[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW201009855A - Process for preparing metal-based materials for magnetic cooling or heat pumps - Google Patents

Process for preparing metal-based materials for magnetic cooling or heat pumps Download PDF

Info

Publication number
TW201009855A
TW201009855A TW098114088A TW98114088A TW201009855A TW 201009855 A TW201009855 A TW 201009855A TW 098114088 A TW098114088 A TW 098114088A TW 98114088 A TW98114088 A TW 98114088A TW 201009855 A TW201009855 A TW 201009855A
Authority
TW
Taiwan
Prior art keywords
metal
stage
range
based material
heat
Prior art date
Application number
TW098114088A
Other languages
Chinese (zh)
Other versions
TWI459409B (en
Inventor
Ekkehard Brueck
Thanh Trung Nguyen
Original Assignee
Technology Foundation Stw
Univ Amsterdam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Foundation Stw, Univ Amsterdam filed Critical Technology Foundation Stw
Publication of TW201009855A publication Critical patent/TW201009855A/en
Application granted granted Critical
Publication of TWI459409B publication Critical patent/TWI459409B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1028Controlled cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

The process for preparing metal-based materials for magnetic cooling or heat pumps comprises the following steps: (a) reacting chemical elements and/or alloys in a stoichiometry which corresponds to the metal-based material in the solid phase and/or liquid phase, (b) if appropriate converting the reaction product from stage (a) to a solid, (c) sintering and/or heat treating the solid from stage (a) or (b), (d) quenching the sintered and/or heat treated solid from stage (c) at a cooling rate of at least 100 K/s.

Description

201009855 六、發明說明: 【發明所屬之技術領域】 本發明係關於用於磁冷卻或熱泵之以金屬為主之材料的 製造方法,此類型之材料及其用途。根據本發明製造之該 等材料係用於磁冷卻、熱泵或空調系統中。 【先前技術】 此類型之材料大體上已知且描述於(例如)W〇 2004/068512 中。磁冷卻技術係基於磁卡效應(MCE)且可構成一已知蒸 氣循環冷卻方法之替代方法。在展現磁卡效應之材料中, 響 藉由外部磁場使隨機對準之磁矩對準會使得材料發熱。可 藉由熱轉移將此熱自MCE材料移除至周圍大氣中。當隨後 關閉或移除磁場時,磁矩回復為隨機對準,此使得材料冷 卻至周圍溫度以下。此效應可用於冷卻目的;亦參見 Nature ’第415卷,2002年!月1〇日,第15〇至152頁。通常, 使用諸如水之熱轉移介質以自磁卡材料移除熱。 常用材料係藉由以下方法製得:該材料之起始元素或起 始合金在球磨機中進行固相反應,且隨後在惰性氛圍中進❿ 行壓製,燒結及熱處理並隨後逐漸冷卻至室溫。此方法係 (例如)描述於 J. Appl. PhyS. 99, 2006, 08Q107 中。 亦有可能藉助於熔融紡絲進行加工。此使得有可能達成 更均一兀素分布,其產生一獲改良之磁卡效應;參見201009855 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of manufacturing a metal-based material for magnetic cooling or heat pump, a material of this type and its use. Such materials made in accordance with the present invention are used in magnetic cooling, heat pump or air conditioning systems. [Prior Art] Materials of this type are generally known and described, for example, in W〇 2004/068512. The magnetic cooling technique is based on the Magnetic Card Effect (MCE) and can form an alternative to the known vapor cycle cooling method. In materials exhibiting a magnetic card effect, aligning the magnetic moments of random alignment by an external magnetic field causes the material to heat up. This heat can be removed from the MCE material to the surrounding atmosphere by thermal transfer. When the magnetic field is subsequently turned off or removed, the magnetic moment returns to random alignment, which causes the material to cool below ambient temperature. This effect can be used for cooling purposes; see also Nature's Vol. 415, 2002! On the 1st of the month, the 15th to the 152th. Typically, a heat transfer medium such as water is used to remove heat from the magnetic card material. A commonly used material is obtained by a method in which a starting element or a starting alloy of the material is subjected to a solid phase reaction in a ball mill, and then pressed, sintered and heat-treated in an inert atmosphere and then gradually cooled to room temperature. This method is described, for example, in J. Appl. PhyS. 99, 2006, 08Q107. It is also possible to process by means of melt spinning. This makes it possible to achieve a more uniform distribution of the elements, which produces an improved magnetic card effect; see

