TW200939824A - Interference reduction request in a wireless communication system - Google Patents
Interference reduction request in a wireless communication system Download PDFInfo
- Publication number
- TW200939824A TW200939824A TW097144568A TW97144568A TW200939824A TW 200939824 A TW200939824 A TW 200939824A TW 097144568 A TW097144568 A TW 097144568A TW 97144568 A TW97144568 A TW 97144568A TW 200939824 A TW200939824 A TW 200939824A
- Authority
- TW
- Taiwan
- Prior art keywords
- message
- resource
- station
- terminal
- interference
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 31
- 230000009467 reduction Effects 0.000 title claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims abstract description 214
- 230000000116 mitigating effect Effects 0.000 claims abstract description 127
- 230000002452 interceptive effect Effects 0.000 claims abstract description 92
- 238000000034 method Methods 0.000 claims abstract description 80
- 230000002441 reversible effect Effects 0.000 claims abstract description 71
- 230000004044 response Effects 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 63
- 230000008569 process Effects 0.000 description 32
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 206010003497 Asphyxia Diseases 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0002—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
- H04L1/0003—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/247—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/541—Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
200939824 九、發明說明: 【發明所屬之技術領域】 本揭示案大體而言係關於通信,且更具體言之係關於無 線通信系統之資料傳輸技術。 本申請案主張2008年2月1日所申請之名為"短期干擾避 .免之方法與裝置(METHOD AND APPARATUS FOR SHORTTERM INTERFERENCE AVOIDANCE)”之美 國臨時 申請案 第6 1/025,564號之優先權,該案已讓與給其受讓人且以引 〇 用方式併入本文中。 【先前技術】 廣泛部署無線通信系統以提供各種通信内容,諸如,語 音、視訊、封包資料、傳訊、廣播等等。此等無線系統可 為能夠藉由共用可用系統資源來支援多個使用者之多重存 取系統。此等多重存取系統之實例包括分碼多重存取 (CDMA)系統、分時多重存取(TDMA)系統、分頻多重存取 (FDMA)系統、正交FDMA(OFDMA)系統及單載波 ❹ — FDMA(SC-FDMA)系統。 無線通信系統可包括可支援許多終端機之通信之許多基 地台。終端機可經由前向鏈路及反向鏈路與基地台通信。 -前向鏈路(或下行鏈路)指自基地台至終端機之通信鏈路, 且反向鏈路(或上行鏈路)指自終端機至基地台之通信鏈 路。 基地台可在前向鏈路上將資料傳輸至一或多個終端機且 可在反向鏈路上自一或多個終端機接收資料。在前向鏈路 136198.doc 200939824 上,來自基地台之資料傳輸可觀測到歸因於來自相鄰基地 台之資料傳輸之干擾。在反向鏈路上,來自每一終端機之 資料傳輸可觀測到歸因於來自與相鄰基地台通信之其他終 端機之資料傳輸之干擾。對於前向鏈路及反向鏈路兩者而 言’歸因於干擾基地台及干擾終端機之干擾可使效能降 級。 因此在此項技術中需要緩和干擾以便改良效能之技術。 【發明内容】 在本文中描述用於在無線通信系統中在短期干擾緩和情 況下傳輸資料之技術。該等技術可用於緩和(例如,避免 或減輕)來自干擾基地台或干擾終端機之干擾以便改良效 月b。干擾緩和可為短期的且適用於一封包、一組封包、一 訊框、一組訊框等。可在觀測到高干擾時(而非始終)調用 干擾緩和。該等技術可用於在前向鏈路以及反向鏈路上之 資料傳輸》 在一項設計中,一第一台可產生一第一訊息以請求減輕 干擾。該第一訊息可包括識別待減輕干擾之至少一資源之 資訊、該請求之優先權之指示、該第一台之目標干擾位 準、用於波束操縱(beamsteering)之空間資訊及/或其他資 訊。舉例而言,在預期在至少一資源上接收資料之情泥 下’該第一台可將該第一訊息發送至至少一干擾台以請求 減輕該至少一資源上之干擾。此後,該第一台可在該至少 一資源上自一第二台接收資料。 在一項設計中,一干擾台可自該第一台接收該第一訊 136198.doc 200939824 息。該干擾台可(例如)基於該請求之優先權判定授予還是 摒棄該請求。干擾台可藉由減小其在該至少一資源上之傳 輸功率及/或藉由在不同於該第一台之方向上操縱其功率 而減輕該至少一資源上之干擾。 對於前向鏈路上之資料傳輸而言,該第一台可為終端 _ 機,且該第二台可為伺服基地台。該終端機可自該伺服基 -地台接收一第二訊息以觸發短期干擾緩和且可回應於接收 到該第二訊息發送該第一訊息以請求減輕干擾。對於反向 ® 鏈路上之資料傳輸而言,該第一台可為伺服基地台,且該 第二台可為終端機。該伺服基地台可自該終端機接收資源 請求且可回應於接收到資源請求發送該第一訊息。 在下文進一步詳細地描述本揭示案之各種態樣及特徵。 【實施方式】 本文中所描述之技術可用於各種無線通信系統,諸如, CDMA、TDMA、FDMA、OFDMA、SC-FDMA及其他系 統。常可互換地使用術語"系統"與"網路"。CDMA系統可 ❹ 實施諸如通用陸上無線電存取(UTRA)、cdma2000等之無 線電技術。UTRA包括寬頻CDMA(WCDMA)及CDMA之其 他變體。cdma2000 涵蓋 IS-2000、IS-95 及 IS-856 標準。 TDMA系統可實施諸如全球行動通信系統(GSM)之無線電 技術。OFDMA系統可實施諸如演進型UTRA(E-UTRA)、超 行動寬頻帶(UMB)、IEEE 802.ll(Wi-Fi)、IEEE 802.16 (WiMAX)、IEEE 802.20、Flash-OFDM® 等之無線電技 術。UTRA及E-UTRA為通用行動電信系統(UMTS)之部 136198.doc 200939824 分。3GPP長期演進(LTE)為使用E-UTRA之UMTS之即將到 來之版本’其在下行鏈路上使用OFDMA且在上行鏈路上 使用 SC-FDMA。UTRA、E-UTRA、UMTS、LTE及 GSM描 述於來自名為"第三代合作夥伴計劃"(3Gpp)之組織的文件 中。cdma2000及UMB描述於來自名為"第三代合作夥伴計 劃2"(3GPP2)之組織的文件中。 圖1展示無線通信系統100,其可包括許多基地台11 〇及 其他網路實體。基地台可為與終端機通信之固定台且亦可 被稱為存取點、節點Β、演進型節點β等。每一基地台11〇 可為特定地理區域提供通信覆蓋。術語"小區"可取決於使 用該術語之上下文而指基地台之覆蓋區域及/或伺服此覆 蓋區域之基地台子系統。基地台可提供巨型(macr〇)小區、 微型(pico)小區、超微型(femt〇)小區及/或其他類型之小區 之通信覆蓋。巨型小區可覆蓋相對大之地理區域(例如, 半徑若干公里)且可支援系統中具有服務訂用之所有終端 機之通信。微型小區可覆蓋相對小之地理區域且可支援具 有服務訂用之所有終端機之通信。超微型小區可覆蓋相對 小之地理區域(例如,住宅)且可支援具有與超微型小區之 關聯性之一組終端機(例如,屬於住宅之居民之終端機)的 通信。由超微型小區支援之終端機可屬於封閉用戶群組 (CSG)。本文中所描述之技術可用於所有類型之小區。 系統控制器13 0可叙接至一組基地台且為此等基地台提 供協調及控制。系統控制器130可為單一網路實體或網路 實體之集合。系統控制器130可經由回程與基地台通信, 136198.doc 200939824 為了簡潔起見’其未在圖展示。 ❹ ❹ 終端機㈣可遍及該系統而散布,且每—終端機可為固 定或行動的。亦可將終端機稱為存取終端機、行動台 用者設備、用戶單元、台等。終端機可為蜂巢式電話、個 人數位助理(PDA)'無線數據機、無線通信器件、掌上型 器件、膝上型電腦、無繩電話、無線區域迴路(WLL)a 等。終端機可與飼服基地台通信且可對一或多個干擾基地 台導致干擾及/或自該一或多個干擾基地台接收干擾。伺 服基地台為經指定以在前向鍵路及/或反向鍵路上飼服終 端機之基地台。干擾基地台為在前向鍵路上對終端機導致 干擾之基地台。干祕錢為錢向料上對基地台導致 干擾之終端機。在圖!中,具有雙箭頭之實線指示終端機 與伺服基地台之間的所要資料傳輸。具有雙箭頭之虛線指 示終端機與干擾基地台之間的干擾傳輸。 系統可支援HARQ以便改良資料傳輸之可靠性。對於 HARQ而言,傳輸器可發送資料傳輸且可視需要發送一或 多個額外傳輸,直至資料由接收器正確地解碼或已發送最 大數目之傳輸或遭遇某一其他終止條件為止。 圖2展示HARQ情況下之反向鏈路上之實例資料傳輸。可 將傳輸時間線分割成若干訊框單位。每一訊框可涵蓋預定 持續時間,例如,1毫秒(ms)。亦可將訊框稱為子訊框、 時槽等。 一終端機可具有待於反向鏈路上發送之資料且可發送資 源請求(未在圖2中加以展示)。一伺服基地台可接收資源請 136198.doc -10- 200939824 求且可傳回資源授予。終端機可處理一資料封包且可在所 授予之資源上發送該封包之傳輸。伺服基地台可自該終端 機接收傳輸並解碼該封包。若正確地解碼該封包,則伺服 基地台可發送確認(ACK),或若錯誤地解碼該封包,則伺 服基地台可發送否定確認(NAK)。終端機可接收ACK/NAK •反饋,在接收到NAK時發送封包之另一傳輸且在接收到 • ACK時終止或發送新封包之傳輸。 可針對前向鏈路及反向鏈路中之每一者界定具有索引0 ® 至M-1之Μ個HARQ交錯集(interlace),其中Μ可等於4、 6、8或某一其他整數值。可將HARQ交錯集稱為HARQ執 行個體。每一 H ARQ交錯集可包括由Μ個訊框隔開之訊 框。舉例而言,HARQ交錯集m可包括訊框m、m+M、 m+2M等,其中we{0,…,M-1}。可在一個HARQ交錯集上 發送封包,且可在由Μ個訊框隔開之訊框中發送封包之所 有傳輸。可將封包之每一傳輸稱為HARQ傳輸。 前向鏈路之Μ個HARQ交錯集可與反向鏈路之Μ個HARQ 交錯集相關聯。在一項設計中,前向鏈路上之HARQ交錯 集m可與反向鏈路上之HARQ交錯集r={(w + A)mod M}相關 聯,其中Δ為前向鏈路與反向鏈路之間的訊框偏移,且 "mod"表示模運算。在一項設計中,Δ可等於M/2,且前向 鏈路上之每一 HARQ交錯集可與反向鏈路上之相距M/2個 訊框之HARQ交錯集相關聯。 該系統可將正交分頻多工(OFDM)或單載波分頻多工 (SC-FDM)用於前向鏈路及反向鏈路中之每一者。OFDM及 136198.doc -11 - 200939824 SC-FDM將系統頻寬分割為多個(尺個)正交副載波,其通常 亦被稱為載頻調(tone)、頻率組(bin)等。鄰近副載波之間 的間距可為固定的’且副載波之總數(κ)可取決於系統頻 寬。舉例而言,K可分別針對系統頻寬丨25、2.5、5、10 或20 MHz等於128、256 ' 512、1024或2048。可使用資料 來調變每一副載波。大體而言,使用〇FDM在頻域中發送 調變符號且使用SC-FDM在時域中發送調變符號。200939824 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to communications, and more particularly to data transmission techniques for wireless communication systems. The present application claims priority to US Provisional Application No. 6 1/025,564, filed on Feb. 1, 2008, entitled "METHOD AND APPARATUS FOR SHORTTERM INTERFERENCE AVOIDANCE" The case has been assigned to its assignee and incorporated herein by reference. [Prior Art] Wireless communication systems are widely deployed to provide various communication content such as voice, video, packet data, messaging, broadcast, etc. Such wireless systems may be multiple access systems capable of supporting multiple users by sharing available system resources. Examples of such multiple access systems include code division multiple access (CDMA) systems, time-sharing multiple memory Take (TDMA) system, frequency division multiple access (FDMA) system, orthogonal FDMA (OFDMA) system, and single carrier ❹-FDMA (SC-FDMA) system. Wireless communication system can include many communication that can support many terminals. Base station. The terminal can communicate with the base station via the forward link and the reverse link. - The forward link (or downlink) refers to the communication link from the base station to the terminal, and the reverse link Or uplink) refers to the communication link from the terminal to the base station. The base station can transmit data to one or more terminals on the forward link and can receive from one or more terminals on the reverse link. Information. On the forward link 136198.doc 200939824, data transmissions from the base station can observe interference due to data transmission from neighboring base stations. On the reverse link, data transmission from each terminal Interference due to data transmission from other terminals communicating with neighboring base stations can be observed. For both the forward link and the reverse link, the interference due to the interfering base station and the interfering terminal Techniques can be degraded. Therefore, there is a need in the art for techniques to mitigate interference in order to improve performance. [Disclosed herein] Techniques for transmitting data in short-term interference mitigation in a wireless communication system are described herein. To mitigate (eg, avoid or mitigate) interference from interfering base stations or interfering terminals to improve efficiency b. Interference mitigation can be short-term and applicable to a packet, one Packets, frames, a group of frames, etc. Interference mitigation can be invoked when high interference is observed (rather than always). These techniques can be used for data transmission on the forward and reverse links. In the design, a first station may generate a first message to request to mitigate interference. The first message may include information identifying at least one resource to be mitigated, an indication of priority of the request, and target interference of the first station. Level, spatial information for beam steering, and/or other information. For example, if the data is expected to be received on at least one resource, the first station can send the first message to at least An interference station requests to mitigate interference on the at least one resource. Thereafter, the first station can receive data from a second station on the at least one resource. In one design, an interfering station may receive the first message from the first station 136198.doc 200939824. The interfering station can decide whether to grant or discard the request based on, for example, the priority of the request. The interfering station may mitigate interference on the at least one resource by reducing its transmission power on the at least one resource and/or by manipulating its power in a direction different from the first station. For data transmission on the forward link, the first station can be a terminal, and the second station can be a servo base station. The terminal may receive a second message from the servo base station to trigger short-term interference mitigation and may send the first message to request mitigation of interference in response to receiving the second message. For data transmission on the reverse ® link, the first station can be a servo base station and the second station can be a terminal unit. The servo base station can receive a resource request from the terminal and can send the first message in response to receiving the resource request. Various aspects and features of the present disclosure are described in further detail below. [Embodiment] The techniques described herein may be used in various wireless communication systems, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and other systems. The terms "system" and "network" are often used interchangeably. CDMA systems can implement radio technologies such as Universal Land Radio Access (UTRA), cdma2000, and the like. UTRA includes Broadband CDMA (WCDMA) and other variants of CDMA. Cdma2000 covers the IS-2000, IS-95 and IS-856 standards. A TDMA system can implement a radio technology such as the Global System for Mobile Communications (GSM). The OFDMA system can implement radio technologies such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM®, and the like. UTRA and E-UTRA are part of the General Mobile Telecommunications System (UMTS) 136198.doc 200939824 points. 3GPP Long Term Evolution (LTE) is an upcoming version of UMTS that uses E-UTRA, which uses OFDMA on the downlink and SC-FDMA on the uplink. UTRA, E-UTRA, UMTS, LTE, and GSM are described in documents from an organization named "3rd Generation Partnership Project" (3Gpp). Cdma2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2). 1 shows a wireless communication system 100 that can include a number of base stations 11 and other network entities. The base station can be a fixed station that communicates with the terminal and can also be referred to as an access point, a node, an evolved node β, and the like. Each base station 11 can provide communication coverage for a particular geographic area. The term "cell" may refer to the coverage area of the base station and/or the base station subsystem that serves this coverage area depending on the context in which the term is used. The base station can provide communication coverage for a giant (macr〇) cell, a pico cell, a femto cell, and/or other types of cells. A jumbo cell can cover a relatively large geographic area (e.g., a few kilometers in radius) and can support communication for all terminals in the system that have service subscriptions. The microcell can cover a relatively small geographic area and can support communication for all terminals with service subscriptions. The femto cell can cover a relatively small geographic area (e.g., a home) and can support communication with a group of terminals (e.g., terminals belonging to residents of the home) having an association with the picocell. The terminal supported by the pico cell can belong to a closed subscriber group (CSG). The techniques described herein are applicable to all types of cells. System controller 130 can be routed to a set of base stations and provide coordination and control for such base stations. System controller 130 can be a collection of single network entities or network entities. System controller 130 can communicate with the base station via the backhaul, 136198.doc 200939824 for the sake of brevity' which is not shown in the figures. ❹ 终端 The terminal (4) can be distributed throughout the system, and each terminal can be fixed or mobile. The terminal can also be referred to as an access terminal, a mobile station user device, a subscriber unit, a station, and the like. The terminal can be a cellular phone, a PDA, a wireless data device, a wireless communication device, a palm-sized device, a laptop, a cordless telephone, a wireless area loop (WLL), and the like. The terminal can communicate with the feeding base station and can cause interference to one or more interfering base stations and/or receive interference from the one or more interfering base stations. The servo base station is a base station designated to feed the terminal on the forward and/or reverse keyway. The interfering base station is a base station that causes interference to the terminal on the forward key path. The secret money is the terminal that causes the money to interfere with the base station. In the picture! The solid line with double arrows indicates the desired data transmission between the terminal and the servo base station. A dashed line with double arrows indicates interference transmission between the terminal and the interfering base station. The system supports HARQ to improve the reliability of data transmission. For HARQ, the transmitter can transmit data transmissions and optionally send one or more additional transmissions until the data is correctly decoded by the receiver or the maximum number of transmissions have been sent or some other termination condition has been encountered. Figure 2 shows an example data transfer on the reverse link in the case of HARQ. The transmission timeline can be divided into several frame units. Each frame can cover a predetermined duration, for example, 1 millisecond (ms). The frame can also be called a sub-frame, a time slot, and the like. A terminal may have data to be sent on the reverse link and may send a resource request (not shown in Figure 2). A servo base station can receive resources 136198.doc -10- 200939824 and can return the resource grant. The terminal can process a data packet and can transmit the transmission of the packet on the granted resource. The servo base station can receive transmissions from the terminal and decode the packet. If the packet is decoded correctly, the servo base station can send an acknowledgment (ACK), or if the packet is erroneously decoded, the serving base station can send a negative acknowledgment (NAK). The terminal can receive ACK/NAK • feedback, send another transmission of the packet when the NAK is received and terminate or transmit the transmission of the new packet upon receiving the • ACK. One HARQ interlace with indices 0 ® to M-1 may be defined for each of the forward link and the reverse link, where Μ may be equal to 4, 6, 8, or some other integer value . The HARQ interlace set can be referred to as a HARQ enforcement individual. Each H ARQ interlace set may include a frame separated by frames. For example, the HARQ interlace set m may include frames m, m+M, m+2M, etc., where we{0, . . . , M-1}. The packet can be sent on a HARQ interlace set and all transmissions of the packet can be sent in a frame separated by frames. Each transmission of a packet can be referred to as a HARQ transmission. The HARQ interlace set of the forward link can be associated with one HARQ interlace set of the reverse link. In one design, the HARQ interlace set m on the forward link may be associated with the HARQ interlace set r={(w + A) mod M} on the reverse link, where Δ is the forward link and the reverse chain The frame offset between the roads, and "mod" represents the modulo operation. In one design, Δ may be equal to M/2, and each HARQ interlace set on the forward link may be associated with a HARQ interlace set of M/2 frames on the reverse link. The system can use orthogonal frequency division multiplexing (OFDM) or single carrier frequency division multiplexing (SC-FDM) for each of the forward link and the reverse link. OFDM and 136198.doc -11 - 200939824 SC-FDM divides the system bandwidth into multiple (square) orthogonal subcarriers, which are also commonly referred to as carrier tones, bins, and the like. The spacing between adjacent subcarriers can be fixed' and the total number of subcarriers (κ) can depend on the system bandwidth. For example, K can be equal to 128, 256 '512, 1024, or 2048 for system bandwidth 丨 25, 2.5, 5, 10, or 20 MHz, respectively. Data can be used to modulate each subcarrier. In general, 〇FDM is used to transmit modulation symbols in the frequency domain and SC-FDM is used to transmit modulation symbols in the time domain.
