[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW200832403A - Non-volatile memory with dual voltage select gate structure and method for operating the same - Google Patents

Non-volatile memory with dual voltage select gate structure and method for operating the same Download PDF

Info

Publication number
TW200832403A
TW200832403A TW96138527A TW96138527A TW200832403A TW 200832403 A TW200832403 A TW 200832403A TW 96138527 A TW96138527 A TW 96138527A TW 96138527 A TW96138527 A TW 96138527A TW 200832403 A TW200832403 A TW 200832403A
Authority
TW
Taiwan
Prior art keywords
voltage
conductive portion
gate
storage element
word line
Prior art date
Application number
TW96138527A
Other languages
Chinese (zh)
Other versions
TWI356416B (en
Inventor
Nima Mokhlesi
Masaaki Higashitani
Original Assignee
Sandisk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/550,382 external-priority patent/US7586157B2/en
Priority claimed from US11/550,383 external-priority patent/US7616490B2/en
Application filed by Sandisk Corp filed Critical Sandisk Corp
Publication of TW200832403A publication Critical patent/TW200832403A/en
Application granted granted Critical
Publication of TWI356416B publication Critical patent/TWI356416B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A select gate structure for a non-volatile storage system include a select gate and a coupling electrode which are independently drivable. The coupling electrode is adjacent to a word line in a NAND string and has a voltage applied which reduces gate induced drain lowering (GIDL) program disturb of an adjacent unselected non-volatile storage element. In particular, an elevated voltage can be applied to the coupling electrode when the adjacent word line is used for programming. A reduced voltage is applied when a non-adjacent word line is used for programming. The voltage can also be set based on other programming criterion. The select gate is provided by a first conductive region while the coupling electrode is provided by a second conductive region formed over, and isolated from, the first conductive region.

Description

200832403 九、發明說明: 【發明所屬之技術領域】 本發明係關於非揮發性記憶體。 【先前技術】200832403 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to non-volatile memory. [Prior Art]

半導體記憶體已變成愈來愈普遍運用在各種電子裝置 中。舉例而言,行動電話、數位攝影機、個人數位助理、 行動運算裝置、非行動運算裝置及其他裝置中皆使用非揮 發性半導體記憶體。電可擦除可程式化唯讀記憶體 (Electrically Erasable Programmable Read Only Memory ; EEPROM)及快閃記憶體係最普遍的非揮發性半導體記憶 體。與傳統全功能EEPROM相比,運用快閃記憶體(亦屬於 EEPROM類型),可在一個步驟中擦除整個記憶體陣列的内 容或記憶體之一部分的内容。 傳統EEPROM及快閃記憶體二者均利用半導體基板中定 位在通道區上且絕緣於通道區的浮動閘極。該浮動問極係 定位在源極區與汲極區之間。控制閘極係提供在浮動閘極 上且絕緣於浮動_。如此形成的電晶體之臨限電壓 (Vth)受控於浮動閘極上保留的雷朴曰 你W的電何1。即,在開通電晶 體之前以允許在其源極與汲極 久位之間的傳導而必須施加至控 制閘極的最小電壓量係受控於 4於子動閘極上的電荷位準。 