Metals ’第25卷’ 2006年1〇月,第544至549頁。在其中所 述方法令,首先令起始元素在氯氣氛圍中感應溶融且隨後 以溶融狀態經由噴嘴將其噴霧於旋轉銅捲筒上。接著在 139994.doc ⑧ 201009855 1000°c下燒結且逐漸冷卻至室溫。 藉由已知方法獲得之材料通常展現高熱滯後。舉例而 言,在經鍺或矽取代之Fej型化合物中,在1〇 κ或1〇 κ以 上之寬範圍内觀測到較大熱滞後值。該等材料因此並不十 分適於磁卡冷卻。 【發明内容】 本發明之目的在於提供一種用於磁冷卻之以金屬為主之 材料的製造方法,其使熱滞後降低。同時,應達成較大磁 ® + 效應(MCE)。 該目的係根據本發明藉由一種用於磁冷卻或熱泵之以金 屬為主之材料的製造方法達成’該方法包含以下步驟: a) 使化學元素及/或合金以固相及/或液相對應於該以 金屬為主之材料之化學計量反應, b) 適當時將來自階段a)之反應產物轉換為固髏, c) 燒結及/或熱處理來自階段a)或b)之該固體, d) 以至少1〇〇 K/s之冷卻速率驟冷來自階段勾之經燒結 9 及/或經熱處理的固體。 根據本發明已發現當該等以金屬為主之材料在燒結及/ 或熱處理之後並非逐漸冷卻至周圍溫度而是以高冷卻速率 驟冷時,熱滯後可顯著降低。此冷卻速率為至少100 K/S。 冷卻速率較佳為100 K/s至10000 K/s,更佳為200 K/s至 1300 K/s。尤其較佳之冷卻速率為300 K/s至1〇〇〇 K/s。 可藉由任何合適之冷卻方法達成此驟冷,例如藉以水或 水性液體(例如經冷卻水或冰/水混合物)使固體驟冷《舉例 139994.doc 201009855 而言’可使固體落入經冰冷卻之水中。亦可以諸如液離氮 之過冷氣髏使固體驟冷。熟習此項技術者已知其他驟^方 法。此處較佳方法為受控且迅速之冷卻。 不受限於理論,降低之滞後可歸因於驟冷組合物之較】 粒度。 在迄今已知之方&中H一情況下燒結及熱處理之後 均為逐漸冷卻’其導致較大粒度之形成且因此導致熱 之增加。 ‘、,、'便 製造以金屬為主之材料之其餘步驟的關鍵性較低,其限 制條件為在最後步驟中經燒結及/或經熱處理之固體係以 本發明之冷卻速率驟冷。該方法可應用於任何合適用於磁 冷卻之以金屬為主之材料的製造中。用於磁冷卻之典型 料為多金屬混合物,其通常包含至少三種金屬元素且適者 時另外包含非金屬元素。表述「以金屬為主之材 田 此等材料之主要比例係由金屬或金屬元素形成。通常,曰: 部材料中之比例為至少5〇重量%、較佳至少75重量。A、: :至少8。重量%。下文中詳細說明合適的以金屬為主之材 之發:方法之步驟⑷中,存在於後來以金屬為主 屬為电H或合金係以固相或液相對應於該以金 屬為主之材料之化學計量轉換。 =佳為藉由在㈣容Μ或在觀機中—起純 二金=:::進行固相反應來進行階段-之反 、佳為進仃固相反應’其尤其係在球磨機中進 139994.doc 201009855 行。此反應大體上為已知的;參見引言中所引用之文獻。 通常’將存在於後來以金屬為主之材料中的個別元素之粉 末或兩種或兩種以上之個別元素之合金粉末以粉狀形式以 合適重量比例混合。必要時,可額外研磨混合物以獲得微 晶粉末混合物。較佳係在球磨機中加熱該粉末混合物,此 導致進一步粉碎以及良好混合,且導致粉末混合物之固相 反應。 或者,將個別元素以所選化學計量以粉末形式混合且隨 後熔融之。 在密封容器中進行組合加熱允許固定揮發性元素且控制 化學計量。特定言之,在使用磷之情況下,此元素在開放 系統中會容易蒸發。 反應之後為燒結及/或熱處理固體,其中可提供一戍多 個中間步驟。舉例而言,在階段a)中所獲得之固體可在其 經燒結及/或熱處理之前先經壓製。此使得材料之密度增 加,以致在後來應用中存在高密度之磁卡材料。此為特別 有利的,因為可減小磁場存於内之體積,此可能與顯著成 本節約有相關聯。壓製本身為已知的且可在有或無壓製助 劑存在的情況下進行。有可能使用任何合適用於此壓製的 模具。藉由壓製’已可能獲得具有所要三維結構的成形物 體壓製之後可為階段C)之燒結及/或熱處理,接著為階段 d)之驟冷。 或者,有可能將自球磨機獲得之固體送至熔融紡絲製程 中。熔融紡絲製程本身為已知且(例如)描述於Mehls, 139994.doc 201009855 第 25卷 ’ 2006年 l〇月,第 544至549頁,以 &WO 2004/0685l2 中。 在該等方法中,使階段a)中獲得之組合物熔融且噴霧於 旋轉之冷金屬捲筒上。可藉助於喷嘴上游之高壓或喷嘴下 游之低壓來達成此喷霧。通常,使用旋轉銅鼓或捲筒,適 當時可額外冷卻之。該銅鼓較佳係以1〇爪以至扣m/s、尤 其20 m/s至30 m/s之表面速度旋轉。在銅鼓上,液體組合 物係以較佳102 K/s至107 K/s之速率、更佳係至少1〇4K/s之 速率、尤其0.5xl〇6K/s至2xl06K/s之速率冷卻。 亦如階段a)中之反應般,熔融紡絲可在減壓下或在惰性 氛圍中進行。 因為可縮短後續燒結及熱處理,所以熔融紡絲達到一高 加工速率。特定言之,在工業規模上,以金屬為主之材料 的製造因此在經濟上變得顯著可行。喷霧乾燥亦導致高加 工速率。尤其較佳為進行熔融紡絲。 或者,在階段b)中,可進行喷霧冷卻,其中將來自階段 a)之組合物熔體喷入喷霧塔中。該喷霧塔可(例如)經額外 冷卻。在喷霧塔中,通常達到在1〇3反“至丨…K/s之範圍 内、尤其約104K/s之冷卻速率。 固體之燒結及/或熱處理係在階段c)中進行,較佳係先在 800 C至1400 C之範圍内的溫度下燒結且隨後在5〇〇。〇至 750 C之範圍内的溫度下熱處理。該等值尤其適用於成形 物體’而較低燒結及熱處理溫度可用於粉末。舉例而言, 燒結隨後可在50(TC至80(TC之範圍内的溫度下進行。對於 139994.doc 201009855 成形物體/固體而今 °燒、,。更佳係在1〇〇〇。(:至13〇0。(:、尤 其1100 C至〗3〇〇t:之範圍内 六r 祀固内的,皿度下進仃。隨後可(例如) 在C至7〇〇t下進行熱處理。 ,^結較佳係進行—段1小時至5G小時、更佳係2小時至20 ::、、尤其5小_至15小時之時間。熱處理較佳係進行一 又在10小時至100小時、更佳係1〇小時至⑼小時、尤其 小時至5〇小時之範圍内的時間。可根據材料按照實際需要 調整確切時期。Metals ’Vol. 25’ 1 month, 2006, pp. 544-549. In the method described therein, the starting element is first induced to melt in a chlorine atmosphere and then sprayed onto the rotating copper drum via a nozzle in a molten state. It was then sintered at 139994.doc 8 201009855 1000 °c and gradually cooled to room temperature. Materials obtained by known methods typically exhibit high thermal hysteresis. For example, in the Fej-type compound substituted by hydrazine or hydrazine, a large thermal hysteresis value is observed over a wide range of 1 κ κ or 1 〇 κ. These materials are therefore not well suited for magnetic card cooling. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a metal-based material for magnetic cooling, which reduces thermal hysteresis. At the same time, a larger magnetic ® effect (MCE) should be achieved. This object is achieved according to the invention by a method for the production of a metal-based material for magnetic cooling or heat pumping. The method comprises the steps of: a) bringing the chemical elements and/or alloys into a solid phase and/or a liquid phase. Corresponding to the stoichiometric reaction of the metal-based material, b) converting the reaction product from stage a) to solids, c) sintering and/or heat treating the solid from stage a) or b), d The quenched 9 and/or heat treated solids from the stage hooks are quenched at a cooling rate of at least 1 K/s. It has been found in accordance with the present invention that thermal hysteresis can be significantly reduced when such metal-based materials are not gradually cooled to ambient temperature after sintering and/or heat treatment but are quenched at a high cooling rate. This cooling rate is at least 100 K/s. The cooling rate is preferably from 100 K/s to 10000 K/s, more preferably from 200 K/s to 1300 K/s. A particularly preferred cooling rate is from 300 K/s to 1 〇〇〇 K/s. This quenching can be achieved by any suitable cooling method, such as quenching the solid by water or an aqueous liquid (for example, via cooling water or an ice/water mixture). For example, 139994.doc 201009855, the solid can fall into the ice-cold But in the water. The solid may also be quenched by a subcooling gas such as liquid nitrogen. Other methods are known to those skilled in the art. The preferred method herein is controlled and rapid cooling. Without being bound by theory, the reduced hysteresis can be attributed to the particle size of the quenched composition. It has been gradually cooled after sintering and heat treatment in the case of H in the hitherto known &> which results in the formation of a larger particle size and thus an increase in heat. The remaining steps of the ',,,' manufacture of metal-based materials are less critical, with the consequent condition that the sintered and/or heat treated solids in the final step are quenched at the cooling rate of the present invention. This method can be applied to the manufacture of any metal-based material suitable for magnetic cooling. A typical material for magnetic cooling is a multi-metal mixture which typically contains at least three metal elements and additionally contains non-metallic elements when appropriate. The expression "metal-based material fields" is mainly composed of metals or metal elements. Generally, the ratio of the materials is at least 5% by weight, preferably at least 75 weights. A, : : at least 8. % by weight. The following is a detailed description of a suitable metal-based material: in the step (4) of the method, the metal is mainly used as the electric H or the alloy is in the solid phase or the liquid phase corresponds to the Stoichiometric conversion of metal-based materials. = Good by solid phase reaction in (4) Μ or in the machine - pure two gold =::: phase-reverse, good for the solid phase reaction 'It is especially in the ball mill. 139994.doc 201009855. This reaction is generally known; see the literature cited in the introduction. Usually 'will be present in the powder of individual elements in later metal-based materials or The alloy powder of two or more of the individual elements is mixed in a powder form in a suitable weight ratio. If necessary, the mixture may be additionally ground to obtain a microcrystalline powder mixture. It is preferred to heat the powder mixture in a ball mill, which leads to further Step comminution and good mixing, and lead to solid phase reaction of the powder mixture. Alternatively, individual elements are mixed in powder form at selected stoichiometry and subsequently melted. Combined heating in a sealed container allows for the immobilization of volatile elements and control of stoichiometry In particular, in the case of phosphorus, this element will readily evaporate in an open system. The reaction is followed by sintering and/or heat treatment of solids, which can provide a number of intermediate steps. For example, in stage a) The solid obtained in the solid can be pressed before it is sintered and/or heat treated. This increases the density of the material, so that a high density magnetic card material is present in later applications. This is particularly advantageous because the magnetic field can be reduced Within the volume, this may be associated with significant cost savings. The pressing itself is known and can be carried out with or without the presence of a press aid. It is possible to use any suitable mold for this press. Sintering and/or heat treatment, which may be stage C) after pressing a shaped object having the desired three-dimensional structure, It is possible to quench the stage d). Alternatively, it is possible to feed the solids obtained from the ball mill to the melt spinning process. The melt spinning process itself is known and described, for example, in Mehls, 139994.doc 201009855 Volume 25 'In the month of 2006, pages 544 to 549, in & WO 2004/0685l2. In these processes, the composition obtained in stage a) is melted and sprayed onto a rotating cold metal reel. This spray is achieved by means of a high pressure upstream of the nozzle or a low pressure downstream of the nozzle. Typically, a rotating copper drum or drum is used, which may be additionally cooled as appropriate. The copper drum is preferably 1 pawl to buckle m/s, especially 20 The surface speed of m/s to 30 m/s is rotated. On the copper drum, the liquid composition is preferably at a rate of 102 K/s to 107 K/s, more preferably at least 1 〇 4 K/s, especially 0.5. Cool down at a rate of xl 〇 6K/s to 2xl06K/s. Also as in the reaction in stage a), melt spinning can be carried out under reduced pressure or in an inert atmosphere. Melt spinning achieves a high processing rate because subsequent sintering and heat treatment can be shortened. In particular, on an industrial scale, the manufacture of metal-based materials is therefore economically significant. Spray drying also results in high processing rates. It is especially preferred to carry out melt spinning. Alternatively, in stage b), spray cooling can be carried out in which the composition from stage a) is melted into the spray tower. The spray tower can, for example, be additionally cooled. In the spray tower, a cooling rate in the range of 1"3" to K...K/s, in particular about 104 K/s, is usually achieved. The sintering and/or heat treatment of the solids is carried out in stage c), preferably It is first sintered at a temperature in the range of 800 C to 1400 C and then heat treated at a temperature ranging from 5 Torr to 750 C. This value is especially suitable for forming objects' while lower sintering and heat treatment temperatures It can be used for powders. For example, sintering can then be carried out at a temperature in the range of 50 (TC to 80 (TC). For 139994.doc 201009855 shaped objects/solids, now burned, more preferably in 1〇〇〇 (: to 13〇0. (:, especially 1100 C to 〖3〇〇t: within the range of six r 祀 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The heat treatment is carried out, preferably in the range of 1 hour to 5G hours, more preferably 2 hours to 20::, especially 5 hours to 15 hours. The heat treatment is preferably carried out for another 10 hours. 100 hours, more preferably 1 hour to (9) hours, especially hours to 5 hours. To adjust the exact time.

