200938874 九、發明說明: 【發明所屬之技術領域] 本!s月係爲種塗層結 係指重 用於增加藍光透光率之低蝥丨1、衣讣刀忒 π,、 及其製作方法(二)。電阻光减抗反射塗層減(二) 【先前技術】 ❹ 目反射光學塗層的多層系統皆利用—通則,該通 =:亥”塗層的表層的物質具有一低折射率,例如聊, 如田6 ’或Μ§ί?2 ’折射率爲〗.38°然而,當將該抗反 射塗層運用于顧千哭τ 4·、曰9頌 業時,例如具抗靜電效果之電腦螢幕 或用於液晶顯介哭、&带胳β _ # ΑΜ3·:^τ±7 、、时或电名顯示器之低反射玻璃時,在大量生 0、匕王’存在一些瓶頸,其原因是該光學塗層結構的導 電層^絶緣層(例如SiC^ MgF2)所燒製而成。 卜 ^ 射塗層的基本設計規則爲,佈置於一基板表面的 第一層爲具向折射率之物質所構成(標示爲H),其後接著一 具低折射率之物質所構成(標示爲L)的第二層,因此,習 知的抗反射塗層的多層結構之規則爲HLHL或HLHLHL,以 高折射率^)之物質爲ITO而低折射率(L)之物質爲Si02 爲例子,該四層結構分別爲GlasS/IT0/Si02/ITO/SiO2。因爲 ITO是一透明的導電物質,該多層結構的塗層的導電性低於 母平方100區人姆(Ω),而且當該導電塗層連結至地時,可用 於電磁干擾(EMI)頻障或靜電放電。然而,問題是該習知 的光學多層結構的表面物質爲Si〇2,且其厚度爲1000埃 200938874 層該Γ〇2的物質特性爲高密度、具有惰性和一良好之電 電性接觸it用傳統之抗反射塗層於顯示器工業的過程中, 觸由外部之Si02層所隔離之該燒製的加層是困難 的,在使一金屬接觸該ITO層的接地過程中, 音波燁接製經去打破兮Si。s + 要使用一超 去打破3亥2層’以確保錫球與該™層産生 良好_,此一製程爲大量生產抗反射塗層的瓶頸。 ❿ 如立方面,由於液態錫和超音波的曝露能量的緣故,該 焊㈣程微細的污雜,此外,該超音 會於母-匯流線上産生非持久性的接觸阻抗 = 波=接製程無法保證能夠均勻的以相同的深度打破該絕t 而得到一均勾的接觸阻抗。 /、’’彖層 上述之缺點會降低在運用習知的抗電磁干 層的製程的良率和可靠度。 抗反射塗 再者,請參考第-A圖所示,其係爲習知光 工之玻璃的透光率(light transmittance)盥光波長^、口 wavelength)的特性曲線圖。由圖中可知,二/ ( 工的玻璃時(玻璃上沒有成形任何的塗層)的::力口 具有約92%相_光料率。 刊料波長皆 另外’請參閱第-B圖所示,其係爲習知錢穿 工之玻璃的透光率(light transmittance )與光波長(1. wavelength)的特性曲線圖。由圖中可知,當光線穿;過^= 工的玻璃時(玻璃上已成形有—預;^的防電磁干擾(e ^ 層),不同的光波長具有不同百分比的光穿透率。尤其是 偏藍光(最左邊區域)及偏紅光(最右邊區域)的光波長j 6 200938874 其透光率皆明顯的降低至10%左右。 【發明内容】 本發明之主要目的是提供一種用於增加藍光透光率之低 電阻光哀減抗反射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)(二),該低電阻 光衰減抗反射塗層可運用於半導體、光學頭、液晶顯示器、 ❹陰極射線管、建築玻璃、觸控式感測器、螢幕濾波器、塑膠 網板塗層等工業。 本發明之另一目的是提供一種用於增加藍光透光率之低 電阻光衰減抗反射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)(二),該低電阻 光衰減抗反射塗層之表層的物質爲一可穿透的表面導電層, 而該可穿透的表面導電層的光反射率低於〇 · 5 %,該低電阻光 衰減抗反射塗層的阻抗介於每平方〇.5卩與〇 7〇之間,而其 穿透率爲55%至70%。 © 本發明之另一目的是提供一種用於增加藍光透光率之低 電阻光衰減抗反射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)(二),本發明之 ,層結構其具有高導電性之特性,當其運用於電漿顯示器之 製造時,其具有電磁干擾屏障、光學視角低反射、高表面硬 度抗刮性、適度的光哀減效應等優點。例如,本發明之塗層 結構之表面阻抗介於每平方〇.5^^與0·7Ω之間,以及具有1 夠硬度去通過軍事標準MIL-C-48497之耐刮測試。 7 200938874 本發明之另一目的是提供一種用於增加藍光透光率之低 電阻光哀減抗反射塗層結構(extreme low resistivity light attenuation anti_reflection coating structure)(二),於完成塗 層模組之製作後,首先,設置一遮板(sllutter)於該塗層模 組之上表面,其中該遮板的尺寸係小於該塗層模組,以使得 該塗層模組的上表面之邊緣曝露出來;然後,塗佈一層導電 層(conductive layer)於該塗層模組的上表面之邊緣,以供 ❹ 接地(ground ),而達到良好的電性接觸。其中,該導電層係 可為銀漿(silver paste )。 本發明之另一目的是提供一種用於增加藍光透光率之低 笔阻光哀減抗反射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)(二),其透過複 數層含铭氧化物塗層(Al-based oxide coating layer )的使用, 以產生顏色偏藍色之透光。 為了達成上述目的,本發明係提供一種用於增加藍光透 光率之低電阻光衰減抗反射塗層結構(extreme low resistivity ® light attenuation anti-reflection coating structure )(二),其包 括有:一基板(substrate)及一塗層模組(coating module)。 其中’該塗層模組係形成於該基板之一前表面上,並且該塗 層模組係由複數層碳石夕化合物(silicon carbide compound)與 含鈦氧化物(Ti-based oxide)的混合物塗層( mixture coating layer )、複數層含紹氧化物塗層(Al-based oxide coating layer)、與複數層金屬塗層(metal coating layer)彼此相互交 替相疊而組成。 200938874 為了達成上述目的,本發明係提供一種用於增加藍光透 光率之低電阻光衰減抗反射塗層結構之製作方法(二),其步 驟包括有:首先,提供一基板(substrate);然後,形成一塗 層模組(coatingmodule)於該基板之一前表面上,其中該塗 層模組係由複數層碳石夕化合物(silicon carbide compound)與 含欽乳化物(Ti-based oxide)的混合物塗層(mixture coating layer )、複數層含鋁氧化物塗層(Al-based oxide coating layer)、與複數層金屬塗層(metal coating layer)彼此相互交 替相疊而組成。 因爲本發明之塗層結構的表層有良好的導電特性,該用 於增加藍光透光率之低電阻光衰減抗反射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)可以降低接地製程所需的工作負荷和增加大量生 産的良率和可靠度,其可運用於液晶顯示器或電漿顯示器之 玻璃基板或塑膠基板上。 為了能更進一步瞭解本發明為達成預定目的所採取之技 © 術、手段及功效,請參閱以下有關本發明之詳細說明與附圖, 相信本發明之目的、特徵與特點,當可由此得一深入且具體 之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本 發明加以限制者。 【實施方式】 請參考第二圖所示’其係為本發明用於增加藍光透光率 之低電阻光衰減抗反射塗層結構(extreme low resistivity light 9 200938874 attenuation anti-reflection coating structure)(二)之結構示意 圖。由圖中可知’本發明所揭露之低電阻光衰減抗反射塗層 結構(extreme low resistivity light attenuation anti-reflection coating structure)(二)係包括有:一基板(substrate) S 及 一塗層模組(coating module ) M。 其中’該基板S係可為一塑膠薄膜(plastic film)或一 玻璃(glass)。而該塗層模組Μ係可為電漿顯示器(plasma ©display)或液晶顯示器(liquid crystal display)之基本塗層。 再者,該塗層模組Μ係包括:一第一塗層(first coating layer) 1,其形成於該基板S之一前表面上;一第一轉色塗 層(first color conversion coating layer) C 1,其形成於該第 一塗層1上;一第二塗層(second coating layer) 2,其形成 於該第一轉色塗層C 1上;一第二轉色塗層(second color conversion coating layer) C 2,其形成於該第二塗層 2 上; 一第三塗層(third coating layer) 3,其形成於該第二轉色塗 層 C 2 上;一第三轉色塗層(third color conversion coating 〇 layer) C 3,其形成於該第三塗層3上;一第四塗層(fourth coating layer ) 4,其形成於該第三轉色塗層C 3上;一第四 轉色塗層(fourth color conversion coating layer) C4,其形 成於該第四塗層4上;一第五塗層(fifth coating layer ) 5 ’ 其形成於該第四轉色塗層C 4上;一第五轉色塗層(fifth color conversion coating layer) C5,其形成於該第五塗層 5 上;一第六塗層(sixthcoating layer) 6 ’其形成於該第五轉 色塗層C 5上;一第六轉色塗層(sixth color conversion 200938874 coating layer) C 6,其形成於該第六塗層6上;一第七塗層 (seventh coating layer) 7,其形成於該第六轉色塗層C 6 上;一第七轉色塗層(seventh color conversion coating layer) C 7,其形成於該第七塗層7上;一第八塗層(eighth coating layer) 8,其形成於該第七轉色塗層C 7上;一第八轉色塗 層(eighth color conversion coating layer) C8,其形成於該 第八塗層8上;一第九塗層(ninth coating layer) 9,其形 成於該第八轉色塗層C8上。 