一些EEPROM及快閃記情妒驻 口體裝置具有用於儲存兩種範圍 電荷的浮動閘極,並且因, 在兩種狀態(例如,經擦除 狀恶與經程式化狀態)之間 私式化/擦除記憶體元件。此類 快閃記憶體裝置有時候稱為—— 局一几式(binary)快閃記憶體裝 125538.doc 200832403 控制閘極並且使位元線接地,使電子自記憶體單元或記憶 體元件(例如,儲存元件)的通道注入至浮動閘極。當電子 累積於浮動閘極中時,浮動閘極變成荷載負電荷狀態,並 且纪憶體元件的臨限電壓上升,使得記憶體元件被視為處 於已程式化狀態。如需關於程式化之更多資訊,請參閱美 國專利案第 6,859,397 號題為"Source Side Self Boosting Technique For Non-Volatile Memory” 及 2005 年 2月 3 日公開Semiconductor memory has become more and more widely used in various electronic devices. For example, non-volatile semiconductor memory is used in mobile phones, digital cameras, personal digital assistants, mobile computing devices, non-mobile computing devices, and other devices. Electrically Erasable Programmable Read Only Memory (EEPROM) and the most common non-volatile semiconductor memory in flash memory systems. Compared to traditional full-featured EEPROMs, flash memory (also known as EEPROM type) can erase the contents of the entire memory array or the contents of a portion of the memory in one step. Both conventional EEPROM and flash memory utilize floating gates that are positioned in the channel region and insulated from the channel region in the semiconductor substrate. The floating questioner is positioned between the source region and the drain region. The control gate is provided on the floating gate and insulated from floating _. The threshold voltage (Vth) of the thus formed transistor is controlled by the Lei 曰 retained on the floating gate. That is, the minimum amount of voltage that must be applied to the control gate before conduction of the transistor to allow conduction between its source and drain potential is controlled by the charge level on the sub-gate. Some EEPROM and flash memory devices have floating gates for storing two ranges of charge and are privately placed between two states (eg, erased and stylized). / Erase memory components. Such a flash memory device is sometimes referred to as - a binary flash memory device 125538.doc 200832403 controls the gate and grounds the bit line to make the electrons from the memory unit or memory element ( For example, the channel of the storage element) is injected into the floating gate. When electrons accumulate in the floating gate, the floating gate becomes a negatively charged state, and the threshold voltage of the memory component rises, causing the memory component to be considered to be in a programmed state. For more information on stylization, please refer to US Patent No. 6,859,397 entitled "Source Side Self Boosting Technique For Non-Volatile Memory" and published on February 3, 2005.