在使用熔融紡絲方法之情況下,通常可省掉燒結,且熱 處理可顯著縮短(例如)至5分鐘至5小時、較佳係1〇分鐘至i J時之時間。與其他方式之燒結1〇小時及熱處理小時之 常用值相比,此產生較大時間優勢。 燒結/熱處理導致粒子邊界部分熔融,以致材料進一步 緻密化。 階段b)中之熔融及快速冷卻因此使階段c)之持續時間顯 著降低。此亦允許連續製造以金屬為主之材料。 根據本發明尤其較佳為以下方法順序: a) 使化學το素及/或合金以對應於以金屬為主之材料之化 學計量在球磨機中進行固相反應, b) 熔融紡絲階段a)中所獲得之材料, c) 在430 C至1200°C、較佳係800。(:至l〇〇〇°c之範圍内的 溫度下熱處理來自階段b)之固體達一段10秒或1分鐘至 5小時、較佳係3 0分鐘至2小時之時間, d) 以200 K/s至13〇0 K/s之冷卻速率驟冷來自階段c)之經 139994.doc -9- 201009855 熱處理的成形物體。 本發明方法可用於任何合適的以金屬為主之村料 、荨以金屬為主之材料更佳係選自: (1)通式(I)之化合物 其中: (AyBy.j)2+5CwDxEz (I) A 為Μη或Co, B 為 Fe、Cr 或 Ni, C、D及 E C、D及E中至少兩者不同, 具有非零 度且係選自P、B、Se、Ge、 Ga、Si、: N、As及Sb,其中c、D及E中至少一 Ge或 Si, δ 為在-0.1至0.1之範圍内之數值, w、X、y、ζ 為在0至1之範圍内之數值,其中w+x+z=l 通式(II)及/或(III)及/或(IV)之基於La及Fe之化合物 La(Fe :xAli_x)13Hy 或 La(FexSi卜x)nHy (II) 其中: X 為0.7至0.95之數值, y 為0至3、較佳係〇至2之數值 -· La(FexAlyCoz)13 或 La(FexSiyCoz)13 (Ill) 其中: X 為0.7至0.95之數值, y 為0.05至1-χ之數值, ζ 為0.005至0.5之數值; 139994.doc 201009855 (IV)In the case of using the melt spinning method, sintering can usually be omitted, and the heat treatment can be remarkably shortened, for example, to 5 minutes to 5 hours, preferably 1 minute to i J. This produces a greater time advantage than the usual values of sintering for 1 hour and heat treatment hours. The sintering/heat treatment causes partial melting of the particle boundaries, so that the material is further densified. The melting and rapid cooling in stage b) thus significantly reduces the duration of stage c). This also allows the continuous manufacture of metal-based materials. According to the invention, the following sequence of processes is particularly preferred: a) subjecting the chemical oxime and/or alloy to a solid phase reaction in a ball mill corresponding to the stoichiometry of the metal-based material, b) melt spinning stage a) The material obtained, c) is from 430 C to 1200 ° C, preferably 800. (: heats the solid from stage b) at a temperature in the range of l〇〇〇°c for a period of 10 seconds or 1 minute to 5 hours, preferably 30 minutes to 2 hours, d) at 200 K The cooling rate of /s to 13 〇 0 K/s is quenched from the shaped object heat treated by 139994.doc -9- 201009855 of stage c). The method of the present invention can be applied to any suitable metal-based material, and the metal-based material is more preferably selected from the group consisting of: (1) a compound of the formula (I) wherein: (AyBy.j)2+5CwDxEz ( I) A is Μη or Co, B is Fe, Cr or Ni, and C, D and at least two of EC, D and E are different, have a non-zero degree and are selected from P, B, Se, Ge, Ga, Si, : N, As and Sb, wherein at least one of c, D and E is Ge or Si, δ is a value in the range of -0.1 to 0.1, and w, X, y, ζ are values in the range of 0 to 1. Wherein w+x+z=l La and Fe-based compounds La(Fe:xAli_x)13Hy or La(FexSibx)nHy (II) of formula (II) and/or (III) and/or (IV) Where: X is a value from 0.7 to 0.95, y is a value from 0 to 3, preferably from 〇 to 2 - La(FexAlyCoz)13 or La(FexSiyCoz)13 (Ill) where: X is a value from 0.7 to 0.95 , y is a value from 0.05 to 1-χ, ζ is a value from 0.005 to 0.5; 139994.doc 201009855 (IV)