Ό 其中,該第一塗層1、該第三塗層3、該第五塗層5、 該第七塗層7、及該第九塗層9皆為碳石夕化合物(silicon carbide compound)與含鈦氧化物(Ti-based oxide)的混合物 塗層(mixture coating layer );該第一轉色塗層Cl、該第二 轉色塗層C 2、該第三轉色塗層C 3、該第四轉色塗層C 4、 該第五轉色塗層C5、該第六轉色塗層C6、該第七轉色塗 層C 7、及該第八轉色塗層C 8皆為含鋁氧化物塗層 (Al-based oxide coating layer );該第二塗層 2、該第四塗層 Ο 4、該第六塗層6、及該第八塗層8皆為金屬塗層(metal coating layer ) ° 因此,該塗層模組Μ係形成於該基板S之一前表面上, 並且該塗層模組Μ係由複數層碳矽化合物(silicon carbide compound )與含鈦氧化物(Ti-based oxide )的混合物塗層 (mixture coating layer)、複數層含銘氧化物塗層(Al-based oxide coating layer)、與複數層金屬塗層(metal coating layer) 彼此相互交替相疊而組成。此外,該碳矽化合物係為碳化矽 200938874 (sic) ’該含鈦氧化物係為二氧化鈦(丁脱),該等含銘氧化 層係為三氧化二鋁(Al2〇3)’並且該等金屬塗層係 (Ag) 〇 再者,該第-塗層、該第三塗層、該第五塗層 '該第七 塗層^及該第九塗層的折射率(refractive index)皆為2·5, 並且該第二塗層、該第四塗層、該苐六塗層、及該第八塗層 的折射率(refractive index)皆介於〇1〜〇5之間。另外 第—錢的厚度係為3Gnm H塗層的厚度係介於15nm 之間,该第三塗層的厚度係為66nm ;該第四塗層的厚度係介 於15nm之間;該第五塗層的厚度係為6〇nm ;該第六塗層的 厚度係介於15nm之間;該第七塗層的厚度係為7〇nm;該第 八塗層的厚度係介於15nm之間;該第九塗層的厚度係為 40nm,以及,§玄第該第一轉色塗層c 1、該第二轉色塗層〇 2、該第三轉色塗層C 3、該第四轉色塗層◦ 4、該第五轉 色塗層C5、該第六轉色塗層C6、該第七轉色塗層C7、 及έ亥弟八轉色塗層C 8的厚度皆為3nm〜6nm。 φ 此外,該第一塗層1、該第三塗層3、該第五塗層5、 該第七塗層7、及該第九塗層9之碳石夕化合物塗層皆由直流 或脈衝直流滅鑛法(DC or AC magnetron sputtering method ) 所形成,並且該第二塗層2、該第四塗層4、該第六塗層6、 及該第八塗層8之金屬塗層皆由直流或脈衝直流濺鍍法(DC or AC magnetron sputtering method)所形成。並且,該第一塗 層1至該第九塗層9係由同軸或滾子對滾子真空系統之蒸鑛 或減:鑛製程(in-line or roll-to-roll vacuum 12 200938874 evaporation/sputtering method)所形成。 請參閱第三圖所示,其係為本發明用於增加藍光透光率 之低電阻光哀減抗反射塗層結構(extrerne l〇w resistivity light attenuation anti-reflection coating structure )(二)之上視示意 圖。由圖申可知,本發明之低電阻光衰減抗反射塗層結構更 進一步包括:一塗佈於該塗層模組Μ上表面的四周邊緣之導 電層(conductive layer) C,以供接地(ground)。亦即,該 ❹用於接地之導電層C係塗佈於該塗層模組M之第九塗層9之 上表面的四周邊緣。換言之,於完成該塗層模組M之製作後, 首先,設置一遮板(shutter) B於該塗層模組M之上表面, 其中该遮板B的尺寸係小於該塗層模組μ,以使得該塗層模 組Μ的上表面之邊緣曝露出來;然後,塗佈一層導電層 (conductive layer) C於該塗層模組μ的上表面之邊緣,以 供接地(ground) ’而達到良好的電性接觸。最後,移除該遮 板B。其中’ s亥導電層C係可為銀漿(siiver paste )。 請參閱第四A圖及第四B圖所示,其係為本發明用於增 ❹加藍光透光率之低電阻光衣減抗反射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)之 l作方法(一)之流程圖。由流程圖可知’本發明之低電阻 光衣減抗反射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)之製作方法,其 步驟包括有: S200 .提供一基板(substrate) S ; S202:形成一第一塗層(f|rst coating iayer) 1於該基板 13 200938874 s之該前表面上,其中該第一塗層1係為碳石夕化 合物(silicon carbide compound)與含鈦氧化物 (Ti-based oxide)的混合物塗層(mixture coating layer); S204:形成一第一轉色塗層(first color conversion coating layer) Cl於該第一塗層1上,其中該第一轉色 塗層C 1係為含鋁氧化物塗層(Al-based oxide ©coating layer ); S206:形成一第二塗層(secondcoatinglayer) 2 於該第 一轉色塗層C 1上,其中該第二塗層2係為金屬 塗層(metal coating layer); S208 :形成一第二轉色塗層(second color conversion coating layer) C 2於該第二塗層2上,其中該第 二轉色塗層C 2係為含銘氧化物塗層(Al-based oxide coating layer); S210 :形成一第三塗層(third coating layer ) 3於該第二 _ 轉色塗層C 2上,其中該第三塗層3係為碳矽化 合物(silicon carbide compound)與含鈦氧化物 (Ti-based oxide )的混合物塗層(mixture coating layer); S212:形成一第三轉色塗層(third color conversion coating layer) C 3於該第三塗層3上,其中該第 三轉色塗層C 3係為含鋁氧化物塗層(Al-based oxide coating layer); 200938874 S214:形成一第四塗層(fourthcoatinglayer) 4於該第 三轉色塗層C 3上,其中該第四塗層4係為金屬 塗層(metal coating layer); S216:形成一第四轉色塗層(fourth color conversion coating layer) C 4於該第四塗層4上,其中該第 四轉色塗層C4係為含鋁氧化物塗層(Al-based oxide coating layer ); ❹ S218 :形成一第五塗層(fifth coating layer) 5於該第四 轉色塗層C 4上,其中該第五塗層5係為碳矽化 合物(silicon carbide compound)與含鈦氧化物 (Ti-based oxide)的混合物塗層(mixture coating layer) i S220:形成一第五轉色塗層(fifth color conversion coating layer) C 5於該第五塗層5上,其中該第五轉色 塗層C 5係為含铭氧化物塗層(Al-based oxide coating layer ); ® S222 :形成一第六塗層(sixth coating layer) 6於該第五 轉色塗層C 5上,其中該第六塗層6係為金屬塗 層(metal coating layer); S224 :形成一第六轉色塗層(sixth color conversion coating layer ) C6於該第六塗層6上,其中該第 六轉色塗層C 6係為含紹氧化物塗層(Al-based oxide coating layer ); S226 :形成一第七塗層(seventh coating layer) 7 於該 15 200938874 第六轉色塗層C 6上,其中該第七塗層7係為碳 石夕化合物(silicon carbide compound)與含鈦氧化 物(Ti-based oxide )的混合物塗層(mixture coating layer); S228 :形成一第七轉色塗層(seventh color conversion coating layer) C 7於該第七塗層7上,其申該第 七轉色塗層C 7係為含紹氧化物塗層(Al-based oxide coating layer); ^ S230 :形成一第八塗層(eighth coating layer ) 8 於該第 七轉色塗層C 7上,其中該第八塗層8係為金屬 塗層(metal coating layer); S232 :形成一第八轉色塗層(eighth color conversion coating layer ) C 8於該第八塗層8上,其中該第 八轉色塗層C8係為含鋁氧化物塗層(Al-based oxide coating layer);最後 S234 :形成一第九塗層(ninth coating layer) 9於該第 ❹ 八轉色塗層C 8上,其中該第九塗層9係為碳石夕 化合物(silicon carbide compound)與含鈦氧化物 (Ti-based oxide)的混合物塗層(mixture c〇ating layer)〇 凊參閱弟五厨所示’其係為本發明用於增加藍光透光率 之低電阻光哀減抗反射塗層結構(二)之透光率(light transmittance )與光波長(light wavelength )的特性曲線圖。 