200923930 九、發明說明: 【發明所屬之技術領域】 本發明係關於一 階與高階項間光能量 ,全像儲存I置,尤指—種可拉近零 费度差異之全像儲存裝置。 【先前技術】 隨著高晝質數位電視的開播 :來::生活水:的提高,對儲存媒:的容= ;7光學儲存技術中,光碟片的資料儲存容 無法再向上提昇,因此發展其他容量 更大的光儲存技術已是刻不容緩。而光儲存進人高容量的 時代是必然的趨勢,而全㈣存為下—代大容量的技術, 可到達IT byte以上的等級,但為了可達到此一容量,材料 的充分利用係十分重要的。 全像儲存裝置的三種可減少位元錯誤率BER(Bit Err〇r Rate)的方法是:第一種方法如第一圖所示之離焦(Def〇cus) 記錄系統,其中空間調變器(SLM) 51設於傅立葉透鏡52 前焦面處,儲存媒介53設於傅立葉透鏡52之光輸出側, 因此全像資料係採用離焦的方式紀錄在儲存媒介53上。此 方法之主要技術係將紀錄平面離焦而增加紀錄面積,可以 拉近各階光能量密度。第二種方法如第二圖所示之相位光 罩(Phase mask),空間調變器51設於傅立葉透鏡52前焦面 處’儲存媒介53設於傅立葉透鏡52之光輸出側,其中將 相位光罩54設於空間調變器51與傅立葉透鏡52之間,藉 由改變各像素點(Pixel)的相對相位(Relative Phase)來拉近 各階光能量密度。第三種方法如第三圖所示之錐形透鏡 (Axicon),將錐形透鏡55置放於空間調變器51前方,改變 200923930 入射光之幾何分布,以改變光能量分布。 上述種種習知技術仍存在有許多缺失而有待改進,故 發展新的全像儲存裝置,實為一重要之課題。 【發明内容】 本發明係提供一種全像儲存裝置,藉由設於一第·-傅 立葉透鏡和一第二傅立葉透鏡之間的第一濾光元件,用以 吸收直流(DC )項的能量’而拉近零階與高階項間能量密 度的差異’並與參考光束干涉’使紀錄訊號可以寫入點狀 光閘陣列中,亦可同時增加記錄容量。 本發明乃全像儲存裝置,包含一光源產生器,使產生 一光束;一第一分光元件’係將該光束分為一訊號光與^ 參考光束;一空間調變器’接收該訊號光並進行編碼;/ 第一傅立葉透鏡,設於該空間調變器之光輸出侧,使該訊 號光通過;一第二傅立葉透鏡,設於該第一傅立葉透鏡之 光輸出側,使該訊號光通過;一第一濾光元件’係設於/ 傅立葉平面(Fourier Plane)上,且位於該第一傅立葉透鏡與 該第二傅立葉透鏡之間,使該訊號光通過該第一濾光元件 上;一第二分光元件,設於該第二傅立葉透鏡之光輸出側’ 使該訊號光通過;一第一透鏡,設於該第二分光元件之光 輸出侧;及一儲存媒介,設於該第一透鏡之光輸出侧,其 係將經過該第一透鏡之訊號光和該參考光束所形成的干涉 圖案記錄於該儲存媒介上。 其中,該第一分光元件及該第二分光元件為一偏極化 分光鏡。 該空間調變器係設於該第一傅立葉透鏡之前焦面位 置。 200923930 置 置 該第-濾光元件㈣於”―傅立葉透鏡之後焦面位 該第一濾光元件係設於該第二傅立葉透鏡之前焦面位 該儲存媒介為一碟片狀铸存媒介 進一步包含一光偵測器, 光束。 使感應從該儲存媒體繞射的 及光偵測n為-互補性氧化金屬半導體偵㈣(cm〇s f S_i〇 ’當該參考光束射向該儲存媒介,並重建還原為一 編碼物體光束,該編碼物體光束再經過該第一透鏡、該第 一分光元件而被設於該第二分光元件一侧之互補性氡化金 屬半導體偵測器(CMOS Sensor)所接收。 較佳地,該互補性氧化金屬半導體偵測器(CM〇s Sensor)包括一訊號處理器,使將一末端訊號提升一位階。 該參考光束係為偏振相位共軛參考光束。 °亥光彳貞測器為一感光耗合元件(CCD),當該參考光束射 向該儲存媒介,並重建還原為一編碼物體光束,該編碼物 (/體光束再經過該第一透鏡、該第二分光元件而被設於該第 二分光元件一侧之感光耦合元件(CCD)所接收。 人 該光偵測器與該第二分光元件間設有一第三傅立葉透 鏡、一第四傅立葉透鏡及一第二濾光元件,使從該第^分 光元件進入該光偵測器的光訊號進行處理。 刀 該第三傅立葉透鏡與第四傅立葉透鏡係使讀取該光訊 说像素匹配(pixel match)。 斤其中更包括有一第三分光元件、一第一反射元件、一 第二反射元件及一第三反射元件,使該參考光束通過該第 三分光元件後射入該第一反射元件;及當寫入時,該參考 200923930 光束會從該第一反射元件反射該參考光束經該第二反射元 件到該儲存媒體上,而當讀取時,該參考光束會從該第一 反射元件反射該參考光束經該第三反射元件到該儲存媒體 上。 該第三分光元件係為一偏極化分光元件。 該第一透鏡為一光儲存透鏡(storage lens)。 【實施方式】 雖然本發明將參閱含有本發明較佳實施例之所附圖式 予以充分描述,但在此描述之前應暸解熟悉本行之人士可 修改本文中所描述之發明,同時獲致本發明之功效。因此, 須瞭解以下之描述對熟悉本行技藝之人士而言為一廣泛之 揭示,且其内容不在於限制本發明。 請參閱第四圖及第五圖,係分別顯示本發明全像儲存 裝置之寫入光路示意圖及第四圖中圓圈A之放大圖。本發 明全像儲存裝置1包含一光源產生器2、一第一分光元件 3、一空間調變器4、一第一傅立葉透鏡5、一第二傅立葉 透鏡6、一濾光元件7、一第二分光元件8、一第一透鏡9 及一儲存媒介10,該光源產生器2使產生一光束21。該光 束21經過該第一分光元件3時會分為一訊號光31與一參 考光束32。該空間調變器4會接收該訊號光31並進行編 碼,做為全像資料的輸入裝置。 該第一傅立葉透鏡5設於該空間調變器4之光輸出 側,使該訊號光31通過。該第二傅立葉透鏡6設於該第一 傅立葉透鏡5之光輸出側,使該訊號光31通過。而該第一 濾光元件7係設於一傅立葉平面(Fourier Plane)上,且位於 該第一傅立葉透鏡5與該第二傅立葉透鏡6之間,使該訊 8 200923930 號光31通過該第一傅立葉透鏡5時聚焦於該第一濾光元件 7上’所以該訊號光31通過該第一濾光元件7時可以改善 能量對比。該空間調變器4係設於該第一傅立葉透鏡5之 刖焦面位置,該第一濾光元件7係設於該第一傅立葉透鏡5 之後焦面位置’而該第一濾光元件7係設於該第二傅立葉 透鏡6之前焦面位置,使該訊號光31經該第一傅立葉透鏡 5而聚焦於該第-濾光元件7,紐再發散到該第二傅立葉 透鏡巧。因此該第一滤光元件7以吸收部份直流(DC) 能量’而拉近零階與高階項間能量密度的差異,並與 ,考光束32干涉,使紀錄訊號可以寫入點狀光閘陣列 中,亦可同時增加記錄容量。 側,設於該第二傅立葉透鏡6之光輸出 鏡9使^;而該訊號光31並經過該第一透 料儲存在該儲;媒介子媒介10上,並將影像資 8 ^ ^ 其中,該第一透鏡9設於該第二 9之聚隹㈣^側。而該儲存媒介1G設於該第一透鏡 參考光束32 _朗干涉錢9之訊㈣31和該 本發明全像儲存褒置3案^表於該儲存媒介1〇上。 一第一反射元件12、-第二第三分光元件U、 14’使該參考光束32通過;J射,13及-第三反射元件 反射元件…當寫入影像4;=:=工 該储存媒體1〇上,藉由該以反射元件13到 成的干涉圖案記錄在該儲存媒體j 。/、忒讯旒光31所形 本發明全像儲存裝置丨之 ^ ° 光路路徑:當該光源產生3 ^料於該儲存媒介10之 ° Μ該光束,且該光束經過 200923930 該第一分光元件3而被分為該訊號光31與該參考光束32, 其中,該訊號光31依序經過該空間調變器4、該第一傅立 葉透鏡5、該第一濾光元件7、該第二傅立葉透鏡6、該第 二分光元件8、該第一透鏡9,最後聚焦於該儲存媒體10 上。