LaMnxFe2-xGe 其中: x 為1.7至1.95之數值,及 (3) ΜηΤΡ型之豪斯勒合金(Heusler alloy),其中τ為過渡金 屬,且P為每原子之電子數e/a在7至8.5之範圍内的p掺 雜型金屬。 根據本發明尤其合適之材料係描述於(例如)w〇 2004/068512 ; Rare Metals,第 25 卷,2006 年,第 544 至 549 頁;J· Appl. Phys. 99.08Q107 (2006); Nature,第 415 卷 ’ 2002年 1 月 10 曰,第 150至 152 頁;及Physica B 327 (2003), 第431至437頁中。 在前述通式(I)之化合物中,C、D及E較佳係相同或不同 且係選自P、Ge、Si、Sn及Ga中的至少一者。 通式(I)之以金屬為主之材料較佳係選自至少四元化合 物,其不僅包含Mn、Fe、p及若適當之sb,且另外亦包含 Ge或Si或As或Ge及Si或Ge及As或Si及As或Ge、Si及As。 較佳至少90重量%、更佳係至少95重量%之組份a為 Μη。較佳至少9〇重量%、更佳係至少95重量%之B為以。 較佳至少90重量%、更佳係至少95重量%之c為p。較佳至 v 90重量。/。、更佳係至少%重量%之〇為〇e。較佳至少9〇 重量%、更佳係至少95重量%之£為Si。 材料較佳具有通式MnFe(PwGexSiz)。 X較佳為在〇·3至〇.7之範圍内之數值,…係小於或等於ΐχ 且ζ對應於1 -X-W。 139994.doc 201009855 材料較佳具有結晶六方FezP結構。合適結構之實例為 MnFeP0.45至。7、Ge〇 55至〇 3。及MnFeP0.5i0 7。、(Si/Ge)0.5至。3〇。 合適化合物另外為Mw+xFebxPuGey,其中X在-0.3至〇.5 之範圍内,y在〇·1至0.6之範圍内。同樣合適者為通式 MnHxFei-xPi.yGeyzSbz之化合物,其中X在·〇·3至0.5之範圍 内’ y在0.1至0.6之範圍内,且z小於y且小於〇·2。亦合適 者為式Mni+xFei.xPhyGey.zSizi化合物,其中X在〇·3至〇 5 之範圍内’y在0.1至0.66之範圍内,z小於或等於y且小於 0.6 〇 較佳通式(II)及/或(III)及/或(IV)之基於La及Fe之化合物 為 La(Fe〇.90Si0.10)13、LaCFeo.^SiiuOn、La(Fe〇.880Si〇.12〇)13、 La(Fe〇.877Si〇.123)13 、LaFen.8Sii.2 、La(Fe0.88Si0.12)13H0.5 、LaMnxFe2-xGe where: x is a value from 1.7 to 1.95, and (3) ΜηΤΡ type of Heusler alloy, where τ is a transition metal, and P is the number of electrons per atom e/a from 7 to 8.5 A p-doped metal within the range. Materials which are particularly suitable according to the invention are described, for example, in WO 2004/068512; Rare Metals, Vol. 25, 2006, pages 544 to 549; J. Appl. Phys. 99.08Q107 (2006); Nature, 415 volumes 'January 10, 2002, pp. 150-152; and Physica B 327 (2003), pp. 431-437. In the compound of the above formula (I), C, D and E are preferably the same or different and are selected from at least one of P, Ge, Si, Sn and Ga. The metal-based material of the formula (I) is preferably selected from at least a quaternary compound comprising not only Mn, Fe, p and, if appropriate, sb, but additionally Ge or Si or As or Ge and Si or Ge and As or Si and As or Ge, Si and As. Preferably, at least 90% by weight, more preferably at least 95% by weight, of component a is Μη. Preferably, at least 9% by weight, more preferably at least 95% by weight, of B. Preferably at least 90% by weight, more preferably at least 95% by weight, of c is p. Preferably to v 90 weight. /. More preferably, at least % by weight is 〇e. Preferably, at least 9% by weight, more preferably at least 95% by weight, is Si. The material preferably has the general formula MnFe (PwGexSiz). X is preferably a value in the range of 〇·3 to 〇.7, which is less than or equal to ΐχ and ζ corresponds to 1-X-W. 139994.doc 201009855 The material preferably has a crystalline hexagonal FezP structure. An example of a suitable structure is MnFeP 0.45 to. 7, Ge〇 55 to 〇 3. And MnFeP0.5i0 7. , (Si/Ge) 0.5 to. 3〇. A suitable compound is additionally Mw+xFebxPuGey, wherein X is in the range of -0.3 to 〇.5 and y is in the range of 〇·1 to 0.6. Also suitable are compounds of the formula MnHxFei-xPi.yGeyzSbz wherein X is in the range of from 至3 to 0.5, y is in the range of from 0.1 to 0.6, and z is less than y and less than 〇·2. Also suitable are compounds of the formula Mni+xFei.xPhyGey.zSizi, wherein X is in the range of 〇·3 to 〇5, y is in the range of 0.1 to 0.66, z is less than or equal to y and less than 0.6 〇. The compounds based on La and Fe of II) and/or (III) and/or (IV) are La(Fe〇.90Si0.10)13, LaCFeo.^SiiuOn, La(Fe〇.880Si〇.12〇)13 , La(Fe〇.877Si〇.123)13, LaFen.8Sii.2, La(Fe0.88Si0.12)13H0.5,

La(Fe〇.88Si〇.i2)i3Hi.〇 ' LaFen.7811.3111.! ' LaFen.57Si1.43H! 3 'La(Fe〇.88Si〇.i2)i3Hi.〇 ' LaFen.7811.3111.! ' LaFen.57Si1.43H! 3 '

La(Fe〇.88Si〇.i2)Hi.5 、LaFei12Co〇.7Sii.i 、LaFen^Al] 5C〇.i 、 LaFen.5Alj.5C0.2 、 LaFen.5Al1.5C0.4 、 LaFen.5Al1.5Coo.5 、La(Fe〇.88Si〇.i2)Hi.5, LaFei12Co〇.7Sii.i, LaFen^Al] 5C〇.i, LaFen.5Alj.5C0.2, LaFen.5Al1.5C0.4, LaFen.5Al1. 5Coo.5,

La(Fe〇.94Co〇.06)11.83AI1.17、La(Fe〇.92Co〇.08)11.83AI1.17。 合適的含錳化合物為MnFeGe、MnFeo^CoojGe、 MnFe〇.8Co〇_2Ge、MnFe〇.7Co〇.3Ge、MnFe〇.6Co〇.4Ge、MnFe0.5Co0.5Ge、 MnFe〇.4Co〇.6Ge、MnFe〇.3Co〇.7Ge、MnFe〇.2Co〇.8Ge、MnFe〇.i5Co〇.85Ge、 JMllFc〇.iC〇〇.9Ge Λ MllCoGc ' Mn.5GC2.5Sio.5 ' Μώ.5〇62*^Ϊ ' M1I5G6J 5SIJ 5 ' MiisGeSi!、Mri5Ge3、Mn5Ge2.9Sb〇j、Mn5Ge2.gSb〇.2、Mri5Ge2.7Sb〇.3、 LaMn1.9Feo.1Ge ' LaMnj 85Fe〇.15Ge ' LaMni.8Fe〇.2Ge ' (Fe〇.9Mn〇.i)3C ' (Fe〇.8Mn〇.2)3C、(Fe〇.7Mn〇.3)3C、Mn3GaC、MnAs、(Mn,Fe)As、 Mni+sAs〇.8Sb〇.2、MnAso.75Sbo.25、Mri1.1Aso.75Sbo.25、Mn1.5Aso.75Sbo.25。 139994.doc -12- 201009855 • 根據本發明合適之豪斯勒合金為(例如)Fe2MnSiG.5Ge0.5、La (Fe〇.94Co〇.06) 11.83AI1.17, La(Fe〇.92Co〇.08) 11.83AI1.17. Suitable manganese-containing compounds are MnFeGe, MnFeo^CoojGe, MnFe〇.8Co〇_2Ge, MnFe〇.7Co〇.3Ge, MnFe〇.6Co〇.4Ge, MnFe0.5Co0.5Ge, MnFe〇.4Co〇.6Ge, MnFe〇.3Co〇.7Ge, MnFe〇.2Co〇.8Ge, MnFe〇.i5Co〇.85Ge, JMllFc〇.iC〇〇.9Ge Λ MllCoGc ' Mn.5GC2.5Sio.5 ' Μώ.5〇62*^ Ϊ ' M1I5G6J 5SIJ 5 ' MiisGeSi!, Mri5Ge3, Mn5Ge2.9Sb〇j, Mn5Ge2.gSb〇.2, Mri5Ge2.7Sb〇.3, LaMn1.9Feo.1Ge 'LaMnj 85Fe〇.15Ge 'LaMni.8Fe〇.2Ge ' (Fe〇.9Mn〇.i) 3C '(Fe〇.8Mn〇.2)3C, (Fe〇.7Mn〇.3)3C, Mn3GaC, MnAs, (Mn,Fe)As, Mni+sAs〇.8Sb 〇.2, MnAso.75Sbo.25, Mri1.1Aso.75Sbo.25, Mn1.5Aso.75Sbo.25. 139994.doc -12- 201009855 • A Haussler alloy suitable according to the invention is, for example, Fe2MnSiG.5Ge0.5,