由圖中可知’當光線穿過本發明用於增加藍光透光率之低電 16 200938874 阻光衰減抗反射㈣結構時,不_紐長具有不同百分比 的光穿透率。尤其是針對偏藍光(最左邊區域)的光波長, 其透光率明顯的從習知的10%左右增加至3〇%左右。 請參閱第六圖所示’其係為本發明用於增加藍光透光率 之低電阻光衰減抗反射塗層結構(二)之⑽(Int_ti〇nal200938874 IX. Description of the invention: [Technical field to which the invention belongs] This is a coating coating system used to increase the transmittance of blue light, 讣 讣, 及其, and its manufacturing method ( two). Resistive light-reducing anti-reflective coating minus (2) [Prior Art] Multi-layer systems for 反射-reflective optical coatings are all utilized - the general layer of the material of the coating has a low refractive index, such as chat. Rutian 6 'or Μ§ί? 2 'refractive index is 〗 .38 ° However, when the anti-reflective coating is applied to Gu Qian Chou 4 4·, 曰9颂 industry, such as computer screen with antistatic effect Or when it is used for liquid crystal display crying, <ββ_# ΑΜ3·:^τ±7, when, or low-reflection glass of electric name display, there are some bottlenecks in a large number of raw 0, 匕王', because The conductive layer of the optical coating structure is fired by an insulating layer (for example, SiC^MgF2). The basic design rule of the coating is that the first layer disposed on the surface of a substrate is a material having a refractive index. The second layer of the composition (denoted as H) followed by a low refractive index material (labeled L), therefore, the rule of the multilayer structure of the conventional anti-reflective coating is HLHL or HLHLHL, The high refractive index ^) is ITO and the low refractive index (L) is SiO 2 as an example. The four-layer structure It is not GlasS/IT0/SiO2/ITO/SiO2. Since ITO is a transparent conductive material, the conductivity of the coating of the multilayer structure is lower than the square of the square of 100 square meters (Ω), and when the conductive coating is bonded to In the case of ground, it can be used for electromagnetic interference (EMI) frequency barrier or electrostatic discharge. However, the problem is that the surface material of the conventional optical multilayer structure is Si〇2, and its thickness is 1000 angstroms 200938874. For high density, inertness and a good electrical contact with the conventional anti-reflective coating in the display industry, it is difficult to isolate the fired layer from the external SiO 2 layer. During the grounding of the metal contact with the ITO layer, the acoustic wave is connected to break the 兮Si.s + to use a super-break to break the 3 tier 2 layer to ensure that the solder ball and the TM layer are good _, this process is a large number The bottleneck for the production of anti-reflective coatings. ❿ For example, due to the exposure energy of liquid tin and ultrasonic waves, the welding process is finely contaminated. In addition, the supersonics will produce non-persistent on the mother-bus line. Contact resistance = wave = process cannot be guaranteed It is uniform enough to break the enthalpy at the same depth to obtain a uniform contact impedance. /, ''The above-mentioned defects of the enamel layer will reduce the yield and reliability of the process using the conventional anti-electromagnetic dry layer. For the reflection coating, please refer to the chart shown in Figure-A, which is a characteristic curve of the light transmittance (light wavelength) and the mouth wavelength of the glass of the conventional optical engineering. As can be seen from the figure, two / ( When working the glass (no coating formed on the glass):: The force port has about 92% phase-light ratio. The publication wavelength is different. Please refer to Figure-B, which is the traditional money to wear. A characteristic curve of the light transmittance and the wavelength of light (1. wavelength) of the glass. It can be seen from the figure that when the light passes through the glass of the workmanship (the glass has been formed with a pre-electromagnetic interference (e^ layer), different wavelengths of light have different percentages of light transmittance. Especially The light wavelengths of the blue light (the leftmost area) and the reddish light (the rightmost area) are significantly reduced to