0,05 〇〇♦ Λ〇4 I om aoz 1 ΐ (X02 om m Ϊ 002 α〇2 S ( i lJ>!»…… LP^ 0,1δ αΐδ 0.15 015 0.15 (MS 015 0.15 0-15 ai5 0·15 OJZO 020 〇·» 0^0 1 OiO J>«> 0·20 020 Ζ 0J0 0JB0 080 080 I i OJO ΟΛΟ 0J0 080 MO 080 i a7s W9 0.7S a?5 ws 歷」 0.78 ars a m I I I 098 1 i I i 1 1 i i ΐ $ 1Λ5 1.08 m 1Λ5 霉 二 1Λ5 IjOS Is o 8 S S S s 8 8 S 8 8 s s s s s t s s S 方法 1 1 ί ί 1 ξ ί 1 1 1 Ϊ Ϊ Ί ! ϊ 1 Ϊ 1 yrn ϊ 1 Μ '比較物 B5BSSB9iggai^S£ g£i ifli: s 圍1園11園讀園11_1園i堯釋M画圍團i i an Is ♦ 曾 曾 嚤 弩 嚤 諱 贊 r ir ••r 曹 ▼ ▼ 雄 |1 Se § § I i i § § S 0» 1 0SO § 3 § 1 i s a> i 1 • i 8 • 费 «ft > ac 1 lM〇 ODD 1 1 005 ΟϋΟ ΟΛΟ 0JQ5 1 aos 1 ΟΛΟ 0.05 1 1 005 MO OjOO 0Λ» ΟΛΟ 。斑 u. 0Λ) 1 αοο 0.09 1 OJDO m OjOO aos 1 ΟΛΟ 0.05 麗」 1 aos 1 i ΟΛδ 0加 OJOO 1 005 αοο | _ s 0加 i 1 αοο I 0.00 。« 1 1 MO OJOO 0加 ΟΛΟ 1 Ϊ 1 MO 0Λ9 OM 0.09 1 i 3 0JD0 1 —ΟΛΟ ΟΛΟ 9Λ〇 ΟΛΟ 0Λ0 1 1 0.00 ΟΛΟ 1 ϊ aw QLM 0.(» 1 ftoo i ί 0畑 5B Mn:Zt 0.33 0^3 § i 1 ϊ 1 1 1 WO 1 〇Λ) 0*20 ο-» 043 i OM 1 0.33 1 1 033 3 i 1 033 033 0.33 1 033 1 1 I 1 〇·2〇 1 0·20 OJM OJM JW4 ...J i 024 024 0*24 024 2 _.......j Ϊ 0^3 〇^3 0·33 0如 033 m 050 050 0.80 0.60 m aw I o' 033 0^3 i i 1 1 0.33 <133 3 < 8. 5 ,! § § B| Β § f s 5 5 5 s s ο □ I m m i 揖 m ντ 辑 m ν〇 据 m m m m 00 m m u 丨實施例9 Ό1 i 繼 m i m m τ*τ i 据 m 丨實施例13 i 辑 wS" i m m i 揖 u i實施例η 1實施例18 〇\ i 糲 m w m m m CN 据 s m 糲 m s 革 m m-51 - 201027830 £ Time (hr) oo 〇ο ο ο iooo ο 〇ο ooo O oo Ο ο m 蹊Current CC7 s 卜 fs. 8 卜 S r- sr· i % Dad 1 ie % 1 no 790 Cold 7 Ηη coated particles D50 1 1 ί 1 1 η 5 n 1 1 1 i I 1 ii 1 i 1 I 1 1 I i η SP ΟΛΟ 0Λ0 Μ0 ΟΛΟ 0.00 ω» 0Λ0 ΟΛΟ 1 OjOO ΟΛΟ ϊ I i 0.01 1 § 1 O i 0Λ1 N 0.00 0Λ0 〇.〇〇οοο αοο 1 i 0.00 0.00 αοο 0.00 lML 0,01 〇00i Fine 1 0.01 ii Interest" 0.01 1 5 ΟΛΟ ω» α» ΟΛΟ (WO MO 0·00 ΟΛΟ i αοι i 0Λ1 IE 0识1 0讲5 O 1 0Λ1 ο» oos οχ» 0.06 0.05 006 0,05 〇〇♦ Λ〇4 I om aoz 1 ΐ (X02 om m Ϊ 002 α〇2 S ( i lJ>!»...... LP ^ 0,1δ αΐδ 0.15 015 0.15 (MS 015 0.15 0-15 ai5 0·15 OJZO 020 〇·» 0^0 1 OiO J>«> 0·20 020 Ζ 0J0 0JB0 080 080 I i OJO ΟΛΟ 0J0 080 MO 080 i a7s W9 0.7S a?5 ws calendar 0.78 ars am III 098 1 i I i 1 1 ii ΐ $ 1Λ5 1.08 m 1Λ5 mildew 1Λ5 IjOS Is o 8 SSS s 8 8 S 8 8 ssssstss S Method 1 1 ί ί 1 ξ 1 1 1 Ϊ Ϊ Ί ! ϊ 1 Ϊ 1 yrn ϊ 1 Μ 'Comparatives B5BSSB9iggai^S£ g£i ifli: s 围 1园11园园园11_1园i尧释 M画围团i an Is ♦ 曾曾嚤弩嚤讳赞r ir ••r 曹 ▼ ▼雄|1 Se § § I ii § § S 0» 1 0SO § 3 § 1 is a> i 1 • i 8 • fee «ft > ac 1 lM〇ODD 1 1 005 ΟϋΟ ΟΛΟ 0JQ5 1 aos 1 ΟΛΟ 0.05 1 1 005 MO OjOO 0Λ» ΟΛΟ . Spot u. 0Λ) 1 αοο 0.09 1 OJDO m OjOO aos 1 ΟΛΟ 0.05 丽” 1 aos 1 i ΟΛδ 0 plus OJOO 1 005 αοο | _ s 0 plus i 1 αοο I 0.00 . « 1 1 MO OJOO 0 加ΟΛΟ 1 Ϊ 1 MO 0Λ9 OM 0.09 1 i 3 0JD0 1 —ΟΛΟ ΟΛΟ 9Λ〇ΟΛΟ 0Λ0 1 1 0.00 ΟΛΟ 1 ϊ aw QLM 0.(» 1 ftoo i ί 0畑5B Mn:Zt 0.33 0^3 § i 1 ϊ 1 1 1 WO 1 〇Λ) 0*20 ο-» 043 i OM 1 0.33 1 1 033 3 i 1 033 033 0.33 1 033 1 1 I 1 〇·2〇1 0·20 OJM OJM JW4 ...J i 024 024 0*24 024 2 _.......j Ϊ 0^3 〇^3 0·33 0如033 m 050 050 0.80 0.60 m aw I o' 033 0^3 Ii 1 1 0.33 <133 3 < 8. 5 ,! § § B| Β § fs 5 5 5 ss ο □ I mmi 揖m ντ series m ν〇 according to mmmm 00 mmu 丨Example 9 Ό1 i Following mimm τ *τ i according to m 丨Example 13 i series wS" immi 揖ui embodiment η 1 embodiment 18 〇\ i 粝mwmmm CN according to sm 粝ms leather mm