另,該參考光束32係從該第一分光元件3而射向該第 三分光元件11後,再依序射入該第一反射元件12、該第二 反射元件13而到達該儲存媒體10上;如此,該儲存媒介 10之同一位置上便可記錄有該訊號光31和該參考光束32 所形成之干涉圖案。 請同時參閱第六圖及第七圖,係分別顯示在傅立葉平 面影像示意圖及影像模擬示意圖。當該訊號光31通過未設 置有該第一濾光元件7時,則該訊號光31在傅立葉平面有 高頻能量的訊號,因此在寫入影像資料到該儲存媒體10上 時,儲存空間或密度均受到影響。 請參閱第八圖及第九圖,係分別顯示原始訊號的波形 示意圖及經過濾光元件濾去部分直流(DC)項的示意圖,如 第八圖所示,該波形顯示該訊號光31的原始訊號,但當經 過該第一濾光元件7時,該訊號光31的部分直流(DC)項被 部分吸收,因此波形訊號減半。但不影響其訊號。 本發明的該第一濾光元件7可濾去該第一傅立葉透鏡5 之訊號光31中吸收零階光的能量,藉以減少該零階光的能 量密度,且拉近各階光能量。請繼續參閱第十圖及第十一 圖,皆係顯示該第一濾光元件7吸收零階光能量之示意圖。 如第十圖所示的該第一濾光元件7中心灰點位置為一圓形 吸收點,其係利用位於該傅立葉平面之第一濾光元件7吸 收自該第一傅立葉透鏡5所發出之訊號光31中零階光的能 量,藉以解決零階光能量密度太強的問題。更進一步的方 200923930 ,,如第十-圖所示’該第-濾、光元件71中心灰點位置 為-圓形吸收點,但圓形吸收點外圍塗黑 係 =高頻光通過,而讓高頻光不會干涉寫 =該 儲存媒體ίο上。 不貝丁寸A成 ^參閱第十二圖及第十三圖’係分別顯 ^裝置丨之讀取光路4圖及料二圖 = 圖。本發明全像裝置丨自輯細介1G讀取資料之光 路路控:當該光源產生H 2發㈣光束2卜聽光束21婉 過該一分光兀件3而被分為該訊號光31盥該表 32,。如此,藉由原先所存對應今旦 使該參考絲32產生繞㈣線,騎影像㈣ ^ 該繞射祕會沿«絲31的行進料 此行進方向上的光_器〗5。該儲存媒介1()之同=: 的育料便可被重建還原為一編碼物體光束。此 調變器4係被遮住使該訊號光31不會通、尚 ^ 15該先偵測裔15可為一互補性氧化金屬 (?S Sensor)或一感光耦合元件(CCD),=化‘ 屬半導體偵測器(CMOS Sensor)包括—訊^失 示)’使將-末端能量提升-位階。如第 I。 光31經過該第一濾光元件7後,可藉由 ,、名訊唬 將直流(DC)項做補償,以讀取訊號。 电路(圖中未不) 而該儲存媒介10被重建還原的編碼物 過該第-透鏡9、該第二分光元件8,最播^束再依序經 器15並且由該光_器15所接收’以便該光镇” 取。如第十四圖所示,本發明全像儲存裝貝料解碼璜 測器15與該第二分光元件8之間設有一更在該光偵 ’第三傅立葉透鏡 11 200923930 16、一第四傅立葉透鏡17及一第二濾光元件18,使從該第 二分光元件8進入該光偵測器15的光訊號進行處理,使該 光偵測器15的影像資料更佳。 本發明全像儲存裝置1之第一分光元件3、第二分光元 件8和第三分光元件11可為一偏極化分光元件。而該第一 透鏡9為一光儲存透鏡(storage lens)。 雖然本發明已以較佳實施例揭露如上,然其並非用 以限定本發明,任何熟悉此技藝者,在不脫離本發明之 精神和範圍内,當可作各種之更動與潤飾,因此,本發 f 4 明之保護範圍,當視後附之申請專利範圍所界定者為準。200923930 IX. INSTRUCTIONS: [Technical Field] The present invention relates to light energy between first-order and high-order terms, and all-image storage I, especially a holographic storage device that can narrow the difference of zero cost. [Prior Art] With the launch of the high-quality digital TV: Come:: The improvement of the living water: the storage medium: 7] In the optical storage technology, the data storage capacity of the optical disc can no longer be upgraded, so the development Other optical storage technologies with larger capacity are urgently needed. The era of high-capacity storage of light is an inevitable trend, and the whole (four) is the next-generation high-capacity technology, which can reach the level above IT byte, but in order to achieve this capacity, the full utilization of materials is very important. of. The three methods for reducing the bit error rate BER (Bit Err〇r Rate) of the holographic storage device are: the first method is the defocusing (Def〇cus) recording system shown in the first figure, wherein the spatial modulator The (SLM) 51 is disposed at the front focal plane of the Fourier lens 52, and the storage medium 53 is disposed on the light output side of the Fourier lens 52, so that the hologram data is recorded on the storage medium 53 in a defocused manner. The main technique of this method is to increase the recording area by defocusing the recording plane and to close the energy density of each order. The second method is a phase mask as shown in the second figure, and the spatial modulator 51 is disposed at the front focal plane of the Fourier lens 52. The storage medium 53 is disposed on the light output side of the Fourier lens 52, wherein the phase