201011354 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種彩色滤光片基板及液晶顯示器,尤其關於一種一像 素中能夠產生兩種不同透光率的彩色遽光片基板及液晶顯示器。 【先前技術】 第1圖為習知液晶顯不器之局部剖面的示意圖。如第1圖所示,液晶 顯示器90包含一彼此相向之濾光片基板912及一主動元件基板914,且兩 〇 基板間夾設一液晶層916。液晶層916採用負介電異向性(negativedieleetrie anisotropy)液晶材料,使未施加電壓時液晶分子呈垂直配向(vertical alignment)。於主動元件基板914之透明基板928上形成有如薄膜電晶體 . (TFT)之類的切換元件(未圖示)、像素電極922。濾光片基板912之透明 基板926上形成有彩色濾光片930及而彩色濾光片930上形成有共用電極 924。彩色濾光片930包含遮光黑矩陣層934及濾光跡區932。 但習知採垂直配向結構的液晶顯示器,以大視角觀看時會有色偏(c〇1〇r washout)現象,例如於大視角觀看時,膚色會偏向較為淺藍色或亮白色。 ❹一般解決方法會將一個畫素分隔成數個區域,再利用雙閘線(dud gate line)、雙資料線(dual data line,T-Ttype)、共通電壓擺動(c〇mm〇nv〇ltage ' swing)、薄膜電晶體分壓以及電容耦合(capacitance coupling,C-C type) - 等技術,降低34種色偏現象。但此些解決方法中有其缺點,例如雙資料線 與擺動共通電壓技崎需魏外的積體電路(IC)與元件,增加製程時間 與材料成本。而薄膜電晶體分壓與電容耦合等技術,雖然不需額外的ic即 可解決色偏現象’但卻會因額外增加的薄膜電晶體,而降低開口率。此外, 電容搞合技術會因浮動(floating)電極而形成自耗合電容(純⑽㈣ capacitance) ’ 造成嚴重的殘影(image_sticking)現象。 201011354 此外’以手指觸碰習知液晶顯示n時,因液晶狀態被弄亂而產生白色 或黑色壓紋(即finger print _)現象。一般習知液晶顯示器内弄亂之液 晶狀態回復到原先順電場方向傾倒狀態之反應時間較長,使得人眼觀察的 到壓紋現象。常用的解決方法為增加間隙材料(ph〇t〇印·)之密度或是 於在主動碰基板914上形成具圖案的透明導電(pattem IT〇)電極但 . 則者會造成液晶注入較慢,增加工時成本,而後者則是開口率降低。 【發明内容】 。因此’本發明-實施例之目的在提供-種彩㈣以基板及液晶顯示 器,其能夠減緩以較大視角觀看時所被察覺的色偏現象。一實施例之目的 纟提供-種彩色丨統片基板及液晶顯示^,其能賊驢紋現象。一實施 例之目的在提供一種彩色濾光片基板及液晶顯示器,其能夠減緩色偏或廢 紋現象,同時開口率較大且成本較低。 ,依本發明一實施例提供一種液晶顯示器,其包含一主動元件基板、一 彩色濾、光片基板及液晶層。主動元件基板包含—第—透明基板;及多個切 換元件及多個像素電極’此些切換元件及像素電極形成於第一透明基板上 且每切換元件電性連接於此些像素電極其一。液晶層設於彩色滤光片基 板與主動元件基板間。彩色就#基板界定衫個像素區域,每—像素區 * 域適於位置對應此些像«極其…且彩色遽光片基板包含-彩色遽光片 基板的透明基板、-第-透明導電層、-第二透明導電層及一介電層。第 —透明導電層位於彩色濾、^基板的透明基板及第二透明導電層間,介電 層位於第-透明導電層及第二透明導電層間,並且每—像素區域中的第二 透明導電層界定出至少一開口。 >依本發明-實施例提供一種彩色遽光片基板,界定出多個像素區域, 母-像素區域適於位置對應一主動元件基板的一像素電極。彩色滤光片基 201011354 板包含-透明基板…第-透明導電層、—第二透明導電層及—介電層。 第-透明導·位於Μ基板及第二透日辑電制,介電層位於第 導電層及第二透_電層間,並骑—像素輯中的第二翻導電層 出至少一開口。 依本發明-實施例,上述之液晶顯示器及彩色渡光片基板中,介電層 '可為一彩色滤光層’較佳地第一透明導電層設於彩色據光片基板的透明基 板及*色獻層之間。*於另—實施财介電層可為-透明層且彩色漁光 Μ基板更包含-彩色遽光層,較佳地彩色渡光層設於第—透明導電層及彩 色濾光>1基板的透明基板間。彩色瀘、光層可以包含―黑矩陣層及由黑矩陣 層所界㈣多鑛光跡區,且每-献跡驗置對應此些像素輯其'一。 依本發明-實施例,上述之液晶顯示器及彩色濾光片基板中,彩色渡 光片基板更界定出一非顯示區域,非顯示區域包含一通孔,且第一透明導 電層及第二透明導電層透過通孔電性連接。較佳地非顯示區域位於彩色濾 光片基板的外側並包圍此些像素區域。 依本發明一實施例之液晶顯示器及彩色濾光片基板,能夠於像素區域 及像素電極間產生至少二個液晶層的液晶分子具不同傾斜方向的區域。 藝 . 【實施方式】 於此,須注意本說明書中「Α層形成於Β層上」之用語,並不限定為 Α層直接貼覆接觸β層表面的態樣,例如a層與Β層中間尚間隔其他疊層 亦為該用語所涵蓋範圍。 第2圖為依本發明一實施例之液晶顯示器之局部剖面的示意圖。如第 2圖所示’液晶顯示器1〇包含一彼此相向之濾光片基板12及一主動元件 基板14,且兩基板間夾設一液晶層16。液晶層16採用負介電異向性液晶 201011354 材料,使未施加電壓時液晶分子呈垂直配向。另外,液晶層16中可添加助 旋摻雜劑(chiraldopant) ’以加速液晶旋轉並減小錯向缺陷(disdinati〇n)。 第3圖為依本發明一實施例液晶顯示器之主動元件基板上構成一像素 結構的平面示意圖。本實施例之切換元件例示為一 n型非晶碎薄膜電晶體 (n-typea-Si TFT)42 ’如第2及3圖所示,主動元件基板14之第一透明基板 * 41上形成複數道相互平行之掃描線(scan line)44、及相互平行之資料線(data line)46,且兩相鄰之掃描線44正交於兩相鄰之資料線46而圈圍出一像素 區域40。如氧化銦錫(Indium Tin Oxide ; ITO)或銦鋅氧化物(Indium zinc Oxide, IZO)透明導電膜構成之像素電極48分佈於該像素區域且薄膜電 晶體42電性連接像素電極48並形成於掃描線44與資料線46交又點處。 . 第4圖為依本發明一實施例液晶顯示器之濾光片基板上構成一像素區 域的平面不意圖。如第2及4圖所示,澹光片基板12界定出多個像素區域 20,每一像素區域20位置對應該些像素電極48其一。濾光片基板12的第 二透明基板21上形成彩色濾光層23。彩色濾光層23包含一黑矩陣層% 及由黑矩陣層32所界定的多個濾光跡區(flltertrace) 34,且每一濾光跡區 34位置對應該些像素區域2〇其一。濾光跡1 34包含有一區域%,遽光片 參基板12及主動元件基板14組合成液晶顯示器2〇時,區域38位置對應主 • 祕件基板14之係為切換元件的η型非晶石夕薄膜電晶體42。各個滤光跡 關如可由不同顏色之顏料所構成,因此例如遽光跡區34可以為紅色滤光 跡區、綠色攄光跡區、藍色遽光跡區。兩濾光跡區%間提供遮光作用:黑 矩陣層(black matrix ; ΒΜ)32。於本實施例中,第一透明基板4ι及第二透 明基板21可為一玻璃基板、塑膠基板或塑膠軟膜。 詳言之’第2圖之主動元件基板14的剖面示意圖為沿第3圖之α—α, 線橫切而得之剖面圖,第2圖之濾'光片基板12的剖面示意圖沿第4圖之Β 9 201011354 —B’線橫切而得之剖面 像素區域20,每一像素品〇第2圖所示,彩色濾光片基板12界定出多個 片基板12包含一第二、1域2〇位置對應該些像素電極48其一。彩色濾光 ❹ 電層242及-係為介―電:基板21、—第—透明導電層24卜—第二透明導 透明基板及第二透的杉色據光層23。第—透明導電層糾位於第二 層241及第二透明導電電層242間,彩色濾光層23位於第一透明導電 對應-像素區域2G。較佳間’且彩色濾'光層23的—濾、光跡區34位置 上,彩色滤光層23形成第—透明導電層241形成於第二透明基板21 成於彩色遽光層23上。透明導電層241上,第二透明導電層242形 本實施例中,在第— 係為介電層的_光層23=層241及第二透明導電層242間設有一 成電容,並於第二透日辑雷居能夠於此二透明導電層241 * 242間形 代削祕電層242界定出至少一開口 243,藉以於像素區 \、’、 8間產生至少二個液晶層16的液晶分子具不同傾斜方向 的區域像素區域20之形成開口 243的第一局部及像素區域如之未形成 開口 243的第二局部各別所形成的電容相異。因此,像素區卿之第一局 部及像«域20之第二局部與像素電極48間各騎產生的電場相異,而 能夠使此兩區域愤晶層16的液晶分子具獨傾斜方向。喊晶分子具不 同傾斜方向可以形成不_光穿鱗,故此兩區域_具有不同的光穿透 率。以手指觸碰液晶顯示H,液晶狀態被弄亂而產生壓紋現象,由於像素 區域20能夠形成兩種相異電場,使液晶較能夠回復至原狀態,而能夠減緩 壓紋現象。 此些開口 243的形狀不加以限定其可以為_、長方形、長條形或不 規則形。此些開σ 243的位置亦不加以限定,雖然第4騎示開口加位 於像素區域20的上側,於一實施例中亦可以位於像素區域2〇的下側或中 201011354 間。開口 243的數量亦不加以限定’像素區域20亦可以包含位於像素區域 20之不同局部的多數個開口 243。像素區域2〇亦可以為一個區域或被分成 上下區域,例如下述第5圖之實施例。 第5圖為依本發明一實施例液晶顯示器之濾光片基板上構成二相鄰像 素區域的平面示意圖。第6圖為依本發明-實施纖晶顯示器之遽光片基 • 板上構成一像素區域的平面示意圖。第5圖之兩相鄰的像素區域821及822 與第6圖之像素區域823皆相似於第4圖之像素區域20,因此,此些像素 瘳區域中相同的元件使用相同的符號並省略其相關說明。請參考第5及6圖, 像素區域821、822及823分別包含一區域38卜382及383分別將此些像 素區域區分為上側及下側,且區域38卜382及383能夠分別位置對應主動 元件基板的一切換元件。 