-52- 201027830 [表2]-52- 201027830 [Table 2]

初期特性 高溫保存特性赋) DSC 容量 01C (mAh/g) 殘存容置 CmAh/g) 殘存率 (X) (ρϊ^τΟ Μ痛離率 <%> tmmt (X) 實施例1 160 155 97 21 78 290 實施例2 167 161 96 19 70 281 實施例3 176 170 97 18 67 259 實施例4 158 150 95 18 69 292 實施例5 157 151 96 15 63 295 實施例6 159 154 97 17 63 298 實施例7 158 151 96 14 54 290 資施例8 157 152 97 16 67 295 實施例9 171 166 97 17 71 285 實施例10 169 163 96 15 65 287 實施例11 167 161 96 18 78 285 實施例12 184 177 95 17 77 278 實施例13 183 175 96 15 75 279 實施例14 181 175 97 16 76 274 *施例15 165 159 96 19 73 300 實施例16 163 157 96 15 60 295 實施例Π 162 157 97 15 63 290 實施例18 163 156 96 17 68 292 實施例19 162 156 96 18 75 294 實施例20 160 155 97 17 74 305 實施例21 164 159 97 16 67 306 實施例22 163 158 97 17 77 305 實施例23 161 157 98 16 70 303 -53- 201027830 燒成條件丨n〇2j 時間 (hr) 1 1 ο 〇 Ο 1 1 [ 1 1 \ 1 1 1 1 J \ 1 l » 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 } 1 1 1 le 1 1 750 g 卜 丨乃0 I J J 1 1 1 1 1 1 1 1 1 J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 被覆粒子 D50 (Mm) ! 1 1 j j s 1 1 J 1 1 1 1 1 1 \ J 1 1 1 > 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 l 1 組成 1 F 1 1 0.00 0.00 o.oo | J 1 1 j 1 J 1 1 1 1 i i l 1 i 1 1 1 1 J 1 \ j 1 1 1 1 1 1 1 1 1 1 i N 1 1 0.00 000 0.00 1 1 l l 1 \ J 1 1 1 1 1 1 1 1 1 1 \ 1 1 1 1 1 > 1 1 1 1 l 1 1 1 1 i U} 1 » 000 000 o.oo I J 1 i 1 l 1 1 1 1 1 1 i 1 \ 1 1 1 1 1 1 1 1 1 1 1 1 \ 1 1 1 1 1 t t < 1 1 005 0.05 0,05 | i i i i 1 J 1 1 1 l 1 J 1 1 J 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 » 奪 2 0 ο 1 1 0.15 015 I 0-15 I 1 \ 1 1 J 1 1 瞧 1 1 1 1 1 t 1 1 i 1 1 1 1 1 1 J 1 J J 1 1 1 1 i 1 乏 I 1 0.80 080 0.80 | \ 1 1 1 1 J 1 1 J 1 1 1 » 1 1 t 1 1 1 1 J 1 1 1 1 1 f l t 1 1 \ 1 Si J 1 0.98 098 0.98 1 1 t i J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \ i 1 1 1 1 1 1 1 1 1 1 1 1 Coat/Core (%) 1 \ ΙΟ S s 1 1 1 1 1 J 1 1 1 J 1 1 1 1 f 1 1 1 1 1 i 1 1 l 1 1 1 1 1 1 1 1 1 1 方法 1 1 wet wet 1 1 J 1 J \ 1 i I 1 1 l 1 1 1 1 J 1 1 1 1 1 1 1 1 1 1 1 1 \ 1 1 1 核粒子 時間 (hr) 守 寸 寸 «a- *3" 寸 •a- 溫度 CC) l〇 CSI Oi 925 i〇 CM <Λ I 925 I i〇 CJ σ> lO CM 05 950 g O) s <y> 830 830 o CO oo 950 950 o l〇 cn 950 | 950 950 950 | 950 950 § > ,P04 ! 0.00 0.00 000 [o.oo l 0.00 005 0.00 0.00 0.05 0.00 0.00 0.05 000 000 0.05 0.00 1 o.oo | 005 000 000 0.05 U- 0.00 000 0.00 〇.〇〇 | 005 | o.oo | 000 0.05 000 0.00 0.05 0.00 000 0.05 000 0.00 | 0.05 000 0.00 | 0.05 0.00 to 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I o.oo | | 〇.〇〇 | 0.00 0.00 0.00 0.00 0.00 0.09 0.09 1 0.09 0.04 [0.04 i 0.04 < 000 0.00 000 o.oo | 0.00 000 0.00 0.00 000 0.00 0.00 0.00 009 009 0.09 0.00 0.00 0.00 0.05 0.05 0.05 m Μη Z1 I................... | 0.33 033 0.33 0.33 | 0.33 0.33 0.30 0.30 0.30 0.20 0.20 0.20 0.33 0.33 0.33 0.33 0.33 I 0.33 0.33 | 0.33 | 0.33 0 Ο j 0.33 ! 0.33 033 0.33 | 0.33 033 0.20 0.20 | 0.20 | 0.20 020 0.20 0.24 024 0.24 0.24 024 0.24 024 | 0.24 0.24 乏 0.33 033 0.33 I 0.33 I 0.33 0.33 J 0.50 0.50 | 0.50 | 0.60 0.60 0.60 0.33 033 1 0.33」 033 | 0.33 0,33 033 I 0.33 0.33 X V05 1.05 1.05 1.05 1.05 g 1.05 1.05 g 1 05 g g 1.01 q p 1.01 1.01 δ 5 5 1.01 丨比較例1 I 丨比較例2 I I比較例3 I 丨比較例4 I i比較例5 ] v〇 m 湛 a I比較例7 I oo 堪 a |比較例9 j 丨比較例ίο 1 丨比較例11 1 丨比較例12 1 丨比較例13 i 比較例14 1比較例15 I 比較例16 I比較例17 丨比較例18 比較例19 丨比較例20 比較例21 -54- 201027830 [表4]Initial characteristics High temperature storage characteristics) DSC capacity 01C (mAh/g) Residual capacity CmAh/g) Residual rate (X) (ρϊ^τΟ Μ pain rate <%> tmmt (X) Example 1 160 155 97 21 78 290 Example 2 167 161 96 19 70 281 Example 3 176 170 97 18 67 259 Example 4 158 