❹ 在一項設計中,可將總計K個副載波分組成資源區塊。 每一資源區塊可在一個時槽中包括Ν個副載波(例如, Ν=12個副載波)。一時槽可跨越〇·5 ms或某一其他持續時 間。可將可用資源區塊指派給終端機以用於資料傳輸。 在另一設計中,頻道樹可用於識別資源。頻道樹可約束 資源之分組,其可減輕用於輸送該等資源之負擔。 圖3針對32個副載波集合可用之狀況展示頻道樹3〇〇之設 計。每-副載波集合可包括預定數目之副載波。在頻道樹 300中’可使用32個副載波集合在層1中形成32個節點,可 使用層1中之32個節點在層2中形成i 6個節點可使用層2 :之16個ip點在層3中形成人個節點,可使用層3中之八個 節點在層4中形成四個節點,可使用層4中之四個節點在層 5中成兩個節薯太,g α . 、 . 了使用層5中之兩個節點在層6中形 成一個即點。可使用§1始 便用緊接之下層中之兩個節點來形成層2 至6中之每一節點。 如 等 β ’頻I樹中之每一節點指派獨特頻道識別符(1[ 圖3中所展示,可自# 上而下且針對每一層自左向右ji 136198.doc -12· 200939824 即 順序編號之頻道1D。可對最上節點指派頻道ID Ο 2其可包括所有32個副載波集合。可對最下層】中之咖 即點指派頻道ID 31至62且可將其稱為基本節點。 圖3中所示之樹結構對副載波之指派強加特定限制。對 於每m之節點而t,限制了作為所指派之節點之子 集(或後代)之所有節點及將所指派之節點作為子集之所有 =點。所限制之節點並未與所指派之節點同時使用,以使 得無兩個節點同時使用同一副載波集合。 亦可以其他方式分割並識別可用頻率及/或時間資源。 亦可將總計K個副載波分割為子頻帶。每一子頻帶可包括 預定數目之副載波,例如,在i 〇8 MHz下為72個副載波。 終端機可在前向鏈路及/或反向鏈路上與伺服基地台通 信。在前向鏈路上,終端機可觀測到來自干擾基地台之高 干擾。舉例而言,若伺服基地台覆蓋微型小區或超微型小 區且具有遠低於干擾基地台之傳輸功率,則可能為此狀 況。在反向鏈路上,伺服基地台可觀測到來自干擾終端機 之高干擾。每一鏈路上之干擾可使在彼鏈路上發送之資料 傳輪之效能降級。干擾緩和亦可操縱干擾傳輸遠離觀測到 高干擾之台。 在一態樣中,短期干擾緩和可用於緩和(例如,避免或 減輕)給定鏈路上之干擾以便改良資料傳輸之效能。干擾 緩和可封鎖或減小干擾傳輸之傳輸功率以使得可針對所要 資料傳輸達成較高信號與雜訊及干擾比(SINR)。 一組訊息及/或一組控制頻道可用於支援前向鏈路(FL)及 136198.doc 200939824 反向鏈路(RL)上之矩期干擾 出可用於短期干擾緩和之—纟且/。根據一項設計,表1列 器兩者事先已知之傳輸,且:^息。導頻為傳輸器及接收 (preamble)、訓練序列等。可、可被稱為參考信號、前置項 運資訊而非其内容的訊息/將導頻視為在信號自身中載❹ In one design, a total of K subcarriers can be grouped into resource blocks. Each resource block may include one subcarrier in one time slot (eg, Ν=12 subcarriers). The one-time slot can span 〇·5 ms or some other duration. The available resource blocks can be assigned to the terminal for data transmission. In another design, a channel tree can be used to identify resources. The channel tree can constrain the grouping of resources, which can alleviate the burden of transporting such resources. Figure 3 shows the design of the channel tree 3 for the status of 32 subcarrier sets available. The per-subcarrier set may include a predetermined number of subcarriers. In the channel tree 300, '32 nodes can be formed in layer 1 using 32 subcarrier sets, and 32 nodes in layer 1 can be used to form i6 nodes in layer 2. Layer 2 can be used: 16 ip points In the layer 3, a person node is formed, and eight nodes in the layer 3 can be used to form four nodes in the layer 4, and four nodes in the layer 4 can be used to form two nodes in the layer 5, gα. The two nodes in layer 5 are used to form a point in layer 6. Each of the layers 2 through 6 can be formed using § 1 to immediately use two of the nodes in the lower layer. For example, each node in the β 'frequency I tree assigns a unique channel identifier (1 [shown in Figure 3, which can be from #上下下 and for each layer from left to right ji 136198.doc -12· 200939824 Numbered channel 1D. The top node can be assigned a channel ID Ο 2 which can include all 32 subcarrier sets. Channel IDs 31 to 62 can be assigned to the lowest layer of the coffee and can be referred to as the base node. The tree structure shown in 3 imposes a specific restriction on the assignment of subcarriers. For each node of m and t, all nodes that are subsets (or descendants) of the assigned node are restricted and the assigned node is treated as a subset. All = points. The restricted nodes are not used simultaneously with the assigned node, so that no two nodes use the same set of subcarriers at the same time. The available frequency and/or time resources can also be segmented and identified in other ways. The K subcarriers are divided into subbands. Each subband may include a predetermined number of subcarriers, for example, 72 subcarriers at i 〇 8 MHz. The terminal may be on the forward link and/or the reverse link. Communicate with the servo base station On the forward link, the terminal can observe high interference from the interfering base station. For example, if the servo base station covers the micro cell or the pico cell and has a transmission power far lower than the interference base station, it may be In this case, on the reverse link, the servo base station can observe high interference from the interfering terminal. The interference on each link can degrade the performance of the data transmission transmitted on the link. Interference mitigation can also manipulate the interference. Transmission away from stations where high interference is observed. In one aspect, short-term interference mitigation can be used to mitigate (eg, avoid or mitigate) interference on a given link in order to improve the performance of data transmission. Interference mitigation can block or reduce interference transmission. The transmission power is such that a higher signal to noise and interference ratio (SINR) can be achieved for the desired data transmission. A set of messages and/or a set of control channels can be used to support the forward link (FL) and 136198.doc 200939824 The momentary interference on the link (RL) can be used for short-term interference mitigation - and /. According to one design, the table 1 is previously known to transmit, and The pilot is a transmitter and a preamble, a training sequence, etc. A message that can be referred to as a reference signal, pre-emission information, rather than its content, is considered to be in the signal itself.
表I 訊息/導頻 ❹ 干擾緩和觸發 傳輸能力請求 和並請求終端機清除前 之干擾的訊息。 FL資源授予 RL資源授予 減輕干擾請求 功率決定導頻 巧干擾基地自或干祕雜_指定資社之干擾之 5札恩。 ^待由干擾基地台或干擾終端機在指定資源上使用之功 率仇準及/或波束方向發送之導頻。 ❹ 資源品質指示 符 指示指定資源之頻道品質 亦可以其他名稱稱呼表1中之訊息。舉例而言,亦可將 干擾緩和觸發訊息稱為預前向鏈路指派區塊(預FLAB),亦 可將傳輸能力請求訊息稱為預反向鏈路指派區塊(預 RLAB) ’亦可將FL資源授予稱為前向鏈路指派區塊 (FLAB) ’亦可將rl資源授予稱為反向鏈路指派區塊 (RLAB),且亦可將減輕干擾請求訊息稱為資源利用訊息 (RUM)。不同及/或額外訊息亦可用於短期干擾緩和。亦可 136198.doc -14- 200939824 以其他方式輸送由表1中之訊息載運之資訊。舉例而一 可* 一却έ1心 八〜 卒例而言, 5 發送而非在一導頻_輸送待在一資诉卜蚀田 之傳輪χΛ态a 貧/原上使用 =力丰位準…清楚起見,下文大 用表1中所展示之訊息。 nx使 ·:='=輕干擾請求訊息達成短期干擾緩和… = 此等訊息以爭奪前向鍵路上之資源且亦可由某 ❹ ❹ =發送此等訊息以爭奪反向鍵路上之資源。此等訊息; 短期基礎上賦能跨越相鄰小區之資料傳輸之正交化。 大體而吕,資源可涵蓋任何頻率及/或時間維度且可以 任何方式輸送。舉例而言,如圖3中所展示,在一項設計 中,資源可涵蓋可變頻率維度且可由頻道樹上之節點之頻 道ID識別。在另一設計中,資源可涵蓋固定頻率維度,例 如’預定數目之副載波。資源亦可涵蓋固定或可變持續時 間。作為m資源可涵蓋特定純巾之特定子頻 帶、特疋資源區塊、特定時間頻率區塊等。 圖展示存在干擾情況下之前向鏈路上之資料傳輸。伺 服基地纟llGx可在前向鏈路±將諸傳輸發送至終端機 120x。終端機丨他亦可自干擾基地台u以接收干擾傳輪。 此干擾傳輸可能預期用於圖4中未展示之另一終端機。若 在同一資源上發送所要資料傳輸及干擾傳輸,則終端機 120x可能不能夠解碼來自伺服基地台ιι〇χ之資料傳輸。 終端機120χ可能並不出於資料傳輸之目的而與干擾基地 台llOy通信。然而,終端機12〇?{可能能夠可靠地將訊息發 送至干擾基地台110y並自干擾基地台11〇丫接收訊息。在一 136198.doc 200939824 項設計中,諸如表!中所展示之訊息之訊息可在經配置以 用於此等訊息之資源上加以發送。此等訊息可既而避免歸 因於其他傳輸之干擾。大體而言,可以任何方式發送用於 短期干擾緩和之訊息,以使得其可由接收端基地台/終端 機可靠地接收(即使當存在主要干援者時亦為如此)。 圖5展示短期干擾緩和情況下之前向鏈路資料傳輸之方 案5〇0的設計的時相。㈣基地台可具有待發送至終端 機之資料且可知道終端機在前向鏈路上觀測到高干擾。伺 服基地台可自終端機接收導頻量測報告,且該等報告可指 示及/或識別強干擾基地台。 Ο 词服基地台可在訊植^中將干擾緩和觸發訊息(或簡稱為 觸發訊息)發送至終㈣以觸發短期干擾緩和。觸發訊自 可指導終端機懇求干擾基地台減輕前向鍵路上之干擾。飼 土地σ亦可發送觸發訊息以便自終端機獲得準確頻道品 質報。且可使用此報告作出關於短期干擾緩和之決定。在 _何狀況下’觸發訊息可識別待減輕干擾之—或多個特定 資源、待發送之資料之優先權及/或其他資訊。可由頻道 樹之頻道ID、子頻帶索引、資源區塊索給 終端機可自祠服基地台接收觸發訊息且可在訊框Μ中 向鏈路上發送減輕干擾請求訊息。在一項設計中,終 ^機可將減輕干擾請求訊息僅發送至在前向鍵路上為終端 之主要干擾者之基地台。、終端機可基於自&等主要干擾 台接收之前向鏈路導頻識別此等基地台。在另-設計 136198.doc 16· 200939824 Z目鄰=可將減輕干擾請求訊息發送至可接收訊息之所 特…基ΐΓσ °A體而言,減輕干擾請求訊息可為發送至 =:台之單播訊息、發送至—組基地台之多播訊息或 t至所有基地台之廣播訊息。在任何狀況τ,減 :求訊息可懇求干擾基地台減輕-或多個指定資源上之干 例如,封鎖指定資源上之傳輸、將傳輸功率減小至可 於:端機之方向上波束操縱。減輕干擾 ❹ ❹ δ ^ ° ^私不清求之緊急性之優先權量度,其可由 干擾基地台在作出關於始 ' 關於授予還是搏棄該請求之決定之過程 中使用。可自干擾緩和觸發訊息直接獲得或可以其他方式 2疋指定資源及減輕干擾請求訊息甲所發送之優先權量Table I Message/Pilot ❹ Interference Mitigation Trigger A message that transmits a capability request and requests the terminal to clear the previous interference. The FL resource grants the RL resource grant to mitigate the interference request. The power determines the pilot. It interferes with the base or the secret. The pilot to be transmitted by the interference base station or the interference terminal on the specified resource and/or the beam direction. ❹ Resource quality indicator Indicates the channel quality of the specified resource. The name of Table 1 can also be referred to by other names. For example, the interference mitigation trigger message may also be referred to as a pre-forward link assignment block (pre-FLAB), or the transmission capability request message may be referred to as a pre-reverse link assignment block (pre-RLAB). The FL resource grant is referred to as a forward link assignment block (FLAB). The rl resource grant may also be referred to as a reverse link assignment block (RLAB), and the mitigation request message may also be referred to as a resource utilization message ( RUM). Different and/or additional messages can also be used for short-term interference mitigation. 136198.doc -14- 200939824 may also transmit information carried by the messages in Table 1 in other ways. For example, one can be 一1έ8~ In the case of a case, 5 is sent instead of a pilot _transport to be in a position to complain about the eclipse of the eclipse, a poor/original use = Lifeng level ...for the sake of clarity, the information shown in Table 1 is used in the following. Nx makes ·:='=light interference request message to achieve short-term interference mitigation... = These messages compete for resources on the forward key and can also be sent by some ❹ ❹ = to compete for resources on the reverse key. Such information; on the short-term basis, the orthogonalization of data transmission across adjacent cells is enabled. Generally, resources can cover any frequency and/or time dimension and can be delivered in any manner. For example, as shown in Figure 3, in one design, resources may cover variable frequency dimensions and may be identified by the channel ID of a node on the channel tree. In another design, the resources may cover a fixed frequency dimension, such as 'a predetermined number of subcarriers. Resources can also cover fixed or variable durations. As the m resource, a specific sub-band, a special resource block, a specific time frequency block, and the like of a specific pure towel may be covered. The figure shows the data transfer to the previous link in the presence of interference. The servo base llGx can transmit the transmissions to the terminal 120x on the forward link. The terminal can also self-interfere with the base station u to receive the interference carrier. This interference transmission may be expected for another terminal not shown in FIG. If the desired data transmission and interference transmission are transmitted on the same resource, the terminal 120x may not be able to decode the data transmission from the servo base station. The terminal 120 may not communicate with the interfering base station 110O for the purpose of data transmission. However, the terminal device 12 may be able to reliably transmit a message to the interfering base station 110y and receive a message from the interfering base station 11A. In a design of 136198.doc 200939824, such as the table! Messages for the messages displayed in the messages can be sent on resources configured for such messages. These messages can be avoided as a result of interference from other transmissions. In general, the message for short-term interference mitigation can be sent in any manner such that it can be reliably received by the receiving base station/terminal (even when there is a primary supporter). Figure 5 shows the phase of the design of the scheme 5 〇 0 of the previous link data transmission in the case of short-term interference mitigation. (4) The base station may have the information to be sent to the terminal and may know that the terminal observes high interference on the forward link. The servo base station can receive pilot measurement reports from the terminal, and the reports can indicate and/or identify strong interference base stations.词 The vocabulary base station can send an interference mitigation trigger message (or simply a trigger message) to the end (4) to trigger short-term interference mitigation. The trigger message can guide the terminal to request to interfere with the base station to mitigate the interference on the forward key path. The feed σ can also send a trigger message to get an accurate channel quality report from the terminal. This report can be used to make decisions regarding short-term interference mitigation. The trigger message identifies the interference to be mitigated—or multiple specific resources, priority of the data to be sent, and/or other information. The channel identifier, the sub-band index, and the resource block of the channel tree can be used to receive the trigger message from the base station, and the interference reduction request message can be sent to the link in the frame. In one design, the terminal can send the mitigation request message only to the base station that is the primary interferer of the terminal on the forward key. The terminal can identify the base stations to the link pilots based on the reception of the primary interfering stations, such as &. In another design 136198.doc 16· 200939824 Z neighbors = can send the mitigation request message to the receiving message... σ °A body, the mitigation request message can be sent to the =: Taiwan Broadcast messages, multicast messages sent to the group base station, or broadcast messages to all base stations. In any condition τ, the decrement: request message can be interfering with the base station mitigation - or on a plurality of designated resources. For example, blocking the transmission on the specified resource, reducing the transmission power to a beam steering in the direction of: the end machine. Mitigating interference ❹ δ δ ^ ° ^ The urgency priority measure of ambiguity, which can be used by the interfering base station in making the decision about the initial grant or rejection of the request. The amount of priority that can be directly obtained from the interference mitigation trigger message or can be sent by other means 2 疋 specified resources and mitigation interference request message A