如第5圖所示,像素區域821及822中第二透明導電層,分別界定出 一位於區域381及382之上側的第一開口 841及851;以及一位於區域381 及382之下側的第二開口 842及852。第二開口 8似(形狀為長方形)的面 積相異於第-開口 841 (形狀為圓形)的面積。較佳地,像素區域821及 822相鄰,且像素區域821的第一開口 841的面積(或形狀)相同於像素 ® 區域822的第二開口 852的面積(或形狀);而像素區域821的第二開口 • 842的面積(或形狀)相同於像素區域822的第一開口 851的面積(或形 _ 狀)。使兩相鄰像素區域之四個上述區域中的開口的面積(或形狀)為上 下交錯或左右父錯設置,避免當四個上述區域中的兩個的光穿透率相差較 大時,而產生明顯的亮度不均現象。如第6圖所示,像素區域823的上側 及下側分別包含多個長條形的第一及二開口 861及862。第一及二開口 861 及862的長軸方向相異,較佳地,此些開口的長軸方向沿區域383互為鏡 射,依此設計能夠減緩亮度不均現象。應了解的是,於本實施例中雖然將 201011354 畫素分成上下侧,但此非本發_蚊者,於—實施例中亦可 分成上下側。 一 ❹ 馨 第7圖為依本發明—實施例之液晶顯示器之局部剖面的示意圖。第7 圖之液晶顯示器10,及彩色滤光片基板12,相似於第2圖之液晶顯示器1〇 及衫色滤光片基板12,因此,此些液晶顯示器及彩色濾光片基板中相同的 讀使用相_符號並省略其_綱。町僅針對此些減顯示器及彩 色滤光片基板相異的部分加以說明。如第7圖所示,液晶顯示器ι〇,的彩 色滤光片基板12’相異於液晶顯示器1〇的彩色遽光片基板12。而彩色遽 光片基板12’的第-透明導電層241及第二透明導電層242間的介電層可 以為相餘彩⑽光層的—透明層,且彩色濾光絲板〗2,更包含一彩色 濾光層23。詳言之,彩色渡光片基板12,包含_第二透明基板21、一第一 透明導電層241、—第二透明導電層⑽、—介電層245及一彩色遽光層 第透明導電層241位於第二透明基板21及第二透明導電層242間, "電層245位於第-透明導電層241及第二透明導電層如間,彩色滤光 ㈣設於第-透明導電層241及第二透明基板21間,且彩色遽光㈣的 =慮光跡區34位置對應—像素區域2G。較麵,彩色濾光層23形成於第 -透明基板21上’第一透明導電層241形成於彩色遽光層23上,介電層 245形成於第-透明導電層撕,第二透明導電層Μ2形成於介電層Μ5上。 第8圖為依本發明一實施例液晶顯示器之渡光片基板的平面示意圖。 第8圖之彩色滤光片基板7丨2相似於第2圖之彩色滤光片基板12,因此, 此些彩色渡光片基板中相同的元件使用相同的符號並省略其相關說明。彩 色渡光片基板712界定出-顯示區域722及—非顯示區域72卜顯示區域 從内包含像素區域20。非顯示區域721對應液晶顯示器川不顯示晝面的 區域,且非顯示區域721界定出一通孔723,藉以使彩色濾光片基板712 12 201011354 的第透明導電層241及第二透明導電層242透過通孔723電性連接。因 通孔723在非顯示區域72ι所以較不會影響液晶顯示器1〇的顯示品質。依 本實施例,僅需對第-透明導電層241及第二透明導電層242其-施加一 共通電壓’而另—透明導電層即可透過此通孔723接收此共通電壓,因此 本實施例増加—透明導電層,不需增加TFT及1C等元件,即可使像素區 卜 域20及像素電極48間產生至少二個液晶層16的液晶分子具不同傾斜方向 • 的區域。相較於習知技術,本實施例之彩色濾光片基板及液晶顯示器的開 φ 口率較大且成本較低,且能夠減緩色偏及壓紋至少其一現象。此外,於本 實施例,非顯示區域721位於彩色濾光片基板712的外侧並包圍該些像素 區域20。 ' 對本發明一實施例之液晶顯示器的一像素,進行電場與穿透率曲線 圖、電壓與穿透率曲線圖(v_Tcurve)以及灰度及穿透率曲線圖 curve)的摸擬,並與習知技術比較。第9圖為依本發明一實施例液晶顯示 器中一像素之一剖面的電場與穿透率曲線圖,且如第2及4圖所示,開口 為圓形,此剖面的開口 243的寬度W與濾光跡區34的寬度χ的比(剖面 開口比)為50%的情況下模擬。第10圖為依習知液晶顯示器中一像素之一 瘳吾J面的電場與穿透率曲線圖。如第9圖所示,相較與習知技術,本發明一 • 實施例之像素能夠產生兩種主要不同的穿透率Τ1及Τ2。 第11Α至11C圖依本發明一實施例液晶顯示器中一像素的電壓與穿透 率曲線圖。詳言之,第11Α圖顯示40度視角為條件的情況下第9圖實施 例其剖面開口比為66% (曲線166 )、50% (曲線150 )、33% (曲線133 )、 17% (曲線117)的曲線、習知技術40度視角的曲線(曲線Τ4〇)以及習 知技術〇度視角的曲線(曲線Τ0)。第11Β圖顯示6〇度視角為條件的情 況下第9圖實施例其剖面開口比為66%(曲線L66)、5〇%(曲線L5〇)、 13 201011354 330/〇(曲線L33)、17〇/〇(曲線L17)的曲線、習知技術60度視角的曲線 (曲線T60)以及習知技術〇度視角的曲線(曲線τ〇)。第lie圖顯示第 9圖實施例其剖面開口比為5〇%為條件的情況下視角為0度(曲線Α0)、 45度(曲線Α45)、60度(曲線Α60)的曲線、習知技術視角為〇度(曲 線Τ0)、45度(曲線Τ45)、60度的曲線(曲線Τ60)。由第UA至lie , 圖可知,在一相同視角為條件的情況下,本發明一實施例所得各曲線,相 較於習知技術所得各曲線’更接近習知技術〇度視角的曲線,因此能夠減 緩大視角的色偏現象。 第12圖依本發明一實施例液晶顯示器中一像素的灰度及穿透率曲線 圖。第12圖顯示第9圖實施例其剖面開口比為5〇%為條件的情況下視角為 〇度(曲線GA0)、45度(曲線GA45)、60度(曲線GA60)的曲線、 習知技術視角為0度(曲線GT0)、45度(曲線GT45)、60度的曲線(曲 線GT60)。由第π圖可知,本發明一實施例所得各曲線,相較於習知技 術所得各曲線,更接近習知技術〇度視角的曲線及Gamma22曲線,因此 能夠減緩大視肖的色偏現象。該圖巾曲線GAQ,⑽,Gamma2 2接近重叠。 因此>vT'上所述,本發明一實施例其剖面開口比較佳地可以為06%〜50%、 50°/。〜33%、和33%〜17%,亦即亦可以為66%〜17%。 ' 以上所述僅為舉娜為限雛者。任何未_本發明之精神與 _,輯其進行之等效修《變更,均聽含於_之帽專機圍中: 而非限定於上述之實施例。 【圖式簡單說明】 第1圖為習知液晶顯示器之局部剖面的示意圖。 第2圖為依本發明一實施例之液晶顯示器之局部剖面的示意圖 14 201011354 結構圖本判—實施纖晶顯示器之主動元件基板上構成-像素 域的本㈣—實細液晶齡器之渡光片基板上構成一像素區 第5圖為依本發明—實施例液晶顯示器之滤光片基板上構成二相 素區域的平面示意圖。201011354 IX. Description of the Invention: [Technical Field] The present invention relates to a color filter substrate and a liquid crystal display, and more particularly to a color slab substrate and a liquid crystal display capable of generating two different transmittances in one pixel . [Prior Art] Fig. 1 is a schematic view showing a partial cross section of a conventional liquid crystal display. As shown in FIG. 1, the liquid crystal display 90 includes a filter substrate 912 and an active device substrate 914 facing each other, and a liquid crystal layer 916 is interposed between the two substrates. The liquid crystal layer 916 employs a negative dielectric anisotropy liquid crystal material such that the liquid crystal molecules are vertically aligned when no voltage is applied. A switching element (not shown) such as a thin film transistor (TFT) and a pixel electrode 922 are formed on the transparent substrate 928 of the active device substrate 914. A color filter 930 is formed on the transparent substrate 926 of the filter substrate 912, and a common electrode 924 is formed on the color filter 930. The color filter 930 includes a light-shielding black matrix layer 934 and a filter track region 932. However, liquid crystal displays with a vertical alignment structure have a color shift (c〇1〇r washout) when viewed from a large viewing angle. For example, when viewed from a large viewing angle, the