之美國專利申請案第2〇〇5/〇〇24939號題為"以化…叫Ova Programmed Memory ” ;該等案整份内容以引用方式併入本 文中。 但疋,歸因於非揮發性儲存元件彼此鄰近,導致在程式 化期間已遭遇到各種形成之程式化干擾,包括,閘極引發 /及極P牛低(Gate Induced Drain Lowering)程式化干擾。另 卜運用進步縮放NAND技術,預期使此問題惡化。當 V因於後_程式化其它非揮發性儲存元件而導致先前經程 式化之非揮發性儲存元件的臨限電壓偏料發生化 擾。 【發明内容】 本發明解決前述與其它議題之方式為提供-種具有雙電U.S. Patent Application Serial No. 2/5/24,939, entitled "Essence...Ova Programmed Memory"; the entire contents of which are incorporated herein by reference. The storage elements are adjacent to each other, resulting in various stylized interferences that have been encountered during stylization, including gate induced/Gate Induced Drain Lowering stylized interference. It is expected that this problem will be exacerbated. When V is post-programmed with other non-volatile storage elements, the threshold voltage eccentricity of the previously programmed non-volatile storage element is disturbed. [Invention] The way with other topics is to provide - kind with dual power

壓選擇閘結構的非禮A 的非揮發性記憶體,以及詩製造與圖案化 此種非揮發性記憶體之方法。 在一項具體實施例中,一 n π π # # 種用於一非揮發性儲存系統之 k擇閘極結構,句扭· ^ / ·弟一傳導部分,例如,由一複晶 石夕層所形成,該篦_你 傳導邛分係藉由一基板予以承載;一 125538.doc 200832403 等二傳導部分,例如,由另—複^層所 導部分形成在該第一傳導部分 y ^弟一專 兮筮楨道加ν 弟—部件上且電耦合至 该弟一傳導部分之該第一部一八 t ^ /V ^ 電部分,其形成在該 弟一傳導部分之一第二部件 ^丨仟上,及一第三傳導部分,並形 成在該介電部分上。該第傳 ’、 ^得V邛刀係藉由該介電部分而 電隔離於該第一傳導部分並相 卫且相間隔於該第二傳導部分。 、在另一具體實施例中’―種非揮發性儲存系統包括:至 少-NAND串,其具有若干非揮發性儲存元件,·及一選擇 閘極結構,其排列在該至少一NAND串的—端處,其中如 上文所述提供該選擇閘極結構。 在另-具體實施财,-種非揮發性儲存“包括:至 少一 NAND串,其具有若干非揮發性儲存元件;及一選擇 間極結構,其位於該NAND串的—端處。該選擇閘極結構 包括-選擇閘極及一耦合電極,|中該選擇閘極之一部分 延伸於該耦合電極與一基板之間。 在另-具體實施例中…種非揮發性儲存系統包括:若 干NAND串,每一NAND串包括若干非揮發性儲存元件; 及若干字線,其連通於該等NAND串。每一 Nand串包 括:藉由一基板承载的一第一傳導部分,該等第一傳導部 分往一字線方向相隔開;一第二傳導部分,其形成在每一 NAND串之該第一傳導部分上且電耦合至該第一傳導部 分,該第二傳導部分往一字線方向接連地延伸橫跨多個 NAND串,另外,第二傳導部分與相間隔之第一傳導部分 提供用於該等NAND串的相間隔之選擇閘極;—第三傳導 125538.doc 200832403 :刀其形成在㈣:傳導部分上,電絕緣於該第二傳導 /刀並且往δ亥子線方向接連地延伸橫跨多個NAND串, 該弟三導電部分提供用於該等nand串的一耦合電極。 【實施方式】 t &運用本發明使用之一種非揮發性記憶體系統之一項 只例使用NAND型快閃記憶體結構,丨中多個電晶體串聯 排列於一 N AND串中之兩個選擇閘極之間。圖丨#會示依序排 列之兩個NAND串的俯視圖。實務上,可跨一半導體裝置 以一維陣列(視需要,以三維陣列)依序排列若干此類 NAND串。圖丨及2所示之NAND串各串聯且夾在選擇閘極 、、、口構之間的四個電晶體。舉例而言,NAND串# 1包括夾在 一汲極側選擇閘極結構(圖中未繪示)與一源極側選擇閘極 結構110(其包括一源極侧選擇閘極(SGS)U2及一源極側耦 合電極(CES)108)之間的電晶體1〇〇、1〇2、1〇4及1〇6。 NAND串#2包括夾在一汲極側選擇閘極結構14〇(其包括一 汲極侧選擇閘極(SGD) 142及一汲極侧耦合電極(CED) 146) 與一源極侧選擇閘極結構16〇(其包括一源極側選擇閘極 (SGS) 166及一源極側耦合電極(CES) 162)之間的電晶體 150、152、154及156。请注意,圖中緣示nand串# 1之一 端區域已在汲極側被切斷。 舉例而言,在NAND串#1中,在一端處,一選擇閘極(圖 中未繪示)連接該NAND串至一位元線接點(圖中未綠示), 在,另一端處’該選擇閘極112連接該NAND串至一源極線接 點120。同樣地,在NAND串#2中,在一端處,選擇閑極 125538.doc •10- 200832403 142連接該NAND串至一位元線接點130,在另一端處,該 選擇閘極166連接該NAND串至一源極線接點17〇。藉由施 加適當電壓來控制該等選擇閘極。 另外,在NAND串#1中,電晶體100、1〇2、1〇4與1〇6各 具有一控制閘極及一浮動閘極。具體而言,電晶體1〇〇具 有控制閘極100CG及浮動閘極100FG。電晶體102包括控制 閘極102CG及浮動閘極102FG。電晶體104包括控制閘極 104CG及浮動閘極104FG。電晶體1〇6包括控制閘極i〇6CG 及浮動閘極106FG。