:内=5:所展示,可在接收到觸發訊息時開始之△個訊 ==輕干擾請求訊息,其中△可為前向鍵路HARQ 蔣 相關聯之反向鍵路缝Q交錯集之間的固定偏 移。 可自終端機接收減輕干擾請求訊息且可決定 基於其前向鏈路貝源上之傳輸。干擾基地台可 端機接收二對每一指定資_他終 上使用之傳輸功率位::=:判定其將在此指定資源 息中之優先權量度二干擾基地台可基於訊 而判定授予還是搏棄減σ之則向鍵路緩衝區狀態等 、減輕干擾請求訊息。干擾基地台亦可 :/或内容斤而有::機之減輕干擾請求訊息之所接收之功率 ^ 疋其將用於每一指定資源之傳輸功率位 136198.doc -17- 200939824 準。舉例而言,干擾基地台可基於來自每一終端機之減輕 干擾請求訊息之所接收之功率而估計此終端機之路徑損 耗。干擾基地台可接著基於該終端機之所估計之路徑損耗 及其他終端機之目標干擾位準而判定其將使用之傳輸 位準。 在一項設計中’干擾基地台可經由以其將用於每一指定 , 資源之傳輸功率位準(或相關傳輸功率位準)在對應資源上 料之功率決定導頻來輸送此傳輸功率料1應資料 ⑯蓋與減資源相同之頻率但可在同-前向鍵路HAR(^ 錯集上在Μ個訊框前發生。干擾基地台可在訊框⑽中在 對應資源上發送功率決定導頻,且此導頻之傳輸功率位準 可相關於(例如,等於)干擾基地台意欲在訊框卜㈣中用於 指定資源之傳輸功率位準。經由功率決定導頻指示之傳輸 功率位準可為暫訂(tentative)傳輸功率決定。干擾基地台〗 可基於服務品質(Q〇S)、頻道品質條件及/或其他因素在指 e 冑資源上使用更高或更低傳輸功率位準。雖然在圖5中未 展示,但伺服基地台亦可自觀測到來自此基地台之高干擾 之其他終端機接收減輕干擾請求。伺服基地台^可Z功率 決定導頻發送至此等其他終端機或可將功率決定導頻廣播 至可接收導頻之所有終端機。 終端機可自所有干擾基地台接收功率決定導頻且可基於 所接收之導頻估計每-指定資源之頻道品質。功率決定導 頻可允許終端機更準確地估計頻道品質。終_可基㈣ 一指定資源之所估計之頻道品質及所估計之干擾位準判定 J36198.doc • 18- 200939824:in=5: displayed, the △ message == light interference request message can be started when the trigger message is received, where △ can be between the forward link HARQ and the reverse keyway Q interlaced set Fixed offset. The mitigation request message can be received from the terminal and can be determined based on transmission on its forward link source. The interfering base station can receive two pairs of each designated resource_the transmission power bit used by him::=: determine the priority measure in the specified resource information. The interfering base station can determine whether to grant or not based on the signal. If the σ is discarded, the status of the key buffer is reduced, and the interference request message is mitigated. The interfering base station can also: / or content:: The received power of the machine to mitigate the interference request message ^ 传输 it will be used for the transmission power bit of each specified resource 136198.doc -17- 200939824. For example, the interfering base station can estimate the path loss of the terminal based on the received power from the mitigation request message from each terminal. The interfering base station can then determine the transmission level to be used based on the estimated path loss of the terminal and the target interference level of the other terminal. In one design, the "interfering base station" may transmit the transmission power material via a power-determining pilot that is used to transmit the power level (or associated transmission power level) of the resource for each specified resource in the corresponding resource. 1 The data 16 should be the same frequency as the resource minus but can be generated in the same-forward link HAR (^ on the wrong set before the frame. The interference base station can transmit power on the corresponding resource in the frame (10). Pilot, and the transmission power level of the pilot may be correlated (eg, equal to) the transmission power level that the interfering base station intends to use in the frame (4) for the specified resource. The transmission power bit of the pilot indication via the power determination Can be a tentative transmission power decision. Interfering base station can use higher or lower transmission power levels on the e 胄 resource based on quality of service (Q〇S), channel quality conditions, and/or other factors. Although not shown in Figure 5, the servo base station may also receive interference mitigation requests from other terminals that observe high interference from the base station. The servo base station can determine the pilot transmission to other terminals. The machine may broadcast the power decision pilot to all terminals that can receive the pilot. The terminal may receive the power decision pilot from all the interfering base stations and may estimate the channel quality of each-specified resource based on the received pilot. Determining the pilot allows the terminal to estimate the channel quality more accurately. The final channel is based on the estimated channel quality of the specified resource and the estimated interference level. J36198.doc • 18- 200939824
此資源之資源品質指示符卿)值。舉例而言,可基於: ⑴基於來自伺服基地台之導頻而估計之頻道品質丨及⑻ 基於來自干擾基地台之導頻而估計之干擾來判定給定資源 之RQI值。終端機亦可判^所有㈣資源之單_吻值。 在任何狀況下’ RQI值可指示由RQI值涵蓋之資源之8騰 值、資料速率或某其他資訊。終端機可在訊框卜純中發 送包含對應資源之-或多個RQI值之RQI資訊。亦可將师 資訊稱為頻道品質指示符(CQJ)資訊。 伺服基地台可自終端機純RQI資訊且可針對一或多個 所指派之資源上之資料傳輸排程該終端機。每一所指派之 資源可對應於指定資源之全部或子集。词服基地台可基於 所指派之資源之RQI資訊選擇調變與編碼方案(mcs)。亦 可將MCS稱為傳送格式、封包格式、速率等。飼服基地台 可根據MCS處理終端機之資料。伺服基地台可產生fl資源 授予,其可包括所指派之資源、MCS及/或其他資訊。伺 服基地台可在訊框ί+2Μ中將FL資源授予及資料傳輸發送 至終端機。 終端機可自伺服基地台接收FL·資源授予且可獲得所指派 之貝源及MCS。終端機可在所指派之資源上接收資料傳 輸’根據MCS解碼所接收之傳輸且基於解碼結果產生ACK 或NAK。終端機可在訊框什Δ+2Μ中將ACK或NAK發送至 伺服基地台。若接收到NAK,則伺服基地台可在訊框ί+3Μ 中發送另一資料傳輸’且若接收到ACK,則伺服基地台可 終止或發送新資料傳輸。 I36198.doc •19- 200939824 圖5展示前向鏈路上之短期干擾緩和之特定設言卜亦可 使用其他設計實施前向鏈路上之短期干擾緩和。 減輕干擾請求訊息可懇求干擾基地台藉由減小傳輸功率 (如上所述)及/或藉由在不⑽終關之方向上波束操縱其 功率(例如,藉由將終端機置於空間空值中)而減輕干擾。 Z基於Μ資訊執行波束操縱’㈣資訊可包含預編碼權 重列如,預編碼矩陣或向量)、頻道估計及/或由傳輸器用 縱其功率,其他資訊。可以各種方式獲得或提供 代在項叹汁中,減輕干擾請求訊息可包括終端 ⑽。干擾基地台與終端機之間的空間頻道對於干擾基地 台而言可為已知的(例如’纟長期基礎上)。在另一設計 中’可以單播方式將訊息發送至干擾基地台,且該訊息可 包括關於此基地台與終端機之間的空間頻道或較佳波束之 資訊。在又一設計中,可採用前向鏈路與反向鍵路之間的 互反f生(例如’歸因於使用分時雙卫(tdd))。干擾基地台 參 可接著基於該訊息估計該終端機之反向鏈路頻道且可使用 反向鏈路頻道估汁作為前向鏈路頻道估計。對於所有設計 而言’干擾基地台可基於關於空間頻道之資訊導出預編碼 權重或可經提供預編碼權重。干擾基地台可接著使用預編 碼權重執行波束操縱。 在圖巾所展不之没計中,干擾基地台可以將在指定資 源上使用之傳輸功率位準傳輸功率決定導頻。在另一設計 中干擾基地α不傳輸功率決定導頻且不回應於來自終端 機之減争工干擾喷求訊息發送訊息。在此設計中,可假設干 136198.doc -20- 200939824 擾基地台將不在指定·眘,、房 原上傳輸,且可判定R 設無來 自干擾基地台之干擾)。在又-設計中,若干擾基地台將 不在指定資源上傳輸,則其不傳輸功率決定導頻或訊息, =右其將在指定資社料,㈣傳輸㈣衫導頻或訊 ❹ ❹ 在°又°十中,干擾基地台可發送含有其將在指定資 源上使用之傳輸功率位準之訊息。在又—設計中,干擾基 地台可在功率決定導頻中提供空間資訊。舉例而言,除指 不待在未來訊財在以資源上使用之傳輸功率位準外, 干擾基地口亦可指不波束方向。干擾基地台可藉由調整基 地台處之每—傳輸天線之傳輸功率達成此情形。在又-設 計中’干擾基地台可發送與該功率決定導頻分開且除該功 率決定導頻之外的㈣資訊⑽如,預編碼權重)。 在項°又汁中,干擾基地台可減輕對一個HARQ傳輸之 干擾4傳輸可用於封包之第_傳輸。可針對每一 傳輸重複相同程序以減輕干擾。在另—設計+,干擾基地 台可減輕對L個HARQ傳輸之干擾(例如,在同一 harq! 錯集上)’其中L可為任何整數值。舉例而言,可處理(例 如,編碼並調變)封& ’以使得其可在目標數目之har⑽ 輸後被可靠地解碼,且L可等於此目標數目。在又一設計 中,干擾基地台可減輕對多個HARQ交錯集之干擾。可在 干擾緩和觸發訊息及/或減輕干擾請求訊息中輸送此等 HARQ交錯集之識別碼。或者,此等harq交錯集可為所 有基地台及終端機事先已知的且將不需要加以發送。 圖6展示存在干擾情況下之反向鏈路上之資料傳輸。终 136198.doc 200939824 端機120x可在反向鏈路上將資料傳輸發送至伺服基地台 110x。伺服基地台110x亦可自干擾終端機12〇y接收干擾傳 輸。此干擾傳輸可能預期用於相鄰基地台11〇y。若在同一 負源上發送所要資料傳輸及干擾傳輸,則伺服基地台1丨 可能不能夠解碼來自終端機12〇χ之資料傳輸。終端機12(^ 可能並不出於資料傳輸之目的而與基地台ll〇y通信。然 而,終端機120χ可能能夠可靠地將訊息發送至基地台11〇y 並自基地台1 1 〇y接收訊息。類似地,干擾終端機丨2〇y可能 能夠可靠地與伺服基地台11〇χ交換訊息。 圖7展示短期干擾緩和情況下之反向鏈路資料傳輸之方 案700的設計的時序圖。終端機可具有待發送至伺服基地 台之資料且可在訊框ί中發送資源請求。資源請求可包括 終端機處之緩衝區大小、資源請求之緊急性之指示等。因 為資源請求通常不載運關於特定資源之資訊,所以可在任 何訊框中發送資源請求。伺服基地台可接收資源請求且可 在訊框ί+Δ中將傳輸能力請求訊息發送至終端機以詢問終 端機在特定資源上之傳輸功率能力(例如)以懇求終端機在 指定資源上傳輸功率決定導頻。傳輸能力請求訊息可包括 該请求之優先權量度及/或其他資訊。伺服基地台亦可在 訊框ί+△中在前向鏈路上發送減輕干擾請求訊息以懇求干 擾終端機減輕指定資源上之干擾(例如,將其傳輸功率封 鎖或減小至可接受位準)。減輕干擾請求訊息可包括指示 凊求之緊急性之優先權量度,其可由干擾終端機用於作出 關於授予還是摒棄該請求之決定。躲基地台可在同一訊 136198.doc 22- 200939824 ΤΙ:圖二所展示)或在不同訊框中發送傳輸能力請求訊 恩及減輕干擾請求訊息。 ❹ ❹ 相㈣服基地台接收傳輸能力請求訊息且亦可自 :中鄰僅基:台接收減輕干擾請求訊息…簡潔起見,在圖 展不-個相鄰基地台。終端機可首域如)基於來自 二:=基地台之減輕干擾請求訊息中所含有之優先權來 丄 =服從該訊息。終端機可接著基於終端機將服從之 =ΓΤ息判定其可在指定資源上使用之最大傳輸 功ΙΓ來自每一相鄰基地台之減輕干擾請求訊息可指 不基地台可容忍之干擾量且可 τ馊重且了以已知傳輪功率位準加以發 =二已知傳輸功率位準可提供於該訊息中或由該終端機 事先已知。該終端機可基於已知傳輸功率位準及來自每一 相鄰基地台之減輕干擾請求訊息之所接收之功率位準來估 計此基地台之路徑損耗。終端機可對前向鍵路及反向鍵路 採用相等路徑損耗,且可判定終端機可使用以便符合每一 相鄰基地台之干擾要求之最大傳輸功率位準。終端機可經 由以此最大傳輸功率位準(或經按比例調整之傳輸功率位 準)在對應資源上發送之功率決定導頻輸送此傳輸功率位 準。對應資源可涵蓋與指定資源相同之頻率但可在同一反 向鍵路HARQ交錯集上在%個訊框前發生。終端機可在訊 框⑽中在對應資源上發送功率決定導頻,且此導頻之傳 輸功率位準可為終端機可在訊框⑴财用㈣定資源之最 大傳輸功率位準。在訊框奸△中來自飼服基地台之傳輸能 力請求訊息亦可载運功率決定導頻之所建議之傳輸功率位 136I98.doc -23· 200939824 ==下,終端機可基於自相鄰基地台接收之減輕 擾请未訊心調整所建議之傳輸功率位準。 5 土也。可自終端機及干擾終 且可基於所接收之邋相从干、弋导頻 定導頻可允許伺服基地二 刀年決 恭地σ更旱確地估計頻道品質及干擾。 ❹ 參 例而。飼服基地台可基於來自終端機之導頻估計頻道 品質’基於來自干擾終端機之導頻估計干擾,且基於頻道 品質估計及干擾估計判定終端機之Mcs。伺服基地台可根 據MCS針對指定資源上之資料傳輸排程終端機。飼服基地 台可產生RL資源授予,其可包括所指派之資源、⑽、待 用於所指派之資源的所指派之傳輸功率位準及/或其他資 訊。所指派之傳輸功率位準可超越(GverHde)經由功率決定 導頻指示之傳輸功率位準。伺服基地台可在訊框卜純中 將RL資源授予發送至終端機。終端機可自飼服基地台接收 RL身源授予且可獲得所指派之資源、聽8等。終端機可在 訊框(+2M中在所指派之資源上發送資料傳輸。 伺服基地台可自終端機接收f㈣輸,解碼所接收之傳 輸,且基於解碼結果產生ACK或NAK。伺服基地台可在訊 框什Δ+2Μ中將ACK或NAK發送至終端機。若接收到 NAK,則終端機可在訊框ί+3Μ中發送另一資料傳輪,且若 接收到ACK,則終端機可終止或發送新資料傳輸。 圖7展示反向鏈路上之短期干擾緩和之特定設計。亦可 使用其他設計實施反向鏈路上之短期干擾緩和。 在圖7中所展示之設計t,終端機可以其可在指定資源 136198.doc •24· 200939824 上使用之最大傳輸功率位準傳輸功率 ::率:::::送含有其™源…二 工ί 一項設計中’干擾終端機可減輕對-個HARQ傳輸之 =二傳輸可用於封包之第一傳輸。可針對每一 harq 專輸重複相同程序以減輕干擾。在另—設計巾 機可減輕對U@HARQ傳輸之干擾(例如,在同一職⑽The resource quality indicator for this resource. For example, it may be based on: (1) determining the channel quality based on the pilot from the serving base station and (8) determining the RQI value of the given resource based on the interference estimated from the pilot of the interfering base station. The terminal can also determine the (single) value of all (4) resources. In any case, the RQI value may indicate the value of the resource, the data rate, or some other information of the resource covered by the RQI value. The terminal can send RQI information containing the corresponding resource's - or multiple RQI values in the frame. The teacher information can also be referred to as channel quality indicator (CQJ) information. The servo base station can schedule the terminal from the pure RQI information of the terminal and can transmit the data on one or more of the assigned resources. Each assigned resource may correspond to all or a subset of the specified resources. The vocabulary base station can select modulation and coding schemes (mcs) based on the RQI information of the assigned resources. The MCS can also be referred to as a transport format, a packet format, a rate, and the like. The feeding base station can process the information of the terminal according to the MCS. The Serving Base Station may generate a fl resource grant, which may include assigned resources, MCS, and/or other information. The serving base station can send FL resource grants and data transmissions to the terminal in the frame ί+2Μ. The terminal can receive FL·resource grants from the servo base station and obtain the assigned source and MCS. The terminal can receive the data transmission on the assigned resource' to receive the transmission according to the MCS decoding and generate an ACK or NAK based on the decoding result. The terminal can send an ACK or NAK to the servo base station in the frame Δ+2Μ. If a NAK is received, the servo base station can transmit another data transmission in frame ί+3Μ and if an ACK is received, the servo base station can terminate or transmit a new data transmission. I36198.doc •19- 200939824 Figure 5 shows the specifics of short-term interference mitigation on the forward link. Other designs can be used to implement short-term interference mitigation on the forward link. The mitigation request message may request the interfering base station to manipulate its power by reducing the transmission power (as described above) and/or by beaming in the direction of the (10) termination (eg, by placing the terminal in a spatial null value) Medium) to mitigate interference. Z performs beam steering based on Μ information '(4) information may include precoding weights such as precoding matrices or vectors), channel estimates and/or power used by the transmitter, other information. The mitigation request message can be obtained or provided in various ways, and the mitigation request message can include the terminal (10). The spatial channel between the interfering base station and the terminal can be known to interfere with the base station (e.g., 'on a long-term basis). In another design, the message can be sent to the interfering base station in a unicast manner, and the message can include information about the spatial channel or preferred beam between the base station and the terminal. In yet another design, a reciprocal relationship between the forward link and the reverse link can be employed (e.g., due to the use of time division double guard (tdd)). The interfering base station can then estimate the reverse link channel of the terminal based on the message and can use the reverse link channel estimate as the forward link channel estimate. For all designs, the interfering base station may derive precoding weights based on information about the spatial channels or may provide precoding weights. The interfering base station can then perform beam steering using precoded weights. In the case of the towel, the interfering base station can determine the pilot using the transmission power level transmission power used on the designated resource. In another design, the interfering base α does not transmit power to determine the pilot and does not respond to the reduced interference interference request message from the terminal. In this design, it can be assumed that the dry 136198.doc -20- 200939824 scrambling base station will not be transmitted on the designated, carefully, and the premises, and it can be determined that R does not interfere with the interference base station). In the re-design, if the interfering base station will not transmit on the specified resource, then it will not transmit the power to determine the pilot or message, = right it will be in the specified resource, (4) transmission (four) the pin pilot or signal ❹ in ° In addition, the interfering base station can transmit a message containing the transmission power level that it will use on the designated resource. In a re-design, the interfering base station can provide spatial information in the power decision pilot. For example, in addition to the transmission power level that is not used in future resources, the interference base port may also refer to the beam direction. The interfering base station can achieve this by adjusting the transmission power of each of the transmitting antennas at the base station. In the re-designation, the interfering base station may transmit (4) information (10), such as precoding weights, separate from the power decision pilot and other than the power decision pilot. In the item, the interfering base station can mitigate the interference to a HARQ transmission. 