Ni52.9Mn22.4Ga24.7 、 Νΐ50.9Μη24.7〇&24.4 、 ΝΙ55 jMlli 8.6仏26_2 、Ni52.9Mn22.4Ga24.7, Νΐ50.9Μη24.7〇&24.4, ΝΙ55 jMlli 8.6仏26_2,

Ni5i.6Mii24.7Ga23.8、Ni52.7Mri23.9Ga23.4、CoMnSb、CoNbojMno.gSb、 CoNb〇.4Mn〇.6SB、CoNbo.6Mjio.4Sb、Ni5〇Mn35Sni5、Ni5〇Mn37Sni3、 MnFePo.45Aso.55 、MnFeP0.47A0.53 、Mn1.1Feo.9Po.47Aso.53 、Ni5i.6Mii24.7Ga23.8, Ni52.7Mri23.9Ga23.4, CoMnSb, CoNbojMno.gSb, CoNb〇.4Mn〇.6SB, CoNbo.6Mjio.4Sb, Ni5〇Mn35Sni5, Ni5〇Mn37Sni3, MnFePo.45Aso.55, MnFeP0.47A0.53, Mn1.1Feo.9Po.47Aso.53,

MnFePo.ssi-xSixGeo.uCxsO^、x=0.26、χ=0·30、x=0.33)。 w 本發明亦係關於一種用於磁冷卻之以金屬為主之材料, 其可藉由如上所述之方法獲得。 ❹ 另外,本發明係關於一種如上文參考不包括含As材料之 組合物所定義用於磁冷卻之以金屬為主之材料,該組合物 之平均晶體大小係在10 nm至400 nm、更佳係20 nm至200 nm、 尤其30 nm至80 nm之範圍内。可藉由X射線繞射來測定平 均晶體大小。當晶體大小變得過小時,最大磁卡效應降 低。相反地,當晶體大小過大時,系統之滯後增加。 如上文所述,本發明以金屬為主之材料較佳係用於磁冷 卻中。除包含磁鐵(較佳為永久磁鐵)之外,相應之冷凍機 亦包含如上所述之以金屬為主之材料。電腦晶片及太陽能 發電器之冷卻亦為可能的。其他使用領域為熱泵及空調系 統。 • 藉由本發明方法製造之以金屬為主之材料可呈任何所要 的固體形式。其亦可以薄片、條帶、線、粉末形式或以成形 物體形式存在。可(例如)藉由熱擠壓方法製造諸如單石或 蜂巢之成形物體。舉例而言,400 CPI至1600 CPI或1600 CPI 以上的單元密度係可能存在的。根據本發明亦偏好可藉由 139994.doc -13- 201009855 輥軋法獲得之薄片。有利的無孔成形物體為彼等由薄成形 材料所形成者,例如管、板、網、柵格或棒1據本發明 亦可能藉由金屬射出成形(MIM)法進行成形。 藉由以下實例詳細說明本發明。 【實施方式】 實例 實例1 將包含MnFePGe之壓製樣品之真空石英安瓿瓶保存在 ii〇〇°c下ίο小時以燒結粉末。此燒結之後為在65(rc下進 行熱處理60小時以產生均質化。取代在烘箱中緩慢冷卻至 室溫,而是立即將樣品在水中驟冷至室溫。在水中驟冷使 樣品表面產生某種程度之氧化。藉由稀酸蝕刻移除外部氧 化殼。XRD圖案展示所有樣品皆以Fej型結構結晶。 獲得以下組合物:MnFePo.ssi-xSixGeo.uCxsO^, x=0.26, χ=0·30, x=0.33). w The present invention is also directed to a metal-based material for magnetic cooling, which can be obtained by the method described above. Further, the present invention relates to a metal-based material for magnetic cooling as defined above with reference to a composition not including an As-containing material, the composition having an average crystal size of 10 nm to 400 nm, more preferably It is in the range of 20 nm to 200 nm, especially 30 nm to 80 nm. The average crystal size can be determined by X-ray diffraction. When the crystal size becomes too small, the maximum magnetic card effect is lowered. Conversely, when the crystal size is too large, the hysteresis of the system increases. As described above, the metal-based material of the present invention is preferably used in magnetic cooling. In addition to containing a magnet (preferably a permanent magnet), the corresponding freezer also contains a metal-based material as described above. Cooling of computer chips and solar generators is also possible. Other areas of use are heat pump and air conditioning systems. • The metal-based material produced by the method of the present invention can be in any desired solid form. It may also be in the form of a sheet, a strip, a thread, a powder or in the form of a shaped object. Shaped objects such as monoliths or honeycombs can be produced, for example, by a hot extrusion process. For example, a cell density of 400 CPI to 1600 CPI or above 1600 CPI may be present. Sheets obtainable by the 139994.doc -13 - 201009855 roll method are also preferred in accordance with the present invention. Advantageous non-porous shaped objects are those formed from thin shaped materials, such as tubes, plates, meshes, grids or rods 1 which may also be formed by metal injection molding (MIM) methods in accordance with the invention. The invention is illustrated in detail by the following examples. [Examples] Example Example 1 A vacuum quartz ampoule containing a pressed sample of MnFePGe was stored at ii ° ° C for ○ hours to sinter the powder. This sintering was followed by heat treatment at 65 (rc for 60 hours to produce homogenization. The substitution was slowly cooled to room temperature in an oven, but the sample was immediately quenched to room temperature in water. Quenching in water caused some surface of the sample to be produced. Degree of oxidation. The external oxidation shell was removed by dilute acid etching. The XRD pattern showed that all samples were crystallized in a Fej-type structure. The following compositions were obtained:

