[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW200918888A - Plastic microfluidic separation and detection platforms - Google Patents

Plastic microfluidic separation and detection platforms Download PDF

Info

Publication number
TW200918888A
TW200918888A TW97121585A TW97121585A TW200918888A TW 200918888 A TW200918888 A TW 200918888A TW 97121585 A TW97121585 A TW 97121585A TW 97121585 A TW97121585 A TW 97121585A TW 200918888 A TW200918888 A TW 200918888A
Authority
TW
Taiwan
Prior art keywords
wafer
micro flow
cathode
nucleic acid
separation
Prior art date
Application number
TW97121585A
Other languages
Chinese (zh)
Other versions
TWI470220B (en
Inventor
Eugene Tan
Cheuk Wai Kan
Heung Chuan Lam
Original Assignee
Network Biosystems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/080,745 external-priority patent/US8858770B2/en
Application filed by Network Biosystems Inc filed Critical Network Biosystems Inc
Publication of TW200918888A publication Critical patent/TW200918888A/en
Application granted granted Critical
Publication of TWI470220B publication Critical patent/TWI470220B/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Plastic electrophoresis separation chips are provided comprising a plurality of microfluidic channels and a detection window, where the detection window comprises a thin plastic; and the detection window comprises a detection region of each microfluidic channel. Such chips can be bonded to a support provided an aperture is provided in the support to allow detection of samples in the electrophoresis chip at the thin plastic detection window. Further, methods for electrophoretically separating and detecting a plurality of samples on the plastic electrophoresis separation chip are described.

Description

200918888 九、發明說明: 【發明所屬之技術領域】 本發明係屬於在藉由雷射誘發之螢光檢測下藉由電泳進 行核酸排序及片段尺寸測定的領域。分析係在塑料電泳晶 片上執行。 本申請案根據35 U.S.C.§ 119(e)主張2007年4月4日申請之 美國臨時申請案第60/921,802號及2007年8月13日申請之美 國臨時申請案第60/964,502號及2008年2月12日申請之美國 臨時申請案第61/028,073號的申請日期之權利,各申請案 以全文引用的方式併入本文中。兩個在與本申請案同一曰 期申請之美國申請案:名為”快速多路擴增靶核酸之方法 (METHODS FOR RAPID MULTIPLEXED AMPLIFICATION OF TARGET NUCLEIC ACIDS)"之代理人案號08-318-US及 名為”綜合核酸分析(INTEGRATED NUCLEIC ACID ANALYSIS)”之代理人案號07-801-US,以全文引用的方式 併入本申請案中。 【先前技術】 自20世紀70年代DNA排序技術(Maxam及Gilbert, 1977, Proc Natl Acad Sci USA 74: 560-564 ; Sanger等人,1977, Proc 74: 5463-5467)出現以來,利用此 等技術之廣泛應用已發展。同時,已引入愈加複雜之測試 設備來實施DNA排序。舉例而言,在1986年,Applied Biosystems上市銷售一種自動DNA排序儀,其係基於由 Sanger排序法所產生之DNA片段之分離;將DNA片段用一 131623.doc 200918888 組四種榮光染料標記且藉由毛細管電泳分離(Smith等人, 86’ 321: 674-679)。因此,Sanger排序法已成為 過去三十年最廣泛利用之排序技術。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of nucleic acid sorting and fragment size measurement by electrophoresis under laser-induced fluorescence detection. The analysis was performed on a plastic electrophoresis wafer. This application is based on US Provisional Application No. 60/921,802, filed on Apr. 4, 2007, and U.S. Provisional Application No. 60/964,502, filed on August 13, 2007, in The right to file the filing date of U.S. Provisional Application No. 61/028,073, filed on Feb. 12, the entire disclosure of which is hereby incorporated by reference. Two US applications in the same semester application as the present application: the agent name "METHODS FOR RAPID MULTIPLEXED AMPLIFICATION OF TARGET NUCLEIC ACIDS" " U.S. Patent Application Serial No. 07-801-US, entitled "INTEGRATED NUCLEIC ACID ANALYSIS", is incorporated herein by reference in its entirety. (Maxam and Gilbert, 1977, Proc Natl Acad Sci USA 74: 560-564; Sanger et al., 1977, Proc 74: 5463-5467) The widespread use of such technologies has evolved since its inception. The test equipment is used to perform DNA sequencing. For example, in 1986, Applied Biosystems marketed an automated DNA sequencer based on the isolation of DNA fragments generated by the Sanger ranking method; the DNA fragment was used in a 131623.doc 200918888 Groups of four glory dyes are labeled and separated by capillary electrophoresis (Smith et al, 86' 321: 674-679). Therefore, the Sanger ranking method has become the most widely used in the past three decades. Preface technology.

近年來,多種新的排序技術及相關測試設備已發展且繼 只么展稱為下一代”方法(Metzker,2005,Gewowe heW 15: 1767·1776中綜述)之此等化學方法包括焦填 -文排序法連接反應排序法及單分子排序法。驅動研究下 -代排序技術之主要目標一般為執行高產量基因組排序, 且尤其為降低獲得完整基因組序列之成本。雖然下一代技 術之每__驗基對之成本在某些狀況下可比排序法之 成本2 ’但所有此等方法(包括Sanger)均為高成本的且需 要大量時間、人工及實驗室裝備。 目刖對自給疋基因組獲得極大量之序列資料的強調並不 =快速獲得相對少量之基因組序列的價值。舉例而言, 許多常見人類疾病可基於少於1〇〇〇個鹼基對之難序列In recent years, a variety of new sorting techniques and related test equipment have been developed and followed by the so-called "next generation" method (Metzker, 2005, reviewed by Gewowe heW 15: 1767·1776). These chemical methods include coke filling-text Sorting method join reaction sorting method and single molecule sorting method. Driven research The main goal of the next-generation sorting technique is generally to perform high-yield genome sequencing, and especially to reduce the cost of obtaining complete genome sequences. Although each of the next generation technologies The cost of the base pair can be comparable to the cost of the sorting method in some cases 2 'but all of these methods (including Sanger) are costly and require a lot of time, labor and laboratory equipment. Seeking a very large number of self-sufficient genomic genomes The emphasis of the sequence data does not = quickly obtain the value of a relatively small number of genomic sequences. For example, many common human diseases can be based on difficult sequences of less than 1 base pair.

(比產生完整人類基因组所_之A装似I 所鬲之鹼基對少若干個數量級)來 診斷。類似地’對藉由短串聯重 p里複刀析產生的成組少於2 0 個特定DNA片段之尺寸的精碹制宁 〗π精碍測疋足以鑑別給定之個體。 對將允許聚焦核酸分析(f〇 d ^ d nucleic acid analysis) (定義為快速鑑別給定人類、動铷 貝動物或病原體基因組之子集(Diagnosing a number of orders of magnitude smaller than the number of bases in which A is produced by the complete human genome). Similarly, the precision of a group of less than 20 specific DNA fragments produced by complex tandem recombination is sufficient to identify a given individual. Pairing of nucleic acid analysis (defined as a rapid identification of a subset of a given human, moving mussel or pathogen genome)

(精由核酸排序或片段尺寸測定B 「』疋))之儀器及技術的發展存在 禾滿足之需要。聚焦核酸分析將 刀析將使最終使用者能夠作出幾 手即時之臨床、法醫學或其他判定 缺八, 〜矾應用而疋’聚焦核 馱分析可在多種情形下執行,包 匕括醫院實驗室、醫師診 131623.doc 200918888 所、床邊或在法醫學或環境應用之情況下在野外執行。 關於核酸(DNA及RNA)排序,臨床應用包括診斷細菌 性、真菌性及病毒性疾病(包括測定生物體之抗藥性概 況)、癌症(包括測定對化學療法之反應)及遺傳性及其他常 見疾病(包括測定對藥物之反應)。聚焦核酸序列亦非常適 於藥物基因組分析及某些法醫學應用(包括(例如)線粒體 DNA為卜序)。 丑 關於核酸片段尺寸測定,聚焦核酸分析可用於法醫學及 臨床應用中。舉例而言,一類人類鑑別法係基於短串聯重 複(STR)分析(Edwards 等人,1991,— ^ 49(4)746:756)。在STR分析中,利用一系列引子來擴增含 有變化數目之某些短串聯重複的某些基因組區。所得帶之 尺寸藉由核酸片段尺寸測定(通常使用毛細管電泳)來測 定,且該組STR等位基因之各成員之尺寸獨特地鑑別個 體。STR分型已成為用於人類法醫學遺傳鑑別之全球標 準,且為允許鏗別個體以及該個體之遺傳親屬之唯一生物 測定技術。在臨床應用中,核酸片段尺寸測定可用於診斷 給定病症(例如,(如)弗里德賴希共濟失調斤七心以仏 ataxia)中藉由搜索特徵缺失或插入或測定核苷酸重複區之 尺寸 KPandolfo, M., 2006, 办 M〇/. 126: 197- 216)。片段尺寸測定亦可用於鑑別傳染劑;dna指紋法可 用於病原體診斷中。 聚焦核酸分析之應用不侷限於以上所討論之彼等應用。 聚焦核酸分析可用於藉由排序及片段尺寸測定兩者來鑑別 131623.doc 200918888 床及衣i兄樣口口中之生物武器劑(bi〇l〇gical weap〇ns agent)。獸醫學及食物測試應用亦反映上述之彼等應用。 獸醫干鑑別應用(諸如,赛馬繁育及追蹤、家畜繁育及寵 物鑑另j )亦在本發明之用途之範_内。聚焦核酸分析之研 九應用為數眾多。簡言之,聚焦核酸分析具有顯著轉變若 干行業之潛能。 現有向產1:基於毛細^之排序儀及下一代排序儀不能夠 以及時及成本有效之方式執行聚焦核酸分析。彼等技術所 尋求之規模經濟受降低獲得及分析極大量序列資料之成本 所驅動。為使能夠進行聚焦核酸分析之儀器及系統進入常 規使用,其應經設計以具有某些”理想”性質及特徵。詳言 之,該等儀器及系統應快速地產生結果(理想地,在幾分 鐘内)以使可起訴之資料儘快產生。其應易於操作且試劑 及消費品應為廉價的。此外,對於一些應用而言,在一次 性物品中執行核酸分離為有用的;此顯著減少樣品污染之 可能性。為實現此等性質’基於聚合物之生物晶片比其他 材料(諸如,玻璃及矽)適合作為分離基板。 對在塑料晶片上實現DNA片段尺寸測定之嘗試藉由 McCormick(^«a/ Chem 69( 14):2626 1997)報導,顯示(The precision of nucleic acid sequencing or fragment size determination B "" 疋)) The development of instruments and techniques exists. The focus of nucleic acid analysis will enable the end user to make a few hands of immediate clinical, forensic or other Judging the lack of eight, ~ 矾 application and 疋 'focus nuclear analysis can be performed in a variety of situations, including hospital laboratories, physicians 131623.doc 200918888, bedside or in the field in forensic or environmental applications For nucleic acid (DNA and RNA) sequencing, clinical applications include diagnosing bacterial, fungal, and viral diseases (including measuring drug resistance profiles in organisms), cancer (including measuring responses to chemotherapy), and hereditary and other Common diseases (including determination of response to drugs). Focused nucleic acid sequences are also very suitable for pharmacogenomic analysis and some forensic applications (including, for example, mitochondrial DNA). Ugly for nucleic acid fragment size determination, focused nucleic acid analysis is available Forensic and clinical applications. For example, a class of human identification methods is based on short tandem repeat (STR) analysis. Edwards et al., 1991, — 49(4) 746: 756). In STR analysis, a series of primers are used to amplify certain genomic regions containing a variable number of short tandem repeats. Nucleic acid fragment size determinations (usually using capillary electrophoresis) are performed, and the size of each member of the set of STR alleles uniquely identifies the individual. STR typing has become the global standard for human forensic genetic identification and allows for 铿The only bioassay technique for the individual and the genetic relatives of the individual. In clinical applications, nucleic acid fragment size determination can be used to diagnose a given condition (eg, (eg, Friedrichich Ataxia) By searching for feature deletions or inserting or determining the size of the nucleotide repeat region, KPandolfo, M., 2006, M〇/. 126: 197-216). Fragment size determination can also be used to identify infectious agents; DNA fingerprinting is available. In the pathogen diagnosis. The application of focused nucleic acid analysis is not limited to the applications discussed above. Focused nucleic acid analysis can be used to identify 131623.do by both sorting and fragment size determination. c 200918888 Bed and clothing i-like oral biological weapons (bi〇l〇gical weap〇ns agent). Veterinary and food testing applications also reflect the above applications. Veterinary dry identification applications (such as horse breeding and Tracking, livestock breeding, and pet testing are also within the scope of the invention. The application of focused nucleic acid analysis is numerous. In short, focused nucleic acid analysis has the potential to significantly transform several industries. : The sorting instrument based on the capillary and the next-generation sorter are not capable of performing focused nucleic acid analysis in a timely and cost effective manner. The economies of scale sought by these techniques are driven by the reduced cost of obtaining and analyzing extremely large amounts of sequence data. In order for instruments and systems capable of performing focused nucleic acid analysis to enter conventional use, they should be designed to have certain "ideal" properties and characteristics. In particular, such instruments and systems should produce results quickly (ideally within a few minutes) so that indictable information can be generated as quickly as possible. It should be easy to handle and reagents and consumer products should be inexpensive. Moreover, for some applications, it is useful to perform nucleic acid isolation in a disposable article; this significantly reduces the likelihood of sample contamination. To achieve these properties, polymer-based biochips are suitable as separate substrates than other materials such as glass and germanium. An attempt to achieve DNA fragment size determination on plastic wafers is reported by McCormick (^«a/Chem 69(14): 2626 1997)

ΦΧ174 RF DNA之//will限制片段之分離。雖然該等分離 係在單個樣品下在單道晶片中執行,但其展示不良解析度 分離及不良靈敏度。此外’該系統僅能夠檢測來自單螢光 團之發射。雖然Sassi(J C/zromaiogr 894(1-2):203 2000) 報導由1 6個流動分離之分離道組成的丙烯酸晶片用於STR 131623.doc 200918888 尺寸測定之用it ’但此方法亦顯示不良解析能力及低靈敏 度。當執行同時16道分離及檢測時,此低系統靈敏度阻止 等位基因階梯(法醫學分析中嚴格需要之内尺寸測定標準) 之檢測。使用2 Hz掃描速率(代表嘗試增加系統信號雜訊 比)引起解析能力及精確度兩者之降級。最終,該系統僅 能夠檢測來自單螢光團之發射。ShK£/ec㈣a 24(19-20):3371 2003 及 Shi,2〇〇6,Electr〇ph〇resis 27(10):3703)報導在單個樣品單道塑料分離設備中2及4色 分離及檢測。雖然報導4.5 cm通道提供單鹼基解析度,但 實際上如藉由隔開一個驗基對之等位基因之外觀所證明, 解析度為不良的(THOl 9.3與10個等位基因之峰谷比接近 1)。具有較長分離通道(6、10及18 cm)之設備用於此研究 中以實現與4.5 cm設備相比更高之解析度以進行分析。當 使用對解析度而言最佳之篩選基質組合物時,1〇及18 cm 長之設備因設備分層而受到限制。 實際上,已發現塑料對在經設計以用於核酸排序及片段 尺寸測定之生物晶片中之用途呈現若干主要障礙。塑料材 料之自身螢光干擾4 50至800 nm之可見範圍中波長之檢測 (Puriska, 2005, Lab Chip 5(12):1348 ; Wabuyele, 2001 Electrophoresis 22( 18):3939-48 ; Hawkins 及 Yager 2003 Ιαό 3(4): 248-52)。 在Sanger排序及STr尺寸測定之商業套組中使用此等波 長。此外’現有塑料設備具有對通常所用基板之低黏結強 度及在通常所用之篩選基質下不良的效能結果。最終,通 131623.doc -10- 200918888 道内表面與篩選基質及DNA樣品相互作用,士# 由於電滲流及 DNA與壁之相互作用而導致不良解 竹度(Kan, 2004, 五/ecirop/zorub 25(2i_22):3564)。 因此,對能夠以高解析.度及高信號雜訊比執行聚焦核酸 分析之廉價、多道塑料生物晶片存在未滿足之實質性需 要。 、而 【發明内容】ΦΧ174 RF DNA //will limit the separation of fragments. While these separations were performed in a single wafer under a single sample, they exhibited poor resolution separation and poor sensitivity. Furthermore, the system is only capable of detecting emissions from a single fluorophore. Although Sassi (JC/zromaiogr 894(1-2): 203 2000) reported an acrylic wafer consisting of 16 flow-separated separation channels for STR 131623.doc 200918888 for size measurement, 'this method also shows poor resolution Ability and low sensitivity. This low system sensitivity prevents detection of the allelic ladder (a sizing standard that is strictly required in forensic analysis) when performing simultaneous 16 separations and detections. Using a 2 Hz scan rate (representing an attempt to increase the system signal to noise ratio) causes degradation in both resolution and accuracy. Ultimately, the system is only capable of detecting emissions from a single fluorophore. ShK£/ec(4)a 24(19-20): 3371 2003 and Shi, 2〇〇6, Electron〇ph〇resis 27(10): 3703) reported 2 and 4 color separation and detection in a single sample single-channel plastic separation device . Although it is reported that the 4.5 cm channel provides a single base resolution, it is actually proved to be poor by the appearance of the alleles separated by a test pair (THOl 9.3 and 10 allele peaks and valleys) The ratio is close to 1). Equipment with longer separation channels (6, 10 and 18 cm) was used in this study to achieve higher resolution compared to 4.5 cm equipment for analysis. When using the best screening matrix composition for resolution, equipment of 1 inch and 18 cm length is limited by equipment stratification. In fact, plastics have been found to present several major obstacles to their use in biochips designed for nucleic acid sequencing and fragment size determination. The self-fluorescence of plastic materials interferes with the detection of wavelengths in the visible range of 4 50 to 800 nm (Puriska, 2005, Lab Chip 5(12): 1348; Wabuyele, 2001 Electrophoresis 22(18): 3939-48; Hawkins and Yager 2003 Ιαό 3(4): 248-52). These wavelengths are used in commercial sets of Sanger sorting and STr sizing. In addition, the existing plastic equipment has a low adhesion strength to the commonly used substrate and a poor performance result under the commonly used screening substrate. Finally, through 131623.doc -10- 200918888 the inner surface of the channel interacts with the screening matrix and the DNA sample, and the poor resolution of the substrate due to electroosmotic flow and interaction of DNA and wall (Kan, 2004, V/ecirop/zorub 25 (2i_22): 3564). Therefore, there is an unmet need for an inexpensive, multi-channel plastic biochip capable of performing focused nucleic acid analysis with high resolution and high signal-to-noise ratio. And [invention content]

本發明提供能夠以高解析度及高信號雜訊比執行聚焦核 酸分析之廉價、多道塑料生物晶片及使用該等晶片之方 法。 在一第一態樣中,本發明提供塑料分離晶片及尤其電泳 晶片,其包含一陽極部分、一陰極部分及該陽極部分與該 陰極部分之間的一中心部分’纟中陰極部分包含至少一個 第一通孔;陽極部分包含至少一個第二通孔;且該中心部 分包含複數個微型流動通道及一檢測窗口,各微型流動通 道具有一分離區及一檢測區;其中各微型流動通道與至少 一個第一通孔及至少一個第二通孔處於流體連通中;其中 該複數個微型流動通道處於實質上同一平面中;複數個微 聖机動通道在該中心部分内彼此不相交;該檢測窗口包含 蓴2料,且檢測_ 口包含各微型流動通道之檢測區域。在 檢測區外之晶片部分可具有相同厚度或具有比檢測區厚度 大的厚度。 在—第二態樣中,本發明提供包含具有一頂面及一底面 之支撐體之設備’其包含一陽極部分、一陰極部分及在 131623.doc 200918888 該陽極部分與該陰極部分之間 刀之间的—中心部分,其中該中心 部分在檢測窗口上包含一 :f| 1¾ 3 孔隙該陽極部分包含至少一個 陽極孔,且該陰極部分句合5小 往丨刀a 3至個陰極孔;該裝置進〆 步包含具有一頂面及一麻而夕4b Iffe Λ* 辰面之根據第一態樣之一晶片,其 中該晶片之頂面與支擇體之底面接觸,微型流動通道經由 通孔與陰極孔及陽極孔處於流體連通中;且晶片固定附著 於支撐體。SUMMARY OF THE INVENTION The present invention provides an inexpensive, multi-channel plastic biochip capable of performing focused nucleic acid analysis with high resolution and high signal to noise ratio and methods of using such wafers. In a first aspect, the present invention provides a plastic separation wafer and, in particular, an electrophoretic wafer, comprising an anode portion, a cathode portion, and a central portion between the anode portion and the cathode portion, wherein the cathode portion comprises at least one a first through hole; the anode portion includes at least one second through hole; and the central portion includes a plurality of micro flow channels and a detection window, each of the micro flow channels has a separation area and a detection area; wherein each of the micro flow channels and at least a first through hole and at least one second through hole are in fluid communication; wherein the plurality of micro flow channels are in substantially the same plane; the plurality of micro holy motorized channels do not intersect each other in the central portion; the detection window includes莼2, and the detection_ port contains the detection area of each micro flow channel. The portion of the wafer outside the detection zone may have the same thickness or a thickness greater than the thickness of the detection zone. In a second aspect, the present invention provides an apparatus comprising a support having a top surface and a bottom surface, which includes an anode portion, a cathode portion, and a knife between the anode portion and the cathode portion at 131623.doc 200918888 a central portion, wherein the central portion includes a: f| 13⁄4 3 aperture on the detection window, the anode portion includes at least one anode aperture, and the cathode portion is 5 small to the trowel a 3 to the cathode aperture; The device further comprises a wafer according to the first aspect having a top surface and a matte side, wherein the top surface of the wafer is in contact with the bottom surface of the supporting body, and the micro flow channel is connected to the bottom surface. The aperture is in fluid communication with the cathode aperture and the anode aperture; and the wafer is fixedly attached to the support.

在第- I、樣中,本發明提供同時電泳分離及檢測複數 個樣品之方法,其包含將複數個樣品提供至根據第一態樣 之微晶片上之複數個微型流動通道中的每一者中;跨越複 數個微型流動通道施加電位以將樣品注射至分離通道中且 將包含複數個分析樣品之每一者的可檢測物質分離;且在 檢測窗口上檢測包含複數個分離樣品之各可檢測物質。 本發明之特練佳實施例將自以下某些較佳實施例之更 誶細描述及申請專利範圍變得顯而易見。 【實施方式】 本發明提供能夠檢測尺寸相差約1個驗基對且在至少U ng之DNA模板濃度水平下之核酸物質分離的塑料分離晶 在夕路PCR反應之前待分析用於str分析之最低含量樣 品包含具有少於_副本、少於副本、少於200副本、 ^於1〇(Μ本、少於50副本、少於3〇副本、少於_本或】 副本核酸模板之核酸模板Q待分析以進行排序之最低濃度 樣品包含具有少於〇·5 pm〇le、少於〇“ 少於〇〇】 131623.doc 200918888 pmole之核酸模板作為Sanger排序反應之輸入。 如本文所用之短語"注射通道”意謂一相交通道,其允許 樣品被引入與其相交之微型流動通道。交又通道可處於單 一交叉通道、單一 T形連接或偏置雙重τ形連接組態。 如本文所用之短語"流體連通"係指含有流體之兩個腔室 或其他組件或區域連接在一起以便流體可在該兩個腔室、 組件或區域之間流動。因此,處於”流體連通”中之兩個腔 室可(例如)藉由兩個腔室之間的微型流動通道連接在— 起,以便流體可在兩個腔室之間自由流動。該等微型流動 通道視情況可包括一或多個閥,該一或多個閥可閉合或關 閉’以阻斷及/或另外控制腔室之間的流體連通。 如本文所用之短語”螢光染料"意謂在用光源激發後染料 發出具有380-850 nm之波長的光。較佳地,染料發出具有 在約450-800 nm之間的波長之光;更佳地’染料發出具有 在約495-775 nm之間的波長之光。 如本文所用之術語”自身螢光”意謂由除相關螢光團外之 物質在光照射下產生的螢光。 如本文所用之短語”基本上不發螢光"意謂當經受光照射 (例如’在約 350-500 nm、400-500 nm或 450-500 nm之間的 一或多個波長下;尤其在488 nm下;雷射照射)時來自所 述目標(例如,固體或溶液)之背景螢光信號(例如,在約 380-850 nm、400-800 nm、450-800 nm、500-800 nm 或 495-775 nm之間)具有低於來自由0.7 mm厚之boro float玻璃 組成的習知玻璃微型流動設備之螢光信號的背景水準。 131623.doc -13· 200918888 如本文所用之術語"基於降冰片烯之聚合物”意謂自至少 一種包含降冰片烯部分之單體製備之聚合物,其中含降冰 片稀之單體係根據熟習此項技術者已知之方法根據開環複 分解聚合來聚合(參見例如美國專利第4,945,135號、第 5,198,511號、第 5,312,940號及第 5,342,909號)。 如本文所用之術語"聚(甲基丙烯酸甲酯广或"PMMA”意 謂曱基丙烯酸甲酯之合成聚合物,包括(但不限於)以商品 名稱 PlexiglasTM、LimacrylTM、R_CastTM、Perspex™、In the first, the present invention provides a method for simultaneously separating and detecting a plurality of samples by electrophoresis, comprising providing a plurality of samples to each of a plurality of micro flow channels on a microchip according to the first aspect. Applying a potential across a plurality of microfluidic channels to inject a sample into the separation channel and separating the detectable substance comprising each of the plurality of analytical samples; and detecting each of the plurality of isolated samples that are detectable on the detection window substance. The invention will be apparent from the following detailed description of the preferred embodiments of the invention. [Embodiment] The present invention provides a plastic separation crystal capable of detecting a nucleic acid substance separated by a size of about one test pair and having a DNA template concentration level of at least U ng, which is to be analyzed for the analysis of str before the evening PCR reaction. The content sample contains a nucleic acid template Q having less than _ copy, less than copy, less than 200 copies, ^1 〇 (Μ, less than 50 copies, less than 3 copies, less than _本 or 】 copy nucleic acid template The lowest concentration sample to be analyzed for sorting contains a nucleic acid template having less than 〇·5 pm〇le, less than 〇“less than 〇〇] 131623.doc 200918888 pmole as an input to the Sanger sorting reaction. "Injection channel" means an intersecting channel that allows a sample to be introduced into a microflow channel that intersects it. The channel can be in a single cross channel, a single T-connection, or an offset double-Tau connection configuration. The phrase "fluid communication" means that two chambers or other components or regions containing fluid are connected together so that fluid can flow between the two chambers, components or regions. The two chambers in "fluid communication" can be connected, for example, by a micro flow channel between the two chambers so that fluid can flow freely between the two chambers. The passageway may optionally include one or more valves that may close or close to block and/or otherwise control fluid communication between the chambers. As used herein, the phrase "fluorescent dye" It means that the dye emits light having a wavelength of from 380 to 850 nm after excitation with a light source. Preferably, the dye emits light having a wavelength between about 450 and 800 nm; more preferably, the dye is emitted at about 495- Light at a wavelength between 775 nm. As used herein, the term "self-fluorescence" means fluorescence produced by light other than a related fluorophore. The phrase "substantially not used" as used herein. Fluorescent" means when subjected to light illumination (eg, 'at one or more wavelengths between about 350-500 nm, 400-500 nm, or 450-500 nm; especially at 488 nm; laser illumination) Background fluorescent signals from the target (eg, solid or solution) (eg , at about 380-850 nm, 400-800 nm, 450-800 nm, 500-800 nm, or 495-775 nm) with a conventional glass microfluidic device that is lower than a 0.7 mm thick boro float glass The background level of the fluorescent signal. 131623.doc -13· 200918888 The term "norbornene-based polymer" as used herein means a polymer prepared from at least one monomer comprising a norbornene moiety, The norbornene dilute system is polymerized according to a ring-opening metathesis polymerization according to methods known to those skilled in the art (see, for example, U.S. Patent Nos. 4,945,135, 5,198,511, 5,312,940 and 5,342,909). As used herein, the term "poly(methyl methacrylate or "PMMA" means a synthetic polymer of methyl methacrylate, including but not limited to, under the trade names PlexiglasTM, LimacrylTM, R_CastTM, PerspexTM,

Plazcryl™ > Acrylex™ ^ Acrylite™ > Acrylplast™ > AltuglasTM、P〇lycastTM及銷售之彼等聚合物以及 美國專利第5,561,208號、第5,462,995號及第5,334,424號 (各以引用的方式併入本文中)中所述之彼等聚合物。 如本文所用之術語”聚碳酸酯"意謂碳酸與二醇或二價酚 之聚酯。該等二醇或二價酚之實例為對二甲苯二醇、2,2_ 雙(4-氧苯基)丙烷、雙(4-氧苯基)甲烷、^-雙(4_氧苯基) 乙烷、1,1-雙(氧苯基)丁烷、1,1-雙(氧笨基)環己烷、2,2_ 雙(氧本基)丁烧及其混合物’包括(但不限於)以商品名稱 Calibre™ ' Makrolon™ ' Panlite™ > Makroclear™ CyrolonTM、Lexan™ 及 售之彼等二醇或二價 盼0 如本文所用之術語”核酸”意欲包含單鏈及雙鏈DNA& RNA ’以及含有修飾驗基、糖及主鏈之替代性核酸之任何 及所有形式。因此’將理解術語”核酸”包括(但不限於)單 鏈或雙鏈DNA或RNA(及其可為部分單鏈或部分雙鍵之形 131623.doc -14· 200918888 式)、cDNA、適體、肽核酸("PNA")、2’-5' DNA(與 DNA 之 A構形匹配的具有縮短主鏈之合成物質,該縮短主鏈含有 一個鹼基間隔;2,-5,DNA通常將不與呈B形式之DNA雜 交,但其將易於與RNA雜交)及鎖核酸("LNA")。核酸類似 物包括具有類似或改良之結合、雜交之鹼基配對性質的天 然核苷酸之已知類似物。嘌呤及嘧啶之”類似”形式在此項 技術中熟知’且包括(但不限於)吖丙啶基胞嘧啶、4-乙醯 基胞嘧啶、5-氟尿嘧啶、5-溴尿嘧啶、5-羧甲基胺基甲基_ 2-硫尿嘧啶、5-羧甲基胺基曱基尿嘧啶、肌苷、N6-異戊烯 基腺嗓吟、1-甲基腺"票吟、1-甲基假尿哺咬、1_曱基鳥嘌 呤、1-甲基肌苷、2,2-二甲基鳥嘌呤、2-曱基腺嘌呤、2-曱基鳥°票吟、3 -甲基胞嘴咬、5 -甲基胞°密咬、N6-曱基腺嗓 呤、7-甲基鳥嘌呤、5-曱基胺基甲基尿嘧啶、5-甲氧基胺 基甲基-2-硫尿嘧啶、p_D_甘露糖基q核苷(beta_D_ mannosylqueosine)、5-甲氧基尿嘧啶、2-甲硫基-N-6-異戊 烯基腺嘌呤、尿嘧啶-5-氧基乙酸甲酯、假尿嘧啶、q核 苷、2-硫胞嘧啶、5-甲基-2-硫尿嘧啶、2-硫尿嘧啶、4_硫 尿嘧啶、5-甲基尿嘧啶、尿嘧啶_5_氧基乙酸及2,6_二胺基 嘌呤。本發明所提供之DNA主鏈類似物包括磷酸二酯、硫 代磷酸酯、二硫代磷酸酯、甲基膦酸酯、胺基磷酸酯、烷 基磷酸三酯、胺基磺酸鹽、3,_硫縮醛、亞曱基(甲基亞胺 基)、3’-N-胺基甲酸酯、N_嗎啉基胺基甲酸酯及肽核酸 (PNA)、甲基膦酸酯鍵或交替甲基膦酸酯及填酸二酯鍵 (Strauss-Soukup,1997,Biochemistry 36:8692-8698)及苯甲 131623.doc -15· 200918888 基膦酸酯鍵,如US 6,664,057中所討論;亦參見 OLIGONUCLEOTIDES AND ANALOGUES, A PRACITICAL APPROACH, F. Eckstein 編輯,IRL Press,Oxford University Press (1991) ; Antisense Strategies, Annals of the New York Academy of Sciences,第 600卷,Baserga及 Denhardt編(NYAS 1992); Milligan,1993, «/· Met/. C/zem. 36:1923-1937 ; Antisense Research and Applications (1993, CRC Press)。本文之核酸可自細胞提取或根據熟習此項技 術者已知之任何方式合成製備;舉例而言,在其他來源 中’核酸可自cDNA或mRNA化學上合成或轉錄或逆轉錄。 如本文所用之術語"通孔,,意謂在固體材料中所形成之透 孔以允許材料頂面與底面之間的流體連接。 根據本發明之各種實施例之一例示性電泳晶片顯示於圖 1中。晶片(100)包含一陽極部分(101)、一陰極部分(1〇2)及 在1%極部分與陰極部分之間的一中心部分(i〇3)。陰極部分 包含至少一個第一通孔(104),且陽極部分包含至少一個第 二通孔(105)。中心部分包含複數個微型流動通道(1〇6)及 一檢測窗口(1〇7)’各微型流動通道具有一分離區及一檢測 區,其中各微型流動通道與至少一個第一通孔及至少一個 第二通孔處於流體連通中。複數個微型流動通道實質上處 於同-平面中且在中心部分内彼此不相交。各微型流動通 道具有一樣品之激發及/或檢測可進行於其中之區域。盆 中包含複數個微型流動通道之激發及檢測區之該區域稱為 檢測窗口,且此窗口包含薄塑料。 131623.doc •16- 200918888 如本文所用之短語”薄塑料”意謂所述材料包含厚度(其最 小尺寸)小於1 mm、小於750 μηι、小於650 μπι、小於50〇 μηι、小於400 μπι、小於3〇〇陣、小於200 μηι或小於1〇〇 μιη之塑料;或所述材料包含厚度在25_2〇〇〇 μιη、25·1〇〇〇 μηι、25-750 μπι、25-500 μηι、25-400 μιη、25-300 μηι 或 25-200 μπι之範圍内的塑料。雖然晶片經設計以在檢測窗 口中為薄的’但在檢測區外之晶片部分可具有相同厚度或 具有比檢測區厚度大的厚度。 為說明起見’顯示圖1之晶片具有四個微型流動通道, 然而該揭示並不意欲限制之,實際上,熟習此項技術者將 易於認識到晶片可含有交錯數目之微型流動通道(下文), 包括具有一個通道之晶片及具有兩個或兩個以上通道之晶 片。如本文所用之術語”複數個"意謂兩個或兩個以上、四 個或四個以上、八個或八個以上、16或16個以上、32個或 32個以上、48個或48個以上、64個或64個以上、96個或96 個以上、128個或128個以上、256個或256個以上、384個 或384個以上、5 12個或5 12個以上或1 024個或1 024個以 上;或2-4、2-8、2-16、2-32、2-48、2-64、2-96、2-128、2-3 84、2-512、2-1024個微型流動通道。 如圖3中所示,晶片(250)包含一基板層(360)及一覆蓋層 (370)。將複數個溝槽(361)圖案化至基板層中。一系列通 孔(亦即,透孔)(371、372)形成於覆蓋層中以使流體進入 微型流動通道,且可位於晶片之陽極及陰極部分中微型流 動通道之末端。或者,通孔可在基板層中而非覆蓋層中形 131623.doc 200918888 成以實現相同功能。基板層之頂面與覆蓋層之底面黏結以 形成微型流動通道。用於製造基於聚合物之微型流動系統 之技術係藉由BeckerA Gartner廣泛综述(Becker, 2〇〇〇, 五21: 12_26及以仏^ 2〇〇8, 390(1):89),將其以全文引用方式併入本文中。任何數目 之此等方法皆可用於製造本文所述之塑料分離晶片。 詳言之,本發明之塑料分離晶片可藉以具有待製造結構 之負型標準模熱壓印薄熱塑薄膜的方式製備。標準模可藉 由使用電鑄來複製固體基板中所製備之設備來製備。固體 基板可為玻璃板,其係藉由熟習此項技術者已知之標準光 刻及化學蝕刻方法來圖案化。藉由施加熱及壓力,使基板 與覆蓋層擴散黏結。 晶片之基板及覆蓋層可建構自多種塑料基板,包括(但 不限於)聚乙烯、聚(丙烯酸酯)(例如,聚(甲基丙烯酸甲 酉曰))、聚(碳酸酯)及不飽和、部分不飽和或飽和環狀烯烴 聚合物(COP)或不飽和、部分不飽和或飽和環狀烯烴共聚 物(coc)(例如,zeonortm、ZEONEXTM或 TOPAStm)。詳 吕之’對於本發明之晶片應用而言,較佳係C〇p及coc, 因為其在光學上展示在可見光波長範圍中與其他聚合物相 比固有之較低自身螢光。 保持本發明之方法中所利用之塑料基板及覆蓋層的厚度 為溥的以將來自晶片之自身螢光降至最少。塑料基板及覆 蓋層可各自獨立地具有小於2 mm、小於1 mm、小於750 、小於 650 μιη、小於 5〇〇 μιη、小於 400 μιη、小於 300 131623.doc 200918888 μιη、小於200 μιη或小於100 4爪之厚度;或塑料基板及覆 蓋層可各自獨立地包含厚度在25-2000 μηι、25-1 000 μιη、 25-750 μιη、25-650 μπι、25-500 μιη、25-400 μτη、25-300 μηι、25-200 μηι或2 5-100 μιη之範圍内的塑料。 在一實施例中’如圖2中所例示,晶片(250)附著於具有 頂面及底面之支撐體(201),其包含一陽極部分(2〇2)、一 陰極部分(203)及在陽極部分與陰極部分之間的中心部分 (204) ’其中中心部分包含一檢測窗口(2〇5),陽極部分包 含至少一個%極孔(2 〇 6)’且陰極部分包含至少一個陰極孔 (207)。具有向上通孔之晶片之頂面與支撐體之底面接觸, 且晶片係固定附著於支撐體。晶片可根據熟習此項技術者 已知之方法(例如,擴散黏結、溶劑黏結或黏著黏結)附著 於支撐體。 支樓體層可建構自多種塑料基板’包括(但不限於)聚乙 烯、聚(丙烯酸酯)(例如,聚(曱基丙烯酸甲酯))、聚(碳酸 醋)及不飽和、部分不飽和或飽和環狀烯烴聚合物或 不飽和、部分不飽和或飽和環狀烯烴共聚物(COC)(例如, ZEONORTM、ZEONEXTM或TOPAStm)。本發明之方法中所 利用之塑料支撐體層的厚度足夠厚以提供結構剛性且提供 足夠量之樣品及緩衝液在儲集層中。塑料支標體之厚度將 在100-15,000 μηι之範圍内。 或者’可藉由在固體支撐體上圖案化該等溝槽以將晶片 基板與支撐體結構形成在一起來製造晶片。可將覆蓋層與 支撐體黏結以完成結構。在此組態中,保持與微型流動通 131623.doc -19· 200918888 道之檢測部分一致的支撑·體及晶片之檢測窗口之厚度為薄 的以將自身螢光降至最少。此晶片部分之厚度係少於丨〇〇〇 μηι、少於750 μιη、少於500 μηι或少於250 μηι ;或在25-1000 μιη、25-75 0 μιη或 25-5 00 μιη之範圍内。PlazcrylTM > AcrylexTM ^ AcryliteTM > AcrylplastTM > AltuglasTM, P〇lycastTM and the polymers sold by them, as well as U.S. Patent Nos. 5,561,208, 5,462,995 and 5,334,424 (by reference each These polymers are described in the herein). The term "polycarbonate" as used herein means a polyester of carbonic acid with a diol or a divalent phenol. Examples of such diols or divalent phenols are p-xylene diol, 2,2 bis (4-oxygen). Phenyl)propane, bis(4-oxophenyl)methane, ^-bis(4-oxophenyl)ethane, 1,1-bis(oxyphenyl)butane, 1,1-bis(oxyphenyl) Cyclohexane, 2,2-bis(oxygen)butane and mixtures thereof including, but not limited to, under the tradename CalibreTM ' MakrolonTM ' PanliteTM > MakroclearTM CyrolonTM, LexanTM and their sale Glycol or Divalent 0 The term "nucleic acid" as used herein is intended to include both single-stranded and double-stranded DNA & RNA 'and any and all forms of alternative nucleic acids containing modified nucleotides, sugars and backbones. The term "nucleic acid" includes, but is not limited to, single-stranded or double-stranded DNA or RNA (and may be in the form of a partial single-stranded or partially double-bonded form 131623.doc-14.200918888), cDNA, aptamer, peptide nucleic acid ( "PNA"), 2'-5' DNA (a synthetic material with a shortened backbone that matches the A configuration of DNA, the shortened backbone contains one base) 2,-5, DNA will usually not hybridize to DNA in B form, but it will readily hybridize to RNA) and lock nucleic acids ("LNA"). Nucleic acid analogs include similar or improved binding, hybridization Known analogs of natural nucleotides of base pairing properties. "Similar" forms of purines and pyrimidines are well known in the art and include, but are not limited to, aziridinyl cytosine, 4-ethenyl Pyrimidine, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethylaminopurine uracil, inosine, N6-isopentenyl gland嗓吟, 1-methyl gland " 吟, 1-methyl pseudourine, 1_曱 guanine, 1-methylinosine, 2,2-dimethylguanine, 2-mercapto Adenine, 2-mercapto-bird, 3-methyl-mole bite, 5-methylcytidine, N6-mercapto adenine, 7-methylguanine, 5-mercaptoamine Methyluracil, 5-methoxyaminomethyl-2-thiouracil, p_D_mannosyl q-nucleoside (beta_D_mannosylqueosine), 5-methoxyuracil, 2-methylthio-N- 6-isopentenyl adenine, uracil-5-oxyacetate, Uracil, q nucleoside, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxy Acetic acid and 2,6-diaminoguanidine. The DNA backbone analogs provided by the present invention include phosphodiesters, phosphorothioates, dithiophosphates, methylphosphonates, aminophosphates, alkyl groups. Phosphate triester, amine sulfonate, 3, thioacetal, fluorenylene (methylimido), 3'-N-carbamate, N-morpholinyl urethane and Peptide nucleic acid (PNA), methylphosphonate bond or alternating methylphosphonate and acid diester bond (Strauss-Soukup, 1997, Biochemistry 36: 8792-8698) and benzoate 131623.doc -15· 200918888 Phosphonate linkages, as discussed in US 6,664,057; see also OLIGONUCLEOTIDES AND ANALOGUES, A PRACITICAL APPROACH, F. Eckstein, ed., IRL Press, Oxford University Press (1991); Antisense Strategies, Annals of the New York Academy of Sciences, 600 volumes, edited by Baserga and Denhardt (NYAS 1992); Milligan, 1993, «/· Met/. C/zem. 36:1923-1937 ; Antisense Research and Appli Cances (1993, CRC Press). Nucleic acids herein can be prepared from cells or synthesized synthetically in any manner known to those skilled in the art; for example, in other sources, 'nucleic acids can be chemically synthesized or transcribed or reverse transcribed from cDNA or mRNA. The term "through hole," as used herein, means a through-hole formed in a solid material to allow a fluid connection between the top and bottom surfaces of the material. An exemplary electrophoretic wafer in accordance with various embodiments of the present invention is shown in FIG. The wafer (100) includes an anode portion (101), a cathode portion (1〇2), and a central portion (i〇3) between the 1% pole portion and the cathode portion. The cathode portion includes at least one first through hole (104), and the anode portion includes at least one second through hole (105). The central portion includes a plurality of micro flow channels (1〇6) and a detection window (1〇7). Each micro flow channel has a separation region and a detection region, wherein each micro flow channel and at least one first through hole and at least A second through hole is in fluid communication. The plurality of micro flow channels are substantially in the same plane and do not intersect each other in the central portion. Each of the micro flow props has a region in which excitation and/or detection of the sample can be performed. The area of the pot containing the excitation and detection zones of the plurality of microfluidic channels is referred to as the detection window and the window contains thin plastic. 131623.doc •16- 200918888 The phrase “thin plastic” as used herein means that the material comprises a thickness (its minimum dimension) of less than 1 mm, less than 750 μηι, less than 650 μπι, less than 50〇μηι, less than 400 μπι, a plastic of less than 3 arrays, less than 200 μm or less than 1 μm; or the material comprising a thickness of 25_2〇〇〇μηη, 25·1〇〇〇μηι, 25-750 μπι, 25-500 μηι, 25 Plastics in the range of -400 μιη, 25-300 μηι or 25-200 μπι. Although the wafer is designed to be thin in the detection window, the portion of the wafer outside the detection zone may have the same thickness or have a thickness greater than the thickness of the detection zone. For the sake of illustration, the wafer shown in Fig. 1 has four micro flow channels. However, the disclosure is not intended to be limiting. In fact, those skilled in the art will readily recognize that wafers may contain interlaced micro flow channels (below). , including a wafer having one channel and a wafer having two or more channels. The term "plurality" as used herein means two or more, four or more, eight or more, 16 or more, 32 or more than 32, 48 or 48. More than 64, 64 or more, 96 or 96, 128 or 128, 256 or 256, 384 or 384, 5 12 or 5 12 or more or 1 024 Or more than 1,024; or 2-4, 2-8, 2-16, 2-32, 2-48, 2-64, 2-96, 2-128, 2-3 84, 2-512, 2- 1024 micro flow channels. As shown in Figure 3, the wafer (250) includes a substrate layer (360) and a cover layer (370). A plurality of trenches (361) are patterned into the substrate layer. Holes (ie, through holes) (371, 372) are formed in the cover layer to allow fluid to enter the micro flow channels and may be located at the ends of the micro flow channels in the anode and cathode portions of the wafer. Alternatively, the vias may be on the substrate layer. In the middle of the non-cover layer, 131623.doc 200918888 is used to achieve the same function. The top surface of the substrate layer is bonded to the bottom surface of the cover layer to form a micro flow channel. The technology of the dynamic system is extensively reviewed by Becker A Gartner (Becker, 2〇〇〇, 5:21:12_26 and 仏^ 2〇〇8, 390(1):89), which is incorporated herein by reference in its entirety. Any number of such methods can be used to fabricate the plastic release wafers described herein. In particular, the plastic release wafers of the present invention can be prepared by means of a negative standard embossed thin thermoplastic film having a structure to be fabricated. Standard molds can be prepared by electroforming a device prepared in a solid substrate. The solid substrate can be a glass sheet that is patterned by standard photolithography and chemical etching methods known to those skilled in the art. The substrate and the cover layer are diffusion bonded by applying heat and pressure. The substrate and cover layer of the wafer can be constructed from a variety of plastic substrates including, but not limited to, polyethylene, poly(acrylate) (eg, poly(methacrylic) Formazan)), poly(carbonate) and unsaturated, partially unsaturated or saturated cyclic olefin polymers (COP) or unsaturated, partially unsaturated or saturated cyclic olefin copolymers (coc) (eg, zeonort) m, ZEONEXTM or TOPAStm). For details of the wafer application of the present invention, C〇p and coc are preferred because they are optically exhibited in the visible wavelength range and are inherently lower than other polymers. Self-fluorescence. The thickness of the plastic substrate and the cover layer utilized in the method of the present invention is maintained to minimize the self-fluorescence from the wafer. The plastic substrate and the cover layer may each independently have a size of less than 2 mm and less than 1 mm, less than 750, less than 650 μηη, less than 5 μπηη, less than 400 μηη, less than 300 131623.doc 200918888 μιη, less than 200 μηη or less than 100 4 claw thickness; or the plastic substrate and the cover layer may each independently comprise Thickness in the range of 25-2000 μηι, 25-1 000 μηη, 25-750 μηη, 25-650 μπι, 25-500 μηη, 25-400 μτη, 25-300 μηι, 25-200 μηι or 2 5-100 μηη Plastic inside. In one embodiment, as illustrated in FIG. 2, the wafer (250) is attached to a support (201) having a top surface and a bottom surface, including an anode portion (2〇2), a cathode portion (203), and A central portion (204) between the anode portion and the cathode portion 'where the central portion includes a detection window (2〇5), the anode portion includes at least one %-electrode hole (2 〇6)' and the cathode portion includes at least one cathode hole ( 207). The top surface of the wafer having the upward via is in contact with the bottom surface of the support, and the wafer is fixedly attached to the support. The wafer can be attached to the support according to methods known to those skilled in the art (e.g., diffusion bonding, solvent bonding, or adhesive bonding). The bulk layer can be constructed from a variety of plastic substrates including, but not limited to, polyethylene, poly(acrylate) (eg, poly(methyl methacrylate)), poly (carbonated vinegar), and unsaturated, partially unsaturated or A saturated cyclic olefin polymer or an unsaturated, partially unsaturated or saturated cyclic olefin copolymer (COC) (for example, ZEONORTM, ZEONEXTM or TOPASMm). The thickness of the plastic support layer utilized in the method of the present invention is sufficiently thick to provide structural rigidity and to provide a sufficient amount of sample and buffer in the reservoir. The thickness of the plastic support body will be in the range of 100-15,000 μηι. Alternatively, the wafer can be fabricated by patterning the trenches on a solid support to form the wafer substrate with the support structure. The cover layer can be bonded to the support to complete the structure. In this configuration, the thickness of the support window for the support body and the wafer, which is consistent with the detection portion of the micro flow pass 131623.doc -19·200918888, is kept thin to minimize self-fluorescence. The thickness of the wafer portion is less than 丨〇〇〇μηι, less than 750 μηη, less than 500 μηι or less than 250 μηι; or in the range of 25-1000 μηη, 25-75 0 μιη or 25-5 00 μιη .

複數個微型流動通道中之每一者可具有至少丨〇 、5〇 μηι、1 〇〇 、2〇〇 μηι、500 μηι或 1 mm之深度;或具有在 1-1000 μηι、10-100 μηι、1〇_50 μιη425_5() μπι之範圍内的 深度。複數個微型流動通道可具有至少25 μπι、5〇 μιη、 100 μηι、200 μηι、500 μΓΠ4 】mm之寬度;或具有在25_ 1000 μηι、 25-200 μηι 或 50-200 μηΐ2範圍内的寬度。各通 道之微通道橫截面可具有實質上正方形、矩形、圓形、半 圓形橢圓形、二角形或梯形橫戴面。熟習此項技術者將 認識到微型流動通道之深度、寬度及橫截面可能一致或可 能不一致。Each of the plurality of micro flow channels may have a depth of at least 丨〇, 5〇μηι, 1 〇〇, 2〇〇μηι, 500 μηι, or 1 mm; or have a density of 1-1000 μηι, 10-100 μηι, 1〇_50 μιη425_5() Depth in the range of μπι. The plurality of micro flow channels may have a width of at least 25 μm, 5 μm, 100 μm, 200 μm, 500 μΓΠ4 mm; or have a width in the range of 25_1000 μηι, 25-200 μηι or 50-200 μηΐ2. The microchannel cross section of each channel can have a substantially square, rectangular, circular, semi-circular elliptical, digonal or trapezoidal cross-face. Those skilled in the art will recognize that the depth, width and cross-section of the micro flow channels may or may not be consistent.

複數個微型流動通道⑽6)中之4 -者包含一分離區 分離區通常具有分離長度為約2- (108)及一檢測區(jog) 50 cm、10-50 cm、2-25 cm、 定義為樣品注射點與樣品檢測 度通常小於跨越陰極與陽極儲 度。 10-25 cm之通道。分離長度 點之間的通道部分。分離長 集層之間的分離通道之總長 Η吋分析複數個樣 品 習 而 通 - ” Μ 儿力、雕遇逼中j 注射及堆疊至本文所述之任何分離晶片中來執行 此項技術者所熟悉’視(例如)通道表面上所存在4 定(下文)’沿分離通道施加電場引起樣品沿通道隹 13I623.doc -20- 200918888 道之陰極部分朝陽極部分或自陽極部分朝陰極部分移動。 樣品穿過篩選基質之移動基於尺寸來分離物f。 當經分離之樣品通過檢測窗口時,可激發附著於樣。内 之各物質之染料標記且可檢測所得螢光。在各通道之Ζ離 區之末端,檢測窗口通常與複數個微通道中之— V 有的檢 測區重疊。通常,複數個微型流動通道中之 ^ 有的檢測 區處於沿該等通道實質上相同之位置,使得檢測窗口可處 於支撐體之中心部分中的單一位置處。4 of the plurality of micro flow channels (10) 6) include a separation zone separation zone typically having a separation length of about 2- (108) and a detection zone (jog) 50 cm, 10-50 cm, 2-25 cm, defined The injection point and sample detection for the sample is typically less than the cathode and anode storage. 10-25 cm channel. Separate the channel portion between the length points. Separating the total length of the separation channels between the long stacks and analyzing a plurality of samples is abbreviated - " Μ 力 force, engraving, j injection and stacking into any of the separate wafers described herein to perform the technique It is familiar with the presence of an electric field along the separation channel (for example) on the surface of the channel (for example), causing the sample to move along the cathode portion of the channel 隹13I623.doc -20-200918888 toward the anode portion or from the anode portion toward the cathode portion. The movement of the sample through the screening substrate is based on the size of the separation material f. When the separated sample passes through the detection window, the dye attached to the sample can be excited and the resulting fluorescent light can be detected. At the end of the region, the detection window usually overlaps with the detection region of the plurality of microchannels. Typically, the detection regions of the plurality of microfluidic channels are at substantially the same position along the channels, such that the detection window It can be at a single location in the central portion of the support.

較佳地,為晶片提供用於將複數個樣品同時注射至複數 個樣品或緩衝液孔中之注射器以能夠同時進行多重樣品分 離及檢測。該等注射器將(例如)複數個樣品中之一樣品提 供至複數個微型流動通道之一微型流動通道中。注射^可 根據熟習此項技術者已知之任何方法(例如)藉由電:輸 送、氣體傳動或液體傳動經由將樣品連接至分離通道之針 或管或通道將樣品引入通道中。 在某些實施例中’樣品可經由晶片之陰極儲集層载入晶 片中。可根據熟習此項技術者已知之方法經由陰極孔之一 者引入注射量之各樣品。舉例而言,可經由對分離通道及/ 或刀離通道之父叉通道與樣品及廢液孔加偏壓以便將樣品 孔中之-部分樣品(亦即,注射量)提供至分離通道中來注 射樣品。在樣品注射之後,將額外緩衝溶㈣^陰極孔 中;可提供足夠量以稀釋孔中任何剩餘樣品。舉例而言, 將約至> 5、1〇、25 ' 5〇或1〇〇倍於樣品注射量之量的緩衝 丨陰極孔中。或者,將在約5-100倍、5-50倍或ι〇·50 131623.doc •21 · 200918888 倍於樣品注射量之範圍内之量的緩衝液引人陰極孔中。 在其他實施例中,複數個微型流動通道中之每一者進一 步包含-用於引人樣品之注射通道。舉例而言,參考圖 4;其中顯示晶片(400)之透視圖,顯示陰極部分(4〇ι)及中 心部分(4〇3)之鄰接部分。陰極部分包含至少—個第二通道 (4〇5) ’且巾心部分包含複數個微型流動通道(4G6)。在晶 片之陰極部分内’對於各微型流動通道而言,各微型流動 通道進-步包含一包含樣品孔(4〇9)及廢液孔(41〇)之注射 通道(408)。 主射通道可處於單一交又通道(如圖4中所說明)、單一τ 形連接或偏移雙重T形連接組態.在一些實施例中,注射 通道為偏移雙重T形連接組態,其將樣品注射量減至最 小,藉此改良分離解析度。樣品自注射通道注射至微型流 動通道可根據熟習此項技術者已知之方法來達成,該等方 法包括經由在樣品、廢液、陽極及陰極孔中施加適當電位 之電泳注射。 微型流動分離及檢測晶片之一替代性實施例在圖5中說 明。晶片(500)包含-陽極部分(5〇1)、一陰極部分(5〇2)及 一中心部分(503)。針對各微型流動通道(5〇6),陰極部分 包含一第一通孔(504) ’且針對各微型流動通道(5〇6),陽 極邰分包含至少一個第二通孔(5〇5)。中心部分包含複數個 微型流動通道(506)及一檢測窗口(5〇7),各微型流動通道 具有一分離區及一檢測區;其中各微型流動通道與一第一 通孔及一第二通孔處於流體連通中。複數個微型流動通道 131623.doc -22· 200918888 f本上處於同-平面,且在中心部分内彼此不相交。檢測 窗口包含薄塑料且與各微型流動通道之檢測區重疊。 在此情況下,省略注射通道以利於各微型流動通道之陽 極(第二)及陰極(第一)通孔。根據熟習此項技術者已知之 方法(上文)經由陰極通孔之一者引入注射量之各樣品。在 注射樣品之後,將額外緩衝溶液引入各陰極緩衝液孔中; 較佳地,提供足夠量以稀釋孔中任何剩餘樣品,藉此調節 自長期樣品注射引人之任何背景信號且改良檢測窗口上所 觀測到之信號雜訊比。舉例而言,將約至少5、、^、 或100倍於樣品注射量之量的緩衝液引入陰極孔中。或 者將在約5-100倍、5_5〇倍或1〇_5〇倍於樣品注射量之範 圍内之量的緩衝液引入陽極緩衝液孔中。 、藉由跨越微晶片上之微通道施加電位差來提供微型流動 通道内樣品之電泳分雜。.s # π L λ 通㊉藉由將陰極及陽極分別置放 於陰極孔及陽極孔中,沿微型流動通道之分離部分建立電 場,且將樣品(例如,&缺、A ^ t 1 hi)自陰極末端經由分離部分移動 :檢測部:且最終至陽極,可跨越微通道之末端施加高 壓 有效刀離所需之雷错、s A 士 r Λ 電%通吊在50 V/cm至600 V/cm之範 二來自電源之電壓經由電極施加,且陽極及陰極儲集 層中使用緩衝液以接Til ^ /、電極與篩選聚合物之間的電接觸。 使用與陰極及陽極孔中 > T之緩衝液接觸之電極將樣品分離 加至分離通道。由於與緩衝液接觸之電極上 t = L 子進行水解’導致—矿及 ^ 此形成導致緩衝液之ΡΗ值隨時間而改變,且 131623.doc -23. 200918888 極儲集層中緩衝液之阳值變化可經由在陽極及陰 而減弱…夠緩衝溶液(例如,1X TTE,·一。) 成之氣泡且有'電極與!選基質之間的接觸。緩衝液内所形 不?的;動至篩選基質中之傾向,阻斷通道,導致 不良的核酸分離。 可藉由使用以下方法夕,, ^ Α 下方法之-者或組合來防止電極上形成之 ::1通道中。首先,可升高儲集層内之電極以移動 乳泡產生來源(電極)遠離通道中之人孔。其次,玻璃料、 聚合物玻璃料或聚合物膜或聚合物過濾器可插入陰極入孔 與電極末端之間。詳言之,聚合物玻璃料(例如,聚喊醚 酮(PEEK))可插入陰極入孔與電極末端之間。 選擇不#電且具有阻止電極上形成之氣泡豸過孔之孔徑 的玻璃料、膜或過濾器。由於在電極與篩選基質之間插入 玻璃料、聚合物膜或過濾器,因此可防止自電解過程形成 之氣泡進入通道中。此實施可減少及/或消除因氣泡堵塞 通道所造成的故障。 電連接用於由複數個樣品組成之同時分析之分離設備以 便共同電源可用於同時加偏壓於複數個通道。此外,晶片 及儀器之實體限制通常將不允許所有通道在長度、深度及 寬度方面具有相同實體布局。 為實現複數個微型流動通道中之每一者實質上相同之電 泳注射及分離條件,個別設備之各通道區段應具有基本上 相同之電阻且因此具有基本上相同之電場。實質上相同之 電場(亦即,其中跨越複數個微型流動通道中之每一者的 131623.doc 24· 200918888 電場相差不超過約+/-5%)可藉由同時調整複數個微型流動 通道中之每一者的長度、寬度及深度以調整通道之各區段 之電阻來建立。各區段之電阻Λ可藉由以下關係式來描 述: 其中為電阻率,/為長度且J為通道之橫截面積。 : 存在於分離晶片之通道壁上的表面電荷可導致電滲透及 ρ 樣品與壁之相互作用。可藉由將表面塗層塗覆至微型流動 通道之内壁將此等影響降至最低。該等表面塗層及改質可 經由熟習此項技術者已知之方法實現(例如Ludwig及 Beider, 2003 24(15):2481-6)。 可利用大量用於表面改質之候選者,包括羥丙基曱基纖 維素(HPMC)、聚(氧化乙烯)(PEO)、聚(乙烯醇)(PVA)、聚 二甲基丙烯醯胺(PDMA)、聚(乙烯基吡咯啶酮)、二曱基丙 烯醯胺(DMA)、二乙基丙烯醯胺(DEA)、聚(二乙基丙烯醯 U 胺)(PDEA)及其混合物,諸如PDMA:PDEA。 此外,為用於電泳應用,複數個微型流動通道中之每一 者較佳係充滿篩選基質。在非限制性實例中,該等篩選基 質可包含線性聚丙烯醯胺(PAA)、聚二甲基丙烯醯胺 ' (PDMA)、聚二乙基丙烯醯胺(PDEA)、聚乙烯基吡咯啶酮 (PVP)及其組合,包括(例如)PVP:PAA、PDMA:PAA、 PDEA:PAA、PDEA:PDMA:PAA。在某些實施例中,篩選 基質包含0.1-50 wt%之聚丙烯醯胺。大量此等篩選基質亦 131623.doc -25- 200918888 具有動態自塗能力。如使用本發明之電泳分離晶片之此等 實施例所實施般,核酸自陽極經由筛選基質電泳移動至陰 極末端,且在其中按尺寸分離。如上文所述,通道之内= 可經塗佈以將電滲透及核酸與壁之相互作用的影響降至最 低。 解析度(本文特定為電泳解析度)為明確區分兩個及時分 離之峰的迠力(或藉由鹼基尺寸)。解析度藉由以下方 式定義 Λ = (21η2),/2 — ’广’丨 ^b{hwx +hw2) 其中/為第η個峰之移動時間,h為第η個峰之全寬及半最 大:,且鉍為兩個峰之間的鹼基數目之差。單鹼基對解析 度定義在RA_·4之點°視覺上’兩個峰在峰谷比大於0.7 時可彼此區分。R及峰:谷要求兩者必須均滿足以具有高 解析度1亦可認為解析度為一系列片段尺寸之特徵。在 S™刀析中等位基因之片段尺寸的範圍在90至400 bp之範 圍内’且跨越此範圍之片段尺寸的單驗基對解析度為STR 析斤而排序分析之片段尺寸範圍高達1200 bp。實現 長閱讀長度及資料產量之能力部分地藉由晶片能夠 、皁鹼基對解析度之範圍來測定。 ^檢測系統之檢測極限由信號雜訊比(S N R)限定。.此 Ρ進全義為號功率與破壞信號之雜訊功率(雜訊功率之 Ζ广策差)之比率。高SNR表明信號存在之更高確定性。3 雜訊比—般定義為可為確信鑑別信號存在所接受之 131623.doc -26· 200918888 Ί 吕號雜 sfl 比(Gilder, 2007,J Forew z'c Sc/. 52(1): 97)。Preferably, the wafer is provided with a syringe for simultaneously injecting a plurality of samples into a plurality of samples or buffer wells to enable simultaneous multiple sample separation and detection. The injectors provide, for example, one of a plurality of samples to one of a plurality of microfluidic channels. Injections can be introduced into the channel by any means known to those skilled in the art, for example, by electrical: delivery, gas transmission or liquid transfer via a needle or tube or channel that connects the sample to the separation channel. In some embodiments, the sample can be loaded into the wafer via the cathode reservoir of the wafer. Each sample of the injection amount can be introduced through one of the cathode holes according to a method known to those skilled in the art. For example, the sample and the waste liquid hole can be biased via the parent channel and the waste channel of the separation channel and/or the knife to provide a part of the sample hole (ie, the injection amount) to the separation channel. Inject the sample. After the sample is injected, additional buffer is dissolved in the (4) cathode hole; a sufficient amount can be provided to dilute any remaining sample in the well. For example, it will be about ~5, 1 〇, 25' 5 〇 or 1 〇〇 times the amount of sample injected into the buffer 丨 cathode hole. Alternatively, an amount of buffer in the range of about 5-100 times, 5-50 times, or ι 〇 50 131623.doc • 21 · 200918888 times the amount of sample injected is introduced into the cathode hole. In other embodiments, each of the plurality of microfluidic channels further comprises - an injection channel for introducing a sample. For example, referring to Fig. 4; there is shown a perspective view of the wafer (400) showing the abutting portions of the cathode portion (4 〇) and the center portion (4 〇 3). The cathode portion includes at least one second passage (4〇5)' and the core portion includes a plurality of micro flow passages (4G6). In the cathode portion of the wafer, for each of the micro flow channels, each of the micro flow channels further includes an injection channel (408) including a sample well (4〇9) and a waste liquid (41〇). The main shot channel can be in a single intersection (as illustrated in Figure 4), a single τ connection or an offset dual T connection configuration. In some embodiments, the injection channel is an offset dual T connection configuration, It minimizes sample injection, thereby improving separation resolution. Injection of the sample from the injection channel to the microfluidic channel can be accomplished according to methods known to those skilled in the art, including electrophoretic injection via application of an appropriate potential in the sample, waste, anode, and cathode wells. An alternative embodiment of a microfluidic separation and detection wafer is illustrated in FIG. The wafer (500) includes an anode portion (5〇1), a cathode portion (5〇2), and a central portion (503). For each of the micro flow channels (5〇6), the cathode portion includes a first through hole (504)' and for each of the micro flow channels (5〇6), the anode split includes at least one second through hole (5〇5) . The central portion includes a plurality of micro flow channels (506) and a detection window (5〇7), each of the micro flow channels has a separation area and a detection area; wherein each of the micro flow channels and a first through hole and a second pass The holes are in fluid communication. A plurality of micro flow channels 131623.doc -22· 200918888 f are in the same plane and do not intersect each other in the center portion. The detection window contains thin plastic and overlaps the detection zone of each micro flow channel. In this case, the injection passage is omitted to facilitate the anode (second) and cathode (first) through holes of each of the micro flow passages. Each sample of the injection amount is introduced via one of the cathode through holes according to a method known to those skilled in the art (above). After the sample is injected, an additional buffer solution is introduced into each of the cathode buffer wells; preferably, a sufficient amount is provided to dilute any remaining sample in the well, thereby modulating any background signal from the long-term sample injection and improving the detection window The observed signal noise ratio. For example, a buffer of about at least 5, , ^, or 100 times the amount of sample injected is introduced into the cathode well. Alternatively, a buffer of about 5 to 100 times, 5 to 5 times, or 1 to 5 times the sample injection amount is introduced into the anode buffer hole. Electrophoretic doping of the sample within the microfluidic channel is provided by applying a potential difference across the microchannels on the microchip. .s # π L λ 通十 By placing the cathode and anode in the cathode and anode holes, respectively, an electric field is established along the separated portion of the micro flow channel, and the sample is sampled (for example, & lack, A ^ t 1 hi Moving from the end of the cathode via the separation portion: the detection portion: and finally to the anode, the high-speed effective knife can be applied across the end of the microchannel to remove the required lightning error, s A 士 Λ Λ Λ 50 50 50 50 50 50 50 50 50 50 50 The voltage of V/cm is applied from the voltage of the power source via the electrodes, and buffer is used in the anode and cathode reservoirs to connect Til ^ /, the electrical contact between the electrodes and the screening polymer. The sample is separated and added to the separation channel using an electrode in contact with the buffer of > T in the cathode and anode wells. Hydrolysis by t = L on the electrode in contact with the buffer 'causes the -mine and ^ formation causes the buffer value of the buffer to change with time, and 131623.doc -23. 200918888 The buffer of the anode in the polar reservoir The change in value can be attenuated by the anode and the cathode... enough to buffer the solution (for example, 1X TTE, · a.) into bubbles and have 'electrodes and! The contact between the substrates is selected. Shaped in the buffer? The tendency to move into the screening matrix, blocking the channel, leading to poor nucleic acid isolation. The following steps can be used to prevent the formation of the ::1 channel on the electrode by using the following method. First, the electrodes in the reservoir can be raised to move the source of the emulsion (electrode) away from the manhole in the channel. Second, a frit, polymer frit or polymer film or polymer filter can be inserted between the cathode inlet and the electrode tip. In particular, a polymeric frit (e.g., polyethyl ketone (PEEK)) can be inserted between the cathode inlet and the electrode tip. A glass frit, film or filter that does not have electricity and has an aperture that blocks the bubble enthalpy formed on the electrode is selected. Since a glass frit, a polymer film or a filter is interposed between the electrode and the screening substrate, bubbles formed from the electrolysis process can be prevented from entering the channel. This implementation reduces and/or eliminates failures caused by air clogging of the passage. Electrically connected separate devices for simultaneous analysis consisting of a plurality of samples so that a common power source can be used to simultaneously bias a plurality of channels. In addition, physical limitations of wafers and instruments will generally not allow all channels to have the same physical layout in terms of length, depth and width. To achieve substantially the same electrophoretic injection and separation conditions for each of the plurality of microfluidic channels, each channel segment of the individual device should have substantially the same electrical resistance and thus have substantially the same electric field. The substantially identical electric field (i.e., the 131623.doc 24·200918888 electric field crossing each of the plurality of micro flow channels does not exceed about +/- 5%) can be adjusted by simultaneously adjusting a plurality of micro flow channels The length, width and depth of each are established by adjusting the resistance of each section of the channel. The resistance 各 of each segment can be described by the following relationship: where is the resistivity, / is the length and J is the cross-sectional area of the channel. : The surface charge present on the channel walls of the separation wafer can cause electro-osmosis and the interaction of the ρ sample with the walls. This effect can be minimized by applying a surface coating to the inner wall of the micro flow channel. Such surface coatings and modifications can be accomplished by methods known to those skilled in the art (e.g., Ludwig and Beider, 2003 24(15): 2481-6). A large number of candidates for surface modification can be utilized, including hydroxypropyl decyl cellulose (HPMC), poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), polydimethyl methacrylate ( PDMA), poly(vinylpyrrolidone), dimercaptopropenylamine (DMA), diethyl acrylamide (DEA), poly(diethyl propylene fluorene U amine) (PDEA), and mixtures thereof, such as PDMA: PDEA. Moreover, for use in electrophoretic applications, each of the plurality of microfluidic channels is preferably filled with a screening matrix. In a non-limiting example, the screening matrices may comprise linear polyacrylamide (PAA), polydimethyl methacrylate (PDMA), polydiethyl acrylamide (PDEA), polyvinyl pyrrolidine. Ketones (PVP) and combinations thereof, including, for example, PVP: PAA, PDMA: PAA, PDEA: PAA, PDEA: PDMA: PAA. In certain embodiments, the screening matrix comprises 0.1-50% by weight of polyacrylamide. A large number of these screening matrices are also 131623.doc -25- 200918888 with dynamic self-coating capabilities. As embodied in such embodiments using the electrophoretic separation wafer of the present invention, the nucleic acid is electrophoretically moved from the anode to the cathode end via a screening substrate and is separated therein by size. As noted above, the inside of the channel = can be coated to minimize the effects of electroosmosis and interaction of the nucleic acid with the wall. The resolution (herein specified as electrophoretic resolution) is the force (or by base size) that clearly distinguishes between two timely separated peaks. The resolution is defined by Λ = (21η2), /2 - '广' 丨^b{hwx +hw2) where / is the movement time of the ηth peak, h is the full width and half maximum of the ηth peak: And 铋 is the difference in the number of bases between the two peaks. The single base pair resolution is defined at the point of RA_·4. Visually, the two peaks can be distinguished from each other when the peak-to-valley ratio is greater than 0.7. R and peak: The valley requires that both must be met to have a high resolution of 1 and the resolution can be considered as a feature of a series of segment sizes. The fragment size of the alleles in the STM knife ranged from 90 to 400 bp' and the single-sequence pair resolution across the range was STR. The fragment size range of up to 1200 bp was analyzed. . The ability to achieve long read lengths and data yields is determined, in part, by the range of wafer susceptibility and soap base pair resolution. ^ The detection limit of the detection system is defined by the signal to noise ratio (S N R). This is the ratio of the power of the power to the power of the signal and the noise power of the signal (the noise of the noise). A high SNR indicates a higher certainty of the presence of the signal. 3 The noise ratio is generally defined as the acceptable for the identification signal. 131623.doc -26· 200918888 Ί LV sfl ratio (Gilder, 2007, J Forew z'c Sc/. 52(1): 97) .

當分析及檢測核酸樣品中之複數個核酸物質時,來自晶 片檢測窗口中之塑料的自身螢光對螢光背景有強烈影響。 本發明之電泳分離晶片之有利特徵在於使用薄檢測窗口以 將來自塑料之背景螢光降至最小。將此背景水準與 borofloat®(其為用於製造微型流動分離晶片之常用基板)相 比。藉由使用薄塑料窗口,在PCR方法中可檢測到產生用 於分析之螢光標記之片段的最少1000個副本、3〇〇個副 本、100個副本、30個副本、1〇個副本、】個副本之模板核 酸。亦可檢測到用於排序反應之最少〇.5 pm〇ie、〇1 pmole、0.01 pm〇le或 〇.001 pm〇le之核酸模板。 分離及檢測晶片應用 不赞听之各種 兩者。用於人類鑑別中之實例包括刑事法醫學及國家安 全,例如在軍用檢查點、邊界及港口、機場及大規模災難 地點鑑別。獸醫學鑑別應用(包括,#馬繁育及追蹤、家 畜繁育及寵物鑑別)亦在本發明之電 豕 内。 < 电,水日日片之用途範疇 此外,本發明之儀器可加固且藉此運用於結果可㈣使 :之領域中。目而’該等儀器可用於軍用檢查 港口、機場及大規模傷亡地點。 運介及 核酸排序技術之應用可分成 學,包括(例如)細菌性感染及抗體敏H 員臨床诊斷 別及抗藥性概況分析)、遺傳性疾病斧性感染(鑑 是雜病症(哮喘、心 131623.doc 200918888 臟病、糖尿病)及藥物基因組學;獸醫學臨床診斷學;研 九排序,包括再排序及完成;生物武器劑鑑別,包括(例 如)炭疽芽孢桿菌(反㈣及艾博拉病毒(烈o/a 檢測,及食品安全。一些實例如下。 一患有HIV之患者需要抗藥性測試。目前,可花費數週 來確立抗性。抗藥菌株可在此時間期間控制。對當患者在 醫師診所中等待時可在卜2小時内提供回答之儀器及系統 存在未滿足之需要。使用根據本發明之電泳分離晶片允許 頻繁抗藥性監測、臨床上及成本上更有效之使用抗病毒劑 及更好之患者結果。 患有菌血症之患者處於休克中。目前,可花費數天來 確定病㈣對抗生素是否有抗性及其身份。在此期間,必 須用廣譜抗菌素(broad-spectrum antibiotics)來治療患者, 廣譜抗菌素可引起對患者之嚴重副作用且促進目前盛行之 抗菌藥抗性增加。此外,該等治療可為次佳的。使用根據 本發明之電泳分離晶片允許在丨_2小時中鑑別病原體之抗 生素抗性概況,產生更有效之靶向治療、減少之抗生素毒 性及更佳之患者結果。對患者及公眾健康之益處受人稱 讚。 患有癌症之患者正進行手術。目前,當患者在手術台 上時取出腫瘤樣品至病理學檢查。基於簡單組織病理學菌 株之結果,作出關於外科醫生應如何進取之決定。使用根 據本發明之電泳分離晶片可用在不足丨小時内癌症之明確 核酸診斷代替組織病理學,允許作出基於更好資訊之外科 131623.doc -28- 200918888 手術決定。 以下實例說明本發明之特定實施例及其各種用途。其闡 述僅為達成說明之目的’且不應理解為限制本發明。 實例 實例1 日日片設計及電泳 實例\人:晶片設計 本發明之設備之特定實施例的示意圖在圖6中說明。此 微型流動設備由1 6個微通道組成,各微通道具有雙重τ交 又注射器。通道之橫截面尺寸(9〇 寬及4〇 ^爪深)及陽極 與交又注射器之間的通道長度(25 cm)對所有通道而言均為 相等的。各通道之分離長度(交又點與激發/檢測窗口之間 的距離)在16至20 cm長之範圍内。陰極孔與注射器之間的 通道橫截面積經調整以便陰極與交叉點之間的所有電阻及 因此電場在偏壓下基本上㈣。此確保與載入樣品之分離 通道無關,樣品所經受之電場相同。所有通道之交又點電 壓基本上相同。用於注射樣品之樣品入口及樣品廢液支管 均為2.5 mm長。兩個通道之間的偏距為5〇〇 。 f例\它·,晶片及支撐體製造 藉由熱㈣、鑽孔以形成人孔且擴散減以密封通道, =片W案化。在玻璃帽由光較用化學濕絲刻方法 製造母片(master)。接著此玻璃母片用於藉由電鑄來製造 鎮始壓印卫具以產生玻璃母片之負型複製物。Zed 1纖薄膜板(尺寸為5,,x2,,及厚度為i88㈣用作基板材 131623.doc •29· 200918888 料。在此等板上,陰極、陽極、樣品及廢液入孔藉由鑽孔 來形成。繼此之後,在壓印工具上將晶片設計特徵熱壓印 至基板中。如囷7中所說明,藉由將堆疊置放於135 °C下及 1 250 psi壓縮壓力下經加熱之水壓機中〗5分鐘來實現壓 印。將堆疊保持在1250 psi之壓縮壓力下且在釋放之前使 其冷卻至38°C。用含有降冰片烯單體之薄熱塑性聚合物製 造此晶片導致在激發及檢測窗口產生低背景螢光。實現高 黏結強度擴散黏結允許使用高黏度筛選基質。When analyzing and detecting a plurality of nucleic acid species in a nucleic acid sample, the self-fluorescence of the plastic from the wafer detection window has a strong influence on the fluorescent background. An advantageous feature of the electrophoretic separation wafer of the present invention is the use of a thin detection window to minimize background fluorescence from the plastic. This background level is compared to borofloat®, which is a common substrate used to fabricate micro flow separation wafers. By using a thin plastic window, a minimum of 1000 copies, 3 copies, 100 copies, 30 copies, and 1 copy of the fragments that produce the fluorescent markers for analysis can be detected in the PCR method, A copy of the template nucleic acid. A nucleic acid template for a minimum of 〇5 pm〇ie, 〇1 pmole, 0.01 pm〇le or 〇.001 pm〇le for sorting reactions can also be detected. Separating and testing wafer applications does not appreciate the various. Examples for human identification include criminal forensics and national security, such as identification at military checkpoints, borders and ports, airports, and large-scale disaster locations. Veterinary identification applications (including, #马养殖 breeding and tracing, house breeding and pet identification) are also within the scope of the present invention. < Uses of electricity, water, and daily use. In addition, the apparatus of the present invention can be reinforced and used in the field of the results of (4). The instruments can be used for military inspections at ports, airports and mass casualties. The application of mediation and nucleic acid sequencing technology can be divided into a variety of studies, including (for example, bacterial infection and clinical diagnosis of drug-sensitive H-members and drug resistance profile analysis), hereditary disease axious infection (identification is a miscellaneous condition (asthma, heart 131623) .doc 200918888 Dirty diseases, diabetes and pharmacogenomics; veterinary clinical diagnostics; research nine sorts, including reordering and completion; identification of biological weapons, including, for example, Bacillus anthracis (anti-four) and Ebola virus o/a testing, and food safety. Some examples are as follows. A patient with HIV requires a drug resistance test. Currently, it can take several weeks to establish resistance. Drug resistant strains can be controlled during this time. There is an unmet need for instruments and systems that provide answers within 2 hours of waiting in the clinic. The use of electrophoretic separation wafers according to the present invention allows for frequent drug resistance monitoring, clinical and cost-effective use of antiviral agents and more Good patient outcome. Patients with bacteremia are in shock. Currently, it can take several days to determine whether the disease is resistant to antibiotics. Sex and its identity. During this period, broad-spectrum antibiotics must be used to treat patients, and broad-spectrum antibiotics can cause serious side effects to patients and promote the current prevalence of antibiotic resistance. In addition, these treatments It can be sub-optimal. The use of electrophoretic separation of wafers in accordance with the present invention allows identification of pathogen antibiotic resistance profiles in 丨_2 hours, resulting in more effective targeted therapies, reduced antibiotic toxicity, and better patient outcomes. The benefits of public health are praised. Patients with cancer are undergoing surgery. Currently, when the patient is on the operating table, the tumor sample is taken to the pathological examination. Based on the results of the simple histopathological strain, how the surgeon should make progress The decision to use the electrophoretic separation wafer according to the present invention can be used to replace the histopathology with a clear nucleic acid diagnosis of cancer within less than one hour, allowing for a surgical decision based on better information. 131623.doc -28-200918888. The following examples illustrate the invention. Specific embodiments and their various uses. The purpose of the invention is not to be construed as limiting the invention. EXAMPLES Example 1 Japanese Film Design and Electrophoresis Example\People: Wafer Design A schematic diagram of a particular embodiment of the apparatus of the present invention is illustrated in Figure 6. This microfluidic device consists of 16 Composed of microchannels, each microchannel has a double-crossing syringe and a syringe. The cross-sectional dimensions of the channel (9 〇 wide and 4 〇 ^ claw depth) and the length of the channel between the anode and the syringe (25 cm) for all channels The words are equal. The separation length of each channel (the distance between the intersection point and the excitation/detection window) is in the range of 16 to 20 cm long. The channel cross-sectional area between the cathode hole and the syringe is adjusted to the cathode. All the resistances between the intersections and thus the electric field are substantially (4) under bias. This ensures that the electric field experienced by the sample is the same regardless of the separation channel loaded into the sample. The intersection voltage of all channels is basically the same. The sample inlet and sample waste branch for the injection of the sample are both 2.5 mm long. The offset between the two channels is 5〇〇. f example \ it ·, wafer and support manufacturing by heat (four), drilling to form a manhole and diffusion minus the sealing channel, = film W case. A master is produced in a glass cap by light using a chemical wet wire engraving method. This glass master is then used to make a squeezing fixture from electroforming to produce a negative replica of the glass master. Zed 1 fiber film (size 5, x2, and thickness i88 (4) is used as the base plate 131623.doc •29· 200918888. On these plates, the cathode, anode, sample and waste liquid inlet are drilled. Holes are formed. Thereafter, the wafer design features are hot stamped onto the substrate on the embossing tool. As illustrated in 囷7, the stack is placed at 135 ° C and at a compression pressure of 1 250 psi. Embossing was carried out in a heated water press for 5 minutes. The stack was held at a compression pressure of 1250 psi and allowed to cool to 38 ° C prior to release. Fabrication of this wafer with a thin thermoplastic polymer containing norbornene monomer resulted in Low background fluorescence is produced at the excitation and detection windows. Achieving high bond strength diffusion bonding allows the use of high viscosity screening substrates.

藉由將一 ZenorTM-1420R薄膜板(尺寸為5ι,χ2ιι及厚度為 1 88 μπι)在基板上對準且使此堆疊經受熱及壓力來實現基 板之擴散黏結。在薄膜板之間不塗覆黏著劑;黏結完全藉 由熱及壓力來實現。晶片之最終厚度為約376 μιη。藉由此 方法製造之分離晶片經測試且證明在損壞之前能夠經受至 少830 psi之壓力。 圖8說明藉由CNC銑削自3/8,,厚之丙烯酸板(ge piastie) 製造的晶片支撐體。晶片支撐體由三個主要部分组成:陰 極板、中心部分及陽極板。陰極板含有陰極孔、樣品及廢 液孔及對準。陽極板含有陽極孔及對準&。陰極板及陽 極板均為3/8,,厚度讀供足夠樣品量進行樣品注射及提供 足夠緩衝液量進行電泳。中心部分為〇〇4,,厚度且具有作 為用於微通道中雷射誘發螢光檢測之"檢測窗口 "的開口。 厂,〜"巧赏无藉由約376 μιη厚 基板來控制。使用雙面壓敏性黏著劑將分離^附著於 片支撐體。選擇對分離緩衝液及篩選基質而言為惰性之 131623.doc •30- 200918888 著劑。使用壓敏性環氧樹脂將支撐體與分離晶片連接。激 發及檢測區中塑料之厚度藉由在此區域中載體上製造切口 來降至最小。The diffusion bonding of the substrate is achieved by aligning a ZenorTM-1420R film sheet (size 5 ι, χ2 ιι and 1 88 μπι thickness) on the substrate and subjecting the stack to heat and pressure. No adhesive is applied between the film sheets; the bonding is achieved entirely by heat and pressure. The final thickness of the wafer is about 376 μηη. The discrete wafers fabricated by this method were tested and demonstrated to withstand a pressure of at least 830 psi prior to damage. Figure 8 illustrates a wafer support made from a 3/8, thick acrylic plate by CNC milling. The wafer support consists of three main parts: a cathode plate, a center portion, and an anode plate. The cathode plate contains cathode holes, sample and waste holes and alignment. The anode plate contains anode holes and alignment & Both the cathode and anode plates are 3/8, and the thickness is read for a sufficient sample volume for sample injection and sufficient buffer volume for electrophoresis. The central portion is 〇〇4, thick and has an opening for the "detection window" for laser induced fluorescence detection in the microchannel. The factory, ~ " skill rewards are controlled by a substrate of approximately 376 μηη thick. The separation is attached to the sheet support using a double-sided pressure-sensitive adhesive. Choose to be inert to the separation buffer and screening matrix. 131623.doc •30- 200918888 Primer. The support is attached to the separation wafer using a pressure sensitive epoxy resin. The thickness of the plastic in the excitation and detection zone is minimized by making slits in the carrier in this zone.

Zen〇rTM-1420R之光學發射光譜具有在57〇 nmT之拉曼 (Raman)發射峰’該發射峰限制螢光染料之螢光檢測。圈9 s登明與典型玻璃分離晶片(玻璃14 mm及玻璃〇 7 相 比,塑料晶片(Pchipl及PChp2)之低自身螢光。藉由選擇 产 cop聚合物且將檢測區中設備之厚度降至最小且藉由用薄 膜製造該設備來實現塑料晶片之低自身螢光。 實例1C : 4面玫:貧及鏔選羞f 藉由最初用去離子水預處理微通道表面,接著用1 M NaOH處理微通道表面來實現表面改質。應用吹氮處理 (nitrogen flush)自通道移除流體。繼表面處理之後,使 0.1°/〇(w/v)羥丙基甲基纖維素(HPMC)溶液流動穿過通道, 接著在室溫下培育隔夜。使用高純度氮湧過通道以移除通 道内部之流體。 用於此專實驗之篩選基質為7 Μ脲及IX TTE(Amresco)緩 衝液中4%線性聚丙烯醯胺(lpa)。 f例VD ·.電泳STR尺寸測定 核酸分析之電泳分離及分析在Genebench-FXTM系列1 〇〇 (Network Biosystems,Inc.,Woburn,MA)上執行。此儀器 經組態以接受塑料分離晶片及晶片支撐體以考慮到晶片與 儀器之間的優良光學、電學及熱耦合。在整個操作中,腔 室溫度維持在50°C下。 131623.doc 31 200918888The optical emission spectrum of Zen〇rTM-1420R has a Raman emission peak at 57 〇 nmT, which limits the fluorescent detection of fluorescent dyes. Circle 9 s is compared to a typical glass-separated wafer (glass 14 mm and glass crucible 7), the plastic wafer (Pchipl and PChp2) has a low self-fluorescence. By selecting the cop polymer and reducing the thickness of the device in the detection zone Minimize and achieve low self-fluorescence of plastic wafers by fabricating the device with a film. Example 1C: 4 face rose: lean and select shame f by initially pretreating the microchannel surface with deionized water, followed by 1 M The surface of the microchannel was treated with NaOH to effect surface modification. The fluid was removed from the channel using a nitrogen flush. Following surface treatment, 0.1 °/〇 (w/v) hydroxypropyl methylcellulose (HPMC) was applied. The solution flows through the channel and is then incubated overnight at room temperature. High purity nitrogen is used to flow through the channel to remove fluid inside the channel. The screening matrix used in this special experiment is 7 guanidine and IX TTE (Amresco) buffer. 4% linear polyacrylamide (lpa). f Example VD.. Electrophoresis STR size determination Electrophoretic separation and analysis of nucleic acid analysis was performed on a Genebench-FXTM Series 1 (Network Biosystems, Inc., Woburn, MA). The instrument is configured to accept plastic separation wafers In consideration of the wafer support member between the wafer and excellent optical instruments, electrical and thermal coupling. In the entire operation, the chamber temperature was maintained at 50 ° C. 131623.doc 31 200918888

對於DNA尺寸測定實驗而言,將人類基因組DNA用ABIFor DNA size determination experiments, human genomic DNA is used in ABI

AmpFISTR# .^(Applied Biosystems Inc., Foster City, CA) 擴增。將PCR產物(2.7 pL)與0.3 pL尺寸測定標準及i〇叫 甲醯胺混合,且載入樣品孔中進行分析。檢定由以下組 成:在156 V/cm下執行預電泳6分鐘,接著藉由在陽極孔 施加3900 V之電位差且將陰極孔接地來引入樣品。藉由歷 時18秒施加350 V/cm之電場,接著藉由跨越樣品及廢液孔 施加350 V/cm之電場且同時跨越陰極及陽極孔施加15.6 V/Cm之電場進行丨.2分鐘之雙負載來引入DNA樣品。注射 樣品後,藉由跨越陰極及陽極孔施加156 v/cm之電場同時 將800 V之阻擾電壓(puiiback v〇itage)維持分鐘來執行電 泳D N A分離。 對於DNA排序實驗而言,將Mn質體用GE a黯心⑺ DYEnamicTM ET染料終止子循環排序套組(GE Healthcare) 來循環排彳,乙醇沈殺且再懸浮於10 μί去離子水中。分 離檢定由以下組成:在156 v/cm下執行預電泳6分鐘接 著藉由在陽極孔施加3_ 乂之電位差且將陰極孔接地來引 二樣品。II由歷時60秒施加35〇 之電場來引入〇ΝΑ樣 。口。注射樣品後,藉由跨越陰極及陽極孔施加i56 之 昜同寺、准持400 V之阻擾電壓6〇分鐘來執行電泳βΝΑ分 離。藉由自Peakfit®提取峰資訊(峰間隔及峰寬)來計算dna 分離解析度。 在塑料晶片中之16道中同時實現成功之分離。圖聰示 來自5色標記套組_ AmpF1STR Identifiler套組)之等位 131623.doc -32· 200918888 基因階梯的等位基因呼叫概況。此等結果證明本發明之設 備此夠在塑料晶片中用5種顏色分離且清楚解析等位基 因,包括間隔等於僅單鹼基對之距離的等位基因(th〇工, 等位基因9.3及10)。圖u顯示9947八人類基因組〇1^八之等 位基因呼叫STR概況,顯示在丨.〇 ng 1)1^八模板下實現全部 概況。圓12顯示對於多達48〇個卟而言R>〇4之解析度證 月單驗基解析度至多為個bp。圖u藉由顯示間隔1個核 苷酸之2個等位基因可毫不含糊地清楚解析來說明此解析 度。圖14及15顯示證明單鹼基對解析度之dna排序概況。 實例2 電動注射塑料晶片 f例2A·.晶片設計 本發明之電泳分離晶片之另一組態使用單通道進行分 離。藉由電動樣品注射將各樣品引入分離通道中。此替代 性方法允許使用小樣品量且顯著簡化分離過程。用於電動 樣品注射之晶片設計的示意圖顯示於圖16中之分離圖,顯 示支撲體及分離晶片部分。該設備由16個分離長度有效為 20 cm之微通道組成。各通道在各末端具有一入孔。該等 通道90 μηι寬及40 μιη深。 實例2Β :設澇裊造 圓16之設備係根據以上部分中所述之程序來製造。概括 言之’在厚度為188 pn^COP薄膜(ZeonorTM-1420R)中形 成入孔(直徑為1 mm)。接著藉由熱壓印形成通道圖案(9〇 μηι寬及40 μηι深將COP蓋(ZeonorTM-1420R)擴散黏結至 I31623.doc -33. 200918888 基板以密封通道。 實例2C :嘗渌 藉由如以上部分中所述將表面改質應用於通道來製備用 於分離之設備。繼此之後,用筛選基質填充通道。將樣品 載入樣品/陰極儲集層。經由電極將注射場施加至樣品以 .將帶負電之DNA注射至分離通道中。在將DNA注射至通道 後,將緩衝液(IX TTE; Ameresco)以10倍於樣品量之量添 加至樣品/陰極儲集層中。跨越陰極及陽極施加電場以將 i % DNA自注射塞沿分離通道向下分離。添加用以稀釋樣品/ 陰極中之樣品且不必在載入緩衝液之前移除樣品。分離及 檢測在Genebench-FXTM系列100儀器上執行,且使用先前 實例中所述之軟體執行資料分析。 實例3 DNA排序 對於DNA排序分析而言,在由以下各物組成之反應混合 物中擴增 DNA 模板:PCR 酶 SpeedSTAR HS(Takara, Madison, WI)(U/pL) : 0.025,Fast緩衝劑 l:lx,dNTPs : 0.25 mM,引子(正向):250 nM及引子(反向):250 nM。 : 將所需含量之模板DNA添加至混合物中。將DI水或TE緩 衝液(Tris 10 mM或EDTA 0.1 mM)添加至反應混合物中, 至1 0 pL之總量。根據廠商推薦之方案,PCR反應混合物之 熱循環由以下組成:95°C下60秒之熱起始活化、30次變性 循環、退火及擴展(98°C下5秒、55°C下10-15秒及72°C下5-10秒/kbp)及最終在72°C下擴展60秒。 131623.doc -34- 200918888 根據薇商之方案’整個PCR產物藉由使用30K MWCO UF過渡器(pall,East mUs,Νγ)來淨化。由〇1水中DNA組 成之經淨化之產物經稀釋或整體用作排序反應之模板。 使用DYEnamicTM ET終止子循環排序套組(ge Amersham B1〇Sciences)在半強度反應下使用以下反應混合物來執行 PCR模板之循環排序。排序預混合物:* pL,稀釋緩衝 液· 4 μί ’引子(1〇 μΜ) : 5 pm〇1。將DNA模板添加至排序 反應混合物中。將⑴水添加至反應混合物中,至2〇叫之 總量。根據廠商推薦之循環方案,所用循環條件由(95。〇 下20秒、50°C下15秒、60。(:下60秒)30次循環組成。 藉由乙醇沈澱來淨化排序反應混合物。將經沈澱之產物 再懸浮於1 3 pL DI水中且用作分離及檢測之樣品。AmpFISTR# .^(Applied Biosystems Inc., Foster City, CA) Amplification. The PCR product (2.7 pL) was mixed with 0.3 pL size measurement standard and i〇 called methotrexate and loaded into the sample well for analysis. The assay consisted of performing pre-electrophoresis at 156 V/cm for 6 minutes, then introducing the sample by applying a potential difference of 3900 V to the anode aperture and grounding the cathode aperture. An electric field of 350 V/cm was applied over 18 seconds, followed by applying an electric field of 350 V/cm across the sample and waste holes while applying an electric field of 15.6 V/cm across the cathode and anode holes. Load to introduce DNA samples. After the sample was injected, the electrophoresis D N A separation was performed by applying an electric field of 156 v/cm across the cathode and the anode aperture while maintaining a rejection voltage of 800 V for a minute. For DNA sequencing experiments, Mn plastids were circulated with GE a(R) (7) DYEnamicTM ET dye terminator cycle sequencing kit (GE Healthcare), ethanol killed and resuspended in 10 μί deionized water. The separation test consisted of performing pre-electrophoresis at 156 v/cm for 6 minutes and then introducing a sample by applying a potential difference of 3 Torr to the anode hole and grounding the cathode hole. II introduces a sample by applying an electric field of 35 历 over 60 seconds. mouth. After the sample was injected, the electrophoresis βΝΑ separation was performed by applying the i56 of the i56 across the cathode and the anode opening, and holding the blocking voltage of 400 V for 6 minutes. The DNA separation resolution is calculated by extracting peak information (peak interval and peak width) from Peakfit®. Successful separation is achieved simultaneously in 16 lanes in the plastic wafer. Figure Contours Alleles from the 5-color marker set _ AmpF1STR Identifiler set 131623.doc -32· 200918888 Gene ladder allele call overview. These results demonstrate that the apparatus of the present invention is capable of separating and clearly interpreting alleles in five colors in a plastic wafer, including alleles spaced apart by a distance of only a single base pair (th〇, allele 9.3 and 10). Figure u shows an overview of the STR of the 9947 eight human genome 〇1^8 alleles, showing a complete overview under the 丨.〇 ng 1)1^8 template. Circle 12 shows that for up to 48〇 卟, the resolution of R>〇4 is at most bp. Figure u illustrates this resolution by showing that the two alleles separated by one nucleotide can be clearly and unambiguously resolved. Figures 14 and 15 show a DNA ranking overview demonstrating the resolution of a single base pair. Example 2 Electric Injection Plastic Wafer f Example 2A. Wafer Design Another configuration of the electrophoretic separation wafer of the present invention was separated using a single channel. Each sample was introduced into the separation channel by injection of a motorized sample. This alternative approach allows the use of small sample volumes and significantly simplifies the separation process. A schematic of the wafer design for motorized sample injection is shown in the separation diagram of Figure 16, showing the baffle body and the separated wafer portion. The device consists of 16 microchannels separated by a length of 20 cm. Each channel has an access hole at each end. These channels are 90 μηι wide and 40 μιη deep. Example 2: The equipment for forming the circle 16 was fabricated in accordance with the procedure described in the section above. In summary, an entrance hole (1 mm in diameter) was formed in a 188 pn^COP film (ZeonorTM-1420R). Then, the COP cover (ZeonorTM-1420R) was diffusion bonded to the I31623.doc-33.200918888 substrate by hot stamping to form a channel pattern (9〇μηι width and 40 μηι deep) to seal the channel. Example 2C: Tasting by using Part of the modification is applied to the channel to prepare the device for separation. Thereafter, the channel is filled with the screening matrix. The sample is loaded into the sample/cathode reservoir. The injection field is applied to the sample via the electrode. The negatively charged DNA is injected into the separation channel. After the DNA is injected into the channel, a buffer (IX TTE; Ameresco) is added to the sample/cathode reservoir in an amount 10 times the amount of the sample. An electric field is applied to the anode to separate the i% DNA from the injection plug down the separation channel. The sample is added to dilute the sample/cathode and the sample does not have to be removed prior to loading the buffer. Separation and detection in the Genebench-FXTM Series 100 instrument Execution was performed and data analysis was performed using the software described in the previous example. Example 3 DNA Sequencing For DNA sequencing analysis, DNA template was amplified in a reaction mixture consisting of: PCR SpeedSTAR HS (Takara, Madison, WI) (U/pL): 0.025, Fast buffer l: lx, dNTPs: 0.25 mM, primer (forward): 250 nM and primer (reverse): 250 nM. The required amount of template DNA is added to the mixture. DI water or TE buffer (Tris 10 mM or EDTA 0.1 mM) is added to the reaction mixture to a total amount of 10 pL. According to the manufacturer's recommended protocol, the PCR reaction mixture The thermal cycle consists of 60 seconds of hot initiation activation at 60 ° C, 30 denaturation cycles, annealing and expansion (5 seconds at 98 ° C, 10-15 seconds at 55 ° C and 5-10 at 72 ° C). Seconds/kbp) and finally extended for 60 seconds at 72 ° C. 131623.doc -34- 200918888 According to the protocol of Weishang, the entire PCR product was purified by using a 30K MWCO UF transition (pall, East mUs, Νγ). The purified product consisting of DNA in 〇1 is diluted or used as a template for the sequencing reaction. The DYEnamicTM ET Terminator Cycle Sorting Set (ge Amersham B1〇Sciences) was used to perform PCR using the following reaction mixture under a half intensity reaction. Cycle sorting of templates. Sort premix: * pL, dilution buffer · 4 μί ' Sub (1 μ μΜ) : 5 pm 〇 1. Add the DNA template to the sequencing reaction mixture. Add (1) water to the reaction mixture to 2 〇. According to the manufacturer's recommended circulation scheme, the cycle conditions used consisted of (95. 20 seconds at 20 minutes, 15 seconds at 50 °C, 60 seconds (60 seconds)). The sorted reaction mixture was purified by ethanol precipitation. The precipitated product was resuspended in 13 3 L of DI water and used as a sample for separation and detection.

對於STR分析’擴增係在具有由以下各物組成之以下反 應混合物之10 μΐ^反應中進行:PCR酶SpeedSTAR HS(Takara,Madison,WI)(U/VL) : 0.0315,Fast 緩衝劑For the STR analysis, the amplification line was carried out in a 10 μΐ reaction with the following reaction mixture consisting of the following: PCR enzyme SpeedSTAR HS (Takara, Madison, WI) (U/VL): 0.0315, Fast buffer

1: lx ’ 引子設置:2 μΐ,Fast 緩衝劑 1:1X,dNTPs : 200 μΜ ’引子(正向/反向):2 0,來自AmpFISTR1: lx ′ primer setting: 2 μΐ, Fast buffer 1:1X, dNTPs: 200 μΜ ‘introduction (forward/reverse): 2 0 from AmpFISTR

ProfilerTM、C0FilerTM4identifilerTM(Applied Biosystems, Foster City, CA)。 循環方案根據酶廠商條件,其由以下組成:95。〇下6〇秒 之熱起始活化、接著28次變性循環、退火及擴展(98°C下4ProfilerTM, C0FilerTM 4identifilerTM (Applied Biosystems, Foster City, CA). The cycling protocol consisted of the following conditions: 95. 6 seconds of hot start activation, followed by 28 denaturation cycles, annealing and expansion (at 98 ° C 4

s、59°C下15 s ' 72°C下5 s)及最終在72。(:下擴展60秒。PCR 產物用作分離及檢測之樣品。或者,PCR產物亦可經純化 且用作分離及檢測之樣品。 131623.doc -35- 200918888 應瞭解上文揭示内容強調本發明之某些特定實施例,且 其所有修改或替代性等效物在如隨附申請專利範圍中所述 之本發明之精神及範疇内。 【圖式簡單說明】 圖1說明根據本發明之各種實施例之一微型流動分離及 檢測晶片。 圖2說明可用於建構根據本發明之各種實施例之一微型 流動分離及檢測晶片的分離支撑體及晶片層。 圖3說明可用於建構根據本發明之各種實施例之一微型 流動分離及檢測晶片的分離設備層。 圖4說明根據本發明之各種實施例之一微型流動分離及 檢測晶片的陽極部分透視圖。 圖5說明根據本發明之各種實施例之具有注射通道的一 微型流動分離及檢測晶片。 圖6為根據本發明之各種實施例之一微型流動分離及檢 測晶片的示意圖。 圖7說明用於壓印之堆疊。 圖8說明藉由CNC銑削自3/8,,厚之丙烯酸板(GE Plastic) 製造的晶片支撐體;(頂)俯視圖;底(側視圖)。 圖9為證明與典型玻璃分離晶片相比,塑料晶片具有低 自身螢光的螢光光譜;(a)經組裝之塑料晶片(pchip2) ; (b) 經組裝之塑料晶片(Pchipl) ; (c)僅塑料覆蓋層;玻璃晶 片’ 1.4 mm厚;(e)玻璃晶片,〇.7 mm厚;(f)僅塑料基 板。 131623.doc -36· 200918888 圖為來自5色標記套組(aBI AmpFISTR Identifier套 組)之等位基因階梯的等位基因呼叫概況(aUele_called profile);上至下:藍色、綠色、黃色、紅色、橙色檢測器 信號。 • 圖11為9947A人類基因組DNA之等位基因呼叫STR概 況’上至下:藍色、綠色、黃色、紅色、橙色檢測器信 號,全部概況在1 .〇 ng DNA模板上實現。 圖12顯示對於達480個bp而言R>〇_4之解析度,證明單驗 ( 基解析度達480個bp ;上至下:藍色、綠色、黃色、紅 色、橙色檢測器信號。 圖丨3顯示藉由1個核苷酸分離之2個等位基因(thoi 9.3 及10)之解析度。 圖14為pGEM片段之DNA排序分析;上至下:藍色、綠 色、黃色及紅色檢測器信號。 圖1 5為顯示pGEM片段之DNA排序分析的複合四個驗基 對圖。 Ο 圖16為用於直接電動樣品注射之晶片設計的分離示意 圖’其顯示支撐體(上)及晶片(底)層。 : 【主要元件符號說明】 100 晶片 101 陽極部分 102 陰極部分 103 在陽極部分與陰極部分之間的一中心部分 104 至少一個第一通孔 131623.doc •37- 200918888 f— ί.s, 15 s at 59 ° C for 5 s at 72 ° C and finally at 72 °. (: The next extension is 60 seconds. The PCR product is used as a sample for separation and detection. Alternatively, the PCR product can also be purified and used as a sample for separation and detection. 131623.doc -35- 200918888 It should be understood that the above disclosure highlights the present invention. The particular embodiments of the invention, and all modifications or alternative equivalents thereof, are within the spirit and scope of the invention as set forth in the appended claims. One of the embodiments is a microfluidic separation and detection wafer. Figure 2 illustrates a separate support and wafer layer that can be used to construct a microfluidic separation and detection wafer in accordance with various embodiments of the present invention. Figure 3 illustrates that it can be used to construct a method in accordance with the present invention. One of the various embodiments of the microfluidic separation and detection of the separation device layer of the wafer. Figure 4 illustrates a perspective view of an anode portion of a microfluidic separation and detection wafer in accordance with various embodiments of the present invention. Figure 5 illustrates various embodiments in accordance with the present invention. A micro flow separation and detection wafer having an injection channel. Figure 6 is a micro flow separation and inspection according to various embodiments of the present invention. Schematic diagram of the wafer. Figure 7 illustrates the stack for imprinting. Figure 8 illustrates a wafer support made from 3/8, thick acrylic sheet by CNC milling; (top) top view; bottom (side Figure 9. Figure 9 shows the fluorescence spectrum of a plastic wafer with low self-fluorescence compared to a typical glass-separated wafer; (a) assembled plastic wafer (pchip2); (b) assembled plastic wafer (Pchipl) (c) Plastic cover only; glass wafer '1.4 mm thick; (e) glass wafer, 〇.7 mm thick; (f) plastic substrate only. 131623.doc -36· 200918888 The picture shows the 5-color mark set (aBI AmpFISTR Identifier kit) Allele ladder allele call profile (aUele_called profile); top to bottom: blue, green, yellow, red, orange detector signals. • Figure 11 is 9947A human genomic DNA Alleles call the STR profile 'top to bottom: blue, green, yellow, red, orange detector signals, all profiles are implemented on 1. 〇ng DNA template. Figure 12 shows R> for up to 480 bp _4 resolution, proof of single test ( Resolution up to 480 bp; top to bottom: blue, green, yellow, red, orange detector signals. Figure 3 shows two alleles separated by one nucleotide (thoi 9.3 and 10) Figure 14 is a DNA sequencing analysis of pGEM fragments; top to bottom: blue, green, yellow, and red detector signals. Figure 15 is a composite four-base pair map showing DNA sequencing analysis of pGEM fragments. Figure 16 is a schematic exploded view of a wafer design for direct motor sample injection showing the support (top) and wafer (bottom) layers. : [Main component symbol description] 100 wafer 101 anode portion 102 cathode portion 103 a central portion between the anode portion and the cathode portion 104 at least one first through hole 131623.doc • 37- 200918888 f- ί.

J 105 至少一個第二通孔 106 複數個微型流動通道 107 檢測窗口 108 分離區 109 檢測區 201 具有頂面及底面之支撐 202 陽極部分 203 陰極部分 204 在陽極部分與陰極部分 205 檢測窗口 206 至少一個陽極孔 207 至少一個陰極孔 250 晶片 360 基板層 361 複數個溝槽 370 覆蓋層 371 通孑L 372 通孔 400 晶片 401 陰極部分 403 中心部分 405 至少一個第二通道 406 複數個微型流動通道 408 包含樣品孔及廢液孔之 心部分 131623.doc 38- 200918888 409 樣品孔 410 廢液孔 500 晶片 501 陽極部分 502 陰極部分 503 中心部分 504 第一通孔 505 第二通孔 506 複數個微型流動通道 507 檢測窗口 131623.doc -39-J 105 at least one second through hole 106 a plurality of micro flow channels 107 detection window 108 separation region 109 detection region 201 having a top surface and a bottom surface support 202 anode portion 203 cathode portion 204 at the anode portion and cathode portion 205 detecting window 206 at least one Anode hole 207 at least one cathode hole 250 wafer 360 substrate layer 361 a plurality of trenches 370 cover layer 371 through L 372 through hole 400 wafer 401 cathode portion 403 central portion 405 at least one second channel 406 a plurality of micro flow channels 408 containing samples Hole and waste core portion 131623.doc 38- 200918888 409 Sample hole 410 Waste hole 500 Wafer 501 Anode portion 502 Cathode portion 503 Center portion 504 First through hole 505 Second through hole 506 Multiple micro flow channels 507 Detection Window 131623.doc -39-

Claims (1)

200918888 十、申請專利範圍·· 一種電泳分離晶片,其包含一陽極部分、—陰極部分及 在該陽極部分與該陰極部分之間的中心部分,其中 該陰極部分包含至少一個第一通孔; 該陽極部分包含至少一個第二通孔;且 該中心部分包含一或複數個微型流動通道及一檢測窗 口’各微型流動通道具有一分離區及一檢測區;其中 各微型流動通道與至少一個第一通孔及至少一個第二 通孔處於流體連通中; 該複數個微型流動通道係處於實質上同一平面中; β亥複數個微型流動通道在該中心部分中彼此不相交; έ亥檢測窗口包含薄塑料;且 該檢測窗口與各微型流動通道之該檢測區重疊。200918888 X. Patent Application Scope · An electrophoretic separation wafer comprising an anode portion, a cathode portion and a central portion between the anode portion and the cathode portion, wherein the cathode portion comprises at least one first through hole; The anode portion includes at least one second through hole; and the central portion includes one or more micro flow channels and a detection window' each micro flow channel has a separation region and a detection region; wherein each micro flow channel and at least one first The through hole and the at least one second through hole are in fluid communication; the plurality of micro flow channels are in substantially the same plane; the plurality of micro flow channels are not intersected with each other in the central portion; Plastic; and the detection window overlaps the detection zone of each micro flow channel. 如請求項1之晶片,其中該薄塑料區包含聚乙烯、聚(丙 烯酸酯)、聚(碳酸酯)、不飽和、部分不飽和或飽和環狀 烯烴聚合物(COP)、不飽和、部分不飽和或飽和環狀烯 烴共聚物(COC)或降冰片烯熱聚物。 如味求項1之晶片’其中該薄塑料包含ze〇N〇rtm、 ZEONEXTM或 t〇pastm 聚合物。 如明求項1之晶片,其中該薄塑料具有少於約300 μηι之 厚度。 月长項1之日日片,其中該薄塑料具有少於約500 μηι之 厚度。 '、 6·如清求項1之晶片,其中該薄塑料具有1 mm或少於1 mm 131623.doc 200918888 之厚度。 7_如5青求項曰η ,甘士&amp; $之曰曰片其中各微型流動通道具有2 cm至50 cm之分離長度。 8. 如^月求項曰y ,-rf· ί. . y 、之曰曰片 其中遠複數個微型流動通道中之每 一者進一步包含一注射通道。 • 9.如明求項1之晶片,其中當在約450與500 nm之間的波長 下激發時,忒溥塑料基本上不發波長在500與800 nm之 間的螢光。 V 1 〇·如吻求項9之晶片,其中在約488 nm之波長下激發該薄 塑料》 11 ·如明求項1之晶片,其中以用於PC:R擴增之核酸模板之單 田1J本開始’可以大於3之信號雜訊比來檢測針對片段 尺寸測定應用所產生之核酸樣品中之複數種核酸物質。 12. 如请求項丨之晶片,其中以用於Pcr擴增之dna模板之單 一副本開始,可以大於3之信號雜訊比來檢測針對DNA 排序應用所產生之核酸樣品中之複數個核酸物質。 C) 13. 如請求項1之晶片’其中該複數個微型流動通道中之每 一者進一步包含一表面塗層。 , 14.如請求項13之晶片,其中該表面塗層為羥丙基曱基纖維 素(HPMA)、聚(氧化乙烯)(PEO)、聚(乙烯醇)(PVA)、聚 (二甲基丙烯醢胺)(PDMA)、聚(乙烯基。比洛σ定酿])、二曱 基丙烯醯胺(DMA)、二乙基丙烯醯胺(DEA)、聚(二乙基 丙烯醯胺)及其混合物。 15.如請求項13之晶片,其中該複數個微型流動通道中之每 131623.doc 200918888 一者進一步包含篩選基質。 16. 如請求項15之晶片,其中該篩選基質包含線性或交聯聚 (N,N-二烧基丙烯酸胺)、線性聚丙婦醯胺、聚二曱基丙 烯醯胺、聚乙烯基吡咯啶酮或其組合。 17. 如凊求項16之晶片’其中該筛選基質包含i_5〇 之聚 丙烯醯胺。 18. 如請求項丨之晶片,其在各陰極孔與各微型流動通道之 間進一步包含一多孔層,其中該多孔層能夠實質上阻斷 氣泡自該等陰極孔進入各微型流動通道中。 1 9.如請求項1 8之晶片’其中該多孔層包含玻璃料、聚合物 玻璃料、聚合物膜或聚合物過濾器。 20. 如請求項!之晶片,其中核酸樣品中之複數個核酸物質 可在該核酸樣品之電泳分析後在單鹼基解析度下檢測。 21. 如請求項1之晶片,其進一步包含一用於同時將至少兩 個樣品注射至該複數個微型流動通道中之注射器。 22. 種裝置,其包含一具有一頂面及一底面之支撑體,其 包含—陽極部分、一陰極部分及在該陽極部分與該陰極 部分之間的中心部分,其中 °亥中心部分在該檢測窗口處包含一孔隙, °亥陽極部分包含至少一個陽極孔,且 該陰極部分包含至少一個陰極孔; 該裴置進一步包含 月求項1之晶片,其具有一頂面及一底面,其中 °亥曰曰片之頂面與該支撐體之底面接觸, 131623.doc 200918888 該等微型流動通道係經由通孔與該等陰極孔及該等陽 極孔處於流體連通中; 且該晶片係固定附著於該支撐體。 23 ·如請求項22之裝置,其中該分離晶片包含各自具有一頂 面及一底面之一基板層及一覆蓋層,其中 該基板層在其頂面中包含複數個微型流動溝槽;且 該覆蓋層包含一針對該晶片支撐體之各陽極孔及陰極 孔的通孔,其中 該基板層之頂面與該覆蓋層之底面接觸,藉此一起 形成該分離晶片中之複數個微型流動通道。 24. 如請求項23之裝置,其中該基板層及該覆蓋層係熱黏 結。 25. —種同時電泳分離及檢測複數個樣品之方法,其包含 將複數個樣品提供至如請求項丨之微晶片上複數個微 型流動通道中之每一者; 跨越§亥複數個微型流動通道施加電位以將包含該複數 個分析樣品之每一者的可檢測物質分離; 在該檢測窗口檢測包含該複數個分離樣品之該等可檢 測物質中之每一者。 26. 如請求項25之方法,其進一步包含保持實質上相同的電 場跨越該複數個微型流動通道中之每一者之步驟。 27. 如請求項26之方法,其中藉由平衡該複數個微型流動通 道中之每一者之各部分的電阻而保持實質上才目同的電場 跨越該複數個微型流動通道中之每一者。 131623.doc 200918888 2 8.如請求項25之方法,其中該等可檢測物質包含核酸。 29.如請求項28之方法,其中該等可檢測物質包含官能性連 接於該等核酸之染料。The wafer of claim 1, wherein the thin plastic region comprises polyethylene, poly(acrylate), poly(carbonate), unsaturated, partially unsaturated or saturated cyclic olefin polymer (COP), unsaturated, partially non-saturated A saturated or saturated cyclic olefin copolymer (COC) or a norbornene thermal polymer. The wafer of claim 1 wherein the thin plastic comprises ze〇N〇rtm, ZEONEXTM or t〇pastm polymer. The wafer of claim 1, wherein the thin plastic has a thickness of less than about 300 μη. The day of the month 1 item, wherein the thin plastic has a thickness of less than about 500 μη. ', 6. The wafer of claim 1, wherein the thin plastic has a thickness of 1 mm or less of 131623.doc 200918888. 7_如5青求曰曰η, 甘士&amp; $曰曰 The micro flow channels of each of the micro flow channels have a separation length of 2 cm to 50 cm. 8. For example, ^ 求 y, -rf· ί. . y , 曰曰 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中 其中9. The wafer of claim 1, wherein the germanium plastic substantially does not emit fluorescence having a wavelength between 500 and 800 nm when excited at a wavelength between about 450 and 500 nm. V 1 〇 如 吻 吻 求 9 , , , , , , , , , , , , 9 9 9 9 9 9 9 9 9 9 9 9 激发 激发 激发 激发 激发 激发 激发 激发 激发 激发 激发 激发 激发 激发 激发 激发 激发 激发At 1Q, a signal to noise ratio greater than 3 can be used to detect a plurality of nucleic acid species in a nucleic acid sample produced for a fragment size determination application. 12. A wafer of the claimed item, wherein a single copy of the dna template for Pcr amplification, can be used to detect a plurality of nucleic acid species in a nucleic acid sample produced for DNA sequencing applications using a signal to noise ratio greater than three. C) 13. The wafer of claim 1 wherein each of the plurality of microfluidic channels further comprises a surface coating. 14. The wafer of claim 13 wherein the surface coating is hydroxypropyl decyl cellulose (HPMA), poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA), poly(dimethyl Acrylamide (PDMA), poly(vinyl, piroxicam), dimercaptopropeneamine (DMA), diethyl acrylamide (DEA), poly(diethyl acrylamide) And mixtures thereof. 15. The wafer of claim 13 wherein each of the plurality of microfluidic channels further comprises a screening matrix. 16. The wafer of claim 15 wherein the screening matrix comprises linear or cross-linked poly(N,N-dialkyl acrylate), linear polyacrylamide, polydidecyl acrylamide, polyvinyl pyrrolidine Ketone or a combination thereof. 17. The wafer of claim 16, wherein the screening matrix comprises i_5〇 of polyacrylamide. 18. The wafer of claim </ RTI> further comprising a porous layer between each of the cathode apertures and each of the micro flow channels, wherein the porous layer is capable of substantially blocking the passage of bubbles from the cathode apertures into the respective micro flow channels. 1 9. The wafer of claim 18 wherein the porous layer comprises a frit, a polymer frit, a polymer film or a polymer filter. 20. As requested! A wafer in which a plurality of nucleic acid substances in a nucleic acid sample can be detected at a single base resolution after electrophoretic analysis of the nucleic acid sample. 21. The wafer of claim 1 further comprising a syringe for simultaneously injecting at least two samples into the plurality of microfluidic channels. 22. A device comprising a support having a top surface and a bottom surface, comprising an anode portion, a cathode portion, and a central portion between the anode portion and the cathode portion, wherein the central portion is The detection window includes a hole, the anode portion includes at least one anode hole, and the cathode portion includes at least one cathode hole; the device further comprises a wafer of the first item 1 having a top surface and a bottom surface, wherein The top surface of the sheet is in contact with the bottom surface of the support, 131623.doc 200918888 the micro flow channels are in fluid communication with the cathode holes and the anode holes via the through holes; and the wafer is fixedly attached to The support. The device of claim 22, wherein the separation wafer comprises a substrate layer and a cover layer each having a top surface and a bottom surface, wherein the substrate layer includes a plurality of micro flow channels in a top surface thereof; The cover layer includes a through hole for each of the anode and cathode holes of the wafer support, wherein a top surface of the substrate layer is in contact with a bottom surface of the cover layer, thereby forming a plurality of micro flow channels in the separation wafer. 24. The device of claim 23, wherein the substrate layer and the cover layer are thermally bonded. 25. A method of simultaneously separating and detecting a plurality of samples by electrophoresis, comprising providing a plurality of samples to each of a plurality of microfluidic channels on a microchip as claimed; A potential is applied to separate a detectable substance comprising each of the plurality of analytical samples; each of the detectable substances comprising the plurality of separated samples is detected at the detection window. 26. The method of claim 25, further comprising the step of maintaining substantially the same electric field across each of the plurality of micro flow channels. 27. The method of claim 26, wherein the substantially identical electric field is maintained across each of the plurality of microfluidic channels by balancing the electrical resistance of each of the plurality of microfluidic channels . The method of claim 25, wherein the detectable substance comprises a nucleic acid. 29. The method of claim 28, wherein the detectable substances comprise a dye functionally linked to the nucleic acids. 131623.doc131623.doc
TW97121585A 2007-08-13 2008-06-10 Plastic microfluidic separation and detection platforms TWI470220B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US96450207P 2007-08-13 2007-08-13
US2807308P 2008-02-12 2008-02-12
US12/080,745 US8858770B2 (en) 2007-04-04 2008-04-04 Plastic microfluidic separation and detection platforms

Publications (2)

Publication Number Publication Date
TW200918888A true TW200918888A (en) 2009-05-01
TWI470220B TWI470220B (en) 2015-01-21

Family

ID=44724133

Family Applications (9)

Application Number Title Priority Date Filing Date
TW101144403A TWI504750B (en) 2007-08-13 2008-06-10 Methods for rapid multiplexed amplification of target nucleic acids
TW97121577A TWI393777B (en) 2007-08-13 2008-06-10 Methods for rapid multiplexed amplification of target nucleic acids
TW102128004A TW201350844A (en) 2007-08-13 2008-06-10 Plastic microfluidic separation and detection platforms
TW97121585A TWI470220B (en) 2007-08-13 2008-06-10 Plastic microfluidic separation and detection platforms
TW104113451A TWI647439B (en) 2007-08-13 2008-06-10 Integrated microfluidic systems, biochips and methods for the detection of nucleic acids and biological molecules by electrophoresis
TW104110778A TWI539001B (en) 2007-08-13 2008-06-10 Methods for rapid multiplexed amplification of target nucleic acids
TW107118311A TWI684644B (en) 2007-08-13 2008-06-10 Integrated microfluidic systems, biochips and methods for the detection of nucleic acids and biological molecules by electrophoresis
TW97121580A TWI409454B (en) 2007-08-13 2008-06-10 Integrated microfluidic systems for nucleic acid analysis
TW102123058A TWI486572B (en) 2007-08-13 2008-06-10 Integrated microfluidic systems, biochips, and methods for the detection of nucleic acids and biological molecules by electrophoresis

Family Applications Before (3)

Application Number Title Priority Date Filing Date
TW101144403A TWI504750B (en) 2007-08-13 2008-06-10 Methods for rapid multiplexed amplification of target nucleic acids
TW97121577A TWI393777B (en) 2007-08-13 2008-06-10 Methods for rapid multiplexed amplification of target nucleic acids
TW102128004A TW201350844A (en) 2007-08-13 2008-06-10 Plastic microfluidic separation and detection platforms

Family Applications After (5)

Application Number Title Priority Date Filing Date
TW104113451A TWI647439B (en) 2007-08-13 2008-06-10 Integrated microfluidic systems, biochips and methods for the detection of nucleic acids and biological molecules by electrophoresis
TW104110778A TWI539001B (en) 2007-08-13 2008-06-10 Methods for rapid multiplexed amplification of target nucleic acids
TW107118311A TWI684644B (en) 2007-08-13 2008-06-10 Integrated microfluidic systems, biochips and methods for the detection of nucleic acids and biological molecules by electrophoresis
TW97121580A TWI409454B (en) 2007-08-13 2008-06-10 Integrated microfluidic systems for nucleic acid analysis
TW102123058A TWI486572B (en) 2007-08-13 2008-06-10 Integrated microfluidic systems, biochips, and methods for the detection of nucleic acids and biological molecules by electrophoresis

Country Status (1)

Country Link
TW (9) TWI504750B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718962B (en) * 2020-06-11 2021-02-11 威光自動化科技股份有限公司 Bubble filter in liquid pipe

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571824B (en) 2012-08-09 2016-04-13 财团法人工业技术研究院 Compositions and methods for isolating nucleic acids
CN105092480B (en) * 2014-05-23 2017-08-01 中国科学院物理研究所 A kind of biochip and its detection method for OIRD detection methods
CA2986151A1 (en) * 2015-05-20 2016-11-24 Quantum-Si Incorporated Pulsed laser and bioanalytic system
US11466316B2 (en) 2015-05-20 2022-10-11 Quantum-Si Incorporated Pulsed laser and bioanalytic system
US10605730B2 (en) 2015-05-20 2020-03-31 Quantum-Si Incorporated Optical sources for fluorescent lifetime analysis
BR112019012054A2 (en) 2016-12-16 2020-08-18 Quantum-Si Incorporated compact locked mode laser module
CA3047108A1 (en) 2016-12-16 2018-06-21 Quantum-Si Incorporated Compact beam shaping and steering assembly
KR20210021018A (en) 2018-06-15 2021-02-24 퀀텀-에스아이 인코포레이티드 Data acquisition control for advanced analysis instruments with pulsed optical sources
CN113166803B (en) * 2018-11-06 2024-04-30 南京金斯瑞生物科技有限公司 Gene high-flux synthesis method based on chip primer surface extraction
TWI737032B (en) * 2018-11-09 2021-08-21 中央研究院 Method for sizing dna molecule
JP7431454B2 (en) * 2019-03-29 2024-02-15 パロゲン,インコーポレイテッド Nanopore device and biosynthesis method using it
EP3966611B1 (en) 2019-06-14 2024-03-06 Quantum-Si Incorporated Grating coupler with increased beam alignment sensitivity
TWI726446B (en) * 2019-08-11 2021-05-01 新加坡商克雷多生物醫學私人有限公司 Analytical system and analytical method thereof
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWD218529S (en) * 2020-09-30 2022-05-01 富佳生技股份有限公司 Graphical user interface for nucleic acid detector
US11938485B2 (en) 2021-12-07 2024-03-26 Industrial Technology Research Institute Heating device for convective polymerase chain reaction

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307148A (en) * 1990-04-05 1994-04-26 Hitachi, Ltd. Fluorescence detection type electrophoresis apparatus
US5273638A (en) * 1991-09-30 1993-12-28 Beckman Instruments, Inc. Nucleotide sequence determination employing matched dideoxynucleotide terminator concentrations
US20020068357A1 (en) * 1995-09-28 2002-06-06 Mathies Richard A. Miniaturized integrated nucleic acid processing and analysis device and method
US5994064A (en) * 1996-04-24 1999-11-30 Identigene, Inc. Simple and complex tandem repeats with DNA typing method
US6391622B1 (en) * 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6632619B1 (en) * 1997-05-16 2003-10-14 The Governors Of The University Of Alberta Microfluidic system and methods of use
US6207031B1 (en) * 1997-09-15 2001-03-27 Whitehead Institute For Biomedical Research Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device
US6210882B1 (en) * 1998-01-29 2001-04-03 Mayo Foundation For Medical Education And Reseach Rapid thermocycling for sample analysis
JP3432158B2 (en) * 1998-12-04 2003-08-04 日立ソフトウエアエンジニアリング株式会社 Electrophoresis method, electrophoresis apparatus and marker sample used therefor
US6558945B1 (en) * 1999-03-08 2003-05-06 Aclara Biosciences, Inc. Method and device for rapid color detection
US6787016B2 (en) * 2000-05-01 2004-09-07 Aclara Biosciences, Inc. Dynamic coating with linear polymer mixture for electrophoresis
DE60106053T2 (en) * 2000-07-21 2005-11-17 Aclara BioSciences, Inc., Mountain View METHOD AND DEVICES FOR CAPILLARY ELECTROPHORESIS USING A NORBORN-SUSTAINED SURFACE COATING
US6762049B2 (en) * 2001-07-05 2004-07-13 Institute Of Microelectronics Miniaturized multi-chamber thermal cycler for independent thermal multiplexing
JP2003028797A (en) * 2001-07-11 2003-01-29 Hitachi Software Eng Co Ltd Fluorescence reader
US6995841B2 (en) * 2001-08-28 2006-02-07 Rice University Pulsed-multiline excitation for color-blind fluorescence detection
US20030152931A1 (en) * 2002-02-11 2003-08-14 Chung-Fan Chiou Nucleic acid detection device and method utilizing the same
CN103884698B (en) * 2004-06-07 2017-04-12 先锋生物科技股份有限公司 Optical lens system and method for microfluidic devices
US20060216737A1 (en) * 2005-03-10 2006-09-28 John Bodeau Methods for multiplex amplification
EP1710017B1 (en) * 2005-04-04 2012-12-19 Roche Diagnostics GmbH Thermocycling of a block comprising multiple samples
US8206974B2 (en) * 2005-05-19 2012-06-26 Netbio, Inc. Ruggedized apparatus for analysis of nucleic acid and proteins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718962B (en) * 2020-06-11 2021-02-11 威光自動化科技股份有限公司 Bubble filter in liquid pipe

Also Published As

Publication number Publication date
TW201350844A (en) 2013-12-16
TW201829784A (en) 2018-08-16
TW200911987A (en) 2009-03-16
TW201527538A (en) 2015-07-16
TW201341783A (en) 2013-10-16
TWI504750B (en) 2015-10-21
TW201530118A (en) 2015-08-01
TWI409454B (en) 2013-09-21
TWI470220B (en) 2015-01-21
TWI684644B (en) 2020-02-11
TWI486572B (en) 2015-06-01
TW201311902A (en) 2013-03-16
TW200909794A (en) 2009-03-01
TWI539001B (en) 2016-06-21
TWI647439B (en) 2019-01-11
TWI393777B (en) 2013-04-21

Similar Documents

Publication Publication Date Title
TWI470220B (en) Plastic microfluidic separation and detection platforms
US11052398B2 (en) Plastic microfluidic separation and detection platforms
JP2021503969A (en) Nucleic acid sequencing by emergence (EMERGENCE)
WO2001018247A2 (en) Optical system for rapid polymer analysis
US20220228193A1 (en) Methods to detect cells latently infected with hiv
AU2013204473B2 (en) Plastic microfluidic separation and detection platforms
TR201810681T4 (en) Plastic microfluidic separation and detection platforms.
Wang Single Cell RT-qPCR on 3D Cell Spheroids