about 10%. The main purpose of the present invention is to provide a method for providing a light wavelength of j 6 200938874. An extreme low resistivity light attenuation anti-reflection coating structure (2), which can be applied to semiconductors, optical heads, and liquid crystals. Display, ❹ cathode ray tube, architectural glass, touch sensor, screen filter, plastic screen coating, etc. Another object of the present invention is to provide a low resistance light attenuation for increasing blue light transmittance Extreme low resistivity light attenuation anti-reflection coating structure (2), the low-resistance light attenuating the surface layer of the anti-reflective coating is a wearable a surface conductive layer having a light reflectance of less than 〇·5 %, the impedance of the low-resistance light-attenuating anti-reflective coating being between .5卩 and 〇7〇 per square inch And the transmittance is 55% to 70%. Another object of the present invention is to provide an ultra low resistivity light attenuation anti-reflection coating structure for increasing blue light transmittance. (2) In the present invention, the layer structure has high conductivity characteristics, and when it is used in the manufacture of a plasma display, it has an electromagnetic interference barrier, an optical viewing angle, low reflection, high surface hardness, scratch resistance, and moderateness. For example, the surface resistance of the coating structure of the present invention is between .5^^ and 0·7Ω per square inch, and has a hardness of 1 to pass the military standard MIL-C-48497. Scratch-resistant test. 7 200938874 Another object of the present invention is to provide an extreme low resistivity light attenuation anti-reflection coating structure for increasing blue light transmittance ( After the fabrication of the coating module is completed, first, a shutter is disposed on the upper surface of the coating module, wherein the size of the shutter is smaller than the coating module, so that the coating The edge of the upper surface of the module is exposed; then, a conductive layer is applied to the edge of the upper surface of the coating module for grounding to achieve good electrical contact. Wherein, the conductive layer may be a silver paste. Another object of the present invention is to provide an extreme low resistivity light attenuation anti-reflection coating structure (2) for increasing the transmittance of blue light. The use of an Al-based oxide coating layer to produce a blue-colored light transmission. In order to achieve the above object, the present invention provides an ultra low resistivity ® light attenuation anti-reflection coating structure (2) for increasing the transmittance of blue light, comprising: a substrate (substrate) and a coating module. Wherein the coating module is formed on a front surface of the substrate, and the coating module is a mixture of a plurality of layers of a silicon carbide compound and a titanium-containing oxide (Ti-based oxide). The mixture coating layer, the plurality of layers of the Al-based oxide coating layer, and the plurality of metal coating layers are alternately stacked with each other. In order to achieve the above object, the present invention provides a method for fabricating a low-resistance light-attenuation anti-reflective coating structure for increasing blue light transmittance (2), the steps of which include: first, providing a substrate; Forming a coating module on a front surface of the substrate, wherein the coating module is composed of a plurality of layers of a silicon carbide compound and a Ti-based oxide A mixture coating layer, a plurality of layers of an aluminum-based oxide coating layer, and a plurality of metal coating layers are alternately stacked one upon another. Because the surface layer of the coating structure of the present invention has good electrical conductivity, the extreme low resistivity light attenuation anti-reflection coating structure can reduce the grounding process. The required workload and increased yield and reliability of mass production can be applied to glass substrates or plastic substrates for liquid crystal displays or plasma displays. For a better understanding of the techniques, means, and effects of the present invention in order to achieve the intended purpose, refer