4 Transmission can be used for the first transmission of the packet. The same procedure can be repeated for each transmission to mitigate interference. In another design +, the interfering base station can mitigate interference to L HARQ transmissions (e.g., on the same harq! error set) where L can be any integer value. For example, the &' can be processed (e. g., encoded and modulated) such that it can be reliably decoded after a target number of har(10) losses, and L can be equal to this target number. In yet another design, the interfering base station can mitigate interference with multiple HARQ interlace sets. The identifiers of the HARQ interlace sets may be conveyed in the interference mitigation trigger message and/or the mitigation interference request message. Alternatively, such harq interlaced sets may be known in advance for all base stations and terminals and will not need to be transmitted. Figure 6 shows the data transfer on the reverse link in the presence of interference. End 136198.doc 200939824 The terminal 120x can transmit data transmission to the servo base station 110x on the reverse link. The servo base station 110x can also receive interference transmission from the interference terminal 12〇y. This interference transmission may be expected for adjacent base stations 11 〇 y. If the desired data transmission and interference transmission are transmitted on the same negative source, the servo base station 1 may not be able to decode the data transmission from the terminal unit 12〇χ. The terminal 12 (^ may not communicate with the base station 11 〇 y for the purpose of data transmission. However, the terminal 120 χ may be able to reliably transmit the message to the base station 11 〇 y and receive from the base station 1 1 〇 y Similarly, the interfering terminal 丨2〇y may be able to reliably exchange messages with the servo base station 11. Figure 7 shows a timing diagram of the design of the scheme 700 for reverse link data transmission in the case of short term interference mitigation. The terminal may have data to be sent to the servo base station and may send a resource request in the frame ί. The resource request may include a buffer size at the terminal, an indication of the urgency of the resource request, etc., because the resource request is usually not carried. Regarding the information of a specific resource, the resource request can be sent in any frame. The servo base station can receive the resource request and can send a transmission capability request message to the terminal in the frame ί+Δ to inquire the terminal on the specific resource. The transmission power capability, for example, to request the terminal to transmit power on a designated resource determines the pilot. The transmission capability request message may include the priority amount of the request. And/or other information. The servo base station may also send a mitigation request message on the forward link in the frame ί+Δ to request the interfering terminal to mitigate interference on the specified resource (eg, to block or reduce its transmission power). Up to an acceptable level. The mitigation request message may include a priority measure indicating the urgency of the request, which may be used by the interfering terminal to make a decision regarding whether to grant or reject the request. The escaping base station may be in the same message 136198. Doc 22- 200939824 ΤΙ: shown in Figure 2) or send a transmission capability request and mitigation request message in different frames. ❹ ❹ Phase (4) The base station receives the transmission capability request message and can also: From the middle neighbor only: the station receives the interference mitigation request message... For the sake of brevity, it is not a neighboring base station. The terminal can be based on the priority contained in the mitigation request message from the base station: 丄 = obey the message. The terminal device can then determine the maximum transmission power that can be used on the designated resource based on the terminal device's suffocation = suffocation. The mitigation request message from each neighboring base station can refer to the interference amount that the base station can tolerate and can τ 馊 且 且 且 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = The terminal can estimate the path loss of the base station based on the known transmission power level and the received power level of the mitigation request message from each of the neighboring base stations. The terminal can use equal path loss for the forward and reverse links and can determine the maximum transmission power level that the terminal can use to meet the interference requirements of each adjacent base station. The terminal can determine the pilot to deliver the transmission power level via the power transmitted by the maximum transmission power level (or the scaled transmission power level) on the corresponding resource. The corresponding resource may cover the same frequency as the specified resource but may occur on the same reverse key HARQ interlace set before the % frames. The terminal can transmit the power decision pilot on the corresponding resource in the frame (10), and the transmission power level of the pilot can be the maximum transmission power level of the resource that the terminal can use in the frame (1). In the message frame △, the transmission capability request message from the feeding base station can also carry the recommended transmission power bit of the power decision pilot 136I98.doc -23· 200939824 ==, the terminal can be based on the self-adjacent base The mitigation of the reception of the station is not tuned to adjust the recommended transmission power level. 5 soil also. From the terminal and interference, and based on the received 邋 phase from the dry and 弋 pilot frequency pilots, the servo base can be allowed to determine the channel quality and interference more smoothly.参 References. The feeding base station can estimate the interference based on the pilot from the interfering terminal based on the pilot estimated channel quality from the terminal, and determine the Mcs of the terminal based on the channel quality estimation and the interference estimation. The servo base station can transmit the scheduled terminal according to the MCS for the data on the specified resource. The feeding base station may generate RL resource grants, which may include assigned resources, (10), assigned transmission power levels to be used for the assigned resources, and/or other information. The assigned transmission power level can override (GverHde) the transmission power level of the pilot indication via power. The servo base station can send the RL resource grant to the terminal in the frame. The terminal can receive the RL source from the feeding base station and obtain the assigned resources, listen to 8, and so on. The terminal can send data transmission on the assigned resource in the frame (+2M. The servo base station can receive f(4) input from the terminal, decode the received transmission, and generate ACK or NAK based on the decoding result. The servo base station can The ACK or NAK is sent to the terminal in the frame Δ+2Μ. If the NAK is received, the terminal can send another data transmission wheel in the frame ί+3Μ, and if the ACK is received, the terminal can Termination or transmission of new data transmissions. Figure 7 shows the specific design of short-term interference mitigation on the reverse link. Other designs can also be used to implement short-term interference mitigation on the reverse link. In the design shown in Figure 7, the terminal can The maximum transmission power level transmission power that can be used on the specified resource 136198.doc •24·200939824: rate:::::delivery contains its TM source...two ί in one design 'interference terminal can reduce the pair - One HARQ transmission = two transmissions can be used for the first transmission of the packet. The same procedure can be repeated for each harq transmission to mitigate interference. In another design, the machine can mitigate interference to U@HARQ transmission (for example, in the same Position (10)
錯集上)’其中L可為任何整數值。在又一設計中干擾終 端機可減輕對多個HARQ交錯集之干擾。 圖8展不用於在短期干擾緩和情況下對前向鏈路資料傳 輸及反向鏈路資料傳輸進行多工之方案8〇〇之設計。可藉 由疊加圖5及圖7來獲得圖8。為了簡潔起見,用灰色陰影 展不用於在前向鏈路上發送資料之所有傳輸。如圖8中所 展示,可有效地對前向鏈路及反向鏈路上之資料傳輸進行 多工。 圖5及圖7展示來自伺服基地台及干擾基地台之前向鏈路 傳輸在一個前向鏈路HARQ交錯集上且來自終端機之反向 鏈路傳輸在一個反向鏈路HARQ交錯集上的設計。如下所 述’此等設計可簡化短期干擾緩和之操作且可提供其他優 勢。 對於圖5中所展示之前向鏈路短期干擾緩和方案而言, 干擾緩和觸發訊息可使減輕干擾請求訊息在T,個訊框後發 送,減輕干擾請求訊息可使功率決定導頻在T2個訊框後發 送’功率決定導頻可使RQI資訊在Τ3個訊框後發送,rqi 136I98.doc •25- 200939824 資訊可使資料傳輸在I個訊框後發送,其中τ〗、丁2、&及 丁4可各自為任何適當值。如圖5中所展示,若 Τ1+Τ2+Τ3 + Τ4=Μ,則可在一個HARQ交錯集上發送前向鏈 路傳輸。亦如圖5中所展示,若T2+T3=m,則可在一個 HARQ交錯集上發送反向鏈路傳輸。 對於圖7中所展示之反向鏈路短期干擾緩和方案而言, 傳輸能力請求訊息可使功率決定導頻在八個訊框後發送, 功率決定導頻可使RL資源授予在Tb個訊框後發送,rl資 源授予可使資料傳輸在Te個訊框後發送,其中Ta、及τ 可各自為任何適當值。如圖7中所展示,若Ta+Tb=M,則 可在一個HARQ交錯集上發送前向鏈路傳輸。亦如圖?中所 展示,若Tb+TC=M,則可在一個HARQ交錯集上發送反向 鍵路傳輸。 在另一設計中,可在單一 HARQ交錯集中發送所有 HARQ交錯集之干擾緩和觸發訊息及減輕干擾請求訊息。 位元圖可涵蓋不同HARQ交錯集之不同訊框且可指示哪些 訊息適用於哪些HARQ交錯集。 舉例而t,如圖5中所展示,在一項設計中,可在以預 定間距分離之訊框中發送用於前向鏈路短期干擾緩和之訊 息。類似地,例如,如圖7中所展示,可在以預定間距分 離之訊框中發送用於反向鏈路短期干擾緩和之訊息。此設 計可隱式地提供時間資訊,其可簡化操作並減輕負擔。在 另一 s又计中,可在訊息中顯式地提供時間資訊。舉例而 言’給定訊息可請求在指定數目之訊框後發送回應或可指 136198.doc -26- 200939824 定稍後特定數目之 lL δί1框中之資源。此設計可提供較大靈活 性。 圖5中之箭a ^ °鍵路短期干擾緩和方案可在若干方面不同 於圖7中之反向絲 _ °硬路短期干擾緩和方案。對於前向鏈路而 吕’伺服基地台可版 j發送干擾緩和觸發訊息以指導終端機在 "A 上發送減輕干擾請求訊息。對於反向鏈路而言’ 祠服基地台可發 L 廷傳輪能力請求訊息以指導終端機在反向 ❹ 鏈路上發送功率決定導頻。 可以各種方式 „ s _ 且在各種頻道上發送表1以及圖5及圖7中 所展不之訊息及遂 Λ ^ ^ ^ 导頻。表2根據一項設計列出可用於訊息 及導頻之-些頻道。 表2 訊息/導頻 干擾緩和觸發 傳輸能力請求 FL資源授予 RL資源授予 在···:^送 前向鍵路 前向鏈路 前向鏈路 在前向共用控制頻道(F-SCCH)或實體下 行鏈路控制頻道(PDCCH)上發送 在F-SCCH或PDCCH上發送。 在F-SCCH或PDCCH上發送 在F-SCCH或PDCCH上發送 減輕干擾請求 前向鏈路或反 向鏈路 針對前向鏈路在前向鏈路RUM頻道(F RUM)或PDCCH上發送。 針對反向鏈路在反向鏈路RUM頻道(R-RUM)或實體上行鏈路控制頻道(PUCCH) 上發送。 功率決定導頻 前向鏈路或反 向鏈路On the wrong set) ' where L can be any integer value. In yet another design, the interfering terminal can mitigate interference with multiple HARQ interlace sets. Figure 8 shows that it is not designed for multiplexing forward link data transmission and reverse link data transmission in the case of short-term interference mitigation. Fig. 8 can be obtained by superimposing Fig. 5 and Fig. 7. For the sake of brevity, shades of gray are not used for all transmissions of data sent on the forward link. As shown in Figure 8, the data transmission on the forward and reverse links can be efficiently multiplexed. 5 and 7 show the forward link transmission from the servo base station and the interfering base station on a forward link HARQ interlace set and the reverse link transmission from the terminal set on a reverse link HARQ interlace set. design. As described below, these designs simplify the operation of short-term interference mitigation and provide other advantages. For the forward link short-term interference mitigation scheme shown in FIG. 5, the interference mitigation trigger message may cause the mitigation request message to be sent after T and the frame, and the mitigation request message may cause the power to determine the pilot at T2. After the frame is sent 'power decision pilot, the RQI information can be sent after 3 frames. rqi 136I98.doc •25- 200939824 The information can be transmitted after I frame, in which τ, D2, & And D 4 can each be any suitable value. As shown in Figure 5, if Τ1+Τ2+Τ3 + Τ4=Μ, the forward link transmission can be sent on one HARQ interlace set. As also shown in Figure 5, if T2+T3 = m, reverse link transmissions can be sent on one HARQ interlace set. For the reverse link short-term interference mitigation scheme shown in FIG. 7, the transmission capability request message may cause the power decision pilot to be transmitted after eight frames, and the power decision pilot may grant the RL resource to the Tb frame. After sending, the rl resource grant enables the data to be transmitted after Te frames, where Ta, and τ can each be any suitable value. As shown in Figure 7, if Ta + Tb = M, the forward link transmission can be sent on one HARQ interlace set. Also as shown? As shown in the figure, if Tb+TC=M, reverse link transmission can be sent on a HARQ interlace set. In another design, interference mitigation trigger messages and mitigation request messages for all HARQ interlace sets may be transmitted in a single HARQ interlace set. The bit map can cover different frames of different HARQ interlace sets and can indicate which messages are applicable to which HARQ interlace sets. For example, as shown in FIG. 5, in one design, information for short-term interference mitigation of the forward link may be transmitted in a frame separated by a predetermined spacing. Similarly, for example, as shown in Figure 7, a message for reverse link short-term interference mitigation can be sent in a frame separated by a predetermined spacing. This design implicitly provides time information that simplifies operations and reduces the burden. In another s, the time information can be explicitly provided in the message. For example, a given message may request a response after a specified number of frames or may refer to a resource in a specified number of lL δί1 boxes later in 136198.doc -26- 200939824. This design offers greater flexibility. The arrow a ^ ° key path short-term interference mitigation scheme in Figure 5 can be different in several respects from the reverse wire _ ° hard-circuit short-term interference mitigation scheme in Figure 7. For the forward link, Lu's servo base station can send an interference mitigation trigger message to instruct the terminal to send a mitigation request message on "A. For the reverse link, the base station can send a L-Train capability request message to direct the terminal to transmit the power decision pilot on the reverse link. The messages displayed in Table 1 and in Figures 5 and 7 and the 遂Λ ^ ^ ^ pilots can be sent in various ways. Table 2 lists the available messages and pilots according to a design. - Some channels. Table 2 Message/Pilot Interference Mitigation Trigger Transmission Capability Request FL resource grant RL resource grant in the forward link of the forward link forward link on the forward shared control channel (F- SCCH) or physical downlink control channel (PDCCH) transmission is transmitted on F-SCCH or PDCCH. Transmission on F-SCCH or PDCCH transmits mitigation request forward link or reverse chain on F-SCCH or PDCCH The way is sent on the forward link RUM channel (F RUM) or PDCCH for the forward link. On the reverse link RUM channel (R-RUM) or physical uplink control channel (PUCCH) for the reverse link Send. Power determines the pilot forward link or reverse link
RQI 反向鏈路 針對前向鍵路在前向鏈路功率決定導頻頻 道(F-PDPICH)上發送。 針對反向鏈路在反向鏈路功率決定導頻頻 道(R-PDPICH)上發送。 在RQ1頻道(r-RQich)或pucch上發送 I36I98.doc -27- 200939824 亦可以其他方式發送表〗以及圖5及圖7辛所展示之訊息 及導頻。在另一設計中,伺服基地台可將干擾緩和觸發訊 息或傳輸能力請求訊息與前向鏈路資料一起發送至終端 機。在又一设汁中,伺服基地台可經由回程將干擾緩和觸 發訊息及/或減輕干擾請求訊息發送至相鄰基地台。 如上所述,可發送用於短期干擾緩和之訊息以使得其可 •由接收端台可靠地接收。在一項設計中,可在反向鏈路上 在可清除掉其他反向鏈路傳輸之第一區段上發送減輕干擾 ® 求訊息。類似地,可在前向鏈路上在可清除掉其他前向 鏈路傳輸之第二區段上發送減輕干擾請求訊息。此設計可 確保可在前向鏈路及反向鏈路上可靠地發送減輕干擾請求 訊息。λ體而t,可在可相對於主要干擾者正交化之控制 頻道上發送該等訊息。可藉由使用未由主要干擾者使用之 f源(例如,一組副載波、一組訊框等)達成正交化。 在一項設計中,在前向鏈路上,可在單一harq交錯集 參上發送用於短期干擾緩和之訊息,且在反向鏈路上,可在 單對應HARQ交錯集上發送用於短期干擾緩和之訊息。 此設計可允許(例如,不同功率等級之)不同基地台之間以 及中繼台之存取鏈路與回程鏈路之間的有效資源分割。對 於此。又6十而έ,因為同一HARQ交錯集亦將提供其他鏈路 之控制傳輸,所以可以每一鏈路上之一個harq交錯集之 粒度(granularity)達成資源分割。對於此設計而言,若需 要來自干擾基地台或干擾終端機之合作以便賦能可靠訊自 接收’則可以HARQ交錯集為單位授予此合作。此合作; 136198.doc •28- 200939824 採取控制封鎖或HAR收錯集分割之形式。將訊息限制於 每鍵路上之單_ HARQ亦可支援經由中繼台轉發訊息。 舉例而。中繼台可自終端機接收減輕干擾請求訊息並可 將此訊息向上游轉發至干擾基地台或另—中繼卜中繼台 亦可自基地台接收減輕干擾請求訊息並可將此訊息向下: 轉發至終端機或另—中繼台。可以職妓錯集為翠位進 行上游/下游分割。舉例而t ’終端機可在HARQ交錯集α 上發送減輕干擾請求訊息,且中繼台可在hARQ交錯集6上 轉發訊息,其中α关5。 對於前向鏈路及反向鏈路㈣而言,基地台可在實際排 程之前作出預排程決定,例如,告 Μ 搏在圖5中產生干擾緩和 觸發訊息時或當在圖7中產生傳輸能力請求訊息及減輕干 擾請求訊息時作出預排程決定。取決於各種时,實際排 程決定可能與預排程決定相同吱 〜仰1』及可旎不與之相同。舉例而 &,若指定資源之所估言十之_ $ σ # # τ & & 貝逼00質係不良的,則可不將 參 資源指派給終端機。 如上所述,在前向鏈路上,佰 伺服基地台可將指定資源之 干擾緩和觸發訊息發送至一個执 個終端機且可將此資源用於此 終端機。舉例而言,若排程決定 疋匕在發送干擾緩和觸發訊 息之後改變’則伺服基地台亦 刀了將此資源用於另一終端 機。在此狀況下’伺服基地台 «了在未使用可用於另一終端 機之RQI資訊或最近RQI資訊 讯隋況下針對該終端機選擇 MCS。 在前向鏈路上,伺服基地台 T在未發送干擾緩和觸發訊 136198.doc -29- 200939824 息情況下排程未觀測到來自相鄰基地台之高干擾之線端 機。在反向鍵路上,伺服基地台可在未發送傳輸能力請求 訊息情況下排程並非為相鄰基地台之強干擾者之終端機。 伺服基地台可基於來自終端機之導頻量測報告作出此等決 冑。只要可能便在未使用短期干擾緩和情況下排程此等終 端機可允許較有效之資源利用。 • 在—項設計中,可藉由子取樣來減輕用於短期干擾緩和 之訊息之負擔。可使用每—HARQ交錯集之s個訊框之排程 週期,其中可由所要子取樣量來判定s,且8可為任何適當 整數值。可針對給定HARQ交錯集上之每_純發送減輕 干擾請求訊息-次,且排程決定可對於此驗奴錯集上 之s個訊框而言為有效的。可關於時間交纏不同harq交錯 集之排程週期以便減小由子取樣導致之初始潛時。 在一項設計中,干擾緩和觸發訊息、傳輸能力請求訊息 及/或減輕干擾言青求訊息可含有持續纟元。彳將此位元設 Φ 定為第一值(例如,|〇,)以指示該訊息對於標稱時間週期(例 如,一個訊框)而言係有效的,或設定為第二值(例如,,厂) 以指示該訊息對於延長之時間週期(例如,預定數目之訊 框)而言係有效的。 本文中所描述之短期干擾緩和技術可用於各種部署情 形。該等技術可用於所有基地台皆針對巨型小區之系統。 可針對可在前向鏈路上觀測到來自相鄰基地台之高干擾及/ 或可在反向鏈路上對相鄰基地台導致高干擾之小區邊緣終 端機調用該等技術。 136198.doc -30- 200939824 此等技術亦可用於支援(例如)針對巨型小區、微型小區 及超微型小區以不同功率位準傳輸之基地台之系統。亦可 以未計劃方式(亦即,在無任何網路計劃情況下)部署一些 基地台。此外,基地台可支援受限關聯且可能不允許所有 =端機連接至基地台。受限關聯可適用於(例如)安裝在住 内之基地口其中可僅允許生活在此住宅中之使用者連 接至基地台。 ❹ 本文中所描述之技術可㈣地用於主要干擾情形,該等 主要干擾情形可能為不可避免的或所要的。舉例而言,可 能不允許終端機連接至具有最強之所接收之功率之基地台 (例如’歸因於基地台允許受限關聯)。