[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW200900545A - Colorfast fabrics and garments of olefin block compositions - Google Patents

Colorfast fabrics and garments of olefin block compositions Download PDF

Info

Publication number
TW200900545A
TW200900545A TW097101632A TW97101632A TW200900545A TW 200900545 A TW200900545 A TW 200900545A TW 097101632 A TW097101632 A TW 097101632A TW 97101632 A TW97101632 A TW 97101632A TW 200900545 A TW200900545 A TW 200900545A
Authority
TW
Taiwan
Prior art keywords
fabric
ethylene
polymer
dyed fabric
olefin
Prior art date
Application number
TW097101632A
Other languages
Chinese (zh)
Inventor
Ottaviano Fabio D
Jerry-Chien-Ting Wang
Rhonda B Neel
Yuen-Yuen D Chiu
Traci-Li-Zhi Zhang
Shih-Yaw Lai
Alberto Lora Lamia
Hongyu Chen
Original Assignee
Dow Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc filed Critical Dow Global Technologies Inc
Publication of TW200900545A publication Critical patent/TW200900545A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/79Polyolefins
    • D06P3/794Polyolefins using dispersed dyes
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/56Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads elastic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/20Physical treatments affecting dyeing, e.g. ultrasonic or electric
    • D06P5/2066Thermic treatments of textile materials
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/04Linen
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/08Ramie
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/10Bamboo
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/02Wool
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/04Silk
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Nonwoven Fabrics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Dyed fabric compositions have now been discovered that often have a balanced combination of desirable properties. The dyed fabric comprises one or more elastic fibers wherein the elastic fibers comprise the reaction product of at least one ethylene olefin block polymer and at least one crosslinking agent. Often the fabrics are characterized by a color change of greater than or equal to about 3. 0 according to AATCC evaluation after a first wash by AATCC61-2003-2A.

Description

200900545 九、發明說明: 相關申請案之對照參考資料 為了美國專利實務’美國臨時申請案第60/885,202號案(2007 年1月16曰申請)之内容在此被全部併入以供參考之用。 5 【明所屬領】 發明領域 10 本發明係有關於不褪色之經染色的織物。 發明背景及概要 許夕不同材料已用於製造用於,例如,衣物之經染色 的織物。一般所欲地係此等織物具有包含下列之一或多者 之性質組合:尺寸安定性 熱變定性質、於一或二尺寸係 15200900545 IX. INSTRUCTIONS: The reference material for the relevant application is hereby incorporated by reference for the purpose of the U.S. Patent Application No. 60/885,202 (Application of January 16, 2007). . 5 [Brief of the Invention] Field of the Invention 10 The present invention relates to a dyed fabric that does not fade. BACKGROUND AND SUMMARY OF THE INVENTION Various materials have been used to make dyed fabrics for use, for example, in clothing. It is generally desirable for such fabrics to have a combination of properties comprising one or more of the following: dimensional stability, heat set properties, in one or two size systems 15

20 伸之能力、耐化學、熱及磨祕、減等。此外,一 般亦重要係此等㈣色的織物係能使顏色(例如,染料)維持 更久及更當接受洗料不會使-或更多之前述性質退再者右心木色的織物係,例如,針織織物時,增加 之^產s且具降低之缺點(例如,纖維斷裂)有時係所欲的。 【發^明内容1 更、1 ^之織物現已破發現,其—般係具有包含能使上色 更冰及洗滌時使顏色維拄 巴 合。此等組成物亦能於=不褪色)之咖^ 之織物典型上係包含彈性纖^改良加4理性。本發明 針織織物包含,偏纖維之針織或機織之織物。此等 般係包含至+ 〇 ’如微纖維聚酷之聚醋。彈性纖維― 3至一乙烯礙段聚合物及至少—交聯劑之反應產 5 200900545 物。纖維特徵在於使織物具有所欲性 質之交聯量。乙烯德1 段聚合物一般係 (A)乙烯/α-烯烴異種共聚物,其中,乙烯/α_烯烴異種共 聚物具有下列特徵之一或多者: 5 〇)大於〇且最高達約1.〇之平均嵌段指數,及大於約丨3之分子 量分佈,Mw/Mn ;或 (2)當使用TREF分級時於4〇°c與130°C間洗提之立少一 分子分級物,特徵在於此分級物具有至少〇5且最高達約1 之嵌段指數;或 10 (3)約丨·7至約3·5之Mw/Mn,至少一溶點(Tm,以。C計), 及密度(d ’以克/立方公分計),其中,Tm及d之數值係相對 應於關係式:20 Ability to stretch, chemical resistance, heat and friction, reduction, etc. In addition, it is generally also important that such (four) color fabrics can maintain a longer color (for example, a dye) and more when the fabric is received without a more or less of the foregoing properties. For example, when knit fabrics, the added disadvantages (e.g., fiber breakage) are sometimes desirable. [When the content of the 1st, 1 ^ fabric has been broken, it is generally included to make the color more ice and wash the color to make the color. The fabrics of such compositions can also be included in the fabric of the coffee which is not faded. The knit fabric of the present invention comprises a knitted or woven fabric of partial fibers. These are included to + 〇 ‘ such as microfiber condensed vinegar. Elastomeric fiber - 3 to 1 ethylene block polymer and at least - cross-linking reaction production 5 200900545. The fibers are characterized by a cross-linking amount of the desired properties of the fabric. The vinylidene 1-stage polymer is generally (A) an ethylene/α-olefin heteropolymer, wherein the ethylene/α-olefin heteropolymer has one or more of the following characteristics: 5 〇) greater than 〇 and up to about 1. The average block index of 〇, and the molecular weight distribution greater than about 丨3, Mw/Mn; or (2) one fraction of the fraction eluted between 4 ° C and 130 ° C when TREF is used, characteristic Here, the fraction has a block index of at least 〇5 and up to about 1; or 10 (3) Mw/Mn of about 丨7 to about 3.5, at least one melting point (Tm, in terms of C), And density (d 'in grams per cubic centimeter), where the values of Tm and d correspond to the relationship:

Tm > -2002.9 + 4538.5(d) - 2422.2(d)2 ;或 (4) 約1.7至約3.52MW/Mn ’且特徵在於一熔融熱(△!!, 15 J/g),及一以最高DSC峰及最高CRYSTAF峰間之溫度差而定 義之△量(ΛΤ,°C),其中,ΛΤ與ΛΗ之數值具有下列關係 式: 對於ΔΗ大於0且最高達130 J/g時係 ΔΤ>-0.1299(ΔΗ)+62.81 » 20 對於ΛΗ大於130 J/g時係△TgASt:, 其中,CRYSTAF峰係使用至少5%之累積聚合物決定,且若 少於5%之聚合物具有可鑑別之CRTSTAF峰,則CRYSTAF 溫度係30°C ;或 (5) 以乙烯/α-烯烴異種共聚物之壓模成型膜測量之於 6 200900545 300%應變及1周期之彈性回復(Re,%),且具有一密度(d, 克/立方公分),其中,當乙烯/α -烯烴異種共聚物實質上無 交聯相時,Re及d之數值滿足下列關係式: Re>1481-1629(d);或 5 (6)使用TREF分級時於40°C與130°C間洗提之分子分級 物,特徵在於此分級物具有比於相同溫度間洗提之可相比 擬的無規乙烯異種共聚物分級物者高至少5%之莫耳共單 體含量,其中,該可相比擬之無規乙烯異種共聚物具有相 同共單體,且具有乙烯/α-烯烴異種共聚物者之10%内之熔 10 融指數、密度及莫耳共單體含量(以整個聚合物為基準計); (7)於25°C時之貯存模量,G,(25°C),及10(TC時之貯存 模量,G’(100°C),其中,G’(25°C)對G’(100°C)之比例係約 1:1至約9:1之範圍。 上述(1)至(Ό之乙烯/α-烯烴異種共聚物之特徵係關於 15 任何重大交聯前(即’交聯前)之乙烯/α-烯烴異種共聚物。 用於本發明之乙烯/ α -烯烴異種共聚物一般係交聯至獲得所 欲性質之程度。使用交聯前測量之特徵(1)至(7)並非意指暗 示異種共聚物無需被交聯-僅係此特徵係對於無重大交聯 之異種共聚物測量。交聯可改變或不改變此等性質之每一 20者,其係依特定聚合物及交聯度而定。本發明之經染色的 織物一般特徵可在於於藉由AATCC61-2003-2Α第一次清洗 後依據AATCC評估之大於或等於約3 〇之顏色變化。本發明 之經染色的織物一般特徵可在於以光譜光度計測量大於或 等於約600之染色後之顏色強度。 200900545 圖式簡單說明 第1圖顯示與傳统之無規共聚物(以圓形表示)及齊格勒 那塔共聚物(以-角%表示)相比時之本發明聚合物(以羡形 表示)之熔點/密度之關係。 第2圖顯不各種聚合物之為DSC溶融:^之函數之△ DSC-CRYSTAF之圖。菱形表示無規乙烯/辛烯共聚物;矩 三角形表示聚合物 實施例5-9 ;且 圓形表示聚合物實施例10_19。符號Τ表示聚合物比較例 Α*·ρ* 〇 ίο 帛3關7^密度對自本發明異種共聚物(以矩形及圓形 表不)及傳統U⑴三角形表示,其係各種之AF顺ιτγ⑨ |口物(可得自陶氏化學公司))製成之未定向膜之彈性回復 之作用。㈣表林發明之乙烯/τ稀共聚物;且 圓形表示 本發明之乙烯/辛烯共聚物。 15 帛4圖係實施例5之聚合物(以圓形表示)及比較聚合物 比較例Ε*及F*(以符表示)之TREF分級之乙烯/ i-辛 稀共水物分級物之辛烯含量對此分級物之丁尺^^洗提溫度 之作圖。菱形表示傳統之無規乙烯/辛稀共聚物。 第5圖係實施例5之聚合物(曲線丨)及聚合物比較例 20 F*(曲線2)之TREF分級之乙烯/1-辛烯共聚物分級物之辛烯 含量對此分級物之TREF洗提溫度之作圖。矩形表示比較例 F* ;且三角形表示實施例5。 第6圖係比較之乙烯/1-辛烯共聚物(曲線2)及丙烯/乙烯 共聚物(曲線3)及以不同量之鏈穿梭劑製成之二本發明之乙 8 200900545 烯/1-辛烯嵌段共聚物(曲線1)之為溫度之函數之貯存模量 之對數之作圖。 第7圖顯示與某些已知聚合物相比時之某些本發明聚 合物(以菱形表示)之TMA( 1mm)對撓曲模量之作圖。三角形 5 表示各種之Dow VERSIFY®聚合物(可得自陶氏化學公 司);圓形表示各種無規乙烯/苯乙烯共聚物;且矩形表示各 種Dow AFFINITY®聚合物(可得自陶氏化學公司)。 第8圖顯示實驗室染色機之照片。 第9圖顯示染色及還原清洗方法。 10 【實施方式】 發明詳細說明 一般定義 “纖維”意指其間長度對直徑之比例係大於約10之材 料。纖維典型上係依據其直徑分類。長絲纖維一般係定義 15 為每一長絲具有大於約15丹尼數,一般係大於約30丹尼 數,之個別纖維直徑。細丹尼纖維一般係指具有每一長絲 具有少於約15丹尼數之直徑之纖維。微丹尼纖維一般係定 義為每一長絲具有少於約100微米直徑之纖維。 “單絲纖維”或“單長絲纖維”意指具不確定(即,未預定) 20 長度之連續股線材料,其係與“短纖維”相反,其係具確定 長度之不連續股線材料(即,被切割或以其它方式分成預定 長度之區段之股線)。 ‘‘彈性”意指於第一次拉伸後及第四次至100%應變(二 倍長度)後纖維會回復其拉伸長度之至少約50%。彈性亦可 9 以纖維之“永久變定”描述。、 維被拉伸料定點,且性之相反辭。纖 後,再次拉伸。纖維開始負=至拉伸前之原始位置,然 百分率。“彈性材料,,於、#之點被指定為永久變定 的,,。彈性材料(有時稱為彈= 亦稱為“彈性體,,及“彈性體 維、膜、條材、帶材H )包含共聚物本身與呈纖 物,但不限於此 塗層、㈣物等型式之共聚 經,二 未交聯。 不丄知射恥射,及/或乂聯或 維)。非彈)±材料意指非如上定義之彈性之材料(例如,纖 單、,·且知纖維意指具有單一聚合物區域或範圍且不具 可八匕不同之聚合物區域(如雙組份纖維般)之纖維。 雙組份纖維,,意指具有二或更多之不同聚合物區域或 15祀圍之纖維。雙組份纖維亦稱為共輛或多組份纖維。此等 聚合物一般係彼此不同,即使二或更多組份可包含相同聚 合物。聚合物係被配置於雙組份纖維之戴面上實質上不同 之區域’且一般沿雙組份纖維之長度連續地延伸。雙組份 纖維之結構可為’例如,皮芯式配置(其間一聚合物係由另 20 一者圍繞)、並列式配置、派式(pie)配置,或“海島式”配置。 雙組份纖維係於美國專利第6,225,243、6,140,442、 5,382,400、5,336,552及5,108,820號案中進一步描述。 ,’熔噴纖維”係藉由使熔融之熱塑性聚合物組成物經由 數個細微之一般呈圓形之模具毛細管擠塑而呈炫融之線或 200900545 長絲進入會集之高速氣體(例如,空氣)流而使此等線或長絲 變細降低其直徑而形成之纖維。長絲或線藉由高速氣流運 載且沈積於收集表面上形成任意分散之具有一般為小於10 微米之平均直徑之纖維的網材。 5 “熔紡纖維”係藉由使至少一聚合物熔融,然後於熔融 物拉伸纖維至少於模具直徑(或其它截面形狀)之直徑而形 成之纖維。 “紡黏纖維”係藉由經由紡絲板之數個細的(一般係圓 形)模具毛細孔使溶融之熱塑性聚合物組成物以長絲擠塑 10 而形成之纖維。擠塑長絲之直徑快速降低,然後,長絲被 沈積於收集表面上形成任意分散之具有一般為約7與約30 微米間之平均直徑之纖維的網材。 ”非機織"意指任意夾置(但非如針織織物之情況般之可 織別)之個別纖維或線之結構之網材或織物。依據本發明實 15 施例之彈性纖維可用以製備非機織結構物及彈性非機織織 物與非彈性材料混合之複合結構物。 “紗”意指連續長度之捻合或其它方式纏結之長絲,其 可用於製造機織或針織之織物及其它物件。紗可經包覆或 未經包覆。經包覆之紗係被至少部份包纏於另一纖維或材 20 料(典型上係天然纖維,諸如,棉或羊毛)之外包覆内之紗。 “聚合物”意指藉由使單體(相同或不同型式)聚合製得 之聚合化合物。一般之”聚合物”用辭包含”均聚物”、”共聚 物”、”三元共聚物”與”異種共聚物”等用辭。 “異種共聚物”意指藉由聚合至少二種不同單體而製造 11 200900545 之聚合物。”異種共聚物”一般用辭包含”共聚物”一辭(其一 般係用以指自二種不同單體製造之聚合物)與”三元共聚物” 一辭(其一般係用以指自三種不同單體製造之聚合物)。其亦 包含藉由聚合四或更多種單體而製造之聚合物。 5 “乙烯/〇:-烯烴異種共聚物”一辭一般係指包含乙烯及 具有3或更多個碳原子之α-烯烴之聚合物。較佳地,乙烯 包含整個聚合物之主要莫耳分率,即,乙烯包含整個聚合 物之至少約50莫耳%。更佳地,乙烯包含至少約60莫耳%, 至少約70莫耳%,或至少約80莫耳%,且整個聚合物之實質 10 上剩餘者包含至少一其它共單體,其較佳係具有3或更多個 碳原子之烯烴。對於許多乙烯/辛烯共聚物,較佳之組成 物包含大於整個聚合物之約80莫耳%之乙烯含量,及整個 聚合物之約10至約15(較佳係約15至約20)莫耳%之辛烯含 量。於某些實施例,乙烯/〇:-烯烴異種共聚物不包含以低產 15 量或以微量或以化學方法之副產物製造者。雖然乙烯/α-烯烴異種共聚物可與一或多種聚合物摻合,如此製造之乙 烯/α -烯烴異種共聚物係實質上純的,且一般係包含聚合反 應方法之反應產物之主要組份。 乙烯/α-烯烴異種共聚物包含呈聚合型式之乙烯及一 20 或多種可共聚合之α-烯烴共單體,特徵在於數個於化學或 物理性質係不同之具二或更多種聚合化單體單元之嵌段或 區段。即,乙烯/α-稀烴異種共聚物係嵌段異種共聚物,較 佳係多嵌段之異種共聚物或共聚物。”異種共聚物”及”共聚 物”等用辭在此可交換使用。於某些實施例,多嵌段共聚物 12 200900545 可以下列化學式表示: (AB)n 其中,η係至少為1,較佳係大於1之整數,諸如,2、3、4、 5 、 10 、 15 、 20 、 30 、 40 、 50 、 60 、 70 ' 80 、 90 、 100 ,或 5 更高。”Α”表示一硬嵌段或區段,且” Β”表示一軟嵌段或區 段。較佳地,Α及Β係以實質上線性方式連接,其係與實質 上分支或實質上星狀之方式相反。於其它實施例,A嵌段及 B嵌段係沿聚合物鏈無規地分佈。換言之,嵌段共聚物一般 不具有如下之結構。Tm > -2002.9 + 4538.5(d) - 2422.2(d)2; or (4) about 1.7 to about 3.52 MW/Mn ' and characterized by a heat of fusion (Δ!!, 15 J/g), and The Δ amount (ΛΤ, °C) defined by the temperature difference between the highest DSC peak and the highest CRYSTAF peak, wherein the values of ΛΤ and ΛΗ have the following relationship: ΔΤ for ΔΗ greater than 0 and up to 130 J/g; -0.1299(ΔΗ)+62.81 » 20 For ΛΗ greater than 130 J/g, ΔTgASt:, where CRYSTAF peak is determined using at least 5% of the cumulative polymer, and if less than 5% of the polymer is identifiable CRTSTAF peak, CRYSTAF temperature is 30 ° C; or (5) measured by ethylene/α-olefin heteropolymer compression molding film at 6 200900545 300% strain and 1 cycle of elastic recovery (Re, %), and Having a density (d, g/cm 3 ), wherein when the ethylene/α-olefin heteropolymer has substantially no cross-linking phase, the values of Re and d satisfy the following relationship: Re >1481-1629(d); Or 5 (6) molecular fractions eluted between 40 ° C and 130 ° C using TREF fractionation, characterized in that the fractions are comparable to those eluted at the same temperature. The ethylene heteropolymer copolymer grader has a molar comonomer content of at least 5%, wherein the comparable random ethylene heteropolymer has the same comonomer and has an ethylene/α-olefin heteropolymer. 10% of the melting index, density and molar commonomer content (based on the entire polymer); (7) storage modulus at 25 ° C, G, (25 ° C), and 10 (stored modulus at TC, G' (100 ° C), wherein the ratio of G' (25 ° C) to G' (100 ° C) is in the range of about 1:1 to about 9:1. (1) to (Ό) an ethylene/α-olefin heteropolymer characterized by 15 ethylene/α-olefin heteropolymers before any significant crosslinking (ie, before 'crosslinking). Ethylene/α used in the present invention - Olefin heteropolymers are generally crosslinked to the extent that the desired properties are obtained. The use of features (1) to (7) measured prior to crosslinking is not intended to imply that the heteropolymers need not be crosslinked - only this feature is Crosslinking of heterogeneous copolymers. Crosslinking may or may not alter each of these properties, depending on the particular polymer and degree of crosslinking. The colored fabric may generally be characterized by a color change of greater than or equal to about 3 Å as assessed by AATCC after the first cleaning by AATCC 61-2003-2. The dyed fabric of the present invention may generally be characterized by a spectrophotometer. A dyed color intensity greater than or equal to about 600. 200900545 Brief Description of the Drawings Figure 1 shows the polymer of the present invention (indicated by 羡) when compared to a conventional random copolymer (represented by a circle) and a Zieglereta copolymer (expressed in %) The relationship between melting point/density. Figure 2 shows a plot of Δ DSC-CRYSTAF for various polymers as a function of DSC melting: ^. The diamonds represent random ethylene/octene copolymers; the moment triangles represent polymers Examples 5-9; and the circles represent polymer examples 10-19. The symbol Τ indicates the polymer comparative example ·*·ρ* 〇ίο 帛3 off 7^ density is expressed from the heterogeneous copolymer of the present invention (in the form of a rectangle and a circle) and the conventional U(1) triangle, which is a variety of AFs 顺ιτγ9 | The effect of the elastic recovery of the unoriented film produced by the mouth (available from The Dow Chemical Company). (4) An ethylene/tau-diene copolymer of the invention of the table; and a circle represents the ethylene/octene copolymer of the invention. 15 帛 4 is a polymer of Example 5 (represented by a circle) and a comparative polymer Ε* and F* (indicated by the TREF) of the TREF graded ethylene/i-simple hydrone fraction The olefin content is plotted against the sizing temperature of this fraction. The diamond represents a conventional random ethylene/octarene copolymer. Figure 5 is a polymer of Example 5 (curve enthalpy) and polymer Comparative Example 20 F* (curve 2) TREF graded ethylene/1-octene copolymer fraction octene content TREF of this fraction Drawing of the elution temperature. The rectangle represents the comparative example F*; and the triangle represents the embodiment 5. Figure 6 is a comparison of the ethylene/1-octene copolymer (curve 2) and the propylene/ethylene copolymer (curve 3) and the different amounts of the chain shuttling agent. The second invention of the invention 8 200900545 ene / 1- The octene block copolymer (curve 1) is a plot of the logarithm of the storage modulus as a function of temperature. Figure 7 shows a plot of TMA (1 mm) versus flexural modulus for certain inventive polymers (indicated by diamonds) when compared to certain known polymers. Triangle 5 represents various Dow VERSIFY® polymers (available from The Dow Chemical Company); circles represent various random ethylene/styrene copolymers; and rectangles represent various Dow AFFINITY® polymers (available from The Dow Chemical Company) ). Figure 8 shows a photograph of a laboratory dyeing machine. Figure 9 shows the dyeing and reduction cleaning methods. [Embodiment] DETAILED DESCRIPTION OF THE INVENTION General Definition "Fiber" means a material in which the ratio of length to diameter is greater than about 10. Fibers are typically classified according to their diameter. Filament fibers are generally defined as 15 individual fiber diameters having greater than about 15 denier per filament, typically greater than about 30 denier. Fine denier fibers generally refer to fibers having a diameter of less than about 15 denier per filament. Microdenier fibers are generally defined as fibers having a diameter of less than about 100 microns per filament. "Monofilament fiber" or "single filament fiber" means a continuous strand of material having an indefinite (ie, unscheduled) length of 20, as opposed to "short fiber", which is a discrete strand of defined length. Material (ie, strands that are cut or otherwise divided into sections of a predetermined length). ''elasticity' means that the fiber will recover at least about 50% of its stretched length after the first stretch and after the fourth to 100% strain (two times the length). Elasticity can also be 9 permanent change of the fiber "Description", the dimension is fixed by the stretching material, and the opposite is true. After the fiber, it is stretched again. The fiber starts negative = the original position before stretching, and the percentage. "Elastic material,, at, #点点Designated as permanent, . Elastomeric materials (sometimes referred to as "elastics", also known as "elastomers," and "elastomers, films, strips, strips H" contain the copolymer itself and the filaments, but are not limited to this coating, (four) The same type of copolymerization, two uncrosslinked. Do not know how to shoot shame, and / or couplet or dimension). Non-elastic) ± material means a material that is not elastic as defined above (eg, fiber, fiber, and fiber) means a polymer region having a single polymer region or range and having no different properties (eg, bicomponent fibers) Fibers. Two-component fibers, meaning fibers having two or more different polymer regions or 15 turns. Two-component fibers are also known as co- or multi-component fibers. These polymers are generally The two are different from each other, even though two or more components may comprise the same polymer. The polymer is disposed in a substantially different region of the wear surface of the bicomponent fibers 'and generally extends continuously along the length of the bicomponent fibers. The structure of the bicomponent fibers can be 'for example, a sheath-core configuration (where one polymer is surrounded by another 20), a side-by-side configuration, a pie configuration, or an "island" configuration. The fibers are further described in U.S. Patent Nos. 6,225,243, 6,140,442, 5,382,400, 5,336,552, and 5,108,820. The 'meltblown fibers' are formed by squeezing the molten thermoplastic polymer composition through a plurality of fine, generally circular molds. The tube is extruded to form a dazzling line or the 200900545 filament enters the collected high velocity gas (eg, air) stream to make the filaments or filaments thinner to reduce the diameter of the fibers. Filament or wire by high speed The gas stream is carried and deposited on the collecting surface to form a web of randomly dispersed fibers having an average diameter of generally less than 10 microns. 5 "Melt-spun fibers" are obtained by melting at least one polymer and then drawing the fibers in the melt. a fiber formed at least at the diameter of the mold (or other cross-sectional shape). "Spunbond" consists of a molten thermoplastic polymer formed by several fine (generally round) mold pores through a spinneret. A fiber formed by extruding 10 filaments. The diameter of the extruded filament is rapidly reduced, and then the filament is deposited on the collecting surface to form any dispersed fibers having an average diameter generally between about 7 and about 30 microns. "Non-woven" means a net or fabric of individual fibers or threads that are sandwiched (but not woven as in the case of knitted fabrics). According to the present invention, the embodiment 15 Elastic fibers can be used to prepare non-woven structures and composite structures in which elastic non-woven fabrics are mixed with non-elastic materials. "Yarn" means continuous length twisted or otherwise entangled filaments which can be used to make woven or knitted fabrics. Fabrics and other articles. The yarn may or may not be coated. The coated yarn is at least partially wrapped around another fiber or material 20 (typically natural fibers such as cotton or wool). The outer coated yarn. "Polymer" means a polymeric compound obtained by polymerizing monomers (the same or different types). The general "polymer" contains "homopolymer", "copolymer" "Diolefin" and "heteropoly copolymer" and the like. "Heteropolymer" means a polymer of 11 200900545 produced by polymerizing at least two different monomers. "Different copolymers" generally include the term "copolymer" (which is generally used to refer to polymers made from two different monomers) and the term "terpolymer" (which is generally used to refer to a polymer made from three different monomers). It also comprises a polymer produced by polymerizing four or more monomers. The phrase "ethylene/oxime:-olefin heteropolymer" generally means a polymer comprising ethylene and an ?-olefin having 3 or more carbon atoms. Preferably, ethylene comprises the primary molar fraction of the entire polymer, i.e., ethylene comprises at least about 50 mole percent of the total polymer. More preferably, the ethylene comprises at least about 60 mole%, at least about 70 mole%, or at least about 80 mole%, and the remainder of the entire polymer has at least one other comonomer, preferably An olefin having 3 or more carbon atoms. For many ethylene/octene copolymers, preferred compositions comprise an ethylene content greater than about 80 mole percent of the total polymer, and from about 10 to about 15 (preferably from about 15 to about 20) moles of the total polymer. % octene content. In certain embodiments, the ethylene/niobene-olefin heteropolymer does not comprise a low yield of 15 or a minor or chemical by-product. Although the ethylene/α-olefin heteropolymer can be blended with one or more polymers, the ethylene/α-olefin heteropolymer thus produced is substantially pure and generally comprises the major components of the reaction product of the polymerization process. . The ethylene/α-olefin heteropolymer comprises ethylene in a polymerized form and one or more copolymerizable α-olefin comonomers characterized by a plurality of polymerizations having two or more chemical or physical properties. A block or section of a monomer unit. Namely, the ethylene/α-dilute hydrocarbon heteropolymer is a block heteropolymer, and is preferably a heteroblock copolymer or copolymer of a multi-block. The terms "hetero-copolymer" and "copolymer" are used interchangeably herein. In certain embodiments, the multi-block copolymer 12 200900545 can be represented by the following chemical formula: (AB)n wherein η is at least 1, preferably greater than 1, such as 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70 '80, 90, 100, or 5 are higher. "Α" means a hard block or section, and "Β" means a soft block or section. Preferably, the lanthanum and lanthanide are connected in a substantially linear manner, as opposed to being substantially branched or substantially star shaped. In other embodiments, the A block and the B block are randomly distributed along the polymer chain. In other words, the block copolymer generally does not have the following structure.

10 AAA-AA-BBB-BB 於其它實施例,嵌段共聚物一般不具有包含不同共單 體之第三種嵌段。於其它實施例,A嵌段及B嵌段之每一者 具有於嵌段内實質上無規地分佈之單體或共單體。換言 之,A嵌段或B嵌段皆不包含二或更多之不同組成之次區段 15 (或次嵌段),諸如,尖部區段,其具有與嵌段剩餘者實質上 不同之組成。 多嵌段聚合物典型上包含各種含量之”硬”及”軟”區 段。”硬”區段係指其間乙稀係以大於約9 5重量%且較佳係大 於約98重量%(其係以聚合物重量為基準計)之量存在之聚 20 合化單元之嵌段。換言之,硬區段之共單體含量(非乙烯之 單體的含量)係少於約5重量%,且較佳係少於約2重量%(其 係以聚合物重量為基準計)。於某些實施例,硬區段包含所 有或實質上所有乙烯。另一方面,”軟”區段係指其間共單 體含量(非乙烯之單體的含量)係大於約5重量%,較佳係大 13 200900545 於約8重量% ,大於約10重量%,或大於約15重量%(其係以 聚合物重量為基準計)之聚合化單元之嵌段。於某些實施 例,軟區段之共單體含量可大於約20重量%,大於約25重 ΐ%,大於約30重量。/。,大於約35重量%,大於約40重量0/〇, 5大於約45重量%,大於約50重量%,或大於約60重量%。 軟區段一般可以嵌段異種共聚物總重量之約1重量〇/〇 至約99重量%存在於嵌段異種共聚物,較佳係嵌段異種共 聚物總重量之約5重量%至約95重量%,約1〇重量%至約90 重量%,約15重量%至約85重量%,約2〇重量%至約8〇重量 10 %,約25重量%至約75重量%,約3〇重量%至約70重量%, 約35重量%至約65重量%,約40重量%至約6〇重量%,或約 45重量%至約55重量%。相反地,硬區段可以相似範圍存 在。軟區段之重量百分率及硬區段之重量百分率可以自 DSC或NMR獲得之數據為基礎計算。此等方法及計算係揭 15示於同時申請之美國專利申請案序號11/376,835號案,代理 人檔案號385063999558,發明名稱係”乙烯/α_烯烴嵌段異 種共聚物’ 2006年3月15曰申請,以c〇lin L.P. Shan、Lonnie Hazlitt專人之名’且讓渡給Dow Global Technologies Inc., 其揭示内容在此被全部併入以供參考之用。 20 “结晶”一辭被使用時係指擁有第一級轉移或結晶熔融 (Tm)(其係藉由差式掃瞄量熱術(DSC)或等化技術測定)之 聚合物。此用辭可與’’半結晶”交換使用。,,非結晶性,,一辭 係指缺乏藉由差式掃瞄量熱術(DSC)或等化技術測定之結 晶熔點之聚合物。 14 200900545 “多嵌段共聚物”或”區段共聚物”等辭係指含有二或更 多種較佳係以線性方式連接之化學上不同之區域或區段 (稱為”嵌段”)之聚合物,即,包含對於聚合化乙稀官能性係 以尾對尾連接(而非側向或接支方式)之化學上不同之單元 5 之聚合物。於一較佳實施例’嵌段係於併納於内之共單體 之里或型式、也、度、結晶里、由此組成物之聚合物引起之 結晶尺寸、立構規整度(全同立構或間同立構)之型式或程 度、區域規則性或區域不規則性、分支量(包含長鏈分支或 超分支)、均質性,或任何其它化學或物理性質上不同。多 10 嵌段共聚物特徵在於由於製造共聚物之獨特方法造成獨特 之二多分散指數(PDI或Mw/Mn)之分佈、嵌段長度分佈,及 /或嵌段數分佈。更特別地,當以連續方法製造時,聚合物 所欲地係擁有1.7至2.9之PDI,較佳係1_8至2.5,更佳係上8 至2.2’且最佳係h8至。當以批式或半批式方法製造時, 15聚合物擁有1·〇至2.9之PDI,較佳係1.3至2.5,更佳係14至 2.0,且最佳係1.4至1.8。 於下列描述,無論”約,,或,,大約,,等字是否與其—起使 用’此間揭露之所有數值係大約值。其可以1%、2%、5〇/。, 或有時,10至20%而變化。當具下限rl及上限尺11之數值範 20圍被揭不時,落於此範圍内之任何數值被特別揭露。特別 地,於此範圍之下列數值被特別揭露:R=RL+k*(RU_RL), 其中,k係1%至100〇/〇範圍之變數,且以1%為增量,即,^ 係 1%、2〇/〇、3%、4%、5%·.·5〇%、51%、52%· 95%、他、 97%、98%、99%,或·%。再者,以如上定義之二績界 15 200900545 定之任何數值範圍亦被特別揭露。 乙烯/α-烯烴異種共聚物 用於本發明實施例之烯烴嵌段聚合物,例如,乙稀Ζα -稀烴異種共聚物(亦稱為,,本發明異種共聚物,,或,,本發明节 5 合物,,)包含呈聚合化型式之乙烯及一或多種可共聚合之α 稀煙共單體’特徵在於於化學或物理性質係不同之數個具 二或更多種聚合化單體單元之嵌段或區段(嵌段異種共聚 物),較佳係多嵌段共聚物。乙烯/α-烯烴異種共聚物特徵 在於一或多種之如下所述之方面。 10 於一方面’於本發明實施例中使用之乙烯/α _烯烴異種 共聚物具有約1.7至約3.5之Mw/Mn,及至少一炫融(Tm, 及密度(d,克/立方公分),其中,此等變數之數值係對應於 下列關係式:10 AAA-AA-BBB-BB In other embodiments, block copolymers generally do not have a third block comprising different co-monomers. In other embodiments, each of the A block and the B block has a monomer or comonomer that is substantially randomly distributed within the block. In other words, neither the A block nor the B block contains two or more sub-sections 15 (or sub-blocks) of different composition, such as a tip segment, which has a composition that is substantially different from the remainder of the block. . Multi-block polymers typically contain various levels of "hard" and "soft" segments. By "hard" segment is meant a block of poly 20-inorganic units in which the ethylene is present in an amount greater than about 5% by weight and preferably greater than about 98% by weight based on the weight of the polymer. . In other words, the comonomer content (content of non-ethylene monomer) of the hard segment is less than about 5% by weight, and preferably less than about 2% by weight based on the weight of the polymer. In certain embodiments, the hard section comprises all or substantially all of the ethylene. In another aspect, a "soft" segment means that the comonomer content (content of non-ethylene monomer) is greater than about 5% by weight, preferably greater than 13% by weight of 200900545, greater than about 10% by weight, Or a block of polymerized units greater than about 15% by weight based on the weight of the polymer. In certain embodiments, the soft segment may have a comonomer content of greater than about 20% by weight, greater than about 25% by weight, and greater than about 30% by weight. /. , greater than about 35 weight percent, greater than about 40 weight percent per ounce, greater than about 45 weight percent, greater than about 50 weight percent, or greater than about 60 weight percent. The soft segment may generally be present in the block heteropolymer, preferably from about 5% by weight to about 95% by weight based on the total weight of the block heteropolymer, from about 1 weight to about 99% by weight based on the total weight of the block heteropolymer. % by weight, from about 1% by weight to about 90% by weight, from about 15% by weight to about 85% by weight, from about 2% by weight to about 8% by weight of 10%, from about 25% by weight to about 75% by weight, about 3〇 From about 70% by weight, from about 35% by weight to about 65% by weight, from about 40% by weight to about 6% by weight, or from about 45% by weight to about 55% by weight. Conversely, hard segments can exist in similar ranges. The weight percentage of the soft section and the weight percentage of the hard section can be calculated based on data obtained by DSC or NMR. These methods and calculations are disclosed in the co-pending U.S. Patent Application Serial No. 11/376,835, filed at 385, 063, 999, 558, entitled "Ethylene/α-Olefin Block Heteropolymers" March 15, 2006曰Application, in the name of c〇lin LP Shan, Lonnie Hazlitt, and the transfer to Dow Global Technologies Inc., the disclosure of which is hereby incorporated by reference in its entirety. Means a polymer that has a first-stage transfer or crystalline melt (Tm) that is determined by differential scanning calorimetry (DSC) or an equalization technique. This term can be used interchangeably with ''semi-crystalline'). . , "Amorphous," refers to a polymer that lacks the crystalline melting point as determined by differential scanning calorimetry (DSC) or an equalization technique. 14 200900545 "Multi-block copolymer" or "segment copolymer" is used to mean a chemically distinct region or segment (referred to as "block") containing two or more preferred linkages in a linear fashion. The polymer, i.e., the polymer comprising units 5 that are chemically different for the polymerized ethylene functionality in a tail-to-tail linkage (rather than lateral or grafting). In a preferred embodiment, the block is attached to the inner comonomer or in the form, the degree, the crystal, and the crystal size and tacticity caused by the polymer of the composition (all the same) The type or degree of stereo or syndiotacticity, regional regularity or regional irregularity, branching (including long-chain branches or hyperbranches), homogeneity, or any other chemical or physical property. The multi-block copolymer is characterized by a unique distribution of polydispersity index (PDI or Mw/Mn), block length distribution, and/or block number distribution due to the unique method of making the copolymer. More specifically, when manufactured in a continuous process, the polymer desirably has a PDI of from 1.7 to 2.9, preferably from 1 to 8 to 2.5, more preferably from 8 to 2.2' and most preferably from h8 to. When manufactured in a batch or semi-batch process, the 15 polymer has a PDI of from 1 Torr to 2.9, preferably from 1.3 to 2.5, more preferably from 14 to 2.0, and most preferably from 1.4 to 1.8. In the following description, regardless of whether the words "about,, or,,,,,, etc., are used in conjunction with the words, all values disclosed herein are approximate. It may be 1%, 2%, 5 〇/., or sometimes, 10 Any change to the range of the numerical value range of the lower limit rl and the upper limit ruler 11 is disclosed, and any numerical value falling within the range is specifically disclosed. In particular, the following numerical values in this range are specifically disclosed: R =RL+k*(RU_RL), where k is a variable ranging from 1% to 100〇/〇, and is incremented by 1%, ie, 1%, 2〇/〇, 3%, 4%, 5%····5〇%, 51%, 52%·95%, he, 97%, 98%, 99%, or %. In addition, any numerical range defined by the above-mentioned two performances, 200900545 Specifically disclosed. Ethylene/α-olefin heteropolymers are used in the olefin block polymers of the examples of the present invention, for example, ethylene Ζα-dilute hydrocarbon heteropolymers (also, the heterogeneous copolymers of the present invention, or , the present invention, a compound comprising, in a polymerized form, and one or more copolymerizable alpha smoky comonomers, characterized by different chemical or physical properties a block or segment (block heteropolymer) having two or more polymerized monomer units, preferably a multi-block copolymer. The ethylene/α-olefin heteropolymer is characterized by one or more of the following In one aspect, the ethylene/α-olefin heteropolymer used in the embodiment of the present invention has a Mw/Mn of about 1.7 to about 3.5, and at least one thawing (Tm, and density (d, gram). /cubic centimeters), where the values of these variables correspond to the following relationship:

Tm>-2002.9 + 4538.5(d) — 2422.2(d)2,且較佳係 15 Tmg-6288.1 + 13141(d)- 6720.3(d)2,且更佳係Tm>-2002.9 + 4538.5(d) - 2422.2(d)2, and preferably 15 Tmg-6288.1 + 13141(d)-6720.3(d)2, and more preferably

Tmg 858.91 - 1825.3(d) + 1112.8(d)2。 此等熔點/密度之關係係例示於第1圖。不同於傳統之 乙稀/ α -烯烴之無規共聚物(其熔點係隨減少之密度而減 少),本發明異種共聚物(以菱形表示)展現實質上與密度無 20 關之熔點,特別是當密度係於約0.87 g/cc至約0.95 g/cc之 間。例如,當密度範圍為0.875 g/cc至約0.945 g/cc時,此等 聚合物之熔點係於約110°C至約130°C之範圍。於某些實施 例,當密度範圍係0.875 g/cc至約0.945 g/cc時,此等聚合物 之熔點係約115°C至約125°C之範圍。 16 200900545 於另一方面,乙稀/α-烯烴異種共聚物包含呈聚合化型 式之乙烯及一或多種之α-烯烴,且特徵在於以最高差式掃 瞒量熱術(“DSC )峰之溫度減去最高結晶化分析分級 (“CRYSTAF”)峰之溫度而定義之ΛΤΟ:),及熔融熱,j/g, 5 ΔΗ),且ΛΤ及ΔΗ滿足下列關係式: 對於ΛΗ最高達130 J/g時, △ Τ>-0_1299(ΛΗ)+62.81,且較佳係 △ Τ2-0.1299(ΔΗ)+64·38,且更佳係 △ Τ2-0.1299(ΔΗ)+65.95。 10再者,對於ΑΗ大於130 J/g時,係等於或大於48t:。 CRYSTAF峰係使用至少5%之累積聚合物決定(即,峰需表 示至少5%之累積聚合物)’且若少於5%之聚合物具有可鑑 別之CRYSTAF峰’則CrySTAF溫度係3〇t:,且係熔融 熱之數值’ J/g。更佳地,最高之CRYSTAF峰含有至少1〇〇/〇 15之累積聚合物。第2圖顯示本發明聚合物及比較例之圖式數 據。積分峰面積及峰溫度係以儀器製造商提供之電腦化繪 圖程式計算。對於無規乙烯辛烯比較聚合物而顯示之斜線 係相對應於方程式+ 62.81。 於另一方面,當使用溫度上升洗提分級(“TREF”)分級 2〇時,乙烯/α-烯煙異種共聚物具有於桃與丨机間洗提之 分子分級物,特徵在於該分級物具有比於相同溫度間洗提 之可相比擬無規乙稀異種共聚物分級物者更高較佳係高 至少5%,更佳係高至少1〇%,之莫耳共單體含量,其中, 可相比擬之無規乙稀異種共聚物含有相同共單體,且具有 17 200900545 於嵌段異種共聚物者之ίο%内之熔融指數、密度,及莫耳 共單體含量(以整個聚合物為基準計)。較佳地,可相比擬之 異種共聚物之Mw/Mn亦係於嵌段異種共聚物者之10%内, 及/或可相比擬之異種共聚物具有嵌段異種共聚物者之10 5 重量%内之總共單體含量。 "" 於另一方面,乙稀/α-烯烴異種共聚物特徵在於對乙烯 • - / α -烯烴異種共聚物之壓模成型膜測量之於3 0 0 %應變及1 周期之彈性回復(Re,%),且具有一密度(d,克/立方公分), 其中,當乙烯/α-烯烴異種共聚物實質上無交聯相時,Re 10 及d之數值滿足下列關係式:Tmg 858.91 - 1825.3(d) + 1112.8(d)2. The relationship between these melting points/densities is illustrated in Figure 1. Unlike conventional ethylene/α-olefin random copolymers whose melting point decreases with decreasing density, the heteropolymer of the present invention (indicated by diamonds) exhibits a melting point substantially independent of density, especially When the density is between about 0.87 g/cc to about 0.95 g/cc. For example, when the density ranges from 0.875 g/cc to about 0.945 g/cc, the melting point of such polymers is in the range of from about 110 °C to about 130 °C. In certain embodiments, the melting point of such polymers ranges from about 115 ° C to about 125 ° C when the density ranges from 0.875 g/cc to about 0.945 g/cc. 16 200900545 In another aspect, the ethylene/α-olefin heteropolymer comprises a polymerized version of ethylene and one or more alpha-olefins, and is characterized by a temperature difference of the highest difference broom calorimetry ("DSC" peak) Subtract 去:), and heat of fusion, j/g, 5 ΔΗ), and ΛΤ and ΔΗ satisfy the following relationship: For ΛΗ up to 130 J/g When, Δ Τ > -0_1299 (ΛΗ) + 62.81, and preferably Δ Τ 2-0.1299 (ΔΗ) + 64 · 38, and more preferably Δ Τ 0.1 2-0.1299 (ΔΗ) + 65.95. Further, for ΑΗ greater than At 130 J/g, the ratio is equal to or greater than 48 t: The CRYSTAF peak is determined using at least 5% of the cumulative polymer (ie, the peak needs to represent at least 5% of the cumulative polymer)' and if less than 5% of the polymer has The identifiable CRYSTAF peak' then has a CrySTAF temperature of 3 〇t: and is the value of the heat of fusion 'J/g. More preferably, the highest CRYSTAF peak contains a cumulative polymer of at least 1 〇〇/〇15. Figure 2 The graph data of the polymer of the present invention and the comparative example are shown. The integrated peak area and peak temperature are provided by the instrument manufacturer. The calculation of the drawing program. The diagonal line shown for the random ethylene octene comparative polymer corresponds to the equation + 62.81. On the other hand, when using the temperature rise elution fractionation ("TREF") classification 2 ,, ethylene / The α-olefinic heterogeneous copolymer has a molecular fraction eluted between the peach and the crucible, characterized in that the fraction has a higher ratio than that of the pseudo-ethylene heteropolymer copolymer grade eluted at the same temperature. Preferably, the height is at least 5%, more preferably at least 1%, and the molar comonomer content, wherein the random ethylene heteropolymer has the same comonomer and has 17 200900545 embedded The melt index, density, and molar comonomer content (based on the entire polymer) of the fractional heteropolymer, preferably Mw/Mn of the heterogeneous copolymer is also Within 10% of the block heteropolymer, and/or the total monomer content within 105% by weight of the heteropolymer having a block heteropolymer. "" a dilute/α-olefin heteropolymer characterized by ethylene • The molded film of the - / α -olefin heteropolymer is measured at 300% strain and 1 cycle of elastic recovery (Re, %), and has a density (d, g / cm ^ 3 ), where When the ethylene/α-olefin heteropolymer has substantially no cross-linking phase, the values of Re 10 and d satisfy the following relationship:

Re>1481-1629(d);且較佳係 Re2 1491-1629(d);且更佳係 Re2 1501-1629(d);且更佳係 Reg 1511-1629(d)。 15 第3圖顯示密度對自某些本發明異種共聚物及傳統無 規共聚物製得之非定向膜之彈性回復之作用。對於相同密 * 度,本發明異種共聚物具有實質上較高之彈性回復。 於某些實施例,乙烯/α-烯烴異種共聚物具有高於10 MPa之抗張強度,較佳係2 11 MPa之抗張強度,更佳係2 20 13 MPa之抗張強度,及/或於11公分/分鐘之十字頭分離速率 時係至少600%之斷裂延長率,更佳係至少700%,高度較佳 係至少800%,且最高度較佳係至少900%。 於其它實施例,乙浠/α-烯烴異種共聚物具有(1)1至50 之貯存模量比例,G’(25°C)/G’(100°C),較佳係1至20,更 18 200900545 佳係1至10 ;及/或(2)少於80%之70°C壓縮變定,較佳係少 於70% ’特別是少於60%,少於50%,或少於40%,至降至 0%之壓縮定變。 於另外實施例,乙烯/α-烯烴異種共聚物具有少於 5 80%,少於70%,少於60%,或少於5〇%之7(TC壓縮變定。 較佳地,異種共聚物之7〇。(:壓縮變定係少於40%,少於 30%,少於2〇。/。,且可下降至約〇%。 於某些實施例,乙烯/α_烯烴異種共聚物具有少於85 J/g之熔融熱,及/或等於或少於1〇〇磅/英呎2(4800 Pa)之丸粒 10阻斷強度,較佳係等於或少於50磅/英呎2(24〇〇 Pa),特別是 等於或少於5磅/英呎2(240 Pa),及低至〇磅/英呎2(〇 Pa)。 於其它實施例,乙烯/α-烯烴異種共聚物包含呈聚合化 型式之至少50莫耳%之乙烯,且具有少於8〇%(較佳係少於 70%或少於60% ’最佳係少於4〇%至5〇%,及降至接近〇%) 15 之70°C壓縮變定。Re>1481-1629(d); and preferably Re2 1491-1629(d); and more preferably Re2 1501-1629(d); and more preferably Reg 1511-1629(d). 15 Figure 3 shows the effect of density on the elastic recovery of non-oriented films made from certain heterogeneous copolymers of the invention and conventional random copolymers. The heterogeneous copolymers of the present invention have substantially higher elastic recovery for the same degree of density. In certain embodiments, the ethylene/α-olefin heteropolymer has a tensile strength greater than 10 MPa, preferably a tensile strength of 2 11 MPa, more preferably a tensile strength of 2 20 13 MPa, and/or At a crosshead separation rate of 11 cm/min, the elongation at break is at least 600%, more preferably at least 700%, preferably at least 800%, and most preferably at least 900%. In other embodiments, the acetamidine/α-olefin heteropolymer has a storage modulus ratio of (1) 1 to 50, G′ (25° C.)/G′ (100° C.), preferably 1 to 20, Further 18 200900545 preferably 1 to 10; and/or (2) less than 80% of the 70 ° C compression set, preferably less than 70% 'especially less than 60%, less than 50%, or less than 40%, down to 0% compression set. In still other embodiments, the ethylene/α-olefin heteropolymer has less than 580%, less than 70%, less than 60%, or less than 5% (TC compression set. Preferably, heterogeneous copolymerization 7: (: The compression set is less than 40%, less than 30%, less than 2%, and can be reduced to about 〇%. In certain embodiments, ethylene/α-olefin heterogeneous copolymerization The material has a heat of fusion of less than 85 J/g, and/or a breaking strength of 10 or less (1800 Pa) of pellets, preferably 50 lbs/min or less.呎2 (24〇〇Pa), especially equal to or less than 5 psig (240 Pa), and as low as 〇Pound/mile 2 (〇Pa). In other embodiments, ethylene/α-olefin The heterogeneous copolymer comprises at least 50 mole % ethylene in a polymerized version and has less than 8% (preferably less than 70% or less than 60% 'best less than 4% to 5%) , and reduced to close to 〇%) 15 of 70 ° C compression set.

20 於某些實施例,多嵌段共聚物擁有擬合SchuUz-Fi〇ry 分佈(而非Pois麵分佈)之PDI。共聚物$—步特徵在於具有 多分散嵌段分佈及乡分狀錢尺寸分佈,且擁有最可能 之嵌段長度分佈。較佳之多嵌段絲物係含有4或更多之飯 段或區段(包含終端蝴者。更佳地,共聚物包含至少5、 10或20之嵌段或區段(包含終端嵌段)。 ’且以核磁共振 共單體含量可使用任何適合技術須彳量 (“NMm光譜術為主之技術係較佳。再者,對於具有相對 較寬TREF曲線之聚合物或聚合物摻合物,聚合物所欲地係 19 200900545 先使用TREF分級成數個分級物,每一者具有10°C或更少之 洗提溫度範圍。即,每一洗提分級物具有10°C或更少之收 集溫度窗。使用此技術,該嵌段異種共聚物具有至少一具 有比可相比擬異種共聚物之相對應分級物更高莫耳共單體 5 含量之此分級物。 於另一方面,本發明聚合物係一種烯烴異種共聚物, 較佳係包含呈聚合化型式之乙烯及一或多種可共聚合之共 單體,特徵在於化學或物理性質不同之具二或更多聚合化 單體單元之多嵌段(即,至少二嵌段)或區段(嵌段異種共聚 10 物),最佳係多嵌段共聚物,該嵌段異種共聚物具有於4〇t 與13 0 °C間洗提之峰(但非僅一分子分級物)(但未收集及/或 隔離個別分級物),特徵在於該峰具有當使用全寬度/半最大 值(FWHM)面積計算展開時藉由紅外線光譜術估算之共單 體含量,具有比於相同洗提溫度及使用全寬度/半最大值 15 (FWHM)面積計算展開時之可相比擬無規乙烯異種共聚物 峰者更高,較佳係高至少5%,更佳係高至少1〇%,之平均 莫耳共單體含量,其中,該可相比擬之無規乙烯異種共聚 物具有相同共單體’且具有嵌段異種共聚物者之1 〇%内之 熔融指數、密度,及莫耳共單體含量(以整個聚合物為基準 20計)。較佳地,可相比擬之異種共聚物之Mw/Mn亦係嵌段異 種共聚物者之10%内,及/或可相比擬之異種共聚物具有嵌 段異種共聚物者之10重量%内之總共單體含量。全寬度/半 最大值(FWHM)計算係以ATREF紅外線檢測器之曱基對甲 樓基回應面積[CIVCH2]之比例為基礎,其中,最高峰係自 20 200900545 基線鑑別,然後,FWHM面積被決定。由使用ATR£F峰測 得之分佈,FWHM面積被定義為乃及几間之曲線下之面 積,其中,乃及丁2係於ATREF峰之左右,藉由使峰高度除 以2,然後繪一與基線呈水平之線與ATREF曲線之左右部份 5相父而決定之點。共單體含量之校正曲線係使用無規乙烯/ α稀;^共^^物,繪製由nmr而得之共單體含量對tref峰 之FWHM面積比例之圖。對於此紅外線方法,校正曲線係 對感興趣之相同共單體型式產生。本發明聚合物之TREF峰 之共單體含量可藉由參考此校正曲線使用TREF峰之其 10 FWHM甲基:甲撐基面積比例[CH3:CH2]而決定。 共單體含量可使用任何適合技術測量,且以核磁共振 (NMR)光谱術為主之技術係較佳。使用此技術,該嵌段異 種共聚物具有比相對應可比擬之異種共聚物更高之莫耳共 單體含量。 15 較佳地,對於乙烯及丨-辛浠之異種共聚物,嵌段異種 共聚物具有之於40與130°c間洗提之TREF分級物之共單體 含量係大於或等於(-0_2013)T+20.07量,更佳係大於或等於 (-0.2013)Τ+21.07量’其中,Τ係被比較之TREF分級物之峰 洗提溫度,以°C測量。 20 第4圖係以圖說明乙烯及1-辛烯之嵌段異種共聚物之 實施例,其中’數種相比擬之乙烯/1-辛烯異種共聚物(無規 共聚物)之共單體含量對TREF洗提溫度之作圖被與代表 (-0.2013)T+20.07之線(實線)擬合。方程式(_〇.2〇i3)T+21.〇7 之線係以虛線描述。亦描述本發明之數種嵌段乙稀/;1_辛稀 21 200900545 異種共聚物(多嵌段共聚物)之分級物之共單體含量。所有嵌 段異種共聚物分級物具有比於相等洗提溫度之任一線明顯 更高之1-辛烯含量。此結果係本發明異種共聚物之特徵, 且被認為係由於聚合物鏈内不同欲段存在之結果,其具有 5 結晶及非結晶性質。 第5圖係圖示如下探討之實施例5及比較例F之聚合物In certain embodiments, the multi-block copolymer possesses a PDI that fits the SchuUz-Fi〇ry distribution (rather than the Pois surface distribution). The copolymer $-step is characterized by a polydisperse block distribution and a cross-sectional size distribution with the most probable block length distribution. Preferably, the multi-block filament system contains 4 or more rice segments or segments (including terminal butterflies. More preferably, the copolymer comprises at least 5, 10 or 20 blocks or segments (including terminal blocks). 'And the NMR co-monomer content can be used in any suitable technique ("NMm spectroscopy-based technology is preferred. Furthermore, for polymers or polymer blends with relatively wide TREF curves. The desired polymer system 19 200900545 is first classified into several fractions using TREF, each having a elution temperature range of 10 ° C or less. That is, each elution fraction has 10 ° C or less. The temperature window is collected. Using this technique, the block heterogeneous copolymer has at least one such fraction having a higher molar comonomer 5 content than the corresponding fraction of the comparable heterogeneous copolymer. The inventive polymer is an olefin heteropolymer, preferably comprising a polymerized version of ethylene and one or more copolymerizable co-monomers, characterized by two or more polymerized monomer units having different chemical or physical properties. Multiple blocks (ie, at least two Block) or segment (block heteropolymer 10), preferably a multi-block copolymer having a peak eluted between 4 〇 t and 130 ° C (but not only one) Molecular fractionation) (but not collecting and/or isolating individual fractions), characterized in that the peak has a comonomer content estimated by infrared spectroscopy when expanded using a full width/half maximum (FWHM) area calculation, It can be compared with the same elution temperature and using the full width/half maximum 15 (FWHM) area. It can be compared with the peak of the random ethylene heteropolymer, preferably at least 5% higher, and better at least higher. 1〇%, the average molar commonomer content, wherein the comparable random ethylene heteropolymer has the same comonomer' and has a melt index, density within 1% of the block heteropolymer And the molar comonomer content (based on the entire polymer based on 20). Preferably, the Mw/Mn of the heterogeneous copolymer is within 10% of the block heteropolymer, and/or A comparable total of 10% by weight of the block heteropolymer Body content. The full width/half maximum (FWHM) calculation is based on the ratio of the base of the ATREF infrared detector to the response area of the base [CIVCH2], where the highest peak is identified from the baseline of 20 200900545, then FWHM The area is determined. From the distribution measured using the ATR £F peak, the FWHM area is defined as the area under the curve of several, where the D2 is around the ATREF peak by dividing the peak height by 2 Then, draw a line that is horizontal with the baseline and the left and right parts of the ATREF curve. The calibration curve for the comonomer content is determined by using random ethylene/α thin; The ratio of the total monomer content to the FWHM area ratio of the tref peak is obtained. For this infrared method, the calibration curve is generated for the same comonomer pattern of interest. The comonomer content of the TREF peak of the polymer of the present invention can be determined by referring to this calibration curve using its 10 FWHM methyl:methyl group area ratio [CH3:CH2] of the TREF peak. The comonomer content can be measured using any suitable technique, and a technique based on nuclear magnetic resonance (NMR) spectroscopy is preferred. Using this technique, the block heteropolymer has a higher molar co-monomer content than the corresponding comparable heteropolymer. Preferably, for the heteropolymer of ethylene and ruthenium-octane, the block heteropolymer has a comonomer content of the TREF fraction eluted between 40 and 130 ° C is greater than or equal to (-0_2013) The amount of T+20.07, more preferably greater than or equal to (-0.2013) Τ + 21.07 amount 'where the lanthanide is compared to the peak elution temperature of the TREF fraction, measured in ° C. 20 Figure 4 is a diagram illustrating an example of a block heteropolymer of ethylene and 1-octene, in which a plurality of comonomers of ethylene/1-octene heteropolymer (random copolymer) are compared The plot of the content on the TREF elution temperature is fitted to the line representing the (-0.2013) T+20.07 (solid line). The line of the equation (_〇.2〇i3) T+21.〇7 is depicted by a dashed line. The comonomer content of the fractions of the heteroblock copolymers (multi-block copolymers) of the various block ethylene/1_Xinthene 21 200900545 of the present invention is also described. All of the block heterogeneous copolymer fractions have a significantly higher 1-octene content than either line of equal elution temperature. This result is characteristic of the heteropolymer of the present invention and is believed to have 5 crystalline and amorphous properties as a result of the presence of different segments within the polymer chain. Figure 5 is a diagram showing the polymer of Example 5 and Comparative Example F as discussed below.

分級物之TREF曲線及共單體含量。二聚合物之4〇至i3〇°C (較佳係60至95°C)洗提之峰被分級成三部份,每一部份係於 少於10 °C之溫度範圍洗提。實施例5之實際數據係以三角形 10表示。熟習此項技藝者會瞭解適合之校正曲線可對含有不 同共單體之異種共聚物建構,且作比較之線與自相同單體 使用茂金屬或其它均質催化劑組成物製得之比較異種共聚 物(較佳係無規共聚物)獲得之TREF值擬合。本發明之異種 共聚物特徵在於比自校正曲線於相同TREF洗提溫度決定 15之值更大之莫耳共單體含量,較佳係大至少5%,更佳係大 至少10%。 除此間所述之如上各方面及性質外,本發明聚合物特 徵可在於一或多種額外特性。於一方面,本發明聚合物係 一種烯fe異種共聚物,較佳地係包含呈聚合化型式之乙烯 2〇及一或多種可共聚合之共單體,特徵在於化學或物理性質 不同之具二或更多聚合化單體單元之多嵌段或區段(嵌段 異種共聚物),最佳係多嵌段共聚物,當使用TREF增量分級 時’邊嵌段異種共聚物具有於4(TC與130°C間洗提之分子分 級物’特徵在於該分級物具比於相同溫度間洗提之可相比 22 200900545 擬無規乙烯異種共聚物分級物者更高,較佳係高至少5%, 更佳係高至少1〇、15、20或25%,之莫耳共單體含量,其 中,該可相比擬之無規乙烯異種共聚物包含相同共單體, 較佳地,其係相同共單體,及嵌段異種共聚物者之1〇%内 5之熔融指數、密度,及莫耳共單體含量(以整個聚合物為基 準計)。較佳地,可相比擬異種共聚物之Mw/Mn亦係嵌段異 種共聚物者之10%内,及/或可相比擬之異種共聚物具有被 段異種共聚物者之1〇重量%内之總共單體含量。 較佳地’上述異種共聚物係乙稀及至少一 -烯烴之異 10 種共聚物,特別是具有約0.855至約0.935克/公分3之整體聚 合物密度之異種共聚物’且更特別是具有多於約1莫耳%共 單體之聚合物,嵌段異種共聚物具有之於40及13(TC間洗提 之TREF分級物之共單體含量係大於或等於 (-0.1356)T+13.89量,更佳係大於或等於(_〇.l356)T+14.93 15 量,且最佳係大於或等於(-0.2013)T+21.07量,其中,T係 被比較之TREF分級物之峰ATREF洗提溫度數值,以。C測 〇 較佳地,對於上述之乙浠及至少一 〇:-烯烴之異種共聚 物,特別是具有約0.855至約0.935克/公分3之整體聚合物密 2〇 度之異種共聚物,且更特別係具有多於約1莫耳%共單體之 聚合物,嵌段異種共聚物具有之於40及130°C間洗提之 TREF分級物之共單體含量係大於或等於(_〇.2013)Τ+20·07 量,更佳係大於或等於(-0.2013)Τ+21.07,其中,Τ係被比 較之TREF分級物之峰洗提溫度數值,以。c測量。 23 200900545 於另一方面,本發明聚合物係一種烯烴異種共聚物, 較佳地係包含呈聚合化塑式之乙烯及/或多種可共聚合之 共單體,特徵在於化學或物理性質不同之具二或更多聚合 化單體單元之多嵌段或區段(嵌段異種共聚物),最佳係多嵌 5段共聚物,當使用TREF增量分級時,該嵌段異種共聚物具 有於4(TC與13(TC間洗提之分子分級物,特徵在於每一分級 物具有至少約6莫耳%之共單體含量,具有大於約100°C之 熔點。對於具有約3莫耳%至約6莫耳%之共單體含量之此等 分級物’每一分級物具有約11(TC或更高之DSC熔點。更佳 10 地,具有至少1莫耳%共單體之該等聚合物分級物具有相對 應於如下方程式之DSC熔點:The TREF curve and comonomer content of the fraction. The peak of the elution of the two polymers from 4 Torr to i3 〇 ° C (preferably 60 to 95 ° C) is classified into three fractions, each fraction being eluted at a temperature range of less than 10 °C. The actual data of Example 5 is indicated by a triangle 10. Those skilled in the art will appreciate that a suitable calibration curve can be constructed for heterogeneous copolymers containing different comonomers, and a comparative heterogeneous copolymer prepared from a metallocene or other homogeneous catalyst composition from the same monomer. The TREF value obtained is obtained (preferably a random copolymer). The heterogeneous copolymer of the present invention is characterized by a molar monomer content greater than the value of the self-calibration curve at the same TREF elution temperature decision 15, preferably at least 5% greater, more preferably at least 10% greater. In addition to the above aspects and properties described herein, the polymeric features of the present invention may be characterized by one or more additional characteristics. In one aspect, the polymer of the present invention is an enefe heteropolymer, preferably comprising a polymerized version of ethylene oxime and one or more copolymerizable comonomers, characterized by chemical or physical properties. Multi-block or segment of two or more polymerized monomer units (block heteropolymer), preferably multi-block copolymer, when the TREF incremental fractionation is used, the 'edge block heteropolymer has 4 (Molecular fractionation eluted between TC and 130 ° C is characterized in that the fraction is higher than that of the 22 200900545 pseudo-random ethylene heteropolymer grade, which is higher than that of the mixture of the same temperature. At least 5%, more preferably at least 1 〇, 15, 20 or 25%, of the molar comonomer content, wherein the comparable random ethylene heteropolymer comprises the same comonomer, preferably It is the same comonomer, and the melt index, density, and molar comonomer content of the mole copolymer in 1% of the block heteropolymer (based on the entire polymer). Preferably, it can be compared The Mw/Mn of the heteropolymer is also within 10% of the block heteropolymer, and/or The comparative heterogeneous copolymer has a total monomer content within 1% by weight of the segmented heteropolymer. Preferably, the above heterogeneous copolymer is a copolymer of ethylene and at least one-olefin, particularly having 10 copolymers. a heteropolymer of about 0.855 to about 0.935 g/cm 3 of overall polymer density' and more particularly a polymer having more than about 1 mol% comonomer, the block heteropolymer having 40 and 13 ( The comonomer content of the TREF fraction eluted by TC is greater than or equal to (-0.1356)T+13.89, more preferably greater than or equal to (_〇.l356)T+14.93 15 and the optimum is greater than or Equivalent to (-0.2013) T + 21.07, wherein T is the peak ATREF elution temperature value of the TREF fraction compared to C. Preferably, for the above-mentioned acetamidine and at least one hydrazine: - olefin a heterogeneous copolymer, particularly a heterogeneous copolymer having an overall polymer density of from about 0.855 to about 0.935 grams per cubic centimeter, and more particularly a polymer having more than about 1 mole percent comonomer, block The heterogeneous copolymer has a comonomer content greater than that of the TREF fraction eluted between 40 and 130 ° C. Equivalent to (_〇.2013) Τ+20·07 quantity, more preferably greater than or equal to (-0.2013) Τ+21.07, where the lanthanide is compared with the peak elution temperature value of the TREF fraction, measured by .c. 23 200900545 In another aspect, the polymer of the present invention is an olefin heteropolymer, preferably comprising a polymerized ethylene and/or a plurality of copolymerizable co-monomers, characterized by different chemical or physical properties. a multi-block or segment (block heteropolymer) having two or more polymerized monomer units, preferably a multi-blocked 5-stage copolymer, which has a heterogeneous copolymer when fractionally graded using TREF Molecular fractions of 4 (TC and 13 (TC) eluted, characterized by each fraction having a comonomer content of at least about 6 mole percent, having a melting point greater than about 100 °C. For each of the fractions having a comonomer content of from about 3 mole % to about 6 mole %, each fraction has a DSC melting point of about 11 (TC or higher. More preferably 10 grounds, having at least 1 mole These polymer fractions of % co-monomers have a DSC melting point corresponding to the following equation:

Tmg (-5.5926)(分級物内之共單體莫耳%)+135.90。 於另一方面,本發明聚合物係一種烯烴異種共聚物, 較佳地係包含呈聚合化型式之乙烯及一或多種可共聚合之 15 共單體’特徵在於化學或物理性質不同之具二或更多聚合 化單體單元之多嵌段或區段(嵌段異種共聚物),最佳係多歲 段共聚物,當使用TREF增量分級時,該嵌段異種共聚物具 有於40。(:與l3〇t間洗提之分子分級物,特徵在於具有大於 或等於約7 61之AT RE F洗提溫度之每一分級物具有相對應 於下列方程式之藉由DSC測量之溶融焓(炼融熱): 炫融熱(J/gm)$(3.1718)(ATREF洗提溫度,。〇·136.58。 本發明嵌段異種共聚物具有當使用TREF增量分、級日寺 於4〇°C及130°C間洗提之分子分級物,特徵在於具有於4〇它 且少於約7 6 °C間之ATREFT洗提溫度之每一分級物具有相 24 200900545 對應於下列方程式之藉由D S C測量之熔融焓(熔融熱): 熔融熱(J/gm)$(1.1312)(ATREF 洗提溫度,。c)+22.97。 藉由紅外線檢測器測量ATREF峰共單體組成 TREF峰之共單體組成可使用可得自P〇lymer Char, 5 Valencia, Spanfhttp.V/www.polvmerchar.cnm/'t 之 IR4 紅外線 檢測器測量。 檢測器之”組成模式”係裝設測量感應器(CH2)及組成 感應器(CH3) ’其等係2800-3000公分―1區域之固定式窄譜帶 紅外線過濾器。測量感應器檢測聚合物上甲撐基之碳(其與 10溶液内之聚合物濃度直接相關),而組成檢測器檢測聚合物 之甲基(CH3)。組成訊號(CH3)除以測量訊號(CH2)之數學比 例係對溶液内測量之聚合物之共單體含量具敏感性,且其 回應係以已知乙烯α -烯烴共聚物標準物校正。 檢測器當與ATREF儀器使用時提供TREF方法期間洗 15提聚合物之濃度(CH2)及組成(CH3)訊號回應。聚合物特定 校正可藉由具已知共單體含量(較佳係以NMR測量)之聚合 物之CH3對CH2之面積比例而產生。聚合物之ATREF峰之共 單體含量可藉由應用個別CH3及CH2回應之面積比例之參 考校正而估算(即,CH3/CH2面積比例對共單體含量)。 20 峰之面積可於應用適當基線後使用全寬度/半最大值 (FWHM)計算積分TREF色譜之個別訊號回應而計算。全寬 度/半最大值之計算係以ATREF紅外線檢測器之甲基對甲 撐基回應面積比例[CH3/CH2]為基礎,其中,最高峰係自基 線鑑別,然後,FWHM面積被決定。對於使用ATREF峰測 25 200900545 量之分佈’ FWHM面積係定義為T1與T2間曲線下之面積, 其中,Τ1及Τ2係於ATREF峰之左右,藉由使峰高度除以2, 然後繪一與基線呈水平之線與ATREF曲線之左右部份相交 而決定之點。 5 於此ATREF紅外線方法中應用紅外線光譜術測量聚合 物之共單體含量原則上係相似於下列參考文獻中所述之 GPC/FTIR系統者.Markovich, Ronald P.; Hazlitt,Lonnie G·;Tmg (-5.5926) (% co-monomer in the fraction) + 135.90. In another aspect, the polymer of the present invention is an olefin heteropolymer, preferably comprising a polymerized version of ethylene and one or more copolymerizable 15 comonomers characterized by chemical or physical properties. Or more multi-block or segment of the polymerized monomer unit (block heteropolymer), preferably a multi-year copolymer, which has a molecular weight of 40 when graded by TREF. (: molecular fraction eluted with l3〇t, characterized in that each fraction having an AT RE F elution temperature of greater than or equal to about 7 61 has a melting enthalpy measured by DSC corresponding to the following equation ( Heat of smelting): Hyun heat (J/gm) $(3.1718) (ATREF elution temperature, 〇·136.58. The block heteropolymer of the present invention has a fraction of TREF when used, and 4 〇° A molecular fraction eluted between C and 130 ° C, characterized in that each fraction having an AREFET elution temperature between 4 Torr and less than about 76 ° C has a phase of 24 200900545 corresponding to the following equation Melting enthalpy (heat of fusion) measured by DSC: Heat of fusion (J/gm) $ (1.1312) (ATREF elution temperature, .c) + 22.97. Measurement of ATREF peak comonomer composition TREF peak comonomer by infrared detector The composition can be measured using an IR4 infrared detector available from P〇lymer Char, 5 Valencia, Spanfhttp.V/www.polvmerchar.cnm/'t. The “composition mode” of the detector is equipped with a measuring sensor (CH2) and Forming the sensor (CH3) 'It is a fixed narrow-band infrared filter with a range of 2800-3000 cm -1 zone. The measuring sensor detects the carbon of the methylene group on the polymer (which is directly related to the polymer concentration in the 10 solution), and the detector detects the methyl group (CH3) of the polymer. The composition signal (CH3) is divided by the measurement signal ( The mathematical ratio of CH2) is sensitive to the comonomer content of the polymer measured in solution, and the response is corrected by a known ethylene alpha-olefin copolymer standard. The detector provides the TREF method when used with an ATREF instrument. The concentration of the polymer (CH2) and the composition (CH3) signal are echoed during the wash. The specific correction of the polymer can be determined by the CH3 to CH2 area of the polymer having a known comonomer content (preferably measured by NMR). The ratio of the comonomer content of the ATREF peak of the polymer can be estimated by applying a reference correction of the ratio of the area of the individual CH3 and CH2 responses (ie, CH3/CH2 area ratio versus comonomer content). The full-width/half-maximum (FWHM) is used to calculate the individual signal response of the integrated TREF chromatogram after applying the appropriate baseline. The full-width/half-maximum calculation is based on the ratio of the methyl-methylene-based response area of the ATREF infrared detector [ C Based on H3/CH2], the highest peak is identified from the baseline, and then the FWHM area is determined. For the distribution using the ATREF peak 25 200900545, the FWHM area is defined as the area under the curve between T1 and T2, where Τ1 and Τ2 are around the ATREF peak, by dividing the peak height by 2, and then plotting a line that is horizontal to the baseline and intersecting the left and right parts of the ATREF curve. 5 The use of infrared spectroscopy to measure the comonomer content of a polymer in this ATREF infrared method is in principle similar to the GPC/FTIR system described in the following references. Markovich, Ronald P.; Hazlitt, Lonnie G.;

Smith, Linley;”用於描述以乙烯為主之聚烯烴共聚物之凝 膠渗透色谱術-傅立葉轉換紅外線光譜術之發展”,p〇lymer 10 Materials Science and Engineering (1991),65, 98-100 ;及 Deslauriers,P.J·; Rohlfing,D_C.: Shieh,Ε.Τ.;”使用尺寸排除 色譜術及傅立葉轉換紅外線光譜術(SEC_FTIR)量化乙烯 烯烴共聚物内之短鏈分枝微結構,,,p〇lymer (2〇〇2),43, 59-170,二者在此皆被全部併入以供參考之用。 15 於其它實施例,本發明之乙烯/〇:-烯烴異種共聚物特徵 在於大於0且最高達約1.0之平均嵌段指數(ABI),及大於約 1 ·3之分子量分佈(Mw/Mn)。平均嵌段指數(ABI)係於201至 110 C (5 C增量)之製備TREF獲得之每一聚合物分級物之嵌 段指數(“BI”)之重量平均: 20 ABI=E(wiBIi) 其中’ Bli係於製備TREE獲得之本發明乙烯/〇;_烯烴異種共 聚物之第1分級物之嵌段指數,且Wi係第i分級物之重量百分 率。 對於每—聚合物分級物,BI係以下列二方程式(二者皆 26 200900545 產生相同之BI值)之一定義: ΒΙ-λΙΤχ ~l/Tx〇 戍 LnPx -LnPX0Smith, Linley; "Cell Permeation Chromatography for the Derivation of Ethylene-Based Polyolefin Copolymers - Development of Fourier Transform Infrared Spectroscopy", p〇lymer 10 Materials Science and Engineering (1991), 65, 98-100 And Deslauriers, PJ·; Rohlfing, D_C.: Shieh, Ε.Τ.;” Quantification of short-chain branched microstructures in ethylene olefin copolymers using size exclusion chromatography and Fourier transform infrared spectroscopy (SEC_FTIR), P〇lymer (2〇〇2), 43, 59-170, both of which are hereby incorporated by reference in their entirety in each of the the the the the the the the the It is an average block index (ABI) greater than 0 and up to about 1.0, and a molecular weight distribution (Mw/Mn) greater than about 1.3. The average block index (ABI) is between 201 and 110 C (5 C increments). The weight average of the block index ("BI") of each polymer fraction obtained by the preparation of TREF: 20 ABI = E (wiBIi) wherein 'Bli is the ethylene/oxime of the invention obtained by preparing TREE; The block index of the first fraction of the copolymer, and the weight percentage of the Wi-based i-th grade. For each polymer fraction, the BI system is defined by one of the following two equations (both 26 200900545 yielding the same BI value): ΒΙ-λΙΤχ ~l/Tx〇 戍 LnPx -LnPX0

l/TA-\/TAB ^ LnPA -LnPAB 其中,Tx係第i分級物之製備ATREF洗提溫度(較佳係以。 K(Kelvin)表示),Px係第i分級物之乙烯莫耳分率,其可藉 5 由如上所述之NMR或IR測量。PAB係整個乙烯/α-烯烴異種 共聚物(分級前)之乙烯莫耳分率,其亦可藉由NMR或IR測 量。ΤΑ及?八係純”硬區段”(其係指異種共聚物之結晶區段) 之ATREF洗提溫度及乙烯莫耳分率。作為第一級近似,若,, 硬區段”之實際值不可獲得時,TA&PA值設定為高密度聚乙 10 烯均聚物者。對於此間實施之計算,TA係372°K,PA係1。 TAB係相同組成且具有PAB乙烯莫耳分率之無規共聚物 之ATREF溫度。TAB可自下列方程式計算:l/TA-\/TAB ^ LnPA -LnPAB wherein the Tx is the ith fraction of the preparation of the ATREF elution temperature (preferably represented by K (Kelvin)), and the ethylene molar fraction of the Px ith fraction It can be measured by NMR or IR as described above. PAB is the ethylene molar fraction of the entire ethylene/α-olefin heteropolymer (before classification), which can also be measured by NMR or IR. What? The eight-phase pure "hard segment" (which refers to the crystalline segment of the heteropolymer) has an ATREF elution temperature and a vinyl mole fraction. As a first-order approximation, if the actual value of the hard segment is not available, the TA&PA value is set to a high-density poly(10-ene homopolymer). For the calculations performed here, the TA system is 372°K, PA. Line 1. TAB is the ATREF temperature of a random copolymer of the same composition and having a PAB ethylene molar fraction. TAB can be calculated from the following equation:

Ln PAB=a /TAB+yS 其中’ α及/3係可藉由使用數種已知之無規乙烯共聚物校 15 正而決定。需注意α及/3可隨儀器而改變。再者,需以感 興趣之聚合物組成物且以與分級物相似之分子量範圍產生 其本身之適當校正曲線。具有些微分子量作用。若校正曲 線係自相似分子量範圍獲得,此作用基本上被忽略。於某 些實施例,無規乙烯共聚物係滿足下列關係式: 20 Ln P=-237.83/Tatref+0.639 Τχ〇係相同組成且具有Px乙烯莫耳分率之無規共聚物 之ATREF溫度。Txo可自LnPx= α /Txo+点計算。相反地,Ρχ〇 係相同組成且具有Tx之ATREF溫度之無規共聚物之乙烯莫 27 200900545 耳分率,其可自Ι^Ρχο=α:/Τχ+6計算。 一旦每一製備TREF分級物之嵌段指數(ΒΙ)被獲得,整 個聚合物之重量平均嵌段指數(ΑΒΙ)可被計算。於某些實施 例,ΑΒΙ係大於0但少於約0.3,或約0.1至0.3。於其它實施 5 例,ΑΒΙ係大於約0.3且最高達約1.0。較佳地,ΑΒΙ需於約 0.4至約0_7,約0.5至約0.7,或約0.6至約0.9,之範圍。於某 些實施例,ΑΒΙ係於約0_3至約0.9,約0.3至約0.8,或約0.3 至約0.7,約0.3至約0.6,約0.3至約0.5,或約0.3至約0.4, 之範圍。於其它實施例,ΑΒΙ係約0.4至約1.0,約0.5至約 10 1.0,或約0.6至約1.0,約0.7至約1·0,約0.8至約1_0,或約 0.9至約1.0,之範圍。 本發明乙烯/α-烯烴異種共聚物之另一特徵係本發明 乙烯/α-烯烴異種共聚物包含至少一可藉由製備TREF獲得 之聚合物分級物,其中,此分級物具有大於約0.1且最高達 15 約1.0之嵌段指數,及大於約1.3之分子量分佈(Mw/Mn)。於 某些實施例,此聚合物分級物具有大於約0.6且最高達約 1.0,大於約0.7且最高達約1.0,大於約0.8且最高達約1.0, 或大於約0.9且最高達約1.0,之嵌段指數。於其它實施例, 此聚合物分級物具有大於約0.1且最高達約1.0,大於約0.2 20 且最高達約1.0,大於約0.3且最高達約1.0,大於約0.4且最 高達約1.0,或大於約0.4且最高達約1.0,之嵌段指數。於 其它實施例,此聚合物分級物具有大於約0.1且最高達約 0.5,大於約0.2且最高達約0.5,大於約0.3且最高達約0.5, 或大於約0.4且最高達約0.5,之嵌段指數。於其它實施例, 28 200900545 此聚合物分級物具有大於約0.2且最高達約0.9 ’大於約〇·3 且最高達約0.8,大於約〇.4且最高達約0.7,或大於約〇·5且 最高達約0.6,嵌段指數。 對於乙烯及α-烯烴之共聚物,本發明聚合物較佳地擁 5 有(1)至少1.3(更佳係|少1.5,至少1_7,或至少2_0,且最佳 係至少2.6),最高達5.0之最大值(更佳係最高達3.5之最大 值’特別是最高達2.7之最大值)之PDI ; (2)80 J/g或更少之 熔融熱;(3)至少50重量%之乙烯含量;(4)少於-25°C(更佳 係少於-30°C)之玻璃轉移溫度(Tg);及/或(5)僅一Tm。 10 再者,本發明聚合物可,單獨或與此間所揭露之任何 其它性質結合地,具有於l〇(TC之貯存模量(G,)係使丨og(G,) 大於或等於400 kPa,較佳係大於或等於1.0 MPa。再者,本 發明聚合物擁有於〇至l〇(TC範圍為溫度之函數之相對較平 直之貯存模量(於第6圖例示)’此係嵌段共聚物之特徵,且 15係烯垣共聚物(特別是乙稀及一或多種C3-8脂族α -浠烴之 共聚物)所末知。(此内容中之,,相對較平直,,一辭係意指於5 〇 與100°C間(較佳係〇與1 〇〇°c間)i〇gG,(巴斯卡)係以少於一級 之量減少。 本發明異種共聚物進一步特徵在於於至少9〇。(:之溫度 20時之lmm熱機械分析透入深度,及3 kpsi(20 MPa)至13 kpsi(90 MPa)之撓曲模量。另外,本發明異種共聚物可具有 於至少104 C之溫度時之imm熱機械分析透入深度,及至少 3 kpsi(20 MPa)之撓曲模量。其等之特徵可在於具有少於9〇 mm3之耐磨性。第7圖顯示本發明聚合物與其它已知聚合物 29 200900545 相比較之TMA(1 mm)對撓曲模量。本發明聚合物具有比其 它聚合物顯著較佳之可撓性-耐熱性平衡。 另外,乙騎稀烴異種共聚物可具有〇〇1至2〇〇〇克/1〇 分鐘,較佳係讀至誦克/10分鐘,更佳係〇 〇1至獅克/ι〇 5分鐘,且特別是0·01至100克/10分鐘,之㈣指數⑹。於 某些實施例,乙烯/『烯烴異種共聚物具有讀至1〇克/1〇 分鐘,〇·5至50克/10分鐘,1至30克/10分鐘,⑴克/.鐘, 或〇_3至10克/10分鐘,之炼融指數(12)。於某些實施例,乙 稀/«-烯煙異種共聚物之炫融指數係丨克/川分鐘,3克/10分 10 鐘,或5克/10分鐘。 聚合物可具有1,〇〇〇克/莫耳至5,〇〇〇〇〇〇克/莫耳,較佳 係1000克/莫耳至丨’000,000克/莫耳,更佳係1〇 〇〇〇克/莫耳至 500,000克/莫耳,且特別是10,000克/莫耳至3〇〇〇〇〇克/莫 耳,之分子量(Mw)。本發明聚合物之密度可為〇 8〇至〇 99 15克/公分3 ’且對於含乙烯之聚合物較佳係0.85克/公分3至 〇_97克/公分3。於某些實施例,乙烯/α_烯烴聚合物之密度 範圍係0.860至0.925克/公分3 ’或0.867至0.910克/公分3。 製造此等聚合物之方法已描述於下列專利申請案:美 國臨時申請案第60/553,906號案,2004年3月17曰申請;美 20 國臨時申請案第60/662,937號案,2005年3月17日申請;美 國臨時申請案第60/662,939號案,2005年3月17日申請;美 國臨時申請案第60,5662938號案’2005年3月17日申請;PCT 曰請案第PCT/US2005/008916號案,2005年3月17日申請; PCT申請案第PCT/US2005/008915號案,2005年3月17曰申 30 200900545 請;及PCT申請案第PCT/US2005/008917號案,2〇〇5年3月 P曰申請,此等全部在此被完全併入以供參考之用。例如, 一此種方法包含使乙烯及選擇性之一或多種非乙烯之可加 成聚合之單體於加成聚合反應條件下與包含下述之催化劑 5 組成物接觸: 自混合下述而形成之混合物或反應產物: (A) 具有高共單體併納指數之第一稀煙聚合反應催化 劑, (B) 具有催化劑(A)之共單體併納指數之少於9〇%,較佳 10係少於50%,最佳係少於5%之共單體併納指數之第二烯烴 聚合反應催化劑,及 (C) 鏈穿梭劑。 代表性之催化劑及穿梭劑係如下。 催化劑(A1)係[N-(2,6-二(1-曱基乙基)苯基)醯胺基](2_ 15異丙基本基)(α -萘-2-二基(6-"比〇定-2-二基)曱烧)]給二曱 基,其係依據 WO 03/40195 ' 2003US0204017、USSN 10/429,024(2003年5月2日中請)及w〇 04/24740之教示製 造。Ln PAB = a / TAB + yS where 'α and /3 can be determined by using several known random ethylene copolymers. Note that α and /3 can vary with the instrument. Furthermore, it is desirable to have an appropriate calibration curve for the polymer composition of interest and for a molecular weight range similar to the fraction. Has some micro molecular weight effect. If the calibration curve is obtained from a similar molecular weight range, this effect is essentially ignored. In some embodiments, the random ethylene copolymer satisfies the following relationship: 20 Ln P = -237.83 / Tatref + 0.639 The ATREF temperature of the random copolymer of the same composition and having a Px ethylene molar fraction. Txo can be calculated from the LnPx=α /Txo+ point. Conversely, the ethylene fraction of the random copolymer of the same composition and having the ATREF temperature of Tx is calculated as the ear fraction, which can be calculated from Ι^Ρχο=α:/Τχ+6. Once the block index (ΒΙ) of each of the prepared TREF fractions is obtained, the weight average block index (ΑΒΙ) of the entire polymer can be calculated. In certain embodiments, the lanthanide is greater than zero but less than about 0.3, or from about 0.1 to 0.3. In other examples, the lanthanide system was greater than about 0.3 and up to about 1.0. Preferably, it is desirably in the range of from about 0.4 to about 0-7, from about 0.5 to about 0.7, or from about 0.6 to about 0.9. In certain embodiments, the lanthanide is in the range of from about 0 to about 3.5 to about 0.9, from about 0.3 to about 0.8, or from about 0.3 to about 0.7, from about 0.3 to about 0.6, from about 0.3 to about 0.5, or from about 0.3 to about 0.4. In other embodiments, the lanthanide is in the range of from about 0.4 to about 1.0, from about 0.5 to about 10 1.0, or from about 0.6 to about 1.0, from about 0.7 to about 1.0, from about 0.8 to about 1 to 0, or from about 0.9 to about 1.0. . Another feature of the ethylene/α-olefin heteropolymer of the present invention is that the ethylene/α-olefin heteropolymer of the present invention comprises at least one polymer fraction obtainable by preparing TREF, wherein the fraction has greater than about 0.1 and Up to a block index of about 1.0 and a molecular weight distribution (Mw/Mn) of greater than about 1.3. In certain embodiments, the polymer fraction has greater than about 0.6 and up to about 1.0, greater than about 0.7 and up to about 1.0, greater than about 0.8 and up to about 1.0, or greater than about 0.9 and up to about 1.0. Block index. In other embodiments, the polymer fraction has greater than about 0.1 and up to about 1.0, greater than about 0.220, and up to about 1.0, greater than about 0.3 and up to about 1.0, greater than about 0.4, and up to about 1.0, or greater than A block index of about 0.4 and up to about 1.0. In other embodiments, the polymer fraction has greater than about 0.1 and up to about 0.5, greater than about 0.2 and up to about 0.5, greater than about 0.3 and up to about 0.5, or greater than about 0.4 and up to about 0.5. Segment index. In other embodiments, 28 200900545 the polymer fraction has greater than about 0.2 and up to about 0.9' greater than about 〇·3 and up to about 0.8, greater than about 〇.4 and up to about 0.7, or greater than about 〇·5. And up to about 0.6, block index. For copolymers of ethylene and an alpha-olefin, the polymer of the invention preferably has (1) at least 1.3 (more preferably, less than 1.5, at least 1-7, or at least 2_0, and most preferably at least 2.6), up to PDI of a maximum of 5.0 (better of a maximum of 3.5), especially a maximum of up to 2.7; (2) heat of fusion of 80 J/g or less; (3) of at least 50% by weight of ethylene Content; (4) glass transition temperature (Tg) of less than -25 ° C (more preferably less than -30 ° C); and / or (5) only one Tm. Further, the polymer of the present invention may, alone or in combination with any of the other properties disclosed herein, have a storage modulus (G,) of TC such that 丨og(G,) is greater than or equal to 400 kPa. Preferably, the polymer is greater than or equal to 1.0 MPa. Furthermore, the polymer of the invention has a relatively flat storage modulus as a function of temperature in the range of TC (illustrated in Figure 6). a segment copolymer characterized by a 15 series olefin copolymer (particularly a copolymer of ethylene and one or more C3-8 aliphatic alpha-anthracene hydrocarbons). (In this context, relatively straight , the phrase means that between 5 〇 and 100 ° C (between 〇 and 〇〇 °c) i 〇 gG, (Basca) is reduced by less than one level. The heterogeneous copolymer of the present invention The article is further characterized by at least 9 Å. (: a thermomechanical analysis penetration depth of 1 mm at a temperature of 20, and a flexural modulus of 3 kpsi (20 MPa) to 13 kpsi (90 MPa). In addition, the heterogeneous copolymer of the present invention The material may have an imm thermomechanical analysis penetration depth at a temperature of at least 104 C and a flexural modulus of at least 3 kpsi (20 MPa). Has a wear resistance of less than 9 mm3. Figure 7 shows the TMA (1 mm) versus flexural modulus of the polymer of the invention compared to other known polymers 29 200900545. The polymer of the invention has a higher specific polymer than the other polymers Significantly better flexibility - heat resistance balance. In addition, the ethylene riding heterogeneous copolymer may have a 〇〇1 to 2 gram / 1 〇 minute, preferably read to 诵 / 10 minutes, better system 〇〇1 to lion/m〇 5 minutes, and especially 0. 01 to 100 g/10 minutes, (iv) index (6). In certain embodiments, the ethylene/"olefin heteropolymer has a read of 1 gram / 1 minute, 〇·5 to 50 g/10 min, 1 to 30 g/10 min, (1) g/. bell, or 〇 _3 to 10 g/10 min, smelting index (12). In the embodiment, the spectroscopy index of the ethylene/«-olefinic heteropolymer is gram/chuan minutes, 3 g/10 minutes 10 minutes, or 5 g/10 minutes. The polymer may have 1, gram/ Molar to 5, gram / moule, preferably 1000 g / mol to 丨 '000,000 g / Moule, better 1 gram / mol to 500,000 g / Mo Ear, and especially 10,000 g / mol to 3 〇〇 Mack/mole, molecular weight (Mw). The density of the polymer of the present invention may be from 8 〇 to 99 15 g/cm 3 ' and for ethylene-containing polymers is preferably 0.85 g/cm 3 to 〇_97 g/cm 3. In certain embodiments, the ethylene/α-olefin polymer has a density in the range of 0.860 to 0.925 g/cm 3 ' or 0.867 to 0.910 g/cm 3. The method of making these polymers has been Described in the following patent applications: US Provisional Application No. 60/553,906, March 17, 2004 application; US 20 Provisional Application No. 60/662,937, March 17, 2005; US Provisional Application Case No. 60/662,939, Application on March 17, 2005; US Provisional Application No. 60,5662938, 'Application on March 17, 2005; PCT Case No. PCT/US2005/008916, 2005 Application on March 17; PCT Application No. PCT/US2005/008915, March 2005, 17 曰申30 200900545, and PCT Application No. PCT/US2005/008917, 2, 5, March, P曰Applications, all of which are hereby fully incorporated herein by reference. For example, one such method comprises contacting ethylene and one or more non-ethylene addition polymerizable monomers with an addition catalyst composition comprising the following under additive polymerization conditions: a mixture or reaction product: (A) a first thin-smoke polymerization catalyst having a high comonomer and a nano-index, (B) a comonomer having a catalyst (A) having a neat index of less than 9% by weight, preferably The 10 series is less than 50%, preferably less than 5% of the co-monomer of the second olefin polymerization catalyst, and (C) the chain shuttling agent. Representative catalysts and shuttling agents are as follows. Catalyst (A1) is [N-(2,6-bis(1-mercaptoethyl)phenyl)decylamino](2-15 isopropyl base) (α-naphthalene-2-diyl (6-&quot ; 〇 -2- 二 二 二 二 曱 ] ] ] ] ] ] , , 依据 依据 依据 依据 依据 依据 依据 WO WO WO WO WO WO WO WO WO WO WO WO WO WO WO WO according to WO 03/40195 ' 2003 US0204017, USSN 10/429, 024 Teaching manufacturing.

催化劑(Α2)係[Ν-(2,6-二(1-甲基乙基)苯基)酿胺基](2· 甲基苯基)(1,2-苯撐基-(6-吡啶-2-二基)甲基)給二甲基,其 31 200900545Catalyst (Α2) is [Ν-(2,6-bis(1-methylethyl)phenyl)-branyl](2·methylphenyl)(1,2-phenylene-(6-pyridine) -2-diyl)methyl) to dimethyl, its 31 200900545

係依據 WO 03/40195 、2003US0204017 、USSN 10/429,〇24(2003年5月2日申請)及WO 04/24740之教示製 造0Manufactured according to the teachings of WO 03/40195, 2003 US0204017, USSN 10/429, 〇24 (filed on May 2, 2003) and WO 04/24740

催化劑(人3)係雙[>^”’-(2,4,6-三(曱基苯基)醢胺基)苯 二胺]铪二苯甲基。The catalyst (human 3) is a double [>^"'-(2,4,6-tris(nonylphenyl)nonylamino)phenylenediamine]decyldiphenylmethyl group.

催化劑(A4)係雙(2-醯氧基_3-(二苯并-1H-吡咯-1-基)-5-(甲基)苯基)-2-苯氧基甲基)環己烧-u-二基锆(IV)二 10 苯甲基,其實質上係依據US-A-2004/0010103之教示製備。Catalyst (A4) is bis(2-decyloxy-3-(dibenzo-1H-pyrrol-1-yl)-5-(methyl)phenyl)-2-phenoxymethyl)cyclohexane -u-diyl zirconium (IV) bis 10 benzyl, which is essentially prepared in accordance with the teachings of US-A-2004/0010103.

催化劑(B1)係1,2-雙-(3,5-二-第三丁基苯撐 32 200900545 基)(1-(N-(1-甲基乙基)亞胺基)甲基)(2-醯氧基)鍅二苯甲基 C(CH3)3The catalyst (B1) is 1,2-bis-(3,5-di-t-butylphenylene 32 200900545-based) (1-(N-(1-methylethyl)imino)methyl) ( 2-decyloxy)nonhenyl C(CH3)3

催化劑(B2)係1,2-雙-(3,5-二-第三丁基苯撐 基)(1-(Ν-(2-甲基環己基)-亞胺基)甲基)(2-醯氧基)锆二苯甲 5 基Catalyst (B2) is 1,2-bis-(3,5-di-t-butylphenylene) (1-(indolyl-(2-methylcyclohexyl)-imino)methyl) (2) -nonyloxy)zirconium-2-yl

催化劑(C1)係(第三丁基醯胺基)二曱基(3-N-吡咯基 -1,2,3,33,73-;?-茚-1-基)矽烷鈦二曱基,其實質上依據118? 6,268,444號案之教示製造。Catalyst (C1) is a (t-butylammonium)difluorenyl (3-N-pyrrolyl-1,2,3,33,73-;?-indol-1-yl)nonane titanium dimercapto group, It is manufactured in substantial accordance with the teachings of Case No. 118,268,444.

(H3Lj2M\ /Ti(CH3)2 N I c(ch3)3 催化劑(C2)係(第三丁基醯胺基)二(4-甲基苯基)(2-甲 基-1,2,3,3a,7a-茚-1-基)矽烷鈦二甲基,其係實質上依據 US-A-2003/004286之教示製造。 33 200900545(H3Lj2M\ /Ti(CH3)2 NI c(ch3)3 Catalyst (C2) is a (t-butylammonium) bis(4-methylphenyl)(2-methyl-1,2,3, 3a,7a-indol-1-yl)nonane titanium dimethyl, which is essentially made according to the teachings of US-A-2003/004286. 33 200900545

催化劑(C3)係(第三丁基醯胺基)二(4-甲基苯基)(2-甲 基-1,2,3,3&,8&-77-8-印基-1-基)碎烧欽二甲基,其係貫質上 依據US-A-2003/004286之教示製造。Catalyst (C3) is a (t-butylammonium) bis(4-methylphenyl)(2-methyl-1,2,3,3&,8&-77-8-imida-1- The base is pulverized in a dimethyl group, which is manufactured in accordance with the teachings of US-A-2003/004286.

催化劑(D1)係雙(二甲基二矽氧烷)(茚-1-基)锆二氣化 物,可得自 Sigma-Aldrich :Catalyst (D1) is bis(dimethyldioxane)(茚-1-yl)zirconium di-gas, available from Sigma-Aldrich:

穿梭劑使用之穿梭劑包含二乙基鋅、二(異丁基)辞、 10 二(正己基)鋅、三乙基鋁、三辛基鋁、三乙基鎵、異-丁基 鋁雙(二甲基(第三丁基)矽氧烷)、異丁基鋁雙(二(三曱基矽 烷基)醯胺)、正辛基鋁二(吡啶-2-甲氧化物)、雙(正十八烷 34 200900545 基)異丁基紹、異丁基銘雙(二(正戊基)醯胺)、正辛基銘雙 (2,6-二_第三丁基苯氧化物、正辛基銘二(乙基(1秦基)酿 胺)、乙基銘雙(第三丁基二曱基石夕氧化物)、乙基紹二⑻三 甲基石夕烧基)酿胺)、乙基銘雙AW笨并小氮雜環庚烧 5醯胺)、正辛基銘雙(2,3,6,7_二苯并小氮雜環戍烧酿胺)、正 辛基銘雙(二甲基(第三丁基)魏化物、乙基鋅(2,6二笨基 笨氧化物),及乙基辞(第三丁氧化物)。 較佳地,前述方法係採用連續溶液方法,使用不能相 互轉化之數種催化劑形成嵌段共聚物,特別是多嵌段共沪 卬物,較佳係二或更多種單體(特別是乙烯及^烯煙或環: 烴,且最特別係乙烯及CVmqi-烯烴)之線性多嵌段共聚物 即,催化劑係於化學上不同。於連續溶液聚合反應條件下 此方法理想上係適於以高單體轉化率聚合單體混合物。、 此等聚合反應條件下,與鏈生長相比,自鍵穿㈣至催^ 15劑之穿梭變有利’且多後段共聚物(特別是線性多嵌段 物)以高效率形成。 本發明異種共聚物可與經由依序之單體添加、流 催化劑、陰離子性或陽離子性活聚合反應技術製造之傳系 無規共聚物、聚合物之物理摻合物,及嵌段共聚物不同先 20特別地’與於相等結晶性或模量之相同單體及單體含^ 無規共聚物減,本發明異種共聚物具有*佳(較高)之二之 性(以熔點測里)、較高TMA透入溫度、較高之高溫抗茫‘、、、 度,及/或較高之高溫扭矩貯存模量(藉由動態機械= 定)。與含有相同單體及單體含量之無規共聚物相比,本發 35 200900545 明異種共聚物具有較低之虔縮變定辨別是於高溫時)、較低 之應力氣、弛、較高之耐蠕變性、較高之撕裂強度、較高之 耐黏連〖生、由於較兩結晶化⑽化)溫度造成之較快變定、較 尚回復丨生(特別疋於咼溫時)、較佳之对磨性、較高之回縮 5力,及較佳之油及填料接受性。 本發明異種共聚物亦展現獨特之結晶化及分支分佈之 關係。即,本發明異種共聚物於使用cRYSTAF及DSc測量 之最咼峰溫度(其係熔融熱之函數)間具有相對較大之差 異,特別是與於相等整體密度之含有相同單體及單體含量 10之無規共聚物或聚合物之物理摻合物(諸如,高密度聚合物 及較低密度共聚物之摻合物)相比時。認為本發明異種共聚 物之獨特特徵係由於聚合物主幹内嵌段中之共單體之獨特 刀佈。特別地,本發明異種共聚物可包含交錯之具不同共 單體含量之嵌段(包含均聚物嵌段)。本發明異種共聚物亦可 15包含具不同密度或共單體含量之聚合物嵌段之數量及/或 嵌段尺寸之分佈,其係Schultz-Flory型分佈。此外,本發明 異種共聚物亦具有獨特之峰熔點及結晶溫度分佈,其實質 上係與聚合物密度、模量及形態無關。於一較佳實施例, 聚合物之微結晶順序證明可與無規或嵌段共聚物可區別之 20特性球晶及薄片,即使於少於1·7或甚至少於丨.5,降至少於 13之PDI值時。 再者,本發明異種共聚物可使用影響嵌段程度或量之 技術製造。即,每一聚合物欲段或區段之共單體量及長度 可藉由控制催化劑及穿梭劑之比例及型式與聚合反應溫度 36 200900545 及其它聚合反應變數而改變。此現象之一驚人益處係發現 當嵌段度增加時,形成聚合物之光學性質、撕裂強度,及 南溫回復性質被改良。特別地,當聚合物之平均嵌段數辦 加時’濁度減少’而清淅度、撕裂強度及高溫回復性質增 5加。藉由選擇具有所欲鍵轉移能力(兩穿梭速率具低鏈終系士 度)之穿梭劑及催化劑之組合’其它型式之聚合物終結可有 效地被抑制。因此,極少(若有的話)之万-氫化物去除於依 據本發明實施例之乙烯/α -烯烴共單體混合物之聚合反應 中觀察到,且形成之結晶嵌段係高度(或實質上完全)之線 ίο 性’擁有極少或無長鏈分支。 具咼結晶鏈端部之聚合物可依據本發明實施例選擇性 地製造。於彈性體之應用,降低以非結晶性嵌段終結之聚 &物相對里會降低結晶區域上之分子間稀釋作用。此結果 可藉由選擇對氫或其它鏈終結劑具適當回應之鏈穿梭劑及 15催化劑而獲得。特別地,若產生高結晶性聚合物之催化劑 比造成產生較低結晶性聚合物區段(諸如,經由較高共單體 併”内區域性錯誤,或無規立構聚合物之形成)之聚合物更 易鏈終結(諸如,藉由使用氫),高度結晶之聚合物區段會優 先位於聚合物之終端部份。不僅形成之端基係結晶,而且 2 於、;時,形成鬲結晶性聚合物之催化劑位置再次可用於 重新起始物形成。因此,起始形成之聚合物係另一高 …曰曰f生之聚合物區段。因此,形成之多嵌段共聚物之二端 優先地係高結晶性。 用於本發明實施例之乙烯《 -烯烴異種共聚物較佳係 37 200900545 乙烯與至少_ r ,減-缔烴之異種共聚物。乙稀與c3-c2( c C :嫌共聚物係特別佳。異種共聚物可進-步包含 :不:::及/或烯基笨。用於與乙烯進行聚合反應之適 當不飽和共單妒&人7, 豆匕3,例如,乙烯不飽和單體、共軛或非 共輛之二烯、¥,说π # β 一 Λ烯、烯基本等。此等共單體之例子包含c3-c20 a -烯烴,諸如,&咕 „ 丙稀、異丁烯、1-丁烯、u己烯、卜戍烯、 10 15 20 甲土戊烯、庚烯、1-辛烯、1-壬烯、1_癸烯等。1_ 丁 稀及1_辛烯係特難。其它適合之單體包含苯乙烯、以鹵 基或烧基取代之苯乙烯、乙烯基苯并環丁烧、14,·己二烯、 1,7-辛二烯,及環烷(例如,環戊烯、環己烯,及環辛烯)。 雖然乙烯/α-烯烴異種共聚物係較佳聚合物,但其它之 乙烯/烯烴聚合物亦可被使用。此間使用之烯烴係指具有至 少一碳-碳雙鍵之以不飽和烴為主之化合物家族。依催化劑 選擇而定’任何烯烴可用於本發明實施例。較佳地,適备 之烯烴係含有乙烯基不飽和之CVCzo脂族及芳香族化人 物’與環狀化合物,諸如’環丁烯、環戊稀、二環戊二稀 及降冰片烯,不受限地包含於5及6位置以CVC2〇煙基咬JS _ 基取代之降冰片烯。亦包含者係此等烯烴之渑合物,與匕 等烯烴與C4-C2o二烯烴化合物之混合物。 烯烴單體之例子不受限地包含丙烯、異丁歸、丨_丁歸 卜戊稀、1-己稀、1-庚烯、1-辛烯、1-壬烯、u癸稀, 及1、 十二碳稀、1-十四碳浠、1_十六碳烯、1-十八峻歸、1 _ 碳烯、3-甲基-1-丁烯、3-甲基-1-戊烯、4-甲基+戊稀、4 6 二甲基-1-庚烯、4-乙稀基環己烯、乙烯基環已燒、降'水片 38 200900545 二烯、亞乙基降冰片烯、環戊烯、環己烯、二環戊二烯、 環辛烯、C4-C40二烯,不受限地包含1,3-丁二烯、1,3-戊二 烯、1,4-己二烯、1,5-己二烯、1,7-辛二烯、1,9-癸二烯,其 它C4-C20〇;-烯烴等。於某些實施例,α-烯烴係丙烯、1-丁 5 烯、1-戊烯、1-己烯、1-辛烯,或其等之混合物。雖然任何 含有乙烯基之烴可用於本發明實施例,但實際上之問題(諸 如,單體可獲得性、成本,及使未反應單體方便地自形成 聚合物移除之能力)於單體之分子量變太高時會變得更有 問題。 10 此間所述之聚合反應方法係適於製造包含單亞乙烯基 芳香族單體(包含苯乙烯、鄰-甲基苯乙烯、對-甲基苯乙烯、 第三丁基苯乙浠等)之烯烴聚合物。特別地,包含乙烯及苯 乙烯之異種共聚物可依循此間之技術製造。選擇性地,具 有改良性質之包含乙烯、苯乙烯及C3-C2()a;烯烴,選擇性地 15 包含C4-C2Q二稀,之共聚物可被製造。 適合之非共軛二烯單體可為具有6至15個碳原子之直 鏈、分支鏈或環狀之烴二烯。適合之非共軛二烯之例子不 受限地包含直鏈非環狀二烯,諸如,1,4-己二烯、1,6-辛二 烯、1,7-辛二烯、1,9-癸二烯,分枝鏈非環狀二烯,諸如, 20 5-曱基-1,4-己二烯;3,7-二甲基-1,6-辛二烯;3,7-二甲基-1,7- 辛二烯,及二氫楊梅烯及二氫寧烯之混合異構物,單環脂 環二烯,諸如,1,3-環戊二烯;1,4-環己二烯;1,5-環辛二 烯,及1,5-環十二碳二烯,及多環脂環稠合及橋接環二烯, 諸如,四氫茚、甲基四氫茚、二環戊二烯、二環-(2,2,1)- 39 200900545 庚-2,5-二烯;烯基、亞烷基、環烯基及環亞烷基之降冰片 烯,諸如,5-甲撐基_2_降冰片烯(MNB) ; 5_丙烯基_2_降冰 片稀、5-異亞丙基_2_降冰片烯、5-(4、環戊烯基)降冰片 烯、5-環亞己基_2_降冰片烯、5-乙烯基_2_降冰片烯,及降 冰片二烯。典型上用以製造EPDM之二烯中,特別佳之二烯 係1,4-己二烯(HD)、5-亞乙基-2-降冰片烯(ENB)、5亞乙烯 基-2-降冰片烯(VNB)、5_曱撐基_2_降冰片烯(MNB),及二 %戊二烯(DCPD)。特別佳之二烯係5-亞乙基-2-降冰片稀 (ENB),及 l,4-己二稀(Hd)。 10 15 一類可依據本發明實施例製造之所欲聚合物係乙稀、 C3_C2〇a-烯烴(特別是丙烯)及選擇性一或多種二烯單體之 彈性體異種共聚物。用於本發明實施例之較佳α-烯烴係以 化學式CHfCHR*指示,其中,R*係1至12個碳原子之線性 或分支之烷基。適合之α-烯烴之例子不受限地包含丙稀、 異丁烯、1-丁稀、1-戊烯、1-己烯、4-曱基-ΐ_戊埽,及1 辛烯。特別較佳之α-烯烴係丙烯。以丙烯為主之聚合物於 此項技藝一般係稱為ΕΡ或EPDM聚合物。用於製造此等聚 4 合物(特別是多嵌段EPDM型聚合物)之適合二烯包含含有 至20個碳原子之共耗或非共輥之直鏈或分支鏈狀、環狀 或多環狀之二烯。較佳之二烯包含1,4-戊二烯、14_己二稀 5-亞乙基-2-降冰片烯、二環戊二烯、環已二烯,及5_亞丁 基-2-降冰片稀。特別較佳之二烯係5-亞乙基_2_降冰片稀。 因為含有二稀之聚合物包含交替式之含有較大或較小 量之二烯(包含無)及α -烯烴(包含無)之區段或嵌段,二歸及 20 200900545 α-稀煙之總量可被降低,且不會損失其後聚合物性質。 即’因為一稀及a -烯經單體係優先被併納於聚合物之一型 式彼段内’而非均句或隨機地併納於整個聚合物内,因此, T被更有AM利用’且其後,聚合物之交聯密度可被較 5佳地控制。此等可交聯彈性體及固化產物具有有利性質, 包含較尚之抗張強度及較佳之彈性回復。 於某些實施例’以二催化劑製造之併納不同共單體量 之本發明異種共聚物具有95j至5:95之藉此形成之嵌段重 量比例。彈性體聚合物所欲地具有2〇至9〇%之乙婦含量, ίο 至1〇%之二烯含量,及1〇至8〇%之《-烯烴含量,其係以 聚合物總重量為基準計。進一步較佳地,多嵌段彈性體聚 合物具有60至90%之乙烯含量,01至10%之二烯含量,及 10至40%之烯烴含量,其係以聚合物總重量為基準計。 較佳之1合物係高分子量聚合物,其具有1 〇,〇〇〇至約 15 2,500,000,較佳係20,000至500,000,更佳係20,000至350,000 之重量平均分子量(Mw),及少於3.5,更佳係少於3.0之多 分散性’及1至250之幕尼(Mooney)黏度(ML (1+4) 125。〇。 更佳地,此等聚合物具有65至75%之乙烯含量,〇至6%之二 烯含量,及20至35%之α-烯烴含量。 20 乙烯/α -烯烴異種共聚物可藉由於其聚合物結構内併 納至少一官能基而官能化。例示之官能基可包含,例如, 乙烯不飽和單及二官能性之羧酸、乙烯不飽和單及二官能 性羧酸酐、其鹽及其酯。此等官能基可接支至乙烯/α_烯烴 異種共聚物’或可與乙烯及選擇性之額外共單體共聚合形 41 200900545 成乙烯、官能性共單體及選擇性之其它共單體之異種共聚 物。用於使官能基接枝至聚乙烯上之手段係描述於,例如, 美國專利第4,762,890、4,927,888及4,950,541號案,此等專 利案之揭示内容在此被全部併入以供參考之用。一特別有 5 用之官能基係馬來酸酐。 存在於官能性異種共聚物内之官能基之量可改變。官 能基典型上可以至少約1.0重量%,較佳係至少約5重量%, 且更佳係至少約7重量%之量存在於共聚物型之官能化異 種共聚物。官能基典型上係以少於約40重量%,較佳係少 10 於約30重量%,且更佳係少於約25重量%之量存在於共聚物 型式之官能化異種共聚物。 測試方法 於下列實施例,下列分析技術被使用: 用於樣品1-4及A-C之GPC方法 15 裝設設定為160°C之加熱針之自動化處理液體之機械 臂被用以添加足夠之以300 ppm Ionol安定化之1,2,4-三氯 苯至每一乾燥之聚合物樣品,產生30毫克/毫升之最後濃 度。小的玻璃授拌棒被置入每一管内,且樣品於以250 tpm 旋轉之加熱軌道搖動器上加熱至160°C持續2小時。然後, 20 濃縮之聚合物溶液使用自動化處理液體之機械臂及設定為 160°C之加熱針稀釋至1毫克/毫升。The shuttle agent used in the shuttle comprises diethyl zinc, di(isobutyl), 10 bis(n-hexyl)zinc, triethylaluminum, trioctylaluminum, triethylgallium, isobutylammonium double ( Dimethyl (t-butyl) decane, isobutyl aluminum bis(di(tridecyl decyl) decylamine), n-octyl aluminum di(pyridine-2-oxide), double (positive) Octadecane 34 200900545 base)isobutyl sulphate, isobutyl bis (di(n-pentyl) decylamine), n-octyl bis (2,6-di-t-butyl phenoxide, n-octyl succinyl (ethyl) (1Qinyl), amine, bis (tert-butyl dimethyl fluorene oxide), ethyl succinium (8) trimethyl sulphate), ethyl shuang AW stupid and small nitrogen Heterocyclic heptane 5 oxime), n-octyl bis (2,3,6,7-dibenzothiazepine), n-octyl bis (dimethyl (tert-butyl) weide, Ethyl zinc (2,6 diphenyl oxide), and ethyl (third butoxide). Preferably, the foregoing method uses a continuous solution method to form blocks using several catalysts that cannot be converted to each other. Copolymer, especially multi-block Preferably, the linear multi-block copolymer of two or more monomers (particularly ethylene and olefinic or cyclic: hydrocarbons, and most particularly ethylene and CVmqi-olefins), ie, the catalysts are chemically different. Under continuous solution polymerization conditions, the process is ideally suited for polymerizing a monomer mixture at a high monomer conversion. Under these polymerization conditions, the shuttle from the bond (4) to the charge of the agent is compared to the chain growth. Advantageous and multi-back copolymers (especially linear multi-blocks) are formed with high efficiency. The heteropolymers of the invention can be produced by sequential monomer addition, flow catalyst, anionic or cationic living polymerization techniques. The random copolymer, the physical blend of the polymer, and the block copolymer are different, in particular, the same monomer and monomer containing random copolymers of equal crystallinity or modulus are reduced. The heterogeneous copolymer of the present invention has a good (higher) ratio (in terms of melting point), a higher TMA penetration temperature, a higher high temperature resistance, a degree, and/or a higher high temperature torque. Storage modulus (by dynamic mechanical = fixed) Compared with the random copolymer of the same monomer and monomer content, the present invention has a lower degree of shrinkage and is distinguished by high temperature, lower stress gas, relaxation, and higher resistance. Creep, higher tear strength, higher resistance to adhesion, due to temperature change due to two crystallization (10), faster recovery (especially when enthalpy) Preferred for abrasiveness, higher retraction force, and better oil and filler acceptance. The heteropolymer of the present invention also exhibits a unique relationship of crystallization and branching distribution. That is, the heterogeneous copolymer of the present invention has a relatively large difference between the peak temperature measured by cRYSTAF and DSc (which is a function of the heat of fusion), especially with the same monomer and monomer content at an equal overall density. A random copolymer of 10 or a physical blend of a polymer, such as a blend of a high density polymer and a lower density copolymer. The unique characteristics of the heterogeneous copolymers of the present invention are believed to be due to the unique knives of the comonomers in the inner block of the polymer backbone. In particular, the heteropolymer of the present invention may comprise interlaced blocks (including homopolymer blocks) having different levels of co-monomers. The heteropolymer of the present invention may also comprise a distribution of the number and/or block size of polymer blocks having different densities or comonomer contents, which is a Schultz-Flory type distribution. In addition, the heteropolymer of the present invention also has a unique peak melting point and crystallization temperature distribution, which is substantially independent of polymer density, modulus and morphology. In a preferred embodiment, the microcrystalline sequence of the polymer demonstrates 20 characteristic spherulites and flakes distinguishable from random or block copolymers, even at less than 1.7 or at least 丨.5, at least At a PDI value of 13. Further, the heteropolymer of the present invention can be produced using techniques that affect the extent or amount of the block. That is, the amount and length of the comonomer of each polymer segment or segment can be varied by controlling the ratio and type of catalyst and shuttling agent to the polymerization temperature 36 200900545 and other polymerization variables. One of the surprising benefits of this phenomenon is the discovery that as the degree of blockiness increases, the optical properties, tear strength, and south temperature recovery properties of the formed polymer are improved. In particular, when the average number of blocks of the polymer is increased, the 'turbidity is reduced' and the clarity, tear strength and high temperature recovery property are increased by 5 times. Other types of polymer terminations can be effectively inhibited by selecting a combination of a shuttling agent and a catalyst having the desired bond transfer capability (two shuttle rates with low chain end chain). Thus, very little, if any, of the hydride-hydrogen removal is observed in the polymerization of the ethylene/α-olefin comonomer mixture in accordance with embodiments of the present invention, and the crystalline block system formed is highly (or substantially The complete line ίο sex 'has little or no long chain branching. The polymer having the end of the crystalline chain can be selectively produced in accordance with embodiments of the present invention. For elastomer applications, lowering the poly- & This result can be obtained by selecting a chain shuttling agent and a 15 catalyst which respond appropriately to hydrogen or other chain terminators. In particular, if the catalyst ratio resulting in a highly crystalline polymer results in a lower crystalline polymer segment (such as via a higher comonomer and a regional error, or the formation of an atactic polymer) The polymer is more susceptible to chain termination (such as by the use of hydrogen), and the highly crystalline polymer segments are preferentially located at the terminal end of the polymer. Not only the end groups are formed, but also the crystalline phase is formed. The polymer catalyst position is again available for re-starter formation. Thus, the initially formed polymer is another high polymer segment. Therefore, the two-block copolymer formed is preferred. Highly crystalline. The ethylene "-olefin heteropolymer" used in the examples of the present invention is preferably 37 200900545. A heteropolymer of ethylene and at least _r, a minus-hydrocarbon. Ethyl and c3-c2 (c C : The copolymer is particularly preferred. The heteropolymer can be further included: not::: and/or alkenyl. Suitable for the polymerization of ethylene with a suitable unsaturated monoterpene & human 7, cardamom 3, For example, ethylenically unsaturated monomers, conjugated or non-common vehicles Diene, ¥, π # β-decene, alkenyl, etc. Examples of such comonomers include c3-c20 a-olefins, such as & propylene, isobutylene, 1-butene, u Hexene, decene, 10 15 20 mesopentene, heptene, 1-octene, 1-decene, 1-decene, etc. 1_butylene and 1-octene are particularly difficult. Other suitable singles The body comprises styrene, styrene substituted with a halogen group or a burnt group, vinyl benzocyclobutane, 14 hexadiene, 1,7-octadiene, and a cycloalkane (for example, cyclopentene, ring) Hexene, and cyclooctene. Although an ethylene/α-olefin heteropolymer is a preferred polymer, other ethylene/olefin polymers may also be used. The olefin used herein refers to having at least one carbon-carbon double. The bond is a family of unsaturated hydrocarbon-based compounds. Depending on the choice of catalyst, any olefin can be used in the examples of the present invention. Preferably, the suitable olefin is a CVCzo aliphatic and aromatic character containing ethylenic unsaturation. 'With cyclic compounds such as 'cyclobutene, cyclopentene, dicyclopentadiene and norbornene, unrestrictedly contained in positions 5 and 6 with CVC2 JS _ group-substituted norbornene. Also included is a mixture of such olefins, and a mixture of olefins such as hydrazine and a C4-C2o diolefin compound. Examples of olefin monomers include, without limitation, propylene and isobutylene. , 丨_丁归卜戊稀, 1-hexaped, 1-heptene, 1-octene, 1-decene, u癸, and 1, twelve carbon, 1-tetrafluorocarbon, 1_ Hexadecene, 1-eighteen Jun, 1 _ carbene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl+pentene, 4 6 dimethyl 1-heptene, 4-ethylenecyclohexene, vinyl ring burned, water drop 38 200900545 diene, ethylidene norbornene, cyclopentene, cyclohexene, dicyclopentadiene , cyclooctene, C4-C40 diene, including, without limitation, 1,3-butadiene, 1,3-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1, 7-octadiene, 1,9-decadiene, other C4-C20 hydrazine; - olefin, and the like. In certain embodiments, the alpha-olefin is a mixture of propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, or the like. While any vinyl containing hydrocarbon can be used in embodiments of the invention, practical problems (such as monomer availability, cost, and the ability to readily remove unreacted monomers from forming a polymer) are When the molecular weight becomes too high, it becomes more problematic. 10 The polymerization process described herein is suitable for the manufacture of a monovinylidene aromatic monomer (including styrene, o-methyl styrene, p-methyl styrene, t-butyl phenyl hydrazine, etc.). Olefin polymer. In particular, heteropolymers comprising ethylene and styrene can be made according to the techniques herein. Alternatively, a copolymer comprising ethylene, styrene and C3-C2()a; an olefin, optionally 15 comprising C4-C2Q dilute, may be made. Suitable non-conjugated diene monomers can be linear, branched or cyclic hydrocarbon dienes having from 6 to 15 carbon atoms. Examples of suitable non-conjugated dienes include, without limitation, linear acyclic dienes such as 1,4-hexadiene, 1,6-octadiene, 1,7-octadiene, 1, 9-decadiene, a branched chain acyclic diene, such as 20 5-mercapto-1,4-hexadiene; 3,7-dimethyl-1,6-octadiene; 3,7 - dimethyl-1,7-octadiene, and a mixed isomer of dihydromyricene and dihydrocarbene, a monocyclic alicyclic diene such as 1,3-cyclopentadiene; 1,4 - cyclohexadiene; 1,5-cyclooctadiene, and 1,5-cyclododecadiene, and polycyclic alicyclic fused and bridged cyclic dienes, such as tetrahydroanthracene, methyltetrahydrogen Anthracene, dicyclopentadiene, bicyclo-(2,2,1)- 39 200900545 heptane-2,5-diene; alkenyl, alkylene, cycloalkenyl and cycloalkylene norbornene, For example, 5-methylene-2-norbornene (MNB); 5_propenyl_2_norborn, 5-isopropylidene-2-norbornene, 5-(4,cyclopentenyl )norbornene, 5-cyclohexylene-2_norbornene, 5-vinyl-2-norbornene, and norbornadiene. Of the diene typically used in the manufacture of EPDM, particularly preferred are diene 1,4-hexadiene (HD), 5-ethylidene-2-norbornene (ENB), and 5-vinylidene-2-nor Borbornene (VNB), 5_mercapto-2_norbornene (MNB), and dipentarene (DCPD). Particularly preferred is a diene 5-ethylidene-2-norborn (ENB), and l,4-hexadiene (Hd). 10 15 A class of elastomeric heteropolymers which may be prepared according to embodiments of the invention are ethylene, C3_C2〇a-olefins (particularly propylene) and optionally one or more diene monomers. Preferred α-olefins for use in the examples of the present invention are indicated by the formula CHfCHR* wherein R* is a linear or branched alkyl group of 1 to 12 carbon atoms. Examples of suitable alpha-olefins include, without limitation, propylene, isobutylene, 1-butene, 1-pentene, 1-hexene, 4-mercapto-indenyl pentane, and 1-octene. A particularly preferred α-olefin is propylene. Polymers based on propylene are generally referred to in the art as hydrazine or EPDM polymers. Suitable dienes for use in the manufacture of such polyconjugates (especially multi-block EPDM-type polymers) comprise linear or branched chains, rings or multiples containing co-conducting or non-co-rolling rolls of up to 20 carbon atoms A cyclic diene. Preferred dienes include 1,4-pentadiene, 14-hexane dipenta-5-ethylidene-2-norbornene, dicyclopentadiene, cyclohexadiene, and 5-butylene-2-nor The borneol is thin. A particularly preferred diene 5-ethylene-2_norborn is thin. Because the dilute-containing polymer contains alternating sections or blocks containing larger or smaller amounts of dienes (including none) and alpha-olefins (including none), and two are included in 200900545 α-smoke The total amount can be reduced without losing the properties of the polymer thereafter. That is, because a dilute and a-ene mono-system is preferentially incorporated into one of the polymers, rather than uniformly or randomly within the entire polymer, T is more utilized by AM. 'And thereafter, the crosslink density of the polymer can be controlled better than 5. These crosslinkable elastomers and cured products have advantageous properties, including more tensile strength and better elastic recovery. The heterogeneous copolymers of the present invention, which are manufactured by a two catalyst in a different amount of comonomer, have a block weight ratio formed thereby from 95j to 5:95. The elastomeric polymer desirably has a matte content of from 2% to 9%, a diene content of from ί to 1%, and an "-olefin content of from 1% to 8% by weight based on the total weight of the polymer. Benchmark. Further preferably, the multi-block elastomeric polymer has an ethylene content of from 60 to 90%, a diene content of from 01 to 10%, and an olefin content of from 10 to 40%, based on the total weight of the polymer. Preferably, the mono-compound is a high molecular weight polymer having from 1 Torr, from about 15 2,500,000, preferably from 20,000 to 500,000, more preferably from 20,000 to 350,000 by weight average molecular weight (Mw), and less than 3.5. More preferably less than 3.0 dispersity' and 1 to 250 Mooney viscosity (ML (1+4) 125. 更. More preferably, these polymers have an ethylene content of 65 to 75%, 〇 to 6% of the diene content, and 20 to 35% of the α-olefin content. 20 The ethylene/α-olefin heteropolymer can be functionalized by the incorporation of at least one functional group in its polymer structure. The base may include, for example, ethylenically unsaturated mono- and di-functional carboxylic acids, ethylenically unsaturated mono- and di-functional carboxylic anhydrides, salts thereof and esters thereof. These functional groups may be bonded to ethylene/α-olefin heterogeneous copolymerization. ' or may be copolymerized with ethylene and optional additional comonomers. 41 200900545 A heteropolymer of ethylene, a functional comonomer, and optionally other comonomers. Used to graft functional groups to polyethylene. The above is described in, for example, U.S. Patent Nos. 4,762,890, 4,927,888 and 4,950,541. The disclosures of these patents are hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety the the the the the the the the the the the the the the the The base may typically be present in the copolymerized functionalized heterogeneous copolymer in an amount of at least about 1.0% by weight, preferably at least about 5% by weight, and more preferably at least about 7% by weight. The functional groups are typically less than A functionalized heterogeneous copolymer present in the copolymer form in an amount of about 40% by weight, preferably less than 10% by weight, and more preferably less than about 25% by weight. Test Methods In the following examples, the following analytical techniques Used: GPC method for samples 1-4 and AC 15 Robotic arm for automating the treatment of a heated needle set at 160 °C is used to add enough 1,300, Ionol to stabilize the 1,2,4 - Trichlorobenzene to each dried polymer sample yielding a final concentration of 30 mg/ml. A small glass stir bar is placed into each tube and the sample is heated to a heated orbital shaker rotating at 250 tpm to 160 ° C for 2 hours. Then, 20 The polymer solution was reduced using the automated liquid-handling robot and the dilution was heated needle set to 160 ° C to the 1 mg / ml of.

Symyx Rapid GPC系統被用以決定每一樣品之分子量 數據。設定為2.0毫升/分鐘流速之Gilson 350泵被用以經由 呈串聯式置放且加熱至160°C之三個Plgel 10微米(//m)混 42 200900545 合式B 300mm x 7.5mm管柱,泵取作為移動相之以3〇〇ppm Ionol女疋化之以乱吹知之ι,2-二氣苯。p〇iymer Labs ELS 1000檢測器與設定為250°c之蒸發器、設定為165。(:之喷霧 器’及於60-80 psi (400-600 kPa)壓力設定為ι·8 SLM之氮流 5速使用。聚合物樣品加熱至160°C,且每一樣品使用處理液 體之機械臂及加熱針注射至250 β 1迴路内。使用二切換式 迴路及重疊注射之一系列分析聚合物樣品被使用。樣品數 據被收集且使用Symyx Epoch™軟體分析。峰以手工積分且 分子量資訊係以對聚苯乙烯標準物校正曲線未經校正地報 10 導。 標準CRYSTAF方法 分支分佈係藉由結晶化分析分級(CRYSTAF)使用可購 得 PolymerChar,Valencia, Spain之CRYSTAF 200單元決定。 樣品溶於160°C之1,2,4三氯苯(0_66毫克/毫升)持續丨小時, 15且於95°C安定化45分鐘。以0_2t/分鐘之冷卻速率,取樣溫 度範圍係9 5至3 0 C。紅外線檢測器用於測量聚合物溶液濃 度。累積之可溶性濃度係於溫度下降聚合物結晶時測量。 累積分佈之分析衍化反映聚合物之短鏈分支分佈。 CRYSTAF奇溫度及面積係藉由包含於crystaF軟體 20 (2001 _b_版 ’ PolymerChar,Valencia, Spain)之峰分析模組鑑 別。CRYSTAF峰發現慣例係以dW/dT曲線之最大值及衍化 曲線之鑑別峰之任一側上之最大正彎曲間之面積而鐘別峰 溫度。為計算CRYSTAF曲線,較佳之處理參數係以7〇°c之 溫度極限及高於0.1溫度極限且低於0.3溫度極限之平滑參 43 200900545 數。 DSC標準方法(排除樣品1-4及A-C) 差式掃瞒量熱術結果係使用裝設RCS冷卻附件及自動 取樣器之TAI Ql〇〇〇型DSC決定。50毫升/分鐘之氮吹掃氣體 5流被使用。樣品於壓製機内於約175。(:壓成薄膜並熔融,然 後,以空氣冷卻至室溫(25。〇。然後,3-10毫克之材料切成 6mm直徑之碟狀物,準確地稱重,置於輕鋁鍋内(約5〇毫 克),然後,卷曲關閉。樣品之熱行為以下列溫度分佈研究。 樣品快速加熱至180°C,且維持等溫3分鐘以移除任何先前 ίο 之熱歷史。然後,樣品以l〇C /分鐘之冷卻速率冷卻至_4〇 °C,且於-40°c維持3分鐘。然後,樣品以urc/分鐘加熱速 率加熱至150 C。冷卻及第二次加熱曲線被記錄。 DSC熔融蜂係以相對於-30°C與炫融終結之間繪出之 線性基線之熱流速(W/g)最大值測量。溶融熱係使用線性基 I5 線以-30 C及嫁融終結間之’熔融曲線下之面積測量。 GPC方法(排除樣品1-4及A-C) 凝膠滲透色譜系統係由P〇lymer Laboratories PL-210型 或Polymer Laboratories PL-220型儀器之任一者所組成。管 柱及旋轉格室於140°C操作。三個P〇iymer LaWat〇ries % 20微米混合式_B管柱被使用。溶劑係1,2,4-三氯苯。樣品係以 於50毫升之含有200ppm 丁基化羥基甲苯(BHT)之溶劑内〇」 克聚合物之濃度製備。樣品藉由於16〇°C輕微授拌2小時而 製備。所用之注射體積係100微升,且流速係1〇毫升/分鐘。 GPC管柱組之校正係以21個窄分子量分佈之聚苯乙烯 44 200900545 標準物(分子量範圍係580至8,4〇〇,〇〇〇,且係以6個”雞尾酒 式”混合物配置’且個別分子量間具有至少10個分隔)實 施。標準物係購自 p〇lymer Laboratories (Shropshire, UK)。 聚苯乙烯標準物對於等於或大於!,〇〇〇,〇〇〇之分子量係於5〇 5毫升溶劑内以0.025克製備,且對於少於1,〇〇〇,000分子量係 於50毫升溶劑内以0.05克製備。聚苯乙烯標準物係於80°C 溶解’並溫和攪拌3〇分鐘。窄標準物混合物先操作,且為 了減少最高分子量組份以使降解達最小。聚苯乙烯標準物 之峰分子量使用下列方程式(如Williams及Ward,J. Polvm. 10 Sci,Polym. Let” 6, 621 (1968)所述)轉化成聚乙烯分子量: Μ聚乙烯=0.431 (Μ聚苯乙烯) 聚乙烯等化分子量計算係使用Viscotek TriSEC軟體3.0 版實施。 壓縮變定 15 壓縮變定係依據ASTM D 395測量。樣品係藉由堆疊 3.2mm、2_0mm及0.25mm厚之25.4mm直徑之圓碟形物至達 成12.7mm總厚度為止而製備。碟形物自以於下列條件下以 熱壓機模造之12.7公分X 12.7公分之壓模成型板材切割: 於190°C以0壓力持續3分鐘,其後於190°C以86 MPa持續2 20 分鐘,其後以86 MPa之冷流水冷卻壓製機内部。 密度 用於測量密度之樣品係依據ASTM D 1928製備。測量 係使用ASTM D792,方法B於1小時内之樣品壓製為之。 撓曲/割線模量/貯存模量 45 200900545 樣品使用ASTMD 1928壓模成型。撓曲及2%割線模量 係依據ASTM D-790測量。貯存模量係依據ASTM D 5 026-01或等化技術測量。 光學性質 5 〇_4mm厚之膜使用熱壓機(Carver #4095-4PR1001R型) 壓模成型。丸粒被置於聚四氟乙烯片材之間,於55 psi(380 kPa)於190°C加熱3分鐘,其後於1.3 MPa進行3分鐘,然後, 於2.6MPa進行3分鐘。然後,膜於壓製機内以1.3 MPa之流 動冷水冷卻1分鐘。經壓模成型之膜被用於光學測量、抗張 10 行為、回復,及應力鬆弛。 透明度係使用ASTM D 1746指定之BYK Gardner Haze-gard測量。 45 °光澤係使用ASTM D-2457指定之BYK Gardner Glossmeter Microgloss 45。測量。The Symyx Rapid GPC system was used to determine the molecular weight data for each sample. A Gilson 350 pump set to a flow rate of 2.0 ml/min was used to deliver three Plgel 10 micron (//m) mixes 42 200900545 combined B 300mm x 7.5mm columns in a series placed and heated to 160 ° C, pump Take as a mobile phase with 3 〇〇ppm Ionol 疋 之 以 以 以 以 ι ι ι ι ι ι ι ι ι ι. The p〇iymer Labs ELS 1000 detector was set to 165 with an evaporator set at 250 °C. (:sprayer' and nitrogen flow rate of 60-80 psi (400-600 kPa) is set to ι·8 SLM. The polymer sample is heated to 160 ° C, and each sample uses a treatment liquid. The robotic arm and the heated needle were injected into the 250 β 1 loop. Polymer samples were analyzed using a series of two switched loops and overlapping injections. Sample data was collected and analyzed using Symyx EpochTM software. Peaks were manually integrated and molecular weight information The calibration curve for the polystyrene standards is uncorrected. The standard CRYSTAF method is distributed by CRYSTAF using CRYSTAF 200 units available from PolymerChar, Valencia, Spain. 1,2,4 trichlorobenzene (0-66 mg/ml) at 160 ° C for 15 hours, 15 and stabilized at 95 ° C for 45 minutes. At a cooling rate of 0 2 t / minute, the sampling temperature range is 9 5 to 3 0 C. Infrared detector is used to measure the concentration of polymer solution. The cumulative soluble concentration is measured when the polymer is crystallized at a temperature drop. The analysis of the cumulative distribution reflects the short-chain branching distribution of the polymer. CRYSTAF Odd temperature And the area is identified by a peak analysis module included in the crystaF software 20 (2001 _b_ version 'PolyChar, Valencia, Spain). The CRYSTAF peak finding routine is either the maximum of the dW/dT curve and the identification peak of the derivative curve. The area between the maximum positive bends on the side and the peak temperature. To calculate the CRYSTAF curve, the preferred processing parameters are the temperature limit of 7 〇 ° c and the number of smooth 43 43 200900545 above the temperature limit of 0.1 and below the temperature limit of 0.3. DSC Standard Method (Excluding Samples 1-4 and AC) Differential broom calorimetry results were determined using a TAI Ql〇〇〇 type DSC equipped with an RCS cooling accessory and an autosampler. 50 mL/min of nitrogen purge gas A flow of 5 was used. The sample was placed in a press at about 175. (: pressed into a film and melted, and then cooled to room temperature with air (25. 〇. Then, 3-10 mg of the material was cut into a 6 mm diameter dish). Accurately weighed, placed in a light aluminum pan (about 5 〇 mg), and then curled off. The thermal behavior of the sample was studied with the following temperature profile. The sample was rapidly heated to 180 ° C and maintained isothermal for 3 minutes to move Except for any previous ίο History. The sample was then cooled to _4 〇 ° C at a cooling rate of 10 ° C / min and maintained at -40 ° C for 3 minutes. Then, the sample was heated to 150 C at a heating rate of urc / min. Cooling and second The secondary heating curve was recorded. The DSC molten bee was measured at a maximum thermal flow rate (W/g) relative to the linear baseline drawn between -30 °C and the end of the smelting. The heat of fusion was measured using the linear basis I5 line at -30 C and the area under the melting curve between the ends of the graft. GPC Method (Excluding Samples 1-4 and A-C) The gel permeation chromatography system consisted of either P〇lymer Laboratories PL-210 or Polymer Laboratories PL-220. The column and the rotating cell were operated at 140 °C. Three P〇iymer LaWat〇ries % 20 micron hybrid _B column was used. The solvent is 1,2,4-trichlorobenzene. The sample was prepared at a concentration of 50 ml of a solvent containing 200 ppm of butylated hydroxytoluene (BHT) in a solvent. The sample was prepared by slightly mixing for 2 hours at 16 °C. The injection volume used was 100 microliters and the flow rate was 1 milliliter per minute. The GPC column calibration was performed with 21 narrow molecular weight distribution polystyrene 44 200900545 standards (molecular weight range 580 to 8, 4 〇〇, 〇〇〇, and in a 6 "cocktail" mixture configuration' and Implementation with at least 10 separations between individual molecular weights. Standards were purchased from p〇lymer Laboratories (Shropshire, UK). Polystyrene standards are equal to or greater than! The molecular weight of ruthenium, osmium was prepared in 0.025 g of 5 〇 5 ml of solvent, and was prepared at 0.05 g for less than 1, 〇〇〇,000 molecular weight in 50 ml of solvent. The polystyrene standards were dissolved at 80 ° C and gently stirred for 3 minutes. The narrow standard mixture is operated first and the highest molecular weight component is reduced to minimize degradation. The peak molecular weight of the polystyrene standards was converted to polyethylene molecular weight using the following equation (as described by Williams and Ward, J. Polvm. 10 Sci, Polym. Let) 6, 621 (1968): Μ Polyethylene = 0.431 (Μ Polystyrene) Polyethylene molecular weight calculations were performed using Viscotek TriSEC software version 3.0. Compression set 15 Compression set was measured according to ASTM D 395. Samples were stacked by 3.2 mm, 2_0 mm and 0.25 mm thick 25.4 mm diameter The round dish was prepared to achieve a total thickness of 12.7 mm. The dish was cut by a press molding of 12.7 cm X 12.7 cm molded by a hot press under the following conditions: at 0 °C at 190 ° C After 3 minutes, it was continued at 860 ° C for 86 minutes at 86 MPa for 2 20 minutes, after which the inside of the press was cooled with a cold running water of 86 MPa. The density was used to measure the density of the sample according to ASTM D 1928. The measurement was performed using ASTM D792. Method B was pressed into the sample within 1 hour. Flexure / secant modulus / storage modulus 45 200900545 The sample was compression molded using ASTM D 1928. Flexure and 2% secant modulus were measured according to ASTM D-790. The quantity is based on ASTM D 5 026- 01 or equalization technique measurement Optical properties 5 〇 _ 4 mm thick film was compression molded using a hot press (Carver #4095-4PR1001R). The pellets were placed between Teflon sheets at 55 psi ( 380 kPa) was heated at 190 ° C for 3 minutes, then at 1.3 MPa for 3 minutes, and then at 2.6 MPa for 3 minutes. Then, the film was cooled in a press machine with a flow of cold water of 1.3 MPa for 1 minute. Membranes were used for optical measurements, tensile ten behavior, recovery, and stress relaxation. Transparency was measured using BYK Gardner Haze-gard as specified by ASTM D 1746. The 45 ° gloss was BYK Gardner Glossmeter Microgloss 45 as specified by ASTM D-2457. measuring.

15 内部濁度係使用以ASTM D 1003程序A為基礎之BYK15 Internal turbidity is based on BYK based on ASTM D 1003 Procedure A

Gardner Haze-gard測量。礦物油被施用於膜表面以移除表 面刮痕。 機械性質-抗張,滯後性,撕裂 單軸張力之應力-應變行為係使用ASTM D 1708微抗 20 張樣本而測量。樣品係以Instron於21°C以500%分-1拉伸。 抗張強度及斷裂延伸率係以5樣品之平均報導。 100%及300%之滯後現像係使用ASTM D 1708微抗張 樣品以Instron™儀器自周期性載荷至1〇〇%及300%應變而 決定。樣品係於21 C時以267%分鐘1載荷及卸荷3周期。於 46 200900545 300%及8(Tc之周期性實驗使用環境室進行。於8叱實驗, 於測試前,樣品於測試溫度平衡45分鐘。於2rc,3〇〇%應 釔之周期性實驗,第一次卸荷周期之15〇0/。應變之收縮應; ,記錄。所有實驗之回復百分率自第-次卸荷周期使用裁 5荷回至基線時之應變計算。回復百分率係定義為: 固復% ^-f ^ X too £f 其中’ ef係周祕載荷取得之應變’且Μ第—次卸荷周 期期間載荷回至基線時之應變。 10 應力鬆弛係使用裝設環境室之Instr〇nTM儀器於5〇%應 變及37°C測量12小時。計量幾何係76 _ χ 25麵χ 〇 4 mm。於環境室内於37t平衡45分鐘後,樣品以333%分鐘 拉伸至50%應變。應力以時間之函數記錄12小時。12小時 後之應力鬆弛百分率使用下列方程式計算: 應力鬆弛% = hr X|0q L❶ 15其中,L〇係時間為0時50%應變之載荷,且L12係於12小時後 50%應變之載荷。 抗張切口撕裂實驗係於具有〇88 g/cc*更少之密度之 樣品上使用instron™儀器進行。幾何係由76 mm χ丨3 mm X 〇_4 mm之計量段組成,且於樣品長度一半處具有切入樣品 20内之2mm切口。樣品於21它以508 mm分鐘-1拉伸至斷裂。 撕裂能量以應力-延伸曲線最高達最大載荷時之應變下之 面積计算。至少3樣品之平均被報導。 47 200900545 ΤΜΑ 熱機械分析(透入溫度)係於30mm直徑χ 3.3mm厚之 壓模成型碟狀物(於180乞及1〇 MPa模造壓力進行5分鐘,然 後以空氣驟冷而形成)上進行。所用儀器係TMA 7,其係 5 Perkin-E1mer之品牌。於此測試,具i.5mm半徑尖部之探針 (P/NN519-0416)係以1N力量施用至樣品碟形物表面。温度 係以5°C/分鐘自25°C上升。探針透入距離係以溫度之函數 測夏。貫驗於探針已透入樣品内1 mm時結束。Gardner Haze-gard measurement. Mineral oil is applied to the surface of the membrane to remove surface scratches. Mechanical Properties - Tensile, Hysteresis, Tear The stress-strain behavior of uniaxial tension was measured using ASTM D 1708 micro-resistance 20 samples. The samples were stretched with Instron at 21 ° C at 500% min-1. Tensile strength and elongation at break were reported as an average of 5 samples. The 100% and 300% lag images were determined using ASTM D 1708 micro-tensile samples with periodic loading from InstronTM instruments to 1% and 300% strain. The sample was loaded at 21 C with a load of 267% min 1 and unloaded for 3 cycles. At 46 200900545 300% and 8 (Tc periodic experiments were carried out using an environmental chamber. In the 8 叱 experiment, the sample was equilibrated at the test temperature for 45 minutes before the test. The periodic experiment at 2 rc, 3 〇〇% should be , The initial unloading period is 15〇0/. The strain shrinkage should be recorded. The percentage of recovery from all experiments is calculated from the strain at the first unloading cycle using the cut-back to the baseline. The percentage of recovery is defined as: Complex % ^-f ^ X too £f where ' ef is the strain obtained by the critical load' and the strain when the load is returned to the baseline during the first unloading cycle. 10 Stress relaxation is performed using the Instr〇 The nTM instrument was measured at 5 〇 % strain and 37 ° C for 12 hours. The metrology geometry 76 _ χ 25 χ 〇 4 mm. After equilibrating for 45 minutes at 37 t in the environmental chamber, the sample was stretched to 50% strain at 333% minutes. Stress is recorded as a function of time for 12 hours. The percent stress relaxation after 12 hours is calculated using the following equation: Stress relaxation % = hr X|0q L ❶ 15 where L〇 is 0 when 50% strain is applied and L12 is at 50% strain load after 12 hours. The test was performed on a sample with a density of 〇88 g/cc* less using an instronTM instrument. The geometry consisted of a metering section of 76 mm χ丨3 mm X 〇_4 mm with cut-in at half the length of the sample A 2 mm cut in sample 20. The sample was stretched to break at 508 mm min-1 on page 21. The tear energy was calculated as the area under the strain at which the stress-extension curve was up to the maximum load. The average of at least 3 samples was reported. 47 200900545 ΤΜΑ Thermomechanical analysis (through temperature) is carried out on a 30 mm diameter χ 3.3 mm thick compression molded disc (formed at 180 ° and 1 MPa molding pressure for 5 minutes and then quenched by air) The instrument used was TMA 7, which is a brand of 5 Perkin-E1mer. For this test, a probe with an i.5 mm radius tip (P/NN519-0416) was applied to the surface of the sample dish with a force of 1 N. The temperature rises from 25 ° C at 5 ° C / min. The probe penetration distance is measured as a function of temperature. The test ends when the probe has penetrated into the sample by 1 mm.

DMA 10 動態機械分析(D ΜΑ)係於壓模成型之碟狀物(其係於 熱壓製機内以18〇。〇及lOMPa壓力進行5分鐘,然後,於壓 製機内以90 C /分鐘之水冷卻而形成)上測量◦測試係使用袭 設用於扭力測試之雙懸臂樑設備之Ares控制式應變流變 計(TA Instruments)進行。 15 1.5mm之板材被壓製並切成32 χ 12mm尺寸之條材。樣 品二端部夾置於間隔1〇mm(夾持間隔△[)之裝置間,且接 受-1 〇〇°C至200°c之連續溫度階段(每階段係5艽)。於每一溫 度,扭力模量G,係以10拉德/秒(rad/s)之角度頻率測量,應 變振幅維持於(U%與4%之間,以確保扭矩係足夠且測量維 20 持於線性系統。 10克之起始靜態力被維持(自動張力模式)以避免於熱 膨脹發生時樣品内鬆弛。因此,夾持間隔AL隨溫度而增 加,特別是高於聚合物樣品之熔點或軟化點時。測試於最 大溫度時或當裝置間之間隙達65mm時停止。 48 200900545 熔融指數 炫融指數’或12,係依據ASTM D 1238,條件190°C/2.16 公斤測量。熔融指數,或I1Q,亦依據ASTM D 1238,條件 190°C/l〇公斤測量。DMA 10 Dynamic Mechanical Analysis (D ΜΑ) is a compression molded disc (which is placed in a hot press at 18 Torr. Torr and 10 MPa for 5 minutes, then cooled in a press at 90 C / min water) The upper measurement ◦ test was performed using an Ares controlled strain rheometer (TA Instruments) equipped with a double cantilever beam device for torque testing. 15 1.5mm sheet is pressed and cut into 32 χ 12mm strips. The two ends of the sample were placed between devices with a spacing of 1 mm (clamping interval Δ[) and subjected to a continuous temperature phase of -1 〇〇 ° C to 200 ° C (5 每 per stage). At each temperature, the torsion modulus G is measured at an angular frequency of 10 rad/s. The strain amplitude is maintained between (U% and 4%) to ensure that the torque system is sufficient and the measurement dimension is maintained. In a linear system, the initial static force of 10 grams is maintained (automatic tension mode) to avoid slack in the sample when thermal expansion occurs. Therefore, the clamping interval AL increases with temperature, especially above the melting point or softening point of the polymer sample. The test is stopped at the maximum temperature or when the gap between the devices reaches 65 mm. 48 200900545 Melt index blush index ' or 12, measured according to ASTM D 1238, condition 190 ° C / 2.16 kg. Melt index, or I1Q, It is also measured in accordance with ASTM D 1238, condition 190 ° C / l 〇 kg.

5 ATREF 分析溫度上升洗提分級(AT R EF)分析係依據美國專利 第 4,798,081 號案及 wilde,L.; Ryle,T.R.; 1〇 Knobeloch, 从、·,聚乙烯及乙烯共聚物内之分枝分佈之決定, J. Polym. Sci·,20, 441-455 (1982)(其等在此被全部併入以 10供參考之用)所述之方法進行。欲被分析之組成物溶於三氯 笨’且於含有惰性撐體(不銹鋼丸粒)之管柱内藉由以〇1cC// 分鐘之冷卻速率使溫度緩慢降至2〇°C而結晶。管柱係裝設 紅外線檢測器。然後,ATREF色譜曲線藉由使洗提溶劑(三 氣苯)之溫度以1.5X:/分鐘之速率從20°C緩慢增加至120t: 15 使結晶之聚合物樣品自管柱洗提出而產生。 13C NMR分析 樣品係藉由使約3克之四氯乙烷-d2/鄰二氯苯之50/50 混合物添加至於10mm NMR管件内之0.4克樣品而製備。樣 品係藉由使管件及其内容物加熱至150。(:而溶解及均質 20 化。數據係使用JEOL Eclipse™ 400MHz光譜計或Varian Unity Plus™ 400MHz光譜計(相對應於 100.5 MHz之 13c共 振頻率)收集。數據使用每一數據檔案4000個瞬變且具有6 秒脈衝重複延遲而獲得。為達成用於量化分析之最小信嗓 比,數個數據檔案被加在一起。光譜寬度係25,000 Hz,且 49 200900545 最小權案尺寸係32 K數據點。樣品於130 C以l〇mm寬譜帶 探針分析。共單體併納係使用Randall三單元組方法(Randall, J_C.; JMS-Rev. Macromol. Chem. 30 Phys., C29, 201-317 (1989),在此被全部併入以供參考之用)決定。 5 藉由TREF之聚合物分級 大尺度之TREE分級係藉由於160 °C攪拌4小時使15 -20 克之聚合物溶於2公升1,2,4-三氯苯(TCB)而進行。聚合物溶 液藉由15 psig(100 kPa)氮氣而迫使其至以30-40篩目 (600-425 // m)球狀之技術品質之玻璃珠(可得自potters 10 Industries, HC 30 Box 20,Brownwood,TX,76801)及不錄 鋼,0.028”(0.7mm)直徑之切線丸粒(可得自peuets, Inc. 63 Industrial Drive,North Tonawanda,NY, 14120)之60:40(v:v) 混合物充填之3英吋x 4英呎(7.6公分xl2公分)鋼管柱。管柱 浸潰於起始設定為160。(:之熱控制油套管内。管柱先彈道式 15 冷卻至125°C ’然後,以〇.〇4°C/分鐘緩慢冷卻至20°C,且維 持1小時。新的TCB係以約65毫升/分鐘引入,同時溫度係以 0.167 C/分鐘增加。 來自製備TREF管柱之約2000毫升之多份洗提物收集 於16個站(熱分級物收集器)内。聚合物於每一分級物内使用 20旋轉式蒸發器濃縮至約50至100毫升之聚合物溶液留下為 止。濃縮之溶液於添加過量甲醇、過濾及沖洗(約3〇〇_5〇〇 毫升之甲醇’包含最終沖洗)前靜置隔夜。過濾步驟係於3 位置真空輔助過濾站使用5 〇以m聚四氟乙烯塗覆之濾紙 (可得自 Osmonics Inc.,Cat# Z50WP04750)而實施。經過濾 50 200900545 之分級物於60°C真空爐内乾燥隔夜,且於進一步測試前於 分析秤上稱重。 熔融強度 熔融強度(MS)藉由使用裝設具約45度入口角度之 5 2.lmm直徑之2〇:1模具之毛細流變計測量。樣品於i9〇°c平 衡10分鐘後,活塞以!英吋/分鐘弘54公分/分鐘)之速度操 作。標準測試溫度係19〇°c。樣品以2.4 mm/秒2之加速度單 軸向地拉伸至位於模具下1〇〇mm之一組加速夾。所需之抗 張力係以夾輥之導出速度之函數而記錄。測試期間達到之 10最大抗張力定義為熔融強度。於展現拉伸共振之聚合物熔 融物之情況,拉伸共振開始前之抗張力被取得作為熔融強 度。熔融強度係以厘牛頓(cN)記錄。 催化劑 “隔夜’’一辭被使用時係指約16_18小時之時間,,,室溫” 15 一辭係指20-25 °C之溫度,且,,混合烷,,一辭係指可自 ExxonMobil Chemical Company之商品名為Isopar E(g)者之 可購得的C6_9脂族烴之混合物。於此間之化合物名稱不與其 結構代表式相合之情況,結構代表式將控制。所有金屬錯 合物之合成及所有篩選實驗之製備係於乾燥氮氛圍内使用 2〇乾燥箱技術進行。使用之所有溶劑係HPLC等級,且於使用 前乾燥。 MMAO係指經改質之甲基銘„緣,可購自Akz〇_N〇bie Corporation之以三異丁基鋁改質之甲基鋁噁烷。 催化劑(B1)之製備係以如下進行。 51 200900545 必爾(1-甲基匕处練基)茉臬)甲 基亞胺 3,5-二-第三丁基水楊醛(3 〇〇克)添加至1〇毫升之異丙 基胺。溶液快速變成亮黃色。於周圍溫度_3小時後^軍 5發性物質於真空下移除,產生亮黃色結晶固體(97%產率)。 雖備1,2-等(3’二 基)亞胺基)甲基)(2-醯氣某)接二笨甲某 於5毫升甲苯内之(1_甲基乙基)(2_經基_3,5_二(第三丁 基)苯基)亞胺(605毫克,2·2毫莫耳)之溶液緩慢添加至於5〇 1〇毫升甲苯内之Zr(CH2Ph)4(500毫克,U毫莫耳)之溶液。形 成之暗黃色溶液攪拌30分鐘。溶液於減壓下移除,產生呈 微紅棕色固體之所欲產物。 催化劑(B2)之製備係以如下進行。 備(1-(2_甲基環己某)乙基)(2_醯氧其j 5·二(第芏 15 丁基)笨某)凸胺 2-曱基環己基胺(8.44毫升,64.0毫莫耳)溶於甲醇(9〇毫 升),且二第三丁基水揚醛(10_00克,42 67毫莫耳)被添加。 反應藏合物攪拌3小時,然後,冷卻至_25持續12小時。 形成之黃色固體沈澱物藉由過濾收集,且以冷甲醇(2 χ 15 20毫升)清洗,然後,於減壓下乾燥,產量係1U7克之黃色固 體。1H NMR與呈異構物混合物之所欲產物_致。 !?.)-.U舞雙-(1-(2-甲基環己基)乙基)(2屬y早_^_二(第_ 三丁基)苯基)亞胺基)錯二策甲甚 於200毫升甲苯内之(1_(2_甲基環己基)乙基(2醯氧基 52 200900545 -3,5-二(第三丁基)苯基)亞胺(7 63克,23 2毫莫耳)之溶液緩 慢添加至於6〇〇毫升曱苯内之Zr(CH2Ph)4(5 28克,u 6毫莫 耳)之溶液。形成之暗黃色溶液於25。(:攪拌1小時。溶液以 680毫升甲苯進一步稀釋’產生具有〇 〇〇783M濃度之溶液。 5 共催化劑1四(五氟苯基)硼酸鹽之甲基二(Cm8烷基) 銨鹽(其後稱為脂肪族伯胺删酸鹽)之混合物,其係實質上如 美國專利第5,919,9883號案之實施例2所揭示般,藉由長鏈 三烷基胺(ArmeenTMM2HT,可得自 Akzo-Nobel, Inc.)、HC1 及Li[B(C6F5)4]反應而製備。 10 共催化劑2雙(三(五氟苯基)-鋁烷)-2-十一烷基咪唑烷 之混合c^i8烷基二甲基鋁鹽,依據美國專利第6,395,671號 案之實施例16製備。 穿梭劑所用之穿梭劑包含二乙基鋅(DEZ, SA1)、二 (異丁基)辞(SA2)、二(正己基)鋅(Sa3)、三乙基鋁(TEA, 15 δΑ4)、三辛基鋁(SA5)、三乙基鎵(SA6)、異丁基鋁雙(二甲 基(第三丁基)矽氧烷)(SA乃、異丁基鋁雙(二(三甲基矽烷基) 醯胺)(SA8)、正辛基鋁二(吡啶_2_曱氧化物)(SA9)、雙(正十 八烧基)異丁基鋁(SA10)、異丁基鋁雙(二(正戊基)醯 胺)(SA11)、正辛基鋁雙(2,6_二-第三丁基苯氧化 20物)(SA12)、正辛基鋁二(乙基(1-萘基)醯胺)0Λ13)、乙基鋁 雙(第二丁基二曱基石夕氧化物)(SA14)、乙基銘二(雙(三甲基 矽烷基)醯胺)(SA15)、乙基鋁雙(2,3,6,7-二苯并-1-氮雜環庚 炫酿胺)(SA16)、正辛基鋁雙(2,3,6,7_二苯并_丨_氮雜環庚烷 醯胺)(SA17)、正辛基鋁雙(二甲基(第三丁基)矽氧化物 53 200900545 (认18)、乙基鋅(2,6-二苯基苯氧化物)(3八19),及乙基鋅(第 三丁氧化物)(SA20)。5 ATREF Analytical Temperature Rising and Stripping Fractionation (AT R EF) analysis is based on US Patent No. 4,798,081 and Wilde, L.; Ryle, TR; 1〇Knobeloch, branching from , and polyethylene and ethylene copolymers The distribution is determined by the method described in J. Polym. Sci., 20, 441-455 (1982), which is hereby incorporated by reference in its entirety. The composition to be analyzed was dissolved in trichlorobenzene and crystallized in a column containing an inert support (stainless steel pellet) by slowly dropping the temperature to 2 ° C at a cooling rate of 〇1 cC / /min. The column is equipped with an infrared detector. Then, the ATREF chromatographic curve was generated by slowly increasing the temperature of the elution solvent (tri-benzene) from 20 ° C to 120 t at a rate of 1.5 X: / minute: 15 The crystallized polymer sample was eluted from the column. 13C NMR analysis The sample was prepared by adding about 3 grams of a 50/50 mixture of tetrachloroethane-d2/o-dichlorobenzene to a 0.4 gram sample in a 10 mm NMR tube. The sample is heated to 150 by heating the tube and its contents. (: dissolve and homogenize. The data is collected using a JEOL EclipseTM 400MHz spectrometer or a Varian Unity PlusTM 400MHz spectrometer (corresponding to a 13c resonance frequency of 100.5 MHz). The data uses 4000 transients per data file and Obtained with a 6-second pulse repetition delay. To achieve the minimum signal-to-noise ratio for quantitative analysis, several data files are added together. The spectral width is 25,000 Hz, and 49 200900545 The minimum weight size is 32 K data points. The probe was analyzed by a l〇mm wide band probe at 130 C. The comon monomer was used in the Randall triad method (Randall, J_C.; JMS-Rev. Macromol. Chem. 30 Phys., C29, 201-317 ( 1989), which is hereby incorporated by reference in its entirety in its entirety. 5 The TREE fractionation of the polymer by TREF is achieved by dissolving 15-20 grams of polymer in 2 liters by stirring at 160 °C for 4 hours. 1,2,4-trichlorobenzene (TCB) was carried out. The polymer solution was forced to a spherical quality of 30-40 mesh (600-425 // m) by 15 psig (100 kPa) of nitrogen. Glass beads (available from potters 10 Industries, HC 30 Box 20, Brownwood, TX, 7680) 1) and non-recorded steel, 0.028" (0.7 mm) diameter tangential pellets (available from peuets, Inc. 63 Industrial Drive, North Tonawanda, NY, 14120) 60:40 (v:v) mixture filled 3吋 x 4 inches (7.6 cm x 12 cm) steel pipe column. The pipe string is immersed at the initial setting of 160. (: Thermal control oil casing. The pipe column is first ballistic 15 cooled to 125 ° C ' Then, 〇 〇 4 ° C / min slowly cooled to 20 ° C, and maintained for 1 hour. The new TCB was introduced at about 65 ml / min, while the temperature was increased by 0.167 C / min. From the preparation of TREF column about 2000 Multiple fractions of the extract were collected in 16 stations (hot fraction collector) and the polymer was concentrated in each fraction using a 20 rotary evaporator to a polymer solution of about 50 to 100 ml. The concentrated solution was allowed to stand overnight before adding excess methanol, filtering and rinsing (about 3 〇〇 5 mM methanol) containing the final rinse. The filtration step was carried out at a 3-position vacuum-assisted filtration station using 5 〇 to m. Fluoroethylene coated filter paper (available from Osmonics Inc., Cat# Z50WP04750) was implemented. Filtered 50 200900 The 545 grades were dried overnight in a 60 ° C vacuum oven and weighed on an analytical scale before further testing. Melt Strength The melt strength (MS) was measured by using a capillary rheometer equipped with a 2 〇:1 mold having a diameter of about 2.5 degrees. After the sample is balanced at i9〇°c for 10 minutes, the piston is! Speed operation of 吋 / min Hong 54 cm / min). The standard test temperature is 19 〇 ° c. The sample was axially stretched at an acceleration of 2.4 mm/sec 2 to a set of acceleration clamps located 1 mm below the mold. The required tensile resistance is recorded as a function of the exit speed of the nip rolls. The maximum tensile strength reached during the test was defined as the melt strength. In the case of a polymer melt exhibiting tensile resonance, the tensile strength before the start of tensile resonance is obtained as the melting strength. The melt strength is recorded in centiNewtons (cN). Catalyst "overnight" is used when it is used for about 16-18 hours, and room temperature" 15 refers to the temperature of 20-25 °C, and, mixed alkane, the term refers to available from ExxonMobil A mixture of commercially available C6-9 aliphatic hydrocarbons is available from Chemical Company under the tradename Isopar E(g). Where the compound name is not in conformity with its structural representation, the structural representation will be controlled. The synthesis of all metal complexes and the preparation of all screening experiments were carried out in a dry nitrogen atmosphere using a 2 dry oven technique. All solvents used were HPLC grade and dried prior to use. MMAO refers to a modified methyl ester, which is commercially available from Akz〇_N〇bie Corporation, modified with triisobutylaluminum methylaluminoxane. The preparation of catalyst (B1) is carried out as follows. 51 200900545 必尔(1-methyl 匕 练 ) )) methyl imino 3,5-di-t-butyl salicylaldehyde (3 gram) added to 1 liter of isopropylamine The solution quickly turned bright yellow. After the ambient temperature _3 hours, the 5th substance was removed under vacuum to produce a bright yellow crystalline solid (97% yield). Although 1,2-etc. (Imino)methyl)(2-indole) is a (1-methylethyl) group (2_yl)- 3,5-di (t-butyl) A solution of phenyl)imine (605 mg, 2.2 mmol) was slowly added to a solution of Zr(CH2Ph)4 (500 mg, U mmol) in 5 mL of toluene. The yellow solution was stirred for 30 minutes. The solution was removed under reduced pressure to give the desired product as a reddish brown solid. The preparation of the catalyst (B2) was carried out as follows: (1-(2-methylcyclohexyl)) Base) (2_醯氧其j 5·二(第芏15 butyl) 笨) The amine 2-mercaptocyclohexylamine (8.44 ml, 64.0 mmol) was dissolved in methanol (9 mL), and di-tert-butyl-salicylic acid (10-00 g, 42 67 mmol) was added. The mixture was stirred for 3 hours, then cooled to _25 for 12 hours. The formed yellow solid precipitate was collected by filtration and washed with cold methanol (2 χ 15 20 ml) and then dried under reduced pressure. 1U7g of a yellow solid. 1H NMR and the desired product as a mixture of isomers. _..?.)-.U dance bis-(1-(2-methylcyclohexyl)ethyl) (2 y y early _ ^_Bis(tributyl)phenyl)imido) is more than 200 ml of toluene (1_(2-methylcyclohexyl)ethyl (2 methoxy 52 200900545 -3, A solution of 5-bis(t-butyl)phenyl)imide (7 63 g, 23 2 mmol) was slowly added to 6 mL of Zr(CH2Ph)4 (5 28 g, u 6) A solution of millimolar. The dark yellow solution formed was at 25. (: stirring for 1 hour. The solution was further diluted with 680 ml of toluene to give a solution having a concentration of 〇〇〇 783 M. 5 cocatalyst 1 tetrakis(pentafluorophenyl) Borate methyl dichloride (Cm a mixture of an octaalkyl)ammonium salt (hereinafter referred to as an aliphatic primary amine decanoate) substantially as disclosed in Example 2 of U.S. Patent No. 5,919,988, by a long chain trialkyl group. It is prepared by reacting an amine (ArmeenTM M2HT, available from Akzo-Nobel, Inc.), HC1 and Li[B(C6F5)4]. 10 Co-catalyst 2 bis(tris(pentafluorophenyl)-alkane)-2-10 A mixture of monoalkylimidazolidines c^i8 alkyldimethylaluminum salts was prepared according to Example 16 of U.S. Patent No. 6,395,671. The shuttling agent used for the shuttle contains diethyl zinc (DEZ, SA1), di(isobutyl) (SA2), di(n-hexyl)zinc (Sa3), triethylaluminum (TEA, 15 δΑ4), three Octyl aluminum (SA5), triethylgallium (SA6), isobutyl aluminum bis(dimethyl(t-butyl)oxyl) (SA, isobutyl aluminum bis(bis(trimethyldecane) Base) decylamine (SA8), n-octyl aluminum di(pyridine-2-oxide) (SA9), bis(n-octadecyl)isobutylaluminum (SA10), isobutylaluminum bis (two) (n-pentyl) decylamine) (SA11), n-octyl aluminum bis(2,6-di-t-butylbenzene oxide 20) (SA12), n-octyl aluminum di(ethyl (1-naphthyl)醯amine)0Λ13), ethylaluminum bis(second butyl bisfluorene oxime oxide) (SA14), ethyl dimethyl (bis(trimethyldecyl) decylamine) (SA15), ethyl aluminum Bis(2,3,6,7-dibenzo-1-azepine) (SA16), n-octyl aluminum bis(2,3,6,7-dibenzo-indole-aza Cycloheptane decylamine (SA17), n-octyl aluminum bis(dimethyl(t-butyl)phosphonium oxide 53 200900545 (recognition 18), ethyl zinc (2,6-diphenyl phenoxide) (3, 8 19), and ethyl zinc (third butoxide) (SA20).

資施例1-4,bh#你丨A-C 一般之高物料通過量之平行聚合反應條件 5 聚合反應係使用可得自Symyx technologies, Inc.之高 物料通過量之平行聚合反應反應器進行,且實質上依據美 國專利第6,248,540、6,030,917、6,362,309、6,306,658,及 6,316,663號案而操作。乙烯共聚合反應係於13〇°(:且於200 psi(1.4 MPa)以依需要之乙烯且使用1.2當量之共催化劑 10 1(以所用之總催化劑為基準計)(當MMA0存在時係當量) 進行。一系列之聚合反應於含有48個呈6 X 8陣列之個別反 應器單元(其係裝設預先稱重之玻璃管)之平行壓力反應器 (PPR)内進行。每一反應器單元内之操作體積係6〇〇// m。每 一單元係控制溫度及壓力,且藉由個別攪拌槳提供攪拌。 15單體氣體及驟滅氣體直接以管線送入PPR單元内,且藉由自 動閥控制。液體試劑以機械臂藉由注射器添加至每一反應 态單元,且貯存器溶劑係混合烧。添加順序係混合烧溶劑 (4毫升)、乙烯、1-辛烯共單體(1毫升)、共催化劑丨或共催化 劑1/MMA0混合物、穿梭劑,及催化劑或催化劑混合物。 20當共催化劑1及MMA0之混合物或二催化劑之混合物被使 用時,試劑係於添加至反應器前立即於小玻璃瓶内預混 合。當試劑於實驗中省略時,上述添加順序其它係被維持 聚合反應進行約1-2分鐘,至預定之乙烯消耗達成為止。以 C0驟滅後,反應器被冷卻,且玻璃管被拆卸。管件被轉移 54 200900545 至離心/真空乾燥單元,且於赃乾燥u小時。含有乾燥聚 合物之管件被稱重,且此重量與容器重量間之差產生聚合 物淨產量。結果係包含於第!表。於表及此申請案之其 它處,比較化合物係以星號(*)表示。 5 實施例1-4證明藉由本發明合成線性嵌段共聚物,其係 由形成極窄之MWD證實,當DEZ存在時基本上係單峰共聚 物,且缺乏DEZ時係雙峰寬分子量分佈之產物(個別製備之 聚合物之混合物)。由於催化劑(A1)已知併納比催化劑(B1) 第1表 *氺氺 A B c 1 06 6 6 6 6 6 ο ο ο ο ο 0·0·0·0·0· 更多之辛烯,本發明之形成共聚物之不同嵌段或區段係可 10 以分支或密度為基礎而區別。 化 催 化 催 -Λ 1Λ 1Λ II 1 H f0·0·0·0·0·0· 共催化 MMAO 穿栳劑 A* Mn Mw/Mn hexvls1 & iumol、 iumoH iumol) 0.066 0.3 - 0.1363 300502 3.32 0.110 0.5 - 0.1581 36957 1.22 2.5 0.176 0.8 - 0.2038 45526 5.302 5.5 0.192 - DEZ(8.0) 0.1974 28715 1.19 4.8 0.192 - DEZ(80.0) 0.1468 2161 1.12 14.4 0.192 - TEA(8.0) 0.208 22675 1.71 4.6 0.192 - TEA(80.0) 0.1879 3338 1.54 9.4 每1000個碳之<:6或更高鏈之含量 2雙峰分子量分佈 15 發現相較於以缺乏穿梭劑而製得之聚合物,依據本發 明製造之聚合物具有相對較窄之多分散性(Mw/Mn),及較 大之嵌段共聚物含量(三聚物、四聚物,或更大)。 第1表之聚合物之進一步特性數據係參考圖式決定。更 特別地,DSC及ATREF結果顯示下述: 20 實施例1之聚合物之DSC曲線顯示115·7 °C之熔點 (Tm),且具158 J/g之熔融熱。相對應之CRYSTAF曲線於34.5 °C顯示數高蜂,且具有52.9%之峰面積。DSC Tm與Tcrystaf 間之差係81.2°C。 55 200900545 實施例2之聚合物之DSC曲線顯示具1 〇9.7°C熔點(Tm) 之峰,且具214.0 J/g之熔融熱。相對應之CRYSTAF曲線於 46.2°C顯示數高峰,且具有57·0%之峰面積。DSC Tm與 Tcrystaf間之差係63.5°C。 5 實施例3之聚合物之D S C曲線顯示具12 0.71:熔點(T m) 之峰,且具160.1 J/g之熔融熱。相對應之CRYSTAF曲線於 66_1°C顯示數高峰,且具有71_8%之峰面積。DSC Tm與 Tcrystaf間之差係 54.6°C。 實施例4之聚合物之D S C曲線顯示具1 〇 4.5。(:熔點(T m) 10 之峰,且具170.7 J/g之熔融熱。相對應之CRYSTAF曲線於 30°C顯示數高峰,且具有18.2%之峰面積。DSC Tm與 Tcrystaf間之差係74.5°C。 比較例入之03(:曲線顯示90_0°(:之炼點(丁111),且具86.7 J/g之熔融熱。相對應之CRYSTAF曲線於48.5°C顯示數高 15 峰,且具有29.4%之峰面積。此等數值皆與低密度之樹脂一 致。DSC Tm與Tcrystaf間之差係41.8°C。 比較例B之DSC曲線顯示129.8°C之熔點(Tm),且具 237.0 J/g之熔融熱。相對應之CRYSTAF曲線於82.4。(:顯示 數咼峰,且具有83.7%之峰面積。此等數值皆與高密度之樹 20 脂一致。DSC Tm與Tcrystaf間之差係47.4°C。 比較例C之DSC曲線顯示125.3。(:之熔點(Tm),且具 143.0 J/g之熔融熱。相對應之CRYSTAF曲線於81.8。(:顯示 數高峰’且具有34.7%之峰面積,且於52.4t具有較低結晶 峰。此二峰間之間隔係與高結晶及低結晶聚合物之存在— 56 200900545 致。DSCTm與Tcrystaf間之差係43.5°C。1-4, bh#You 丨AC generally high throughput throughput parallel polymerization conditions 5 polymerization using a high throughput throughput parallel polymerization reactor available from Symyx technologies, Inc., and Substantially operating in accordance with U.S. Patent Nos. 6,248,540, 6,030,917, 6,362,309, 6,306,658, and 6,316,663. The ethylene copolymerization is carried out at 13 〇 (: and at 200 psi (1.4 MPa) with ethylene as needed and using 1.2 equivalents of cocatalyst 10 1 (based on the total catalyst used) (when MMA0 is present, equivalent) The series of polymerizations were carried out in a parallel pressure reactor (PPR) containing 48 individual reactor units in a 6 x 8 array equipped with pre-weighed glass tubes. The operating volume is 6 〇〇 / / m. Each unit controls the temperature and pressure, and provides agitation by individual stirring paddles. 15 monomer gas and quenching gas are directly sent into the PPR unit by pipeline, and by Automatic valve control. The liquid reagent is added to each reaction unit by a robot arm by a syringe, and the solvent of the reservoir is mixed and burned. The order of addition is a mixed combustion solvent (4 ml), ethylene, 1-octene comon (1) ML), co-catalyst or co-catalyst 1/MMA0 mixture, shuttling agent, and catalyst or catalyst mixture. 20 When a mixture of cocatalyst 1 and MMA0 or a mixture of two catalysts is used, the reagent is added immediately before the addition to the reactor. Yu Xiao Premixed in the glass bottle. When the reagent is omitted in the experiment, the above addition sequence is maintained for about 1-2 minutes until the predetermined ethylene consumption is reached. After the C0 quenching, the reactor is cooled, and The glass tube was removed. The tube was transferred 54 to 200900545 to a centrifugal/vacuum drying unit and dried for u u hours. The tube containing the dry polymer was weighed and the difference between this weight and the weight of the container produced a net polymer yield. The formula is included in the Table!. In the table and elsewhere in this application, the comparative compounds are indicated by an asterisk (*). 5 Examples 1-4 demonstrate the synthesis of linear block copolymers by the present invention, which are formed by extremely narrow formation The MWD confirmed that when DEZ is present, it is essentially a monomodal copolymer, and in the absence of DEZ, it is a product of a bimodal broad molecular weight distribution (a mixture of individually prepared polymers). Since the catalyst (A1) is known as a nanocomposite catalyst ( B1) Table 1*氺氺AB c 1 06 6 6 6 6 6 ο ο ο ο ο 0·0·0·0·0· More octene, different blocks or zones of the copolymer of the invention Segment system 10 based on branch or density The difference is catalyzed by catalyzed by Λ 1Λ 1Λ II 1 H f0·0·0·0·0·0· Cocatalyzed MMAO penetrant A* Mn Mw/Mn hexvls1 & iumol, iumoH iumol) 0.066 0.3 - 0.1363 300502 3.32 0.110 0.5 - 0.1581 36957 1.22 2.5 0.176 0.8 - 0.2038 45526 5.302 5.5 0.192 - DEZ(8.0) 0.1974 28715 1.19 4.8 0.192 - DEZ(80.0) 0.1468 2161 1.12 14.4 0.192 - TEA(8.0) 0.208 22675 1.71 4.6 0.192 - TEA(80.0) 0.1879 3338 1.54 9.4 Content of <:6 or higher chain per 1000 carbons 2 Bimodal molecular weight distribution 15 It was found that the polymers produced according to the present invention have relatively comparative properties compared to polymers prepared in the absence of a shuttling agent. Narrow polydispersity (Mw/Mn), and large block copolymer content (trimer, tetramer, or greater). Further characteristic data of the polymer of Table 1 is determined with reference to the drawings. More specifically, the DSC and ATREF results show the following: 20 The DSC curve of the polymer of Example 1 shows a melting point (Tm) of 115·7 ° C and a heat of fusion of 158 J/g. The corresponding CRYSTAF curve shows a high number of bees at 34.5 °C with a peak area of 52.9%. The difference between DSC Tm and Tcrystaf is 81.2 °C. 55 200900545 The DSC curve for the polymer of Example 2 shows a peak with a melting point (Tm) of 1 〇 9.7 ° C with a heat of fusion of 214.0 J/g. The corresponding CRYSTAF curve shows a peak at 46.2 ° C and has a peak area of 57.0 %. The difference between DSC Tm and Tcrystaf is 63.5 °C. 5 The D S C curve of the polymer of Example 3 shows a peak with a melting point (T m ) of 12 0.71 and a heat of fusion of 160.1 J/g. The corresponding CRYSTAF curve shows a peak at 66_1 ° C and has a peak area of 71-8%. The difference between DSC Tm and Tcrystaf is 54.6 °C. The D S C curve of the polymer of Example 4 was shown to have a 〇 4.5. (: melting point (T m) 10 peak with a heat of fusion of 170.7 J/g. The corresponding CRYSTAF curve shows a peak at 30 ° C and has a peak area of 18.2%. The difference between DSC Tm and Tcrystaf 74.5 ° C. Comparative Example 03 (: The curve shows 90_0 ° (: the melting point (Ding 111), and has a heat of fusion of 86.7 J / g. The corresponding CRYSTAF curve shows a peak of 15 peaks at 48.5 ° C, And having a peak area of 29.4%. These values are all consistent with the low density resin. The difference between DSC Tm and Tcrystaf is 41.8 ° C. The DSC curve of Comparative Example B shows the melting point (Tm) of 129.8 ° C, with 237.0 The heat of fusion of J/g. The corresponding CRYSTAF curve is at 82.4. (: shows several peaks and has a peak area of 83.7%. These values are consistent with high-density tree 20 lipid. The difference between DSC Tm and Tcrystaf 47.4 ° C. The DSC curve of Comparative Example C shows 125.3. (: melting point (Tm), with a heat of fusion of 143.0 J / g. The corresponding CRYSTAF curve is at 81.8. (: shows the peak number ' and has 34.7% The peak area and a lower crystallization peak at 52.4t. The interval between the two peaks is related to the presence of highly crystalline and low crystalline polymers - 56 200900 545. The difference between DSCTm and Tcrystaf is 43.5 °C.

A1/B2+DEZ 連續溶液聚合反應係於裝設内部攪拌器之電腦控制之 5兩疋爸反應器進彳亍。純化之混合燒溶液(Isopar™ E,可得自The A1/B2+DEZ continuous solution polymerization is carried out by a computer controlled 5 疋 da da reactor equipped with an internal stirrer. Purified mixed burning solution (IsoparTM E, available from

ExxonMobil Chemical Company)、2.70磅/小時(1.22公斤/小 時)之乙烯、1-辛烯及氳(若使用)供應至裝設用於溫度控制 之套管及内部熱偶之3.8公升反應器。至反應器之溶劑供料 藉由質流控制器測量。變速隔膜泵控制至反應器之溶劑流 10速及壓力。於泵排放時,側流被取得以提供用於催化劑及 共催化劑1注射管線及反應器攪拌器之沖洗流。此等流動係 藉由Micro-Motion質流計測量,且藉由控制閥或藉由手工調 整針閥而測量。剩餘溶劑與1-辛烯、乙晞,及氫(若被使用) 混合,且供應至反應器。質流控制器被用使氫於需要時遞 15送至反應器。於進入反應器前,溶劑/單體溶液之溫度藉由 使用熱交換器控制。此液流進入反應器底部。催化劑組份 溶液使用泵及質流計計量’且與催化劑沖洗溶劑混合並引 入反應器底部。反應器於500 psig(3_45 Mpa)以全液體操 作,並劇烈攪拌。產品經由反應器頂部之出口管線移除。 2〇 反應器之所有出口管線係以水蒸氣示蹤且被隔絕。聚合反 應係藉由與任何安定劑或其它添加劑一起添加小量的水至 出口管線且使混合物通過靜式混合物而停止。然後,產物 流於脫揮發前通過熱交換器而加熱。聚合物產物藉由使用 脫揮發擠塑器及水冷式粒化器擠塑而回收。方法細節及結 57 200900545 果係包含於第2表。選擇之聚合物性質係於第3表提供。 58 200900545 9% si·# ΟΟΓ^ΓΠΓ^·»—'»—'ON·—'V〇〇〇N^Hf^C^.S〇 〇 ^^ii^P5S5sSPiS2:?5?5ii38 Q> (*\J r— *« f'vj (Sj C*Nj ·—* t-h »—< «-Η 1-^ l—( c^CSO *»4 vm w ^aa *«· 〇Q 〇〇 «-^ΌΟ^^ΓΊΓΛ^ΟΟ fO 寸 ooasw^^OfnriocNmv'iONOTrr^^-oosr^ odcisodoso^ONCicScjO'sciasOsoxo'o^aso oooooooooqooCnOnOsooOsdqoocoOsoooo^ £.t -Ί -Ί SZ/I 0-1 itn 69.1 on 89· I 5.1 5.1 Ζ9Ί 09Ί 59.1 SI -, 1 卜寸.1 18.1 當,『'/七令 5许 ¥荽<0鉍 5£ Is 90S i 0 § 9-6寸Z -寸 I -- -i 0卜s 61寸 -寸 IJZHa】 /PH"' ^-έ^sdd s-举咪-举涑 i 0·0 -T SO 60Ό 0ΙΌ i so 0ΙΌ 慧 ^- -.0 es -Ό 9Γ0 ΠΌ i -.0 9-mi 9- εκι 9-§1 I €?l §ϊ ??框 zaa so 60Ό iro §Ό i -.0. 05 SO 60Ό -,0 6Γ0 s'o OS -.0 i i 6v 〇 o 〇 o o s s o o is i-H [、) o o o o o 寸 r^ 卜 soovr-f^^·?^ »—· 〇 〇 fvj ψ^* *-* fv| OOOOOCiOOd: S 〇 〇〇 〇〇 〇〇 n 崔2〇« ooooo o =5=Ρ3Λ r— mmcocna s r^> _ s 0Γ0 0-0 寸Γ0 i "Ό -Ό 9S ΖΙΌ 5 i so 01Ό i i '-Ό ϊ/s 1VI#-举 3 ·- 37'-uidd -V s-举ExxonMobil Chemical Company), 2.70 lbs/hr (1.22 kg/hr) of ethylene, 1-octene and hydrazine (if used) were supplied to a 3.8 liter reactor equipped with a jacket for temperature control and an internal thermocouple. The solvent supply to the reactor is measured by a mass flow controller. The variable speed diaphragm pump controls the solvent flow to the reactor at 10 speeds and pressure. When the pump is discharged, a side stream is taken to provide a flushing stream for the catalyst and cocatalyst 1 injection line and reactor agitator. These flows are measured by a Micro-Motion mass flow meter and are measured by a control valve or by manually adjusting the needle valve. The remaining solvent is mixed with 1-octene, ethyl hydrazine, and hydrogen (if used) and supplied to the reactor. The mass flow controller is used to deliver hydrogen to the reactor as needed. The temperature of the solvent/monomer solution is controlled by the use of a heat exchanger before entering the reactor. This stream enters the bottom of the reactor. The catalyst component solution was metered using a pump and mass flow meter' and mixed with the catalyst rinse solvent and introduced into the bottom of the reactor. The reactor was run at 500 psig (3_45 Mpa) with full liquid gymnastics and stirred vigorously. The product is removed via an outlet line at the top of the reactor. 2〇 All outlet lines of the reactor are traced and isolated by water vapor. The polymerization reaction is stopped by adding a small amount of water to the outlet line with any stabilizer or other additive and passing the mixture through the static mixture. The product stream is then heated by a heat exchanger prior to devolatilization. The polymer product was recovered by extrusion using a devolatilizing extruder and a water-cooled granulator. Method Details and Conclusions 57 200900545 The results are included in Table 2. The polymer properties selected are provided in Table 3. 58 200900545 9% si·# ΟΟΓ^ΓΠΓ^·»—'»—'ON·—'V〇〇〇N^Hf^C^.S〇〇^^ii^P5S5sSPiS2:?5?5ii38 Q> (* \J r— *« f'vj (Sj C*Nj ·—* th »—< «-Η 1-^ l—( c^CSO *»4 vm w ^aa *«· 〇Q 〇〇«- ^ΌΟ^^ΓΊΓΛ^ΟΟ fO inch ooasw^^OfnriocNmv'iONOTrr^^-oosr^ odcisodoso^ONCicScjO'sciasOsoxo'o^aso oooooooooqooCnOnOsooOsdqoocoOsoooo^ £.t -Ί -Ί SZ/I 0-1 itn 69.1 on 89· I 5.1 5.1 Ζ9Ί 09Ί 59.1 SI -, 1 卜寸.1 18.1 When, ''/七令5许¥荽<0铋5£ Is 90S i 0 § 9-6 inch Z-inch I -- -i 0 Bu s 61 inch-inch IJZHa] /PH"' ^-έ^sdd s- 举咪- 涑i 0·0 -T SO 60Ό 0ΙΌ i so 0ΙΌ 慧^- -.0 es -Ό 9Γ0 ΠΌ i -.0 9-mi 9- εκι 9-§1 I €?l §ϊ?? Box zaa so 60Ό iro §Ό i -.0. 05 SO 60Ό -,0 6Γ0 s'o OS -.0 ii 6v 〇o 〇oossoo Is iH [,) ooooo 寸 r^ 卜 soovr-f^^·?^ »—· 〇〇fvj ψ^* *-* fv| OOOOOCiOOd: S 〇〇〇〇〇〇〇n Cui 2〇« ooooo o = 5=Ρ3Λ r— mmcocna sr^> _ s 0Γ0 0-0 inch Γ0 i "Ό -Ό 9S ΖΙ 5 i so 01Ό i i '-Ό ϊ / s 1VI # - For 3 · - 37'-uidd -V s- give

f—< i—^ ^ _ — · · I 9—4 I 4 I ",l· 贫七 p_e8s-4"々/ 1 £ 瑟sKa3 z-,, I-s I-i s Ϊ 33 0- 5 3-5 1- Ϊ 0-3 £-i 3 iysi „ 06,9£ „ 0卜_-3 36.寸 5 丨 3 9-幻 „ g-0-06,¾ s3 •ll ,, •6 3 卜·-3- -0 69Ό 』zM+Jas=s*s^/#♦龄亡々、-蛛负 件令 s-^^OWMg^^g 资^碉爿龚令鉍a M>q1K-裨 4«:||鹄^# ^^-^'^^(^^^(^^(fh-H-gJ-^-loM-f^li-csK^toc^Qlf'ts--cl-I)-^^ ^®-4Ί?(ΐίΒ-(硪-=--ίΝ·^ψ--9)(Ί·Μ-ζ-_ _5(硪蚪硝tswlc-z)I 硝锲 ls(fi4(^tol-®--I)u-9tvr)-N;r 娥令/令<<殊離_ 冢镩駟驭洳+铢二每銻qr 59 200900545 teiiIJ.卑φϊ#ί!ί5Γ>^εϊ*F—< i—^ ^ _ — · · I 9—4 I 4 I ", l· P. seven p_e8s-4"々/ 1 £ 瑟 sKa3 z-,, Is Ii s Ϊ 33 0- 5 3- 5 1- Ϊ 0-3 £-i 3 iysi „ 06,9£ „ 0卜_-3 36.inch 5 丨3 9-magic „ g-0-06,3⁄4 s3 •ll ,, •6 3 Bu· -3- -0 69Ό 』zM+Jas=s*s^/#♦ △ age 々 々, - spider negative order s-^^OWMg^^g 资^碉爿龚令铋 a M>q1K-裨4«:| |鹄^# ^^-^'^^(^^^(^^(fh-H-gJ-^-loM-f^li-csK^toc^Qlf'ts--cl-I)-^^ ^ ®-4Ί?(ΐίΒ-(硪-=--ίΝ·^ψ--9)(Ί·Μ-ζ-_ _5(硪蚪硝tswlc-z)I 锲 ls(fi4(^tol-®- -I)u-9tvr)-N;r 娥令/令&&;; distinctive _ 冢镩驷驭洳+铢二锑qr 59 200900545 teiiIJ.卑φϊ#ί!ί5Γ>^εϊ*

CRYS-lAF 1¾) I S c i*j 2 E6 <Λ CS Ϊ^Ι £ ίΝ m ίΝ 90 <M Ob jg νΊ 3: rr DC di § |Λι fS 茂 *0 fN CO Λ is 39 字 Os Tr ΰ οο 5" ? 沄 r< M 穿 p C严 « H § r"H S! fn Os s 爸 O\ •>C o Ό <J\ rj § 1/1 s 苎 η νζ 甘 r-j fN Vj^ >» S6 R 袭 g 民 ? μ -D ίΐ s O 泛 <P s t 1 s CO flS s ΓΝ r: rs! Os «e 〇\ 3 o ΓΝ o r4 〇> Os £Ρ Ιδ C ο «#*; 〇 r«"» i ίϊ o Ο ο Η 〇Ρ Π ο Β< ίΠ g o V2· 5 3 -O B ? 8 ύ\ s 〇 tf-| 2 <T p 寸 s 1¾ , G s g g· 1 1 ik 30 1—i i—1 1 ΓΝ •-^ g η Ο ΓΛ 1 t 8 fN W VO § £ § m g o. g Ch 14S,500 1 s if 1 £" c o r. wi X f«-| S Ι/-Ι so I-- οί «Λ '•ό •n vc 't in <3 3 Uv •<C Kr <ϊ S 2 S cn 1^1 nd οσ Λ «η f- n* 3 S ι<-| r-i o ri V5 vS vq 才 3 t\ A ι^ι CT\ v-j -; C'J ΙΛ I—· 1-4 O\ H ·*; ><£? r4 § 1/: I-*. 5 y *s ύ S 〇 uO s d iri 〇Λ CCr OU W 1XJ d w ου VI CN iXj Xl S3 tXi «C <η uC 芸 uC. SO 'ύ I ώ 00 ¢0 VO 5s α> ac ci | in e: § 菩 d I 士 U: Id-i 卜· 3β «* |_J cj (Π 2 2 QO »-H 60 200900545 形成之聚合物如先前實施例般以DSC及ATREF測試。 結果如下: 實施例5之聚合物之DSC曲線顯示具119.6°C熔點(Tm) 之峰,且具60.0 J/g之熔融熱。相對應之CRYSTAF曲線於 5 47.6°C顯示數高峰,且具有59.5%之峰面積。DSC Tm與CR - l IS Ϊ Ι Ι Ι Ι & & & & & & Οο 5" ? 沄r< M wear p C strict « H § r"HS! fn Os s Dad O\ •>C o Ό <J\ rj § 1/1 s 苎η νζ Gan rj fN Vj^ &gt ;»S6 R gg民? μ -D ίΐ s O pan <P st 1 s CO flS s ΓΝ r: rs! Os «e 〇\ 3 o ΓΝ o r4 〇> Os £Ρ Ιδ C ο «# *; 〇r«"» i ϊ ϊ Ο ο Η 〇Ρ Π ο Β< Π V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V 1 ik 30 1—ii—1 1 ΓΝ •–^ g η Ο ΓΛ 1 t 8 fN W VO § £ § mg o. g Ch 14S,500 1 s if 1 £" co r. wi X f«-| S Ι/-Ι so I-- οί «Λ '•ό •n vc 't in <3 3 Uv •<C Kr <ϊ S 2 S cn 1^1 nd οσ Λ «η f- n* 3 S ι<-| ri o ri V5 vS vq only 3 t\ A ι^ι CT\ vj -; C'J ΙΛ I—· 1-4 O\ H ·*; ><£? r4 § 1 /: I-*. 5 y *s ύ S 〇uO sd iri 〇Λ CCr OU W 1XJ dw ου VI CN iXj Xl S3 tXi «C <η uC 芸uC. SO 'ύ I ώ 00 ¢0 VO 5s α> ac ci | in e: § Bodhidé I U: Id-i Bu· 3β «* |_J cj (Π 2 2 QO »-H 60 200900545 The polymer formed was tested by DSC and ATREF as in the previous examples. The results are as follows: The DSC curve of the polymer of Example 5 shows a peak with a melting point (Tm) of 119.6 ° C and a heat of fusion of 60.0 J/g. The corresponding CRYSTAF curve shows a peak at 5 47.6 ° C and has a peak area of 59.5%. DSC Tm and

Tcrystaf間之差係72.0°C。 實施例6之聚合物之D S C曲線顯示具115.2 °C熔點(T m) 之峰,且具60.4 J/g之炫融熱。相對應之CRYSTAF曲線於 44.2°(:顯示數高峰,且具有62.7%之峰面積。03(:丁111與 10 Tcrystaf間之差係71.0°C。 實施例7之聚合物之DSC曲線顯示具121.3°C熔點(Tm) 之峰,且具69.1 J/g之熔融熱。相對應之CRYSTAF曲線於 49.2°C顯示數高峰,且具有29.4%之峰面積。DSC Tm與 Tcrystaf間之差係 72.1 °C。 15 實施例8之聚合物之DSC曲線顯示具123.5°C熔點(Tm) 之峰,且具67.9 J/g之熔融熱。相對應之CRYSTAF曲線於 80.1°C顯示數高峰,且具有12.7%之峰面積。DSC Tm與 Tcrystaf間之差係43.4°C。 實施例9之聚合物之DSC曲線顯示具124.6°C熔點(Tm) 20 之峰,且具73.5 J/g之熔融熱。相對應之CRYSTAF曲線於 80.8°C顯示數高峰,且具有16.0%之峰面積。DSC Tm與 Tcrystaf間之差係43.8°C。 實施例10之聚合物之D S C曲線顯示具115.6 °C熔點(T m) 之峰,且具60.7 J/g之熔融熱。相對應之CRYSTAF曲線於 61 200900545 40.9°C顯示數高峰,且具有52.4%之峰面積。DSC Tm與 Tcrystaf間之差係74.7°C。 實施例11之聚合物之Dsc曲線顯示具丨丨3 6°c熔點(Tm) 之峰,且具70.4 J/g之熔融熱。相對應之cRYSTAf曲線於 5 39.6°C顯示數高峰,且具有25.2%之峰面積。DSC Tm與The difference between Tcrystaf is 72.0 °C. The D S C curve of the polymer of Example 6 shows a peak with a melting point (T m ) of 115.2 ° C and a heat of fusion of 60.4 J/g. The corresponding CRYSTAF curve is at 44.2° (: shows the peak of the number and has a peak area of 62.7%. 03 (the difference between D and 111 Tcrystaf is 71.0 ° C. The DSC curve of the polymer of Example 7 shows 121.3 The peak of °C melting point (Tm) with a heat of fusion of 69.1 J/g. The corresponding CRYSTAF curve shows a peak at 49.2 ° C with a peak area of 29.4%. The difference between DSC Tm and Tcrystaf is 72.1 ° C. 15 The DSC curve for the polymer of Example 8 shows a peak with a 123.5 ° C melting point (Tm) with a heat of fusion of 67.9 J/g. The corresponding CRYSTAF curve shows a peak at 80.1 ° C with a peak of 12.7. The peak area of %. The difference between DSC Tm and Tcrystaf is 43.4 ° C. The DSC curve of the polymer of Example 9 shows a peak with a melting point (Tm) of 124.6 ° C and a heat of fusion of 73.5 J/g. The corresponding CRYSTAF curve shows a peak at 80.8 ° C and has a peak area of 16.0%. The difference between DSC Tm and Tcrystaf is 43.8 ° C. The DSC curve of the polymer of Example 10 shows a melting point of 115.6 ° C (T m a peak with a heat of fusion of 60.7 J/g. The corresponding CRYSTAF curve shows a peak at 61 200900545 40.9 ° C, and There is a peak area of 52.4%. The difference between DSC Tm and Tcrystaf is 74.7 ° C. The Dsc curve of the polymer of Example 11 shows a peak with a melting point (Tm) of 丨丨3 6 °c, and has a peak of 70.4 J/g. Heat of fusion. Corresponding cRYSTAf curve shows a peak at 5 39.6 ° C and has a peak area of 25.2%. DSC Tm and

Tcrystaf間之差係74.Γ〇。 實施例12之聚合物之dsc曲線顯示具113.2°C熔點(Tm) 之峰,且具48.9 J/g之熔融熱。相對應之crystaF曲線顯示 無專於或南於30 C之峰。(用於進一步計算目的之Tcrystaf 10因此設定為3〇°C)。DSC Tm與Tcrystaf間之差係83.2°C。 實施例13之聚合物之DSC曲線顯示具114.4。(:熔點(Tm) 之峰,且具49.4 J/g之熔融熱。相對應之crystAF曲線於 33_8°(:顯示數高峰,且具有7.7%之峰面積。03(:丁111與 Tcrystaf間之差係 84.4°C。 15 實施例14之聚合物之DSC曲線顯示具120.8。(:熔點(Tm) 之峰,且具127.9 J/g之熔融熱。相對應之CRYSTAF曲線於 72.9°C顯示數高峰,且具有92.2%之峰面積。DSC Tm與 Tcrystaf間之差係47.9°C。 實施例15之聚合物之DSC曲線顯示具114.3°C熔點(Tm) 20 之峰,且具36.2 J/g之溶融熱。相對應之CRYSTAF曲線於 32.3°(:顯示數高峰,且具有9.8%之峰面積。〇8(:丁111與 Tcrystaf間之差係 82.0°C。 實施例16之聚合物之D S C曲線顯示具116 · 6 °C熔點(T m) 之峰,且具44.9 J/g之熔融熱。相對應之CRYSTAF曲線於 62 200900545 48.0°C顯示數高峰,且呈古μ Λ〇/ 且具有65.0%之峰面積。DSC Tm與The difference between Tcrystaf is 74. The dsc curve of the polymer of Example 12 shows a peak with a melting point (Tm) of 113.2 ° C and a heat of fusion of 48.9 J/g. The corresponding crystaF curve shows no peaks specific to or south of 30 C. (Tcrystaf 10 for further calculation purposes is therefore set to 3 °C). The difference between DSC Tm and Tcrystaf is 83.2 °C. The DSC curve for the polymer of Example 13 was shown to have 114.4. (: melting point (Tm) peak with 49.4 J/g heat of fusion. The corresponding crystAF curve is at 33_8° (: shows the peak number and has a peak area of 7.7%. 03 (: between Ding 111 and Tcrystaf) The difference was 84.4 ° C. 15 The DSC curve of the polymer of Example 14 was shown to have a peak of 120.8. (: melting point (Tm) with a heat of fusion of 127.9 J/g. The corresponding CRYSTAF curve shows the number at 72.9 ° C. Peak, and having a peak area of 92.2%. The difference between DSC Tm and Tcrystaf is 47.9 ° C. The DSC curve of the polymer of Example 15 shows a peak with a melting point (Tm) of 114.3 ° C and a 36.2 J/g The heat of fusion is corresponding to the CRYSTAF curve at 32.3° (: shows a peak number and has a peak area of 9.8%. 〇 8 (the difference between D 111 and Tcrystaf is 82.0 ° C. The DSC of the polymer of Example 16 The curve shows a peak with a melting point (T m) of 116 · 6 ° C and a heat of fusion of 44.9 J/g. The corresponding CRYSTAF curve shows a peak at 62 200900545 48.0 ° C, and has an ancient μ Λ〇 / and has 65.0% peak area. DSC Tm and

Tcrystaf間之差係68.6¾。 實施例17之聚合物之Dsc曲線顯示具刪溶點㈣ 之峰U.O J/g之溶融熱。相對應之曲線於 5 43.1°C顯示數高峰,且昱古% s〇/ 且具有56·8/〇之峰面積。DSC Tm與The difference between Tcrystaf is 68.63⁄4. The Dsc curve of the polymer of Example 17 shows the heat of fusion with a peak U.OJ/g of the depleted point (iv). The corresponding curve shows a peak at 5 43.1 ° C, and has a peak area of 5.6 〇 / and has a peak area of 56 · 8 / 〇. DSC Tm and

Tcrystaf間之差係72.9¾。 實施例18之4合物之Dsc曲線顯示具溶點 之峰且八141.8 J/g之熔融熱。相對應之CRYSTAF曲線於 70.0°C顯示數高峰,且呈右似Λ。/ Α 且具有94.0%之峰面積。DSC Tm與 10 Tcrystaf間之差係5〇.5°c。 實施例19之聚合物之Dsc曲線顯示具熔點(丁叫 之峰’且具174.8 J/g之炫融熱。相對應之crystaf曲線於 79.9 C顯示數问峰,且具有87 9%之峰面積。DSC Tm與 Tcrystaf 間之差係45.〇°c。 15 比較例0之聚合物之DSC曲線顯示具37.3 °C熔點(Tm) • 之峰,且具31 _6 J/g之熔融熱。相對應之CRYSTAF曲線顯示 . 無等於或尚於30c之峰。此等數值皆係與低密度之樹脂一 致。DSCTm與Tcrystaf間之差係7.3°C。 比較例E之聚合物之DSC曲線顯示具124.0X:熔點(Tm) 2〇之峰’且具179.3 J/g之熔融熱。相對應之crystAF曲線於 79.3°C顯示數高峰’且具94.6%峰面積。此等數值皆係與高 密度之樹脂一致。DSCTm與Tcrystaf間之差係44.6°C。 比較例F之聚合物之DSC曲線顯示124.8 °C之熔點 (Tm),且具90.4 J/g之熔融熱。相對應之CRYSTAF曲線於 63 200900545 77.6°C顯示數高峰,且具有19.5%之峰面積。此二峰間之間 隔係與局結晶及低結晶聚合物之存在'致。DSC Tm與 Tcrystaf間之差係47.2°C。 物理性質測試 5 聚合物樣品被評估諸如耐高溫性質(以Τ Μ A溫度測試 證實)、丸粒黏著強度、高溫回復性、高溫壓縮變定及貯存 模量比例(〇’(25°〇/〇’(100°〇)之物理性質。數種可購得之 產品被包含於此測試:比較例G*係實質上線性之乙烯/1-辛 烯共聚物(AFFINITY®,可得自陶氏化學公司),比較例H* 10 係彈性體之實質線性之乙烯/1-辛烯共聚物 (AFFINITY®EG8100,可得自陶氏化學公司),比較例I係實 質線性之乙烯/1-辛烯共聚物(AFFINITY®PL1840,可得自 陶氏化學公司),比較例J係氳化之苯乙烯/丁二烯/苯乙烯之 三嵌段共聚物(KRATON™G1652,可得自KRATON 15 Polymers),比車交例K係熱塑性硫化橡膠(TPV,含有分散於 其内之交聯彈性體之聚烯烴摻合物)。結果係呈現於第4表。 64 200900545 第4表高溫機械性質 範例 TMA-lmm 透 八rc) 丸粒黏著強度 磅/英呎2(kPa) G’(25°Cy G,(100°C) 300%應變回復 (80°〇(%) 壓縮變定 (70°〇(%) D* 51 - 9 失敗 - E* 130 - 18 - - p* 70 141(6.8) 9 失敗 100 5 104 〇(〇) 6 81 49 6 110 - 5 - 52 7 113 - 4 84 43 8 111 - 4 失敗 41 9 97 - 4 - 66 10 108 - 5 81 55 11 100 - 8 — 68 12 88 - 8 _ 79 13 95 - 6 84 71 14 125 - 7 - - 15 96 - 5 _ 58 16 113 - 4 _ 42 17 108 0(0) 4 82 47 18 125 - 10 _ _ 19 133 - 9 _ - G* 75 463(22.2) 89 失敗 100 H* 70 213(10.2) 29 失敗 100 I* 111 - 11 _ J* 107 - 5 失敗 100 K* 152 - 3 40 於第4表’比較例F(其係自使用催化劑八丨及刖之同時聚 合反應形成之二聚合物之物理摻合物)具有約7〇°c之1〇1111 透入溫度’而實施例5-9具有1〇〇。〇或更高之imm透入溫 5度。再者,實施例10-19皆具有大於85。(:之1mm透入溫度, 且大部份具有大於9〇°c或甚至大於1〇〇^21ηπη tmA溫 度。此顯不相較於物理摻合物,新穎之聚合物具有於較高 溫度時之較佳尺寸安定性。比較例j(商用SEBS)具有約1〇7 C之良好1mm TMA溫度,但其具有約1〇〇%之極差(高溫7〇 1〇 C)壓縮變$,且於高溫⑽。〇之3〇〇%應變回復亦無法回 復因此,此例不之聚合物具有即使於某些可講得之高性 能熱塑性彈性體亦不可獲得之獨特的性質組合。 相似地’第4表顯示對於本發明聚合物之6或更少之低 (良好)的貯存模量比例,G,(25t)/G,(1〇(rc),而物理摻合 65 200900545 物(比較例F)具有9之貯存模量比例相似密度之無規乙稀/ 烯”汆物(比較例G)具有大於(89)數值等級之貯存模量比 ^ °所欲地’聚合物之貯存模量比例係儘可能接近1。此等 $來合物係相對較不受溫度影響,且自此等聚合物製得之製 &物件可於廣溫度範圍有用地使用。此低貯純量比例及 與/鐵度無關之特徵於彈性體應用係特別有用,諸如,於壓 敏性黏著組成物。 、 第4表之數據亦證明本發明之聚合物擁有改良之丸粒 =著強度。特別地,實施例5具有〇之丸粒黏著強度,竞 0指與顯示相當大黏著之比較例F及G相比,其於測試條件; 1由流動。黏著強度係重要的,㈣具有大黏著強度之聚 °物之散裝運送可造成產品於貯存或運送時結塊或點結在 —起’造成差的處理性質。 15 本發明聚合物之高溫(7〇°C)壓縮變定一般係良好,专护 般係少於約80%,較佳係少於約70%,且特別是 。4 約 0。相反地,比較例F、G、HAj皆具有1〇〇%之7The difference between Tcrystaf is 72.93⁄4. The Dsc curve for the compound of Example 18 showed a peak with a melting point and a heat of fusion of eight 141.8 J/g. The corresponding CRYSTAF curve shows a peak at 70.0 ° C and is right-like. / Α and has a peak area of 94.0%. The difference between DSC Tm and 10 Tcrystaf is 5〇.5°c. The Dsc curve of the polymer of Example 19 showed a melting point (peak of Ding' and a heat of fusion of 174.8 J/g. The corresponding crystaf curve showed a number of peaks at 79.9 C and had a peak area of 87 9%. The difference between DSC Tm and Tcrystaf is 45.〇°c. 15 The DSC curve of the polymer of Comparative Example 0 shows a peak with a melting point (Tm) of 37.3 °C and a heat of fusion of 31 _6 J/g. Corresponding CRYSTAF curves show that there is no peak equal to or above 30c. These values are consistent with low density resins. The difference between DSCTm and Tcrystaf is 7.3 ° C. The DSC curve of the polymer of Comparative Example E shows 124.0 X: melting point (Tm) peak of 2〇 and has a heat of fusion of 179.3 J/g. The corresponding crystAF curve shows a peak at '79.3 ° C and has a peak area of 94.6%. These values are high density. The resin was consistent. The difference between DSCTm and Tcrystaf was 44.6 ° C. The DSC curve of the polymer of Comparative Example F showed a melting point (Tm) of 124.8 ° C and a heat of fusion of 90.4 J/g. The corresponding CRYSTAF curve was 63. 200900545 77.6 ° C shows the peak number, and has a peak area of 19.5%. The interval between the two peaks is related to local crystallization and low crystal aggregation. The presence of the compound. The difference between DSC Tm and Tcrystaf is 47.2 ° C. Physical property test 5 Polymer samples are evaluated such as high temperature resistance (confirmed by Τ 温度 A temperature test), pellet adhesion strength, high temperature recovery , high temperature compression set and storage modulus ratio (〇' (25 ° 〇 / 〇 ' (100 ° 〇) physical properties. Several commercially available products are included in this test: Comparative Example G* is substantially linear Ethylene/1-octene copolymer (AFFINITY®, available from The Dow Chemical Company), a substantially linear ethylene/1-octene copolymer of the comparative H* 10 elastomer (AFFINITY® EG8100, available from Dow Chemical Company), Comparative Example I is a substantially linear ethylene/1-octene copolymer (AFFINITY® PL1840, available from The Dow Chemical Company), Comparative Example J is a styrene/butadiene/benzene A triblock copolymer of ethylene (KRATONTM G1652, available from KRATON 15 Polymers), which is a K-based thermoplastic vulcanizate (TPV, a polyolefin blend containing a crosslinked elastomer dispersed therein). The system is presented in Table 4. 64 200900545 Table 4 Example of high temperature mechanical properties TMA-lmm Permeable eight rc) Pellet adhesion strength pounds / mile 2 (kPa) G ' (25 ° Cy G, (100 ° C) 300% strain recovery (80 ° 〇 (%) compression set (70 ° 〇 (%) D* 51 - 9 Failure - E* 130 - 18 - - p* 70 141(6.8) 9 Failure 100 5 104 〇(〇) 6 81 49 6 110 - 5 - 52 7 113 - 4 84 43 8 111 - 4 Failure 41 9 97 - 4 - 66 10 108 - 5 81 55 11 100 - 8 — 68 12 88 - 8 _ 79 13 95 - 6 84 71 14 125 - 7 - - 15 96 - 5 _ 58 16 113 - 4 _ 42 17 108 0(0) 4 82 47 18 125 - 10 _ _ 19 133 - 9 _ - G* 75 463(22.2) 89 Failure 100 H* 70 213(10.2) 29 Failure 100 I* 111 - 11 _ J* 107 - 5 failure 100 K* 152 - 3 40 in the fourth table 'Comparative Example F (which is a physical blend of the two polymers formed by the polymerization of the catalyst and the ruthenium) has about 1 〇 °c 〇1111 penetrates into temperature' and Examples 5-9 have 1〇〇. The im or higher imm penetrates into the temperature of 5 degrees. Furthermore, Examples 10-19 all have greater than 85. (: 1mm penetration temperature, and most of them have a temperature greater than 9〇 °c or even greater than 1〇〇^21ηπη tmA. This is not comparable to the physical blend, the novel polymer has a higher temperature The preferred dimensional stability. Comparative Example j (commercial SEBS) has a good 1 mm TMA temperature of about 1 〇 7 C, but it has a very poor (high temperature 7 〇 1 〇 C) compression change of about 1 〇〇 %, and At high temperatures (10), the 3% strain recovery of the crucible cannot be recovered. Therefore, the polymer of this example has a unique combination of properties that is not available even in some high performance thermoplastic elastomers that can be said. Table 4 shows a low (good) storage modulus ratio of 6 or less for the polymer of the invention, G, (25t) / G, (1 〇 (rc), and physical blending 65 200900545 (Comparative Example F A random ethylene/olefinic residue having a similar storage modulus ratio of 9 (Comparative Example G) has a storage modulus ratio greater than (89) numerical grade and a desired storage modulus ratio of the polymer As close as possible to 1. These $composites are relatively unaffected by temperature and are made from such polymers. It can be used usefully in a wide temperature range. This low volatility ratio and characteristics irrespective of /ironity are particularly useful in elastomer applications, such as in pressure sensitive adhesive compositions. The data in Table 4 also proves The polymer of the invention has improved pellets = strength. In particular, Example 5 has the adhesion strength of the pellets, which is compared to Comparative Examples F and G which show considerable adhesion, in the test conditions; By flow. Adhesive strength is important, (iv) Bulk transport of aggregates with large adhesive strength can cause agglomeration or knotting of the product during storage or transport, resulting in poor handling properties. High temperature (7 ° C) compression set is generally good, less than about 80%, preferably less than about 70%, and especially 4. 4 about 0. Conversely, Comparative Examples F, G, HAj has 1% of 7

變定' Γ I (敢大可能值,表示無回復)。良好之高溫壓縮變定 數值)對於諸如墊片、窗框、〇_型環等之應用係特別需要低 66 200900545 _ Λ 1 1 t ΓΛ PO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21'C之歷 縮變定 (%) 1 1 2 2 R fS (N in (N (N 口 1 2 m 1 1 CN fO CS 1 ΙΛ s 賴 〇 v〇 1 O o 790 I S oo 1810 I 1760 1 1 〇 00 o •n o o 1 ) 1770 1 11040 I Ch 1 1 〇 o 00 cn 1 〇 2 1 相 CsS m 00 1 in o P ? t o <〇 V% 1 1 m 00 oo fO OO 1 1 m ir^ S 1 v〇 5S 1 F320 S 1 00 ss 1 tN 0〇 CN OO 1 o 00 〇\ 00 s t 〇\ oo 00 oo m 1 1 Ό oo £ 1 m 1 _ $想 錄! • l ON cn r〇 1 t t l-H 寸 1 l Q\ cs 0\ 1 寸 R 1 δ 1 1 字 r- ON u-> 1 1 1 ijsyr· ft l 1 ΓΟ σ\ 穿 1 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S條 寸 g σ\ o 寸 (N OO 12 DO m σ\ S OO ο oo m (N oo s S o 一 e<) as 00 OO in oc VO a\ (N m cs g 00 s g 〇 〇\ cs 00 ON 〇 SO 1 »度 〇 s S 2] u 2 CN 2 rn 2 〇\ CN o rj 2 沄 o m r- in a (N cn 1 % 1 1 1 r-H in ON 1 o s ΙΟ CO t 1 宏 1 f5 1 1 1 1 1 1 1 1 m>> 运t 1 2 1 in rn 1 1 1 1 I 1 1 1 1 r 1 1 1 w If m 1589 ___I 妄 OS tN P; *T) m 00 ΓΛ m CN (N 二 2 〇 2 s 00 ON C^> CN 3 JO 2 1 [曲模童 (MPa) cs Ό 〇\ oo iri r*% 5 m rs S M PM <N oo s S [323 1 〇 12 l-H o > 1 X- Q m L· ID 卜 oo 〇\ o r-H JN PO s in s DO Os * o * ffi * ^f-f-^KSE-?l^ 67 200900545 第5表顯示新穎聚合物與各種比較聚合物於周圍溫度 時之機械性質結果。可看出本發明聚合物於依據岱〇 4649 測試時具有良好耐磨性,一般係顯示少於約90 mm3,較佳 係少於約80mm3,且特別是少於約50mm3之體積損失。於此 5測試,較高數值表示較高體積損失,且因而係較低耐磨性。 本發明聚合物之藉由抗張切口撕裂強度測量之撕裂強 度一般係100mJ或更高,如第5表所示。本發明聚合物之撕 裂強度可高達3000mJ,或甚至高達500mJ。比較聚合物一 般具有不高於750mJ之撕裂強度。 10 第5表亦顯示本發明聚合物具有比某些比較樣品更佳 之於150%應變時之回縮應力(由更高之回縮應力值證明)。 比較例F、G及Η具有400 kPa或更少之於150%應變時之回縮 應力值’而本發明聚合物具有5〇〇 kPa(實施例11)至高達約 1100 kPa(實施例17)之於150%應變時之回縮應力值。具有高 15於150%回縮應力值之聚合物係相當有用於彈性應用,諸 如,彈性纖維及織物,特別是非機織之織物。其它應用包 含尿片 '衛生用品,及醫療用衣物之束腰帶應用,諸如, 垂懸帶及彈性帶。 第5表亦顯示,例如,比較例g相比較,本發明聚合物 20之應力鬆弛(於50%應變)亦被改良(更少)。較低之應力鬆弛 意指聚合物於體溫時長時間維持彈性係所欲之諸如尿片及 其它衣物之應用較佳地維持其彈力。 光學測誠 200900545 第6表聚合物光學性質 範例 内部濁度(%) 清淅度(%) 45°光澤(%) P* 84 22 49 G* 5 73 56 5 13 72 60 6 33 69 53 7 28 57 59 8 20 65 62 9 61 38 49 10 15 73 67 11 13 69 67 12 8 75 72 13 7 74 69 14 59 15 62 15 11 74 66 16 39 70 65 17 29 73 66 18 61 22 60 19 74 11 52 G* 5 73 56 H* 12 76 59 I* 20 75 59 第6表中報導之光學性質係以實質缺乏定向之壓模成 型膜為基礎。聚合物之光學性質由於自聚合反應中使用之 鏈穿梭劑量變化而造成之結晶尺寸變化而可於廣範圍變 5 化。 多嵌段共聚物之萃取 實施例5、7及比較例E之聚合物之萃取研究被進行。於 實驗中,聚合物樣品被稱重於多孔玻璃萃取套管内,且裝 配於Kumagawa型萃取器内。具樣品之萃取器以氮氣吹掃, 10 且500毫圓底燒瓶被注以350毫升之二乙基醚。然後,燒瓶 裝配至萃取器。醚於攪拌時加熱。時間於醚開始冷凝於套 管内時被記錄,且萃取於氮氣下進行24小時。此時,停止 69 200900545 加熱,立使溶液冷卻。留於萃取器内之任何喊回到燒瓶。 燒瓶内之鍵於周圍溫度時於真空下蒸發,且形成之^體以 氮氣吹乾。任何殘質使用己烧連續清洗而轉移至經稱重之 瓶内。然後,混合之己燒清洗独科之氮氣吹掃而蒸發, 5且殘質於40°c之真空下乾燥隔夜。萃取器内之任何剩餘喊 以氮氣吹乾。 然後,/主以350毫升己烧之第二個乾淨圓底燒瓶與萃取 器連接。已烷被加熱迴流並攪拌,且於己烷第—次被注意 到冷凝至套管内後於迴流維持24小時。然後,停止加熱, 10並使燒瓶冷卻。萃取器内剩餘之任何己烧轉移回到燒瓶。 己烷藉由於周圍溫度時於真空下蒸發而移除,且燒瓶内剩 餘之任何殘質使用連續之己炫*清洗而轉移至經稱重之瓶 内。燒瓶内之己烷藉由氮氣吹掃而蒸發,且殘質於4CTC時 真空乾燥隔夜。 15 萃取後留於套管内之聚合物樣品自套管轉移至經稱重 之瓶内,且於4〇 C真空乾燥隔夜。結果包含於第7表。 第7表 樣品 重量(克) 醚可溶物 (克) 醚可溶物 (%) 莫耳%1 己烷可溶 物(克) 己烷可溶 物(%y 心莫耳%1 殘餘c8莫 耳V 比較例F* 1.097 0.063 5.69 12.2 0.245 2235 13.6 6.5 實施例5 1.006 1 0.041 4.08 - 0.040 3.98 "14.2 11.6 實施例7 1.092 0.017 1.59 13.3 0.012 1.10 1Ϊ.7 9.9 藉由13C NMR決定 另外之聚合物實施例19 A-F,連蝮溶液聚合反應,催化劑Change ' Γ I (Dare to be a big value, indicating no reply). Good high temperature compression set values) Special requirements for applications such as gaskets, window frames, 〇-rings, etc. 66 200900545 _ Λ 1 1 t ΓΛ PO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21'C's calendar change (%) 1 1 2 2 R fS (N in (N (N port 1 2 m 1 1 CN fO CS 1 ΙΛ s 〇 〇 v〇1 O o 790 IS oo 1810 I 1760 1 1 〇00 o •noo 1 ) 1770 1 11040 I Ch 1 1 〇o 00 cn 1 〇2 1 phase CsS m 00 1 in o P ? to <〇V% 1 1 m 00 oo fO OO 1 1 m ir ^ S 1 v〇5S 1 F320 S 1 00 ss 1 tN 0〇CN OO 1 o 00 〇\ 00 st 〇\ oo 00 oo m 1 1 Ό oo £ 1 m 1 _ $ want to record! • l ON cn r〇 1 tt lH inch 1 l Q\ cs 0\ 1 inch R 1 δ 1 1 word r- ON u-> 1 1 1 ijsyr· ft l 1 ΓΟ σ\ wear 1 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S inch g σ\ o inch (N OO 12 DO m σ\ S OO ο oo m (N oo s S o ae<) as 00 OO in oc VO a\ (N m cs g 00 sg 〇〇\ cs 00 ON 〇SO 1 »degree 〇s S 2] u 2 CN 2 rn 2 〇\ CN o rj 2 沄om r- in a (N cn 1 % 1 1 1 rH in ON 1 os ΙΟ CO t 1 macro 1 f5 1 1 1 1 1 1 1 1 m>> t 1 2 1 in rn 1 1 1 1 I 1 1 1 1 r 1 1 1 w If m 1589 ___I 妄OS tN P; *T) m 00 ΓΛ m CN (N 2 2 〇 2 s 00 ON C^> CN 3 JO 2 1 [曲模童(MPa) cs Ό 〇\ oo iri r*% 5 m rs SM PM <N oo s S [323 1 〇12 lH o > 1 X- Q m L· ID Oo 〇\ o rH JN PO s in s DO Os * o * ffi * ^ff-^KSE-?l^ 67 200900545 Table 5 shows the mechanical properties of the novel polymer and various comparative polymers at ambient temperature. It can be seen that the polymers of the present invention have good abrasion resistance when tested in accordance with 岱〇 4649 and generally exhibit a volume loss of less than about 90 mm 3 , preferably less than about 80 mm 3 , and especially less than about 50 mm 3 . For the 5 test, higher values indicate higher volume loss and thus lower wear resistance. The tear strength measured by the tensile tear strength of the polymer of the present invention is generally 100 mJ or more as shown in Table 5. The tear strength of the polymers of the present invention can be as high as 3000 mJ, or even as high as 500 mJ. The comparative polymer generally has a tear strength of not more than 750 mJ. 10 Table 5 also shows that the polymer of the present invention has a retractive stress better than that of some comparative samples at 150% strain (as evidenced by higher retraction stress values). Comparative Examples F, G, and Η have a retraction stress value of 400 kPa or less at 150% strain' while the polymer of the present invention has 5 kPa (Example 11) up to about 1100 kPa (Example 17) The value of the retraction stress at 150% strain. Polymers having a value of 15 to 150% retraction stress are quite useful for elastic applications such as elastic fibers and fabrics, especially non-woven fabrics. Other applications include diapers 'hygiene items, and belts for medical clothing, such as hanging straps and elastic bands. Table 5 also shows that, for example, in Comparative Example g, the stress relaxation (at 50% strain) of the polymer 20 of the present invention was also improved (less). Lower stress relaxation means that the application of the polymer at a body temperature for a long period of time, such as diapers and other garments, preferably maintains its elasticity. Optical Measurement 200900545 Table 6 Polymer Optical Properties Example Internal Turbidity (%) Cleanliness (%) 45° Gloss (%) P* 84 22 49 G* 5 73 56 5 13 72 60 6 33 69 53 7 28 57 59 8 20 65 62 9 61 38 49 10 15 73 67 11 13 69 67 12 8 75 72 13 7 74 69 14 59 15 62 15 11 74 66 16 39 70 65 17 29 73 66 18 61 22 60 19 74 11 52 G* 5 73 56 H* 12 76 59 I* 20 75 59 The optical properties reported in Table 6 are based on a compression molded film that is substantially lacking in orientation. The optical properties of the polymer can be varied over a wide range due to changes in crystal size due to changes in the chain shuttle dose used in the polymerization. Extraction of multi-block copolymers Extraction studies of the polymers of Examples 5, 7 and Comparative Example E were carried out. In the experiment, the polymer sample was weighed into a porous glass extraction cannula and fitted into a Kumagawa type extractor. The sample extractor was purged with nitrogen and the 10 and 500 mL round bottom flask was charged with 350 ml of diethyl ether. The flask is then assembled to the extractor. The ether is heated while stirring. The time was recorded as the ether began to condense in the cannula and the extraction was carried out under nitrogen for 24 hours. At this point, stop 69 200900545 heating, let the solution cool. Leave any shy in the extractor back to the flask. The bond in the flask was evaporated under vacuum at ambient temperature, and the formed body was blown dry with nitrogen. Any residue is continuously washed using hexane and transferred to a weighed bottle. Then, the mixture was purged and purged with a nitrogen purge to evaporate, and the residue was dried under vacuum at 40 ° C overnight. Any remaining shouts in the extractor are blown dry with nitrogen. Then, / main is connected to the extractor with a second clean round bottom flask of 350 ml of burnt. The hexane was heated to reflux and stirred, and was maintained at reflux for 24 hours after being condensed into the cannula for the first time. Then, the heating was stopped, 10 and the flask was allowed to cool. Any hexane remaining in the extractor is transferred back to the flask. The hexane was removed by evaporation under vacuum at ambient temperature, and any remaining residue in the flask was transferred to the weighed bottle using a continuous cleaning. The hexane in the flask was evaporated by a nitrogen purge, and the residue was vacuum dried overnight at 4 CTC. 15 The polymer sample remaining in the cannula after extraction was transferred from the cannula to the weighed bottle and vacuum dried overnight at 4 ° C. The results are included in Table 7. Sample No. 7 Sample Weight (g) Ether Soluble (g) Ether Soluble (%) Molar %1 Hexane Soluble (g) Hexane Soluble (%y Heart Moll%1 Residual C8 Mo Ear V Comparative Example F* 1.097 0.063 5.69 12.2 0.245 2235 13.6 6.5 Example 5 1.006 1 0.041 4.08 - 0.040 3.98 "14.2 11.6 Example 7 1.092 0.017 1.59 13.3 0.012 1.10 1Ϊ.7 9.9 Determination of additional polymer by 13C NMR Example 19 AF, hydrazine solution polymerization, catalyst

20 A1/B2+DEZ 對於實施你Π9Α-Τ 連續溶液聚合反應係於電腦控制之充份混合反應器内 70 20090054520 A1/B2+DEZ For the implementation of your Π9Α-Τ continuous solution polymerization in a computer-controlled, fully mixed reactor 70 200900545

進行。純化之混合烷溶劑(IsoparTME,可得自ExxonMobil Chemical Company)、乙烯、1-辛烯,及氫(若被使用)被混 合且供應至27加侖之反應器。至反應器之供料藉由質流控 制器測量。進入反應器前,供料流之溫度藉由使用以乙二 5醇冷卻之熱交換器控制。催化劑組份溶液使用泵及質流計 計量。反應器係於約550 psig壓力以滿液體進行。離開反應 器時,水及添加劑注射至聚合物溶液内。水使催化劑水解, 並終結聚合反應。然後,後反應器溶液於二階段脫揮發之 製備中加熱。溶劑及未反應之單體於脫揮發處理期間移 10 除。聚合物熔融物被泵取至用於水下丸粒切割之模具。 對於實施例19J 連續溶液聚合反應係於裝設内部攪拌器之電腦控制之 高壓爸反應器内進行。純化之混合烧溶劑(ISOparTME,可得 自 ExxonMobil Chemical Company)、2.70碎/小時(1.22公斤 / 15小時)之乙烯、丨-辛烯,及氫(若被使用)被供應至裝設用於 溫度控制之套管及内部熱偶之3.8公升反應器。至反應器之 溶劑供料藉由質流控制器測量。變速隔膜泵控制至反應器 之溶劑流速及壓力。於泵排放時,側流被取得以提供用於 催化劑及共催化劑注射管線及反應器攪拌器之沖洗流。此 20 等流動係藉由Micro-Motion質流計測量,且藉由控制閥或藉 由手工調整針閥而測量。剩餘溶劑與1-辛稀、乙稀,及氫(若 被使用)混合,且供應至反應器。質流控制器被用使氫於需 要時遞送至反應器。於進入反應器前,溶劑/單體溶液之溫 度藉由使用熱交換器控制。此液流進入反應器底部。催化 71 200900545 5 10 劑組份溶液使用泵及質流計計量,且與催化劑沖洗溶劑混 合並引入反應器底部。反應器於500 psig(3.45 Mpa)以全液 體操作,並劇烈攪拌。產品經由反應器頂部之出口管線移 除。反應器之所有出口管線係以水蒸氣示蹤且被隔絕。聚 合反應係藉由與任何安定劑或其它添加劑一起添加小量的 水至出口管線且使混合物通過靜式混合物而停止。然後, 產物流於脫揮發前通過熱交換器而加熱。聚合物產物藉由 使用脫揮發擠塑器及水冷式粒化器擠塑而回收。 方法細節及結果係包含於第8表。選擇之聚合物性質係 於第9A-C表提供。 於第9B表,本發明之實施例19F及19G於500%延伸率後 顯示約65-70%應變之低的立即變定。 72 200900545 ^as ito'3#<nr$* %p 9.U 0,8s -ε ^<p 0.MM ε££ 寸·-s 2ε s·-ss8 ss ^<p sw OSZ B-p 「- -,-6,ss 563 p-0000 β1-.1-0·'°°'°° 室、/贫 f好 "5f f*~i Ό " ^ {S ^~· rO Ovp' — i〇-^f〇Kc*JV〇 fiSo^j-fvi^fuSfnco'id 60 00 00600000 00 00 00 009 S9- β OS 哀一 9ΙΌ sws 89ε I 16寸 99Ό § es UO s寸z es —5ld2T33 „§"$ vs 泰命鉍-举咪 edd ψ^φ i 0^s ss ^ 靶 转Ζ3αϊ〖ζ3α sqvqO^vewjiotot^. —*〇c>ooc5ooo S8S8SS8SS ν"»^τ»ιηΐΛ»Λ»Λΐη«〇ιη 寸寸寸寸寸寸寸寸Tf 52l2§l2|B|get on. The purified mixed alkane solvent (IsoparTM E, available from ExxonMobil Chemical Company), ethylene, 1-octene, and hydrogen (if used) were mixed and supplied to a 27 gallon reactor. The feed to the reactor is measured by a mass flow controller. Prior to entering the reactor, the temperature of the feed stream was controlled by using a heat exchanger cooled with ethylene glycol. The catalyst component solution was metered using a pump and a mass flow meter. The reactor was operated at about 550 psig with full liquid. Water and additives are injected into the polymer solution as it leaves the reactor. Water hydrolyzes the catalyst and terminates the polymerization. The post reactor solution is then heated in a two stage devolatilization process. The solvent and unreacted monomer are removed by 10 during the devolatilization treatment. The polymer melt is pumped to a mold for underwater pellet cutting. The continuous solution polymerization of Example 19J was carried out in a computer controlled high pressure dad reactor equipped with an internal stirrer. Purified mixed combustion solvent (ISOparTME, available from ExxonMobil Chemical Company), 2.70 hr/hr (1.22 kg / 15 hr) of ethylene, hydrazine-octene, and hydrogen (if used) are supplied to the installation for temperature Controlled casing and internal thermocouple 3.8 liter reactor. The solvent supply to the reactor is measured by a mass flow controller. The variable speed diaphragm pump controls the solvent flow rate and pressure to the reactor. When the pump is discharged, a side stream is taken to provide a flushing stream for the catalyst and co-catalyst injection line and reactor agitator. This 20-way flow is measured by a Micro-Motion mass flow meter and is measured by a control valve or by manually adjusting the needle valve. The remaining solvent is mixed with 1-octane, ethylene, and hydrogen (if used) and supplied to the reactor. The mass flow controller is used to deliver hydrogen to the reactor as needed. The temperature of the solvent/monomer solution is controlled by the use of a heat exchanger prior to entering the reactor. This stream enters the bottom of the reactor. Catalyst 71 200900545 5 10 The component solution is metered using a pump and a mass flow meter and mixed with the catalyst rinse solvent and introduced into the bottom of the reactor. The reactor was operated in full liquid at 500 psig (3.45 Mpa) with vigorous stirring. The product is removed via the outlet line at the top of the reactor. All outlet lines of the reactor were traced and isolated by water vapor. The polymerization reaction is stopped by adding a small amount of water to the outlet line with any stabilizer or other additive and passing the mixture through the static mixture. The product stream is then heated by a heat exchanger prior to devolatilization. The polymer product was recovered by extrusion using a devolatilizing extruder and a water-cooled granulator. Method details and results are included in Table 8. The polymer properties selected are provided in Tables 9A-C. In Table 9B, Examples 19F and 19G of the present invention showed an immediate change of about 65-70% strain after 500% elongation. 72 200900545 ^as ito'3#<nr$* %p 9.U 0,8s -ε ^<p 0.MM ε££ 寸·-s 2ε s·-ss8 ss ^<p sw OSZ Bp "- -, -6, ss 563 p-0000 β1-.1-0·'°°'°° room, / poor f good "5f f*~i Ό " ^ {S ^~· rO Ovp' — i〇-^f〇Kc*JV〇fiSo^j-fvi^fuSfnco'id 60 00 00600000 00 00 00 009 S9- β OS 哀一9ΙΌ sws 89ε I 16 inch 99Ό § es UO s inch z es —5ld2T33 „ §"$ vs 泰命铋-举咪 edd ψ^φ i 0^s ss ^ Target change ϊ3αϊ〖ζ3α sqvqO^vewjiotot^. —*〇c>ooc5ooo S8S8SS8SS ν"»^τ»ιηΐΛ»Λ»Λΐη« 〇ιη inch inch inch inch inch inch inch Tf 52l2§l2|B|

000000000»Λ HHfnrofHfHfOrornO Φ- M t /—\ 4g ¢- /—\ '1^ 雄 Φ,『、/^Ε&^-/^sdd ^lis^I'g^JSV 甸I-v 3。 lEas 穹 w贤穹'/资穹'奁 lsqm s$tsm 茶安举 Η £ 瑟 w° 寸 卜 cn 00〇'00ζ50000 ^sssooooo^ OQOOOOOOOv^ (N<SCN(NCS<NCStN<Ntii -.,i^£rsi— 〇〇> 一寸 <n 〇O^000C)C>C^OSgggggg88= S〇O«〇S〇'〇'〇'®S〇VO>— § § § 0-οει 0-0-s s 0- 卜呀 κ 8S 0 寸- Is 09 OSS 卜K ΙΟΙ 9OS 6·εεε m-ε I9.S £sm£ sszm ε2εε 卜em εοχιε i z,m Μσεε 08·寸 ε p·- Μ·οε im 96·- εσ-000000000»Λ HHfnrofHfHfOrornO Φ- M t /—\ 4g ¢- /-\ '1^ Male Φ, 『, /^Ε&^-/^sdd ^lis^I'g^JSV Dian I-v 3. lEas 穹w贤穹'/资穹'奁lsqm s$tsm 茶安举Η £ 瑟 w° inch cn 00〇'00ζ50000 ^sssooooo^ OQOOOOOOOv^ (N<SCN(NCS<NCStN<Ntii -.,i^ £rsi— 〇〇> One inch<n 〇O^000C)C>C^OSgggggg88= S〇O«〇S〇'〇'〇'®S〇VO>- § § § 0-οει 0-0- Ss 0- 卜呀κ 8S 0 inch - Is 09 OSS 卜K ΙΟΙ 9OS 6·εεε m-ε I9.S £sm£ sszm ε2εε 卜em εοχιε iz,m Μσεε 08·inchε p·- Μ·οε im 96 ·- εσ-

9r卜 ZQ·- 2OS sos ess ss em ess S6XS 6Z-S S〇 /—»s X蝴 'Ity 3'ί «ι| iv Γ6Ι 161 H61 061 J6I H6I Q61 361 S61 V6i Z M + JH s=s -艺^7龚>龄七<<-资叙> ^φιοφι'Μ^ί^ονειι^^ο mddw-e蓉_欢 «牛:i-li-ffi珑 ^ -5·ε-_®ρ锺-CKWo{蝴-3ϊί1Β--ε)-1)-糾 t-d〔^® 谱(^54(ϋο^4-ι)μ.9μ)-ν】 _Μ<~ίΛΆ»雎 α 73 2009005459r卜ZQ·- 2OS sos ess ss em ess S6XS 6Z-SS〇/—»s X Butterfly'Ity 3'ί «ι| iv Γ6Ι 161 H61 061 J6I H6I Q61 361 S61 V6i ZM + JH s=s -Art^ 7龚> Age seven<<- 资叙> ^φιοφι'Μ^ί^ονειι^^ο mddw-e蓉_欢«牛:i-li-ffi珑^ -5·ε-_®ρ锺-CKWo{蝴蝶-3ϊί1Β--ε)-1)-correction td[^® spectrum (^54(ϋο^4-ι)μ.9μ)-ν] _Μ<~ίΛΆ»雎α 73 200900545

(%*麵) VISAS(%* face) VISAS

u。) JV HSASI -SH t>o)ivISA^CJl uooxu. JV HSASI -SH t>o)ivISA^CJl uoox

uo) SH I stUo) SH I st

II

(H-t/e) I(H-t/e) I

§) I§) I

CVII/OIICVII/OII

Oil csOil cs

9L ICN6 οε § d— s Ο.ΙΓΟ οοε寸寸00299L ICN6 οε § d- s Ο.ΙΓΟ οοε inch inch 0029

οοοεει0OSIοοοεει0OSI

%'L £‘Δ 610 6?8Ό I8i Μ6Ι 68 06 £1 <n6%'L £‘Δ 610 6?8Ό I8i Μ6Ι 68 06 £1 <n6

ZL 寸8 68 06 6卜 οε 8寸ZL inch 8 68 06 6 b οε 8 inch

9CO οε 0£ 0寸 02 L6 L6 008 CN6 181 N d— s 6119CO οε 0£ 0 inch 02 L6 L6 008 CN6 181 N d— s 611

lCNI 611 § s nmΤΓΓ 9寸lCNI 611 § s nmΤΓΓ 9 inches

<NS 6寸<NS 6 inch

LZ 9<ν 101 6寸 ττ 0·<Ν ocsiLZ 9<ν 101 6 inch ττ 0·<Ν ocsi

Ifsi Γ(Ν S.ICN w 00s — 8 6.9 ς·00£Ifsi Γ (Ν S.ICN w 00s — 8 6.9 ς·00 £

9.S KA8.09.S KA8.0

U6I 00Λ6ΓΟ SA08 ς.ΐ£ Δ.寸 ΟΕ.ΟU6I 00Λ6ΓΟ SA08 ς.ΐ£ Δ.inch ΟΕ.Ο

PS 00ZJ 寸 00A09 0000寸 9 0Q66ltN QOS 00S9 00818 006寸 ΠPS 00ZJ inch 00A09 0000 inch 9 0Q66ltN QOS 00S9 00818 006 inch Π

ooosroI _s[l> QS9 §91 ει 00.9 00.9 Ϊ_ΔooosroI _s[l> QS9 §91 ει 00.9 00.9 Ϊ_Δ

o.z. IT s.卜 寸.9O.z. IT s. Bu inch.9

寸.6ε rs卜 OS 6_寸 二 60 9.S w osiInch.6ε rsb OS 6_inch two 60 9.S w osi

ZS9SO 620ZS9SO 620

S668IO 寸卜IsglO 寸 S9OOIOI 361 § 061 ί6ΐ 74 200900545 {%)W5 ^趣。/。0°5 (%)wi ν^%00ε (%)WI wl-/oool 琢&TV# 溆蹭%005 (%) 鉍蹲式001 (墩Φ 0S) 寸—v〇卜 oo oo ooS668IO inch IsglO inch S9OOIOI 361 § 061 ί6ΐ 74 200900545 {%)W5 ^ Fun. /. 0°5 (%)wi ν^%00ε (%)WI wl-/oool 琢&TV# 溆蹭%005 (%) 铋蹲式001 (dock Φ 0S) inch-v〇卜 oo oo oo

L·00 L% t7°° 6L 900 99 L6 I£lL·00 L% t7°° 6L 900 99 L6 I£l

H SI 6e sd 6.0 I °°-0 6.0 S8 0 ¢98.0 s-0 p-0 °°AS_o H61 061 &I S1 V61 ,碱羿甶弟踅-±-4*冷鉍长【4 S6»· «Η 3Q 5Γ O m ο ο ό Ν r) ό 寸 r> ό 3\ Τ'» ό cs υ c S o ο •η ό m 寸 Ν Ο r) d Ο ΓΛ 备 Jh 蓉 φ χ> Φ 0\ ϊ Φ Τ) » φ § — i φ 5 i Φ 故憮。ooourAVSW 袈^/(^-ft^o^^-Ir^^^o^J/^pwdz/OOOOOOI/^^uz^c^fF^^GZYOOOU'^z- SM3 Ipi^i3i .s^s^ Bs£ff3 75 200900545 實施例20及21 實施例20及21之乙烯/α-烯烴異種共聚物係以與上述之 實施例19Α-Ι實質上相似之方式及如下第11表所示之聚合 反應條件製造。聚合物展現第10表所示之性質。第10表亦 5 顯不聚合物之任何添加劑。 第10表-實施例20-21之性質及添加劑 密度(g/cc) 實施例20 實施例21 0.8800 0.8800 MI 1.3 1.3 添加劑 去離子水 100 Irgafos 168 1000 Irganox 1076 250 Irganox 1010 200 Chimmasorb 2020 100 去離子水 75 Irgafos 168 1000 Irganox 1076 250 Irganox 1010 200 Chimmasorb 2020 100 硬區段分裂 (重量%) 35% 35%H SI 6e sd 6.0 I °°-0 6.0 S8 0 ¢98.0 s-0 p-0 °°AS_o H61 061 &I S1 V61 , 羿甶 羿甶 踅 -±-4*冷铋长【4 S6»· Η Q Q ) ) ) ) \ \ \ ϊ Φ Τ) » φ § — i φ 5 i Φ 怃 怃. ooourAVSW 袈^/(^-ft^o^^-Ir^^^o^J/^pwdz/OOOOOOI/^^uz^c^fF^^GZYOOOU'^z- SM3 Ipi^i3i .s^s^ Bs Fff3 75 200900545 Examples 20 and 21 The ethylene/α-olefin heteropolymers of Examples 20 and 21 were produced in a manner substantially similar to the above-described Example 19Α-Ι and the polymerization conditions shown in Table 11 below. The polymer exhibits the properties shown in Table 10. Table 10 also shows any additives for the polymer. Table 10 - Properties of Examples 20-21 and Additive Density (g/cc) Example 20 Example 21 0.8800 0.8800 MI 1.3 1.3 Additive Deionized Water 100 Irgafos 168 1000 Irganox 1076 250 Irganox 1010 200 Chimmasorb 2020 100 Deionized Water 75 Irgafos 168 1000 Irganox 1076 250 Irganox 1010 200 Chimmasorb 2020 100 Hard Segment Split (% by Weight) 35% 35%

Irganox 1010係四曱樓基(3,5-二第三丁基-4-經基氫化 肉桂酸酯)甲烷。Irganox 1076係十八烷基-3-(3',5·-二第三丁 基-4'-羥基苯基)丙酸酯。Irgafos 168係三(2,4-二第三丁基苯 10 基)亞填酸鹽。〇1丨〇^8〇作2020係具有2,3,6-三氯-1,3,5-三嗪 之1,6-己二胺,N,N’-雙(2,2,6,6-四甲基-4-哌啶基)-聚合物, 與N-丁基-1-丁胺及N-丁基-2,2,6,6-四甲基-4-哌啶胺之反應 產物。 76 200900545Irganox 1010 is a tetracycline (3,5-di-t-butyl-4-transhydrocinnamate) methane. Irganox 1076 is an octadecyl-3-(3',5-ditridecyl-4'-hydroxyphenyl)propionate. Irgafos 168 is a tris(2,4-di-t-butylphenyl 10 -yl) hypothermite. 〇1丨〇^8〇 2020 is 1,6-hexanediamine with 2,3,6-trichloro-1,3,5-triazine, N,N'-bis (2,2,6, 6-Tetramethyl-4-piperidinyl)-polymer, with N-butyl-1-butylamine and N-butyl-2,2,6,6-tetramethyl-4-piperidinamine reaction product. 76 200900545

252W 188.11 鑫* s式 1694 1752 SI ^ 8925 8923 聚錢 率5 碎/小 時 £ g 聚麵 内之 Zn4 PPm^ g § htn 0478 136 Cocat2 黯 __PP5_ mm 289.14 Cocatl 療小 時 3 S ΟχΛΙ _VP^ 563436 57064 DEZ 触 碎/小 時 11 DEZ ίΜ 重量% 480&C3 4999847 cam 舰 碎/小 時 § s C^B^ 航. ppm 29&S9 298.89 CatAl 触 碎/小 時 当5 C^tAl2 __E2D_ 49958 462.4 § § 岭 1767 15Ώ 溶劑 礙J、 時 71268 70823 QH,6 碎/小 時 196l17 19922 » 13a7 13213 1^ R CN - e\0^w .-.- Η^ΙΝΓΐ 鉍v:t-欺WE^^欢蜞 * sdd Vu--奴^-9)^4-2:-¾.3¾44^^¾^)¾^s'f^cf^-WOM----Ml .J ^φ^$$ - - i ^ * 77 200900545 適於本發明之經料之料及闕物件之鐵維 本發明係有關於適於纺織物件(諸如,襯衫、裤子 子、泳衣等)之經染色之織物。織物可以任何方式製造,伸 典型上係機織或針織。本發明之機織織物典型上特徵在於 依據ASTMD窗測量之至少賴%之拉伸,而本發明之針 織織物典型上特徵在於依據ASM卿4測量之至^ 30%之拉伸。 V約 經染色之織物一般包含-或更多之彈性纖維,其中, 彈性纖維包含至少一乙稀烯烴嵌段聚合物及至少一適合交 聯劑之反應產物。於此使用時,“交聯劑,,係使一或多者 佳係大多數)之纖維交聯之任何手段。因此,交聯劑可為^ 學化合物,但並不需如此。交聯劑於此使用時亦包含電子 束照射、/3照射、r照射、電暈照射、石夕烧、過氧化物、 晞丙基化合物,及uv輻射,且具有或不具有交聯催化劑。 15美國專利第6,803,014及6,667,351號案揭示可用於本發明實 施例之電子束照射方法。典型上,足夠之纖維係以使織物 能被染色之量被交聯。此量係依使用之特定聚合物及所欲 性質而定。但是,於某些實施例,交聯聚合物之百分率係 至少約5%(較佳係至少約1〇,更佳係至少約15重量%)至約 2〇 至多75(較佳係至多65,較佳係至多約50%,更佳係至多約 40%) ’其係藉由依據實施例25所述之方法形成之凝膠之重 量百分率測量。 纖維典型上具有依據ASTM D2653-01(第—長絲斷裂 測試之延伸率)之大於約200%,較佳係大於約210%,較佳 78 200900545 係大於約220%,較佳係大於約23〇%,較佳係大於約24〇%, 車乂佳係大於約250%,較佳係大於約260。/。,較佳係大於約 270%,較佳係大於約28G%,且可高達_%之長絲斷裂延 伸率。本發明纖維之進一步特徵在於具有⑴大於或等於約 1·5,較佳係大於或等於約16,較佳係大於或等於約I ?, 較佳係大於或等於約1_8,較佳係大於或等於約丨9 ,較佳係 大於或等於約2.0,較佳係大於或等於約2卜較佳係大於或 等於約2_2’較佳係大於或等於約2 3,較佳係大於或等於約 2.4’且可高達4之200%延伸率之載荷/1〇〇%延伸率之載荷之 1〇比例,其係依據ASTMD2731-〇l(以成品纖維型式於特定延 伸率之施力下)。 聚烯烴可選自任何適合之乙烯烯烴嵌段聚合物。特別 較佳之烯烴嵌段聚合物係乙烯/α_烯烴異種共聚物,其中, 乙烯/α-烯烴異種共聚物於交聯前具有下列特徵之一或多 15 去. (1) 大於0且最高達約1.0之平均嵌段指數,及大於約13之分子 量分佈,Mw/Mn ;或 (2) 當使用TREF分級時於40。(:與130°C間洗提之至少一 刀子分級物’特徵在於此分級物具有至少〇·5且最高達約1 20 之嵌段指數; (3) 約1 _7至約3_5之Mw/Mn ’至少一熔點(Tm,以。C計), 及岔度(d,以克/立方公分計)’其中,Tm及d之數值係相對 應於關係式:252W 188.11 鑫* s type 1694 1752 SI ^ 8925 8923 poly money rate 5 mins / hour £ g Zn4 PPm^ g § htn 0478 136 Cocat2 黯__PP5_ mm 289.14 Cocatl treatment hours 3 S ΟχΛΙ _VP^ 563436 57064 DEZ Breaking/hour 11 DEZ ίΜ Weight% 480&C3 4999847 cam Ship broken/hour § C^B^ 航. ppm 29&S9 298.89 CatAl crushed/hour when 5 C^tAl2 __E2D_ 49958 462.4 § § Ridge 1767 15Ώ Solvent Obstacle J, time 71268 70823 QH, 6 mins/hour 196l17 19922 » 13a7 13213 1^ R CN - e\0^w .-.- Η^ΙΝΓΐ 铋v:t- bully WE^^欢蜞* sdd Vu--奴^-9)^4-2:-3⁄4.33⁄444^^3⁄4^)3⁄4^s'f^cf^-WOM----Ml .J ^φ^$$ - - i ^ * 77 200900545 Suitable for The present invention relates to dyed fabrics suitable for textile articles such as shirts, pants, swimwear, and the like. The fabric can be made in any manner, and the stretch is typically woven or knitted. The woven fabric of the present invention is typically characterized by at least a stretch based on ASTM D window measurements, while the woven fabric of the present invention is typically characterized by a stretch of up to 30% as measured by ASM. V. The dyed fabric generally comprises - or more elastic fibers, wherein the elastic fibers comprise at least one ethylene olefin block polymer and at least one reaction product suitable for the crosslinking agent. As used herein, "crosslinking agent," is any means of crosslinking the fibers of one or more of the best. Thus, the crosslinking agent can be a compound, but need not be. Also used herein are electron beam irradiation, /3 irradiation, r irradiation, corona irradiation, sinter, peroxide, propyl propyl compound, and uv radiation, with or without a crosslinking catalyst. Electron beam irradiation methods useful in embodiments of the present invention are disclosed in U.S. Patent Nos. 6,803,014 and 6,667, 351. Typically, sufficient fibers are crosslinked to allow the fabric to be dyed in an amount that is tailored to the particular polymer used. Depending on the nature, however, in certain embodiments, the percentage of crosslinked polymer is at least about 5% (preferably at least about 1 Torr, more preferably at least about 15% by weight) to about 2 Torr to at most 75 (preferably Up to 65, preferably up to about 50%, more preferably up to about 40%) 'It is measured by the weight percentage of the gel formed according to the method described in Example 25. The fiber is typically based on ASTM D2653- 01 (the elongation of the first-filament break test) is greater than about 200 %, preferably greater than about 210%, preferably 78 200900545 is greater than about 220%, preferably greater than about 23%, preferably greater than about 24%, and more preferably greater than about 250%, preferably More than about 260%, preferably greater than about 270%, preferably greater than about 28% by weight, and up to _% filament elongation at break. The fibers of the present invention are further characterized by having (1) greater than or equal to about one. 5, preferably greater than or equal to about 16, preferably greater than or equal to about I?, preferably greater than or equal to about 1-8, preferably greater than or equal to about ,9, preferably greater than or equal to about 2.0, more preferably Preferably, the system is greater than or equal to about 2, preferably greater than or equal to about 2-2', preferably greater than or equal to about 2, preferably greater than or equal to about 2.4' and can be as high as 200% elongation of the load/1〇 〇% elongation of the load ratio of 1〇, based on ASTM D2731-〇l (in the form of finished fiber type at a specific elongation). The polyolefin may be selected from any suitable ethylene olefin block polymer. A preferred olefin block polymer is an ethylene/α-olefin heterogeneous copolymer in which an ethylene/α-olefin heteropolymer is blended The former has one or more of the following characteristics: (1) an average block index greater than 0 and up to about 1.0, and a molecular weight distribution greater than about 13, Mw/Mn; or (2) at 40 when using TREF classification (: at least one knife fraction eluted at 130 ° C is characterized by a block index of at least 〇·5 and up to about 1 20 in this fraction; (3) Mw/ of about 1 _7 to about 3_5 Mn 'at least one melting point (Tm, in terms of C), and twist (d, in grams per cubic centimeter) 'where the values of Tm and d correspond to the relationship:

Tm > -2002.9 + 4538.5(d) - 2422.2(d)2 ;或 79 200900545 (4) 約1.7至約3.5之Mw/Mn,且特徵在於一熔融熱(ah, J/g) ’及一以最高DSC峰及最高CRYSTAF峰間之溫度差而定 義之△量(ΛΤ,°C),其中,ΛΤ與ΛΗ之數值具有下列關係 式: 5 對於AH大於0且最高達130 J/g時係 △ Τ>-0.1299(ΔΗ)+62.81, 對於/\11大於130 1/8時係八丁2 48。(:,Tm > -2002.9 + 4538.5(d) - 2422.2(d)2; or 79 200900545 (4) Mw/Mn of from about 1.7 to about 3.5, and characterized by a heat of fusion (ah, J/g) 'and one The Δ amount (ΛΤ, °C) defined by the temperature difference between the highest DSC peak and the highest CRYSTAF peak, wherein the values of ΛΤ and ΛΗ have the following relationship: 5 For AH greater than 0 and up to 130 J/g Τ>-0.1299(ΔΗ)+62.81, when /\11 is greater than 130 1/8, it is octagonal 2 48. (:,

其中,CRYSTAF峰係使用至少5%之累積聚合物決定,且若 少於5%之聚合物具有可鑑別之CRTSTAF峰,則CRYSTAF 10 溫度係30°C ;或 (5) 以乙烯/a -烯烴異種共聚物之壓模成型膜測量之於 300%應變及1周期之彈性回復(Re,%),且具有一密度(d, 克/立方公分)’其中,當乙烯/α-烯烴異種共聚物實質上無 交聯相時,Re及d之數值滿足下列關係式: 15 Re>1481-1629(d);或 (6) 使用TREF分級時於40。(:與130。(:間洗提之分子分級 物,特徵在於此分級物具有比於相同溫度間洗提之吁相比 擬的無規乙烯異種共聚物分級物者高至少5%之莫耳兵單 體含量,其中,該可相比擬之無規乙烯異種共聚物具有相 2〇同共單體,且具有乙烯/α-烯烴異種共聚物者之10%内之擦 融指數、密度及莫耳共單體含量(以整個聚合物為基举計); (7) 於25。(:時之貯存模量,G,(25t>C),及10CTC時之貯存 模量,G,(100°C),其中,g,(25°C)對G,(100°C)之比例係約 1:1至約9:1之範圍。 200900545 纖維可製成依所欲應用而定 形狀。對於許多應用,約圓形 可所奴之尺寸及截面 而係所欲的。但是,其它形狀(諸如-由於其降低之摩擦力 狀)形狀)亦可使用。丹尼數係 葉开夕’或平(即,“帶,, 、、方織用辭,A定蠤或 公尺纖維長度之纖維克數。較 ’、·、、、母000 妙處m A 土之丹尼尺寸係依織物形妝 及所欲應用而定。典型上,針 3料狀 s , ^ 哉物包含具有至少約1(# 佳係至少約20,較佳係至少約s (季乂 約150,較佳係至多約觸丹尼至夕約18〇(較佳係至多 之丹尼數之主要纖維。另—方面’ T係至多觸丹尼數) 10 15 20 面,機織織物可包含具有比 針織更大之丹尼數且可最高達_之丹尼數之大多數纖 維。另-方面’機_物可包含具有比針織更大且可最高 達3000丹尼之丹尼數之大多數纖維。 依應用而定,纖維可採用任何適合形式,包含短纖維 或結合劑纖維。典型例子可包含單組份_、雙組份纖維、 溶喷纖維、、雜_,或__。於雙組份麟之情況, 可具有皮芯式結構;海島式結構;並列式結構;基質原纖 式結構;或區段派式結構。有利地,傳統之形錢維之方 法可用以製造前述纖維。此等方法包含,例如,於美國專 號案中描述者。 依其組成而定’纖維可被製成與其它纖維相同或更佳 地促進加工處理及自捲筒退捲。一般之纖維當呈圓形截面 時由於其基本聚合物之過度應力鬆弛而經常係不能提供令 人滿意之退捲性能。此應力鬆弛係與捲筒之老化度成比 81 200900545 例’且造成位於捲筒表面之長絲失去表面上之失持變成 鬆的長絲線股。其後,當含有傳統纖維之此一捲筒置於正 饋線捲(即,Memminger_IR〇)上且開始旋轉至產業速度 (即’ 100至300轉/分),鬆弛之纖維被抛至捲筒表面之側邊, 5且最後係自捲筒端緣掉落。此故障被稱為脫軌,其係表示 傳統纖維自捲裝物之肩部或端緣滑落之趨勢,其中斷退捲 程序且最終造成機械停止。上述纖維可展現相同或顯著較 少程度之脫軌。此能有更大之生產量。 此纖維之另一優點係諸如織物疵點或彈性長絲或纖維 10斷裂之缺失與傳統織物相比係相等或降低。即,使用上述 纖維可降低針床上纖維片斷之集結_當聚合物殘質黏著於 針表面時於圓針織機經常發生之問題。因此,當此等纖維 被製成,例如,圓針織機上之織物時,纖維可降低殘餘造 成之相對應織物破裂。 15 另一優點係纖維可於圓形機器針織,其間,使長絲自 捲筒一路地趨向針之彈性導紗器係固定,諸如,陶瓷或金 屬梭眼。相反地’某些傳統之彈性烯烴纖維需使此等導紗 器以旋轉元件(諸如,滑輪)製成以於機器零件(諸如,梭眼) 被加熱時使摩擦力達最小,如此使機器之停止或長絲斷裂 20於圓形針織方法期間可被避免。即,與機器之導紗元件之 磨擦力係藉由使用本發明纖維而降低。有關於圓針織之進 一步資 §孔係於’例如,Bamberg Meisenbach 之 “Circular Knitting: Technology Process, Structures, Yarns, Quality 5,, 1995(在此被全部併入以供參考之用)中發現。 82 200900545 添加劑 抗氧化劑(例如,由CibaGeigyCorp.製造之IRGAFOS® 168 、IRGANOX® 1010 、IRGANOX® 3790 ,及 CHIMASSORB® 944)可添加至乙烯聚合物以防護成型或製 5 造操作期間之降解及/或較佳地控制接枝或交聯程度(即,抑 制過度膠凝)。加工用添加劑(例如,硬脂酸鈣、水、氟聚合 物等)亦可用於諸如鈍化殘餘催化劑及/或改良加工處理性 之目的。TINUVIN® 770(得自Ciba-Geigy)可作為光安定劑。 共聚物可具填料或不具填料。若具填料,則存在之填 10 料量不應超過會不利影響高溫時之财熱性或彈性之量。若 存在,典型上填料量係0.01與80重量%之間,其係以共聚物 總重量(或若共聚物及一或多種其它聚合物之摻合物,則係 此摻合物之總重量)為基準計。代表性之填料包含高嶺黏 土、氫氧化鎂、氧化鋅、矽石,及碳酸鈣。於填料存在之 15 一較佳實施例,填料係以避免或減緩填料可能干擾交聯反 應之趨勢之材料塗覆。硬脂酸係此一填料塗覆物之例子。 為降低纖維之摩擦係數,各種纺絲整理組成物可被使 用,諸如’分散於紡織油之金屬皂(見,例如,美國專利第 3,039,895號案或美國專利第6,652,599號案)、於基礎油内之 20表面活性劑(見,例如’美國公告第2003/0024052號案)及聚 烧基矽氧烷(見’例如,美國專利第3,296,063號案或美國專 利第4,999,120號案)。美國專利申請案第10/933,721號案(以 US20050142360公告)揭示亦可被使用之紡絲整理組成物。 織物 83 200900545 本發明係有關於包含烯烴嵌p取 的纺織物件。為了本發明目的,^°物之改良式經染色 件(即,自此織物(包含,例如,需著=物件包含織物與物 製成之衣物)。針織係意指藉由手,1色之布料及其它物項) 一系列連接線圈之相互繞捲之紗始气十或於機器上呈 何型式之針織,包含,例如,^、本發明可應用於任 針織。特別較佳之經針織包含 +織,及圓 (mschel),而較佳之緯針織包含圓°、、’(⑽)及拉舍爾 本發明於用於其間圓形針被使 平及無縫。但是, 10 15 20 ^ 之圓針織(即,圓形針織) 係特別有利。本發明亦可應用於, ' y 、任何型式之機織織物。 本發明之經染色的織物較佳传句入 係包含一或多種彈性纖 維,其中,彈性纖維包含至少—乙烯烯烴嵌段聚合物及至 少-交聯劑之反應產物,其t,乙_烴嵌段聚合物係乙 稀烯«種共聚物,其巾,乙麻·馳異種共聚物於交 聯前具有下列特徵之一或多者: (1) 大於0且最高達約1·〇之平均嵌段指數,及大於約13之分子 量分佈,]VIw/Mn ;或 (2) 當使用TREF分級時於4〇°C與130°C間洗提之至少一 分子分級物’特徵在於此分級物具有至少〇 5且最高達約1 之嵌段指數; (3)約1.7至約3_5之Mw/Mn,至少一熔點(Tm,以。C計), 及密度(d,以克/立方公分計),其中,Tm及d之數值係相對 應於關係式:Wherein, the CRYSTAF peak is determined using at least 5% of the cumulative polymer, and if less than 5% of the polymer has an identifiable CRTSTAF peak, the CRYSTAF 10 temperature is 30 ° C; or (5) is ethylene/a-olefin The compression molded film of the heterogeneous copolymer measures the elastic recovery (Re, %) at 300% strain and 1 cycle, and has a density (d, g/cm 3 ) where the ethylene/α-olefin heteropolymer is When there is substantially no cross-linking phase, the values of Re and d satisfy the following relationship: 15 Re>1481-1629(d); or (6) at 40 when using TREF classification. (: with 130. (: inter-eluting molecular fraction, characterized in that the fraction has at least 5% higher than the random ethylene heteropolymer grades compared to the same temperature elution) a monomer content, wherein the comparable random ethylene heteropolymer has a phase bismuth co-monomer and has a melt index, density, and mole within 10% of the ethylene/α-olefin heteropolymer Co-monomer content (based on the entire polymer); (7) at 25: storage modulus at room time, G, (25t > C), and storage modulus at 10 CTC, G, (100° C), wherein, the ratio of g, (25 ° C) to G, (100 ° C) is in the range of about 1:1 to about 9: 1. 200900545 The fiber can be made into a shape depending on the intended application. Application, about the size and cross section of the round can be used as desired. However, other shapes (such as - due to its reduced friction) shape can also be used. Danny number system leaves open or even ( That is, "band,,,, weaving words, A fixed or metric fiber length of the fiber grams. Compared with ', ·,,, mother 000 wonderful place m A soil Danny size system Depending on the shape of the fabric and the desired application, typically the needle 3 material s , ^ 包含 contains at least about 1 (# preferably at least about 20, preferably at least about s (the season is about 150, preferably Up to about 18 inches from Danny to Eve (preferably the main fiber of the Danny number at most. The other side 'T-to-multi-touch Danny number) 10 15 20 face, woven fabric can contain more than knitting Danny has a maximum number of fibers up to the Danny's number. The other aspect of the machine can contain most of the fibers with a Danny number greater than knitting and up to 3000 denier. The fibers may be in any suitable form, including staple fibers or binder fibers. Typical examples may include single component _, bicomponent fibers, solvent spray fibers, miscellaneous _, or __. , may have a sheath-core structure; an island-in-the-sea structure; a side-by-side structure; a matrix fibril structure; or a segmental structure. Advantageously, the conventional method can be used to manufacture the aforementioned fibers. For example, it is described in the US special case. Depending on its composition, the fiber can be Made to the same or better as other fibers to facilitate processing and unwinding from the reel. Generally, fibers that have a circular cross-section often fail to provide satisfactory unwinding performance due to excessive stress relaxation of their base polymer. This stress relaxation is proportional to the degree of aging of the reel 81 and causes the filaments on the surface of the reel to lose their surface and become loose filament strands. Thereafter, when this volume contains conventional fibers The cartridge is placed on the positive feed coil (ie, Memminger_IR〇) and begins to rotate to the industrial speed (ie '100 to 300 rpm), the loose fibers are thrown to the side of the roll surface, 5 and finally from the reel The edge is falling. This failure is referred to as derailment, which is a tendency for conventional fibers to slip off the shoulder or end edge of the package, which interrupts the unwinding procedure and ultimately causes a mechanical stop. The above fibers may exhibit the same or a significant degree of derailment. This can have a larger production volume. Another advantage of this fiber is that fabric defects or elastic filaments or the loss of fiber 10 breaks are equal or reduced compared to conventional fabrics. Namely, the use of the above-mentioned fibers can reduce the aggregation of the fiber fragments on the needle bed - a problem that often occurs in a circular knitting machine when the polymer residue adheres to the surface of the needle. Therefore, when such fibers are formed into, for example, a fabric on a circular knitting machine, the fibers can reduce the rupture of the corresponding fabric caused by the residue. Another advantage is that the fibers can be knitted in a circular machine with the elastic yarn guides that tend to move the filaments from the reel all the way to the needle, such as ceramic or metal fusiforms. Conversely, 'some conventional elastic olefin fibers need to be made such that the yarn guides are made of rotating elements (such as pulleys) to minimize friction when the machine parts (such as the shuttle eye) are heated, thus making the machine Stopping or filament breakage 20 can be avoided during the circular knitting process. That is, the frictional force with the yarn guiding members of the machine is reduced by using the fibers of the present invention. Further circumstance for circular knitting is found in, for example, Bamberg Meisenbach, "Circular Knitting: Technology Process, Structures, Yarns, Quality 5, 1995 (herein incorporated by reference in its entirety). 200900545 Additive antioxidants (eg IRGAFOS® 168, IRGANOX® 1010, IRGANOX® 3790, and CHIMASSORB® 944, manufactured by Ciba Geigy Corp.) can be added to ethylene polymers to protect against degradation and/or degradation during molding or manufacturing operations. It is preferred to control the degree of grafting or crosslinking (ie, inhibit excessive gelation). Processing additives (eg, calcium stearate, water, fluoropolymer, etc.) can also be used to passivate residual catalysts and/or improve processability. For this purpose, TINUVIN® 770 (available from Ciba-Geigy) can be used as a light stabilizer. Copolymers may or may not have fillers. If filled, the amount of filler 10 should not exceed the adverse heat that would adversely affect high temperatures. Or an amount of elasticity. If present, the amount of filler typically is between 0.01 and 80% by weight based on the total weight of the copolymer (or if the copolymer and one or more other polymerizations) The blend is based on the total weight of the blend. Representative fillers include kaolin clay, magnesium hydroxide, zinc oxide, vermiculite, and calcium carbonate. For example, the filler is a material coating that avoids or slows the tendency of the filler to interfere with the crosslinking reaction. Stearic acid is an example of such a filler coating. To reduce the coefficient of friction of the fibers, various spinning finishing compositions can be used. , for example, 'metal soaps dispersed in textile oils (see, for example, U.S. Patent No. 3,039,895 or U.S. Patent No. 6,652,599), 20 surfactants in base oils (see, for example, 'US Bulletin 2003/0024052 No.) and a polyalkylene oxide (see, for example, U.S. Patent No. 3,296,063 or U.S. Patent No. 4,999,120), the disclosure of which is incorporated herein by reference. Spinning finishing composition. Fabric 83 200900545 The present invention relates to a textile article comprising an olefin inlaid p. For the purposes of the present invention, an improved dyed article of the article (ie, since then) (including, for example, the object contains fabrics and fabrics made of clothing). Knitwear means that by hand, a fabric of one color and other items, a series of connecting coils are wound around each other. Or a knitting of any type on the machine, including, for example, the present invention can be applied to any knitting. Particularly preferably, the knitting comprises + weaving, and a circle (mschel), and the preferred weft knitting comprises a circle, ' ((10)) and raschel The invention is used in the case where the circular needle is made flat and seamless. However, a circular knitting of 10 15 20 ^ (i.e., circular knitting) is particularly advantageous. The invention can also be applied to 'y, any type of woven fabric. Preferably, the dyed fabric of the present invention comprises one or more elastic fibers, wherein the elastic fibers comprise at least an ethylene olefin block polymer and at least a reaction product of a crosslinking agent, wherein t, a hydrocarbon is embedded The segment polymer is an ethylene olefin copolymer, and the towel, the acetylene copolymer has one or more of the following characteristics before crosslinking: (1) an average of more than 0 and up to about 1 〇 a segment index, and a molecular weight distribution greater than about 13,] VIw/Mn; or (2) at least one molecular fraction eluted between 4 ° C and 130 ° C when TREF fractionation is used. a block index of at least 且5 and up to about 1; (3) Mw/Mn of from about 1.7 to about 3_5, at least one melting point (Tm, in C), and density (d, in grams per cubic centimeter) , where the values of Tm and d correspond to the relationship:

Tm > -2002.9 + 4538.5(d) - 2422.2(d)2 ;或 84 200900545 (4) 約1.7至約3.5iMw/Mn,且特徵在於一熔融熱(ΔΗ, J/g)’及一以最高DSC峰及最高CRYSTAF峰間之溫度差而定 義之△量(ΔΤ,°C),其中,ΛΤ與△!!之數值具有下列關係 式: 5 對於ΔΗ大於0且最高達130 J/g時係 ΔΤ>-0.1299(ΔΗ)+62.81 > 對於ΔΗ大於130 J/g時係,Tm > -2002.9 + 4538.5(d) - 2422.2(d)2; or 84 200900545 (4) from about 1.7 to about 3.5iMw/Mn, and characterized by a heat of fusion (ΔΗ, J/g)' and one of the highest The amount of Δ (ΔΤ, °C) defined by the temperature difference between the DSC peak and the highest CRYSTAF peak, wherein the values of ΛΤ and Δ!! have the following relationship: 5 For ΔΗ greater than 0 and up to 130 J/g ΔΤ>-0.1299(ΔΗ)+62.81 > For ΔΗ greater than 130 J/g,

其中,CRYSTAF峰係使用至少5%之累積聚合物決定,且若 少於5%之聚合物具有可鑑別之CRTSTAF♦,則CRYSTAF 10 溫度係30°C ;或 (5) 以乙稀/α-烯烴異種共聚物之壓模成型膜測量之於 300%應變及1周期之彈性回復(Re,%),且具有一密度(d, 克/立方公分),其中’當乙烯/〇:-烯烴異種共聚物實質上無 交聯相時,Re及d之數值滿足下列關係式: 15 Re>1481-1629(d);或 (6) 使用TREF分級時於40°C與130°C間洗提之分子分級 物,特徵在於此分級物具有比於相同溫度間洗提之可相比 擬的無規乙浠異種共聚物分級物者高至少5%之莫耳共單 體含量,其中,該可相比擬之無規乙烯異種共聚物具有相 20 同共單體,且具有乙烯/α-烯烴異種共聚物者之10%内之熔 融指數、密度及莫耳共單體含量(以整個聚合物為基準計); (7) 於25°C時之貯存模量,G’(25°C),及100°C時之貯存 模量,G’(l〇〇°C) ’其中,G’(25°C)對G’(100°C)之比例係約 1:1至約9:1之範圍。 85 200900545 經染色的織物内聚合物之量係依聚合物、應用及所欲 性質而定。經染色的織物典型上包含至少約1 (較佳係至少 約2,較佳係至少約5,較佳係至少約7)重量%之乙烯Ax-烯 烴異種共聚物。織物典型上包含少於約50(較佳係少於約 5 40,較佳係少於約30,較佳係少於約20,更佳係少於約10) 重量%之乙烯/α-烯烴異種共聚物。乙烯/α_烯烴異種共聚物 可為纖維型式,且可與另外適合之聚合物(例如,聚烯烴’ 諸如,無規乙烯共聚物、HDPE、LLDPE、LDPE、ULDPE、 聚丙烯均聚物、共聚物、塑性體及彈性體、拉斯托(lastol)、 10 聚醯胺等)摻合。 織物之乙烯/α-烯烴異種共聚物可具有任何密度,但一 般係至少約0.85,且較佳係至少約0.865 g/cm3(ASTM D 792)。 相對應地,密度一般係少於約0.93,較佳係少於約0.92 g/cm3(ASTM D 792)。織物之乙烯/α-烯烴異種共聚物之特徵在 15於約0·1至約1〇克/1〇分鐘之未交聯熔融指數。若交聯係所欲 時,則交聯聚合物之百分率一般係至少1〇%(較佳係至少約 20,更佳係至少約25重量%)至至多90(較佳係至多約75), 其係藉由形成凝膠之重量百分率測量。 織物一般包含選自人造絲、耐綸 '黏膠、聚酯(諸如, 20微纖維聚酯)、聚醯胺、聚丙烯、纖維素、棉、亞麻、苧麻、 大麻、羊毛、絲、亞麻 '竹、天絲、毛海、其它天然纖維、 其它合成纖維,及其等之混合物所組成族群之另外材料。 一般,其它材料包含織物之主要部份。於此情況,—般較 佳係其它材料包含織物之至少約5〇(較佳係至少約6〇,較佳 200900545 係較佳係至少約—, 乙烯/«-烯煙異 ^49〇.95)t 型式。較佳尺寸包含i 其它材料,或二者可呈纖唯 少約5。)丹尼數至至多約:較佳一 約1〇0,較佳係係至多約⑽,較佳m 特別較佳之尼數。 旦種並平鉍 、’十織織物包含呈纖維型彳 …聚物,其含量係織物之約 $之乙烯Αχ-烯烴 別較佳之經針織織物包含呈纖维型式之%(以重量計)。特 10 15 20 聚物,其含量係織物之約1G至職(以^,煙異種共 經針織及圓針織之織物亦包含聚醋或微^ =)。一般,此 織物(特別是針_物)—般於水平酷。 二者係具有少於約5(較佳係少於4,較^垂直方向,或 少於2,較佳係少於i,較佳係少於〇父=3,較佳係 之清洗後收縮率(依據做㈢5)。更少於0卻/。 定後)一般於長度方向、寬度方向或二者係=(熱變 +7%,較佳係-5%至約+5%,較佳係約_3%至約仔/ =約 ==:·;更佳係,約+1%之尺寸安定;‘ e Al)。此外’織物-般係具有比具有較高交聯 ϊ之可相比擬之彈性纖維織物更少之清洗後 AATCC 135 IVAi)。 、W據 針織織物若要的話可藉由控制乙烯/α_烯烴異種共聚 及其它材料之型式及量而製成於二方向拉伸。針織織;:二 時特徵在於至少約30%之拉伸(依據ASTM D2594測量)。 似地,織物可製成使長度及寬度方向之成長係少於約 87 200900545 佳係少於約5,較佳係少於約4,較佳係少於約3,較佳係少 於約2,較佳係少於約1)至小至0.5%(依據ASTM D 2594)。 使用相同測試(ASTM D 2594),60秒之長度方向成長可少於 約15(較佳係少於約12,較佳係少於約1〇,較佳係少於約 8%。相對應地,使用相同測試(ASTM D 2594),60秒之寬 度方向成長可少於約20(較佳係少於約is,較佳係少於約 16,較佳係少於約13%)。關於ASTM D 2594之60分鐘測試, 10 15 20 寬度方向之成長可少於約10(較佳係少於約9,較佳係少於 約8,較佳係少於約6)%,而60分鐘之長度方向成長可少於 約8(較佳係少於約7 ’較佳係、少於約6,較佳係少於約5)%。 上述之較低成長使本發明之織物於從少於約丨8〇(較佳係少 於約170,較佳係少於約160,較佳係少於約150。〇之溫度 熱變定,而仍控制尺寸。與針織織物相反,機織織物特^ 可在於至少約Η)%之拉伸(依據ASTMD細測量)。 有利地,本發明之針織織物可於無大量破裂且使用包 含網眼供料器线、滑輪系統,或其等之組合之針織機製 造。因此’具有改良之模製性且具有可接受之尺寸安定性 (長度方向及寬度方向)、可接攻 钱又之成長及收縮、於低溫之埶 變定且控制尺寸之能力、假八 ‘”' -”回收之圓針織拉伸織物可 於無顯著破裂,以高生產晋,。> 脫軌地製造。 騎纽之各《針織機無 染色 實際上任何染色方法製 述於 Fundamentals 〇f 本發明之經染色的織物可藉由 造,如,許多有用之技術係描 88 200900545Wherein, the CRYSTAF peak is determined using at least 5% of the cumulative polymer, and if less than 5% of the polymer has an identifiable CRTSTAF ♦, the CRYSTAF 10 temperature is 30 ° C; or (5) is ethylene/α- The compression molded film of the olefin heteropolymer is measured at 300% strain and one cycle of elastic recovery (Re, %) and has a density (d, g/cm 3 ), where 'when ethylene/〇:-olefin heterogeneous When the copolymer has substantially no cross-linking phase, the values of Re and d satisfy the following relationship: 15 Re>1481-1629(d); or (6) elution between 40 ° C and 130 ° C when fractionated using TREF a molecular fraction characterized in that the fraction has a molar comonomer content that is at least 5% higher than a comparable random acetylated heteropolymer copolymer fraction eluted between the same temperature, wherein the fraction is comparable The random ethylene heterogeneous copolymer has a phase 20 comonomer, and has a melt index, a density, and a molar comonomer content within 10% of the ethylene/α-olefin heteropolymer (based on the entire polymer) (7) Storage modulus at 25 ° C, G' (25 ° C), and storage modulus at 100 ° C, G' (l 〇〇 ° C Wherein, the ratio of G' (25 ° C) to G' (100 ° C) is in the range of about 1:1 to about 9:1. 85 200900545 The amount of polymer in the dyed fabric depends on the polymer, the application and the desired properties. The dyed fabric typically comprises at least about 1 (preferably at least about 2, preferably at least about 5, preferably at least about 7) weight percent of the ethylene Ax-olefin heteropolymer. The fabric typically comprises less than about 50 (preferably less than about 5 40, preferably less than about 30, preferably less than about 20, more preferably less than about 10) by weight of ethylene/α-olefin. Heterogeneous copolymer. The ethylene/α-olefin heteropolymer may be of a fiber type and may be blended with another suitable polymer (for example, polyolefin' such as random ethylene copolymer, HDPE, LLDPE, LDPE, ULDPE, polypropylene homopolymer, copolymerization Blending of materials, plastomers and elastomers, lastol, 10 polyamines, etc.). The ethylene/α-olefin heteropolymer of the fabric can have any density, but is generally at least about 0.85, and preferably at least about 0.865 g/cm3 (ASTM D 792). Correspondingly, the density is generally less than about 0.93, preferably less than about 0.92 g/cm3 (ASTM D 792). The ethylene/α-olefin heteropolymer of the fabric is characterized by an uncrosslinked melt index of from 15 to about 1 gram per minute. The percentage of crosslinked polymer is generally at least 1% (preferably at least about 20, more preferably at least about 25% by weight) up to 90 (preferably up to about 75), if desired. It is measured by the weight percentage of the gel formed. The fabric generally comprises a material selected from the group consisting of rayon, nylon's viscose, polyester (such as 20 microfiber polyester), polyamide, polypropylene, cellulose, cotton, linen, ramie, hemp, wool, silk, linen. An additional material of the group consisting of bamboo, Tencel, Maohai, other natural fibers, other synthetic fibers, and mixtures thereof. Generally, other materials include a major portion of the fabric. In this case, it is generally preferred that the other material comprises at least about 5 Å of the fabric (preferably at least about 6 Å, preferably 200900 545 is preferably at least about -, ethylene / «- ene smog ^ 49 〇. 95 ) t type. Preferred dimensions include i other materials, or both may be at least about 5. The Danny number is up to about: preferably one is about 1 〇 0, preferably more than about (10), preferably m is particularly preferred. And the ten-woven fabric comprises a fiber-type polymer, the content of which is about 5% of the vinyl-olefin of the fabric. The preferred knitted fabric comprises the fiber type (by weight). Special 10 15 20 polymer, the content of which is about 1G to the fabric of the fabric (to the fabric of the homogenized knit and circular knit fabric also contains polyester or micro-^). Generally, this fabric (especially needles) is as cool as horizontal. The two have less than about 5 (preferably less than 4, more than perpendicular, or less than 2, preferably less than i, preferably less than the father = 3, preferably after the cleaning shrinkage Rate (based on (3) 5). Less than 0 but / after setting) generally in the length direction, width direction or both = (thermal change + 7%, preferably -5% to about +5%, preferably It is about _3% to about ‧ / = about ==: ·; better, about +1% of the size stability; 'e Al). In addition, the fabric-like system has a lower cleaning AATCC 135 IVAi than the comparable elastic fiber fabric with higher cross-linking. According to the knit fabric, if necessary, it can be stretched in two directions by controlling the type and amount of ethylene/α-olefin heteropolymerization and other materials. Knitted woven;: Secondly characterized by at least about 30% stretch (measured according to ASTM D2594). Similarly, the fabric can be made to have a length in the length and width directions of less than about 87 200900545, preferably less than about 5, preferably less than about 4, preferably less than about 3, preferably less than about 2. Preferably, it is less than about 1) to as little as 0.5% (according to ASTM D 2594). Using the same test (ASTM D 2594), the 60 second length growth can be less than about 15 (preferably less than about 12, preferably less than about 1 Torr, preferably less than about 8%. Correspondingly Using the same test (ASTM D 2594), the 60 second width growth can be less than about 20 (preferably less than about is, preferably less than about 16, preferably less than about 13%). About ASTM 60 minutes of D 2594 test, 10 15 20 growth in the width direction may be less than about 10 (preferably less than about 9, preferably less than about 8, preferably less than about 6)%, and 60 minutes The lengthwise growth may be less than about 8 (preferably less than about 7 'preferably less than about 6, preferably less than about 5) percent. The lower growth described above results in fewer fabrics of the present invention. Preferably, it is less than about 170, preferably less than about 170, preferably less than about 160, preferably less than about 150. The temperature of the crucible is thermally set, while still controlling the size. Contrary to the knitted fabric, the woven fabric is particularly The stretching may be at least about Η)% (measured according to ASTM D). Advantageously, the knit fabric of the present invention can be used without a large amount of rupture and using a needle comprising a mesh feeder line, a pulley system, or the like. Loom manufacturing. Therefore, it has improved moldability and acceptable dimensional stability (length direction and width direction), the ability to pick up and increase the weight and shrinkage, the ability to change and control the size at low temperatures, and false Eight '"' -" recycled circular knit stretch fabric can be produced without significant cracking, with high production..> Derailed. "Knitting machine without dyeing. Actually any dyeing method is described in Fundamentals 〇 f The dyed fabric of the present invention can be constructed by, for example, many useful techniques.

Dyeing and Printing ’ Garry Mock,North Carolina StateDyeing and Printing ’ Garry Mock, North Carolina State

University 2002, ISBN 9780000033871。本發明織物之—優 點係一般可於至少約130°C之溫度與染料接觸而製造經染 色的織物,其中,織物展現少於〇·5,較佳係少於〇4,較佳 5係少於,較佳係少於0.3 ’較佳係少於0.25,較佳係少 於〇_2,較佳係少於0.15,較佳係少於〇.1,較佳係少於〇 〇5 之成長對拉伸之比例。有利地,形成之本發明之經染色的 織物一般特徵在於大於或等於約3.0,較佳係大於或等於約 3_5,更佳係大於或等於約4·〇之顏色變化(於藉由 10 AATCC61-2003-2A之第一次清洗後依據AATCC評估)。另一 優點係本發明織物有時可展現大於或等於約2.5,較佳係大 於或等於約3.0,更佳係大於或等於約3·5之顏色變化(於藉 由AATCC61-2003-2A之第二次清洗後依據AATCC評估)。基 本上,此意指本發明之經染色織物於接受洗清時可展現比 15 傳統之染色織物更少之褪色。 本發明之經染色的織物特徵亦在於染色後之有利顏色 強度,即,織物係較深。例如,經染色之織物一般特徵在 於大於或等於約600,較佳係大於或等於約650,較佳係大 於或等於約700,較佳係大於或等於約75〇之染色後之顏色 20強度(以光譜光度計測量)。有利地,顏色實質上被維持,即 使於第一及第二清洗後。例如,經染色之織物特徵可在於 藉由AATCC61 -2003-2A之於第一清洗後之顏色強度係染色 後之顏色強度之至少約90,較佳係至少約95,更佳係至少 約97%,其中,每一顏色強度係以光譜光度計測量。經染 89 200900545 色之織物有時特徵亦可在於藉由_雇3_从之於第 一'月洗後之顏色強度m色後之顏色強度之至少約9〇,較 佳係至少約92.5,争社你r , A , a 更佳係至少約94%,其中,每一顏色強度 係以光譜光度計測量。 5 雖不奴文限於任何理論,但相信本發明之經染色的織 #染色較/罙之原因係由於烯煙嵌段聚合物之纖維。即,稀 ㈣段聚合物纖維染色至較少程度使其它材料變得較深。 再者’當烯敌段聚合物被作為纖維時,較高染色溫度可 被使用而具較少之纖維斷裂。以相似方式,認為經染色之 10織物於清洗時較少趣色係稀烴嵌段聚合物纖維未被染色至 與以其它聚合物製得之纖維一樣大之程度。以此方式,烯 烴嵌段聚合物不會大量褪色或滲色。 實施例 實施例22-彈性乙烯/α_烯烴異種共聚物纖維 15 實施例20之彈性乙烯Αχ-烯烴異種共聚物(烯烴嵌段聚 合物)被用以製造具有約圓形載面之40丹尼數之單長絲纖 維。於纖維被製造前,下列添加劑被添加至聚合物:7000 ppm之PDMSO(聚二曱基矽氧烷)、3〇〇〇 pprn之CYANOX 1790(1,3,5-三-(4-第三丁基_3_羥基_2,6_二甲基苯曱 20 基)-1,3,5-三 °秦-2,4,6-(1Η,3Η,5Η)-三酮,及 3000 ppm 之 CHIMASORB 944聚-[[6-(1,1,3,3-四曱基丁基)胺基]-s-三嗪 -2,4-二基][2,2,6,6-四甲基-4-哌啶基]亞胺基)六曱撐基 [(2,2,6,6-四甲基-4-哌啶基)亞胺基]]及0.5重量%之11〇2。纖 維係使用具有圓形0.8mm直徑之模具輪廓,299°C之紡絲溫 90 200900545 度’ 650公尺/分鐘之絡筒機速度’ 2%之紡絲整理,6〇/〇之冷 拉伸,及150g之筒管重量製造。然後,纖維使用總量為176 4 kGy照射作為交聯劑而交聯。 實施例23-纖維之硬紗 5 硬紗被製造,其係包含實施例22及彈性纖維及150丹尼 之288長絲聚醋。微纖維之長絲係細徵至ο.〗]丹尼/長絲。二 比較例亦被製造。一比較例之硬紗係使用以45〇公尺/分鐘 之線速度製造之40丹尼之無規乙烯-辛烯共聚物纖維,及相 同之150丹尼之288長絲聚酯纖維。無規乙烯_辛烯共聚物具 10有3.〇克/10分鐘之平均熔融指數,〇 875 g/cm3之密度,且 係以166.4 kGy照射之劑量作為交聯劑而交聯。第二比較例 之硬紗係以(萊卡)LyCraTM 162 C聚合物之多長絲纖維及相 同之150丹尼之288長絲聚酯纖維製造。 實施例24-染色 15 實驗被設計成評估彈性纖維之沾色性及以微纖維聚酯 為主之織物之顏色深度。實驗評估包含烯烴嵌段聚合物之 纖維、包含萊卡TM 162C之纖維,及包含無規乙烯_辛烯共聚 物之纖維上之分散性染料之沾色。製造硬紗之1克之此三種 不同纖維之每—者及9克之製造硬紗之微纖維聚酯織物(參 20考織物)被裝載於如第8圖所示之實驗室快速染色機。然 後’第9圖所示之染色及還原清洗處理係對此三種不同纖維 之母一者進行。Clariant之染料Foron Black S-WF被用以使 纖維及織物染成黑色。以萊卡為主之纖維於125。(:染色, 因此’此彈性纖維於更高溫度會遭受嚴重損害。其它二種 91 200900545 纖維係於135 °C染色。染色後,第一還原清洗後,及第二 還原清洗後之樣本被收集以供評估。 染色及還原清洗後之三種不同纖維以視覺評估。聚酉旨 微纖維織物亦被測試獲得作為不褪色性之指示之顏色強 5 度、顏色變化,及沾色值。經染色的纖維係於D65標準日光 下以視覺評估而定義纖維上之沾色性。顏色強度(K/S)係以 光譜光度計(Dataco丨or型號-600PLUS)測量。高κ/s值代表 較深之顏色。顏色變化係依據AATCC 61-2003-2A測量,其 係報導原始樣本及清洗後樣本間之色差。評估範圍依據 10 AATCC評估程序以灰階係1〜5。較低等級表示較大之顏色變 化,因此係較少之不褪色性。染色後,第一還原清洗後, 及第二還原清洗後之樣本係藉由AATCC 61-2003-2A清 洗,且前後之顏色變化被測量。 沾色性亦係以AATCC 61-2003-2A之測試為基準。由乙 15 酸酯、棉、聚醯胺、丙烯系及羊毛纖維組成之多纖維測試 織物附接至欲清洗之樣品。測試分級為1〜5,且較低等級意 指較重之沾色性。紡織產業實務係使用聚醯胺之分級結果 作為沾色性之指示。 染色後、第一還原清洗後’及第二還原清洗後之三種 20 不同彈性纖維之色樣被執行。對於包含烯烴嵌段聚合物之 織物,結果指示良好之不褪色性及較深之顏色。第12表顯 示染色後,第一還原清洗後’及第二還原清洗後之彈性纖 維之沾色性。更多之染料吸收於彈性纖維本身上產生更深 顏色。高染料吸收對於獲得深顏色係正面’但若於清洗(家 92 200900545 庭清洗)期間會滲出則可能不利。萊卡tm纖維於染色後,第 一還原清洗後,及第二還原清洗後顯示最深顏色。無規乙 烯-辛烯共聚物及烯烴嵌段聚合物顯示較淡之沾色。樣本於 染色後,第一還原清洗後,及第二還原清洗後係極相似。 5 烯烴嵌段聚合物顯示較少之染色吸收,其於微纖維聚酯織 物之不褪色性助於較佳之不褪色性。 第12表沾色性 測試項目 萊 卡 162C 無規乙烯 辛烯共聚 物 烯烴嵌段 聚合物 染色後之彈性纖維 之沾色 最深 較淡 較淡 第一 RC1後之彈性 纖維之沾色 最深 較淡 較淡 第一 RC2後之彈性 纖維之沾-色 最深 較淡 較淡 :還原清洗 第13表顯示微纖維聚酯織物之顏色強度(K/S)值。較高 10 之κ/s值代表較深之顏色。與萊卡相比,以無規乙烯-辛烯 共聚物及烯烴嵌段聚合物纖維染色之參考微聚酯織物顯示 較深之黑色。雖不欲受任何理論所限,但相信此結果係由 於使用較高染色溫度。染色後,第一還原清洗後,及第二 還原清洗後之樣品間無顯著差異。但是,烯烴嵌段聚合物 15 之微纖維聚酯不能達成較深顏色。 93 200900545 第13表織物之顏色強度(K/S)值 測試項目 萊 卡 162C 無規乙稀-辛烯共聚 物 烯烴嵌 段聚合 物 染色後之微PES參考 織物之顏色強度(K/S) 423.38 755.77 774.71 第一還原清洗後之微 PES參考織物之K/S 414.68 783.83 753.67 第二還原清洗後之微 PES參考織物之K/S 411.75 753.00 739.86 第14表顯示染色後,第一還原清洗後,及第二還原清 洗後之微纖維聚醋之顏色變化值。較高數值意指較輕之顏 色變化。所有樣本顯示良好之顏色變化結果。 5 第14表微聚酯之顏色變化結果 測試項目 萊 卡 162C 無規乙稀-辛烯共聚 物 烯烴嵌 段聚合 物 染色後之微PES之參 考織物之顏色變化 4 4 4 第一還原清洗後之微 PES之參考織物之顏 色變化 4 4 4 第二還原清洗後之微 PES之參考織物之顏 色變化 4 4 4 第15表顯示聚醯胺織物(測試織物)之沾色性。較高數值 意指較少之沾色。還原清洗後之織物顯示較佳之沾色。第 一及第二還原清洗後顯示之結果間無顯見之差異。無規乙 烯-辛烯共聚物及烯烴嵌段聚合物之經染色的參考織物係 10 比經染色的萊卡織物更深,此如第12表所示對於不褪色性 具效用。無一結果涉及織物之熱變定。 94 200900545 第15表織物之沾色性 測試項目 染色後 萊卡 162C 無規乙稀-辛烯共聚 物 烯烴嵌 段聚合 物 3 2.5 ~ 2.5 第 還 3, /7Γ~ Sc之:先後之破1 織物對清洗之 不褪色性 第二還^ PES參考織物對清洗^ 不褪色性 _ , .—_ 3.5 H~~~~~ 3.5 3.5 3.5 —~ 3.5 二1回早面針織物被用於此測試 。其等係以40丹尼之萊 卡40丹尼之無規乙烯_辛稀共聚物,及4〇丹尼之稀煙嵌段 V s物纖維針織之微纖維聚自旨硬紗。原色布之針織速度、 彈性拉伸及織物重量係顯示於第16表。 第16表含各種彈性纖維之織物之織物說明 樣品 速度 (rpm) D.R. 原色布 萊卡162C 12.4 2.6 203克/公尺2 無規乙烯-辛烯 共聚物 12.4 2.6 170克/公尺2 烯烴嵌段聚合物 20 3.2 186克/公尺2 無規乙烯-辛烯共聚物及烯烴嵌段聚合物之原色布於 85°C洗滌20分鐘,於135。(:乾燥45分鐘,於130C無張力染 色60分鐘,於165°C以20%超饋而變定120秒(15碼/分鐘), 10 及整理。對於含無規乙烯-辛烯共聚物及烯烴嵌段聚合物之 織物之染色及還原之條件係係顯示於第9圖。萊卡原色布係 於125 °C染色,且於185 °C熱變定。經整理之織物係於第17 表中描述。 95 200900545 第17表含各種彈性織維之織物之織物重量 樣品ID 經整理之重量 萊卡162C 269克/公尺2 無規乙烯-辛烯共聚物 210克/公尺2 烯烴嵌段聚合物 190克/公尺2 第18表顯示AATCC 61-2003-2A之結果,於熱變定前 後,與萊卡162相比,無規乙烯-辛烯共聚物及烯烴嵌段聚 合物於顏色變化皆具有優異性能。原因係無規乙烯-辛烯共 5 聚物及烯烴嵌段聚合物纖維於135°C染色,分散性染料於此 溫度具有較佳反應。於微纖維聚酯/萊卡之染色批次物,因 低染色溫度而具有未反應之分散性染料,其於織物上沾 色,且於測試期間滲出而使樣本褪色。與萊卡相比,無規 乙烯-辛烯共聚物及OBC皆具有良好之不褪色性。萊卡於熱 10 變定後顯示差的不褪色性。原因係分散性染料於185°C之高 溫熱變定期間遷移。 第18表織物之顏色變化及不褪色性之結果 測試項目 萊 卡 162C 無規乙烤-辛烯共聚 物 烯烴嵌段 聚合物 RC後之顏色變化 3 4 4 熱變定後之顏色變 化 2.5 4 4 RC後對清洗之不褪 色性 3 3.5 3.5 熱變定後對清洗之 不褪色性 2 3.5 4 熱變定後之三個經整理之織物藉由光譜光度計 (Datacolor型號-600PLUS)測試。第19表顯示指示深度之顏 96 200900545 色強度(κ/s)。與使用相同染色組成物之含有萊卡之針織物 相比,含有無規乙烯_辛烯共聚物及烯烴嵌段聚合物之微纖 維聚酯針織物具有較深之顏色。 第19表原色布及經整理之物品之織物宽度 測試項目 萊卡162C 無規乙稀-辛 烯共聚物 OBC EXP 6116 顏色強度(K/S) ^54.23 ^47.55 774.18 5實施例25 _變化量之織維交聯 實施例20之彈性乙烯/α_烯烴異種共聚物被用以製造具 有約圓形截面之40丹尼數之單長絲纖維。於纖維被製造 月丨J ’下列添加劑被添加至聚合物:7〇〇〇卯111之?〇]^0(聚二 甲基石夕氧院)、3000 ppm之CYANOX 1790(1,3,5-三-(4-第三 10 丁基-3-經基-2,6-二甲基苯甲基三嗪 -2,4,6-(lH,3H,5H)-^iij , ^3〇〇〇 ppm^CHIMASORB 944 ^-[[6-(1,1,3,3-h9 f ^T^)^&]-s-^»*-2,4-^^][2,2,6,6- 四甲基-4-哌啶基]亞胺基)六甲撐基[(2,2,6,6_四甲基_4 -娘°定 基)亞胺基]],及0.5重量%之丁丨〇2。纖維係使用具有圓形 15 〇.8mm直徑之模具輪廓,299°C之紡絲溫度,650公尺/分鐘 之絡筒機速度’ 2%之紡絲整理,6%之冷拉伸,及i5〇g之筒 管重畺製造。然後’纖維使用變化量之來自電子束之照射 作為交聯劑而交聯。 凝膠含量對照射量係顯示於第丨丨圖。凝膠含量係藉由 20稱重約25毫克纖維樣品至4個有效數字之準確度而決定。然 後,樣品與7毫升之二甲苯於封蓋之2_樣本瓶内混合。瓶子 於125 C至135。(:加熱90分鐘,且每15分鐘倒轉混合(即,使 97 200900545 #瓦子反轉)’以萃取實質上所有之未交聯 冷卻至約25°C ,二曱苯係凝膠傾析。 0物。一旦瓶子 份之新的二甲苯沖洗。經沖洗之凝^於瓶子内以小部 盤。具凝膠之配衝盤於125°(:真空#_、冑之簡重 5除二甲苯。具乾燥凝膠之盤於分析天平上稱重。凝膠含^ 係以萃取之凝膠重量及原始纖維番县 " 夏馮基準計算。第11圖 顯示當電子束劑量增加時,交聯量(凝膠含量)增加。孰習此 項技藝者會瞭解交聯量與電子束劑量間之精確關係會受特 定之聚合物性質(例如’分子量或熔融指數)影響。 10 【圖式簡單説明:> ^圖齡與料之無規共聚物(關形表㈣及齊格勒 那塔共聚物(以二角形表不)相比時之本發明聚合物(以菱形 表示)之熔點/密度之關係。 第2圖顯示各種聚合物之為Dsc熔融焓之函數之八 15 DSC-CRYSTAF之圖。菱形表示無規乙稀/辛烯共聚物;矩 形表示聚合物實施例卜4’二角形表示聚合物實施例5_9;且 圓形表不聚合物實施例10-19。符號“χ„表示聚合物比較例 A*-F*。 第3圖顯示密度對自本發明異種共聚物(以矩形及圓形 2〇表示)及傳統共聚物(以二角形表示,其係各種之affinity® 聚合物(可得自陶氏化學公司))製成之未定向膜之彈性回復 之作用。矩形表示本發明之乙烯/丁烯共聚物;且圓形表示 本發明之乙烯/辛烯共聚物。 第4圖係實施例5之聚合物(以圓形表示)及比較聚合物 98 200900545 比較例E*及F*(以符號“X”表示)之TREF分級之乙烯/卜辛 烯共聚物分級物之辛烯含量對此分級物之TREF洗提溫度 之作圖。菱形表示傳統之無規乙烯/辛烯共聚物。 第5圖係實施例5之聚合物(曲線1)及聚合物比較例 5 F*(曲線2)之TREF分級之乙烯/1-辛烯共聚物分級物之辛烯 含量對此分級物之TREF洗提溫度之作圖。矩形表示比較例 F* ;且三角形表示實施例5。 第6圖係比較之乙烯/1-辛烯共聚物(曲線2)及丙烯/乙烯 共聚物(曲線3)及以不同量之鏈穿梭劑製成之二本發明之乙 10烯/1-辛晞嵌段共聚物(曲線1)之為溫度之函數之貯存模量 之對數之作圖。 第7圖顯示與某些已知聚合物相比時之某些本發明聚 合物(以菱形表示)之TMA(lmm)對撓曲模量之作圖。三角形 表示各種之Dow VERSIFY®聚合物(可得自陶氏化學公 15司);圓形表示各種無規乙烯/苯乙烯共聚物;且矩形表示各 種Dow AFFINITY®聚合物(可得自陶氏化學公司)。 第8圖顯示實驗室染色機之照片。 第9圖顯示染色及還原清洗方法。 【主要元件符號說明】 (無) 99University 2002, ISBN 9780000033871. The advantage of the fabric of the present invention is that the dyed fabric can be produced by contacting the dye at a temperature of at least about 130 ° C, wherein the fabric exhibits less than 〇 5, preferably less than 〇 4, preferably less than 5 Preferably, less than 0.3' is preferably less than 0.25, preferably less than 〇2, preferably less than 0.15, preferably less than 〇1, preferably less than 〇〇5. The ratio of growth to stretching. Advantageously, the dyed fabric of the present invention formed is generally characterized by a color change of greater than or equal to about 3.0, preferably greater than or equal to about 3 to 5, more preferably greater than or equal to about 4 Torr (by 10 AATCC 61- After the first cleaning of 2003-2A, it was evaluated according to AATCC). Another advantage is that the fabric of the present invention can sometimes exhibit a color change greater than or equal to about 2.5, preferably greater than or equal to about 3.0, and more preferably greater than or equal to about 3.5. (by AATCC 61-2003-2A) After the second cleaning, it is evaluated according to AATCC). Basically, this means that the dyed fabric of the present invention exhibits less fading than the conventional dyed fabric when it is washed. The dyed fabric of the present invention is also characterized by a favorable color strength after dyeing, i.e., the fabric is deep. For example, dyed fabrics are generally characterized by a color 20 strength of greater than or equal to about 600, preferably greater than or equal to about 650, preferably greater than or equal to about 700, and preferably greater than or equal to about 75 Å. Measured with a spectrophotometer). Advantageously, the color is substantially maintained, even after the first and second cleaning. For example, the dyed fabric may be characterized by a color strength of at least about 90, preferably at least about 95, and more preferably at least about 97%, after dyeing by AATCC 61 -2003-2A to the color strength after the first cleaning. Wherein each color intensity is measured by a spectrophotometer. The dyed fabric of 200900545 may sometimes be characterized by at least about 9 〇, preferably at least about 92.5, by the color intensity of the color intensity m after the first 'month wash. It is better to have at least about 94% of the R, A, a, where each color intensity is measured by a spectrophotometer. 5 Although it is not limited to any theory, it is believed that the dyed woven # dyeing of the present invention is due to the fiber of the olefin block polymer. That is, the dilute (four) length of polymer fibers are dyed to a lesser extent to make other materials deeper. Further, when the vinylene polymer is used as a fiber, a higher dyeing temperature can be used with less fiber breakage. In a similar manner, it is believed that the dyed 10 fabrics are less interesting in cleaning the thin hydrocarbon block polymer fibers to the extent that they are as large as the fibers made with other polymers. In this way, the olefin block polymer does not discolor or bleed a lot. EXAMPLES Example 22 - Elastomeric ethylene/α-olefin heteropolymer fiber 15 The elastomeric vinyl hydrazine-olefin heteropolymer (olefin block polymer) of Example 20 was used to make 40 Danny having an approximately circular footprint. A number of single filament fibers. Prior to the fiber being manufactured, the following additives were added to the polymer: 7000 ppm PDMSO (polydidecyloxane), 3 pprn of CYANOX 1790 (1,3,5-tri-(4-third) Butyl _3_hydroxy-2,6-dimethylphenylhydrazine 20 yl)-1,3,5-tri-qin-2,4,6-(1Η,3Η,5Η)-trione, and 3000 ppm CHIMASORB 944 poly-[[6-(1,1,3,3-tetradecylbutyl)amino]-s-triazine-2,4-diyl][2,2,6,6-tetra Methyl-4-piperidinyl]imino)hexamethylene [(2,2,6,6-tetramethyl-4-piperidinyl)imido]] and 0.5% by weight of 11〇2 . The fiber system uses a mold profile with a circular diameter of 0.8 mm, a spinning temperature of 290 ° C 90 200900545 degrees 'winding machine speed of 650 m / min ' 2% spinning finishing, 6 〇 / 〇 cold stretching , and 150g bobbin weight manufacturing. Then, the fibers were crosslinked by using a total amount of 176 4 kGy irradiation as a crosslinking agent. Example 23 - Fiber Hard Yarn 5 A hard yarn was produced comprising Example 22 and an elastic fiber and 150 denier 288 filament polyester. Microfiber filaments are finely levied to ο.] Danny/filament. Two comparative examples were also made. A comparative example of the hard yarn used was 40 denier random ethylene-octene copolymer fibers manufactured at a line speed of 45 ft./min, and the same 150 denier 288 filament polyester fibers. The random ethylene-octene copolymer 10 had an average melt index of 3. gram/10 minutes, a density of 875 g/cm3, and was crosslinked by a dose of 166.4 kGy as a crosslinking agent. The hard yarn of the second comparative example was made of (Lycra) LyCraTM 162 C polymer multifilament fiber and the same 150 Danny 288 filament polyester fiber. Example 24 - Dyeing 15 Experiments were designed to evaluate the staining of elastic fibers and the color depth of fabrics based on microfiber polyester. The experiment evaluated the color of the fibers comprising the olefin block polymer, the fibers comprising LycraTM 162C, and the disperse dye on the fibers comprising the random ethylene-octene copolymer. One of the three different fibers for producing one gram of the hard yarn and nine grams of the microfiber polyester fabric for making the hard yarn (refer to the woven fabric) were loaded in a laboratory rapid dyeing machine as shown in Fig. 8. The dyeing and reduction cleaning treatment shown in Fig. 9 is then carried out for one of the three different fibers. Clariant's dye, Foron Black S-WF, was used to dye fibers and fabrics black. The fiber based on Lycra is 125. (: dyeing, therefore 'this elastic fiber will suffer severe damage at higher temperatures. The other two 91 200900545 fiber systems are dyed at 135 ° C. After dyeing, the first reduction cleaning, and the second reduction cleaning sample are collected. For evaluation. The three different fibers after dyeing and reduction cleaning were visually evaluated. The microfiber fabric was also tested to obtain a color intensity of 5 degrees, color change, and staining value as an indication of color fading. The fiber is defined by visual evaluation in D65 standard daylight. The color intensity (K/S) is measured by a spectrophotometer (Dataco丨or model -600PLUS). The high κ/s value represents a deeper Color. The color change is measured according to AATCC 61-2003-2A, which reports the color difference between the original sample and the sample after cleaning. The evaluation range is based on the 10 AATCC evaluation procedure with gray scale system 1~5. The lower level indicates the larger color. The change is therefore less fading. After dyeing, the sample after the first reduction wash and the second reduction wash are washed by AATCC 61-2003-2A, and the color change before and after is measured. It is also based on the test of AATCC 61-2003-2A. A multi-fiber test fabric consisting of ethyl acetate, cotton, polyamide, propylene and wool fibers is attached to the sample to be cleaned. The test grade is 1~ 5, and the lower grade means heavier staining. The textile industry practice uses the classification result of polyamine as an indicator of staining. After dyeing, after the first reduction and after cleaning, and after the second reduction and cleaning 20 Color samples of different elastic fibers were carried out. For fabrics containing olefin block polymers, the results indicated good colorfastness and darker color. Table 12 shows the first reduction after cleaning and the second reduction after dyeing. The staining of the elastic fibers after washing. More dyes are absorbed on the elastic fibers themselves to produce darker colors. High dye absorption is used to obtain the dark color fronts, but it may ooze during cleaning (home 92 200900545 cleaning) Disadvantageous. Leica tm fiber shows the darkest color after dyeing, after first reduction cleaning, and after second reduction cleaning. Random ethylene-octene copolymer and olefin block polymer show lighter staining The sample is very similar after dyeing, after the first reduction cleaning, and after the second reduction cleaning. 5 The olefin block polymer shows less dye absorption, and its non-fading property on the microfiber polyester fabric helps better. Fading. Table 12 staining test item Lycra 162C random ethylene octene copolymer olefin block polymer dyed elastic fiber stained the deepest lighter and lighter than the first RC1 after the elastic fiber The lightness of the elastic fiber after the first lightening of the first RC2 is the darkest and lighter: the reduction cleaning table 13 shows the color strength (K/S) value of the microfiber polyester fabric. A higher κ/s value of 10 represents a darker color. The reference micropolyester fabric dyed with random ethylene-octene copolymer and olefin block polymer fibers showed a darker black color than Lycra. While not wishing to be bound by any theory, it is believed that this result is due to the use of higher dyeing temperatures. After the dyeing, there was no significant difference between the samples after the first reduction washing and the second reduction washing. However, the microfiber polyester of the olefin block polymer 15 cannot achieve a darker color. 93 200900545 The color strength (K/S) value of the 13th table fabric test item Lycra 162C Random ethylene-octene copolymer olefin block polymer dyed micro-PES reference fabric color strength (K/S) 423.38 755.77 774.71 Micro-PES reference fabric after first reduction and cleaning K/S 414.68 783.83 753.67 Micro-PES reference fabric after second reduction and cleaning K/S 411.75 753.00 739.86 Table 14 shows after dyeing, after first reduction cleaning, and Second, the color change value of the microfiber polyacetate after the reduction and cleaning. Higher values mean lighter color changes. All samples showed good color change results. 5 Table 14 Micro-polyester color change results Test item Lycra 162C Random ethylene-octene copolymer olefin block polymer dyed micro-PES reference fabric color change 4 4 4 After the first reduction and cleaning Color change of the reference fabric of PES 4 4 4 Color change of the reference fabric of the micro-PES after the second reduction and cleaning 4 4 4 Table 15 shows the staining property of the polyamide fabric (test fabric). Higher values mean less staining. The reduced cleaned fabric shows a better stain. There was no significant difference between the results displayed after the first and second reductions. The dyed reference fabric 10 of the random ethylene-octene copolymer and olefin block polymer is deeper than the dyed Lycra fabric, which has utility for non-fading as shown in Table 12. None of the results involved thermal deformation of the fabric. 94 200900545 15th table fabric stain test item dyed Lycra 162C random ethylene-octene copolymer olefin block polymer 3 2.5 ~ 2.5 3rd, /7Γ~ Sc: successively broken 1 fabric pair The non-fading property of the cleaning is also the second. ^ PES reference fabric cleaning. Non-fading _ , .—_ 3.5 H~~~~~ 3.5 3.5 3.5 —~ 3.5 Two-time early knit fabric was used for this test. It is a non-woven vinyl-dye copolymer of 40 Danny's Lycra 40 Danny, and a microfiber poly-gloss yarn of 4 Denny's thin smoke block V s fiber knitted. The knitting speed, elastic stretch and fabric weight of the primary color cloth are shown in Table 16. Table 16 Fabrics of fabrics containing various elastic fibers Description Sample speed (rpm) DR Primary color Braka 162C 12.4 2.6 203 g/m 2 Random ethylene-octene copolymer 12.4 2.6 170 g/m 2 Olefin block polymerization Material 20 3.2 186 g/m 2 The primary color cloth of the random ethylene-octene copolymer and the olefin block polymer was washed at 85 ° C for 20 minutes at 135. (: drying for 45 minutes, dyeing at 130C for 60 minutes without tension, at 120 ° C with 20% overfeeding for 120 seconds (15 yards / minute), 10 and finishing. For the inclusion of random ethylene-octene copolymer and The conditions for dyeing and reduction of the olefin block polymer fabric are shown in Figure 9. The Lycra virgin fabric was dyed at 125 ° C and thermally set at 185 ° C. The finished fabric was in Table 17. Description 95 200900545 Table 17 Fabric Weights of Fabrics with Various Elastic Weaves Sample ID Finished Weight Lycra 162C 269 g/m 2 Random Ethylene-Octene Copolymer 210 g/m 2 Olefin Block Polymer 190 g / m 2 Table 18 shows the results of AATCC 61-2003-2A, before and after thermal set, compared with Lycra 162, random ethylene-octene copolymer and olefin block polymer have color change Excellent performance. The reason is that random ethylene-octene co-polymers and olefin block polymer fibers are dyed at 135 ° C, and the disperse dyes have better reaction at this temperature. Batches of microfiber polyester / Lycra dyeing An unreacted disperse dye on a fabric due to a low dyeing temperature Color, and bleed out during the test to discolor the sample. Compared with Lycra, the random ethylene-octene copolymer and OBC have good colorfastness. Lycra shows poor colorfastness after heat 10 change. Disperse dyes migrated during high temperature heat set at 185 ° C. Results of color change and non-fading of fabrics of Table 18 Test item Lycra 162C Random B-bake-octene copolymer olefin block polymer RC Color change 3 4 4 Color change after heat setting 2.5 4 4 Non-fading property after cleaning after RC 3 3.5 3.5 Non-fading property after cleaning after heat setting 2 3.5 4 Three after heat setting The fabric was tested by a spectrophotometer (Datacolor Model - 600 PLUS). Table 19 shows the color intensity (κ/s) indicating the depth of the face 96 200900545. Contains randomness compared to the knitted fabric containing Lycra using the same dye composition. The microfiber polyester knitted fabric of ethylene-octene copolymer and olefin block polymer has a deeper color. The fabric width test item of the primary color cloth and the finished article of the 19th table Lycra 162C random ethylene-octene copolymerization OBC EXP 6116 Color Intensity (K/S) ^54.23 ^47.55 774.18 5 Example 25 _ Varying amount of textured crosslinked The elastomeric ethylene/α-olefin heteropolymer of Example 20 was used to make 40 dan having an approximately circular cross section. Single filament fiber of Nis. In the fiber is manufactured, the following additives are added to the polymer: 7〇〇〇卯111?〇]^0 (polydimethyl oxalate), 3000 ppm CYANOX 1790 (1,3,5-tri-(4-Tertiary 10 butyl-3-carbyl-2,6-dimethylbenzyltriazine-2,4,6-(lH,3H,5H) )-^iij , ^3〇〇〇ppm^CHIMASORB 944 ^-[[6-(1,1,3,3-h9 f ^T^)^&]-s-^»*-2,4- ^^][2,2,6,6-Tetramethyl-4-piperidinyl]imino)hexamethylene[[2,2,6,6-tetramethyl-4-Niang]-based Amino]], and 0.5% by weight of butyl hydrazine 2. The fiber system uses a mold profile with a circular diameter of 15 〇.8 mm, a spinning temperature of 299 ° C, a winder speed of 650 m/min ' 2% spinning finishing, 6% cold drawing, and i5 〇g's bobbin is manufactured in heavy weight. Then, the fiber is crosslinked by using a varying amount of irradiation from an electron beam as a crosslinking agent. The gel content versus exposure is shown in the figure. The gel content is determined by the accuracy of weighing 20 fiber samples to 4 significant figures. The sample was then mixed with 7 ml of xylene in a capped 2 _ sample vial. Bottles range from 125 C to 135. (: Heating for 90 minutes, and inverting mixing every 15 minutes (i.e., making 97 200900545 #瓦子反倒)' to extract substantially all of the uncrosslinked cooling to about 25 ° C, deuterated benzene-based gel decantation. 0. Once the bottle is filled with new xylene, rinse it into a small plate in the bottle. The gel is equipped with a plate at 125° (: vacuum #_, 胄 简 5 5) The plate with dry gel was weighed on an analytical balance. The gel content was calculated based on the weight of the extracted gel and the original fiber Fanxian" Xia Feng benchmark. Figure 11 shows cross-linking as the electron beam dose increases. The amount (gel content) is increased. Those skilled in the art will appreciate that the precise relationship between the amount of cross-linking and the electron beam dose will be affected by the specific polymer properties (eg 'molecular weight or melt index'). :> ^The melting point/density of the inventive polymer (indicated by diamonds) when the random copolymer of the age and the material (the relational table (4) and the Zieglereta copolymer (indicated by the square) are compared) Figure 2. Figure 2 shows the diagram of the eight 15 DSC-CRYSTAF of various polymers as a function of Dsc melting enthalpy. The diamonds represent random ethylene/octene copolymers; the rectangles represent polymer examples; the 4' dime represents polymer examples 5-9; and the circular forms are polymer examples 10-19. The symbol "χ" indicates polymer Comparative Example A*-F*. Figure 3 shows the density of the heteropolymer from the present invention (represented by a rectangle and a circle of 2〇) and a conventional copolymer (indicated by a dihedron, which is a variety of affinity® polymers ( The effect of the elastic recovery of the unoriented film produced by the Dow Chemical Company). The rectangle represents the ethylene/butene copolymer of the present invention; and the circle represents the ethylene/octene copolymer of the present invention. Polymer of Example 5 (represented by a circle) and comparative polymer 98 200900545 Comparative Example E* and F* (denoted by the symbol "X") The octene content of the TREF graded ethylene/octene copolymer fraction A plot of the TREF elution temperature for this fraction. The diamond represents a conventional random ethylene/octene copolymer. Figure 5 is a polymer of Example 5 (curve 1) and a polymer comparative example 5 F* (curve) 2) the octene content of the TREF graded ethylene/1-octene copolymer fraction The TREF elution temperature of the grade is plotted. The rectangle indicates Comparative Example F*; and the triangle indicates Example 5. Figure 6 is a comparison of the ethylene/1-octene copolymer (curve 2) and the propylene/ethylene copolymer ( Curve 3) and the logarithm of the storage modulus of the two 10 olefin/1-octyl block copolymers of the invention (curve 1) as a function of temperature, prepared with different amounts of chain shuttling agents. Figure 7 shows a plot of TMA (lmm) versus flexural modulus for certain inventive polymers (indicated by diamonds) when compared to certain known polymers. Triangles represent various Dow VERSIFY® polymers ( Available from Dow Chemical Company 15; Round indicates various random ethylene/styrene copolymers; and rectangular indicates various Dow AFFINITY® polymers (available from The Dow Chemical Company). Figure 8 shows a photograph of a laboratory dyeing machine. Figure 9 shows the dyeing and reduction cleaning methods. [Main component symbol description] (none) 99

Claims (1)

200900545 十、申請專利範圍: ι_ 一種經染色的織物,包含一或更多之彈性纖維,其中, 該彈性纖維包含至少一乙烯烯烴嵌段聚合物與至少一交 聯劑之反應產物,且其中,該織物特徵在於藉由 5 AATCC61 -2003-2A之第一次清洗後依據AATCC評估之 大於或等於約3.〇之顏色變化。 2·如申請專利範圍第1項之經染色的織物,其中,該織物特 徵在於藉由AATCC61-2003-2A之第一次清洗後依據 AATCC評估之大於或等於約35之顏色變化。 10 3.如申請專利範圍第1項之經染色的織物,其中,該織物特 徵在於藉由AATCC61_2〇〇3_2a之第一次清洗後依據 AATCC評估之大於或等於約4 〇之顏色變化。 4·如申請專利範圍第1項之經染色的織物,其中,該織物係 一機織織物,其特徵在於依據ASTM D3107測量之至少 15 約10%之拉伸。 5♦如申請專利範圍第1項之經染色的織物,其中,該乙烯烯 烴搬段聚合物係乙烯/α_烯烴異種共聚物,其特徵在於交 聯前之下列特徵之一或多者: (a) 具有約1.7至約3.5之Mw/Mn,至少一熔點(Tm,以。C 2〇 計),及密度(d,以克/立方公分計),其中,Tm及d之數 值係相對應於關係式: Tm > -2002.9 + 4538.5(d) - 2422.2(d)2 ;或 (b) 具有約1.7至約3.52MW/Mn,且特徵在於一熔融熱(△ Η,J/g)及一以最高dsc峰及最高CRYSTAF峰間之溫度 100 200900545 差而定義之△量(ΔΤ,。〇,其中,at與AHi數值具 有下列關係式: 對於ΛΗ大於0且最高達130 J/g時係 ΔΤ>-0.1299(ΔΗ)+62.81 > 對於ΛΗ大於130 J/g時係, 其中,該CRYSTAF峰係使用至少5%之累積聚合物決 定,且若少於5%之該聚合物具有可鑑別之cRTSTAF 峰,則該CRYSTAF溫度係30。(:;或 (c) 特徵在於以乙烯/〇;-烯烴異種共聚物之壓模成型膜測 量之於300%應變及1周期之彈性回復(Re,%),且具有 一密度(d,克/立方公分),其中,當乙烯/α; _烯烴異種共 聚物實質上無交聯相時,Re及d之數值滿足下列關係式: Re>1481-1629(d);或 (d) 具有於使用TREF分級時於40°C與13(TC間洗提之分 子分級物’特徵在於該分級物具有比於相同溫度間洗提 之可相比擬的無規乙烯異種共聚物分級物者高至少5〇/〇 之莫耳共單體含量’其中,該可相比擬之無規乙烯異種 共聚物具有相同共單體,且具有該乙烯/α_烯烴異種共 聚物者之10%内之熔融指數、密度及莫耳共單體含量(以 整個聚合物為基準計); (e) 具有於25°C時之貯存模量,G,(25°C),及100。(:時之 貯存模量 ’ G,(10(TC),其中,G,(25°C)對G,(100°C)之比 例係約1:1至約10:1 ;或 ⑺具有當使用TREF分級時於4(TC與130。(:間洗提之一 101 200900545 分子分級物,特徵在於該分級物具有至少0.5且最高達約 1之後段指數,及大於約1.3之分子量分佈,Mw/Mn ;或 (g)具有大於〇且最高達約1.0之平均嵌段指數,及大於約 1.3之分子量分佈,Mw/Mn。 5 6.如申請專利範圍第1項之經染色的織物,其中,該織物係 針織織物,其特徵在於依據ASTM D2594測量之至少約 30%之拉伸。 7.如申請專利範圍第1項之經染色的織物,其中,該彈性纖 維包含該織物之約2至約30重量%。 10 8.如申請專利範圍第1項之經染色的織物,其中,該織物進 一步包含聚S旨、而ί綸、纖維素、棉、亞麻、学'麻、大麻、 羊毛、絲、亞麻、竹、天絲、毛海、其它天然纖維,及 其等之混合物。 9. 如申請專利範圍第8項之經染色的織物,其中,該聚酯係 15 微纖維聚酯。 10. 如申請專利範圍第8項之經染色的織物,其中,該聚酯包 含該織物之至少約50重量%。 11. 如申請專利範圍第9項之經染色的織物,其中,該微纖維 聚酯包含該織物之至少約50重量%。 20 12.如申請專利範圍第5項之經染色的織物,其中,該乙烯/α- 烯烴異種共聚物係與另外聚合物摻合。 13_如申請專利範圍第5項之經染色的織物,其中,該乙烯/(X-烯烴異種共聚物之特徵在於約0.865至約0.92 g/cm3之密度 (ASTMD 792),及約0.1至約10克/10分鐘之未交聯熔融指數。 102 200900545 14.如申明專利範圍第1項之經染色的織物,其中,該織物係 針織織物且包含大多數之具有約1丹尼至約180丹尼之丹 尼數之纖維。 15 ·如申。月專利範圍第1項之經染色的織物,其中,該織物之 5 特徵在於藉由AATCC61 -2003-2A之第二次清洗後依據 AATCC評估之大於或等於約25之顏色變化。 I6,如申睛專利範圍第1項之經染色的織物,其中,該織物之 特徵在於藉由AATCC61-2003-2A之第二次清洗後依據 AATCC評估之大於或等於約3 〇之顏色變化。 10 I7·如申請專利範圍第1項之經染色的織物,其中,該織物之 特徵在於藉由AATCC61 -2003-2A之第二次清洗後依據 AATCC評估之大於或等於約3.5之顏色變化。 18. —種經染色的織物,包含一或更多之彈性纖維,其中, 該彈性纖維包含至少一乙烯烯烴嵌段聚合物與至少一交 15 聯劑之反應產物,且其中,該織物之特徵在於以光譜光 度計測量之大於或等於約600之於染色後之顏色強度。 19. 如申請專利範圍第18項之經染色的織物,其中,該織物 之特徵在於以光譖光度計測量之大於或等於約6 5 〇之於 染色後之顏色強度。 20 20.如申請專利範圍第18項之經染色的織物,其中,該織物 之特徵在於以光譜光度計測量之大於或等於約7〇〇之於 染色後之顏色強度。 21.如申請專利範圍第18項之經染色的織物,其中,該織物 之特徵在於以光譜光度計測量之大於或等於約750之於 103 200900545 染色後之顏色強度。 22. 如申請專利範圍第18項之經染色的織物,其中,該織物 之特徵在於藉由AATCC61-2003-2A之於第一次清洗後 之顏色強度係於染色後之顏色強度之至少約90%,其 5 中,每一顏色強度係以光譜光度計測量。 23. 如申請專利範圍第18項之經染色的織物,其中,該織物 之特徵在於藉由AATCC61-2003-2A之於第一次清洗後 之顏色強度係於染色後之顏色強度之至少約95%,其 中,每一顏色強度係以光譜光度計測量。 10 24.如申請專利範圍第18項之經染色的織物,其中,該織物 之特徵在於藉由AATCC61-2003-2A之於第一次清洗後 之顏色強度係於染色後之顏色強度之至少約97%,其 中,每一顏色強度係以光譜光度計測量。 25. 如申請專利範圍第18項之經染色的織物,其中,該織物 15 之特徵在於藉由AATCC61-2003-2A之於第二次清洗後 之顏色強度係於染色後之顏色強度之至少約90%,其 中,每一顏色強度係以光譜光度計測量。 26. 如申請專利範圍第18項之經染色的織物,其中,該織物 之特徵在於藉由AATCC61-2003-2A之於第二次清洗後 20 之顏色強度係於染色後之顏色強度之至少約92.5%,其 中,每一顏色強度係以光譜光度計測量。 27. 如申請專利範圍第18項之經染色的織物,其中,該織物 之特徵在於藉由AATCC61-2003-2A之於第二次清洗後 之顏色強度係於染色後之顏色強度之至少約94%,其 104 200900545 中’每一顏色強度係以光譜光度計測量。 28.如申請專利範圍第18項之經染色的織物,其中,該織物 係機織織物且特徵在於依據ASTM D3107測量之至少約 10%之拉伸。 5 29.如申請專利範圍第18項之經染色的織物,其中,該乙烯 烯烴嵌段聚合物係乙烯/α_烯烴異種共聚物,其特徵在於 交聯前之下列特徵之一或多者: (a) 具有約1.7至約3.5之Mw/Mn,至少一溶點(Tm,以。C 計)’及密度(d,以克/立方公分計),其中,Tm及d之數 1〇 值係相對應於關係式: Tm > -2002.9 + 4538.5(d) - 2422.2(d)2 ;或 (b) 具有約1.7至約3.5之Mw/Mn,且特徵在於一熔融熱(八 Η ’ J/g)及一以最高DSC峰及最高CRYSTAF峰間之溫度 差而定義之△量(ΛΤ,。〇,其中,at與之數值具 15 有下列關係式: 對於AH大於0且最高達130 J/g時係 ΔΤ>-0.1299(ΔΗ)+62.81 * 對於ΔΗ大於130 J/g時係, 其中,該CRYSTAF峰係使用至少5%之累積聚合物決 2〇 疋,且若少於5%之該聚合物具有可鑑別之CRTSTAF 峰,則該CRYSTAF溫度係301 ;或 (c) 特徵在於以乙稀/α -烯烴異種共聚物之壓模成型膜測 量之於300%應變及1周期之彈性回復(Re,%),且具有 —岔度(d,克/立方公分),其中,當乙烯/α _烯烴異種共 105 200900545 聚物實質上無交聯相時,Re及d之數值滿足下列關係式: Re>1481-1629(d);或 (d)具有於使用TREF分級時於40 °C與130 °C間洗提之分 子分級物,特徵在於該分級物具有比於相同溫度間洗提 5 之可相比擬的無規乙烯異種共聚物分級物者高至少5% 之莫耳共單體含量,其中,該可相比擬之無規乙烯異種 共聚物具有相同共單體,且具有該乙烯/α-烯烴異種共 聚物者之10%内之熔融指數、密度及莫耳共單體含量(以 整個聚合物為基準計); 10 (e)具有於25°C時之貯存模量,G’(25°C),及l〇〇°C時之 貯存模量,G’(100°C),其中,G’(25°C)對G’(100°C)之比 例係約1:1至約10:1 ;或 (f) 具有當使用T R E F分級時於4 0 °C與13 0 °C間洗提之一 分子分級物,特徵在於該分級物具有至少0.5且最高達約 15 1之嵌段指數,及大於約1.3之分子量分佈,Mw/Mn ;或 (g) 具有大於0且最高達約1.0之平均嵌段指數,及大於約 1.3之分子量分佈,Mw/Mn。 30.如申請專利範圍第18項之經染色的織物,其中,該彈性 纖維包含該織物之約2至約30重量%。 20 31.如申請專利範圍第18項之經染色的織物,其中,該織物 進一步包含聚酯、耐綸,或其等之混合物。 32. 如申請專利範圍第18項之經染色的織物,其中,該聚酯 係微纖維聚酯。 33. 如申請專利範圍第31項之經染色的織物,其中,該聚酯 106 200900545 包含該織物之至少約80重量%。 34_如申請專利範圍第32項之經染色的織物,其中,該微纖 維聚酯包含該織物之至少約80重量%。 35. 如申请專利範圍第28項之經染色的織物,其中,該乙稀 5 /α-烯煙異種共聚物係與另外聚合物摻合。 36. 如申请專利範圍第18項之經染色的織物,其中,該乙烯 /α_烯烴異種共聚物之特徵在於約0.865至約0.92 g/cm3之密 度(ASTM D 792),及約0.1至約1〇克/10分鐘之未交聯熔融指 數。 10 37·如申請專利範圍第18項之經染色的織物,其中,該纖維 之大多數係具有約1丹尼至約18〇丹尼之丹尼數。 38. —種製造經染色的織物之方法,其中,該織物包含一或 更多之包含至少一乙烯稀烴嵌段聚合物與至少一交聯劑 之反應產物之彈性纖維,其中,該方法包含使該織物與 15 該染料於高於室溫之溫度接觸,然後,乾燥該織物,其 中’改良包含使該織物與該染料於至少約13〇。(:之溫度 接觸產生經染色之織物,其中,該織物展現少於〇.5之成 長對拉伸之比例。 39·如申請專利範圍第38項之方法,其中,該織物展現少於 20 〇_25之成長對拉伸之比例。 40_如申請專利範圍第38項之方法,其中,該經染色的織物 特徵在於藉由AATCC61-2003-2A.之第一次清洗後依據 AATCC評估之大於或等於約3.0之顏色變化。 41.如申請專利範圍第38項之方法,其中,該經染色的織物 107 200900545 之特徵在於藉由AATCC61-2003-2A之第一次清洗後之 顏色強度係於染色後之顏色強度之至少約90%,其中, 每—顏色強度係以光譜光度計測量。 42. 如申請專利範圍第邛項之方法,其中,該方法係於實質 5 上缺乏渗透劑中進行。 43. 如申請專利範圍第38項之方法’其中’該經染色的織物 之特徵在於以光譜光度計測量之大於或等於約600之於 染色後之顏色強度。 44_如申請專利範圍第38項之方法,其中,該經染色的織物 10 之特徵在於藉由AATCC61-2003-2A之第一次清洗後之 顏色強度係於染色後之顏色強度之至少約90%,其中, 每一顏色強度係以光譜光度計測量。 45_如申請專利範圍第38項之方法,其中,該乙烯烯烴嵌段 聚合物係乙烯/α_烯烴異種共聚物,其特徵在於交聯前之 15 下列特徵之一或多者: ⑷具有約1.7至約3.5之Mw/Mn,至少一熔點(Tm,以。c §十)’及密度(d ,以克/立方公分計),其中,Tm及d之數 值係相對應於關係式: Tm > -2002.9 + 4538.5(d) - 2422.2(d)2 ;或 20 (b)具有約1/7至約3.5之Mw/Mn,且特徵在於一熔融熱(八 Η ’ J/g)及一以最尚DSC峰及最高cryistaf峰間之溫度 差而定義之△量(AT,〇C),其中,at與ah之數值具 有下列關係式: 對於ΔΗ大於〇且最高達130 J/g時係 108 200900545 ΔΤ>-0.1299(ΔΗ)+62.81 > 對於ΛΗ大於130 J/g時係, 其中,該CRYSTAF峰係使用至少5%之累積聚合物決 定,且若少於5%之該聚合物具有可鑑別之CRTSTAF 5 峰,則該CRYSTAF溫度係3〇°C ;或 (c) 特徵在於以乙烯/α -烯烴異種共聚物之壓模成型膜測 量之於300%應變及1周期之彈性回復(Re,%),且具有 一密度(d,克/立方公分),其中,當乙烯/α-烯烴異種共 聚物實質上無交聯相時,Re及d之數值滿足下列關係式: 10 Re>1481-1629(d);或 (d) 具有於使用TREF分級時於40 °C與130 °C間洗提之分 子分級物,特徵在於該分級物具有比於相同溫度間洗提 之可相比擬的無規乙烯異種共聚物分級物者高至少5 % 之莫耳共單體含量,其中,該可相比擬之無規乙烯異種 15 共聚物具有相同共單體,且具有該乙烯/〇:-烯烴異種共 聚物者之10%内之熔融指數、密度及莫耳共單體含量(以 整個聚合物為基準計); (e) 具有於25°C時之貯存模量,g,(25°C),及100Χ:時之 貯存模量,G’(l〇〇°c),其中,g,(25°C)對G,(10(TC)之比 20 例係約1:1至約10:1 ;或 (f) 具有當使用TREF分級時於40。(:與13CTC間洗提之一 分子分級物,特徵在於該分級物具有至少〇.5且最高達約 1之嵌段指數’及大於約丨3之分子量分佈,Mw/Mn ;或 (g) 具有大於〇且最高達約1.〇之平均嵌段指數,及大於約 109 200900545 1.3之分子量分佈,Mw/Mn。 46. 如申請專利範圍第1項之織物,其中,該織物係機織織物 且包含大多數之具有少於約3000丹尼之丹尼數之纖維。 47. 如申請專利範圍第18項之織物,其中,該織物係針織織 5 物且特徵在於依據ASTM D2594測量之至少約30%之拉 伸。 110200900545 X. Patent application scope: ι_ A dyed fabric comprising one or more elastic fibers, wherein the elastic fiber comprises a reaction product of at least one ethylene olefin block polymer and at least one crosslinking agent, and wherein The fabric is characterized by a color change greater than or equal to about 3. 评估 evaluated by AATCC after the first cleaning of 5 AATCC 61 - 2003-2A. 2. The dyed fabric of claim 1 wherein the fabric is characterized by a color change greater than or equal to about 35 as assessed by the AATCC after the first cleaning of AATCC 61-2003-2A. 10. The dyed fabric of claim 1, wherein the fabric is characterized by a color change of greater than or equal to about 4 Torr as assessed by AATCC after the first cleaning of AATCC 61_2 〇〇 3_2a. 4. The dyed fabric of claim 1, wherein the fabric is a woven fabric characterized by at least about 15% stretch according to ASTM D3107. The dyed fabric of claim 1, wherein the ethylene olefin mobile polymer is an ethylene/α-olefin heteropolymer characterized by one or more of the following characteristics before crosslinking: a) having a Mw/Mn of from about 1.7 to about 3.5, at least one melting point (Tm, in terms of C 2 )), and a density (d in grams per cubic centimeter), wherein the values of Tm and d are corresponding In relation to: Tm > -2002.9 + 4538.5(d) - 2422.2(d)2; or (b) having from about 1.7 to about 3.52 MW/Mn and characterized by a heat of fusion (Δ Η, J/g) and The amount of Δ defined by the difference between the highest dsc peak and the highest CRYSTAF peak temperature 100 200900545 (ΔΤ, 〇, where the at and AHi values have the following relationship: for ΛΗ greater than 0 and up to 130 J/g ΔΤ>-0.1299(ΔΗ)+62.81 > for ΛΗ greater than 130 J/g, wherein the CRYSTAF peak is determined using at least 5% of the cumulative polymer, and if less than 5% of the polymer is identifiable The cRTSTAF peak, the CRYSTAF temperature system is 30. (:; or (c) is characterized by compression molding of ethylene/〇;-olefin heteropolymer The film measures the elastic recovery (Re, %) at 300% strain and 1 cycle, and has a density (d, g/cm 3 ), wherein when the ethylene/α; olefin heteropolymer is substantially free of cross-linking phase The values of Re and d satisfy the following relationship: Re>1481-1629(d); or (d) having a molecular fraction at 40 ° C and 13 (extracted between TCs) when using TREF classification is characterized by The fraction has a molar comonomer content of at least 5 Å/〇 higher than that of the comparable random ethylene heteropolymer copolymer grade eluted between the same temperature, wherein the comparable random ethylene heteropolymer is comparable a melt index, a density, and a molar comonomer content (based on the entire polymer) within 10% of the same comonomer and having the ethylene/α-olefin heteropolymer; (e) Storage modulus at 25 ° C, G, (25 ° C), and 100. (: storage modulus at the time 'G, (10 (TC), where, G, (25 ° C) versus G, (100 The ratio of °C) is from about 1:1 to about 10:1; or (7) has a ratio of 4 when used with TREF (TC and 130. (: one of the elution 101 200900545 molecular grades, characterized by The fraction having a molecular weight distribution of at least 0.5 and up to about 1 and a molecular weight distribution greater than about 1.3, Mw/Mn; or (g) having an average block index greater than 〇 and up to about 1.0, and greater than about 1.3 Molecular weight distribution, Mw / Mn. 5. The dyed fabric of claim 1 wherein the fabric is a knit fabric characterized by at least about 30% stretch measured in accordance with ASTM D2594. 7. The dyed fabric of claim 1, wherein the elastic fiber comprises from about 2 to about 30% by weight of the fabric. 10. The dyed fabric of claim 1, wherein the fabric further comprises a polys, a cellulose, a cotton, a linen, a hemp, a hemp, a wool, a silk, a linen, and a bamboo. , Tencel, Maohai, other natural fibers, and mixtures thereof. 9. The dyed fabric of claim 8 wherein the polyester is a 15 microfiber polyester. 10. The dyed fabric of claim 8 wherein the polyester comprises at least about 50% by weight of the fabric. 11. The dyed fabric of claim 9, wherein the microfiber polyester comprises at least about 50% by weight of the fabric. The dyed fabric of claim 5, wherein the ethylene/α-olefin heteropolymer is blended with another polymer. The dyed fabric of claim 5, wherein the ethylene/(X-olefin heteropolymer is characterized by a density of from about 0.865 to about 0.92 g/cm3 (ASTMD 792), and from about 0.1 to about A dyed fabric of the first aspect of the invention, wherein the fabric is a knitted fabric and comprises a majority of from about 1 Danny to about 180 Dan. The fiber of the Danny's number. 15 · The dyed fabric of the first paragraph of the patent, wherein the fabric is characterized by a second cleaning by AATCC61-2003-2A and evaluated according to AATCC. A color change of greater than or equal to about 25. I6, such as the dyed fabric of claim 1, wherein the fabric is characterized by a greater than AATCC evaluation by AATCC after the second cleaning of AATCC 61-2003-2A Or a color change of about 3 。. 10 I7. The dyed fabric of claim 1, wherein the fabric is characterized by a greater than AATCC evaluation after AGBCC 61-2003-2A Or equal to a color change of about 3.5. 1 8. A dyed fabric comprising one or more elastic fibers, wherein the elastic fibers comprise a reaction product of at least one ethylene olefin block polymer and at least one crosslinking agent, and wherein the fabric is characterized A dyed fabric having a colorimetric intensity of greater than or equal to about 600 as measured by a spectrophotometer. 19. The dyed fabric of claim 18, wherein the fabric is characterized by being greater than that measured by a spectrophotometer. Or equal to about 6 5 〇 to the color intensity after dyeing. 20 20. The dyed fabric of claim 18, wherein the fabric is characterized by a spectral photometer greater than or equal to about 7 〇〇. The dyed fabric of claim 18, wherein the fabric is characterized by a color intensity of greater than or equal to about 750 to 103 200900545 as measured by a spectrophotometer. 22. The dyed fabric of claim 18, wherein the fabric is characterized by a strong color after the first cleaning by AATCC 61-2003-2A A dyed fabric having a color intensity of at least about 90% after dyeing, wherein each of the color strengths is measured by a spectrophotometer. 23. The dyed fabric of claim 18, wherein the fabric is characterized by The color intensity after the first cleaning by AATCC 61-2003-2A is at least about 95% of the color intensity after dyeing, wherein each color intensity is measured by a spectrophotometer. The dyed fabric of item 18, wherein the fabric is characterized in that the color intensity after the first cleaning by AATCC 61-2003-2A is at least about 97% of the color intensity after dyeing, wherein each The color intensity is measured by a spectrophotometer. 25. The dyed fabric of claim 18, wherein the fabric 15 is characterized in that the color strength of the AATCC 61-2003-2A after the second cleaning is at least about the color intensity after dyeing. 90%, wherein each color intensity is measured by a spectrophotometer. 26. The dyed fabric of claim 18, wherein the fabric is characterized in that the color intensity of 20 after the second cleaning by AATCC 61-2003-2A is at least about the color intensity after dyeing. 92.5%, wherein each color intensity is measured by a spectrophotometer. 27. The dyed fabric of claim 18, wherein the fabric is characterized in that the color strength of the AATCC 61-2003-2A after the second cleaning is at least about 94 after the dyeing. %, its 104 200900545 'Each color intensity is measured by a spectrophotometer. 28. The dyed fabric of claim 18, wherein the fabric is a woven fabric and is characterized by at least about 10% stretch measured in accordance with ASTM D3107. 5. The dyed fabric of claim 18, wherein the ethylene olefin block polymer is an ethylene/α-olefin heteropolymer characterized by one or more of the following characteristics prior to crosslinking: (a) having a Mw/Mn of from about 1.7 to about 3.5, at least one melting point (Tm in terms of C) and a density (d in grams per cubic centimeter), wherein the number of Tm and d is one Corresponding to the relationship: Tm > -2002.9 + 4538.5(d) - 2422.2(d)2; or (b) having Mw/Mn of about 1.7 to about 3.5, and characterized by a heat of fusion (gossip J /g) and a Δ amount defined by the temperature difference between the highest DSC peak and the highest CRYSTAF peak (ΛΤ, 〇, where at and the value of 15 have the following relationship: for AH greater than 0 and up to 130 J /g is ΔΤ>-0.1299(ΔΗ)+62.81 * for ΔΗ greater than 130 J/g, wherein the CRYSTAF peak uses at least 5% of the cumulative polymer, and if less than 5% The polymer has an identifiable CRTSTAF peak, and the CRYSTAF temperature system 301; or (c) is characterized by a compression molded film of a ethylene/α-olefin heteropolymer. 300% strain and 1 cycle of elastic recovery (Re, %), and having - twist (d, gram / cubic centimeter), wherein when ethylene / alpha olefin heterogeneous 105 200900545 polymer substantially no cross-linking phase The values of Re and d satisfy the following relationship: Re>1481-1629(d); or (d) a molecular fraction having an elution between 40 ° C and 130 ° C when fractionated using TREF, characterized in that the classification The composition has a molar comonomer content that is at least 5% higher than a comparable random ethylene heteropolymer grade of the same temperature elution 5, wherein the comparable random ethylene heteropolymer has Melt index, density and molar comonomer content (based on the entire polymer) within 10% of the same comonomer and having the ethylene/α-olefin heteropolymer; 10 (e) having 25 Storage modulus at °C, G'(25°C), and storage modulus at l〇〇°C, G'(100°C), where G'(25°C) versus G'(100 °C) is a ratio of from about 1:1 to about 10:1; or (f) having a molecular fraction eluted between 40 ° C and 130 ° C when fractionated using TREF, characterized in that The grade has a block index of at least 0.5 and up to about 15 1 and a molecular weight distribution greater than about 1.3, Mw/Mn; or (g) has an average block index greater than 0 and up to about 1.0, and greater than about 1.3. Molecular weight distribution, Mw / Mn. The dyed fabric of claim 18, wherein the elastic fiber comprises from about 2 to about 30% by weight of the fabric. The dyed fabric of claim 18, wherein the fabric further comprises a mixture of polyester, nylon, or the like. 32. The dyed fabric of claim 18, wherein the polyester is a microfiber polyester. 33. The dyed fabric of claim 31, wherein the polyester 106 200900545 comprises at least about 80% by weight of the fabric. 34. The dyed fabric of claim 32, wherein the microfiber polyester comprises at least about 80% by weight of the fabric. 35. The dyed fabric of claim 28, wherein the ethylene 5 /α-alkenyl heteropolymer is blended with an additional polymer. The dyed fabric of claim 18, wherein the ethylene/α-olefin heteropolymer is characterized by a density of from about 0.865 to about 0.92 g/cm 3 (ASTM D 792), and from about 0.1 to about 1 gram/10 minutes of uncrosslinked melt index. 1037. The dyed fabric of claim 18, wherein the majority of the fibers have a Dani number of from about 1 denier to about 18 denier. 38. A method of making a dyed fabric, wherein the fabric comprises one or more elastic fibers comprising a reaction product of at least one ethylene dilute hydrocarbon block polymer and at least one crosslinker, wherein the method comprises The fabric is contacted with 15 of the dye at a temperature above room temperature, and then the fabric is dried, wherein the 'improvement comprises bringing the fabric to the dye at least about 13 Torr. (The temperature contact produces a dyed fabric wherein the fabric exhibits a growth-to-stretch ratio of less than 〇5. 39. The method of claim 38, wherein the fabric exhibits less than 20 〇 _25 The ratio of growth to stretching. 40. The method of claim 38, wherein the dyed fabric is characterized by a greater than AATCC evaluation after the first cleaning by AATCC 61-2003-2A. Or a color change of about 3.0. The method of claim 38, wherein the dyed fabric 107 200900545 is characterized in that the color intensity after the first cleaning by AATCC 61-2003-2A is The color intensity after dyeing is at least about 90%, wherein each color intensity is measured by a spectrophotometer. 42. The method of claim 2, wherein the method is performed in the absence of a penetrant on the substance 5 43. The method of claim 38, wherein the dyed fabric is characterized by a color intensity measured by a spectrophotometer greater than or equal to about 600 after dyeing. The method of claim 38, wherein the dyed fabric 10 is characterized in that the color intensity after the first cleaning by AATCC 61-2003-2A is at least about 90% of the color intensity after dyeing, wherein each A color intensity is measured by a spectrophotometer. The method of claim 38, wherein the ethylene olefin block polymer is an ethylene/α-olefin heteropolymer characterized by 15 or less before crosslinking. One or more of the characteristics: (4) having a Mw/Mn of from about 1.7 to about 3.5, at least one melting point (Tm, to .c § ten)' and density (d, in grams per cubic centimeter), wherein Tm and d The values are corresponding to the relationship: Tm > -2002.9 + 4538.5(d) - 2422.2(d)2; or 20(b) has a Mw/Mn of from about 1/7 to about 3.5 and is characterized by a heat of fusion (Bagua ' J / g ) and a Δ amount (AT, 〇 C) defined by the temperature difference between the most DSC peak and the highest cryistaf peak, wherein the values of at and ah have the following relationship: For ΔΗ greater than 〇 and up to 130 J/g is 108 200900545 ΔΤ>-0.1299(ΔΗ)+62.81 > for ΛΗ greater than 130 J/g Wherein the CRYSTAF peak is determined using at least 5% of the cumulative polymer, and if less than 5% of the polymer has an identifiable CRTSTAF 5 peak, the CRYSTAF temperature is 3 〇 ° C; or (c) The compression molded film of the ethylene/α-olefin heteropolymer was measured at 300% strain and one cycle of elastic recovery (Re, %), and had a density (d, g/cm 3 ), wherein, when ethylene/ When the α-olefin heteropolymer has substantially no cross-linking phase, the values of Re and d satisfy the following relationship: 10 Re>1481-1629(d); or (d) having a TREF classification at 40 ° C and 130 a molecular fraction eluted between °C, characterized in that the fraction has a molar comonomer content of at least 5% higher than that of a comparable random ethylene heteropolymer fraction eluted at the same temperature, wherein , the comparable random ethylene heterogeneous 15 copolymer has the same comonomer, and has a melt index, a density, and a molar commonomer content within 10% of the ethylene/germanium-olefin heteropolymer. The entire polymer is based on the basis); (e) has a storage modulus at 25 ° C, g, (2 5 ° C), and 100 Χ: the storage modulus of the time, G' (l 〇〇 ° c), where g, (25 ° C) versus G, (10 (TC) ratio of 20 cases is about 1:1 Up to about 10:1; or (f) having a rating of 40 when using TREF. (: eluting one of the molecular fractions with 13CTC, characterized in that the fraction has a block index of at least 〇5 and up to about 1 and a molecular weight distribution greater than about 丨3, Mw/Mn; or (g) An average block index of greater than about 〇 and up to about 1. 〇, and a molecular weight distribution of greater than about 109 200900545 1.3, Mw/Mn. 46. The fabric of claim 1 wherein the fabric is a woven fabric and A fabric comprising a majority of denier having a denier of less than about 3000 denier. 47. The fabric of claim 18, wherein the fabric is a knit fabric and is characterized by at least about 30 as measured according to ASTM D2594. % stretch. 110
TW097101632A 2007-01-16 2008-01-16 Colorfast fabrics and garments of olefin block compositions TW200900545A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88520207P 2007-01-16 2007-01-16

Publications (1)

Publication Number Publication Date
TW200900545A true TW200900545A (en) 2009-01-01

Family

ID=39273532

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097101632A TW200900545A (en) 2007-01-16 2008-01-16 Colorfast fabrics and garments of olefin block compositions

Country Status (11)

Country Link
US (1) US20080184498A1 (en)
EP (1) EP2102396B1 (en)
JP (1) JP2010516909A (en)
CN (1) CN101595253A (en)
AT (1) ATE508217T1 (en)
AU (1) AU2008206336A1 (en)
BR (1) BRPI0806226A2 (en)
CA (1) CA2674597A1 (en)
DE (1) DE602008006667D1 (en)
TW (1) TW200900545A (en)
WO (1) WO2008089220A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622179B2 (en) * 2004-03-17 2009-11-24 Dow Global Technologies Inc. Three dimensional random looped structures made from interpolymers of ethylene/α-olefins and uses thereof
CN102009534B (en) * 2010-09-07 2012-07-25 淄博兰雁集团有限责任公司 Fabric printing and dyeing device with electron accelerator mechanism
US11019861B2 (en) * 2013-07-16 2021-06-01 Bimla Picot Clothing configurations with multiple reclosable access regions
CN110029422A (en) * 2019-04-12 2019-07-19 愉悦家纺有限公司 A kind of tencel/diacetate fibre blended yarn weaved fabric and its method for weaving
CN110331508A (en) * 2019-06-14 2019-10-15 常熟市德美针纺织有限公司 A kind of weft knitting tencel tie dyeing arrangement web process
CN111118703A (en) * 2019-11-28 2020-05-08 江苏悦达家纺有限公司 Honeysuckle jacquard fabric and preparation method thereof

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2973344A (en) * 1957-12-11 1961-02-28 Exxon Research Engineering Co Modified polymers
US2997432A (en) * 1958-08-14 1961-08-22 Phillips Petroleum Co Dyeing of 1-olefin polymers
US3039895A (en) * 1960-03-29 1962-06-19 Du Pont Textile
US3296063A (en) 1963-11-12 1967-01-03 Du Pont Synthetic elastomeric lubricated filament
US4146492A (en) * 1976-04-02 1979-03-27 Texaco Inc. Lubricant compositions which exhibit low degree of haze and methods of preparing same
US4299931A (en) * 1980-03-10 1981-11-10 Monsanto Company Compatibilized polymer blends
US4340563A (en) * 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
JPS5734145A (en) * 1980-08-07 1982-02-24 Mitsui Petrochem Ind Ltd Ethylene-alpha-olefin copolymer composition
US4322027A (en) * 1980-10-02 1982-03-30 Crown Zellerbach Corporation Filament draw nozzle
US4413110A (en) * 1981-04-30 1983-11-01 Allied Corporation High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore
JPS5975929A (en) * 1982-10-25 1984-04-28 Sekisui Chem Co Ltd Production of polyolefin foam
CA1264880A (en) * 1984-07-06 1990-01-23 John Brooke Gardiner Viscosity index improver - dispersant additive useful in oil compositions
US4927888A (en) 1986-09-05 1990-05-22 The Dow Chemical Company Maleic anhydride graft copolymers having low yellowness index and films containing the same
US4950541A (en) 1984-08-15 1990-08-21 The Dow Chemical Company Maleic anhydride grafts of olefin polymers
US4762890A (en) 1986-09-05 1988-08-09 The Dow Chemical Company Method of grafting maleic anhydride to polymers
US4663220A (en) * 1985-07-30 1987-05-05 Kimberly-Clark Corporation Polyolefin-containing extrudable compositions and methods for their formation into elastomeric products including microfibers
US4668566A (en) * 1985-10-07 1987-05-26 Kimberly-Clark Corporation Multilayer nonwoven fabric made with poly-propylene and polyethylene
US4798081A (en) * 1985-11-27 1989-01-17 The Dow Chemical Company High temperature continuous viscometry coupled with analytic temperature rising elution fractionation for evaluating crystalline and semi-crystalline polymers
US5391629A (en) * 1987-01-30 1995-02-21 Exxon Chemical Patents Inc. Block copolymers from ionic catalysts
US5266626A (en) * 1989-02-22 1993-11-30 Norsolor Thermoplastic elastomer based on an ethylene/α-olefin copolymer and on polynorbornene
JP2682130B2 (en) * 1989-04-25 1997-11-26 三井石油化学工業株式会社 Flexible long-fiber non-woven fabric
US6025448A (en) * 1989-08-31 2000-02-15 The Dow Chemical Company Gas phase polymerization of olefins
US5068047A (en) * 1989-10-12 1991-11-26 Exxon Chemical Patents, Inc. Visosity index improver
US4999120A (en) * 1990-02-26 1991-03-12 E. I. Du Pont De Nemours And Company Aqueous emulsion finish for spandex fiber treatment comprising a polydimethyl siloxane and an ethoxylated long-chained alkanol
US5783638A (en) * 1991-10-15 1998-07-21 The Dow Chemical Company Elastic substantially linear ethylene polymers
US6448355B1 (en) 1991-10-15 2002-09-10 The Dow Chemical Company Elastic fibers, fabrics and articles fabricated therefrom
DE69211569T2 (en) * 1991-12-30 1997-01-23 Dow Chemical Co ETHYLENE INTERPOLYMER POLYMERIZATION
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5336552A (en) 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
TW272985B (en) * 1992-09-11 1996-03-21 Hoechst Ag
US5322728A (en) * 1992-11-24 1994-06-21 Exxon Chemical Patents, Inc. Fibers of polyolefin polymers
TW275076B (en) * 1992-12-02 1996-05-01 Hoechst Ag
ES2178648T3 (en) * 1993-02-05 2003-01-01 Idemitsu Kosan Co POLYETHYLENE, COMPOSITION OF THERMOPLASTIC RESIN CONTAINING IT, AND POLYETHYLENE PRODUCTION PROCEDURE.
JP3031142B2 (en) * 1993-11-01 2000-04-10 住友化学工業株式会社 Polypropylene resin composition
US6030917A (en) * 1996-07-23 2000-02-29 Symyx Technologies, Inc. Combinatorial synthesis and analysis of organometallic compounds and catalysts
AR006240A1 (en) * 1996-03-14 1999-08-11 Fuller H B Licensing Financ HOT MELTING ADHESIVE INCLUDING INTERPOLYMERS, NON-WOVEN ARTICLE THAT UNDERSTANDS IT, POLYMERIZATION PROCEDURE FOR PREPARATION AND BOX, CONTAINER, TRAY AND BOOK UNITED WITH SUCH ADHESIVE
EP0886669B1 (en) * 1996-03-15 2000-05-10 Amoco Corporation Stiff, strong, tough glass-filled olefin polymer
BR9708232A (en) * 1996-03-27 1999-08-03 Dow Chemical Co Catalyst activator catalyst system for polymerization of alpha-olefins and polymerization process
US5892076A (en) * 1996-03-27 1999-04-06 The Dow Chemical Company Allyl containing metal complexes and olefin polymerization process
JP3835852B2 (en) * 1996-04-19 2006-10-18 日本化薬株式会社 Disperse dye composition and method for dyeing hydrophobic fiber material using the same
DE69730718T2 (en) * 1996-08-08 2005-09-22 Dow Global Technologies, Inc., Midland METAL COMPLEXES INCLUDED A CYCLOPENTADIENY GROUP SUBSTITUTED IN POSITION 3 AND AN OLEFIN POLYMERIZATION PROCESS
US6362252B1 (en) * 1996-12-23 2002-03-26 Vladimir Prutkin Highly filled polymer composition with improved properties
KR100564500B1 (en) * 1997-02-07 2006-03-29 엑손모빌 케미칼 패턴츠 인코포레이티드 Propylene polymers incorporating polyethylene macromers
DE69834693T2 (en) * 1997-03-13 2006-09-21 Takemoto Oil & Fat Co., Ltd., Gamagori COMPOSITION FOR THE TREATMENT OF ELASTIC POLYURETHANE FIBERS AND THE FIBERS THEREFORE TREATED
US5783531A (en) * 1997-03-28 1998-07-21 Exxon Research And Engineering Company Manufacturing method for the production of polyalphaolefin based synthetic greases (LAW500)
CA2299717A1 (en) * 1997-08-08 1999-02-18 The Dow Chemical Company Sheet materials suitable for use as a floor, wall or ceiling covering material, and processes and intermediates for making the same
US6096668A (en) * 1997-09-15 2000-08-01 Kimberly-Clark Worldwide, Inc. Elastic film laminates
AU9571098A (en) * 1997-09-19 1999-04-05 Dow Chemical Company, The Narrow mwd, compositionally optimized ethylene interpolymer composition, process for making the same and article made therefrom
US6197404B1 (en) * 1997-10-31 2001-03-06 Kimberly-Clark Worldwide, Inc. Creped nonwoven materials
PL342450A1 (en) * 1998-02-20 2001-06-04 Dow Chemical Co Catalyst activators containing expanded anions
AR018359A1 (en) 1998-05-18 2001-11-14 Dow Global Technologies Inc HEAT RESISTANT ARTICLE, CONFIGURED, IRRADIATED AND RETICULATED, FREE FROM A SILANAN RETICULATION AGENT
US6815023B1 (en) * 1998-07-07 2004-11-09 Curwood, Inc. Puncture resistant polymeric films, blends and process
US6225243B1 (en) 1998-08-03 2001-05-01 Bba Nonwovens Simpsonville, Inc. Elastic nonwoven fabric prepared from bi-component filaments
US6306658B1 (en) * 1998-08-13 2001-10-23 Symyx Technologies Parallel reactor with internal sensing
US6316663B1 (en) * 1998-09-02 2001-11-13 Symyx Technologies, Inc. Catalyst ligands, catalytic metal complexes and processes using and methods of making the same
US6680265B1 (en) * 1999-02-22 2004-01-20 Kimberly-Clark Worldwide, Inc. Laminates of elastomeric and non-elastomeric polyolefin blend materials
WO2000059961A1 (en) * 1999-04-01 2000-10-12 Symyx Technologies, Inc. Polymerization catalyst ligands, catalytic metal complexes and compositions and processes using and methods of making same
US6426142B1 (en) 1999-07-30 2002-07-30 Alliedsignal Inc. Spin finish
US6451234B1 (en) * 2000-02-26 2002-09-17 Milliken & Company Process for producing dyed textile materials having high levels of colorfastness
US6537472B2 (en) * 2000-02-29 2003-03-25 Asahi Kasei Kabushiki Kaisha Process for producing a cushioning article
US6160029A (en) * 2000-03-08 2000-12-12 The Dow Chemical Company Olefin polymer and α-olefin/vinyl or α-olefin/vinylidene interpolymer blend foams
WO2001085843A1 (en) 2000-05-11 2001-11-15 The Dow Chemical Company Method of making elastic articles having improved heat-resistance
US6455638B2 (en) * 2000-05-11 2002-09-24 Dupont Dow Elastomers L.L.C. Ethylene/α-olefin polymer blends comprising components with differing ethylene contents
ATE295391T1 (en) * 2000-05-26 2005-05-15 Dow Global Technologies Inc PELYETHYLENE-RICH BLENDS WITH POLYPROPYLENE AND THEIR USE
US6821301B2 (en) 2000-07-31 2004-11-23 Sanyo Chemical Industries, Ltd. Lubricants for elastic fiber
JP4022150B2 (en) * 2001-03-22 2007-12-12 ミリケン・アンド・カンパニー Dyed ultrafine fiber fabric
EP1375585B1 (en) * 2001-03-29 2005-12-21 Idemitsu Kosan Co., Ltd. Propylene polymer composition, molded object, and polyolefin copolymer
DE10127926A1 (en) * 2001-06-08 2002-12-12 Bayer Ag 1,3-disubstituted indene complexes
JP2005508415A (en) * 2001-11-06 2005-03-31 ダウ グローバル テクノロジーズ インコーポレイティド Isotactic propylene copolymers, their production and use
US6960635B2 (en) 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use
US6916886B2 (en) * 2001-11-09 2005-07-12 Japan Polypropylene Corporation Propylene block copolymer
US7005395B2 (en) * 2002-12-12 2006-02-28 Invista North America S.A.R.L. Stretchable composite sheets and processes for making
US6992049B2 (en) * 2002-01-31 2006-01-31 Exxonmobil Research And Engineering Company Lubricating oil compositions
WO2003091262A1 (en) * 2002-04-24 2003-11-06 Symyx Technologies, Inc. Bridged bi-aromatic ligands, complexes, catalysts and processes for polymerizing and poymers therefrom
US7102006B2 (en) 2002-09-12 2006-09-05 Dow Global Technologies Inc. Preparation of metal complexes
AU2003272714A1 (en) * 2002-10-02 2004-04-23 Dow Global Technologies Inc. POLYMER COMPOSITIONS COMPRISING A LOW VISCOSITY, HOMOGENEOUSLY BRANCHED ETHYLENE/Alpha-OLEFIN EXTENDER
US6869679B1 (en) * 2002-10-08 2005-03-22 Edward J. Negola Dyed olefin yarn and textile fabrics using such yarns
US6953764B2 (en) * 2003-05-02 2005-10-11 Dow Global Technologies Inc. High activity olefin polymerization catalyst and process
US7662881B2 (en) * 2004-03-17 2010-02-16 Dow Global Technologies Inc. Viscosity index improver for lubricant compositions
US7622529B2 (en) * 2004-03-17 2009-11-24 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/alpha-olefin with improved compatibility
US7579408B2 (en) * 2004-03-17 2009-08-25 Dow Global Technologies Inc. Thermoplastic vulcanizate comprising interpolymers of ethylene/α-olefins
US7897689B2 (en) * 2004-03-17 2011-03-01 Dow Global Technologies Inc. Functionalized ethylene/α-olefin interpolymer compositions
US7524911B2 (en) * 2004-03-17 2009-04-28 Dow Global Technologies Inc. Adhesive and marking compositions made from interpolymers of ethylene/α-olefins
US7514517B2 (en) * 2004-03-17 2009-04-07 Dow Global Technologies Inc. Anti-blocking compositions comprising interpolymers of ethylene/α-olefins
US7687442B2 (en) * 2004-03-17 2010-03-30 Dow Global Technologies Inc. Low molecular weight ethylene/α-olefin interpolymer as base lubricant oils
US7671106B2 (en) * 2004-03-17 2010-03-02 Dow Global Technologies Inc. Cap liners, closures and gaskets from multi-block polymers
US7504347B2 (en) * 2004-03-17 2009-03-17 Dow Global Technologies Inc. Fibers made from copolymers of propylene/α-olefins
US7714071B2 (en) * 2004-03-17 2010-05-11 Dow Global Technologies Inc. Polymer blends from interpolymers of ethylene/α-olefins and flexible molded articles made therefrom
US7863379B2 (en) * 2004-03-17 2011-01-04 Dow Global Technologies Inc. Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers
US7622179B2 (en) * 2004-03-17 2009-11-24 Dow Global Technologies Inc. Three dimensional random looped structures made from interpolymers of ethylene/α-olefins and uses thereof
US7355089B2 (en) * 2004-03-17 2008-04-08 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates
US7557147B2 (en) * 2004-03-17 2009-07-07 Dow Global Technologies Inc. Soft foams made from interpolymers of ethylene/alpha-olefins
US7666918B2 (en) * 2004-03-17 2010-02-23 Dow Global Technologies, Inc. Foams made from interpolymers of ethylene/α-olefins
US7582716B2 (en) * 2004-03-17 2009-09-01 Dow Global Technologies Inc. Compositions of ethylene/α-olefin multi-block interpolymer for blown films with high hot tack
US7671131B2 (en) * 2004-03-17 2010-03-02 Dow Global Technologies Inc. Interpolymers of ethylene/α-olefins blends and profiles and gaskets made therefrom
US8816006B2 (en) * 2004-03-17 2014-08-26 Dow Global Technologies Llc Compositions of ethylene/α-olefin multi-block interpolymer suitable for films
US7608668B2 (en) * 2004-03-17 2009-10-27 Dow Global Technologies Inc. Ethylene/α-olefins block interpolymers
US7803728B2 (en) * 2004-03-17 2010-09-28 Dow Global Technologies Inc. Fibers made from copolymers of ethylene/α-olefins
US7741397B2 (en) * 2004-03-17 2010-06-22 Dow Global Technologies, Inc. Filled polymer compositions made from interpolymers of ethylene/α-olefins and uses thereof
US7795321B2 (en) * 2004-03-17 2010-09-14 Dow Global Technologies Inc. Rheology modification of interpolymers of ethylene/α-olefins and articles made therefrom
RU2007134418A (en) 2005-03-17 2009-03-20 Дау Глобал Текнолоджиз Инк. (Us) Fibers Obtained from Ethylene / α-Olefin Copolymers
TW200902780A (en) * 2006-11-30 2009-01-16 Dow Global Technologies Inc Olefin block compositions for heavy weight stretch fabrics

Also Published As

Publication number Publication date
CN101595253A (en) 2009-12-02
WO2008089220A9 (en) 2009-02-05
EP2102396A2 (en) 2009-09-23
AU2008206336A1 (en) 2008-07-24
CA2674597A1 (en) 2008-07-24
JP2010516909A (en) 2010-05-20
DE602008006667D1 (en) 2011-06-16
WO2008089220A2 (en) 2008-07-24
BRPI0806226A2 (en) 2011-09-06
EP2102396B1 (en) 2011-05-04
WO2008089220A3 (en) 2008-10-23
US20080184498A1 (en) 2008-08-07
ATE508217T1 (en) 2011-05-15

Similar Documents

Publication Publication Date Title
TWI375682B (en) Fibers made from copolymers of ethylene/α -olefins
KR101433983B1 (en) Fabric comprising elastic fibres of cross-linked ethylene polymer
US8067319B2 (en) Fibers made from copolymers of ethylene/α-olefins
US7695812B2 (en) Fibers made from copolymers of ethylene/α-olefins
KR101373926B1 (en) Stretch fabrics and garments of olefin block polymers
TW200842215A (en) Cone dyed yarns of olefin block compositions
CA2661844A1 (en) Knit fabrics comprising olefin block interpolymers
JP2010511801A (en) Olefin block composition for heavy weight stretch fabrics
BRPI0717718A2 (en) "FABRIC TO BE SUBMITTED TO ANTI-RUG TREATMENT AND CLOTHING PART"
TW200900545A (en) Colorfast fabrics and garments of olefin block compositions
TW200909622A (en) Olefin block interpolymer composition suitable for fibers