to the following detailed description of the invention and the accompanying drawings. The invention is to be understood as being limited and not limited by the scope of the invention. [Embodiment] Please refer to the second figure, which is the low-resistance light-reflective coating structure (extreme low resistivity light 9 200938874 attenuation anti-reflection coating structure) Schematic diagram of the structure. As shown in the figure, the "extreme low resistivity light attenuation anti-reflection coating structure" (2) includes: a substrate S and a coating module. (coating module) M. Wherein the substrate S can be a plastic film or a glass. The coating module can be a basic coating of a plasma display or a liquid crystal display. Furthermore, the coating module includes: a first coating layer 1 formed on a front surface of the substrate S; a first color conversion coating layer C1 is formed on the first coating layer 1; a second coating layer 2 is formed on the first color conversion coating C1; and a second color conversion coating layer (second color) a conversion coating layer C 2 formed on the second coating layer 2; a third coating layer 3 formed on the second color conversion coating C 2 ; a third color conversion coating a third color conversion coating 〇 layer C 3 formed on the third coating layer 3; a fourth coating layer 4 formed on the third color conversion coating C 3 ; a fourth color conversion coating layer C4 formed on the fourth coating layer 4; a fifth coating layer 5' formed on the fourth color conversion coating layer C 4 a fifth color conversion coating layer C5 formed on the fifth coating layer 5; a sixth coating layer 6 ' is formed on the fifth color conversion coating C 5 ; a sixth color conversion coating (3838 coating layer) C 6 is formed on the sixth coating layer 6; a seventh coating layer 7, formed on the sixth color conversion coating C 6; a seventh color conversion coating layer C 7, formed in the a seventh coating layer 7; an eighth coating layer 8 formed on the seventh color conversion coating C7; an eighth color conversion coating layer C8, Formed on the eighth coating layer 8; a ninth coating layer 9, which is formed on the eighth color conversion coating C8. Wherein the first coating layer 1, the third coating layer 3, the fifth coating layer 5, the seventh coating layer 7, and the ninth coating layer 9 are both a carbon carbide compound and a titanium-containing oxide-containing mixture coating layer; the first color-changing coating layer C1, the second color-changing coating layer C2, the third color-changing coating layer C3, the The fourth color conversion coating C 4 , the fifth color conversion coating C5 , the sixth color conversion coating C6 , the seventh color conversion coating C 7 , and the eighth color conversion coating C 8 are all included An Al-based oxide coating layer; the second coating layer 2, the fourth coating layer 4, the sixth coating layer 6, and the eighth coating layer 8 are all metal coatings (metal Therefore, the coating module is formed on one of the front surfaces of the substrate S, and the coating module is composed of a plurality of layers of a silicon carbide compound and a titanium-containing oxide (Ti). -based oxide ), a mixture coating layer, a plurality of layers of an Al-based oxide coating layer, and a plurality of metal coating layers Mutual alternately stacked and the composition. Further, the carbon ruthenium compound is ruthenium carbide 200938874 (sic) 'the titanium-containing oxide is titanium dioxide (butadiene), and the oxide-containing oxide layer is aluminum oxide (Al 2 〇 3)' and the metals Coating layer (Ag) 〇 further, the first coating layer, the third coating layer, the fifth coating layer, the seventh coating layer, and the ninth coating layer have a refractive index of 2 5, and the refractive index of the second coating, the fourth coating, the sixth coating, and the eighth coating are all between 〇1 and 〇5. In addition, the thickness of the first money is 3Gnm H coating thickness is between 15nm, the thickness of the third coating is 66nm; the thickness of the fourth coating is between 15nm; the fifth coating The thickness of the layer is 6 〇 nm; the thickness of the sixth coating layer is between 15 nm; the thickness of the seventh coating layer is 7 〇 nm; the thickness of the