skin color tends to be lighter blue or brighter white. ❹The general solution divides a pixel into several regions, and then uses the dual gate line, dual data line (T-Ttype), and common voltage swing (c〇mm〇nv〇ltage ' Swing), thin film transistor partial pressure and capacitive coupling (CC type) - and other techniques to reduce 34 color shift phenomena. However, these solutions have their shortcomings, such as the double data line and the swing common voltage. The technical and electrical components of the integrated circuit (IC) and components are required to increase the process time and material cost. The thin film transistor voltage division and capacitive coupling technology can solve the color shift phenomenon without additional ic, but it will reduce the aperture ratio due to the additional thin film transistor. In addition, the capacitive bonding technique creates a self-consistent capacitor (pure (10) (four) capacitance) due to floating electrodes, causing severe image sticking. 201011354 In addition, when a liquid crystal display n is touched by a finger, a white or black embossing (ie, a finger print _) phenomenon occurs due to a disordered liquid crystal state. It is generally known that the liquid crystal state in the liquid crystal display returns to the original state of the electric field in a tilted state, and the reaction time is long, so that the embossing phenomenon is observed by the human eye. A common solution is to increase the density of the gap material or to form a patterned transparent conductive electrode on the active substrate 914. However, the liquid crystal injection may be slow. Increasing the cost of working hours, while the latter is reducing the aperture ratio. SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide a substrate and a liquid crystal display capable of alleviating the color shift phenomenon perceived when viewed from a larger viewing angle. The purpose of an embodiment is to provide a color slab substrate and a liquid crystal display, which can smash the phenomenon. An object of an embodiment is to provide a color filter substrate and a liquid crystal display capable of reducing color shift or waste, while having a large aperture ratio and low cost. According to an embodiment of the invention, a liquid crystal display includes an active device substrate, a color filter, a light sheet substrate, and a liquid crystal layer. The active device substrate includes a first transparent substrate, and a plurality of switching elements and a plurality of pixel electrodes. The switching elements and the pixel electrodes are formed on the first transparent substrate, and each switching element is electrically connected to one of the pixel electrodes. The liquid crystal layer is disposed between the color filter substrate and the active device substrate. The color-based substrate defines a pixel area, and each pixel area* is adapted to correspond to such a transparent substrate, a --transparent conductive layer, and a color light-reel substrate comprising a color light-emitting substrate. a second transparent conductive layer and a dielectric layer. The first transparent conductive layer is located between the transparent substrate of the color filter, the substrate, and the second transparent conductive layer, the dielectric layer is located between the first transparent conductive layer and the second transparent conductive layer, and the second transparent conductive layer in each pixel region is defined At least one opening. > In accordance with an embodiment of the invention, a color slab substrate is defined that defines a plurality of pixel regions, the mother-pixel regions being adapted to correspond to a pixel electrode of an active device substrate. Color Filter Base 201011354 The board comprises a transparent substrate... a first transparent conductive layer, a second transparent conductive layer and a dielectric layer. The first transparent guide is disposed on the Μ substrate and the second permeable layer, and the dielectric layer is located between the first conductive layer and the second transparent layer, and at least one opening is formed by the second turned conductive layer in the riding-pixel array. According to the present invention, in the liquid crystal display and the color