150 95 18 69 292 Example 5 157 151 96 15 63 295 Example 6 159 154 97 17 63 298 Example 7 158 151 96 14 54 290 EMBODIMENT 8 157 152 97 16 67 295 Example 9 171 166 97 17 71 285 Example 10 169 163 96 15 65 287 Example 11 167 161 96 18 78 285 Example 12 184 177 95 17 77 278 Example 13 183 175 96 15 75 279 Example 14 181 175 97 16 76 274 * Example 15 165 159 96 19 73 300 Example 16 163 157 96 15 60 295 Example Π 162 157 97 15 63 290 Implementation Example 18 163 156 96 17 68 292 Example 19 162 156 96 18 75 294 Example 20 160 155 97 17 74 305 Example 21 164 159 97 16 67 306 Example 22 163 158 97 17 77 305 Example 23 161 157 98 16 70 303 -53- 201027830 Burning condition 丨n〇2j Time (hr) 1 1 ο 〇Ο 1 1 [ 1 1 \ 1 1 1 1 J \ 1 l » 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 } 1 1 1 le 1 1 750 g 卜丨乃0 IJJ 1 1 1 1 1 1 1 1 1 J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 coated particles D50 (Mm) ! 1 1 jjs 1 1 J 1 1 1 1 1 1 \ J 1 1 1 > 1 1 1 1 1 1 1 1 1 1 1 t 1 1 1 1 l 1 Composition 1 F 1 1 0.00 0.00 o.oo | J 1 1 j 1 J 1 1 1 1 iil 1 i 1 1 1 1 J 1 \ j 1 1 1 1 1 1 1 1 1 1 i N 1 1 0.00 000 0.00 1 1 ll 1 \ J 1 1 1 1 1 1 1 1 1 1 \ 1 1 1 1 1 > 1 1 1 1 l 1 1 1 1 i U} 1 » 000 000 o.oo IJ 1 i 1 l 1 1 1 1 1 1 i 1 \ 1 1 1 1 1 1 1 1 1 1 1 1 \ 1 1 1 1 1 tt < 1 1 005 0.05 0,05 | iiii 1 J 1 1 1 l 1 J 1 1 J 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 » 2 2 ο 1 1 0.15 015 I 0-15 I 1 \ 1 1 J 1 1 瞧1 1 1 1 1 t 1 1 i 1 1 1 1 1 1 J 1 JJ 1 1 1 1 i 1 Lack I 1 0.80 080 0.80 | \ 1 1 1 1 J 1 1 J 1 1 1 » 1 1 t 1 1 1 1 J 1 1 1 1 1 Flt 1 1 \ 1 Si J 1 0.98 098 0.98 1 1 ti J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \ i 1 1 1 1 1 1 1 1 1 1 1 1 Coat/Core (%) 1 \ ΙΟ S s 1 1 1 1 1 J 1 1 1 J 1 1 1 1 f 1 1 1 1 1 i 1 1 l 1 1 1 1 1 1 1 1 1 1 Method 1 1 wet wet 1 1 J 1 J \ 1 i I 1 1 l 1 1 1 1 J 1 1 1 1 1 1 1 1 1 1 1 1 \ 1 1 1 Nuclear particle time (hr) Keeping inch «a- *3" inch•a-temperature CC) l〇CSI Oi 925 i〇CM <Λ I 925 I i〇CJ σ> lO CM 05 950 g O) s <y> 830 830 o CO oo 950 950 ol〇 Cn 950 | 950 950 950 | 950 950 § > , P04 ! 0.00 0.00 000 [o.oo l 0.00 005 0.00 0.00 0.05 0.00 0.00 0.05 000 000 0.00 1 o.oo | 005 000 000 0.05 U- 0.00 000 0.00 〇 〇〇 | 005 | o.oo | 000 0.05 000 0.00 0.05 0.00 000 0.05 000 0.00 | 0.05 000 0.00 | 0.05 0.00 to 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o o.oo | | 〇.〇〇 | 0.00 0.00 0.00 0.00 0.00 0.09 0.09 1 0.09 0.04 [0.04 i 0.04 < 000 0.00 000 o.oo | 0.00 000 0.00 0.00 000 0.00 0.00 0.00 009 009 0.09 0.00 0.00 0.00 0.00 0.05 0.05 m Μη Z1 I......... .......... | 0.33 033 0.33 0.33 | 0.33 0.33 0.30 0.30 0.30 0.20 0.20 0.20 0.33 0.33 0.33 0.33 0.33 I 0.33 0.33 | 0.33 | 0.33 0 Ο j 0.33 ! 0.33 033 0.33 | 0.33 033 0.20 0.20 | 0.20 0.20 020 0.20 0.24 024 0.24 0.24 024 0.24 024 | 0.24 0.24 Lack 0.33 033 0.33 I 0.33 I 0.33 0.33 J 0.50 0.50 | 0.50 | 0.60 0.60 0.60 0.33 033 1 0.33" 033 | 0.33 0,33 033 I 0.33 0.33 X V05 1.05 1.05 1.05 1.05 g 1.05 1.05 g 1 05 gg 1.01 qp 1.01 1.01 δ 5 5 1.01 丨Comparative Example 1 I 丨Comparative Example 2 II Comparative Example 3 I 丨Comparative Example 4 I i Comparative Example 5 ] v〇m Zhan a I Comparative Example 7 I oo kan a | Comparative Example 9 j 丨 Comparative Example ίο 1 丨 Comparative Example 11 1 丨 Comparative Example 12 1 丨 Comparative Example 13 i Comparative Example 14 1 Comparative Example 15 I Comparative Example 16 I Comparative Example 17 丨 Comparative Example 18 Comparison Example 19 丨Comparative Example 20 Comparative Example 21 -54- 201027830 [Table 4]