eighth coating layer is between 15 nm; The thickness of the ninth coating layer is 40 nm, and, the first color conversion coating c1, the second color conversion coating layer 2, the third color conversion coating layer C3, the fourth rotation layer Color coating ◦ 4, the thickness of the fifth color conversion coating C5, the sixth color conversion coating C6, the seventh color conversion coating C7, and the έ 弟 eight color conversion coating C 8 are all 3 nm~ 6nm. In addition, the first coating layer 1, the third coating layer 3, the fifth coating layer 5, the seventh coating layer 7, and the ninth coating layer 9 are coated with a direct current or a pulse. a DC or AC magnetron sputtering method is formed, and the metal coating of the second coating layer 2, the fourth coating layer 4, the sixth coating layer 6, and the eighth coating layer 8 is Formed by DC or AC magnetron sputtering method. And, the first coating layer 1 to the ninth coating layer 9 are made by a coaxial or roller-to-roller vacuum system or in-line process (in-line or roll-to-roll vacuum 12 200938874 evaporation/sputtering) Method) formed. Referring to the third figure, it is based on the extrerne l〇w resistivity light attenuation anti-reflection coating structure (2) for increasing the blue light transmittance. See the schematic. As can be seen from the drawings, the low-resistance light-attenuation anti-reflective coating structure of the present invention further includes: a conductive layer C applied to the peripheral edge of the upper surface of the coating module for grounding (ground ). That is, the conductive layer C for grounding is applied to the peripheral edges of the upper surface of the ninth coating layer 9 of the coating module M. In other words, after the fabrication of the coating module M is completed, first, a shutter B is disposed on the upper surface of the coating module M, wherein the size of the shutter B is smaller than the coating module μ. So that the edge of the upper surface of the coating module is exposed; then, a conductive layer C is applied to the edge of the upper surface of the coating module μ for grounding' Achieve good electrical contact. Finally, the mask B is removed. Wherein the s-H conductive layer C can be a siiver paste. Please refer to FIG. 4A and FIG. 4B, which are the low-resistance light attenuation anti-reflection coating structure for enhancing the blue light transmittance of the present invention. l is the flow chart of method (1). The method for fabricating the "extreme low resistivity light attenuation anti-reflection coating structure" of the present invention includes the following steps: S200. Providing a substrate S; S202 Forming a first coating layer (f|rst coating iayer) 1 on the front surface of the substrate 13 200938874 s, wherein the first coating layer 1 is a silicon carbide compound and a titanium-containing oxide (Ti-based oxide) a mixture coating layer; S204: forming a first color conversion coating layer Cl on the first coating layer 1, wherein the first color conversion coating The layer C 1 is an Al-based oxide coating layer; S206: forming a second coating layer 2 on the first color conversion coating C 1 , wherein the second coating layer Layer 2 is a metal coating layer; S208: forming a second color conversion coating layer C 2 on the second coating 2, wherein the second color conversion coating C 2 series is containing the oxide coating ( An Al-based oxide coating layer; S210: forming a third coating layer 3 on the second color-changing coating C 2 , wherein the third coating layer 3 is a carbon carbide compound Compound) and a titanium-containing oxide (Ti-based oxide) mixture coating layer; S212: forming a third color conversion coating layer C 3 on the third coating layer 3 The third color conversion coating C 3 is an Al-based oxide coating layer; 200938874 S214: forming a fourth coating layer 4 on the third color conversion coating C 3, wherein the fourth coating layer 4 is a metal coating layer; S216: forming a fourth color conversion coating layer C 4 on the fourth coating layer 4, wherein The fourth color conversion coating C4 is an Al-based oxide coating layer; ❹ S218: forming a fifth coating layer 5 on the fourth color conversion coating C 4 Above, wherein the fifth coating 5 is a silicon carbide compound and titanium a