light-emitting substrate, the dielectric layer ' can be a color filter layer'. Preferably, the first transparent conductive layer is disposed on the transparent substrate of the color light-emitting substrate. * Between the layers of color. * In addition, the implementation of the energy dielectric layer may be a transparent layer and the color fishing light substrate further includes a color light layer, preferably a color light passing layer is disposed on the first transparent conductive layer and the color filter > 1 substrate Between transparent substrates. The color germanium and light layer may comprise a black matrix layer and a multi-mineral trace region bounded by the black matrix layer, and each of the traces corresponds to the pixels. According to the invention, in the liquid crystal display and the color filter substrate, the color light-receiving substrate further defines a non-display area, the non-display area includes a through hole, and the first transparent conductive layer and the second transparent conductive The layers are electrically connected through the via holes. Preferably, the non-display area is located outside the color filter substrate and surrounds the pixel areas. According to the liquid crystal display and the color filter substrate of the embodiment of the invention, at least two liquid crystal molecules of the liquid crystal layer have regions in different oblique directions between the pixel region and the pixel electrode. [Embodiment] Here, it should be noted that the term "the enamel layer is formed on the enamel layer" in this specification is not limited to the aspect in which the ruthenium layer is directly attached to the surface of the β layer, for example, the middle layer of the layer a and the layer of ruthenium. Other stacks are also covered by this term. 2 is a schematic view showing a partial cross section of a liquid crystal display according to an embodiment of the present invention. As shown in Fig. 2, the liquid crystal display 1 includes a filter substrate 12 and an active device substrate 14 facing each other, and a liquid crystal layer 16 is interposed between the substrates. The liquid crystal layer 16 is made of a negative dielectric anisotropic liquid crystal 201011354 material so that the liquid crystal molecules are vertically aligned when no voltage is applied. In addition, a spin-dopant can be added to the liquid crystal layer 16 to accelerate the rotation of the liquid crystal and reduce the misalignment. Figure 3 is a plan view showing a structure of a pixel on an active device substrate of a liquid crystal display according to an embodiment of the present invention. The switching element of the present embodiment is exemplified as an n-type amorphous thin film transistor (n-type a-Si TFT) 42'. As shown in FIGS. 2 and 3, a plurality of first transparent substrates * 41 of the active device substrate 14 are formed. A scan line 44 parallel to each other, and a data line 46 parallel to each other, and two adjacent scan lines 44 are orthogonal to the adjacent data lines 46 to enclose a pixel area 40. . A pixel electrode 48 formed of a transparent conductive film such as an indium tin oxide (ITO) or an indium zinc oxide (IZO) is distributed in the pixel region, and the thin film transistor 42 is electrically connected to the pixel electrode 48 and formed on the pixel electrode 48. The scan line 44 intersects the data line 46 at a point. Fig. 4 is a plan view showing a plane of a pixel on a filter substrate of a liquid crystal display according to an embodiment of the present invention. As shown in Figures 2 and 4, the phosphor substrate 12 defines a plurality of pixel regions 20, each of which corresponds to a plurality of pixel electrodes 48. A color filter layer 23 is formed on the second transparent substrate 21 of the filter substrate 12. The color filter layer 23 includes a black matrix layer % and a plurality of filter traces 34 defined by the black matrix layer 32, and each of the filter track regions 34 corresponds to one of the pixel regions 2. The filter traces 1 34 include a region %, and when the calendered substrate 12 and the active device substrate 14 are combined into a liquid crystal display 2, the region 38 corresponds to the n-type amorphous stone of the main component