此基地台可既而為 主要干擾者。作為另一實例,終端機可意欲連接至具有較 低之所接收之功率之基地台(若此基地台具有較低路徑損 耗)。舉例而t*,若基地台具有顯著低於其他基地台之傳 輸功率位準之傳輸功率位準(例如,針對微型小區或超微 型小區)且可因此對系統導致較少干擾以達成類似資料速 率(其為所要的)’則可能為此狀況。在終端機處具有較高 之所接收之功率之其他基地台將既而為主要干擾者。在反 向鏈路上,發送至具有較低路徑損耗之基地台之傳輸可在 系統中導致較少干擾,其為所要的。 圖9展不用於在紐期干擾緩和情況下接收資料之過程_ 由第-台執行過程9〇〇,該第一台可對於前向 鏈路上之資料傳輸而言為終端機或對於反向鍵路上之資料 傳輸而言為伺服基地台。過程_可心圖5中之傳輸方案 I36198.doc 200939824 500或圖7中之傳輸方案700。 該第口可產生一第一訊息以請求減輕干擾(區塊 912)。該第一訊息可包括識別待減輕干擾之至少一資源之 資訊、該請求之優先權之指示、該第一台之目標干擾位 準、干擾台之傳輸功率之目標減小、可由干擾台用於在不 . 同於第一台之方向上操縱功率之空間資訊及/或其他資 ' 訊。舉例而言,在預期在至少一資源上接收資料之情況 下,該第一台可將該第一訊息發送至至少一干擾台以請求 ® 減輕該至少一資源上之干擾(區塊914)。該第一台可將第一 訊息作為單播訊息發送至每一干擾台或作為廣播訊息發送 至所有干擾台。此後,該第一台可在該至少一資源上自一 第二台接收一資料傳輸(區塊916)。 舉例而言,如圖5中所展示,在一項設計中,過程9〇〇可 用於前向鏈路上之資料傳輸。在此狀況下,該第一台可為 終端機,且該第二台可為伺服基地台。該終端機可自該伺 ❹ 服基地台接收一第二訊息以觸發短期干擾緩和且可回應於 接收到該第二訊息發送該第一訊息。 , 舉例而a,如圖7中所展示,在另一設計中,過程9〇〇可 用於反向鏈路上之資料傳輸。在此狀況下,該第一台可為 伺服基地台’且該第二台可為終端機。該伺服基地台可自 s玄終端機接收資源請求且可回應於接收到資源請求發送該 第一訊息。 圖10展不用於在短期干擾緩和情況下接收資料之裝置 1000之設計。裝置1000包括:一用於產生一第一訊息以請 136198.doc •32- 200939824 求減輕干擾的模組1012; 一用於將該第— 發送至至少-干擾台以請求減輕至少一資源: ° 組购,該第-訊息係在預期由該第—Α在> =擾的模 上接收資料之情況下予以發送;二二至少-資源 心久用於在該至少一資泝 自一第二台接收一資料傳輸的模組1〇16。 ’、 ㈣展示用於在短期干擾緩和情況下在前向鍵路上接收 貝抖之過程HOG之設計。可由終端機(如下所述)或某—其 二實體執行過程U。。。過程110。可用於圖5中之傳輸方案 =(終£=可自—伺服基地台接收—觸發短期干擾緩和之 (塊1112)。該終端機可接著發送-訊息以請求至少 一干擾基地台減輕至少—資 她貝源上之干擾(區塊1U4)。該終 :機可在預期在該至少一資源上接收資料之情 * [塊⑴2中接收到觸發訊息)發送該請求訊 息。該終端機可自該至少一干擾基地台接收至少一傳輸或 φ 導頻(區塊111 6)。每—值於+播诚 〆 "輸或導頻可指示待由一對應干擾 暴地台在自亥至少—咨·、β πThe RQI reverse link is sent on the forward link power decision pilot channel (F-PDPICH) for the forward link. The reverse link is transmitted on the reverse link power decision pilot channel (R-PDPICH). Sending on the RQ1 channel (r-RQich) or pucch I36I98.doc -27- 200939824 It is also possible to send the table and the messages and pilots shown in Figure 5 and Figure 7 in other ways. In another design, the servo base station can transmit an interference mitigation trigger message or a transmission capability request message to the terminal along with the forward link data. In still another configuration, the servo base station can transmit the interference mitigation trigger message and/or the mitigation interference request message to the adjacent base station via the backhaul. As described above, the message for short-term interference mitigation can be sent so that it can be reliably received by the receiving end station. In one design, the interference mitigation information can be sent on the reverse link on the first segment where other reverse link transmissions can be cleared. Similarly, a mitigation request message can be sent on the forward link on a second segment that can clear other forward link transmissions. This design ensures reliable mitigation request messages can be sent on the forward and reverse links. The λ body and t can transmit such messages on a control channel that can be orthogonalized with respect to the primary interferer. The orthogonalization can be achieved by using an f source (e.g., a set of subcarriers, a set of frames, etc.) that is not used by the primary interferer. In one design, on the forward link, messages for short-term interference mitigation can be sent on a single harq interlaced set parameter, and on the reverse link, can be sent on a single-corresponding HARQ interlace set for short-term interference mitigation. Message. This design allows for efficient resource partitioning between access points and backhaul links between different base stations and between repeaters (e.g., at different power levels). For this. Sixty and one, because the same HARQ interlace set will also provide control transmission for other links, resource partitioning can be achieved with the granularity of one harq interlace on each link. For this design, if a cooperation from an interfering base station or an interfering terminal is required to enable reliable communication from reception, then the HARQ interlace set can be awarded as a unit. This cooperation; 136198.doc • 28- 200939824 Take the form of control blockade or HAR error set split. Limiting the message to the single-key on each key_ HARQ also supports forwarding messages via the repeater. For example. The relay station can receive the interference mitigation request message from the terminal and can forward the message upstream to the interference base station or another relay relay station, and can also receive the mitigation request message from the base station and can lower the message : Forward to the terminal or another station. The upstream/downstream segmentation can be carried out for the Cui position. For example, the terminal can transmit a mitigation request message on the HARQ interlace set a, and the relay station can forward the message on the hARQ interlace set 6, where α is off 5. For the forward link and reverse link (4), the base station can make a pre-scheduling decision before the actual schedule, for example, when the alarm generates the interference mitigation trigger message in Figure 5 or when generated in Figure 7. Pre-scheduling decisions are made when transmitting capability request messages and mitigating interference request messages. Depending on the time, the actual schedule decision may be the same as the pre-schedule decision 〜 ~ 仰 1 』 and can not be the same. For example, &, if the resource is estimated to be _ $ σ # # τ && 贝 00 bad system, then the parameter resources can not be assigned to the terminal. As described above, on the forward link, the 伺服 servo base station can transmit the interference mitigation trigger message of the specified resource to a terminal and can use this resource for the terminal. For example, if the schedule decision 改变 changes after transmitting the interference mitigation trigger message, then the servo base station also uses this resource for the other terminal. In this case, the 'servo base station' selects the MCS for the terminal without using the RQI information available for the other terminal or the most recent RQI information. On the forward link, the servo base station T schedules no high-interference line terminals from neighboring base stations without transmitting the interference mitigation trigger signal 136198.doc -29- 200939824. On the reverse keyway, the servo base station can schedule terminals that are not strong interferers of neighboring base stations without transmitting a transmission capability request message. The servo base station can make such a decision based on the pilot measurement report from the terminal. Scheduled terminals can allow for more efficient resource utilization when scheduled without the use of short-term interference mitigation. • In the case design, subsampling can be used to reduce the burden of messages for short-term interference mitigation. A scheduling period of s frames per HARQ interlace set may be used, where s may be determined by the desired sub-sample size, and 8 may be any suitable integer value. The mitigation request message can be transmitted for each _ pure transmission on a given HARQ interlace set, and the scheduling decision can be valid for s frames on the erroneous set. The scheduling period of different harq interlaces can be interleaved with respect to time to reduce the initial latency caused by subsampling. In one design, the interference mitigation trigger message, the transmission capability request message, and/or the mitigation interference message may contain persistent elements.定 Set this bit to Φ as the first value (for example, |〇,) to indicate that the message is valid for a nominal time period (for example, a frame), or set to a second value (for example, , factory) to indicate that the message is valid for an extended period of time (eg, a predetermined number of frames). The short-term interference mitigation techniques described in this article can be used in a variety of deployment scenarios. These techniques can be used in systems where all base stations are targeted to giant cells. Such techniques may be invoked for cell edge terminals that can observe high interference from neighboring base stations on the forward link and/or can cause high interference to neighboring base stations on the reverse link. 136198.doc -30- 200939824 These techniques can also be used to support, for example, systems for base stations transmitting at different power levels for jumbo, microcell and picocells. Some base stations can also be deployed in an unplanned manner (ie, without any network plan). In addition, the base station can support restricted associations and may not allow all = terminals to connect to the base station. The restricted association can be applied, for example, to a base station installed in the home where only users living in the home can be connected to the base station.技术 The techniques described herein can be used for (4) primary interference scenarios, which may be unavoidable or desirable. For example, the terminal may not be allowed to connect to the base station with the strongest received power (e.g., due to the base station allowing restricted association). This base station can be the main interferer. As another example, the terminal can be intended to connect to a base station having a lower received power (if the base station has a lower path loss). For example, t*, if the base station has a transmission power level that is significantly lower than the transmission power level of other base stations (eg, for a micro cell or a pico cell) and may therefore cause less interference to the system to achieve a similar data rate. (It is what is needed) 'It may be the case. Other base stations with higher received power at the terminal will be the primary interferers. On the reverse link, transmissions to base stations with lower path loss can cause less interference in the system, which is desirable. Figure 9 shows the process of receiving data in the case of interference mitigation in the new period _ by the first station, the first station can be the terminal for the data transmission on the forward link or for the reverse key The data transmission on the road is a servo base station. Process _ can be used in the transmission scheme I36198.doc 200939824 500 in FIG. 5 or the transmission scheme 700 in FIG. The first port can generate a first message to request mitigation of interference (block 912). The first message may include information identifying at least one resource to be mitigated, an indication of priority of the request, a target interference level of the first station, a target reduction of transmission power of the interfering station, and may be used by the interfering station Do not manipulate the spatial information of power and/or other resources in the same direction as the first one. For example, in the event that data is expected to be received on at least one resource, the first station can transmit the first message to at least one interfering station to request ® to mitigate interference on the at least one resource (block 914). The first station can send the first message as a unicast message to each interfering station or as a broadcast message to all interfering stations. Thereafter, the first station can receive a data transmission (block 916) from a second station on the at least one resource. For example, as shown in Figure 5, in one design, process 9 can be used for data transfer on the forward link. In this case, the first station can be a terminal, and the second station can be a servo base station. The terminal may receive a second message from the server base station to trigger short-term interference mitigation and may send the first message in response to receiving the second message. For example, a, as shown in Figure 7, in another design, process 9 can be used for data transmission on the reverse link. In this case, the first station can be a servo base station' and the second station can be a terminal set. The servo base station can receive a resource request from the s-terminal terminal and can send the first message in response to receiving the resource request. Figure 10 shows the design of the device 1000 that is not used to receive data in the event of short-term interference mitigation. The apparatus 1000 includes: a module 1012 for generating a first message to request 136198.doc • 32-200939824 to mitigate interference; and a method for transmitting the first to at least the interfering station to request to mitigate at least one resource: In the case of group purchase, the first message is sent in the case that the data is expected to be received by the first Α &&;;;;;;;;;;;; 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少 至少The station receives a data transmission module 1〇16. ' (4) Demonstrate the design of the HOG process for receiving the jitter on the forward keyway in the case of short-term interference mitigation. Process U can be performed by a terminal (as described below) or by some of its two entities. . . Process 110. Can be used in the transmission scheme of Figure 5 = (final £ = available from the servo base station - triggering short-term interference mitigation (block 1112). The terminal can then send a message to request at least one interfering base station to mitigate at least - The interference on her source (block 1U4). The terminal: the device can send the request message in the expectation of receiving data on the at least one resource* [trigger message received in block (1)2). The terminal may receive at least one transmission or φ pilot from the at least one interfering base station (block 111 6). Every value is + broadcast 〆 quot "transmission or pilot can indicate a corresponding interference to the violent platform at at least self-confidence, β π
'、使用之傳輸功率位準。該終端機 可基於來自該至少—干擾 A 計該至少-資源之頻、f= 〇之該至少一傳輸或導頻估 原之頻道品質(區塊1Π8)。該終端機可將指 示該至少一資源夕45 4 ^ ,道。D質之資訊發送至該伺服基地台 二該終端機可接收基於該至少一資源之頻道品 貝源授予(區塊1122)。該終端機亦可在該至少 一資源上自該伺服Α 終端機可在-第—=Γ 一資料傳輸(區塊1124)。該 時間週期中在該至少一資源上接收該至 136198.doc -33- 200939824 少一傳輸或導頻且可在遲於該第一時間週期之一第二時間 週期中在該至少一資源上接收該資料傳輸。', the transmission power level used. The terminal may estimate the channel quality (block 1 Π 8) from the at least one transmission or pilot of the at least - resource frequency, f = 〇 from the at least - interference A. The terminal can indicate the at least one resource eve 45 4 ^. The information of the D quality is sent to the servo base station. The terminal device can receive the channel source grant based on the at least one resource (block 1122). The terminal can also transmit data from the server to the at least one resource (block 1124). Receiving the 136198.doc -33-200939824 one less transmission or pilot on the at least one resource in the time period and receiving on the at least one resource in a second time period later than the first time period The data is transmitted.