初期特性 高溫保雜性(60。〇 DSC 容量 0.1 C (mAh/g) 殘存容量 (mAh/g) 殘存率 C%) 咖溶pa (Wm) Μη溶離_ (30 關酿 (^) 比較例1 156 147 94 27 — 291 比較例2 157 153 97 25 93 290 比較例3 178 170 96 12 44 253 比較例4 157 148 94 24 89 279 比較例5 154 143 93 26 — — 比較例6 153 140 92 24 — — 比較例7 167 155 93 24 — — 比較侧 165 155 94 23 — — 比較例9 163 152 93 23 — — 比較例10 174 163 94 22 — 比較例11 172 160 93 20 —— — 比較例12 171 158 92 21 —— — 比較例13 152 142 93 26 — — 比較例14 150 140 93 25 — — 比較例15 149 138 93 24 — — 比較例16 148 135 91 25 —— — 比較例17 147 136 93 24 — — 比較例18 146 135 92 23 —— —— 比較例19 147 135 92 24 — 比較例20 145 133 92 22 — — 比較例21 143 132 92 23 — — 在實施例1〜23所得到之Li-Ni複合氧化物粒子粉末 ,不論何者,其最大發熱峰部,相對於作爲核之最大發熱 峰部,峰部溫度之.降低均在32 °C以內,故係充電時具有優 良之熱安定性之正極材料。 又除了高溫保存後之放電容量殘存率係95%以上外, 其高溫保存後之Μη溶離率相對於作爲核之Li-Ni-Mn複合 氧化物係在80%以下,故係具有優良之高溫保存特性之正 極材料。 關於實施例1及實施例3所得到之Li-Ni複合氧化物 粒子,其斷面狀態之觀察結果係如圖1及圖2所示者。 根據圖1及圖2,可知實施例1及實施例3所得到之 -55- 201027830Initial characteristics High temperature retention (60. 〇DSC capacity 0.1 C (mAh/g) Residual capacity (mAh/g) Residual rate C%) Ca-soluble pa (Wm) Μη Dissolution _ (30 Guan (^) Comparative Example 1 156 147 94 27 — 291 Comparative Example 2 157 153 97 25 93 290 Comparative Example 3 178 170 96 12 44 253 Comparative Example 4 157 148 94 24 89 279 Comparative Example 5 154 143 93 26 — — Comparative Example 6 153 140 92 24 — — Comparative Example 7 167 155 93 24 — — Comparison side 165 155 94 23 — — Comparative Example 9 163 152 93 23 — — Comparative Example 10 174 163 94 22 — Comparative Example 11 172 160 93 20 —— — Comparative Example 12 171 158 92 21 —— — Comparative Example 13 152 142 93 26 — — Comparative Example 14 150 140 93 25 — — Comparative Example 15 149 138 93 24 — — Comparative Example 16 148 135 91 25 ——— Comparative Example 17 147 136 93 24 — - Comparative Example 18 146 135 92 23 - - Comparative Example 19 147 135 92 24 - Comparative Example 20 145 133 92 22 - Comparative Example 21 143 132 92 23 - Li-Ni obtained in Examples 1 to 23 Composite oxide particle powder, no matter what, its maximum heating peak, relative to the core The large heat-generating peak and the peak temperature decrease are all within 32 °C, so it is a positive electrode material with excellent thermal stability during charging. In addition to the residual capacity of the discharge capacity after high-temperature storage is 95% or more, the high temperature Since the 溶 溶 dissolution rate after storage is 80% or less with respect to the Li—Ni—Mn composite oxide as a core, it is a positive electrode material having excellent high-temperature storage characteristics. The Li obtained in Example 1 and Example 3 The observation results of the cross-sectional state of the Ni composite oxide particles are as shown in Fig. 1 and Fig. 2. From Fig. 1 and Fig. 2, the -55-201027830 obtained in the first embodiment and the third embodiment is known.