substrate 14 which is a switching element. Thin film transistor 42. Each of the filter traces may be composed of pigments of different colors, and thus, for example, the pupil track region 34 may be a red filter track region, a green pupil track region, and a blue pupil track region. A shading effect is provided between the two filter track areas: a black matrix layer (black matrix; ΒΜ) 32. In this embodiment, the first transparent substrate 4ι and the second transparent substrate 21 may be a glass substrate, a plastic substrate or a plastic soft film. In detail, a schematic cross-sectional view of the active device substrate 14 of FIG. 2 is a cross-sectional view taken along line α-α of FIG. 3, and a cross-sectional view of the filter optical substrate 12 of FIG. Β Β 9 201011354 - B' line cross-section of the pixel area 20, each pixel product shown in Figure 2, the color filter substrate 12 defines a plurality of substrate 12 comprising a second, 1 domain The 2 〇 position corresponds to one of the pixel electrodes 48. Color filter ❹ The electrical layer 242 and the system are dielectric: substrate 21, - transparent conductive layer 24 - second transparent conductive substrate and second transparent light layer 23. The first transparent conductive layer is interposed between the second layer 241 and the second transparent conductive layer 242, and the color filter layer 23 is located at the first transparent conductive corresponding-pixel region 2G. The color filter layer 23 is formed on the second transparent substrate 21 to form the color light-receiving layer 23, and the color filter layer 23 is formed at the position of the filter and the track region 34. In the transparent conductive layer 241, the second transparent conductive layer 242 is formed in the embodiment, and a capacitor is formed between the layer 241 and the second transparent conductive layer 242, which is a dielectric layer, and The second transparent collection can define at least one opening 243 between the two transparent conductive layers 241*242, thereby generating at least two liquid crystal layers 16 between the pixel regions \, ', 8 The first portion of the region pixel region 20 in which the molecules have different oblique directions and the second portion of the pixel region where the opening 243 is not formed are different in capacitance. Therefore, the first local portion of the pixel region and the electric field generated by the riding between the second portion of the domain 20 and the pixel electrode 48 are different, and the liquid crystal molecules of the two regions of the sinus layer 16 can be tilted. Shouting crystal molecules with different tilt directions can form non-light penetrating scales, so the two regions have different light transmittances. When the liquid crystal display is touched by the finger, the liquid crystal state is disturbed to cause embossing. Since the pixel region 20 can form two kinds of different electric fields, the liquid crystal can be restored to the original state, and the embossing phenomenon can be slowed down. The shape of the openings 243 is not limited and may be _, rectangular, elongated or irregular. The position of the opening σ 243 is also not limited. Although the fourth riding opening is added to the upper side of the pixel area 20, it may be located in the lower side of the pixel area 2〇 or in the middle of 201011354 in one embodiment. The number of openings 243 is also not limited. The pixel area 20 may also include a plurality of openings 243 located at different portions of the pixel area 20. The pixel area 2A may also be an area or divided into upper and lower areas, such as the embodiment of Fig. 5 below. Fig. 5 is a plan view showing a region of two adjacent pixels on a filter substrate of a liquid crystal display according to an embodiment of the present invention. Figure 6 is a plan view showing the construction of a pixel region on the panel of the lithographic substrate according to the present invention. The two adjacent pixel regions 821 and 822 of FIG. 5 and the pixel region 823 of FIG. 6 are similar to the pixel region 20 of FIG. 4, and therefore, the same components in the pixel regions are denoted by the same symbols and are omitted. Related instructions. Referring to FIGS. 5 and 6, the pixel regions 