mixture coating layer of the Ti-based oxide i S220: forming a fifth color conversion coating layer C 5 on the fifth coating layer 5, wherein the fifth turn The color coating C 5 is an Al-based oxide coating layer; ® S222 : forming a sixth coating layer 6 on the fifth color conversion coating C 5 , wherein The sixth coating layer 6 is a metal coating layer; S224: forming a sixth color conversion coating layer C6 on the sixth coating layer 6, wherein the sixth color conversion layer The coating C 6 is an Al-based oxide coating layer; S226 : forming a seventh coating layer 7 on the 15 200938874 sixth color conversion coating C 6 , wherein The seventh coating layer 7 is a mixture coating layer of a silicon carbide compound and a titanium-containing oxide (Ti-based oxide); S228: forming a seventh color-changing coating layer (seventh) Color conversion coating layer) C 7 on the seventh coating 7, which is applied for the seventh The color coating C 7 is an Al-based oxide coating layer; ^ S230 : forming an eighth coating layer 8 on the seventh color conversion coating C 7 , wherein The eighth coating 8 is a metal coating layer; S232: forming an eighth color conversion coating layer C 8 on the eighth coating 8, wherein the eighth coating The color coating C8 is an Al-based oxide coating layer; finally S234: forming a ninth coating layer 9 on the ninth color conversion coating C 8 , wherein The ninth coating layer 9 is a mixture of a silicon carbide compound and a titanium-containing oxide (Ti-based oxide). The characteristic curve of the light transmittance and the light wavelength of the low-resistance light-reducing anti-reflective coating structure (2) for increasing the blue light transmittance of the present invention. As can be seen from the figure, when light passes through the low-light-reducing anti-reflection (four) structure of the present invention for increasing the transmittance of blue light, the non-new length has a different percentage of light transmittance. Especially for the wavelength of light in the blue light (leftmost region), the light transmittance is obviously increased from about 10% to about 3%. Please refer to the figure in the sixth figure, which is the low-resistance light-attenuation anti-reflective coating structure (2) for increasing the blue light transmittance of the present invention (10) (Int_ti〇nal
Commission on Illumination,國際照明委員會)xy色度座標 圖(xychromaticitydiagram)。由圖中可知,由於本發^於: ❹鍍的過程中增加了含铭氧化物塗層(Al2〇3)的鑛層,使得彩 色區域的xy座標由原本的A (0.32〜0.33,0.35〜0.36)變成 B (0.28〜0.30,0.32〜0.34) ’因此可發現座標顏色已由黃綠 色轉為偏藍色。 ' ‘上所述,該低電阻光衰減抗反射塗層可運用於半導 體、光學頭、液晶顯示器、陰極射線管、建築玻璃、觸控式 感測器、螢幕濾波器、塑膠網板塗層等工業。 此外,該低電阻光衰減抗反射塗層之表層的物質爲一可 穿透的表面導電層,而該可穿透的表面導電層的光反射率低 ® 於〇.5%,該低電阻光衰減抗反射塗層的阻抗介於每平方0.5Ω 與0.7Ω之間,而其穿透率爲55°/◦至70%。 再者,本發明之塗層結構其具有高導電性之特性,當其 運用於電漿顯示器之製造時,其具有電磁干擾屏障、光學視 角低反射、高表面硬度抗刮性、適度的光衰減效應等優點。 例如,本發明之塗層結構之表面阻抗介於每平方〇.5〇與〇.7Ω 之間’以及具有足夠硬度去通過軍事標準MIL-C-48497之耐 刮測試。 17 200938874 因爲本發明之塗層結構的表層有良好的導電特性,該用 於柁加藍光透光率之低電阻光衰減抗反射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)可以降低接地製程所需的工作負荷和增加大量生 産的良率和可靠度,其可運用於液晶顯示器或電漿顯示器之 玻璃基板或塑膠基板上。 惟,以上所述,僅為本發明最佳之一的具體實施例之詳 φ細說明與圖式,惟本發明之特徵並不侷限於此,並非用以限 制本發明,本發明之所有範圍應以下述之申請專利範圍為 準,凡合於本發明申請專利範圍之精神與其類似變化之實施 例,皆應包含於本發明之範疇中,任何熟悉該項技藝者在本 發明之領域内,可輕易思及之變化或修飾皆可涵蓋在 以下本 案之專利範圍。 【圖式簡單說明】 第一 A圖係爲習知光線穿過未加工之玻璃的透光率(Ught ® transmittance )與光波長(light wavelength )的特性曲 線圖; 第一 B圖係爲習知光線穿過已加工之玻璃的透光率(Hght transmittance )與光波長(Hght wavelength )的特性曲 線圖; 第二圖係爲本發明用於增加藍光透光率之低電阻光衰減抗反 射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)(二)之結構示意圖; 18 200938874 第三圖係為本發明用於增加藍光透光率之低電阻光衰減抗反 射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)(二)之上視示意圖; 第四A圖及第四B圖係爲本發明用於增加藍光透光率之低電 阻光展減抗反射塗層結構(extreme low resistivity light attenuation anti-reflection coating structure)之製作方 法(二)之流程圖; 弟五圖係為本發明用於增加藍光透光率之低電阻光衰減抗反 射塗層結構(二)之透光率(light transmittance)與 光波長(light wavelength )的特性曲線圖;以及 第六圖係為本發明用於增加藍光透光率之低電阻光衰減抗反 射塗層結構(二)之CIE xy色度座標圖(xy chr_ticity diagram )。 