Li-Ni複合氧化物粒子,其粒子表面之A1金屬之濃度變高 ,且Μη金屬之濃度變低,而在作爲核之Li-Ni-Mn複合氧 化物之二次粒子之粒子表面上,有本發明1記載之Li-Ni 複合氧化物被覆者。 使用實施例1、實施例3、比較例1所得到之Li-Ni 複合氧化物粒子粉末,所進行之鈕釦型電池安全性評價之 差示熱分析結果,係如圖3所示者。 根據圖3,可知實施例1及實施例3所得到之Li-Ni 複合氧化物粒子,其在作爲核之粒子之表面或表面附近, 有本發明1〜5記載之Li-Ni複合氧化物粒子存在,且對 於核粒子之被覆粒子或在表面附近存在之粒子之重量百分 率爲10%以上50%以下,就可以將最大發熱峰部溫度之降 低抑制在3 2 °C以內。 根據以上之結果,確認本發明之Li-Ni複合氧化物粒 子粉末,其作爲具有優良之充電時之熱安定性及高溫安定 性之高容量非水電解液電池用活性物質,係相當有效的。 產業上可利用性 本發明藉由使用:一種非水電解質蓄電池用Li-Ni複 合氧化物粒子粉末,其特徵爲在作爲核之二次粒子之組成係 Lix,Nii.yl.zt.wlCoylMnziMlwl〇2-vKv(l < xl ^ 1-3 « yl ^ 0.33 ,〇.2Szl 盔 0.33,0Swl<0.1,0SvS0.05,Ml 係選自 A1 、Mg之至少一種之金屬以及K:係選自F·、P043·之至少一種 陰離子)之Li-Ni-Mn複合氧化物中,於該二次粒子之粒子表 201027830 面或表面附近,其係以組成爲LinNibymCoyzMZuOVO.PSS x2^ 1.05 > 〇.15Sy2S0.2,〇gz2S〇.05,M2 係選自 Al、 Mg、Zr、Ti之至少一種金屬)之Li-Ni複合氧化物加以被 覆或使之存在之Li-Ni複合氧化物,使所得到之複合粒子 之粒子徑係作爲核之粒子之粒子徑之1 · 1倍以上,且相對 於核粒子之被覆粒子或在表面附近所存在之粒子之重量百 分率係10%以上50%以下者;即可得到一種充放電容量大 Φ ,且充電時之熱安定性及高溫安定性皆優良之非水電解液 電池。 ' 【圖式簡單說明】 ‘ 圖1 :觀察實施例1所得到之Li-Ni複合氧化物粒子 粉末之橫斷面狀態,而顯示各元素之存在狀態之照片 (ΕΡΜΑ)。 圖2 :觀察實施例3所得到之Li-Ni複合氧化物粒子 ❹ 粉末之橫斷面狀態,而顯示各元素之存在狀態之照片 (ΕΡΜΑ)。 圖3 :使用實施例1、實施例3、比較例1所得到之 Li-Ni複合氧化物粒子粉末,並以鈕釦型電池之安全性評 價所進行之差示熱分析結果。 -57-In the Li-Ni composite oxide particles, the concentration of the A1 metal on the surface of the particles becomes high, and the concentration of the Μη metal becomes low, and on the surface of the particles of the secondary particles of the Li-Ni-Mn composite oxide as the nucleus, The Li-Ni composite oxide coating of the invention 1 is coated. The results of differential thermal analysis using the Li-Ni composite oxide particle powder obtained in Example 1, Example 3, and Comparative Example 1 for the safety evaluation of the button type battery were as shown in Fig. 3 . According to FIG. 3, the Li-Ni composite oxide particles obtained in Examples 1 and 3 have the Li-Ni composite oxide particles described in Inventions 1 to 5 in the vicinity of the surface or surface of the particles as the core. When the weight percentage of the coated particles of the core particles or the particles present in the vicinity of the surface is 10% or more and 50% or less, the decrease in the maximum heat peak temperature can be suppressed to 32 ° C or less. From the above results, it was confirmed that the Li-Ni composite oxide particles of the present invention are effective as high-capacity non-aqueous electrolyte battery active materials having excellent thermal stability during charging and high-temperature stability. INDUSTRIAL APPLICABILITY The present invention uses a Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery, which is characterized by a composition of secondary particles as a core, Lix, Nii.yl.zt.wlCoylMnziMlwl〇2 -vKv(l < xl ^ 1-3 « yl ^ 0.33 , 〇.2Szl helmet 0.33, 0Swl < 0.1, 0SvS 0.05, Ml is a metal selected from at least one of A1 and Mg, and K: is selected from F· The Li-Ni-Mn composite oxide of at least one anion of P043· is in the vicinity of the surface or surface of the particle of the secondary particle 201027830, and has a composition of LinNibymCoyzMZuOVO.PSS x2^1.05 > S.15Sy2S0. 2, 〇gz2S〇.05, M2 is a Li-Ni composite oxide which is selected from a Li-Ni composite oxide of at least one metal selected from the group consisting of Al, Mg, Zr and Ti), so that the obtained composite is obtained. The particle diameter of the particles is 1 or more times the particle diameter of the particles of the core, and the weight percentage of the particles coated with the core particles or the particles present in the vicinity of the surface is 10% or more and 50% or less; A large charge and discharge capacity Φ, and thermal stability and high temperature stability during charging The nonaqueous electrolyte battery excellent. [Simplified description of the drawings] Fig. 1 shows a photograph of the cross-sectional state of the Li-Ni composite oxide particles obtained in Example 1, and shows a photograph of the existence state of each element (ΕΡΜΑ). Fig. 2 is a photograph showing the cross-sectional state of the Li-Ni composite oxide particles obtained in Example 3, and showing the existence state of each element (ΕΡΜΑ). Fig. 3 shows the results of differential thermal analysis performed using the Li-Ni composite oxide particles obtained in Example 1, Example 3, and Comparative Example 1 and evaluated by the safety of a button type battery. -57-

Claims (1)