821, 822, and 823 respectively include a region 38, 382, and 383, which respectively divide the pixel regions into an upper side and a lower side, and the regions 38, 382, and 383 can respectively correspond to the active components. A switching element of the substrate. As shown in FIG. 5, the second transparent conductive layers in the pixel regions 821 and 822 define first openings 841 and 851 on the upper sides of the regions 381 and 382, respectively, and a lower portion on the lower sides of the regions 381 and 382. Two openings 842 and 852. The area of the second opening 8 (which is rectangular in shape) is different from the area of the first opening 841 (circular shape). Preferably, the pixel regions 821 and 822 are adjacent, and the area (or shape) of the first opening 841 of the pixel region 821 is the same as the area (or shape) of the second opening 852 of the pixel® region 822; and the pixel region 821 The area (or shape) of the second opening 842 is the same as the area (or shape) of the first opening 851 of the pixel area 822. The area (or shape) of the openings in the four regions of the two adjacent pixel regions is set up and down or left and right, so as to avoid when the light transmittances of the two of the four regions are different. Produces significant brightness unevenness. As shown in Fig. 6, the upper and lower sides of the pixel region 823 respectively include a plurality of elongated first and second openings 861 and 862. The long axis directions of the first and second openings 861 and 862 are different. Preferably, the long axis directions of the openings are mirrored along the region 383, and the design is designed to reduce uneven brightness. It should be understood that in the present embodiment, although the 201011354 pixels are divided into upper and lower sides, the non-native mosquitoes may be divided into upper and lower sides in the embodiment. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 7 is a schematic view showing a partial cross section of a liquid crystal display according to the present invention. The liquid crystal display 10 of FIG. 7 and the color filter substrate 12 are similar to the liquid crystal display 1 and the color filter substrate 12 of FIG. 2, and therefore, the same in the liquid crystal display and the color filter substrate. Read the phase _ symbol and omit its _ class. The town only describes the differences between the display and the color filter substrate. As shown in Fig. 7, the color filter substrate 12' of the liquid crystal display is different from the color filter substrate 12 of the liquid crystal display. The dielectric layer between the first transparent conductive layer 241 and the second transparent conductive layer 242 of the color slab substrate 12' may be a transparent layer of the phase (10) light layer, and the color filter board 〖2, A color filter layer 23 is included. In detail, the color light-emitting substrate 12 includes a second transparent substrate 21, a first transparent conductive layer 241, a second transparent conductive layer (10), a dielectric layer 245, and a color light-emitting layer transparent conductive layer. 241 is located between the second transparent substrate 21 and the second transparent conductive layer 242, the "electric layer 245 is located between the first transparent conductive layer 241 and the second transparent conductive layer, and the color filter (4) is disposed on the first transparent conductive layer 241 and Between the second transparent substrates 21, and the position of the color light (4) = the light trace area 34 corresponds to the pixel area 2G. In contrast, the color filter layer 23 is formed on the first transparent substrate 21. The first transparent conductive layer 241 is formed on the color light-emitting layer 23, the dielectric layer 245 is formed on the first transparent conductive layer, and the second transparent conductive layer is formed. Μ2 is formed on the dielectric layer Μ5. Figure 8 is a plan view showing a light-emitting sheet substrate of a liquid crystal display according to an embodiment of the present invention. The color filter substrate 7丨2 of Fig. 8 is similar to the color filter substrate 12 of Fig. 2, and therefore, the same components are denoted by the same reference numerals