圖12展示用於在短期干擾緩和情況下在前向鏈路上接收 資料之裝置】200之設計。裝置1包括:—用於自一飼服 基地台接收一觸發短期干擾緩和之訊息的模組1212 ; 一用 於發送一訊息以請求至少一干擾基地台減輕至少一資源上 之干擾的模組1214,該請求訊息係在預期在該至少一資源 上接收資料之情況下予以發送;—用於自該至少—干擾基 地台接收至少一傳輸或導頻的模組1216 ; 一用於基於來自 該至乂 -干擾基地台之該至少—傳輸或導頻估計該至少一 資源之頻道品質的模組1218 ;—用於將指示該至少一資源 之頻道品f之資訊發送至該飼服基地台的模組1220 ; -用 於接收基於該至少-資源之頻道品質產生之—資源授予的 模組1222 ;及-用於在該至少—資源上自該伺服基地台接 收一資料傳輸的模組1 224。 一圖13展示用於在短期干擾緩和情況下在反向鏈路上接收 貝料之過程1300之没计。可由飼服基地台(如下所述)或某 一其他實體執行過程1300。過程13〇〇可用於圖7中之傳輸 方案700。 一終端機接收一資源請求(區塊 該伺服基地台可自 1312)。該伺服基地台可發送—第—訊息以請求至少一干 擾終端機減輕至少一資源上之干擾(區塊1314)。該伺服基 可在預期在該至少一資源上接收資料之情況下(例 如回應於接收到資源請求)發送該第一訊息。該祠服基 136198.doc •34· 200939824 地台亦可發送一第二訊息以請求該終端機之針對該至少一 資源之傳輸能力(區塊1316)。該伺服基地台可接收—包含 該終端機之針對該至少一資源之傳輸能力之傳輸(3 功率決定導頻)(區塊131心該⑽基地台可基於該終端機 之針對该至少-資源之傳輸能力針對資料傳輸排程該终端 機(區塊1320)。該伺服基地台可接著在該至少一資源上自 該終端機接收—資料傳輸(區塊1322)。 φ ❹ 在-項設計中’該舰基地台可自該終端機及該至少一 干擾終端機接收導頻,丨中每一導頻係由一對應終端機以 一可用於該至少-資源之最大傳輸功率位準予以傳輸。該 飼服基地台可基於所接收之導頻估計該至少一資源之頻道 口口質且可基於该至少一資源之所估計之頻道品質選擇—調 =與編碼^案。該伺服基地台可將一包含該調變與編碼方 ”之資源授予發送至該終端機。該終端機可根據該資源授 予發送該資料傳輸。 圖14展示用於在短期干擾緩和情況下在反向鏈路上接收 :料之裝置咖之設計。裝置14〇〇包括:一用於自一終端 機接收一貧源請求的模組1412 ^ . Ε , 用於發送一第一訊息以 二未至:-干擾終端機減輕至少一資源上之干擾的模組 息係在預期在該至少一資源上接收資料之 ,下予以發送;-用於發送—第二訊 之針對該至少一資源之僖耠士 Μ 可H、端機 一包人辞線 、 j靶的模組1416 ; 一用於接收 匕δ該、、'、端機之針對該至少一 模組1418;—用於其Μ 冑源之傳輸能力之傳輸的 用於基於该終端機之針對該至少一資源之傳 136198.doc -35- 200939824 輸忐力針對資料傳輸排程該終端機的模組1420 ;及一用於 在該至少一資源上自該終端機接收一資料傳輸的模組 1422。 圖丨5展示用於減輕干擾之過程15〇〇之設計。可由干擾台 執行過程1500,該干擾台可對於前向鏈路上之資料傳輸而 言為干擾基地台或對於反向鏈路上之資料傳輸而言為干擾 終端機。過程1500可用於圖5中之傳輸方案5〇〇或圖7中之 傳輸方案700。 Ο ❹ 該干擾台可接收由一第一台發送以請求減輕至少一資源 上之干擾之一第一訊息(區塊1512)。可在預期由該第一台 在該至少一資源上接收資料之情況下由該第一台發送該第 一訊息。在一項設計中,該干擾台可自該第一訊息獲得該 請求之優先權。該干擾台可接著基於該請求之優先權判定 授予還是摒棄該請求。該干擾台可減輕該至少一資源上之 干擾(區塊1 5 14)。 在區塊1514之一項設計中,該干擾台可自該第一訊息獲 得傳輸功率之目標減小。該干擾台可接著使其在該至少一 資源上之傳輸功率減小一基於傳輸功率之目標減小判定之 量。在區塊1514之另一設計中’該干擾台可自該第一訊息 獲得空間資訊。該干擾台可接著基於空間f訊執行預編碼 以在不同於該第一台之方向上操縱該干擾台之功率。該干 擾台亦可以其他方式減輕該至少一資源上之干擾。 圖16展示用於減輕干擾之裝置16〇〇之設計。裝置16⑼包 括:一用於接收由一第一台發送以請求減輕至少一資源上 136198.doc -36 - 200939824 ::擾之—第一訊息的模組1612,該第一訊息係由該第一 °、預期由該第-台在該至少—資源上接收資料之情況下 二以發送;及一用於減輕該至少一資源上之干擾的模植 1614 。 ’ 圖12、圖14及圖16中之模組可包含處理器、電子 态件、硬體器件、電子組件、邏輯電路、記憶體等,或其 任何組合。Figure 12 shows the design of an apparatus for receiving data on the forward link in the event of short-term interference mitigation. The device 1 comprises: - a module 1212 for receiving a message triggering short-term interference mitigation from a feeding base station; and a module 1214 for transmitting a message requesting at least one interfering base station to mitigate interference on at least one resource The request message is sent if it is expected to receive data on the at least one resource; - a module 1216 for receiving at least one transmission or pilot from the at least one interfering base station;模组-Interfering base station at least - transmitting or piloting a module 1218 for estimating channel quality of the at least one resource; Group 1220; - a module 1222 for receiving a resource grant based on the channel quality of the at least - resource; and - a module 1 224 for receiving a data transmission from the servo base station on the at least - resource. Figure 13 shows the process 1300 for receiving bedding on the reverse link in the event of short-term interference mitigation. Process 1300 can be performed by a feeding base station (described below) or by some other entity. Process 13A can be used in the transmission scheme 700 of FIG. A terminal receives a resource request (block the servo base station is available from 1312). The serving base station can transmit a - message to request at least one of the interference terminals to mitigate interference on at least one of the resources (block 1314). The servo base may send the first message if it is expected to receive data on the at least one resource (e.g., in response to receiving a resource request). The base station may also send a second message to request the terminal's transmission capability for the at least one resource (block 1316). The serving base station can receive a transmission (3 power decision pilot) for the transmission capability of the terminal for the at least one resource (block 131 (10) the base station can be based on the terminal for the at least - resource The transmission capability schedules the terminal for data transmission (block 1320). The servo base station can then receive data from the terminal on the at least one resource (block 1322). φ ❹ In the - item design The base station can receive pilots from the terminal and the at least one interfering terminal, and each pilot is transmitted by a corresponding terminal at a maximum transmission power level available for the at least-resource. The feeding base station may estimate the channel mouth quality of the at least one resource based on the received pilot frequency and may select, adjust, and encode based on the estimated channel quality of the at least one resource. The servo base station may A resource grant containing the modulation and coding side is sent to the terminal. The terminal can transmit the data transmission according to the resource grant. Figure 14 shows the use on the reverse link in the case of short-term interference mitigation. The device 14〇〇 includes: a module 1412 for receiving a poor source request from a terminal, 用于, for transmitting a first message to two: - interference terminal The module that mitigates interference on at least one resource is sent under the expectation that the data is received on the at least one resource; and is used to send the second message to the gentleman of the at least one resource. a module 1416 for the end of the machine, a module 1416 for the j target; one for receiving the 匕δ, the ', the end machine for the at least one module 1418; the transmission capacity for the transmission of the 胄 source The module 1420 for transmitting the terminal based on the terminal for the at least one resource 136198.doc -35-200939824; and one for the at least one resource The terminal receives a data transmission module 1422. Figure 5 shows the design of the process for mitigating interference. The process 1500 can be performed by the interfering station, which can interfere with data transmission on the forward link. Base station or for data transmission on the reverse link Interfering with the terminal. The process 1500 can be used in the transmission scheme 5 of FIG. 5 or the transmission scheme 700 in FIG. 7. Ο ❹ the interfering station can receive one of the interferences transmitted by a first station to request mitigation of at least one resource a first message (block 1512). The first message can be sent by the first station if the first station is expected to receive data on the at least one resource. In one design, the interfering station can The first message obtains the priority of the request. The interfering station can then decide whether to grant or discard the request based on the priority of the request. The interfering station can mitigate interference on the at least one resource (block 1 5 14). In one design of block 1514, the interfering station can reduce the target of obtaining transmission power from the first message. The interfering station can then reduce its transmission power on the at least one resource by a reduction in the amount based on the target of the transmission power. In another design of block 1514, the interfering station may obtain spatial information from the first message. The interfering station can then perform precoding based on the spatial information to manipulate the power of the interfering station in a direction different from the first station. The interference station can also mitigate interference on the at least one resource in other ways. Figure 16 shows the design of a device 16 for mitigating interference. The device 16 (9) includes: a module 1612 for receiving a first message sent by a first station to request mitigation of at least one resource on the 136198.doc-36 - 200939824::scrambling-first message, the first message being the first message °, expected to be transmitted by the first station in the case of receiving data on the at least one resource; and a module 1614 for mitigating interference on the at least one resource. The modules of Figures 12, 14 and 16 may comprise processors, electronics, hardware devices, electronic components, logic circuits, memory, etc., or any combination thereof.
圖17展示圖4及圖6中之伺服基地台11〇χ、干擾基地台 11〇y及終端機ΐ2〇χ之設計之方塊圖。在伺服基地台11〇χ 處,傳輸處理器1714χ可接收來自資料源ηΐ2χ之訊務資料 及來自控制器/處理器Π3〇Χ及排程器173化之訊息。舉例 而言,控制器/處理器1730χ可提供圖5及圖7中所展示之用 於短期干擾緩和之訊息。排程器1734χ可為終端機ΐ2〇χ提 供資源授予。傳輸處理器1714χ可處理(例如,編碼、交錯 及符號映射)訊務資料、訊息及導頻並分別提供資料符 號、控制符號及導頻符號。調變器(MOD) 1 7 1 6χ可對資料 符號、控制符號及導頻符號執行調變(例如,針對OFDM、 CDMA等)且提供輸出樣本。傳輪器(TMTR) 1 718x可調節 (例如’轉換為類比、放大、濾波及升頻轉換)輸出樣本並 產生可經由天線1 720x傳輸之前向鏈路信號。 干擾基地台1 1 〇y可類似地處理由基地台1 1 〇x伺服之終端 機及干擾終端機之訊務資料及訊息。訊務資料、訊息及導 頻可由傳輸處理器m4y處理、由調變器I716y調變、由傳 輸器1718y調節並經由天線172〇y傳輸。 136198.doc -37- 200939824 在終端機120χ處,天線1752可自基地台11〇x&u〇y以及 可此其他基地台接收前向鏈路信號。接收器(RCVR) 1754 可調硪(例如,濾波、放大、降頻轉換及數位化)來自天線 1752之所接收之信號並提供樣本。解調變器(DEMOD) 1756 . 可對樣本執行解調變並提供經偵測之符號。接收處理器 1 758可處理(例如,符號解映射、解交錯及解碼)經偵測之 符號將經解碼之訊務資料提供至資料儲集器丨76〇並將經 解碼之訊息(例如,用於資源授予及短期干擾緩和)提供至 ㈣II /處理H 177G。解調變器1756可估計指定資源之頻 道品質且可將所估計之頻道品質提供至控制器/處理器 1770。 在反向鍵路上,傳輸處理器1782可接收並處理來自資料 源1780之訊務資料及來自控制器/處理器177〇之訊息(例 如,用於資源請求及短期干擾緩和)並提供資料符號及控 制符號。調變器1784可對資料符號、控制符號及導頻符號 〇 執行調變且可提供輸出樣本。傳輸器⑽可調節輸出樣本 並產生可經由天線1752傳輸之反向鏈路信號。 纟每一基地台處’來自終端機120乂及其他終端機之反向 鍵路信號可由天線mo接收、由接收器174〇調節、由解調 變器1742解調變並由接收處理器⑽處理。處理器”料可 將經解碼之訊務資料提供至資料儲集器1746並將經解碼之 訊息提供至控制器/處理器173〇。解調變器1742可估計終 端機120x之一或多個資汲夕斗5、苦σ /μ貝碌之頻道品質並可將此資訊提供至 控制器/處理器1730。控制器/處理器1730可針對終端機 136198.doc -38- 200939824 120x選擇MCS及/或其他參數β 控制器/處理器1730χ、I730y及1770可分別指導基地台 110x及110y以及終端機12〇x處之操作。記憶體1732\、 1732y及1772可分別儲存用於基地台11〇?{及11〇y以及終端 機120x之資料及程式碼。排程器173打及1734y可分別排程 與基地台110x及11 〇y通信之終端機且可將資源指派給終端 機。Figure 17 is a block diagram showing the design of the servo base station 11 干扰, the interference base station 11 〇 y, and the terminal unit 图 2 图 in Figs. 4 and 6 . At the servo base station 11, the transmission processor 1714 can receive the traffic data from the data source ηΐ2χ and the message from the controller/processor 〇Χ3〇Χ and the scheduler 173. For example, the controller/processor 1730 can provide the information shown in Figures 5 and 7 for short-term interference mitigation. The scheduler 1734 can provide resource grants for the terminal. The transport processor 1714 can process (e.g., encode, interleave, and symbol map) the traffic data, messages, and pilots and provide data symbols, control symbols, and pilot symbols, respectively. Modulator (MOD) 1 7 1 6χ Modulates the data symbols, control symbols, and pilot symbols (for example, for OFDM, CDMA, etc.) and provides output samples. The wheel transmitter (TMTR) 1 718x is adjustable (e.g., 'converted to analog, amplified, filtered, and upconverted) to output samples and produces forward link signals that can be transmitted via antenna 1 720x. The interference base station 1 1 〇y can similarly process the traffic information and messages of the terminal and the interference terminal that are served by the base station 1 1 〇x. The traffic data, messages, and pilots can be processed by the transport processor m4y, modulated by the modulator I716y, adjusted by the transmitter 1718y, and transmitted via the antenna 172〇y. 136198.doc -37- 200939824 At terminal 120, antenna 1752 can receive forward link signals from base station 11 〇 x & 〇 以及 y and other base stations. The Receiver (RCVR) 1754 is tunable (eg, filtered, amplified, downconverted, and digitized) from the received signal from antenna 1752 and provides samples. Demodulation Transducer (DEMOD) 1756 . Demodulates the sample and provides the detected symbols. Receive processor 1 758 can process (e.g., symbol demap, deinterleave, and decode) the detected symbols to provide decoded message data to data store 〇 76 and decode the message (eg, Provided to (IV) II / Process H 177G for resource grant and short-term interference mitigation. Demodulation transformer 1756 can estimate the channel quality of the specified resource and can provide the estimated channel quality to controller/processor 1770. On the reverse key path, the transport processor 1782 can receive and process the traffic data from the data source 1780 and the message from the controller/processor 177 (eg, for resource requests and short-term interference mitigation) and provide data symbols and Control symbol. The modulator 1784 can perform modulation on the data symbols, control symbols, and pilot symbols 且 and can provide output samples. The transmitter (10) can adjust the output samples and generate a reverse link signal that can be transmitted via the antenna 1752.反向 Each base station 'reverse link signal from terminal 120乂 and other terminals can be received by antenna mo, adjusted by receiver 174〇, demodulated by demodulation transformer 1742 and processed by receiver processor (10) . The processor can provide the decoded traffic data to the data collector 1746 and provide the decoded message to the controller/processor 173. The demodulation transformer 1742 can estimate one or more of the terminal 120x. The channel quality of the 5 汲 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 / or other parameters β controller / processor 1730 χ, I730y and 1770 can respectively guide the operation of the base stations 110x and 110y and the terminal 12 〇 x. The memory 1732 \, 1732 y and 1772 can be stored for the base station 11 分别 respectively. The data and code of the terminal and the terminal 120x. The scheduler 173 and the 1734y can respectively schedule the terminals communicating with the base stations 110x and 11 〇y and can allocate resources to the terminal.
圖17中所展示之處理器可執行用於本文中所描述之技術 之各種功能。舉例而言,終端機12〇χ處之處理器可指導或 實施圖9中之過程900、圖11中之過程11〇〇、圖15中之過程 1500及/或用於本文中所描述之技術之其他過程。每一基 地台no處之處理器可指導或實施圖9中之過程9〇〇、圖13 中之過程1300、圖15中之過程^⑻及/或用於本文中所描 述之技術之其他過程。 熟習此項技術者將理解,可使用各種不同技術及技藝中 之任一者來表示資訊及信號。舉例而言,可由電壓、電 流、電磁波、磁場或磁粒子、光場或光粒子、或其任何組 合來表示可貫穿以上描述而參考之資料、指令、命令、資 訊、信號、位元、符號及碼片。 熟習此項技術者將進一步瞭解,可將在本文中結合本揭 示案而描述的各種說明性邏輯區塊、模組、電路及演算法 步驟實施為電子硬體、電腦軟體或兩者之組合。為清楚說 明硬體與軟體之此可互換性, J兄俠旺,上文已大體在功能性方面描 述各種說明性組件、ρ^ &鬼、模組、電路及步驟。此功能性 I36198.doc •39- 200939824 是實施為硬體還是軟體取決於特定應用及強加於整個系統 之設計約束。$習此項技術者可針對每一特定應用以不同 方式實施所描述之功能性,但此算會 此寻貫施決定不應被解釋為 會導致脫離本揭示案之範_。The processor shown in Figure 17 can perform various functions for the techniques described herein. For example, the processor at terminal 12 can direct or implement process 900 in FIG. 9, process 11 in FIG. 11, process 1500 in FIG. 15, and/or for the techniques described herein. Other processes. The processor at each base station no can direct or implement the process 9 of Figure 9, the process 1300 of Figure 13, the process of Figure 15 (8), and/or other processes for the techniques described herein. . Those skilled in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and the like, which may be referenced by the above description, may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or light particles, or any combination thereof. Chip. It will be further appreciated by those skilled in the art that the various illustrative logical blocks, modules, circuits, and algorithm steps described herein in connection with the present disclosure can be implemented as an electronic hardware, a computer software, or a combination of both. To clearly illustrate this interchangeability between hardware and software, J. Xiongwang, above, has generally described various illustrative components, ρ^ & ghosts, modules, circuits, and steps in terms of functionality. This functionality I36198.doc •39- 200939824 is implemented as hardware or software depending on the particular application and design constraints imposed on the overall system. The skilled person can implement the described functionality in different ways for each particular application, but this calculation will not be construed as causing a departure from the scope of this disclosure.
❹ 可用以下各者來實施或執行在本文中結合本揭示案而描 述之各種說明性邏輯區塊、模組及電路:通㈣理器、數 位信號處理器(DSP)、特殊應用積體電路(Asic)、場可程 式化閘陣mFPGA)或其他可程式化邏輯器件、離散閑或電 晶體邏輯、離散硬體組件、或其經設相執行本文中所描 述之功能的任何組合。通用處理器可為微處理器,但替代 地’處理器可為任何習知處理器、控制器、微控制器或狀 態機。亦可將處理器實施為計算器件之組合,例如,Dsp 與微處理器之組合、複數個微處理器、一或多個微處理器 連同一 DSP核心、或任何其他此組態。 在本文中結合本揭示案而描述之方法或演算法之步驟可 直接實施於硬體、由處理器執行之軟體模組或兩者之組合 中。軟體模組可常駐於RAM記憶體、快閃記憶體、R〇M 記憶體、EPROM記憶體、EEPROM記憶體、暫存器、硬 碟、抽取式碟片、CD_ROM或此項技術中已知之任何其他 形式之儲存媒體中。例示性儲存媒體耦接至處理器以使得 處理器可自儲存媒體讀取資訊且將資訊寫入至儲存媒體。 替代地’儲存媒體可整合至處理器。處理器及儲存媒體可 常駐於ASIC中。ASIC可常駐於使用者終端機中。替代 地’處理器及儲存媒體可作為離散組件常駐於使用者終端 136198.doc -40- 200939824 機中。 在-或多個例示性設計中,可以硬體、軟體、勒體、或 f任何組合來實施所描述之功能。若以軟體實施,則功能 可作為-或多個指令或程式碼儲存於電腦可讀媒體上或經 由電腦可讀媒體而傳輸。電腦可讀媒體包括電腦储存媒體 及通仏媒體兩者,該通信媒體包括促進電腦程式自一處轉 移至另一處之任何媒體。儲存媒體可為可由通用或專用電 腦存取之任何可用媒體。以實例說明且並非限制,此等電 腦可讀媒體可包含RAM、R0M、EEPR⑽、cd r〇m或其 他光碟储存器件、磁碟儲存器件或其他磁性儲存器件、或 可用於載運或儲存呈指令或資料結構之形式之所要程式碼 構件且可由通用或專用電腦或通用或專用處理器存取的任 ❹ ° 、他媒冑又’可將任何連接適當地稱作電腦可讀媒 體。舉例而言’若使用同轴電規、光纖線缓、雙絞線、數 位用戶線(DSL)、或諸如紅外線、無線電及微波之無線技 術自網站、飼服H或其他遠端源傳輸軟體,則同軸電镜、 光纖線境、雙絞線、DSL、或諸如紅外線、無線電及微波 之無線技術包括在媒體之定義中。如本文中所使用之磁碟 及光碟包括緊密光碟(CD)、雷射光碟、光學光碟、數位化 通用光碟(DVD)、軟性磁碟及藍光光碟,其中磁碟通常以 磁性方式再生資料,而光碟用雷射以光學方式再生資料。 上述諸者之組合亦應包括在電腦可讀媒體之範嘴内。 提供本揭示案之先前描述以使熟習此項技術者能夠製造 或使用本揭示案。對於熟習此項技術者而言,本揭示案之 136198.doc -41 200939824 各種修改將容易顯而易見,且本文中所界定之一般原理可 在不脫離本揭示案之精神或範疇的情況下應用於其他變 化。因此’本揭示案並非意欲限於本文中所展示之實例及 設計’而應與本文中所揭示之原理及新穎特徵之最廣泛範 疇一致。 【圖式簡單說明] 圖1展示無線通信系統。实施 Various illustrative logic blocks, modules, and circuits described herein in connection with the present disclosure may be implemented or implemented by: a (four) processor, a digital signal processor (DSP), a special application integrated circuit ( Asic), Field Programmable Gate Array (mFPGA) or other programmable logic device, discrete idle or transistor logic, discrete hardware components, or any combination thereof that performs the functions described herein. A general purpose processor may be a microprocessor, but alternatively the processor may be any conventional processor, controller, microcontroller or state machine. The processor can also be implemented as a combination of computing devices, e.g., a combination of a Dsp and a microprocessor, a plurality of microprocessors, one or more microprocessors connected to the same DSP core, or any other such configuration. The steps of the method or algorithm described herein in connection with the present disclosure may be directly implemented in hardware, a software module executed by a processor, or a combination of both. The software module can reside in RAM memory, flash memory, R〇M memory, EPROM memory, EEPROM memory, scratchpad, hard disk, removable disk, CD_ROM or any known in the art. Other forms of storage media. An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write the information to the storage medium. Alternatively, the storage medium can be integrated into the processor. The processor and storage media can reside in the ASIC. The ASIC can be resident in the user terminal. Alternatively, the processor and storage medium can reside as discrete components in the user terminal 136198.doc -40- 200939824. In one or more exemplary designs, the functions described may be implemented in any combination of hardware, software, lemma, or f. If implemented in software, the functions may be stored as one or more instructions or code on a computer readable medium or transmitted through a computer readable medium. Computer-readable media includes both computer storage media and wanted media, including any media that facilitates the transfer of a computer program from one location to another. The storage medium can be any available media that can be accessed by a general purpose or special purpose computer. By way of example and not limitation, such computer-readable media may comprise RAM, ROM, EEPR (10), cd r〇m or other optical disk storage device, disk storage device or other magnetic storage device, or may be used to carry or store instructions or The required code components in the form of data structures and which may be accessed by a general purpose or special purpose computer or a general purpose or special purpose processor may be referred to as any computer readable medium as appropriate. For example, 'If you use coaxial electrical gauges, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, you can transfer software from websites, feeds, or other remote sources. Coaxial electron microscopy, fiber optic line, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of the media. Disks and optical discs as used herein include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), flexible discs, and Blu-ray discs, where the discs are typically magnetically regenerated. Optical discs use optical lasers to reproduce data optically. Combinations of the above should also be included in the scope of computer readable media. The previous description of the disclosure is provided to enable a person skilled in the art to make or use the disclosure. For those skilled in the art, various modifications of the present disclosure will be readily apparent, and the general principles defined herein may be applied to other embodiments without departing from the spirit or scope of the disclosure. Variety. Therefore, the present disclosure is not intended to be limited to the examples and designs presented herein, but should be accorded the broadest scope of the principles and novel features disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a wireless communication system.
圖2展示混合自動重新傳輸(Harq)情況下之資料傳輸。 圖3展示一組副载波之二元頻道樹。 圖4展示前向鏈路(fl)上之資料傳輸。 圖5展示短期干擾緩和情況下之FL資料傳輸。 圖6展示反向鏈路(rl)上之資料傳輸。 圖7展示短期干擾緩和情況下之RL資料傳輸。 圖8展示短期干擾緩和情況下之FL資料傳輸及RL資料傳 輸之多工。 圖9及圖10分別展示用於在短期干擾緩和情況下接收資 料之過程及裝置。 圖11及圖12分別展示用於在短期干擾緩和情況下在前向 鍵路上接收資料之過程及裝置。 圖13及圖14分別展示用於在短期干擾緩和情況下在反向 鏈路上接收資料之過程及裝置。 圖15及圖16分別展示用於減輕干擾之過程及裝置。 圖17展示一終端機及兩個基地台之方塊圖。 【主要元件符號說明】 136198.doc -42- 200939824 100 無線通信系統 110 基地台 110χ 伺服基地台 llOy 干擾基地台 120 終端機 · 120x 終端機 - 120y 干擾終端機 130 系統控制器 ❹ 300 頻道樹 500 傳輸方案 700 傳輸方案 1000 用於在短期干擾緩和情況下接收資 1012 JeL 用於產生-第一訊息以請求減輕干擾的模組 1014 用於將該第一訊息自一第一台發送至至少一 干擾台以請求減輕至少一資源上之干擾的模 ❹ 組,該第一訊息係在預期由該第一台在該至 少一資源上接收資料之情況下予以發送 ι 1016 用於在該至少一資源上自一第二台接收一資 料傳輸的模組 1200 用於在短期干擾緩和情況下在前向鏈路上接 收資料之裝置 1212 用於自一伺服基地台接收一觸發短期干擾緩 和之訊息的模組 1214 用於發送一訊息以請求至少一干擾基地台減 136198.doc -43· 200939824 1216 1218 1220 ® 1222 1224 1400 1412 1414 1416 1418 1420 輕至少一資源上之干擾的模組 用於自該至少一干擾基地台接收至少一傳輸 或導頻的模組 用於基於來自該至少一干擾基地台之該至少 —傳輸或導頻估計該至少一資源之頻道品質 的模組 用於將指示該至少一資源之頻道品質之資訊 發送至該伺服基地台的模組 用於接收基於該至少一資源之頻道品質產生 之一資源授予的模組 用於在該至少一資源上自該伺服基地台接收 一資料傳輸的模組 用於在短期干擾緩和情況下在反向鏈路上接 收資料之裝置 用於自一終端機接收一資源請求的模組 用於發送一第一訊息以請求至少一干擾終端 機減輕至少一資源上之干擾的模組,該第一 訊息係在預期由伺服基地台在該至少一資源 上接收資料之情況下予以發送 用於發送一第二訊息以請求該終端機之針對 該至少一資源之傳輸能力的模組 用於接收一包含該終端機之針對該至少一資 源之傳輸能力之傳輸的模組 用於基於該終端機之針對該至少一資源之傳 136198.doc -44· 200939824 1422 輸此力針對資料傳輸排程該終端機的模組 用於在該至少—資源上自該終端機接收一資 料傳輸的模組 1600 1612 用 於減輕干擾之裝置Figure 2 shows the data transfer in the case of hybrid automatic retransmission (Harq). Figure 3 shows a binary channel tree for a set of subcarriers. Figure 4 shows the data transfer on the forward link (fl). Figure 5 shows the FL data transmission in the case of short-term interference mitigation. Figure 6 shows the data transfer on the reverse link (rl). Figure 7 shows the RL data transmission in the case of short-term interference mitigation. Figure 8 shows the multiplex of FL data transmission and RL data transmission in the case of short-term interference mitigation. Figures 9 and 10 respectively show processes and apparatus for receiving data in the event of short term interference mitigation. Figures 11 and 12 respectively show a process and apparatus for receiving data on a forward keyway in the event of short-term interference mitigation. Figures 13 and 14 respectively show a process and apparatus for receiving data on a reverse link in the event of short term interference mitigation. 15 and 16 respectively show processes and apparatus for mitigating interference. Figure 17 shows a block diagram of a terminal and two base stations. [Main component symbol description] 136198.doc -42- 200939824 100 Wireless communication system 110 Base station 110χ Servo base station llOy Interference base station 120 Terminals 120x Terminals - 120y Interference terminals 130 System controller ❹ 300 Channel tree 500 transmission Solution 700: The transmission scheme 1000 is configured to receive 1012 JeL for short-term interference mitigation. The module 1014 for generating a first message to request mitigation is used to send the first message from a first station to at least one interference station. And transmitting, by the requesting group, a mode group that mitigates interference on at least one resource, where the first message is sent by the first station on the at least one resource, for sending information on the at least one resource A second module 1200 for receiving a data transmission is used by the device 1212 for receiving data on the forward link in the case of short-term interference mitigation for receiving a message for triggering short-term interference mitigation from a servo base station. Send a message to request at least one interference base station minus 136198.doc -43· 200939824 1216 121 8 1220 ® 1222 1224 1400 1412 1414 1416 1418 1420 Light at least one resource-interfering module for receiving at least one transmission or pilot module from the at least one interfering base station for receiving from at least one interfering base station And at least the transmitting or piloting module for estimating the channel quality of the at least one resource is configured to send information indicating the channel quality of the at least one resource to the module of the serving base station for receiving, based on the at least one resource Channel quality generation module for granting a data transmission module from the servo base station on the at least one resource for receiving data on the reverse link in the case of short-term interference mitigation a module for receiving a resource request by a terminal for transmitting a first message to request at least one module that interferes with the terminal to mitigate interference on at least one resource, the first message being expected by the servo base station at the at least one Sending a second message to request a module of the terminal for transmission capability of the at least one resource, if the resource receives the data And a module for receiving a transmission including a transmission capability of the terminal for the at least one resource, for transmitting the data based on the terminal for the at least one resource 136198.doc -44·200939824 1422 The module for scheduling the terminal is configured to receive a data transmission module 1600 1612 from the terminal device on the at least the resource for the device for mitigating interference
❹ 1614 1712x 1714x 1714y 1716x 1716y 1718x 1718y 1720x 1720y 1730x 1730y 1732x 1732y 1734x 1734y 用於接收由一第一台發送以請求減輕至少一 資源上之干擾之一第一訊息的模組,該第, 訊息係由該第一台在預期由該第一台在該I 少一資源上接收資料之情況下丨以發送 =於減輕該至少一資源上之干擾的模組 h料源 傳輸處理器 傳輸處理器 調變器 調變器 傳輸器 傳輸器 天線 天線 控制器/處理器 控制器/處理器 記憶體 記憶體 排程器 排程器 136198.doc -45- 200939824 1740x 接收器 1740y 接收器 1742x 解調變器 1742y 解調變器 1744x 接收處理器 ' 1744y 接收處理器 1746x 資料儲集器 1746y 資料儲集器 ❹ 1752 天線 1754 接收器 1756 解調變器 1758 接收處理器 1760 資料儲集器 1770 控制器/處理器 1772 記憶體 1780 資料源 1782 傳輸處理器 1784 調變器 1786 傳輸器 136198.doc -46 -❹ 1614 1712x 1714x 1714y 1716x 1716y 1718x 1718y 1720x 1720y 1730x 1730y 1732x 1732y 1734x 1734y is used to receive a module sent by a first station to request to mitigate one of the first messages of interference on at least one resource, the first message is The first station transmits a processor to the module h source transmission processor to reduce the interference on the at least one resource in the case that the first station is expected to receive data on the first resource. Transmitter Transmitter Transmitter Antenna Antenna Controller/Processor Controller/Processor Memory Memory Scheduler Scheduler 136198.doc -45- 200939824 1740x Receiver 1740y Receiver 1742x Demodulation Transformer 1742y Solution Modulator 1744x Receive Processor '7444 Receive Processor 1746x Data Reservoir 1746y Data Reservoir ❹ 1752 Antenna 1754 Receiver 1756 Demodulator 1758 Receive Processor 1760 Data Reservoir 1770 Controller/Processor 1772 Memory Volume 1780 Data Source 1782 Transfer Processor 1784 Modulator 1786 Transmitter 136198.doc -46 -
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2556408P | 2008-02-01 | 2008-02-01 | |
US12/262,013 US8843069B2 (en) | 2008-02-01 | 2008-10-30 | Interference reduction request in a wireless communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200939824A true TW200939824A (en) | 2009-09-16 |
Family
ID=40377613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097144568A TW200939824A (en) | 2008-02-01 | 2008-11-18 | Interference reduction request in a wireless communication system |
Country Status (12)
Country | Link |
---|---|
US (1) | US8843069B2 (en) |
EP (1) | EP2250842B1 (en) |
JP (1) | JP5275368B2 (en) |
KR (1) | KR101299182B1 (en) |
CN (1) | CN101981981B (en) |
AU (1) | AU2008349429A1 (en) |
CA (1) | CA2713844A1 (en) |
IL (1) | IL207338A0 (en) |
MX (1) | MX2010008493A (en) |
RU (1) | RU2010136723A (en) |
TW (1) | TW200939824A (en) |
WO (1) | WO2009097039A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10051050B2 (en) | 2010-11-04 | 2018-08-14 | Interdigital Patent Holdings, Inc. | Method and apparatus for establishing peer-to-peer communication |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8204442B2 (en) * | 2007-12-04 | 2012-06-19 | Wi-Lan Inc. | Intercell interference mitigation |
US8825046B2 (en) * | 2008-02-01 | 2014-09-02 | Qualcomm Incorporated | Short-term interference mitigation in a wireless communication system |
US8504091B2 (en) * | 2008-02-01 | 2013-08-06 | Qualcomm Incorporated | Interference mitigation for control channels in a wireless communication network |
US8599705B2 (en) * | 2008-02-01 | 2013-12-03 | Qualcomm Incorporated | Interference management based on enhanced pilot measurement reports |
US8521206B2 (en) * | 2008-04-22 | 2013-08-27 | Qualcomm Incorporated | Interference management with reduce interference requests and interference indicators |
US8559879B2 (en) | 2008-04-22 | 2013-10-15 | Qualcomm Incorporated | Null pilots for interference estimation in a wireless communication network |
US8554147B2 (en) | 2008-05-22 | 2013-10-08 | Qualcomm Incorporated | System and method to enable resource partitioning in wireless networks |
US8489028B2 (en) * | 2008-05-22 | 2013-07-16 | Qualcomm Incorporated | System and method to enable resource partitioning in wireless networks |
US10213164B2 (en) | 2008-09-26 | 2019-02-26 | Qualcomm Incorporated | Method and apparatus for under-sampled acquisition and transmission of photoplethysmograph (PPG) data and reconstruction of full band PPG data at the receiver |
US8391882B2 (en) * | 2008-10-22 | 2013-03-05 | Qualcomm Incorporated | Method and system for interference management in a spectrum shared by WAN and femto cells |
EP2462756B1 (en) * | 2009-08-03 | 2013-12-25 | Nokia Solutions and Networks Oy | Reducing interference from dominant interfering neighboring base stations |
JP5515559B2 (en) * | 2009-09-25 | 2014-06-11 | ソニー株式会社 | Communication system, base station, and communication apparatus |
US20110077016A1 (en) * | 2009-09-30 | 2011-03-31 | Aleksandr Stolyar | Apparatus And Method To Facilitate Wireless Uplink Resource Allocation |
US9026164B2 (en) * | 2009-10-13 | 2015-05-05 | Qualcomm Incorporated | Selective transmission of power decision pilot in a wireless communication system |
WO2011051921A2 (en) * | 2009-10-30 | 2011-05-05 | Nokia Corporation | Optimized backhaul communications for a relay-enhanced packet-based wireless communication system |
KR101612302B1 (en) * | 2009-11-24 | 2016-04-14 | 삼성전자주식회사 | Method and apparatus for performing coordinated multiple point transmission/reception in wireless communication |
US8948800B2 (en) * | 2010-03-30 | 2015-02-03 | Qualcomm Incorporated | Systems, apparatuses, and methods to facilitate coordinated scheduling in wireless communication systems |
US8675560B2 (en) * | 2010-09-03 | 2014-03-18 | Qualcomm Incorporated | UE receiver reference signal processing that utilizes resource partitioning information |
US9585025B2 (en) * | 2011-02-16 | 2017-02-28 | Qualcomm Incorporated | Managing transmit power for better frequency re-use in TV white space |
US20120300710A1 (en) * | 2011-05-27 | 2012-11-29 | Nokia Siemens Networks Oy | Distributing L2 Baseband Processing in a Radio Network |
EP2715947B1 (en) | 2011-06-01 | 2018-08-15 | CommScope Technologies LLC | Broadband distributed antenna system with non-duplexer isolator sub-system |
EP2557863B1 (en) * | 2011-08-10 | 2013-10-16 | Alcatel Lucent | Method, apparatus and computer program for a mobile transceiver and for a base station transceiver |
US8948090B2 (en) * | 2011-08-25 | 2015-02-03 | Qualcomm Incorporated | Multi-point PUCCH attachment |
US9780928B2 (en) | 2011-10-17 | 2017-10-03 | Golba Llc | Method and system for providing diversity in a network that utilizes distributed transceivers and array processing |
GB2499445A (en) * | 2012-02-20 | 2013-08-21 | Renesas Mobile Corp | Inter device interference measurement and transmission power control (TPC) for devices operating in unlicensed frequency bands |
JP5946586B2 (en) * | 2012-09-25 | 2016-07-06 | エヌイーシー(チャイナ)カンパニー, リミテッドNEC(China)Co.,Ltd. | Method and apparatus for identifying transmission power and providing information for identifying transmission power |
JP6390621B2 (en) | 2013-09-24 | 2018-09-19 | 日本電気株式会社 | Control device, radio station, radio system, control method and program |
KR102172442B1 (en) * | 2014-02-19 | 2020-10-30 | 삼성전자주식회사 | Method and apparatus for selecting and allocating beam index having apriority |
US9806860B2 (en) | 2014-08-28 | 2017-10-31 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Mechanisms for single user (SU) and multiple user (MU) transmission and association via polling within wireless communications |
US9872305B2 (en) * | 2015-01-06 | 2018-01-16 | Marvell International Ltd. | Optimized cellular transmission scheduling based on knowledge of interference-mitigation capabilities in neighbor cell |
WO2016165753A1 (en) * | 2015-04-15 | 2016-10-20 | Nokia Solutions And Networks Sp. Z.O.O. | Coordinated interference cancellation in wireless network |
US10764877B2 (en) * | 2016-05-06 | 2020-09-01 | Qualcomm Incorporated | Trigger frame in wireless local area network |
US10469218B2 (en) * | 2016-05-24 | 2019-11-05 | Qualcomm Incorporated | Inter-cell interference mitigation for traffic according to priority |
US10313982B1 (en) * | 2017-04-27 | 2019-06-04 | Thales Avionics, Inc. | Cooperative realtime management of noise interference in ISM band |
US10916861B2 (en) | 2017-05-30 | 2021-02-09 | Movandi Corporation | Three-dimensional antenna array module |
US10484078B2 (en) | 2017-07-11 | 2019-11-19 | Movandi Corporation | Reconfigurable and modular active repeater device |
US10348371B2 (en) | 2017-12-07 | 2019-07-09 | Movandi Corporation | Optimized multi-beam antenna array network with an extended radio frequency range |
US10090887B1 (en) | 2017-12-08 | 2018-10-02 | Movandi Corporation | Controlled power transmission in radio frequency (RF) device network |
US10637159B2 (en) | 2018-02-26 | 2020-04-28 | Movandi Corporation | Waveguide antenna element-based beam forming phased array antenna system for millimeter wave communication |
WO2020061724A1 (en) * | 2018-09-24 | 2020-04-02 | Qualcomm Incorporated | Triggering mechanism for remote interference management |
US11205855B2 (en) | 2018-12-26 | 2021-12-21 | Silicon Valley Bank | Lens-enhanced communication device |
US11145986B2 (en) | 2018-12-26 | 2021-10-12 | Silicon Valley Bank | Lens-enhanced communication device |
US11533688B2 (en) * | 2021-03-17 | 2022-12-20 | T-Mobile Usa, Inc. | Dynamic switching of user equipment power class |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5966657A (en) | 1997-07-24 | 1999-10-12 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system for radio frequency measurement and automatic frequency planning in a cellular radio system |
US6603773B2 (en) | 1998-04-08 | 2003-08-05 | Nokia Mobile Phones Limited | Method and system for controlling the transmission power of certain parts of a radio transmission |
KR100735402B1 (en) * | 2000-11-07 | 2007-07-04 | 삼성전자주식회사 | Apparatus and Method of Transmission Transmit Format Combination Indicator for Downlink Shared Channel in Asynchronous Mobile Communication System |
JP2003163632A (en) * | 2001-11-29 | 2003-06-06 | Hitachi Ltd | Radio communication equipment changing transmission rate of signals to be transmitted to terminal or transmission power and signal transmission method therefor |
JP3898533B2 (en) | 2002-03-11 | 2007-03-28 | シャープ株式会社 | Wireless communication system |
JP4019976B2 (en) * | 2003-02-27 | 2007-12-12 | 株式会社日立製作所 | Wireless communication control method and wireless device |
DE60319344T2 (en) | 2003-05-09 | 2009-03-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Wireless ad hoc communication with different transmission power for head and payload of the news |
US7254158B2 (en) | 2003-05-12 | 2007-08-07 | Qualcomm Incorporated | Soft handoff with interference cancellation in a wireless frequency hopping communication system |
JP4339313B2 (en) * | 2003-05-15 | 2009-10-07 | 三菱電機株式会社 | Communication method, wireless terminal and base station |
US7826431B2 (en) * | 2004-05-14 | 2010-11-02 | Interdigital Technology Corporation | Method of selectively adjusting the configuration of an access point antenna to enhance mobile station coverage |
US7536626B2 (en) | 2004-06-18 | 2009-05-19 | Qualcomm Incorporated | Power control using erasure techniques |
US8452316B2 (en) * | 2004-06-18 | 2013-05-28 | Qualcomm Incorporated | Power control for a wireless communication system utilizing orthogonal multiplexing |
DE602004022932D1 (en) | 2004-07-13 | 2009-10-15 | Alcatel Lucent | A method of terminal-assisted interference control in a multi-carrier mobile communication system |
WO2006037377A1 (en) | 2004-10-07 | 2006-04-13 | Telefonaktiebolaget Lm Ericsson (Publ) | User terminal power resource management |
US8463308B2 (en) * | 2004-10-20 | 2013-06-11 | Toshiba America Research, Inc. | Terminal transmit power control with link adaptation |
EP2222127B1 (en) * | 2005-02-18 | 2012-09-12 | Fujitsu Limited | Base station and interference reduction method in base station |
US7742444B2 (en) * | 2005-03-15 | 2010-06-22 | Qualcomm Incorporated | Multiple other sector information combining for power control in a wireless communication system |
KR100762647B1 (en) * | 2005-03-31 | 2007-10-01 | 삼성전자주식회사 | Node B and Method for Managing Radio Resource Using the Same |
US20070006057A1 (en) * | 2005-06-30 | 2007-01-04 | Paul Wallner | Semiconductor memory chip and method of protecting a memory core thereof |
US7653357B2 (en) | 2005-08-22 | 2010-01-26 | Toshiba America Research, Inc. | Access point interference control and selection methods |
WO2007044281A1 (en) | 2005-10-06 | 2007-04-19 | Interdigital Technology Corporation | Method and apparatus for controlling downlink transmission power for ofdma based evolved utra |
US9204428B2 (en) * | 2005-10-26 | 2015-12-01 | Qualcomm Incorporated | Interference management using resource utilization masks sent at constant PSD |
JP4965577B2 (en) | 2005-10-26 | 2012-07-04 | クゥアルコム・インコーポレイテッド | Flexible medium access control (MAC) for ad-hoc deployed wireless networks |
ES2698362T3 (en) | 2006-02-03 | 2019-02-04 | Guangdong Oppo Mobile Telecommunications Corp Ltd | Assignment of uplink resources in a mobile communication system |
US8150412B2 (en) * | 2006-03-06 | 2012-04-03 | Alcatel Lucent | Interference mitigation in a wireless communication system |
US20070211813A1 (en) * | 2006-03-10 | 2007-09-13 | Shilpa Talwar | MIMO precoding in the presence of co-channel interference |
US7996032B2 (en) | 2006-03-27 | 2011-08-09 | Qualcomm Incorporated | Power control and resource management in orthogonal wireless systems |
BRPI0712765B1 (en) | 2006-06-13 | 2020-01-21 | Qualcomm Inc | power control for wireless communication systems |
US8160629B2 (en) * | 2006-09-07 | 2012-04-17 | Airvana, Corp. | Controlling reverse link interference in private access points for wireless networking |
US20090227263A1 (en) * | 2007-09-10 | 2009-09-10 | Qualcomm Incorporated | Method and apparatus for using load indication for intereference mitigation in a wireless communication system |
US8181079B2 (en) | 2007-09-21 | 2012-05-15 | Qualcomm Incorporated | Data transmission with HARQ and interference mitigation |
US8301081B2 (en) * | 2007-11-13 | 2012-10-30 | Microsoft Corporation | Physical and MAC adaptation for interference mitigation with cognitive radio |
US9125163B2 (en) * | 2007-11-16 | 2015-09-01 | Qualcomm Incorporated | Persistent interference mitigation in a wireless communication |
US8825046B2 (en) * | 2008-02-01 | 2014-09-02 | Qualcomm Incorporated | Short-term interference mitigation in a wireless communication system |
-
2008
- 2008-10-30 US US12/262,013 patent/US8843069B2/en active Active
- 2008-11-13 RU RU2010136723/07A patent/RU2010136723A/en not_active Application Discontinuation
- 2008-11-13 MX MX2010008493A patent/MX2010008493A/en not_active Application Discontinuation
- 2008-11-13 WO PCT/US2008/083462 patent/WO2009097039A1/en active Application Filing
- 2008-11-13 KR KR1020107019509A patent/KR101299182B1/en active IP Right Grant
- 2008-11-13 AU AU2008349429A patent/AU2008349429A1/en not_active Abandoned
- 2008-11-13 CA CA2713844A patent/CA2713844A1/en not_active Abandoned
- 2008-11-13 JP JP2010544974A patent/JP5275368B2/en active Active
- 2008-11-13 CN CN200880128390.3A patent/CN101981981B/en active Active
- 2008-11-13 EP EP08871766.5A patent/EP2250842B1/en active Active
- 2008-11-18 TW TW097144568A patent/TW200939824A/en unknown
-
2010
- 2010-08-02 IL IL207338A patent/IL207338A0/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10051050B2 (en) | 2010-11-04 | 2018-08-14 | Interdigital Patent Holdings, Inc. | Method and apparatus for establishing peer-to-peer communication |
TWI643483B (en) * | 2010-11-04 | 2018-12-01 | 內數位專利控股公司 | Method and apparatus for conduction peer-to-peer communications |
US10715593B2 (en) | 2010-11-04 | 2020-07-14 | Interdigital Patent Holdings, Inc. | Method and apparatus for establishing peer-to-peer communication |
Also Published As
Publication number | Publication date |
---|---|
US20090197538A1 (en) | 2009-08-06 |
US8843069B2 (en) | 2014-09-23 |
KR20100108452A (en) | 2010-10-06 |
KR101299182B1 (en) | 2013-08-27 |
EP2250842B1 (en) | 2016-10-05 |
JP5275368B2 (en) | 2013-08-28 |
JP2011514039A (en) | 2011-04-28 |
CN101981981A (en) | 2011-02-23 |
WO2009097039A1 (en) | 2009-08-06 |
CA2713844A1 (en) | 2009-08-06 |
EP2250842A1 (en) | 2010-11-17 |
CN101981981B (en) | 2014-12-10 |
AU2008349429A1 (en) | 2009-08-06 |
MX2010008493A (en) | 2010-10-25 |
RU2010136723A (en) | 2012-03-20 |
IL207338A0 (en) | 2010-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200939824A (en) | Interference reduction request in a wireless communication system | |
JP5313265B2 (en) | Short-term interference mitigation in wireless communication systems | |
TWI530113B (en) | Uplink transmission for carrier aggregation via multiple nodes | |
US20180103468A1 (en) | Tti bundling for urllc ul/dl transmissions | |
TW201114288A (en) | Selective transmission of power decision pilot in a wireless communication system | |
US20140307646A1 (en) | Enhanced antenna management for uplink operation under carrier aggregation in lte | |
US20240313899A1 (en) | Downlink feedback information signaling enhancements |