is The photomask 54 is disposed between the spatial modulator 51 and the Fourier lens 52, and the light energy density of each order is approximated by changing the relative phase of each pixel (Pixel). The third method, such as the conical lens (Axicon) shown in the third figure, places the conical lens 55 in front of the spatial modulator 51, changing the geometric distribution of the incident light of 200923930 to change the light energy distribution. There are still many shortcomings in the above-mentioned various conventional technologies that need to be improved, so the development of a new holographic storage device is an important issue. SUMMARY OF THE INVENTION The present invention provides a holographic storage device for absorbing a direct current (DC) energy by a first filter element disposed between a first Fourier lens and a second Fourier lens. By narrowing the difference in energy density between the zero-order and high-order terms and interfering with the reference beam, the recorded signal can be written into the dot-shaped shutter array, and the recording capacity can be increased at the same time. The present invention is a holographic storage device comprising a light source generator for generating a light beam; a first beam splitting element 'dividing the light beam into a signal light and a reference beam; and a spatial modulator 'receiving the signal light and The first Fourier lens is disposed on the light output side of the spatial modulator to pass the signal light; a second Fourier lens is disposed on the light output side of the first Fourier lens to pass the signal light a first filter element is disposed on the Fourier Plane and located between the first Fourier lens and the second Fourier lens to pass the signal light through the first filter element; a second beam splitting element disposed on the light output side of the second Fourier lens to pass the signal light; a first lens disposed on a light output side of the second beam splitter; and a storage medium disposed at the first The light output side of the lens records the interference pattern formed by the signal light of the first lens and the reference beam on the storage medium. The first beam splitting element and the second beam splitting element are a polarization beam splitter. The spatial modulator is disposed at a focal plane position of the first Fourier lens. 200923930 disposing the first filter element (4) after the "Fourier surface of the Fourier lens", the first filter element is disposed in front of the second Fourier lens, and the storage medium is a disk-shaped casting medium further comprising a a photodetector, a beam of light that diffracts from the storage medium and detects light n-complementary oxidized metal semiconductor detector (4) (cm〇sf S_i〇' when the reference beam is directed at the storage medium and reconstructed and restored The encoded object beam is received by a complementary bismuth metal semiconductor detector (CMOS Sensor) disposed on the second beam splitting element via the first lens and the first beam splitting element. Preferably, the complementary metal oxide semiconductor detector (CM〇s