可提供控制閘極1〇〇CG、102CG、The non-volatile memory of the indecent A of the pressure-selective gate structure, and the method of making and patterning such non-volatile memory. In a specific embodiment, a n π π ## species is used for a non-volatile storage system, and a k-gate structure, a twisted-conductor, a conductive portion, for example, a polycrystalline spine layer Formed, the 篦_ your conductive 邛 is carried by a substrate; a 125538.doc 200832403 and other two conductive parts, for example, a portion guided by another layer is formed in the first conductive portion y The first part of the first-eighth t ^ /V ^ electric part is electrically coupled to the first conductive portion of the first-part one of the conductive portion of the first-part one of the conductive portion And a third conductive portion and formed on the dielectric portion. The first pass, the V-knife is electrically isolated from the first conductive portion by the dielectric portion and is spaced apart from and spaced apart from the second conductive portion. In another embodiment, a non-volatile storage system includes: at least a NAND string having a plurality of non-volatile storage elements, and a select gate structure arranged in the at least one NAND string. At the end, the select gate structure is provided as described above. In another embodiment, the non-volatile storage includes: at least one NAND string having a plurality of non-volatile storage elements; and a selective interpole structure located at the end of the NAND string. The pole structure includes a selection gate and a coupling electrode, wherein a portion of the selection gate extends between the coupling electrode and a substrate. In another embodiment, the non-volatile storage system comprises: a plurality of NAND strings Each NAND string includes a plurality of non-volatile storage elements; and a plurality of word lines connected to the NAND strings. Each Nand string includes: a first conductive portion carried by a substrate, the first conductive portions Separating toward a word line; a second conductive portion formed on the first conductive portion of each NAND string and electrically coupled to the first conductive portion, the second conductive portion being successively connected in a word line direction Extending across a plurality of NAND strings, in addition, the second conductive portion and the spaced apart first conductive portions provide a selected gate for the NAND strings; - third conduction 125538.doc 200832403: the knife is formed at (4): The conductive portion is electrically insulated from the second conductive/knife and extends successively across the plurality of NAND strings in the direction of the δ-Hay sub-line, the third conductive portion providing a coupling electrode for the nand strings. One of the non-volatile memory systems used in the present invention is a NAND-type flash memory structure in which a plurality of transistors are arranged in series in two select gates of an N AND string. Figure 会# shows a top view of two NAND strings arranged in sequence. In practice, several such NAND strings can be sequentially arranged in a one-dimensional array (as needed, in a three-dimensional array) across a semiconductor device. The NAND strings shown in Figure 2 are connected in series and sandwiched between four gates, and between the gate structures. For example, NAND string #1 includes a gate-side selection gate structure (not shown) Illustrated as a transistor 1 〇〇, 1 与 between a source side selection gate structure 110 including a source side selection gate (SGS) U2 and a source side coupling electrode (CES) 108 2, 1〇4 and 1〇6. NAND string #2 includes a gate-side selection gate structure 14〇 a drain side select gate (SGD) 142 and a drain side coupled electrode (CED) 146) and a source side select gate structure 16A (including a source side select gate (SGS) 166 and The transistors 150, 152, 154, and 156 between a source side coupling electrode (CES) 162). Note that one end region of the nand string #1 is cut off on the drain side. In NAND string #1, at one end, a selection gate (not shown) connects the NAND string to a bit line contact (not shown in the figure), and at the other end, the selection Gate 112 connects the NAND string to a source line contact 120. Similarly, in NAND string #2, at one end, the idler 125538.doc •10-200832403 142 is connected to the one-bit line contact 130, and at the other end, the select gate 166 is connected. The NAND string is connected to a source line contact 17〇. The select gates are controlled by applying an appropriate voltage. Further, in the NAND string #1, the transistors 100, 1〇2, 1〇4, and 1〇6 each have a control gate and a floating gate. Specifically, the transistor 1 has a control gate 100CG and a floating gate 100FG. The transistor 102 includes a control gate 102CG and a floating gate 102FG. The transistor 104 includes a control gate 104CG and a floating gate 104FG. The transistor 1〇6 includes a control gate i〇6CG and a floating gate 106FG. Control gates 1〇〇CG, 102CG,