MnMFeo.gPo.g^eo.^ ; MnMFe〇.9P〇.78Ge〇.22 ; Mn^jFeo.pPo 75Ge〇 25 ; 及Mn^Feo.sPo ^Geo」9。對於既定順序之該等樣品而言, 熱滯後之觀測值為7 Κ、5 Κ、2 Κ及3 Κ。與熱滯後大於1〇 κ 之缓慢冷卻的樣品相比,該熱滯後已大幅減小。 在0.5特斯拉(tesia)之磁場中測定熱滯後。 以升高之磁場等溫磁化接近居里溫度之MniiFeQ9BQ78GeQ22, 對於咼達5特斯拉之磁場,觀測到產生較大MCE2場感應 轉變行為。 可藉由改變Mn/Fe比及Ge濃度來調整居里溫度,亦可如 此調整熱滞後值。 139994.doc * 14 - 201009855 對於0至2特斯拉之最大磁場變化而言,使用麥斯韋爾 (Maxwell)關係自直流磁化所計算出之磁熵變化對於前三 個樣品而言分別為14 J/kgK、20 J/kgK及12.7 J/kgK。 居里溢度及熱滯後隨Mn/Fe比增加而降低。因此, MnFePGe化合物在低磁場中展現相對較大之MCE值。該等 材料之熱滯後極低。 實例2MnMFeo.gPo.g^eo.^; MnMFe〇.9P〇.78Ge〇.22; Mn^jFeo.pPo 75Ge〇 25 ; and Mn^Feo.sPo ^Geo”9. For these samples in a given order, the observed values of thermal hysteresis are 7 Κ, 5 Κ, 2 Κ, and 3 Κ. This thermal hysteresis has been greatly reduced compared to slow-cooled samples with thermal hysteresis greater than 1 〇 κ. The thermal hysteresis was measured in a magnetic field of 0.5 Tessia. The MniiFeQ9BQ78GeQ22, which is close to the Curie temperature with an elevated magnetic field isothermal magnetization, is observed to produce a large MCE2 field induced transition behavior for a magnetic field of up to 5 Tesla. The Curie temperature can be adjusted by changing the Mn/Fe ratio and the Ge concentration, and the thermal hysteresis value can be adjusted as such. 139994.doc * 14 - 201009855 For the maximum magnetic field change from 0 to 2 Tesla, the magnetic entropy change calculated from DC magnetization using the Maxwell relationship is 14 for the first three samples. J/kgK, 20 J/kgK and 12.7 J/kgK. Curie and thermal hysteresis decrease as the Mn/Fe ratio increases. Therefore, the MnFePGe compound exhibits a relatively large MCE value in a low magnetic field. The thermal hysteresis of these materials is extremely low. Example 2

MnFeP(GeSb)之熔融紡絲 首先在具有高能量輸入之球磨機中且藉由如WO 2004/068512 及 J. Appl. Phys. 99,08 Q107(2006)中所述之固 相反應方法製造多晶MnFeP(Ge,Sb)合金。隨後將材料片引 入具有喷嘴之石英管中。將腔室抽空至1(Γ2毫巴(mbar)之 真空且隨後填充高純氬氣。藉助於高頻率使樣品熔融,且 由於壓力差使其經由喷嘴喷霧至含有旋轉銅鼓之腔室中。 銅輪之表面速度為可調整的,且達到約105 K/s之冷卻速 率。隨後,令紡絲條帶在900°C下熱處理1小時。 X射線繞射測定法揭示所有樣品皆以六方Fe2P結構型式 結晶。與並非藉由熔融紡絲法製得之樣品相比,未觀測到 MnO之較小污染物相。 針對熔融紡絲中之不同圓周速度測定居里溫度、滯後及 熵之所得值。結果列於下表1及表2中。在每一情況下,皆 測得低滯後溫度。 139994.doc 15· 201009855Melt spinning of MnFeP (GeSb) is first produced in a ball mill with high energy input and by solid phase reaction as described in WO 2004/068512 and J. Appl. Phys. 99, 08 Q107 (2006) MnFeP (Ge, Sb) alloy. The piece of material is then introduced into a quartz tube with a nozzle. The chamber was evacuated to a vacuum of 1 (2 mbar) and then filled with high purity argon. The sample was melted by means of high frequency and sprayed through a nozzle into the chamber containing the rotating copper drum due to the pressure difference. The surface speed of the wheel was adjustable and reached a cooling rate of about 105 K/s. Subsequently, the ribbon was heat treated at 900 ° C for 1 hour. X-ray diffraction measurement revealed that all samples were hexagonal Fe2P structure. Type crystallization. The smaller contaminant phase of MnO was not observed compared to the sample not produced by the melt spinning method. The values of Curie temperature, hysteresis and entropy were determined for different circumferential velocities in the melt spinning. Listed in Tables 1 and 2 below. In each case, low hysteresis temperatures were measured. 139994.doc 15· 201009855

條帶 V(m/s) Tc(K) ΔΤ潷後(K) -AS(J/kgK) Mnl.2Fe0.gp0.73Ge0.25sb0.02 30 269 4 12.1 Mni.2Fe〇.8P〇.7〇Ge〇.2〇Sb〇.i〇 30 304 4.5 19.0 45 314 3 11.0 MnFeP〇.7〇Ge〇.2〇Sb〇.i〇 20 306 8 17.2 30 340 3 9.5 MnFePo.75Geo.25 20 316 9 13.5 40 302 8 - Mni」Fe〇.9P〇.78Ge〇.22 20 302 5 - 40 299 7 MnuFeo.9Po.75Geo.25 30 283 9 11.2 Mn1.2FeogP0.75GGo.25 30 240 8 14.2 MnnFeo.9Po.73Geo.27 30 262 5 10.1 塊體 Tc(K) ΔΤ滯後(K) -AS(J/kgK) MnFeP〇.75Ge〇25 327 3 11.0 Mn1.1Feo.9Po.8iGeo.19 260 7 14.0 MnuFeo.9Po.7sGeo.22 296 5 20.0 MnnFeo.9Po.75Geo.25 330 2 13.0 Mni.2Fe〇.8P〇.8iGe〇.i9 220 3 7.7 Mni .2F eo.gPo.75Geo.25 305 3 - Mn1.2Feo.gPo.73Geo.27 313 5 - Mni .3F e〇. 7P0.7sGe〇22 203 3 5.1 Mn1.3Fe0.7P0.75Ge0.25 264 1 - 表2 塊體 Tc(K) ΔΤ» 後(K) -AS(J/kgK) MnFeP〇.75Ge〇.25 327 3 11.0 Mn1.i6Feo.84Po.75Geo.25 330 5 22.5 Mni. 18Fe0.82P0.75Ge0.25 310 3 16.1 Mni.2〇Fe〇.8〇P〇.75Ge〇.25 302 1 12.0 Mni .22Fe0.78P0.75Ge0.25 276 4 11.7 Mn1.20Fe0.74P0.75Ge0.25 270 1 8.5 Mn1.1Feo.9Po.8iGeo.19 260 6 13.8 Mni. 1Feo.9Po.78Geo.22 296 4 20.0 MnuFeo.9Po.77Geo.23 312 2 14.6 MnuFeo.9Po.75Geo.25 329 2 13.0 條帶 Mni .2〇Fe〇.8〇P〇.75Ge〇.25 288 1 20.3 Μη】 .22Feo.78Po.75Geo.25 274 2 15.3 Mn1.24Feo.7ePo.75Geo.25 254 2 16.4 Mni .26Feo.74Po.75Geo.25 250 4 14.4 Mni.3〇Fe〇,7〇P〇.75Ge〇.25 230 0 9.8 139994.doc •16-Band V(m/s) Tc(K) ΔΤ潷 (K) -AS(J/kgK) Mnl.2Fe0.gp0.73Ge0.25sb0.02 30 269 4 12.1 Mni.2Fe〇.8P〇.7〇 Ge〇.2〇Sb〇.i〇30 304 4.5 19.0 45 314 3 11.0 MnFeP〇.7〇Ge〇.2〇Sb〇.i〇20 306 8 17.2 30 340 3 9.5 MnFePo.75Geo.25 20 316 9 13.5 40 302 8 - Mni"Fe〇.9P〇.78Ge〇.22 20 302 5 - 40 299 7 MnuFeo.9Po.75Geo.25 30 283 9 11.2 Mn1.2FeogP0.75GGo.25 30 240 8 14.2 MnnFeo.9Po.73Geo .27 30 262 5 10.1 Block Tc(K) ΔΤ hysteresis (K) -AS(J/kgK) MnFeP〇.75Ge〇25 327 3 11.0 Mn1.1Feo.9Po.8iGeo.19 260 7 14.0 MnuFeo.9Po.7sGeo .22 296 5 20.0 MnnFeo.9Po.75Geo.25 330 2 13.0 Mni.2Fe〇.8P〇.8iGe〇.i9 220 3 7.7 Mni .2F eo.gPo.75Geo.25 305 3 - Mn1.2Feo.gPo.73Geo .27 313 5 - Mni .3F e〇. 7P0.7sGe〇22 203 3 5.1 Mn1.3Fe0.7P0.75Ge0.25 264 1 - Table 2 Block Tc(K) ΔΤ» After (K) -AS(J/ kgK) MnFeP〇.75Ge〇.25 327 3 11.0 Mn1.i6Feo.84Po.75Geo.25 330 5 22.5 Mni. 18Fe0.82P0.75Ge0.25 310 3 16.1 Mni.2〇Fe〇.8〇P〇.75Ge〇 .25 302 1 12.0 Mni .22Fe0.78P0.75Ge0. 25 276 4 11.7 Mn1.20Fe0.74P0.75Ge0.25 270 1 8.5 Mn1.1Feo.9Po.8iGeo.19 260 6 13.8 Mni. 1Feo.9Po.78Geo.22 296 4 20.0 MnuFeo.9Po.77Geo.23 312 2 14.6 MnuFeo.9Po.75Geo.25 329 2 13.0 strips Mni .2〇Fe〇.8〇P〇.75Ge〇.25 288 1 20.3 Μη] .22Feo.78Po.75Geo.25 274 2 15.3 Mn1.24Feo.7ePo. 75Geo.25 254 2 16.4 Mni .26Feo.74Po.75Geo.25 250 4 14.4 Mni.3〇Fe〇,7〇P〇.75Ge〇.25 230 0 9.8 139994.doc •16-