201027830 七、申諳專利範園: 1.一種非水電解質蓄電池用Li-Ni複合氧化物粒子粉 末,其特徵爲在作爲核之二次粒子之組成係 Li X1N i 1 .y 1 ,z!. w J C oy 1 Mnz 1 Μ 1 w 1 〇2 - νΚ v ( 1 < xl ^ 1.3 > 0 ^ yl ^ 0.33,0.2Szl$0.33,0Swl<0.1,0SvS0.05,Ml 係選 自A卜Mg之至少一種之金屬以及K係選自F_、P043·之至少 一種陰離子)之Li-Ni-Mn複合氧化物中,於該二次粒子之粒 子表面或表面附近,其係以組成爲Li^NimnCOyzMZ^Ch _ (0.98Sx2S1.05,0.15Sy2S0.2,0$ζ2$0·05,M2 係選 自A1、Mg、Zr、Ti之至少一種金饜)之Li-Ni複合氧化物 加以被覆或使之存在之非水電解質蓄電池用Li-Ni複合氧 , 化物粒子粉末;該非水電解質蓄電池用Li-Ni複合氧化物 t 粒子粉末之複合粒子之平均粒子徑係作爲核之二次粒子之 平均粒子徑之1.1倍以上,且相對於作爲核之粒子之被覆 粒子或在表面附近所存在之Li-Ni複合氧化物粒子之重量 百分率係10%以上50%以下者。 φ 2 .如申請專利範圍第1項之非水電解質蓄電池用Li-Ni 複合氧 化物粒 子粉末 ,其中 在將該 Li-Ni 複合氧 化物作 爲正極活性物質而使用,且使用鋰金屬或可吸收釋放鋰離 子之材料所成負極,所成之非水電解質蓄電池中,於4.3 V充電狀態下,保存1週後殘存之放電容量相對於保存前 之放電容量係95%以上者。 3.如申請專利範圍第1項之非水電解質蓄電池用Li-Ni 複合氧 化物粒子粉末 ,其中 在將該 Li-Ni 複合氧 化物作 -58- 201027830 爲正極活性物質而使用,且使用鋰金屬或可吸收釋放鋰離 子之材料所成負極,所成之非水電解質蓄電池中,於4.3 V充電狀態下,60°C下保存1週後在電解液中之錳離子之 溶離量,將該Li-Ni複合氧化物改以作爲核之Li-Ni-Mn複 合氧化物,作爲正極活性物質使用之情況相比時,係80% 以下者。 4.如申請專利範圍第1項之非水電解質蓄電池用Li-Φ Ni複合氧化物粒子粉末,其中在將該Li-Ni複合氧化物作 爲正極活性物質而使用,且使用鋰金屬或可吸收釋放鋰離 子之材料所成負極,所成之非水電解質蓄電池中,於4.3 ' V至3·0· V之範圍內,其0.2 mA/cm2之充放電速度下之放 • 電容量,將該Li-Ni複合氧化物改以作爲核之Li-Ni-Mn複 合氧化物,作爲正極活性物質使用之情況相比時,係3 mAh/g以上而升高者。 5 ·如申請專利範圍第1項之非水電解質蓄電池用Li-® Ni複合氧化物粒子粉末,其中在將該Li-Ni複合氧化物作 爲正極活性物質而使用,且使用鋰金屬或可吸收釋放鋰離 子之材料所成負極,所成之非水電解質蓄電池中,以4.5 V充電狀態之差示熱分析在200°C〜310°C之範圍所示之產 熱最大峰部,相較於將該Li-Ni複合氧化物改以作爲核之 Li-Ni-Mn複合氧化物,作爲正極活性物質使用時,其溫度 之降低係32°C以內者。 6·—種如申請專利範圍第1〜5項中任一項之非水電 解質蓄電池用Li-Ni複合氧化物粒子粉末之製造方法,係 -59- 201027830 於申請專利範圍第1〜5項中任一項之Li-Ni複合氧化物 粒子粉末之製造方法中,其特徵係在作爲核之Li-Ni-Mn 複合氧化物之二次粒子之表面或表面附近,將Li-Ni複合 氧化物藉由濕式之化學性處理或乾式之機械性處理,或進 一步在氧氣環境下施加700 °C以上熱處理,而使其被覆或 存在者。 7. 如申請專利範圍第6項之非水電解質蓄電池用Li-Ni 複合氧化物粒子粉末之製造方法,其中係將作爲核之粒子 φ 於水中加以懸浮攪拌,再添加硫酸鎳、硫酸鈷混合液及鹼 性溶液,同時控制其pH値在11.0以上,於得到以Ni-Co 複合氫氧化物將表面被覆之中間體後,藉由將Li化合物 . 及A1化合物混合而進行化學性處理,進一步在氧氣環境 . 下,以700°C以上施加熱處理者。 8. 如申請專利範圍第6項之非水電解質蓄電池用Li-Ni 複合氧化物粒子粉末之製造方法,其中係添加硫酸鎳、硫 酸鈷混合液及鹼性溶液,同時控制其pH値,使其生成 Q Ni-C〇複合氫氧化物,再將其磨碎使得所得到之Ni-Co複 合氫氧化物之平均粒子徑在2μπι以下後,藉由作爲核粒子 之Li-Ni-Mn複合氧化物及高速攪拌混合機之機械化學反 應使其存在於粒子表面,然後,藉由將Li化合物及A1化 合物混合而進行乾式之機械性處理,進一步在氧氣環境下 ,以7 0 0 °C以上施加熱處理者。 9. 一種非水電解質蓄電池,其特徵係使用含有申請專 利範圍第1〜5項中任一項之非水電解質蓄電池用Li-Ni -60- 201027830 複合氧化物粒子粉末所成之正極活性物質的正極。201027830 VII. Shenyi Patent Fanyuan: 1. A Li-Ni composite oxide particle powder for non-aqueous electrolyte storage batteries, characterized by a composition of secondary particles as a core, Li X1N i 1 .y 1 , z!. w JC oy 1 Mnz 1 Μ 1 w 1 〇2 - νΚ v ( 1 < xl ^ 1.3 > 0 ^ yl ^ 0.33, 0.2Szl$0.33, 0Swl < 0.1, 0SvS0.05, Ml is selected from A Bu Mg a Li-Ni-Mn composite oxide in which at least one metal and K is selected from at least one anion of F_ and P043·, in the vicinity of the surface or surface of the particle of the secondary particle, the composition of which is Li^NimnCOyzMZ^ A Cr-Ni composite oxide of Ch _ (0.98Sx2S1.05, 0.15Sy2S0.2, 0$ζ2$0·05, M2 is selected from at least one metal of A1, Mg, Zr, Ti) is coated or rendered Li-Ni composite oxygen for a non-aqueous electrolyte battery, a compound particle powder; and an average particle diameter of the composite particles of the Li-Ni composite oxide t-particle powder for the non-aqueous electrolyte battery as an average particle diameter of the secondary particles of the core More than twice, and compared with the coated particles as particles of the core or the Li-Ni complex oxidation existing near the surface The percentage by weight of particles based 10% to 50% by. Φ 2 . The Li-Ni composite oxide particle powder for a non-aqueous electrolyte storage battery according to the first aspect of the invention, wherein the Li-Ni composite oxide is used as a positive electrode active material, and lithium metal or an absorbable release is used. In the non-aqueous electrolyte storage battery formed by the lithium ion material, the discharge capacity remaining after storage for one week in the state of charge of 4.3 V is 95% or more with respect to the discharge capacity before storage. 