and the description thereof will be omitted. The color illuminator substrate 712 defines a display area 722 and a non-display area 72. The display area includes the pixel area 20 from the inside. The non-display area 721 corresponds to the area where the liquid crystal display does not display the surface, and the non-display area 721 defines a through hole 723, so that the transparent conductive layer 241 and the second transparent conductive layer 242 of the color filter substrate 712 12 201011354 are transmitted. The through holes 723 are electrically connected. Since the through hole 723 is in the non-display area 72, the display quality of the liquid crystal display 1 is less affected. According to this embodiment, only a common voltage is applied to the first transparent conductive layer 241 and the second transparent conductive layer 242, and the transparent conductive layer can receive the common voltage through the through hole 723. Therefore, this embodiment In addition, the transparent conductive layer can generate at least two regions of the liquid crystal molecules of the liquid crystal layer 16 having different tilt directions between the pixel region 20 and the pixel electrode 48 without adding TFTs and 1C components. Compared with the prior art, the color filter substrate and the liquid crystal display of the present embodiment have a large opening ratio and a low cost, and can at least reduce the phenomenon of color shift and embossing. Further, in the present embodiment, the non-display area 721 is located outside the color filter substrate 712 and surrounds the pixel areas 20. For a pixel of a liquid crystal display according to an embodiment of the present invention, an electric field and a transmittance curve, a voltage and transmittance curve (v_Tcurve), and a gradation and transmittance curve (curve) are simulated, and Know the technical comparison. Figure 9 is a graph showing electric field and transmittance of a cross section of a pixel in a liquid crystal display according to an embodiment of the present invention, and as shown in Figures 2 and 4, the opening is circular, and the width W of the opening 243 of the cross section is W The simulation was carried out with a ratio of the width χ of the filter track region 34 (cross-sectional opening ratio) of 50%. Figure 10 is a graph showing the electric field and transmittance of one of the pixels of a liquid crystal display. As shown in Fig. 9, the pixels of an embodiment of the present invention are capable of producing two main different transmittances Τ1 and Τ2 as compared with the prior art. 11 to 11C are graphs showing voltage and transmittance of a pixel in a liquid crystal display according to an embodiment of the present invention. In detail, the 11th figure shows the cross-sectional opening ratio of the embodiment of Fig. 9 in the case of the 40-degree viewing angle, which is 66% (curve 166), 50% (curve 150), 33% (curve 133), 17% ( The curve of curve 117), the curve of the conventional 40 degree angle of view (curve Τ 4〇), and the curve of the conventional technique perspective (curve Τ 0). The 11th panel shows the case where the 6-degree angle of view is the condition. The cross-sectional opening ratio of the embodiment of Fig. 9 is 66% (curve L66), 5〇% (curve L5〇), 13 201011354 330/〇 (curve L33), 17 A curve of 〇/〇 (curve L17), a curve of a conventional 60-degree angle of view (curve T60), and a curve of a conventional technique perspective (curve τ〇). The lie diagram shows a curve having a viewing angle of 0 degrees (curve Α0), 45 degrees (curve Α45), and 60 degrees (curve Α60) in the case where the sectional opening ratio is 5〇% in the embodiment of Fig. 9, a conventional technique The angle of view is the curve (curve Τ0), 45 degrees (curve Τ45), and the curve of 60 degrees (curve Τ60). From UA to lie, it can be seen that, in the case of the same viewing angle, the curves obtained in one embodiment of the present invention are closer to the curve of the conventional technical perspective than the curves obtained by the prior art. It can slow down the color shift phenomenon of large viewing angles. Figure 12 is a graph showing the gradation and transmittance of a pixel in a liquid crystal display according to an embodiment of the present invention. Fig. 12 is a