Sensor) comprises a signal processor for raising a terminal signal by one step. The reference beam is a polarization phase conjugate reference beam. The detector is a photosensitive consumable component (CCD), and when the reference beam is directed to the storage medium, and reconstructed and restored to a coded object beam, the coded object (the body beam passes through the first lens, the The dichroic element is received by a photo-sensing element (CCD) disposed on a side of the second beam-splitting element. A third Fourier lens and a fourth Fourier lens are disposed between the photodetector and the second beam splitter. a second filter element processes the optical signal entering the photodetector from the second optical component. The third Fourier lens and the fourth Fourier lens system enable reading of the optical pixel matching (pixel match Further comprising a third beam splitting element, a first reflecting element, a second reflecting element and a third reflecting element, wherein the reference beam passes through the third beam splitting element and is incident on the first reflecting element; When writing, the reference 200923930 beam reflects the reference beam from the first reflective element through the second reflective element onto the storage medium, and when read, the reference beam reflects from the first reflective element The reference beam passes through the third reflective element to the storage medium. The third beam splitting element is a polarizing beam splitting element. The first lens is a light storage lens. While the invention has been described with reference to the preferred embodiments of the present invention, it will be understood that those skilled in the <RTIgt; Therefore, it should be understood that the following description is a broad disclosure of those skilled in the art and is not intended to limit the invention. Referring to the fourth and fifth figures, respectively, the holographic storage device of the present invention is shown. The schematic diagram of the writing optical path and the enlarged view of the circle A in the fourth figure. The holographic storage device 1 of the present invention comprises a light source generator 2, a first beam splitting element 3, a spatial modulator 4, and a first Fourier lens 5. A second Fourier lens 6, a filter element 7, a second beam splitting element 8, a first lens 9 and a storage medium 10, the light source generator 2 produces a light beam 21. When the beam 21 passes through the first beam splitting element 3, it is divided into a signal light 31 and a reference beam 32. The spatial modulator 4 receives the signal light 31 and encodes it as an input device for the hologram data. The first Fourier lens 5 is disposed on the light output side of the spatial modulator 4 to pass the signal light 31. The second Fourier lens 6 is disposed on the light output side of the first Fourier lens 5 to pass the signal light 31. The first filter element 7 is disposed on a Fourier plane and is located between the first Fourier lens 5 and the second Fourier lens 6, so that the light No. 200923930 passes through the first The Fourier lens 5 is focused on