【主要元件符號說明】 基板 S 塗層模組 Μ 第一塗層 1 第二塗層 2 第三塗層 3 第四塗層 4 第五塗層 5 第六塗層 6 第七塗層 7 19 200938874 第八塗層 第九塗層 第一轉色塗層 第二轉色塗層 第三轉色塗層 第四轉色塗層 第五轉色塗層 第六轉色塗層 第七轉色塗層 第八轉色塗層 遮板 導電層Commission on Illumination, International Commission on Illumination) xychromaticity graph (xychromaticitydiagram). As can be seen from the figure, since the present invention is added to the ruthenium plating process, the ore layer containing the oxide coating (Al2〇3) is added, so that the xy coordinates of the color region are from the original A (0.32~0.33, 0.35~ 0.36) becomes B (0.28~0.30, 0.32~0.34) 'So it can be seen that the coordinate color has changed from yellow-green to blue. ''The low-resistance light-attenuation anti-reflective coating can be applied to semiconductors, optical heads, liquid crystal displays, cathode ray tubes, architectural glass, touch sensors, screen filters, plastic screen coatings, etc. industry. In addition, the material of the surface layer of the low-resistance light-attenuating anti-reflective coating is a penetrable surface conductive layer, and the light-reflecting surface of the transparent surface conductive layer has a low light reflectance of 〇.5%, the low-resistance light The attenuation of the anti-reflective coating is between 0.5 Ω and 0.7 Ω per square and the penetration is 55°/◦ to 70%. Furthermore, the coating structure of the present invention has high conductivity characteristics, and when it is applied to the manufacture of a plasma display, it has an electromagnetic interference barrier, low optical reflection angle, high surface hardness scratch resistance, moderate light attenuation. Effects and other advantages. For example, the coating structure of the present invention has a surface resistance of between .5 Å and 〇.7 Ω per square Å and has sufficient hardness to pass the scratch test of the military standard MIL-C-48497. 17 200938874 Because the surface layer of the coating structure of the present invention has good electrical conductivity, the extreme low resistivity light attenuation anti-reflection coating structure can be reduced. The workload required for the grounding process and the increased yield and reliability of mass production can be applied to glass substrates or plastic substrates for liquid crystal displays or plasma displays. However, the above description is only a detailed description of the specific embodiments of the present invention, and the features of the present invention are not limited thereto, and are not intended to limit the present invention. The spirit and scope of the present invention should be construed as being within the scope of the present invention, and any one skilled in the art will be within the scope of the present invention. Variations or modifications that can be easily conceived are covered by the patents in this case below. BRIEF DESCRIPTION OF THE DRAWINGS The first A diagram is a characteristic diagram of the transmittance (Ught ® transmittance ) and light wavelength of a conventional light passing through an unprocessed glass; the first B diagram is a conventional one. The characteristic curve of light transmittance (Hght transmittance) and light wavelength (Hght wavelength) of the processed glass; the second figure is a low-resistance light-attenuation anti-reflection coating for increasing blue light transmittance of the present invention. Structure of extreme low resistivity light attenuation anti-reflection coating structure (II); 18 200938874 The third figure is a low-resistance light-attenuation anti-reflective coating structure (extreme low resistivity) for increasing blue light transmittance. Light attenuation anti-reflection coating structure (2) top view; fourth A and fourth B are low-resistance light-expansion anti-reflective coating structures for increasing blue light transmittance (extreme low) Resistivity light attenuation anti-reflection coating structure) (second) flow chart; a low-resistance light-attenuation anti-reflective coating structure (b) of a light transmittance and a light wavelength; and a sixth diagram of the present invention for increasing blue light transmission The low-resistance light-attenuation anti-reflective coating structure (2) CIE xy chromaticity coordinate diagram (xy chr_ticity diagram). [Main component symbol description] Substrate S coating module Μ First coating 1 Second coating 2 Third coating 3 Fourth coating 4 Fifth coating 5 Sixth coating 6 Seventh coating 7 19 200938874 The eighth coating, the ninth coating, the first color conversion coating, the second color conversion coating, the third color conversion coating, the fourth color conversion coating, the fifth color conversion coating, the sixth color conversion coating, the seventh color conversion coating The eighth color-transparent coating is conductive layer