view showing a curve of a viewing angle of a curve (curve GA0), a 45 degree (curve GA45), and a 60 degree (curve GA60) in the case where the sectional opening ratio is 5〇% in the embodiment of Fig. 9, a conventional technique. The angle of view is 0 degrees (curve GT0), 45 degrees (curve GT45), and a curve of 60 degrees (curve GT60). As can be seen from the πth diagram, the curves obtained in one embodiment of the present invention are closer to the curve of the conventional technique and the Gamma22 curve than the curves obtained by the prior art, so that the color shift phenomenon of the large viewing angle can be alleviated. The towel curve GAQ, (10), Gamma2 2 is close to overlap. Therefore, according to an embodiment of the present invention, the cross-sectional opening of the embodiment of the present invention may preferably be 06% to 50%, 50°/. ~33%, and 33%~17%, that is, 66%~17%. 'The above is only for the stalker. Any of the spirits of the present invention and the equivalents of the invention are all included in the capping machine: not limited to the above embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a partial cross section of a conventional liquid crystal display. 2 is a schematic cross-sectional view of a partial cross-section of a liquid crystal display according to an embodiment of the present invention. 201011354 The present invention is based on the implementation of the present invention on the substrate of the active device substrate of the microcrystalline display (4) - the light of the liquid crystal age device A pixel region is formed on a substrate. Fig. 5 is a plan view showing a region of a two-phase region on a filter substrate of a liquid crystal display according to the present invention.
第6圖為依本發明_實施例液晶顯示器之濾光片基板上 域的平面示意圖。 倮素Q 第7圖為依本發明一實施例之液晶顯示器之局部剖面的示意圖。 第8圖為依本發明—實施例液晶顯示器之濾光片基板的平面示意圖。 第9圖為依本發明一實施例液晶顯示器中一像素之一剖面的電場與 透率曲線圖。 ' 第1〇圖為依習知液晶顯示器中一像素之一剖面的電場與穿透率曲線 圖。 第11A至11C圖依本發明一實施例液晶顯示器中一像素的電壓與穿透 率曲線圖。 第12圖依本發明—實施例液晶顯示器中一像素的灰度及穿透率曲線 圖。 、 【主要元件符號說明】 10 液晶顯示器 20 像素區域 12 濾光片基板 21 第二透明基板 14 主動元件基板 23 彩色遽光層 16 液晶層 241 第一透明導電層 15 201011354 242 第二透明導電層 243 開口 245 介電層 32 黑矩陣層 34 濾光跡區 38,381,382,383 區域 40 像素區域 41 第一透明基板 42 切換元件 44 掃描線 46 資料線 48 像素電極 712 彩色濾光片基板 721 非顯示區域 722 顯示區域 723 通孔 821,822,823 像素區域 841,851,861 第一開口 842,852,862 第二開口 90 液晶顯不 912 渡光片基板 914 主動元件基板 916 液晶層 922 像素電極 924 共用電極 926 透明基板 928 透明基板 930 彩色濾光片 932 遽光跡區 934 黑矩陣層Fig. 6 is a plan view schematically showing the upper region of the filter substrate of the liquid crystal display according to the present invention.倮素 Q Fig. 7 is a schematic view showing a partial cross section of a liquid crystal display according to an embodiment of the present invention. Figure 8 is a plan view showing a filter substrate of a liquid crystal display according to the present invention. Figure 9 is a graph showing the electric field and transmittance of a cross section of a pixel in a liquid crystal display according to an embodiment of the present invention. The first diagram is a plot of the electric field and transmittance of a section of a pixel in a liquid crystal display. 11A to 11C are graphs showing voltage and transmittance of a pixel in a liquid crystal display according to an embodiment of the present invention. Figure 12 is a graph showing the gradation and transmittance of a pixel in a liquid crystal display according to the present invention. [Main component symbol description] 10 Liquid crystal display 20 Pixel region 12 Filter substrate 21 Second transparent substrate 14 Active device substrate 23 Color light-emitting layer 16 Liquid crystal layer 241 First transparent conductive layer 15 201011354 242 Second transparent conductive layer 243 Opening 245 Dielectric layer 32 Black matrix layer 34 Filter track area 38, 381, 382, 383 Area 40 Pixel area 41 First transparent substrate 42 Switching element 44 Scan line 46 Data line 48 Pixel electrode 712 Color filter substrate 721 Non-display area 722 Display area 723 Through hole 821, 822, 823 Pixel area 841, 851, 861 First opening 842, 852, 862 Second opening 90 Liquid crystal display 912 Emitter substrate 914 Active device substrate 916 Liquid crystal layer 922 Pixel electrode 924 Common electrode 926 Transparent substrate 928 Transparent substrate 930 Color filter 932 Light trace Area 934 black matrix layer
1616