the first filter element 7 so that the energy contrast can be improved when the signal light 31 passes through the first filter element 7. The spatial modulator 4 is disposed at a focal plane position of the first Fourier lens 5, and the first filter element 7 is disposed at a rear focal plane position of the first Fourier lens 5 and the first filter element 7 The signal is placed in front of the focal plane position of the second Fourier lens 6, so that the signal light 31 is focused on the first filter element 7 via the first Fourier lens 5, and the light is diverged to the second Fourier lens. Therefore, the first filter element 7 absorbs a portion of direct current (DC) energy to draw a difference in energy density between the zero-order and high-order terms, and interferes with the test beam 32, so that the recorded signal can be written into the point shutter. In the array, the recording capacity can also be increased at the same time. a light output mirror 9 disposed on the second Fourier lens 6; and the signal light 31 is stored in the storage medium medium 10 through the first medium, and the image is 8^^ The first lens 9 is disposed on the side of the second 9th. The storage medium 1G is disposed on the storage medium 1 at the first lens reference beam 32_lang interference money 9 (4) 31 and the holographic storage device 3 of the present invention. a first reflective element 12, a second third splitting element U, 14' pass the reference beam 32; J, 13 and - third reflective element reflective element ... when writing image 4; =: = The media 1 is recorded on the storage medium j by the interference pattern formed by the reflective element 13. /, 忒 旒 31 31 31 31 31 31 31 31 31 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° 3 is divided into the signal light 31 and the reference beam 32, wherein the signal light 31 sequentially passes through the spatial modulator 4, the first Fourier lens 5, the first filter element 7, and the second Fourier The lens 6, the second beam splitting element 8, and the first lens 9 are finally focused on the storage medium 10. In addition, the reference beam 32 is incident on the third beam splitting element 11 from the first beam splitting element 3, and then sequentially enters the first reflecting element 12 and the second reflecting element 13 to reach the storage medium 10. Thus, the interference pattern formed by the signal light 31 and the reference beam 32 can be recorded at the same position of the storage medium 10. Please refer to the sixth and seventh figures at the same time, which are shown in the schematic diagram of the Fourier plane image and the schematic diagram of the image simulation. When the signal light 31 passes through the first filter element 7 , the signal light 31 has a high frequency energy signal in the Fourier plane, so when the image data is written onto the storage medium 10, the storage space or Density is affected. Please refer to the eighth figure and the ninth figure respectively, which are respectively a schematic diagram showing the waveform of the original signal and a schematic diagram of filtering a part of the direct current (DC) term by the filter element. As shown in the eighth figure, the waveform shows the original of the signal light 31. The signal, but when passing through the first filter element 7, a portion of the direct current (DC) term of the signal light 31 is partially absorbed, so that the waveform signal is halved. But it does not affect its signal. The first filter element 7 of the present invention filters out the energy of the zero-order light absorbed by the signal light 31 of the first Fourier lens 5, thereby reducing the energy density of the zero-order light and drawing the light energy of each order. Please refer to the tenth and eleventh figures, which are schematic diagrams showing that the first filter element 7 absorbs zero-order light energy. The center gray point position of the first filter element 7 as shown in FIG. 10 is a circular absorption point, which is emitted from the first Fourier lens 5 by the first filter element 7 located in the Fourier plane. The energy of the zero-order light in the signal light 31 is used to solve the problem that the zero-order optical energy density is too strong. Further, 200923930, as shown in the tenth-figure, 'the position of the gray point of the first filter-light element 71 is a circular absorption point, but the periphery of the circular absorption point is black-coated = high-frequency light passes, and high-frequency light is passed. Will not interfere with writing = the storage medium ίο. Not bedding inch A into ^ See the twelfth and thirteenth figures' respectively, the reading light path 4 and the second picture = figure. The holographic device of the present invention multiplexes the optical path of the 1G reading data: when the light source generates H 2 (four) light beams 2, the listening light beam 21 passes through the light splitting element 3 and is divided into the signal light 31盥Table 32,. In this way, the reference wire 32 is wound around the (four) line by the original stored correspondence, and the image is captured (4). The diffraction is along the traveling light of the wire 31 in the direction of travel. The feed of the storage medium 1 () of the same =: can be reconstructed and restored to a coded object beam. The modulator 4 is shielded so that the signal light 31 does not pass, and the first detecting source 15 can be a complementary metal oxide (?S Sensor) or a photosensitive coupling element (CCD). 'A CMOS Sensor includes - 失 失 ) ' ' ' ' ' ' ' 。 。 。 。 。 。 。 。 。 。 。 。 。 。. As the first I. After the light 31 passes through the first filter element 7, the direct current (DC) term can be compensated by the name signal to read the signal. a circuit (not shown in the figure) and the reconstructed code of the storage medium 10 passes through the first lens 9 and the second beam splitting element 8, and is most broadcasted by the sequencer 15 and is used by the lighter 15 Receiving 'for the light town', as shown in Fig. 14, the holographic storage beaker decoding detector 15 of the present invention and the second beam splitting element 8 are disposed between the optical detector and the third Fourier The lens 11 200923930 16 , a fourth Fourier lens 17 and a second filter