Claims (1)

201009855 七、申請專利範圍: ι 一種製造用於磁冷卻或熱泵之以金屬為主之材料的方 法’其包含以下步驟: a) 使化學元素及/或合金以固相及/或液相對應於該以金 屬為主之材料之化學計量反應, b) 適當時將來自階段a)之反應產物轉換為固體, 、 c)燒結及/或熱處理來自階段勾或…之該固體, d)以至少1〇〇 κ/s之冷卻速率驟冷來自階段c)之該經燒 ❹ 結及/或經熱處理的固體。 2.如請求項i之方法,其中階段句中之該驟冷係以在2〇〇 k/s 至1300 K/s之範圍内的冷卻速率進行。 3·如請求項1之方法,其中階段a)中之該反應係藉使該等元 素及/或合金於一密封容器中或於一擠壓機中一起加熱或 於一球磨機中進行固相反應來進行。 4_如請求項1至;3中任一項之方法,其中階段b)中之轉換至 固體係藉由熔融紡絲或喷霧冷卻來進行。 5. 如請求項1至3中任一項之方法,其令在階段匀中,首先 燒結係在800T:至1400t之範圍内的溫度下進行且隨 後熱處理係在500。(:至750t之範圍内的溫度下進行。 6. 如請求項1至3中任一項之方法,其中該以金屬為主之材 料係選自: (1)通式(I)之化合物 (AyBy.i)2+5CwDxEz (I) 其中: 139994.doc 201009855 A B C、D及 E 為Mn或Co, 為 Fe、Cr 或 Ni, c、D及E中至少兩者不同,具有非零之濃 度且係選自 P、B、Se、Ge、Ga、Si、 Sn、N、As及Sb,其中C、D及E中的至少 一者為Ge或Si, 為在-0.1至0.1之範圍内之數值, w、x、y、z為在範圍内之數值,其中w+x+z=1 ; (2)通式(II)及/或(III)及/或(1乂)之基於“及以之化合物 LaCFexAUsHj^LaiFexSij.xLHy (π) 其中: X 為〇·7至0.95之數值, y 為0至3之數值; La(FexAlyCoz)134La(FexSiyCoz)13 其中: 為0.7至0.95之數值, 為〇.〇5至1-x之數值, 為0.005至0.5之數值; LaMnxFe2.xGe (IV) δ X y Z 其 x 中 (III) 為1.7至1.95之數值,及 (3) ΜηΤΡ型豪斯勒合金,其中τ為過渡金屬且p為每) 子之電子數e/a在7至8.5之範圍内的ρ摻雜型金屬。 如請求項6之方法,其中該以金屬為主之材料係選自^ 139994.doc 201009855 • 通式(I)之至少四元化合物,其不僅包含Μη、Fe、P及若 適當之Sb,且另外亦包含Ge或Si或As或Ge及As或Si及 As,或 Ge、Si及 As 〇 8. —種用於磁冷卻或熱泵之以金屬為主之材料,其可藉由 如請求項1至3中任一項之方法獲得。 9· 一種用於磁冷卻或熱泵之以金屬為主之材料,其可藉由 如請求項6之方法獲得’不包括含^材料且平均晶體大 小在10 nm至400 nm之範圍内。 • 1〇_如請求項8之以金屬為主之材料,其係用於磁冷卻熱 泵或空調系統中。201009855 VII. Patent application scope: ι A method for manufacturing a metal-based material for magnetic cooling or heat pumping, which comprises the following steps: a) Corresponding to a chemical element and/or alloy in a solid phase and/or a liquid phase a stoichiometric reaction of the metal-based material, b) converting the reaction product from stage a) to a solid, c) sintering and/or heat-treating the solid from the stage hook or ..., at least 1 The cooling rate of 〇〇κ/s is quenched from the burnt enthalpy and/or heat treated solid of stage c). 2. The method of claim i, wherein the quenching in the stage is performed at a cooling rate in the range of 2 〇〇 k/s to 1300 K/s. 3. The method of claim 1, wherein the reaction in stage a) is carried out by heating the elements and/or alloys together in a sealed container or in an extruder or in a ball mill. Come on. The method of any one of claims 1 to 3, wherein the conversion to solids in stage b) is carried out by melt spinning or spray cooling. 5. The method of any one of claims 1 to 3, wherein in the step of homogenizing, the sintering is first carried out at a temperature in the range of 800 T: to 1400 t and the subsequent heat treatment is at 500. 6. The method of any one of claims 1 to 3, wherein the metal-based material is selected from the group consisting of: (1) a compound of the formula (I) AyBy.i)2+5CwDxEz (I) where: 139994.doc 201009855 ABC, D and E are Mn or Co, which are Fe, Cr or Ni, at least two of c, D and E, having a non-zero concentration and Is selected from the group consisting of P, B, Se, Ge, Ga, Si, Sn, N, As, and Sb, wherein at least one of C, D, and E is Ge or Si, and is a value in the range of -0.1 to 0.1. , w, x, y, z are the values in the range, where w+x+z=1; (2) the formula (II) and/or (III) and/or (1乂) are based on Compound LaCFexAUsHj^LaiFexSij.xLHy (π) where: X is a value of 〇·7 to 0.95, y is a value of 0 to 3; La(FexAlyCoz)134La(FexSiyCoz)13 where: a value of 0.7 to 0.95, 〇 〇5 to 1-x, a value of 0.005 to 0.5; LaMnxFe2.xGe (IV) δ X y Z where x (III) is a value of 1.7 to 1.95, and (3) ΜηΤΡ type Hausler alloy , where τ is the transition metal and p is the electron number e/a of each) A p-doped metal in the range of 7 to 8.5. The method of claim 6, wherein the metal-based material is selected from the group consisting of: 139994.doc 201009855 • at least a quaternary compound of the formula (I), which is not only Containing Μη, Fe, P and, if appropriate, Sb, and additionally including Ge or Si or As or Ge and As or Si and As, or Ge, Si and As 〇8. Metal for magnetic cooling or heat pumping A material of the type which can be obtained by the method of any one of claims 1 to 3. 9. A metal-based material for magnetic cooling or heat pump, which can be obtained by the method of claim 6 Obtained 'excluding containing materials and an average crystal size in the range of 10 nm to 400 nm. · 1〇_The metal-based material of claim 8 is used in magnetic cooling heat pumps or air conditioning systems. 139994.doc 201009855 四、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無)139994.doc 201009855 IV. Designation of the representative representative: (1) The representative representative of the case is: (none) (2) The symbolic symbol of the representative figure is simple: 5. If there is a chemical formula in this case, please reveal the best indication of the characteristics of the invention. Chemical formula: (none) 139994.doc139994.doc
TW098114088A 2008-04-28 2009-04-28 Process for preparing metal-based materials for magnetic cooling or heat pumps TWI459409B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08155259 2008-04-28