3. The Li-Ni composite oxide particle powder for a non-aqueous electrolyte storage battery according to the first aspect of the invention, wherein the Li-Ni composite oxide is used as a positive electrode active material as -58-201027830, and lithium metal is used. Or a negative electrode which can be absorbed by a material which releases lithium ions, and the amount of dissolved manganese ions in the electrolyte after storage for one week at 60 ° C in a non-aqueous electrolyte storage battery, the Li The -Ni composite oxide is changed to a Li-Ni-Mn composite oxide as a core, and when it is used as a positive electrode active material, it is 80% or less. 4. The Li-Φ Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery according to the first aspect of the invention, wherein the Li-Ni composite oxide is used as a positive electrode active material, and lithium metal or an absorbable release is used. The lithium ion material is a negative electrode, and in the nonaqueous electrolyte battery, in the range of 4.3 'V to 3.8 V, the discharge capacity at a charge and discharge rate of 0.2 mA/cm2, the Li When the Ni-based composite oxide is changed to a Li-Ni-Mn composite oxide as a core, it is increased by 3 mAh/g or more when used as a positive electrode active material. 5. The Li-® Ni composite oxide particle powder for a non-aqueous electrolyte storage battery according to the first aspect of the invention, wherein the Li-Ni composite oxide is used as a positive electrode active material, and lithium metal or absorbable release is used. The lithium-ion material is a negative electrode, and the non-aqueous electrolyte battery is a maximum peak of heat generation in the range of 200 ° C to 310 ° C, which is shown by the difference in the state of charge of 4.5 V. This Li-Ni composite oxide is changed to a Li-Ni-Mn composite oxide as a core, and when it is used as a positive electrode active material, the temperature is lowered within 32 ° C. A method for producing a Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, which is in the range of items 1 to 5 of the patent application. In the method for producing a Li-Ni composite oxide particle powder, the Li-Ni composite oxide is used in the vicinity of the surface or surface of the secondary particle of the Li-Ni-Mn composite oxide as a core. It is coated or existing by wet chemical treatment or dry mechanical treatment, or further heat treatment at 700 ° C or higher in an oxygen atmosphere. 7. The method for producing a Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery according to claim 6, wherein the particle φ as a core is suspended and stirred in water, and then a mixture of nickel sulfate and cobalt sulfate is added. And an alkaline solution, while controlling the pH 値 at 11.0 or more, after obtaining an intermediate surface coated with a Ni-Co composite hydroxide, chemically treating by mixing the Li compound and the A1 compound, further In the oxygen environment, the heat treatment is applied at 700 ° C or higher. 8. The method for producing a Li-Ni composite oxide particle powder for a nonaqueous electrolyte secondary battery according to claim 6, wherein a nickel sulfate, a cobalt sulfate mixed solution and an alkaline solution are added, and the pH is controlled to be The Q Ni-C 〇 composite hydroxide is formed and then ground so that the obtained Ni-Co composite hydroxide has an average particle diameter of 2 μm or less, and the Li-Ni-Mn composite oxide as a core particle And the mechanochemical reaction of the high-speed agitating mixer is carried out on the surface of the particles, and then the dry mechanical treatment is carried out by mixing the Li compound and the A1 compound, and further heat treatment is applied at 70 ° C or higher in an oxygen atmosphere. By. A non-aqueous electrolyte storage battery characterized by using a positive electrode active material comprising Li-Ni-60-201027830 composite oxide particle powder for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5. positive electrode. -61 --61 -
TW098130544A 2008-09-10 2009-09-10 Lithium composite oxide particle powder for nonaqueous electrolyte storage battery, method for producing the same, and nonaqueous electrolyte storage battery TWI502793B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232654 2008-09-10

Publications (2)

Publication Number Publication Date
TW201027830A true TW201027830A (en) 2010-07-16
TWI502793B TWI502793B (en) 2015-10-01

Family

ID=42005009

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098130544A TWI502793B (en) 2008-09-10 2009-09-10 Lithium composite oxide particle powder for nonaqueous electrolyte storage battery, method for producing the same, and nonaqueous electrolyte storage battery

Country Status (3)

Country Link
JP (1) JP5505608B2 (en)
TW (1) TWI502793B (en)
WO (1) WO2010029745A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771302A (en) * 2017-12-22 2020-10-13 株式会社Posco Positive electrode active material for lithium secondary battery, preparation method thereof and lithium secondary battery
WO2020248678A1 (en) * 2019-06-13 2020-12-17 Greenovelty Energy Co. Limited Method of preparing cathode for secondary battery

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2351139E (en) * 2008-10-13 2013-10-24 Basf Corp Mixed lithium nickel cobalt oxide and lithium nickel manganese cobalt oxide cathodes
JP5700274B2 (en) * 2009-08-21 2015-04-15 株式会社Gsユアサ Active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and method for producing the same
KR101077869B1 (en) * 2010-04-30 2011-10-28 주식회사 엘지화학 Positive electrode for secondary battery
JP5945197B2 (en) * 2012-09-12 2016-07-05 日立マクセル株式会社 Non-aqueous electrolyte secondary battery
JP2016033848A (en) * 2012-12-28 2016-03-10 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof
CN103199229B (en) * 2013-03-19 2015-04-15 南开大学 Polyanion-doped lithium-enriched layered oxide anode material as well as preparation and application thereof
JP6068247B2 (en) * 2013-04-23 2017-01-25 日立マクセル株式会社 Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material
US10056610B2 (en) 2013-05-22 2018-08-21 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6315404B2 (en) * 2013-06-06 2018-04-25 株式会社Gsユアサ Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the positive electrode active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP6204581B2 (en) * 2013-07-31 2017-09-27 エルジー・ケム・リミテッド Method for producing positive electrode active material for lithium secondary battery
CN103500831B (en) * 2013-10-22 2016-03-30 武汉大学 Anion doped manganese based solid solution positive electrode and preparation method
JP2016033901A (en) 2014-07-31 2016-03-10 ソニー株式会社 Positive electrode active material, positive electrode and battery
JP6448432B2 (en) * 2015-03-25 2019-01-09 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
CN105406036B (en) * 2015-11-02 2019-03-05 湖南长远锂科有限公司 A kind of lithium ion battery high-voltage lithium cobaltate cathode material and preparation method thereof
KR101875868B1 (en) * 2016-07-11 2018-07-06 주식회사 에코프로비엠 Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR101874340B1 (en) * 2016-08-02 2018-07-05 주식회사 에코프로비엠 Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
US10903490B2 (en) 2016-08-02 2021-01-26 Ecopro Bm Co., Ltd. Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same
CN107968202B (en) * 2017-11-21 2020-12-25 宁波纳微新能源科技有限公司 Aluminum-containing nickel-cobalt-manganese positive electrode material with core-shell structure and preparation method thereof
US20200403241A1 (en) * 2018-03-02 2020-12-24 Toda Kogyo Corp. Li-Ni COMPOSITE OXIDE PARTICLES AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN111056577B (en) 2018-10-16 2022-08-16 三星Sdi株式会社 Nickel-based active material precursor, method for preparing same, nickel-based active material, and lithium secondary battery
KR102182358B1 (en) * 2018-11-02 2020-11-24 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP7300658B2 (en) * 2019-02-28 2023-06-30 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN112018335B (en) * 2019-05-28 2023-03-14 比亚迪股份有限公司 Composite lithium ion battery anode material, lithium ion battery anode, lithium battery, battery module, battery pack and vehicle
JP7421372B2 (en) * 2020-02-28 2024-01-24 太平洋セメント株式会社 Method for manufacturing positive electrode active material composite for lithium ion secondary battery
KR20210138991A (en) 2020-05-13 2021-11-22 주식회사 엘지화학 Method for preparing positive electrode active material for secondary battery and positive electrode active material manufactured through the method
CN111697216A (en) * 2020-05-21 2020-09-22 西安交通大学 Lithium manganate coated high nickel cobalt lithium manganate lithium ion battery positive electrode material and preparation method thereof
US20230378428A1 (en) * 2020-09-30 2023-11-23 Basf Se Process for making a doped cathode active material
KR20230096894A (en) 2021-12-23 2023-06-30 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, preparing method of the same
WO2024084368A1 (en) * 2022-10-21 2024-04-25 株式会社半導体エネルギー研究所 Secondary battery, electronic device, and vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881520B1 (en) * 1996-06-14 2005-04-19 N.V. Umicore S.A. Electrode material for rechargeable batteries and process for the preparation thereof
JP2000195517A (en) * 1998-12-28 2000-07-14 Japan Storage Battery Co Ltd Lithium secondary battery
JP2002170563A (en) * 2000-11-30 2002-06-14 Nikko Materials Co Ltd Manganese system positive electrode material having excellent cycle property and lithium secondary battery using the same
JP2004127694A (en) * 2002-10-02 2004-04-22 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP5135664B2 (en) * 2003-12-05 2013-02-06 日産自動車株式会社 Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
WO2006070977A1 (en) * 2004-12-31 2006-07-06 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials
JP4897223B2 (en) * 2005-01-24 2012-03-14 日立マクセルエナジー株式会社 Nonaqueous electrolyte secondary battery
JP5220273B2 (en) * 2005-11-15 2013-06-26 日立マクセル株式会社 Electrode and non-aqueous secondary battery using the same
JP5224081B2 (en) * 2006-04-19 2013-07-03 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2007317585A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Positive electrode active material for lithium secondary battery, and the lithium secondary cell using the same
CN104810517B (en) * 2007-03-05 2020-09-29 户田工业株式会社 Nonaqueous electrolyte secondary battery, Li-Ni composite oxide particle powder, and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771302A (en) * 2017-12-22 2020-10-13 株式会社Posco Positive electrode active material for lithium secondary battery, preparation method thereof and lithium secondary battery
CN111771302B (en) * 2017-12-22 2023-08-25 浦项控股股份有限公司 Positive electrode active material of lithium secondary battery, preparation method of positive electrode active material and lithium secondary battery
WO2020248678A1 (en) * 2019-06-13 2020-12-17 Greenovelty Energy Co. Limited Method of preparing cathode for secondary battery

Also Published As

Publication number Publication date
TWI502793B (en) 2015-10-01
JP5505608B2 (en) 2014-05-28
JP2010092848A (en) 2010-04-22
WO2010029745A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
TW201027830A (en) Li-ni composite oxide particle powder for non-aqueous electrolyte secondary battery and method for production thereof, and non-aqueous electrolyte secondary battery
CN104810517B (en) Nonaqueous electrolyte secondary battery, Li-Ni composite oxide particle powder, and method for producing same
JP4462451B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4217712B2 (en) Lithium-nickel-cobalt-manganese-fluorine-containing composite oxide, method for producing the same, and lithium secondary battery using the same
TWI515168B (en) Production method of lithium manganate particles and nonaqueous electrolyte battery
WO2014104234A1 (en) Surface-modified lithium-containing composite oxide particles, positive electrode using surface-modified lithium-containing composite oxide particles, and nonaqueous electrolyte secondary battery
WO2011065464A1 (en) Particulate powder of positive active material for nonaqueous-electrolyte secondary battery, process for producing same, and nonaqueous-electrolyte secondary battery
WO2008068905A1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
WO2009119104A1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JPWO2004092073A1 (en) Lithium-nickel-cobalt-manganese-containing composite oxide, raw material for positive electrode active material for lithium secondary battery and production method thereof
TW201230473A (en) Positive electrode materials combining high safety and high power in a Li rechargeable battery
JPWO2014061654A1 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
TWI622212B (en) Cathode compositions for lithium-ion batteries
CN109599531A (en) Use the high voltage of advanced cathode material, high volume energy density lithium ion battery
JPWO2006085588A1 (en) Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP2005089225A (en) Production method of lithium-nickel-cobalt-manganese-aluminum-containing complex oxide
CN110611091A (en) Method for improving electrochemical performance of lithium-rich manganese-based positive electrode material
WO2005096416A1 (en) Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
Pico et al. Role of morphology in the performance of LiFe 0.5 Mn 1.5 O 4 spinel cathodes for lithium-ion batteries
JP2008123815A (en) Cathode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
WO2024039915A1 (en) Methods for preparing lithium transition metal oxide from elemental metal feedstocks and products thereof