element 18 process the optical signal entering the photodetector 15 from the second beam splitting element 8 to make the image of the photodetector 15 Preferably, the first beam splitting element 3, the second beam splitting element 8 and the third beam splitting element 11 of the holographic storage device 1 of the present invention may be a polarizing beam splitting element, and the first lens 9 is a light storing lens ( Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and various modifications and changes can be made without departing from the spirit and scope of the invention. Therefore, the scope of protection of this issue is clearly stated. The patentable scope of whichever defined.
12 200923930 【圖式簡單說明】 第一圖為習知的離焦(Defocus)記錄系統示意圖。 第二圖為習知的相位光罩(Phase mask)系統示意圖。 第三圖為習知的錐形透鏡(Axicon)系統示意圖。 第四圖係顯示本發明全像儲存裝置之寫入光路示意 圖。 第五圖係顯示第四圖中圓圈A之放大圖。 第六圖為本發明在傅立葉平面的影像示意圖。 第七圖為本發明在傅立葉平面的影像模擬示意圖。 第八圖為原始訊號的波形示意圖。 第九圖為經過濾光元件濾去部分直流(DC)項的示意 圖。 第十圖及第十一圖皆係顯示吸收零階光能量之示意 圖。 第十二圖係顯示本發明全像儲存裝置之讀取光路示意 圖。 第十三圖係顯示第十二圖中圓圈B之放大圖。 第十四圖係顯示本發明全像儲存裝置之另一讀取光路 示意圖。 【主要元件符號說明】 1…全像儲存裝置 2—光源產生益 3 —第 一分光元件 4- --空間調變器 5- --第一傅立葉透鏡 6- --第二傅立葉透鏡 13 200923930 7、71---第一濾光元件 8- -第二分光元件 9- -第一透鏡 10- 儲存媒介 11- --第三分光元件 12- --第一反射元件 13…第二反射元件 14…第三反射元件 15…光偵測器 16…第三傅立葉透鏡 17…第四傅立葉透鏡 18 —弟二遽光元件 21 —光束 31— 訊號光 32— 參考光束 1412 200923930 [Simple description of the diagram] The first figure is a schematic diagram of a conventional defocus recording system. The second figure is a schematic diagram of a conventional phase mask system. The third figure is a schematic diagram of a conventional Axicon system. The fourth figure shows a schematic diagram of the write path of the holographic storage device of the present invention. The fifth figure shows an enlarged view of the circle A in the fourth figure. The sixth figure is a schematic diagram of the image of the invention in the Fourier plane. The seventh figure is a schematic diagram of the image simulation of the Fourier plane of the present invention. The eighth picture is a waveform diagram of the original signal. The ninth figure is a schematic diagram of a portion of the direct current (DC) term filtered by the filter element. Both the tenth and eleventh figures show schematic diagrams of the absorption of zero-order light energy. Fig. 12 is a view showing the reading optical path of the holographic storage device of the present invention. The thirteenth image shows an enlarged view of the circle B in the twelfth figure. Fig. 14 is a view showing another reading optical path of the holographic storage device of the present invention. [Main component symbol description] 1...Full image storage device 2 - Light source generation benefit 3 - First beam splitting element 4 - Space modulator 5 - First Fourier lens 6 - Second second lens 13 200923930 7 71---first filter element 8 - - second beam splitter 9 - - first lens 10 - storage medium 11 - - third beam splitter 12 - - first reflective element 13 ... second reflective element 14 ...the third reflective element 15...the light detector 16...the third Fourier lens 17...the fourth Fourier lens 18 - the second light element 21 - the light beam 31 - the signal light 32 - the reference beam 14