Publications (2)

Publication Number Publication Date
TW201009855A true TW201009855A (en) 2010-03-01
TWI459409B TWI459409B (en) 2014-11-01

Family

ID=40785565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098114088A TWI459409B (en) 2008-04-28 2009-04-28 Process for preparing metal-based materials for magnetic cooling or heat pumps

Country Status (11)

Country Link
US (1) US20110061775A1 (en)
EP (1) EP2277180B1 (en)
JP (1) JP5855457B2 (en)
KR (1) KR101553091B1 (en)
CN (1) CN102017025B (en)
AU (2) AU2009242216C1 (en)
BR (1) BRPI0911771A2 (en)
CA (1) CA2721621A1 (en)
NZ (1) NZ588756A (en)
TW (1) TWI459409B (en)
WO (1) WO2009133049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398609B (en) * 2010-04-08 2013-06-11 Univ Nat Taipei Technology Rotary magneto-cooling apparatus under room temperature

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110041513A1 (en) * 2009-08-18 2011-02-24 Technology Foundation Stw Polycrystalline magnetocaloric materials
TW201145319A (en) * 2010-01-11 2011-12-16 Basf Se Magnetocaloric materials
KR101848520B1 (en) 2010-03-11 2018-04-12 바스프 에스이 Magnetocaloric materials
CN101906563B (en) * 2010-08-31 2013-04-10 沈阳理工大学 Preparation method of MnAsP compound with efficient room temperature magnetic refrigeration performance
DE102010063061B3 (en) * 2010-12-14 2012-06-14 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Use of a rare earth metal-free substance as a magnetocalorically active material
KR20130112600A (en) 2012-04-04 2013-10-14 삼성전자주식회사 Method for preparing transition metal pnictide magnetocaloric material with boron doped
JP6009994B2 (en) * 2012-06-12 2016-10-19 国立大学法人九州大学 Magnetic refrigeration material
FR2994252B1 (en) 2012-08-01 2014-08-08 Cooltech Applications MONOBLOC PIECE COMPRISING A MAGNETOCALORIC MATERIAL NOT COMPRISING AN ALLOY COMPRISING IRON AND SILICON AND A LANTHANIDE, AND A THERMIC GENERATOR COMPRISING SAID PIECE
US20140157793A1 (en) * 2012-12-07 2014-06-12 General Electric Company Novel magnetic refrigerant materials
DE102013201845B4 (en) * 2013-02-05 2021-09-02 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. RARE EARTH METAL FREE PERMANENT MAGNETIC MATERIALS
CN105637600B (en) * 2013-08-09 2019-05-10 巴斯夫欧洲公司 Magneto-caloric material containing B
WO2015018705A1 (en) * 2013-08-09 2015-02-12 Basf Se Magnetocaloric materials containing b
US9887027B2 (en) 2013-09-27 2018-02-06 Basf Se Corrosion inhibitors for Fe2P structure magnetocaloric materials in water
WO2016104739A1 (en) * 2014-12-26 2016-06-30 大電株式会社 Production method for magnetic refrigeration material
WO2016156074A1 (en) 2015-03-30 2016-10-06 Basf Se Mechanical heat switch and method
EP3537456A4 (en) * 2016-11-02 2020-06-10 NGK Insulators, Ltd. Method for manufacturing magnetic material
CN108085547B (en) * 2017-12-15 2019-12-13 东北大学 Magnetic material with abnormal coercive force temperature coefficient and magnetic refrigeration capability and preparation method thereof
MX2022007218A (en) * 2019-12-12 2022-11-09 Heat X Llc Paramagnetic materials and assemblies for any magnetocaloric or thermoelectric applications.
EP3915944A1 (en) * 2020-05-28 2021-12-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Adiabatic coolant

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151013A (en) * 1975-10-22 1979-04-24 Reynolds Metals Company Aluminum-magnesium alloys sheet exhibiting improved properties for forming and method aspects of producing such sheet
JPH06102549B2 (en) * 1988-08-12 1994-12-14 東京大学長 Ca-Sr-Bi-Cu-O-based oxide superconducting photoconductive material and method for producing the same
CN1140646C (en) * 2000-05-15 2004-03-03 中国科学院物理研究所 Rare earth-iron-based compound with large magnetic entropy change
JP4352023B2 (en) * 2001-03-27 2009-10-28 株式会社東芝 Magnetic material
EP1554411B1 (en) * 2002-10-25 2013-05-08 Showa Denko K.K. Production method of an alloy containing rare earth element
ATE361535T1 (en) * 2003-01-29 2007-05-15 Stichting Tech Wetenschapp MAGNETIC MATERIAL HAVING COOLING CAPACITY, METHOD FOR PRODUCING SAME AND USE OF SUCH MATERIAL
JP3967728B2 (en) * 2003-03-28 2007-08-29 株式会社東芝 Composite magnetic material and manufacturing method thereof
JP2005086904A (en) * 2003-09-08 2005-03-31 Canon Inc Heat engine using magnetic substance
JP4240380B2 (en) * 2003-10-14 2009-03-18 日立金属株式会社 Manufacturing method of magnetic material
JP5157076B2 (en) * 2005-04-01 2013-03-06 日立金属株式会社 Method for producing sintered body of magnetic alloy
JP2007291437A (en) * 2006-04-24 2007-11-08 Hitachi Metals Ltd Sintered compact for magnetic refrigeration working bed, and its manufacturing method
WO2009133047A2 (en) * 2008-04-28 2009-11-05 Basf Se Thermomagnetic generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398609B (en) * 2010-04-08 2013-06-11 Univ Nat Taipei Technology Rotary magneto-cooling apparatus under room temperature

Also Published As

Publication number Publication date
AU2009242216C1 (en) 2014-09-04
BRPI0911771A2 (en) 2015-10-06
CN102017025A (en) 2011-04-13
TWI459409B (en) 2014-11-01
WO2009133049A1 (en) 2009-11-05
US20110061775A1 (en) 2011-03-17
AU2009242216B2 (en) 2014-03-20
KR101553091B1 (en) 2015-09-14
JP5855457B2 (en) 2016-02-09
AU2014203376A1 (en) 2014-07-10
JP2011523676A (en) 2011-08-18
CA2721621A1 (en) 2009-11-05
EP2277180B1 (en) 2017-08-09
KR20110036700A (en) 2011-04-08
NZ588756A (en) 2012-05-25
CN102017025B (en) 2014-06-25
EP2277180A1 (en) 2011-01-26
AU2009242216A1 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
TW201009855A (en) Process for preparing metal-based materials for magnetic cooling or heat pumps
JP5793074B2 (en) Thermomagnetic generator
JP5713889B2 (en) Open-cell porous moldings for heat exchangers
EP2523927B1 (en) Magnetocaloric materials
TW201140625A (en) Magnetocaloric materials
JP6465884B2 (en) Magneto-caloric material containing B
JP6480933B2 (en) Magneto-caloric material containing B
TW201111731A (en) Heat exchanger beds composed of thermomagnetic material
JP6531098B2 (en) Magnetocaloric material containing B
CA2771669A1 (en) Polycrystalline magnetocaloric materials
CN106702245B (en) A kind of Gd-Co based amorphous nano magnetic refrigerating material and preparation method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees