[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW200917883A - Light emitting device and fabricating method thereof - Google Patents

Light emitting device and fabricating method thereof Download PDF

Info

Publication number
TW200917883A
TW200917883A TW097128848A TW97128848A TW200917883A TW 200917883 A TW200917883 A TW 200917883A TW 097128848 A TW097128848 A TW 097128848A TW 97128848 A TW97128848 A TW 97128848A TW 200917883 A TW200917883 A TW 200917883A
Authority
TW
Taiwan
Prior art keywords
light
layer
organic layer
emitting
emitting element
Prior art date
Application number
TW097128848A
Other languages
Chinese (zh)
Inventor
Shinichi Morishima
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW200917883A publication Critical patent/TW200917883A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The light emitting device of this invention is obtained by sealing a light emitting side of a light emitting part by a multilayer sealing film which has at least an organic layer to form the light emitting device. A face of the at least an organic layer of the light emitting device has a three-dimensional structure which can control a light emitting direction dependence of light emitting intensity, and is formed with the organic layer at the same time. It is preferable to use an energy harden resin to form the organic layer. The light emitting device of this invention has a inbuilt function to control the light emitting direction dependence of the light emitting intensity without increasing the occupancy space of the device.

Description

200917883 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種光取出性優良的發光元件及其製造 方法。 【先前技術】 於有機電激發光元件(以下有時記為有機EL元件)、 發光一極體顯示元件等發光元件中,於基板上積層著由陽 極與陰極夾持的發光層,且以覆蓋該發光層的方式積層著 多層密封膜。於先前的發光元件中,基板使用玻璃基板, 但為了對應元件的輕量化、耐衝擊性的提高、元件的大面 積化、製造的效率化等要求,開始使用塑料基板(例如曰 本專利特表2003-531745號公報)。 塑料基板具有可撓性(flexible),可容易地獲得大面 積的塑料基板,並且用以在積層發光層後分割為單元的切 割操作亦變容易。然而,塑料基板與玻璃基板相比,氣體 及液體的透過性高。基板及上部多層密封膜所覆蓋的有機 EL發光層等的顯示物質容易被氧化,容易與水接觸而分 解。因此,於使用塑料基板時,於基板上積層相對於氣體 及液體的阻隔性高的卞部多層密封膜,然後於該下部多層 密封膜上積層發光層’並以覆蓋已積層的發光層的方式而 積層上部多層密封膜。 上述下部多層密封膜通常利用與上述上部多層密封膜 相同的構成、相同的材料而形成。該些下部多層密封膜及 上部多層密封膜通常具有至少一個無機層與至少一個有機 200917883 層。積層數可減要喊定,基本上是妓無機膜與 有機膜。 發光兀件的光取出有自基板侧進行的情況、自上部多 層密封膜侧進行的情況、以及自基板顺上部多層密封膜 侧兩侧進行的情況。自基板侧取出光之型式的發光元件被 稱為底部發錢發光元件,自上部多層密封膜側取出光之 型式的發光元件被稱為頂部發光型發光元件,自兩侧取出 光之型式的發光元件被稱為雙發光型發光元件。該些型式 的發光元件中’共通的是光取出侧的多層密封膜必須是透 明或者半透g㈣’且存在由於其物理特性*影 效率之現象。因此,在先前的發光元件中,光取出侧的^ 層密封膜由儘可能透明且平坦之層構成。 上述先前的發光元件中,根據其安裝處的各種照明裝 置、各種顯示裝置及各種電子設備的用途,有時必須控制 光的取㈣度的純依存性。於此情形時,藉由在發光元 件的光取出面的整個面設置散射性片材等各種光學元件來 加以對應。_,由於該些追加設置的各觀學元件的設 置,於發S元件的安裝處的純裝置#必須其所需的佔= 空間’從而產生成為裝置小型化之瓶頸(neck)的傾 因此要求改善該傾向。 【發明内容】 本發明是繁於上述先前的情況而成的,其目的在 供-種内建控制發光元件的光取出強度的方向依存性的功 能的發光元件,而不會增大元件的佔有空間。其中,所謂 200917883 ^制發光元件巾的光取出強度的方向依存性,是表示控制 發光70件的發光_視野肖,或者提高發光元件正面的光 取·出教產。 元件課題,本發明提供採用下述構成的發光 —Π]種發光元件,其是藉由具有至少一個有機層的多 層讼封膜來密封發光部的絲出側而成的發光元件,上述 有機=於其-個面具有可控制取出光強度的方向依存性的 立體結構。 P]如上述[1]所述之發光元件,其中上述立體結構是於 形成上述有機層之同時形成的。 [3] 如上述[1]或[2]所述之發光元件,其中上述有機層 由能量硬化性樹脂構成。 曰 [4] 如上述[3]所述之發光元件,其中上述立體結構是藉 由將上述能量硬化性樹脂的塗膜暫時半硬化,其後完全硬 化,而於形成上述有機層之同時形成的。200917883 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting element excellent in light extraction property and a method of manufacturing the same. [Prior Art] In a light-emitting element such as an organic electroluminescence device (hereinafter sometimes referred to as an organic EL device) or a light-emitting diode display device, a light-emitting layer sandwiched between an anode and a cathode is laminated on a substrate to cover The light-emitting layer is laminated in a multilayer sealing film. In the conventional light-emitting device, a glass substrate is used as the substrate. However, in order to reduce the weight of the device, improve the impact resistance, increase the area of the device, and improve the efficiency of manufacturing, a plastic substrate is used (for example, the patent specification) Bulletin 2003-531745). The plastic substrate is flexible, and a large-area plastic substrate can be easily obtained, and the cutting operation for dividing into a unit after laminating the light-emitting layer is also easy. However, the plastic substrate has higher gas and liquid permeability than the glass substrate. The display material such as the organic EL light-emitting layer covered by the substrate and the upper multilayer sealing film is easily oxidized, and is easily decomposed by contact with water. Therefore, when a plastic substrate is used, a ruthenium multilayer sealing film having a high barrier property against gas and liquid is laminated on the substrate, and then a luminescent layer is laminated on the lower multilayer sealing film to cover the laminated luminescent layer. And the upper layer of the multilayer sealing film. The lower multilayer sealing film is usually formed of the same material and the same material as the above upper multilayer sealing film. The lower multilayer sealing film and the upper multilayer sealing film typically have at least one inorganic layer and at least one organic 200917883 layer. The number of layers can be reduced, and it is basically an inorganic film and an organic film. The light extraction of the light-emitting element is performed from the substrate side, from the upper multi-layer sealing film side, and from the substrate to the upper side of the multilayer sealing film side. A light-emitting element of a type in which light is taken out from the substrate side is referred to as a bottom-emitting light-emitting element, and a light-emitting element of a type in which light is taken out from the upper multilayer sealing film side is referred to as a top-emitting type light-emitting element, and light of a type that is taken out from both sides is emitted. The element is referred to as a dual light emitting type light emitting element. Among these types of light-emitting elements, it is common that the multilayer sealing film on the light extraction side must be transparent or semi-transparent (g) and have a phenomenon due to its physical property*. Therefore, in the conventional light-emitting element, the layer sealing film on the light extraction side is composed of a layer which is as transparent and flat as possible. Among the above-mentioned conventional light-emitting elements, it is necessary to control the pure dependence of the degree of light (four degrees) depending on the various illumination devices installed at the place, various display devices, and various electronic devices. In this case, various optical elements such as a scattering sheet are provided on the entire surface of the light extraction surface of the light-emitting element. _, due to the setting of each of the additional viewing elements, the pure device # at the installation of the S-component must have its required space = thus creating a bottleneck that becomes a device miniaturization. Improve this tendency. SUMMARY OF THE INVENTION The present invention has been made in the above-described prior art, and its object is to provide a light-emitting element having a function of controlling the direction dependence of the light extraction intensity of a light-emitting element without increasing the possession of the element. space. In the case of the light-receiving intensity of the light-emitting device, the direction of the light-receiving intensity of the light-emitting device is controlled to be 70, or the light-emitting/viewing of the front surface of the light-emitting element is improved. The present invention provides a light-emitting element comprising a light-emitting device of the following configuration, which is a light-emitting element obtained by sealing a wire-out side of a light-emitting portion by a multilayer sealing film having at least one organic layer. The one surface has a three-dimensional structure that can control the direction dependence of the extracted light intensity. The light-emitting element according to the above [1], wherein the three-dimensional structure is formed while forming the organic layer. [3] The light-emitting element according to [1] or [2] wherein the organic layer is made of an energy curable resin. [4] The light-emitting element according to the above [3], wherein the three-dimensional structure is formed by temporarily hardening a coating film of the energy curable resin and then completely curing the coating film while forming the organic layer. .

[5] 如上述[3]所述之發光元件,其中上述立體結構是藉 由將上述能量硬化性樹脂的塗膜於形成在疏液性面上的狀 態下硬化,而於形成上述有機層之同時形成的。 [6] 如上述[1]〜[5]中任一項所述之發光元件,其為有 機EL發光元件。 、 [7]—種發光元件的製造方法,其是藉由具有至少一個 有機層的多層密封膜來密封發光部的光取出側而形成的發 光元件的製造方法,具有於上述有機層的一個面形成可控 200917883 ^取出光強度的額依雜的立體結構的倾,於該步驟 中,於形成上述有機層之同時形成上述立體結構。 [8] 如上述[7]所述之發光元件的製造方法,其中使用能 量硬化性樹脂來形成上述有機層。 [9] 如上卵]所述之發光元件的製造方法,其中藉由將 上述能量硬化性觸的塗㈣時半硬化,其後完全硬化, 而於形成上述有機層之同時形成上述立體結構。 [10] 如上述[8]所述之發光元件的製造方法,其中藉由 將上述能量硬錄触的麵於形成在疏祕面上的狀態 下硬化,祕形成上述有制之㈤時形成上述立體結構。 [11] 如上述[7]〜[1〇]中任一項所述之發光元件的製造 方法,其中發光元件為有機EL發光元件。 發明效果 本發明的發光7L件’當自光取出側的正面觀察時為透 明的’當斜向觀察時林透明的,從而提高發光元件的正 面免度。如此的作用效果,可藉由在光取出侧的多層密封 膜中的至少-個有機層的—個面於形成有機層之同時形成 立體結構而實現。若於多層密封财的無機層形成立體結 構,則必須高度的蝕刻或圖案化,但於本發明中,可於形 成有機層之同時,於有機層的一個面容易地形成立體結 構。另外,於先刚的方法即利用光學膜之情形時,必須高 度的黏貼步驟及光學膜構件,但於本發明的製造方法中, 有機層的一個面的立體結構化,可於通常的密封膜形成步 驟中進行’因此製程簡便,且可容㈣製造光取出效率優 200917883 良的發光元件。 因此,根據本發明的發光元件及其製造方 使發光疋件的佔有空間增大,且廉價地不 到提高的發光元件。 、4取出效率得 易懂為上述和其他目的、特徵和優點能更明顯 明如P特佳實關,並配合所_式,作詳細說 【實施方式】 加以明的發光元件及其製造方法的實施形態 5兑明。本實施形態的發光元件是藉由具有至少一個右 機層的夕層役封膜來密封發光部的光取出侧而成的發光元 件,且其特徵在於上述至少一個有機層於其一個面丄有可 控制取出光強度的方向依存性的立體結構。該構成之發光 元件中’其4寸徵在於上述有機層一個面的立體結構於形 該有機層之同時形成。 ' 另外,本實施形態的發光元件的製造方法是於藉由具 有至少一個有機層的多層密封膜來密封發光部的光取出側 而成的發光元件的上述至少一個有機層的一個面形成可控 制取出光強度的方向依存性的立體結構,由此獲得光取出 性優良的發光元件的發光元件的製造方法,其特徵在於, 於形成該有機層之同時形成上述有機層一個面的立體結 構。 於上述構成中’利用能量硬化性樹脂來形成上述有機 層。所謂該能量硬化性樹脂是表示藉由照射紫外線、電子 200917883 f等化學線(輕量)㈣化麟脂,或者藉由施加埶能 罝而硬化的樹脂。 … 上述有機層的立體結構’可藉由將上述能量硬化性樹 脂的ΐ膜暫時半硬化,其後完全硬化,而於形成該有^ 之形成。4者,上述有機層的立體結構,可藉由將上 述旎里硬化性樹脂的塗膜於形成在疏液性面上的狀態下硬 化,而於形成該有機層之同時形成。 〜 、所謂上述半硬化,是表示於本實施形態中,藉由對單 f塗膜施加能量低於使單體完全硬化_光或熱能量的能 量而形成的狀態。更具體而言,是指與塗膜接觸則產生變 形’但即便使塗膜面傾斜塗膜亦不會流出或變形的狀態。 該半硬化的狀態中,塗膜以微級(mien) level)進行^硬 化的部位及幾乎未進行硬化的部位混合存在。若對如此本 硬化狀態的塗醜加更高能量,峨著上述硬化的局部斑 點所對應的凹凸而結束塗膜整體的硬化。其原因在於進行 了硬化的部位的硬化速度迅速。即,推測其原因在於未進 行硬化的部位的塗液被吸引到進行了硬化的部位,以該硬 化部位為核心進行硬化反應,其結果自半硬化時進行了硬 化的部位周圍湧起而成長。可以說推測為:以半硬化時進 行了硬化的部位為核心而遙晶成長性地進行完全硬化,於 形成有機層之同時,於有機層之表面形成微尺寸的凹凸。 f外,以下有時將上述「藉由對單體塗膜施加能量低於使 單體完全硬化時的光或熱能量的能量而形成半硬化狀態」 的方法記為半硬化方法。 200917883 另一方面,於疏液面形成塗膜之情形時,疏液面上的 ^佈液受到來自面的排斥作用,而誘發液體的凝聚力。其 結果為,疏液面上的塗佈液以微級產生凝聚的分佈不均, 於液面產生海島狀的凹凸。若於錄態下職膜施加光或 熱能1,則以維持著表面的海島狀的凹凸之狀態使塗膜硬 化。 所明上述疏液面,具體而言是表示構成多層密封膜的 無機層的未親液化的表面,或者未進行親液化處理的基板 的表面。另外,亦可藉由利用具有氟原子的氣體進行電漿 處理而使表面疏液化。 於上述有機層為多層密封膜之中間層之情形時,形成 著立體結構(凹凸)的一個面成為與有機層的上層的無機 層的界面,於具有凹凸的有機層位於上部多層密封膜的最 外層之情形時,形成了凹凸的一個面成為有機層的表面。 另外,於發光元件為頂部發光型發光元件之情形時,具有 該凹凸的有機層為上部多層密封膜的至少一個有機層;於 發光元件為底部發光型發光元件之情形時,具有該凹凸的 有機層為下部多層密封膜的至少一個有機層;於發光元件 為雙發光型發光元件之情形時,具有該凹凸的有機層視需 要為任一個多層密封膜或兩個多層密封膜的至少一個有 層。 本實施形態中所使用的有機層中,至少一個有機層的 特徵在於在其一個面具有可控制取出光強度的方向依存性 的立體結構。該結構為凹凸,且於自光取出側的正面觀察 11 200917883 之情形時為透明的,於斜 的是於自發光元件的垂^^為不透明的。具 角度觀察之情形時為不透 =方向至傾斜60度的 角度觀察之情形時為不 於自傾斜45度的 角度觀察之情形時為不透明的更好的疋於自傾斜30度的 形成於上述有機層的一 有機層的構成材料的材質 =凸的尺寸,可根據 形時根據半硬化時的施加;行半硬化之情 制。為了提高所期望的多條件來進行控 的是凹凸高低差為(MwZ t上述凹凸的尺寸較好 總膜厚通常設定於50nm=m的範圍。另外,有機膜的 ώ: ζ. 10 的範圍。這是主要考# 膜的=強朗轉與職雜喻佳設定的範圍。^ 封膜3接態中’基板上所形成的下部多層密 ㈣門層 亦可經由任意巾_而積層。 二二〗1考慮使基板表面親液化之親液化層等。如 此的直接^間接的積層關係,對於本發明的發光元件中的 下部多層密封膜·發光層·上部多層密封膜的積層關係亦相 同。即’可於下部多層密封膜上直接積層發光層,亦可間 接地積層。同樣’發光層上所形成的上部多層密封膜可直 接積層於發光層上,亦可間接地積層。例如,若列舉有機 EL元件的積層結構的一例,則具有可撓性基板/ (有機/無 機)下部多層密封膜/陽極(例如IT〇)/電洞注入層(例如, Μ0Ο3膜/聚(3,4)亞乙二氧基噻吩/聚苯乙烯磺酸膜)/高分子 12 200917883 層/€子注人層(例如域)/陰極層(例如 、(有機/無機)上部多層密封膜))的多層構成 夕=於本實施形態中,所謂下部多層密_與 ^ =;的發光部’是指上述發光層或具有上述: 朽曰心於光疋件為有機a元件時’發光部具有陽 極、陰極、該些電極間所設置的發光層。 严产部及上部多層密封膜的有機層及無機層的 二二nm〜10"m的範圍。若厚度未滿5nm, 、=良好地維持膜的機械特性;若厚度超過10㈣, 則正體的膜厚變厚,於右媲ρτ - 發光層取出=率機a 70件等中’亦有時影響自 (下部及上部多層密封膜的構成材料) ,成上述下部及上部多層密封膜的無機層例如可 4用魏# (Si02)、氮切(SiN)、氮氧切⑽ 半化ϋ(Α12〇3)等材料。該無機膜的形成方法可使用濺鑛 沐笙、水 CVD( Chemical Vapor Deposition,化學氣相沈積) 法專公知的薄膜形成方法。 上述所謂賤鐘法是薄膜形成方法的一種,是指使原子 或分子尺寸的微粒子與靶材(薄膜的材料)碰撞,使靶材 ^為微粒子而氣相放出’並使該婦微粒子堆積於規定的 二板表面上㈣成薄膜的方法。並且,有時转使原子或 为子尺寸的微粒子與靶材碰撞,使靶材成為微粒子氣 放出的現象稱為濺鍍。 另外’戶斤谓 CVD ( Chemical Vapor Deposition,化學氣 13 200917883 相沈積)法是薄卿成方法的_種,是指將含有薄膜構成 元素的原料虱體供給至反應室内,施加熱或電漿等能量而 產生化學反應,使反應產物堆積於規定的'基板表面而形成 薄膜的方法。 另一方面,構成下部及上部多層密封膜的有機層主要 可適當使用與上述無機層材料的密著性良好的具有(曱基) 丙烯基的錢單_(甲基)丙馳彡化合物聚合而成的丙 烯酸系聚合物。 另1,所謂(甲基)丙烯酸系化合物,是指包含丙烯酸、 甲基丙稀酸及該些化合物的醋作為構成單元的化合物。 上述(甲基)丙烯酸系化合物,可利用溶液塗佈法、喷 霧塗佈法等公知的塗膜形成方法來形成塗膜,對該塗膜照 ㈣能量(電子線、線、料料化學線)或施加熱 h ’由此而使其聚合,形成丙騎系聚合物。此時,於 本實施形態中’對至少—個有機層’ _上述半硬化方法 或於疏液面上形成魏的方法,於有機層完全硬化之同時 於有機層的一個面形成立體結構。 上述(甲基)丙烯酸系化合物並無特別限定,若為於分 子内包含―個或―個以上(?基)丙職的化合物即可。於 甲基)丙烯基為—個時,可獲得與無機膜更高的 。 (甲基^埽基為2個、3個時’交聯密度變高,有機層的膜 =變传更高。因該交聯密度的選擇性而影響上述凹凸的 尺寸,因此考慮到此方面,較好的是選擇材料。 上述(甲基)丙烯酸系化合物例如可列舉(曱基)丙烯酸 200917883 -2·經乙基醋、(甲基)丙烯酸經丙基酯、(甲基)丙稀酸·2_ 經丁基醋等具有經基的化合物,(甲基)丙烯酸二甲胺基乙 酯、(甲基)丙烯酸二乙胺基乙醋等具有胺基的化合物,(甲 基)丙烯酸、2-(甲基)丙婦醯氧基乙基_酸、2_(甲基)丙稀 酿氧基乙基六氫鄰苯二甲酸等具有缓基的化合物,(甲基) $烯酸縮水甘油醋、(甲基)丙稀酸四氫糠醋、(甲基)丙烯酸 裱己醋、(甲基)丙烯酸苯氧基乙酷、(甲基)丙烯酸異莰酯等 具有環狀骨架的(甲基)丙婦酸酿,(甲基)丙稀酸異戊醋、(甲 基)丙,酸月桂基醋、(甲基)丙烯酸硬脂基醋、(曱基)丙稀 酸丁氧基乙西旨、乙氧基二乙二醇(甲基)丙稀酸醋、甲氧基 二乙二醇(曱基)丙烯酸醋、曱氧基二丙二醇(甲基)丙稀酸醋 等丙烯酸系單官能化合物,或二乙二醇二(曱基)丙烯酸 酯、1,4-丁二醇二(f基)丙烯酸酯、匕^己二醇二(甲基)丙 稀酉文酉曰、1,9·壬一醇一(甲基)丙烤酸酯、三乙二醇二(甲基) 丙烯酸酯、PEG#200二(甲基)丙烯酸酯、peg#400二(曱 基)丙烯酸酯、PEG#600二(甲基)丙烯酸酯、新戊二醇二(曱 G 基)丙烯酸酯、二羥曱基三環癸烷二(甲基)丙烯酸酯等丙烯 酸系2 g此化合物,2官能(甲基)丙埽酸環氧酯等、2官能 (曱基)丙烯酸胺基甲酸酯等2官能(甲基)丙烯酸系化合物 等。另外,具有3個或3個以上(曱基)丙烯酸基的化合物 可使用一季戊四醇六(曱基)丙稀酸醋、季戊四醇三(曱基) 丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、三羥甲基丙烷三 丙稀酸酯、三經甲基丙烧四丙烯酸酯等丙稀酸系多官能單 體’或(甲基)丙烯酸系多官能環氧丙稀酸酯、(甲基)丙烯酸 15 200917883 系多官能丙烯酸胺基曱酸酯等。 本實施形態的發光元件及發光元件的製造方法,對發 光兀件為有機EL兀件之情形時特別有用。於 件中,於上述詳述的多層密封膜的構成亦相同。因此 適當應用本實施形態的有機EL元件中 其他主要構成如以下詳述。 ^^4 (基板) 1機EL元件所使㈣基板是形成電極、形成有 的層時並不產生變化的基板即可,例如可使用玻璃塑膠、 局分子膜、矽基板、將該些積層而成的基板等。 (電極及發光層) 有機EL兀件的基本結構是於至少陰極具有透光性的 透明或半透_包含-對陽極(第丨電極)及陰極(第2 電極)的電極間具有至少-個發韻。上述發⑽使用低 分子及/或高分子有機發光材料。 於有機EL元件中,作為發光層周邊的構成要素,陰[5] The light-emitting element according to the above [3], wherein the three-dimensional structure is formed by curing the coating film of the energy curable resin on a liquid-repellent surface. Formed at the same time. [6] The light-emitting element according to any one of the above [1] to [5] which is an organic EL light-emitting element. [7] A method for producing a light-emitting element, which is a method for producing a light-emitting element formed by sealing a light extraction side of a light-emitting portion by a multilayer sealing film having at least one organic layer, and having a surface of the organic layer Forming a tiltable three-dimensional structure of the controllable light intensity, in this step, forming the above-described three-dimensional structure while forming the above organic layer. [8] The method for producing a light-emitting device according to the above [7], wherein the organic layer is formed using an energy curable resin. [9] The method for producing a light-emitting device according to the above aspect, wherein the energy-curable contact coating is semi-cured and then completely cured, and the three-dimensional structure is formed simultaneously with the formation of the organic layer. [10] The method for producing a light-emitting device according to the above [8], wherein the surface which is hard-touched by the energy is hardened in a state of being formed on the sparse surface, and the above-mentioned (5) is formed to form the above-mentioned Three-dimensional structure. [11] The method for producing a light-emitting device according to any one of the above-mentioned [1], wherein the light-emitting device is an organic EL light-emitting device. EFFECTS OF THE INVENTION The light-emitting 7L member of the present invention is transparent when viewed from the front side of the light extraction side, and is transparent when viewed obliquely, thereby improving the front surface ease of the light-emitting element. Such an effect can be achieved by forming a three-dimensional structure while forming an organic layer on at least one of the plurality of organic layers in the multilayer sealing film on the light extraction side. If the inorganic layer of the multilayer sealing layer is formed into a three-dimensional structure, it must be highly etched or patterned. However, in the present invention, a three-dimensional structure can be easily formed on one surface of the organic layer while forming the organic layer. In addition, in the case where the optical film is used in the method of the first film, a high adhesion step and an optical film member are required. However, in the manufacturing method of the present invention, the one-dimensional structure of one surface of the organic layer can be used for a general sealing film. In the formation step, the process is simple, and the light-emitting element with good light extraction efficiency and excellent quality of 200917883 can be accommodated. Therefore, the light-emitting element and the manufacturer thereof according to the present invention increase the space occupied by the light-emitting element, and the light-emitting element is not improved at a low cost. 4, the efficiency of the removal is easy to understand, the above and other purposes, features and advantages can be more clearly as clear as P, and with the _ formula, the detailed description of the [Embodiment] The light-emitting element and its manufacturing method Embodiment 5 is clear. The light-emitting element of the present embodiment is a light-emitting element in which the light-extracting side of the light-emitting portion is sealed by an outer layer seal film having at least one right-hand layer, and the at least one organic layer is provided on one surface thereof. It is possible to control the stereoscopic structure in which the direction of light intensity is taken out. In the light-emitting element of this configuration, a three-dimensional structure in which one surface of the organic layer is formed is formed while forming the organic layer. In the method of manufacturing a light-emitting device of the present embodiment, one surface of the at least one organic layer of the light-emitting element in which the light-emitting element of the light-emitting portion is sealed by the multilayer sealing film having at least one organic layer is controllable. A method of producing a light-emitting element of a light-emitting element having excellent light extraction property by taking out a three-dimensional structure in which the direction of light intensity is dependent, is characterized in that a three-dimensional structure of one surface of the organic layer is formed simultaneously with the formation of the organic layer. In the above configuration, the organic layer is formed by an energy curable resin. The energy curable resin is a resin which is cured by irradiation with an ultraviolet ray, an electron beam (light weight) such as electrons 200917883 f, or a hardening by application of ruthenium. The three-dimensional structure of the above organic layer can be formed by temporarily hardening the tantalum film of the energy curable resin described above and then completely hardening it. In the fourth embodiment, the three-dimensional structure of the organic layer can be formed while forming the organic layer by hardening the coating film of the lanthanum curable resin on the lyophobic surface. The above-mentioned semi-hardening is a state in which the energy applied to the single f coating film is lower than the energy for completely curing the monomer - light or thermal energy in the present embodiment. More specifically, it means a state in which deformation occurs when it comes into contact with the coating film, but the coating film does not flow or deform even if it is inclined. In the semi-hardened state, the coating film is hardened at a microen level and a portion hardly hardened. When the energy of the hardened state is increased, the entire coating film is cured by the unevenness corresponding to the hardened localized spots. The reason for this is that the hardening speed of the hardened portion is rapid. In other words, it is presumed that the coating liquid at the portion where the curing is not performed is attracted to the hardened portion, and the hardening portion is used as a core to carry out the curing reaction. As a result, the coating portion is hardened and hardened from the hardened portion at the time of the semi-hardening. It can be said that the portion which has been hardened at the time of the semi-hardening is the core, and the remote crystal growth is completely cured, and the organic layer is formed, and the micro-sized irregularities are formed on the surface of the organic layer. In addition, in the following, the method of "forming a semi-hardened state by applying energy of light or thermal energy to the monomer coating film to a temperature at which the monomer is completely cured" may be referred to as a semi-curing method. 200917883 On the other hand, when the coating film is formed on the lyophobic surface, the liquid on the lyophobic surface is repelled by the surface, and the cohesive force of the liquid is induced. As a result, the coating liquid on the lyophobic surface is unevenly distributed in the micro-stage, and island-like irregularities are generated on the liquid surface. When light or heat energy 1 is applied to the film under the recording state, the coating film is hardened while maintaining the island-like irregularities of the surface. Specifically, the lyophobic surface is a surface which is not lyophilized of the inorganic layer constituting the multilayer sealing film or a surface of the substrate which is not subjected to lyophilic treatment. Alternatively, the surface may be lyophobic by plasma treatment using a gas having a fluorine atom. When the organic layer is an intermediate layer of a multilayer sealing film, one surface of the three-dimensional structure (concavity and convexity) serves as an interface with the inorganic layer of the upper layer of the organic layer, and the organic layer having irregularities is located at the highest of the upper multilayer sealing film. In the case of the outer layer, one surface on which the unevenness is formed becomes the surface of the organic layer. Further, when the light-emitting element is a top-emission type light-emitting element, the organic layer having the unevenness is at least one organic layer of the upper multilayer sealing film; and when the light-emitting element is a bottom-emitting type light-emitting element, the organic layer having the unevenness The layer is at least one organic layer of the lower multilayer sealing film; and in the case where the light emitting element is a dual light emitting type light emitting element, the organic layer having the unevenness is optionally at least one layer of any one of the multilayer sealing film or the two multilayer sealing films . In the organic layer used in the present embodiment, at least one of the organic layers is characterized in that it has a three-dimensional structure on one surface thereof for controlling the direction dependence of the extracted light intensity. This structure is uneven, and is transparent when viewed from the front side of the light extraction side 11 200917883, and is obliquely opaque to the self-luminous element. In the case of angle observation, it is not opaque when viewed from an angle of 60 degrees, and is not opaque when viewed from an angle of 45 degrees from inclination, and is better than 30 degrees from inclination. The material of the constituent material of an organic layer of the organic layer = the size of the convex layer, which can be applied according to the application at the time of semi-hardening according to the shape; In order to improve the desired multiple conditions, the unevenness is determined (MwZ t is preferably a size of the above-mentioned unevenness, and the total film thickness is usually set in the range of 50 nm=m. Further, the range of the organic film is ζ: ζ. This is the main test #膜 = strong 朗 与 职 职 与 与 与 与 ^ ^ ^ ^ ^ ^ 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封 封In the case of the lyophilized layer which is lyophilized on the surface of the substrate, the layered relationship of the lower multilayer sealing film, the light-emitting layer, and the upper multilayer sealing film in the light-emitting device of the present invention is also the same. 'The light-emitting layer can be directly laminated on the lower multilayer sealing film, or indirectly laminated. Similarly, the upper multilayer sealing film formed on the light-emitting layer can be directly laminated on the light-emitting layer or indirectly laminated. For example, if organic An example of the laminated structure of the EL element is a flexible substrate / (organic / inorganic) lower multilayer sealing film / anode (for example, IT 〇) / hole injection layer (for example, Μ0Ο3 film / poly (3, 4) A Dioxythiophene / Styrene sulfonic acid film)/polymer 12 200917883 Layer/Popular layer (for example, domain)/cathode layer (for example, (organic/inorganic) upper multilayer sealing film)) multilayer composition in the present embodiment, The light-emitting portion of the lower-layer dense layer _ and ^ =; refers to the light-emitting layer or has the above-mentioned: when the light-emitting element is an organic a-element, the light-emitting portion has an anode, a cathode, and a light provided between the electrodes. Floor. The range of the organic layer and the inorganic layer of the strict production part and the upper multilayer sealing film is 22 nm~10"m. When the thickness is less than 5 nm, the mechanical properties of the film are maintained satisfactorily. If the thickness exceeds 10 (four), the film thickness of the positive body becomes thicker, and the right 媲ρτ - luminescent layer extraction = rate machine a 70 pieces, etc. From the (the constituent materials of the lower and upper multilayer sealing films), the inorganic layer forming the lower and upper multilayer sealing films may be, for example, Wei #(SiO 2 ), nitrogen cut (SiN), or oxynitrid (10) bismuth (Α12〇) 3) Other materials. The method for forming the inorganic film can be a film forming method known in the art of sputtering CVD or chemical vapor deposition (CVD). The above-mentioned cuckoo clock method is a method of forming a film, and means that particles of atomic or molecular size collide with a target (material of a film), and the target material is fine particles and is released in a gas phase, and the particles are deposited in a predetermined state. A method of forming a film on the surface of a second plate. Further, in some cases, a phenomenon in which atoms or sub-sized particles collide with a target and the target is released into a fine particle gas is sometimes referred to as sputtering. In addition, the CVD (Chemical Vapor Deposition) method is a method of applying the thin film constituent element to the reaction chamber, applying heat or plasma, etc. A method in which a chemical reaction is generated by energy, and a reaction product is deposited on a predetermined 'substrate surface to form a thin film. On the other hand, the organic layer constituting the lower and upper multilayer sealing films can be suitably polymerized by using a fluorenyl-(meth) propylene compound having a (fluorenyl) propylene group which is excellent in adhesion to the inorganic layer material. An acrylic polymer. In addition, the (meth)acrylic compound means a compound containing acrylic acid, methyl acrylic acid, and vinegar of these compounds as a structural unit. The (meth)acrylic compound can be formed into a coating film by a known coating film forming method such as a solution coating method or a spray coating method, and the coating film is irradiated with (four) energy (electron wire, wire, material chemical line). Or applying heat h' to thereby polymerize it to form a C-based polymer. In this case, in the present embodiment, the method of forming "on at least one organic layer" - the above-described semi-hardening method or on the lyophobic surface forms a three-dimensional structure on one surface of the organic layer while the organic layer is completely cured. The (meth)acrylic compound is not particularly limited, and may be a compound containing one or more (?) groups in the molecule. When the methyl group is a propylene group, it can be obtained with an inorganic film. (When the methyl group has 2 or 3 groups, the crosslinking density becomes high, and the film of the organic layer = higher transmission. The selectivity of the crosslinking density affects the size of the above-mentioned unevenness, and thus this aspect is considered. Preferably, the material is selected. The (meth)acrylic compound may, for example, be (meth)acrylic acid 200917883 -2 · ethyl acetonate, (meth)acrylic acid propyl ester, (meth) acrylic acid ·2_ A compound having a trans group such as butyl vinegar, a compound having an amine group such as dimethylaminoethyl (meth)acrylate or diethylaminoacetate (meth)acrylate, (meth)acrylic acid, 2 a compound having a slow group such as (meth) acetophenoxyethyl acid, 2-(methyl) propyl ethoxyethyl hexahydrophthalic acid, (methyl) enoic acid glycerin (methyl)acrylic acid tetrahydroanthracene vinegar, (meth)acrylic acid hexanoic acid, (meth)acrylic acid phenoxyethyl ketone, (meth)acrylic acid isodecyl ester, etc. Bacillus acid, (meth) acrylic acid isovalerone, (meth) propyl, acid lauryl vinegar, (meth) styrene stearyl vinegar, (mercapto) acrylic acid Butoxyethyl ketone, ethoxydiethylene glycol (meth) acrylate vinegar, methoxy diethylene glycol (mercapto) acrylate vinegar, decyloxy dipropylene glycol (methyl) acrylate vinegar Acrylic monofunctional compound, or diethylene glycol bis(indenyl) acrylate, 1,4-butanediol bis(f) acrylate, 匕^ hexanediol di(methyl) propyl hydrazine曰, 1,9· sterol-(meth)propane acrylate, triethylene glycol di(meth) acrylate, PEG#200 di(meth) acrylate, peg#400 bis(fluorenyl) Acrylate, PEG #600 di(meth)acrylate, neopentyl glycol di(曱G-based) acrylate, dihydroxydecyltricyclodecane di(meth)acrylate, etc. 2 g of this compound, A bifunctional (meth)acrylic compound such as a bifunctional (meth)propionic acid epoxy ester or a bifunctional (fluorenyl) urethane urethane or the like, or three or more (fluorenyl) groups The acrylic-based compound may use pentaerythritol hexa(indenyl) acrylate vinegar, pentaerythritol tris(decyl) acrylate, pentaerythritol tetra(meth) acrylate, trimethylolpropane tripropyl Acrylic polyfunctional monomer such as dilute acid ester or trimethyl methacrylate tetraacrylate or (meth)acrylic polyfunctional epoxy acrylate, (meth)acrylic acid 15 200917883 polyfunctional acrylic acid The light-emitting element and the method for producing the light-emitting element of the present embodiment are particularly useful when the light-emitting element is an organic EL element. In the article, the structure of the multilayer sealing film described above is also The other main components of the organic EL device of the present embodiment are as described below in detail. ^^4 (Substrate) The (4) substrate is a substrate that does not change when the electrode is formed and the formed layer is formed. For example, a glass plastic, a molecular film, a ruthenium substrate, a substrate in which these layers are laminated, or the like can be used. (Electrode and Light-Emitting Layer) The basic structure of the organic EL element is at least one between the electrodes of the transparent or semi-transparent-containing anode (the second electrode) and the cathode (the second electrode) having at least a light-transmitting cathode. Rhyme. The above hair (10) uses a low molecular and/or high molecular organic luminescent material. In the organic EL element, as a constituent element around the light-emitting layer,

極、陽極、發光層以外的層可列舉設置於陰極與發光層: 間的層,設置於陽極與發光層之間的層。設置於陰極與發 光層之間的層可列舉電子注人層、電子傳輸層、電洞阻播 層等。 上述電子/主入層是具有改善來自陰極的電子注入效率 之功能的層,上述電子傳輸層是具有改善自電子注入層或 更接近陰㈣電?傳輸層向發光層電子傳輸之功能的層。 並且’於電子注入層或電子傳輸層具有堵塞電洞傳輸的功 16The layer other than the electrode, the anode, and the light-emitting layer may be a layer provided between the cathode and the light-emitting layer, and provided between the anode and the light-emitting layer. The layer disposed between the cathode and the light-emitting layer may be an electron injecting layer, an electron transporting layer, a hole blocking layer or the like. The above electron/main layer is a layer having a function of improving the efficiency of electron injection from the cathode, and the above electron transport layer is improved from the electron injection layer or closer to the negative (four) electricity? A layer of the function of transporting the layer to the luminescent layer for electron transport. And having a function of plugging holes in the electron injecting layer or the electron transporting layer 16

200917883 能有=;==洞_。具有堵塞電 由其”來確==流通電_的元件’ 、π禮二ί於Ϊ極與發光層之間的層可列舉電洞注入層、電 洞傳輸層、電子阻擋層等。 电 電洞注入層是具有改善來自陰極的電洞注入效率之功 能=層’所謂電_輸層是具有改善自電敝人層或更接 近陽極=電洞傳輸層向發光層電贿輸之功能的層。並 且法於?洞注入層或電洞傳輸層具有堵塞電子傳輸的功能 之月,k將該些層稱為電子阻擋層。具有堵塞電子傳輪 的功月b* Μ如可藉由製作僅流通電子電流的元件,由其電 流值的減少來確認堵塞效果。 如上所述的發光層周邊的各種組合構成可列舉於陽極 與f光層之間設置電洞傳輸層的構成,於陰極與發光層之 間沒置電子傳輸層的構成,於陰極與發光層之間設置電子 傳輸層且於陽極與發光層之間設置電洞傳輸層的構成等。 例如,具體可例示以下a)〜d)的結構。 a) 陽極/發光層/陰極 b) 陽極/電洞傳輸層/發光層/陰極 c) 陽極/發光層/電子傳輸層/陰極 d) 陽極/電洞傳輸層/發光層/電子傳輸層/陰極 (其中’/表示各層鄰接積層,以下相同。) 其中’如上所述’所謂發光層是指具有發光功能的層, 所謂電洞傳輸層是指具有傳輸電洞之功能的層,所謂電子 17 200917883 傳輸層是指具有傳輸電子之功能的層。另外,將電子 層與電洞傳輸層總稱為電荷傳輸層。發光層、電洞傳輪層1 電子傳輸層亦可分別獨立使用兩層或兩層以上。另外j, 接於電極而設置的電荷倾層巾,具有改善自電極的電荷 注入效率之功能、且具有降低元件的驅動電壓之效果的^ 一般被特別稱為電荷注入層(電洞注入層,電子注入層)曰。 此外’為了提高與電極的密著性或改善來自電極的電 ,注入’亦可與電極鄰接而設置上述電荷注人層或膜厚為 jnm或2nm以下的絕緣層,並且為了提高界面的密著性 或防止混合等’亦可㈣荷傳輸層紐光層的界面插入薄 ,緩衝層。關於所積層之層的順序或數量、及各層的厚度, 可考慮發光效率或元件壽命而適當使用。 另外,設置有電荷注入層(電子注入層、電洞注入層) ^有機EL 件可列舉與陰極鄰接而設置電荷注入層的有 EL元件,與陽極鄰接而設置電荷注入層的有機元 件。例如b,具體可列舉以下e)〜p)的結構。 Ο陽極/電荷注入層/發光層/陰極 f) 陽極/發光層/電荷注入層/陰極 g) ,極/電荷注入層/發光層/電荷注入層/陰極 10,極/電荷注入層/電洞傳輸層/發光層/陰極 0,極/電洞傳輸層/發光層/電荷注入層/陰極 J)陽極/電荷注入層/電洞傳輸層/發光層/電荷注入層/ 當極 k)陽極/電荷注入層/發光層/電荷傳輸層/陰極 200917883 l) 陽極/發光層/電子傳輸層/電荷注入層/陰極 m) 陽極/電荷注入層/發光層/電子傳輸層/電荷注入層/ 陰極 η)陽極/電荷注入層/電洞傳輸層/發光層/電荷傳輸層/ 陰極 〇)陽極/電洞傳輸層/發光層/電子傳輸層/電荷注入層/ 陰極 Ρ)陽極/電荷注入層/電洞傳輸層/發光層/電子傳輸層/ 電荷注入層/陰極 <另外,上述(a)至(ρ)所示的層結構例亦可採用陽 極設置於更接近基板之侧的形態,及陰極設置於更接近基 板之侧的形態中的任一形態。 (陽極)200917883 can have =; == hole _. A layer having a plugging electricity by which "is surely == flowing electric_", and a layer between the drain and the light emitting layer may be a hole injection layer, a hole transport layer, an electron blocking layer, and the like. The hole injection layer is a function to improve the efficiency of hole injection from the cathode. The layer "the so-called electric_transmission layer" is a layer having a function of improving the self-electricity layer or closer to the anode = hole transport layer to the light-emitting layer. And the method is that the hole injection layer or the hole transport layer has a function of blocking electron transport, and the layers are called electron blocking layers. The power month b* which blocks the electron transfer wheel can be circulated only by making The element of the electron current is confirmed by the decrease in the current value. The various combinations of the periphery of the light-emitting layer as described above include a configuration in which a hole transport layer is provided between the anode and the f-light layer, and the cathode and the light-emitting layer are provided. There is no electron transport layer between them, and an electron transport layer is provided between the cathode and the light-emitting layer, and a hole transport layer is provided between the anode and the light-emitting layer. For example, the following a) to d) can be specifically exemplified. Structure a) anode / hair Layer/cathode b) anode/hole transport layer/light-emitting layer/cathode c) anode/light-emitting layer/electron transport layer/cathode d) anode/hole transport layer/light-emitting layer/electron transport layer/cathode (where '/ Each layer is adjacent to the laminate, the same as the following.) Wherein 'the above-mentioned light-emitting layer refers to a layer having a light-emitting function, and the so-called hole transport layer refers to a layer having a function of transmitting a hole, and the so-called electron 17 200917883 transport layer means having A layer for transmitting electrons. In addition, the electron layer and the hole transport layer are collectively referred to as a charge transport layer. The light-emitting layer and the electron transport layer 1 electron transport layer may also be used independently of two or more layers. The charge decanting film provided on the electrode has a function of improving the charge injection efficiency from the electrode and has an effect of lowering the driving voltage of the element. Generally, it is called a charge injection layer (hole injection layer, electron injection layer). In addition, 'in order to improve the adhesion to the electrode or improve the electricity from the electrode, the injection' may be adjacent to the electrode to provide the above-mentioned charge injection layer or an insulating layer having a film thickness of jnm or less. In order to improve the adhesion of the interface or prevent mixing, etc., it is also possible to insert a thin, buffer layer at the interface of the bonding layer of the carrier layer. Regarding the order or number of layers of the layer and the thickness of each layer, the luminous efficiency or In addition, a charge injection layer (electron injection layer, hole injection layer) is provided. The organic EL device includes an EL element in which a charge injection layer is provided adjacent to the cathode, and a charge injection layer is provided adjacent to the anode. The organic element, for example b, specifically includes the following structures e) to p). Ο anode/charge injection layer/light-emitting layer/cathode f) anode/light-emitting layer/charge injection layer/cathode g), pole/charge injection layer / luminescent layer / charge injection layer / cathode 10, pole / charge injection layer / hole transport layer / luminescent layer / cathode 0, pole / hole transport layer / luminescent layer / charge injection layer / cathode J) anode / charge injection layer / hole transport layer / light-emitting layer / charge injection layer / when pole k) anode / charge injection layer / light-emitting layer / charge transport layer / cathode 200917883 l) anode / light-emitting layer / electron transport layer / charge injection layer / cathode m) Anode/charge injection layer/light-emitting layer /electron transport layer / charge injection layer / cathode η) anode / charge injection layer / hole transport layer / luminescent layer / charge transport layer / cathode 〇) anode / hole transport layer / luminescent layer / electron transport layer / charge injection layer / Cathode Ρ) anode / charge injection layer / hole transport layer / light-emitting layer / electron transport layer / charge injection layer / cathode < additionally, the layer structure examples shown in the above (a) to (p) can also be set by the anode The form closer to the side of the substrate and the form in which the cathode is provided closer to the side of the substrate. (anode)

_上述陽極中,例如具有透光性的電極可使用電導係數 尚的金,氧化物、金屬硫化物或金屬的薄膜,可適當利用 透射率岗者,且根據所使用的有機層而適當選擇使用。具 體而σ ’可使用利用由氧化銦、氧化辞、氧化錫、及該些 ^複合體即氧化銦錫⑽,Indium Tin 〇xide)、氧化崎 等形成的導電性玻璃所製作的膜(nesa 銀、銅等,較好的是ιτο、氧化銦鋅、氧化錫。製作方法 =列舉真空驗法、濺鍍法、離子電鍍法、驗法等。另 該陽極亦可使用聚苯胺或其衍生物,聚齡或其衍生 物等之有機透明導電膜。 陽極的膜厚可考慮光的透過性與電導係數而適當選 200917883 擇,例如為lOnm〜10 #m,較好的是20nm〜1 “m, 更好的是50 nm〜500 nm。 (電洞注入層) 電洞注入層如上所述,可設置於陽極與電洞傳輸層與 之間或者設置於陽極與發光層之間。形成電洞注入層的材 料可列舉苯基胺系、星射型胺系、酞菁系、氧化鈒、氧化In the above-mentioned anode, for example, a film having light transmissivity may be used, and a film of gold, oxide, metal sulfide or metal having a good electrical conductivity may be used, and a transmittance may be suitably used, and the organic layer may be appropriately selected depending on the organic layer to be used. . Specifically, σ ' can be a film made of a conductive glass formed of indium oxide, oxidized, tin oxide, and indium tin oxide (10, Indium Tin 〇xide), oxidized or the like (nesa silver). , copper, etc., preferably ιτο, indium zinc oxide, tin oxide. Production method = enumeration vacuum test, sputtering method, ion plating method, test, etc. Alternatively, the anode can also use polyaniline or its derivatives, An organic transparent conductive film of a certain age or a derivative thereof, etc. The film thickness of the anode may be appropriately selected in consideration of light transmittance and conductance coefficient, for example, lOnm to 10 #m, preferably 20 nm to 1 "m, More preferably, it is 50 nm to 500 nm. (Curtain injection layer) The hole injection layer can be disposed between the anode and the hole transport layer or between the anode and the light-emitting layer as described above. Examples of the material of the layer include a phenylamine system, a star-shaped amine system, a phthalocyanine system, cerium oxide, and oxidation.

鉬、氧化釕、氧化料氧化物’非晶形碳、聚苯胺、聚喧 吩衍生物等。 (電洞傳輸層) 構成電洞傳輪層的材料可例示聚乙烯咔唑或其衍生 物、聚魏或其衍生物、觸或域上具有芳香族胺的聚 碎,燒衍生物吻料衍生物、芳基贿生物、&衍生物、 三苯基=胺衍生物、聚苯胺或其衍生物、聚噻吩或其衍生 物、聚芳基胺或其彳m聚轉或其衍生物、聚⑼苯乙 炔)或其衍生物、或聚(2,5_麵6烯成其衍生物等。 ,些化合物中,電洞傳輸層所使用的電洞傳輸材料較 的是聚乙烯咔唑或其衍生物、聚矽烷或其衍生物、侧鏈 3、主鏈上具有芳香族胺化合物基的聚矽氧烷衍生物、聚苯 ,或y生物、聚嗔吩或其衍生物、聚芳基胺或其衍生物、 =(對苯乙块)或其衍生物、或聚(2,5_嗟吩乙婦)或其衍生物 =雨分子電洞傳輸材料,更好的是聚乙烯咔唑或其衍生 :聚^域其衍生物、繼或线上具有料族胺的聚 b氣燒衍生物。於低分子電洞傳輸材料之情形時,較好的 疋將其分散於高分子黏合劑(binder)中後使用。 20 200917883 (發光層) 發光層通常具有主要發出螢光或磷光的有機物(低八 子化合物及高分子化合物)。另外,亦可進—步含有摻雜二 材料。形成本實施形態中可使用的發光層的材料例如可 舉以下材料。 (發光層形成材料1:色素系材料) 色素系材料例如可列舉環五胺(Cycl0pendamine) 生物、四苯基丁二烯衍生物化合物、三苯基胺衍生物”亞 -:坐街生物、射個衍生物、香豆素衍生物、対幷啥 琳何^物、二苯乙烯絲衍生物、二苯乙料烴衍生物、 ^各街生物”塞吩環化合物K環化合物、♦瑞贿生 tii街生物、寡嗟吩衍生物n二聚物、財琳二 聚物專。 (發光層形成材料2:金屬錯合物系材料) 金屬錯合物系材料例如可列舉銀錯合物、銘錯合物等 物態發光的金屬錯合物、經基喧琳銘錯合 本土、工土啉鈹錯合物、苯幷噁唑鋅錯合物、苯幷噻 唾鋅錯合物、偶氮甲 Λΐ L^ 類合屬,㈣a目士 等或b、Eu、Dy等稀土 類金屬,配位基具有嚼二嗤、嚷二峻 咪唑、喹啉結構等的金屬錯合物等。 " (發光層形成材料3:高分子系材料) 衍生Ϊ分聚對笨乙块衍生物、《吩 τ物、聚矽烷衍生物、聚乙炔衍生物、 21 200917883 聚第衍生物、聚乙烯啊衍生物、將上述色素體或金屬錯 合物系發光材料高分子化而成之化合物等。 —上述發光層形成材料巾發出藍色光的材料例如可列舉 ^乙婦亞芳基射物、„惡二峰衍生物、及該些化合物的 乙料飾生物、聚對苯衍生物、聚第衍生物 一士、It乂好的是南分子材料的聚乙烯咪唾衍生物、聚對 本何生物或聚苇衍生物等。 可列ίϊ二述發光層形成材料中發出綠色光的材料例如 衍生物、香豆素衍生物、及該些化合物的 ::對本乙块衍生物、聚驗生物等。其中較好的 疋心子材卿對苯乙块衍生物、科衍生物等。 可列色先的材料例如 其中較好的是高分讀料 =物等。 物、聚第衍生物等。 言本乙炔何生物、聚噻吩衍生 (發光層形成材料4 :摻雜劑材料) 光波的發先效率提高或改變發 生物、香豆素衍 生物、十触额生物、財琳酮衍 :讀(Decacyclene)、吩嗔噪 (電子傳輸層) 形成電子傳輸層的材料可使用公知的材料,例如可例 22 200917883 示噁二唑衍生物、蒽醌二曱烷或其衍生物、苯醌或其衍生 物、秦酿;或其衍生物、蒽@昆或其衍生物、四氰蒽酿二曱烧 或其衍生物、第酮衍生物、二苯基二氰乙烯(diphenyl dicyanoethylene )或其衍生物、聯苯醌(Diphenoquinone ) 衍生物、或8-羥基喹啉或其衍生物的金屬錯合物、聚喹啉 或其衍生物、聚喹噁啉或其衍生物、聚第或其衍生物等。 該些化合物中,較好的是噁二唑衍生物、苯醌或其衍 生物、蒽酿或其衍生物、或8-經基啥琳或其衍生物的金屬 錯合物、聚啥琳或其衍生物、聚惡琳或其衍生物、聚第 或其衍生物,更好的是2-(4-聯苯基)-5-(4-第三·丁基苯 基)-1,3,4-°惡一0坐、苯酿、蒽酿、三(8-經啥琳)銘、聚喧琳。 (電子注入層) 電子注入層可如上所述設置於電子傳輸層與陰極之間 或設置於發光層與陰極之間。電子注入層,根據發光層的 種類,可ό又置由Ca層的單層結構而形成的電子注入層, 或者可設置由如下層與Ca層的積層結構而形成的電子注 U 入層’上述層由除了 Ca以外的週期表(採用IUPAC (國 際純正、應用化學連合))的1族與2族的金屬且功函數為 1.5〜3.0 eV的金屬及其金屬的氧化物、齒化物及碳酸化物 的任一種或兩種或兩種以上而形成。功函數為i 5〜3 〇eV 的週期表1族的金屬或其氧化物、鹵化物、碳酸化物的例, 可列舉鋰、氟化鋰、氧化鈉、氧化鋰、碳酸鋰等。又,功 函數為1.5〜3.〇eV的除了以以外的週期表2族的金屬或 其氧化物、函化物、碳酸化物的例,可列舉鳃、氧化鎂、 23Molybdenum, cerium oxide, oxide oxide oxide, amorphous carbon, polyaniline, polybenzaldehyde derivative, and the like. (Cone transport layer) The material constituting the hole-transmitting layer can be exemplified by polyvinyl carbazole or a derivative thereof, poly-Wei or its derivative, poly-fragment having an aromatic amine on a touch or a domain, and a derivative derived from a burned derivative. , aryl bribe, & derivative, triphenyl = amine derivative, polyaniline or its derivatives, polythiophene or its derivatives, polyarylamine or its 聚m poly- or its derivatives, poly (9) phenylacetylene) or a derivative thereof, or a poly(2,5-form 6-ene) derivative thereof, etc. Among these compounds, the hole transporting material used for the hole transport layer is polyvinyl carbazole or a derivative, a polydecane or a derivative thereof, a side chain 3, a polyoxyalkylene derivative having an aromatic amine compound group in the main chain, a polyphenylene, or a y-bio, poly-porphin or a derivative thereof, or a polyarylamine Or a derivative thereof, = (p-phenylene block) or a derivative thereof, or poly(2,5- porphin) or a derivative thereof = rain molecule hole transport material, more preferably polyvinyl carbazole or It is derived from a poly-methane derivative of the poly-domain, or a poly-b gas-fired derivative having a steroid amine on the line. In the case of a low molecular hole transport material, a better 疋It is dispersed in a polymer binder and used. 20 200917883 (Light-emitting layer) The light-emitting layer usually has an organic substance (low-eight compound and high-molecular compound) which mainly emits fluorescence or phosphorescence. The material for forming the light-emitting layer which can be used in the present embodiment is, for example, the following materials: (Light-emitting layer forming material 1: pigment-based material) Examples of the pigment-based material include cyclohexamine (CyclOPpendamine), and tetraphenylene. Butadiene derivative compound, triphenylamine derivative" sub--: street creature, shot derivative, coumarin derivative, 対幷啥琳何物, stilbene filament derivative, diphenyl Ethylene hydrocarbon derivatives, ^Street organisms, "Secret ring compound K ring compound, ♦ Rui brie tii street organism, oligophene derivative n dimer, Cailin dimer. (Light-emitting layer forming material 2 : Metal complex compound material) Examples of the metal complex compound material include a metal complex which emits light in a physical state such as a silver complex or a complex compound, and a base metal, a terrane, and a terrane. Compound, benzoxazole zinc mismatch , benzoquinone zinc sulphate complex, azomethine L ^ genus, (d) a sage, or b, Eu, Dy and other rare earth metals, ligands have chewing bismuth, bismuth imidazole, quin Metal complex such as porphyrin structure, etc. " (Light-emitting layer forming material 3: polymer-based material) Derivatized Ϊ Ϊ 对 笨 笨 笨 笨 笨 笨 笨 笨 笨 笨 笨 《 《 《 《 吩 吩 吩 吩 吩 吩 吩 吩 吩 吩 吩 吩 吩 吩 吩21 200917883 A poly-derivative, a polyethylene derivative, a compound obtained by polymerizing the above-mentioned dye body or a metal complex-based light-emitting material, etc. - a material in which the light-emitting layer forming material sheet emits blue light, for example, A woman's arylene-based ejector, „ 二 二 peak derivative, and the B-materials of these compounds, poly-p-benzene derivatives, poly-derivatives, and it is a polyethylene molecule of southern molecular materials. Salivary derivatives, poly-bens or poly-purine derivatives. The materials which emit green light in the light-emitting layer forming material, such as derivatives, coumarin derivatives, and the likes of the present compounds, the test organisms, and the like can be listed. Among them, the good 子 子 子 对 对 对 对 衍生物 衍生物 衍生物 衍生物 衍生物 。 。 。 。 Among the materials which can be listed first, for example, a high-order reading material or the like is preferable. Materials, poly derivatives, and the like. Acetylene Hebi, Polythiophene Derivative (Light Emitting Layer Forming Material 4: Dopant Material) The efficiency of light wave is increased or changed, coumarin derivative, ten-touch organism, and Cailin ketone derivative: read ( Decacyclene), a material for forming an electron transport layer, a known material can be used, for example, an oxadiazole derivative, a dioxin or a derivative thereof, benzoquinone or a derivative thereof can be used as an example 22 200917883 , Qin brewing; or its derivatives, 蒽@昆 or its derivatives, tetracyanohydrin or its derivatives, ketone derivatives, diphenyl dicyanoethylene or its derivatives, a diphenoquinone derivative, a metal complex of 8-hydroxyquinoline or a derivative thereof, polyquinoline or a derivative thereof, polyquinoxaline or a derivative thereof, polydipeptide or a derivative thereof, and the like. Among these compounds, preferred are oxadiazole derivatives, benzoquinone or a derivative thereof, brewing or a derivative thereof, or a metal complex of 8-meridene or a derivative thereof, or polypyrene or a derivative thereof, polyoxin or a derivative thereof, polydi or a derivative thereof, more preferably 2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3 , 4-° 恶一0 sitting, benzene brewing, brewing, three (8- Jing Lin) Ming, Ju Yulin. (Electron Injection Layer) The electron injection layer may be disposed between the electron transport layer and the cathode or between the light emitting layer and the cathode as described above. The electron injecting layer may have an electron injecting layer formed by a single layer structure of the Ca layer according to the kind of the light emitting layer, or may be provided with an electron injecting layer formed by a laminated structure of the following layer and the Ca layer. The layer consists of a metal of Group 1 and Group 2 with a periodic table other than Ca (using IUPAC (International Pure, Applied Chemistry)) and a work function of 1.5 to 3.0 eV of metal and its metal oxides, dentates and carbonates. Any one or two or more of them are formed. Examples of the metal of the Group 1 of the periodic table having a work function of i 5 to 3 〇eV or an oxide, a halide or a carbonate thereof include lithium, lithium fluoride, sodium oxide, lithium oxide, lithium carbonate and the like. Further, the work function is 1.5 to 3. 〇eV, in addition to the metal of the Group 2 of the periodic table or an oxide, a complex or a carbonate thereof, examples thereof include ruthenium, magnesium oxide, and 23

200917883 氟化wr、氟化鋇、氧化鳃、碳酸鎂等。 陰極中,具有透光性的電極 層間化合物、Zno (氧化鋅)等牛導屬;石墨 錫)或啊氧化_等導電性’ 0二化銦 :=氧:物等。金屬例如可·、二二 翻:U、鎮、鈣、銷、鋇等驗土金屬;金、銀、 叙細、銘、錄、鹤等過渡金屬;錫、銘、銳、 ==、鈽,,、錢、t以及該些金屬中 ϋ或兩歡上的合铸。合金 :合金,銘合金、銦-銀合金、鐘_銘合金錢 鋰-銦合金、鈣-鋁合金等。又,亦可 、 以上的積層結構。其例可列舉 ^ ^兩層或兩層 Μ、料AM 舉4金屬、金屬氧化物、氟 力合金與銘、銀、絡等金屬的積層結構等。 實施例 心的實施例加以說明。以下所示的實施例 疋用乂對本發明進行更詳細說明的較佳例示並不對本發 ^進行任何限定。以下實施例的前提是崎光元件為有機 ^0件。本發明對有機a元件的情形制有效,對其他 發光元件亦同樣有效。 …另外,於以下的實施例3的有機EL元件中,如以上 兒明般’電極要素最簡易的是僅由陽極、陰極構成,亦 子在該些陽極、陰極積層於發光層的兩個表面而形成發光 P的It形亦存在除陽極、陰極以外,將其他電極要素即 24 200917883 電洞注入層、電洞傳輸層、電子傳輸層、電子注入層進行 各種組合,將該些要素於發光層上積層而形成發光部的情 形。於以下的實施例3中,對於發光層的兩側所形成的電 極要素進行簡易記載’但是需明確的是任一種構成的電極 要素積層於發光層上的情形均可同樣地適用。即,於發光 層上積層各種組合的電極要素之後,於其上積層多層密封 膜。於本發明中’所謂由多層密封膜來密封發光層或發光 部表示上述構成。 (實施例1) (具有海島結構(Sea-island structure )的有機膜的形 成1) 本實施例是如下實驗例,形成本發明中的一個面具有 凹凸的有機層的面,使用玻璃基板,將該基板上所形成的 有機層用塗膜經過半硬化後完全硬化,由此於有機層的一 個面上形成凹凸。 首先,利用UV-〇3 (臭氧)處理裝置(TechVision股 份有限公司製造,商品名「Model 312 UV-03清潔系統」) 對該玻璃基板進行親液化處理之後,設置於膜密封裝置(美 國VITEX公司製造,商品名「Guardian200」)的有機成膜 室。將有機單體材料(VITEX公司製造,商品名「Vitex B arix Resin System monomer material (Vitex701 )」)導入至氣化 器中,使其氣化,自狹縫喷嘴喷出單體蒸氣,使基板以固 定速度通過噴嘴上,由此使單體以均勻的厚度附著於基板 上,於基板上形成由單體形成的塗膜。 25 200917883 其次,對形成了上述單體塗膜的基板,照射使塗膜的 單體交聯硬化不充分的量的uv (Ultravi〇let,紫外線)光 (燈功率30%) ’而使塗膜半硬化。 繼而,對上述半硬化狀態的塗膜,照射將該塗膜完全 硬化充分的UV光(燈功率6〇%)。利用光學顯微鏡對所獲 得的硬化膜(有機層)進行觀測,其具有海島結構,且= 表面形成了與海島結構相對應的高低差約12 μιη的凹凸。 '若自正面即塗膜侧對所獲得的基板進行觀測,則無色 透明且顯不出高透過率,若斜向觀測,則因光散射而透過 率減小,成為淡白色。 (比較例1) 於實施例1中,除了照射單體硬化充分的υν光(燈 功率60%)以外’以與實施例丨同樣之方式形成有機膜。 f獲得的有顧的表面平坦,且無論觀财向如何均為益 色透明且顯示出高透過率。 …、 實施例1所製造的元件,與比較例i所製造的元件相 比,自正面觀測的亮度變高,效率變高。 (實施例2) (具有海島結構的有機膜的形成2) 本實施例是如下實驗例,形成本發明中的一個面具 =的有顧的©’使賊縣板,使該基板的表面保持 ^夜性,將該疏㈣上卿成的有機層用魏完全硬化, 由此於有機層的一個面上形成凹凸。 並不利用uv-〇3 (臭氧)處理裝置對玻璃基板進行親 26 200917883 液化處理,岐置於職封裝置(美國νιτΕχ公司製造, 商广名「Wdia·」)的有機成膜室。將有機單體材料 ITEX公司製造’商品名「^故如也以血办齡 ^onon^materiaULD」)導入至氣化器中,使其氣 =,自狹縫喷嘴喷出單體蒸氣,使基板㈣定速度通過喷 ^上,由此使單體以均勻的厚度附著於基板上,於基板的 疏液面上形成單體的塗膜。200917883 Fluoride wr, barium fluoride, barium oxide, magnesium carbonate, etc. In the cathode, an electrode intercalating compound having light transmissivity, a bovine genus such as Zno (zinc oxide), graphite tin or oxidized _ 0 indium oxide: = oxygen: or the like. Metals such as can, two or two: U, town, calcium, pin, sputum and other soils; gold, silver, Syrian, Ming, recorded, crane and other transition metals; tin, Ming, sharp, ==, 钸, , money, t, and the combination of the metal or the two of the two. Alloys: alloys, alloys, indium-silver alloys, bells, alloys, lithium-indium alloys, calcium-aluminum alloys, etc. Further, the above laminated structure may be used. Examples thereof include ^ ^ two or two layers of tantalum, material AM, 4 metals, metal oxides, fluorocarbon alloys, and laminated structures of metals such as Ming, silver, and complex. EXAMPLES Examples of the core are described. The following examples are given to illustrate the invention in more detail and are not intended to limit the invention. The premise of the following embodiment is that the sacrificial element is an organic component. The present invention is effective for the case of an organic a-element and is equally effective for other luminescent elements. Further, in the organic EL device of the following Example 3, as described above, the electrode element is the simplest one consisting of only the anode and the cathode, and the anode and the cathode are laminated on both surfaces of the light-emitting layer. In addition, in addition to the anode and the cathode, the other forms of the electrodes, that is, the 24 2009 17883 hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer, are combined in the It shape, and the elements are applied to the light-emitting layer. A case where a layer is formed to form a light-emitting portion. In the following Example 3, the electrode elements formed on both sides of the light-emitting layer are briefly described. However, it is to be understood that the electrode elements of any one of the layers can be similarly applied to the light-emitting layer. Namely, after laminating various combinations of electrode elements on the light-emitting layer, a multilayer sealing film is laminated thereon. In the present invention, the above-described configuration is shown by sealing a light-emitting layer or a light-emitting portion by a multilayer sealing film. (Example 1) (Formation of organic film having sea-island structure 1) This example is an experimental example in which the surface of the organic layer having irregularities on one surface of the present invention is formed, and a glass substrate is used. The coating film for the organic layer formed on the substrate is completely hardened by being semi-hardened, whereby irregularities are formed on one surface of the organic layer. First, the glass substrate was lyophilized by a UV-〇3 (ozone) treatment apparatus (manufactured by TechVision Co., Ltd., trade name "Model 312 UV-03 Cleaning System"), and then placed in a membrane sealing device (VITEX, USA) Manufactured, the organic film forming chamber of the product name "Guardian 200". An organic monomer material (manufactured by VITEX Co., Ltd., trade name "Vitex B arix Resin System monomer material (Vitex 701)") is introduced into a gasifier, vaporized, and a monomer vapor is ejected from the slit nozzle to cause the substrate to The fixing speed is passed through the nozzle, whereby the monomer is attached to the substrate in a uniform thickness, and a coating film formed of a monomer is formed on the substrate. 25 200917883 Next, the substrate on which the monomer coating film was formed was irradiated with uv (ultraviolet) light (lamp power: 30%) in an amount sufficient to crosslink the monomer of the coating film to be insufficiently cured. Semi-hardened. Then, the coating film in the semi-hardened state was irradiated with UV light (lamp power: 6 〇%) which sufficiently cured the coating film. The obtained cured film (organic layer) was observed by an optical microscope, which had a sea-island structure, and = the surface was formed with irregularities corresponding to a sea-island structure with a height difference of about 12 μm. When the obtained substrate was observed from the front side, the obtained substrate was colorless and transparent, and high transmittance was not observed. When observed obliquely, the transmittance decreased due to light scattering, and it became pale white. (Comparative Example 1) An organic film was formed in the same manner as in Example 以外 except that υν light (lamp power: 60%) having sufficient curing of the monomer was irradiated. The surface obtained by f is flat, and it is transparent and shows high transmittance regardless of the financial direction. In the element produced in Example 1, the brightness observed from the front side was higher than that of the element produced in Comparative Example i, and the efficiency was high. (Example 2) (Formation 2 of organic film having a sea-island structure) This example is an experimental example in which a mask of the present invention is formed, and the surface of the substrate is kept. At night, the organic layer of the smear (4) is completely hardened with Wei, thereby forming irregularities on one surface of the organic layer. The glass substrate was not liquefied by a uv-〇3 (ozone) treatment apparatus, and was placed in an organic film forming chamber of a sealing device (manufactured by νιτΕχ, Inc., "Wdia·"). The organic monomer material ITEX company manufactures the 'product name', so the blood is also used to be in the gasifier, so that the gas = the monomer vapor is ejected from the slit nozzle to make the substrate (4) The fixed speed is sprayed onto the substrate, whereby the monomer is attached to the substrate in a uniform thickness, and a single coating film is formed on the lyophobic surface of the substrate.

丄其久’對形成有單體塗膜的基板,照射使塗膜的單體 化充分量的UV光(燈功_%)。利用光學顯微鏡 ,所獲得的硬化膜(有機層)進行觀測,其具有海島結構, 於表面形成了與海島結構相對應的高低差約l m 凹Λ。 若自正面即塗膜側對所獲得的基板進行觀測,則無色 ,明且顯示高透過率’若斜向朗,則因綠射而透過率 /或小’成為淡白色。 (實施例3) (使时有具有海島結構的有機層❹層密封膜的有 璣EL元件的製造) 將利用濺鍍法成膜的膜厚約150 nm的ΙΤΟ (透明電 =)圖案化而成的玻璃基板,用有機溶劑、鹼性洗劑、超 娃水來進行清洗’並加以乾燥,對所獲的之基板利用uv_〇3 衷置進行uv-o3處理。 —=上述基板的ITO面側將聚(3,4)亞乙二氧基噻吩/聚 本乙烯%酸(110 Starck-V TECH公司製造,商品名「Bytr〇n 27 200917883 PTPAI4083」)的懸濁液利用直徑0.5 的過濾器進行 過慮,並將懸濁液藉由旋塗而以7〇 nm的厚度進行成膜, 於大氣中於加熱板(hotplate)上以200°C乾燥10分鐘。 接者,使用以1 . 1混合二曱苯與苯甲趟的溶劑來製作 冋分子有機發光材料(Sumation公司製造,商品名 ILumationGP130〇」)的1.5重量%的溶液。使用旋塗將該 溶液於上述成膜了「BytronP」的基板上成膜為80nm的 膜厚。 C、 去除取出電極部或密封區域部分的發光層,導入至真 空腔室中,並移至加熱室(以後,於真空中或氮氣中進行 製程,從而製程中的元件不會暴露於大氣中)。接著,於真 空t (真空度為ixl0-4Pa或lxl0-4Pa以下)、約1〇〇〇c的溫 度下加熱60分鐘。 其後’將基板移至蒸鍵腔室中,與陰極遮罩對準,對 發光部及取出電極部進行蒸鍍以成膜陰極。利用電阻加熱 法對Ba金屬進行加熱,以蒸鍍速度約〇 2 nm/sec、膜厚5 nm (j 進行蒸鍍’並利用電子束蒸鍍法,以蒸鍍速度約0.2 nm/sec、膜厚i5〇nm蒸鍍A1,從而形成陰極。 (上述多層密封膜的形成) 於元件製成後,將基板自蒸鍍室並不暴露於大氣中地 移至膜费封裝置(美國VITEX公司製造,商品名 「Guardian200」)。將遮罩對準設置於基板上。接著,將基 板移至無機成膜室,利用濺鍍法進行第1無機層即氧化紹 的成膜。利用純度5N的A1金屬靶材’導入氬氣與氧氣’ 28 200917883 於基板上成膜氧化铭膜。獲得厚約6〇 nm的透明且平坦的 氧化鋁膜。 上述第1無機層成膜後,卸下無機層用遮罩,更換為 有機層用遮罩,移至有機成膜室中。將有機單體材料 (VITEX公司製造,商品名「Vitex Barix Resin加⑽ m〇n〇mermaterial (Vitex7〇1)」)導入至氣化器中使其氣 化,自狹縫噴嘴喷出單體蒸氣’使基板以固定速度通過喷 Ο 嘴上,由此使單體以均勻的厚度附著於基板上。接著,對 附著了單體的基板闕UV絲使單體交聯硬化,形成第 1有機層。所獲得的膜為透明且平坦的膜,膜厚約13 # m ° 形成第1有機層之後’將基板移至無機成膜室,導入 氬與氧’利㈣鍍法進行第2無機層即氧化銘的成膜。形 ^厚=0 rnn㈣日肢平㈣氧化_。第2無機層成膜 有機層同樣地成膜第2有機層,第2有機層成 繁;古:f2?機層同樣地形成第3無機層。同樣地形成 第3有機層、第4無機層。 層的㈣具有海島結構㈣凸(立體結構)的有機 地’形成第4無機層之後,與第1有機層同樣 例1同樣地進行利用uv光使單體 中照射硬化並不充分…使塗膜半硬使 的凹凸產生於其表面(一個面),其次二二: 29 200917883 述半硬化狀態的塗膜照射硬 , 產生的海島結構的凹凸固定77的uv光使第1階段所 使以上述方式而獲得成有機層(硬化膜)。 的=進:r:具有=度=光 機層的多層密封膜。藉由具有至少-個有 件,其特徵在於上述至侧而成的發光元 制取出光強度的方向依存性的=其::面::可控 的法是如下發光元;二=法= 二,㈣發光元件 結構 有機層之同時形成上财機層—個面的立體 本發明的發光元件,於自光取出側的正面 ==於斜向觀察時為不透明的,從喊高發光元U 正面π度。該發光元件巾的有機層的—個面的立體 可本發_製造方法,於通f的密_形成3 製程簡便’且可以容易地製造光取出效率優 如上所述,根據本發明的發光元件及其製造方法, 以不使發光元件的佔有空間增大,且廉價地提供内建控 光取出強度的方向依存性之功能的發光元件。具有該特徵 30 200917883 的本f㈣發光元件對有機EL元件之情形時特別有用 雖然本發明已以較佳實施例揭露如上,秋 限定本發明,任何熟習此技藝者,在稀縣發 =範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 無 【主要元件符號說明】 無 31For a long time, the substrate on which the monomer coating film is formed is irradiated with a sufficient amount of UV light (lamp work_%) to singulate the coating film. The obtained cured film (organic layer) was observed by an optical microscope, and it had a sea-island structure, and a height difference of about 1 m corresponding to the sea-island structure was formed on the surface. When the obtained substrate was observed from the front side, that is, the obtained substrate, it was colorless, and the high transmittance was shown, and if it was obliquely slanted, the transmittance/or smallness was pale white due to green light. (Example 3) (Production of a ruthenium-containing EL element having an organic layer ruthenium layer sealing film having a sea-island structure) A ruthenium (transparent electricity =) having a film thickness of about 150 nm formed by sputtering was patterned. The formed glass substrate was cleaned with an organic solvent, an alkaline detergent, and super-waxy water, and dried, and the obtained substrate was subjected to uv-o3 treatment using uv_〇3. —= The ITO surface side of the above substrate was suspended from poly(3,4)ethylenedioxythiophene/polyethyleneglycolic acid (manufactured by 110 Starck-V TECH Co., Ltd., trade name “Bytr〇n 27 200917883 PTPAI4083”). The liquid was treated with a filter having a diameter of 0.5, and the suspension was formed into a film by spin coating at a thickness of 7 Å, and dried at 200 ° C for 10 minutes in a hot plate on a hot plate. Then, a 1.5 wt% solution of a ruthenium molecular organic light-emitting material (manufactured by Sumation Co., Ltd., trade name ILumation GP130) was prepared by using a solvent in which diphenylbenzene and benzamidine were mixed in 1.1. This solution was spin-coated to form a film having a thickness of 80 nm on the substrate on which "BytronP" was formed. C. removing the light-emitting layer of the electrode portion or the sealing portion, and introducing it into the vacuum chamber, and moving to the heating chamber (afterwards, the process is performed in a vacuum or nitrogen gas, so that the components in the process are not exposed to the atmosphere) . Next, it was heated at a temperature of about 1 〇〇〇c for 60 minutes under vacuum t (vacuum degree ixl0-4Pa or less). Thereafter, the substrate is moved into the evaporation key chamber, aligned with the cathode mask, and the light-emitting portion and the extraction electrode portion are vapor-deposited to form a cathode. The Ba metal was heated by a resistance heating method to a vapor deposition rate of about 2 nm/sec and a film thickness of 5 nm (j was vapor-deposited and subjected to electron beam evaporation to a vapor deposition rate of about 0.2 nm/sec. A1 is deposited at a thickness of i5〇nm to form a cathode. (Formation of the above-mentioned multilayer sealing film) After the component is fabricated, the substrate is moved from the evaporation chamber without being exposed to the atmosphere to a film sealing device (manufactured by VITEX Corporation, USA) The product name is "Guardian 200". The mask is placed on the substrate. Then, the substrate is transferred to the inorganic film forming chamber, and the first inorganic layer, that is, the oxide film is formed by sputtering. The A1 with a purity of 5N is used. Metal target 'introduction of argon and oxygen' 28 200917883 A film is formed on the substrate to form a transparent and flat aluminum oxide film having a thickness of about 6 〇 nm. After the first inorganic layer is formed, the inorganic layer is removed. The mask is replaced with a mask for the organic layer and moved to the organic film forming chamber. The organic monomer material (manufactured by VITEX, trade name "Vitex Barix Resin Plus (10) m〇n〇mermaterial (Vitex7〇1))) is introduced. Gasification into the gasifier, ejecting the single nozzle from the slit nozzle The vapor 'passes the substrate through the nozzle at a fixed speed, thereby allowing the monomer to adhere to the substrate in a uniform thickness. Then, the substrate is adhered to the substrate by UV rays, and the monomer is cross-linked and hardened to form the first organic The obtained film is a transparent and flat film having a film thickness of about 13 # m ° after forming the first organic layer, 'moving the substrate to the inorganic film forming chamber, introducing argon and oxygen' (four) plating method to perform the second inorganic layer That is, the film formation of Oxidation Ming. The thickness of the film is =0 rnn (4) The urinary body is flat (4) Oxidation _. The second inorganic layer is formed into a film, and the second organic layer is formed in the same manner. The second organic layer is complex; Similarly, the third inorganic layer is formed, and the third organic layer and the fourth inorganic layer are formed in the same manner. (4) The organic layer of the island (four) convex (stereoscopic structure) is formed to form the fourth inorganic layer, and then the same as the first organic layer. In the same manner, in Example 1, uv light was used to harden the irradiation in the monomer. The unevenness of the coating film was semi-hardened on the surface (one surface), and secondly: 29 200917883 The semi-hardened coating film was irradiated hard. The uv light of the ridge of the island structure is 77, and it is made by the first stage An organic layer (cured film) is obtained in the above manner. = In: r: a multilayer sealing film having a degree = optical layer. By having at least one member, it is characterized by the above-mentioned side to the side. The direction dependence of the light intensity of the elementary system = its:: face:: controllable method is the following illuminating element; two = method = two, (four) illuminating element structure organic layer at the same time forming the upper layer of the machine - one face The light-emitting element of the present invention is opaque when viewed from the side of the light extraction side = π when viewed obliquely, and is π degrees from the front surface of the illuminating element U. _Manufacturing method, the dense_form 3 process of the pass F is simple and the light extraction efficiency can be easily manufactured. As described above, according to the light-emitting element of the present invention and the method of manufacturing the same, the space occupied by the light-emitting element is not increased. It is also inexpensive to provide a light-emitting element having a function of establishing a direction-dependent property of light control extraction intensity. The present f(four) illuminating element having the feature 30 200917883 is particularly useful in the case of an organic EL element. Although the invention has been disclosed in the preferred embodiment as above, the invention is defined in the autumn, and any person skilled in the art, within the range of The scope of protection of the present invention is defined by the scope of the appended claims. [Simple description of the diagram] None [Key component symbol description] None 31

Claims (1)

200917883 十、申請專利範圍: 層密件’奸藉㈣衫少—财機層的多 、:來氆封發光部的光取出侧而成的發光元件, j有機層於其—個面具有可控制取出光強度 依存性的立體結構。 2.如申請專觀圍第1項所述之發光it件,其中上述 立體結構是於形成上述錢狀同時形成的。 右請專纖㈣1項所述之發光元件,其中上述 有機層由能量硬化性樹脂構成。 4士如申請專利範圍第3項所述之發光元件,其中上述 ^體結構是藉由將上述能量硬化性樹脂的㈣暫時半硬 ’其後完全硬化,而於形成上述有機層之同時形成的。 5. 如申凊專利範圍第3項所述之發光元件,其中上述 ^體結構是藉由將上述能量硬化性樹脂的塗膜於i成在疏 =性面上的狀態下硬化,而於形成上述有機層之同時形成 6. 如巾請專利範圍第丨項所述之發光元件,其 bL發光元件。 7.種發光元件的製造方法’其是藉由具有至少一個 有機層的多層密封膜來密封發光部的光取出側而 光元件的製造方法, " 具有於上述有機層的一個面形成可控制取出光強度的 方向依存性的立體結構的步驟,於該步驟中,於形成:述 有機層之同時形成上述立體結構。 32 200917883 、8.如申料利_第7項所述之發光元件的製造方 法,其中使用能量硬化性樹脂來形成上述有機層。 、9.如申_請專利範圍第8項所述之發光元件的製造方 法/其中藉由將上述能量硬化性樹脂的塗膜暫時半硬化, 其後π全硬化,而於形成上述有機層之㈣形成上述立體 結構。 10.如+申清專利範圍第8項所述之發光元件的製造方200917883 X. The scope of application for patents: The layer of secrets is a small number of smuggling (four) shirts - many of the financial machine layer: the light-emitting elements that are formed by the light-removing side of the light-emitting part, and the organic layer of the j-layer has controllable take-out The three-dimensional structure of light intensity dependence. 2. The illuminating unit of claim 1, wherein the three-dimensional structure is formed at the same time as forming the money. The light-emitting element according to the item (4), wherein the organic layer is made of an energy curable resin. The light-emitting element according to claim 3, wherein the above-mentioned structure is formed by forming the organic layer while temporarily hardening the (four) temporary hardening of the energy curable resin. . 5. The light-emitting element according to claim 3, wherein the above-mentioned structure is formed by hardening a coating film of the energy curable resin on a surface on a thin surface. The organic layer is formed at the same time as the light-emitting element described in the scope of the invention, and the bL light-emitting element. 7. A method of manufacturing a light-emitting element, which is a method for manufacturing an optical element by sealing a light extraction side of a light-emitting portion by a multilayer sealing film having at least one organic layer, " having a surface controllable on the one surface of the organic layer The step of extracting the three-dimensional structure of the direction dependence of the light intensity, in which the above-described three-dimensional structure is formed while forming the organic layer. The method for producing a light-emitting device according to claim 7, wherein the organic layer is formed using an energy curable resin. 9. The method for producing a light-emitting device according to claim 8, wherein the coating film of the energy curable resin is temporarily semi-hardened, and then π is fully cured to form the organic layer. (4) Forming the above three-dimensional structure. 10. The manufacturer of the light-emitting element according to item 8 of the patent application scope 二其中藉㈣上述能量硬化賴蘭塗餘形成在疏液 態下硬化,而於形成上述有機層之同時形成上 述立體結構。 11.如t請專利範目帛7柄狀發^件的製造方 法,其中發光元件為有機EL發光元件。 1.. 33 200917883 七、 指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無 八、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無Secondly, the above-mentioned energy hardening Lailan coating is formed to be hardened in a lyophobic state, and the above-mentioned three-dimensional structure is formed while forming the above organic layer. 11. A method of manufacturing a handle of a handle, wherein the light-emitting element is an organic EL light-emitting element. 1.. 33 200917883 VII. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: None 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: None
TW097128848A 2007-07-31 2008-07-30 Light emitting device and fabricating method thereof TW200917883A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199910A JP5248818B2 (en) 2007-07-31 2007-07-31 LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF

Publications (1)

Publication Number Publication Date
TW200917883A true TW200917883A (en) 2009-04-16

Family

ID=40304263

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097128848A TW200917883A (en) 2007-07-31 2008-07-30 Light emitting device and fabricating method thereof

Country Status (3)

Country Link
JP (1) JP5248818B2 (en)
TW (1) TW200917883A (en)
WO (1) WO2009017033A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912037B2 (en) * 2011-12-06 2016-04-27 パイオニア株式会社 Organic electroluminescence device
JPWO2015111130A1 (en) * 2014-01-21 2017-03-23 パイオニアOledライティングデバイス株式会社 Light emitting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318708A (en) * 1994-03-29 1995-12-08 Toray Ind Inc Light transmission type light diffusion sheet and image display device as well as its production
JP4156343B2 (en) * 2002-10-31 2008-09-24 シャープ株式会社 Method for manufacturing substrate for liquid crystal display device and method for manufacturing liquid crystal display device using the same
JP2003257627A (en) * 2002-03-05 2003-09-12 Hitachi Ltd Organic el display device, sealing film, and manufacturing method therefor
JP2003291406A (en) * 2002-04-02 2003-10-14 Seiko Epson Corp Organic el array exposure head and imaging apparatus using the same
JP4357854B2 (en) * 2003-02-28 2009-11-04 大日本印刷株式会社 Optical filter and organic EL display using the same
JP2005353500A (en) * 2004-06-11 2005-12-22 Dainippon Printing Co Ltd Gas barrier film for electronic display medium
DE112005003229T5 (en) * 2004-12-24 2008-03-06 Cambridge Display Technology Ltd., Cambourne Business Park Organic electroluminescent device
JP2006343450A (en) * 2005-06-08 2006-12-21 Seiko Epson Corp Optical sheet, backlight unit, electrooptical device, electronic equipment, and method for manufacturing optical sheet
JP4742787B2 (en) * 2005-09-29 2011-08-10 大日本印刷株式会社 Barrier substrate for organic electroluminescence device

Also Published As

Publication number Publication date
JP5248818B2 (en) 2013-07-31
WO2009017033A1 (en) 2009-02-05
JP2009037802A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5296343B2 (en) Substrate with barrier layer, display element, and method of manufacturing display element
JP4852008B2 (en) Method for manufacturing organic electroluminescence device
US8773015B2 (en) Method for manufacturing organic electroluminescent element having organic layers with periodic structure
WO2013073434A1 (en) Organic el element
TW200915907A (en) Organic electro luminescence apparatus and manufacturing method thereof
TWI535088B (en) Substrate for organic electronic device
WO1996025020A1 (en) Multi-color light emission apparatus and method for production thereof
WO2006095612A1 (en) Resin film substrate for organic electroluminescence and organic electroluminescent device
TW201236230A (en) Organic light emitting device with outcoupling layer for improved light extraction
WO2009119889A1 (en) Organic electroluminescent device
JP5763517B2 (en) Organic EL device
JP5162179B2 (en) LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND LIGHTING DEVICE
TW201108848A (en) Light guiding structure
TW201334251A (en) Substrate for organic electronic device
TW200950580A (en) Organic electroluminescence device and process for production of the same
TW200917883A (en) Light emitting device and fabricating method thereof
JP5178431B2 (en) Organic electroluminescence device
JP5570092B2 (en) LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP5763506B2 (en) Organic EL device
JP2008021575A (en) Organic electroluminescent element and manufacturing method of same
CN114555661B (en) Composition, cured product, sealing material for organic electroluminescent display element, and organic electroluminescent display device
JP5155085B2 (en) Organic electroluminescence device and method for manufacturing the same
JP2012028338A (en) Organic electroluminescent element and method for manufacturing the same
CN116789896A (en) Composition, cured product, sealing material for organic electroluminescent display element, and organic electroluminescent display device
JP2009037799A (en) Light-emitting element and its manufacturing method