104CG與106CG以分別作為字線WL3、WL2、WL1與WLO 之部分。在一項可行設計中,電晶體1〇〇、1〇2、1〇4和1〇6 皆係§己憶體單元或非揮發性储存元件。在其他設計中,記 憶體元件可包括多個電晶體,或可能係不同於圖i及圖2所 緣示之記憶體元件。選擇閘極142被連接至一沒極選擇 線,而選擇閘極112與166被連接至相關聯之源極選擇線。 NAND串#2係以類似於NAND串#1方式予以排列,並且包 括一接點130 (其連接至在該NAND串之一汲極側的一位元 線),同時一接點170連接至共同源極選擇閘極電壓。此 外,該源極侧選擇電極166被連接至相關聯之源極選擇 線,並且該汲極側選擇閘極142被連接至相關聯之汲極選 擇線。在NAND串#2中,電晶體15〇、152、154與156各具 有一控制閘極及一浮動閘極。電晶體15〇具有控制閘極 150CG及浮動閘極150FG。電晶體152包括控制閘極i52c^ 及浮動閘極152FG。電晶體154包括控制閘極154CG及浮動 125538.doc •11- 200832403 閘極154FG。電晶體156包括控制閘極156CG及浮動閘極 156FG。可提供控制閘極 150CG、152CG、154CG與 156CG 以分別作為字線WL3、WL2、WL1與WL0之部分。彼等字 線不同於相關聯於NAND串#1之字線。 可在一 NAND串的一端處或兩端處提供選擇閘極結構。 . 對具有可受控於不同電壓之一耦合電極與一選擇閘極的一 ' 選擇閘極結構之運用,提供一種雙電壓選擇閘極結構,當 - 操作NAND串時,雙電壓選擇閘極結構提供若干優點,如 馨下文進一步論述。 在一項可行實施方案中,F標示字線、每一記憶體元件 之控制閘極與浮動閘極之寬度,而且標示介於記憶體元件 之間的間隔;3F標示源極選擇閘極結構與汲極選擇閘極結 構之寬度;及3F或5F標示介於相鄰NAND串之選擇閘極結 構之間的空間之寬度,其用於定位接點。選擇閘極結構寬 於記憶體元件的設計對防止電流洩漏通過選擇閘極很有 用。 ® 圖3繪示三個NAND串的電路圖。一種使用NAND結構之 快閃記憶體系統的典型架構將包括數個NAND串。舉例而 . 言,圖中繪示一具有更多NAND串之記憶體陣列中的三個 NAND串320、340和3 60。該等NAND串之每一者除了包括 四個儲存元件以外,亦包括兩個選擇閘極結構,每一選擇 閘極結構具有各自選擇閘極電晶體及耦合元件。雖然為了 簡化而繪示四個儲存元件,但是現代NAND串可具有多達 (例如)32個或64個儲存元件。 125538.doc -12- 200832403 置,原因係每一記憶體元件可儲存一位元之資料。 一種多狀態式(亦稱為多位準式)快閃記憶體裝置係藉由 識別多重相異允許/有效程式化臨限電壓範圍予以實施。 每一相異臨限電麼範圍對應於—用於記憶體裝置中編碼之 各組資料位元的預先決定值。舉例而言,當使記憶體元件 處於相對應於四段㈣電虔範圍的四段相*電荷能段 (charge band)之―時,每―記憶體元件可儲存兩個位元之 資料。 …八地,於耘式化操作期間施加至控制閘極的一程式電 壓VPGM係作為量值隨時間增大之一連串脈衝予以施加。在 厂項可實行之做法巾,該等脈衝之量值係按—預先決定步 進大Μ例如’ 0·2伏至0.4伏)隨每一相繼脈衝予以遞增。 VPGM可被施加至快閃記憶體元件的控制閘極。在介於程式 脈衝之間的週期中,執行驗證操作。gp,在相繼的程式脈 =之間讀取正被並行程式化之一群組記憶體元件的每一記 L體70件之私式化位準,以判定記憶體元件是否已等於或 大於八正被程式化時施加至其的驗證位準。對於多狀熊式 快閃記憶體it件陣列,對於記憶體元件之每_狀態實行一 驗證步驟,以判定是否該記憶體元件已抵達其資料相關聯 之,證位準。舉例而言,一種能夠以四種狀態來儲存資料 的夕狀I己憶體元件可能必須對於三個比較點實行驗證操 作。 ’、 另外,當程式化EEPROM或快閃記憶體裝置(諸如Nand 串中的nand快閃記憶體裝置)時,典型地,施加—u 125538.doc 200832403 舉例而言,NAND串320包括選擇閘極結構322與327及 儲存元件323-326 ; NAND串340包括選擇閘極結構342與 347及儲存元件343-346 ; NAND串360包括選擇閘極結構 362與367及儲存元件3 63-366。每一NAND串係藉由其選擇 閘極結構(例如,選擇閘極結構327、347或367)而連接至源 極線。一選擇線SGS係用於控制選擇閘極結構的源極側選 擇閘極。各種NAND串320、340與360係藉由選擇閘極結構 322、342、362等等中的選擇電晶體而連接至各自位元線 321、341與361。彼等選擇電晶體受控於一汲極選擇線 SGD。在其它具體實施例中,該等選擇線未必然成為 NAND串之間的共同線;即,可為不同的NAND串提供不 同的選擇線。字線WL3被連接至儲存元件323、343及363 的控制閘極。字線WL2被連接至儲存元件324、344及364 的控制閘極。字線WL1被連接至儲存元件325、345及365 的控制閘極。字線WL0被連接至儲存元件326、346及366 的控制閘極。如所示,每一位元線及各自NAND串構成儲 存元件陣列或儲存元件集合之行。該等字線(WL3、 WL2、WL1和WL0)構成儲存元件陣列或儲存元件集合之 列。每一字線連接該列中每一儲存元件的控制閘極。或, 可藉由字線本身來提供控制閘極。舉例而言,字線WL2提 供用於儲存元件324、344及364的控制閘極。實務上,在 一字線上可有上千個儲存元件。 此外,每一選擇閘極結構的耦合電極相鄰於一儲存元件 及字線。舉例而言,選擇閘極結構322的汲極側耦合電極 125538.doc •13- 200832403 搞/相邮於儲存兀件323及机3,及選擇閘極結構327的 源極_合電極(CES)相鄰於錯存元件似及㈣。將於下 =一步解說所述1合電極應接近儲存元件,以透過電 谷搞合來影響該儲存元件。 每:儲存元件可儲存資料。舉例而言,當儲存一位元之 立靖時,儲存元件之可能的臨限電壓(Μ範圍被劃 :广派為邏輯資料"i"及,,〇"的兩段範圍。在画 ^:憶體之—項實例中,儲存元件被擦除之後的〜為 義=義為邏輯"r。程式化操作之後的Vth為正且被定 義為邏輯”〇”。營V 炎名 ^ 1試讀取時,儲存元件將開通 正在儲存邏輯””。當%為正且f試讀取操作 子兀件將未開通’其指示出儲存邏輯,,〇,,。儲存元 =亦:以儲主存多位準資訊,舉例而言,多個位元之數位資 此中,VTH值之範圍被劃分成若干位準之資 ;心2° ’如果儲存四個位準之資訊’則將有四段104CG and 106CG are respectively part of word lines WL3, WL2, WL1 and WLO. In a possible design, the transistors 1〇〇, 1〇2, 1〇4, and 1〇6 are all § memory units or non-volatile storage elements. In other designs, the memory element may comprise a plurality of transistors, or may be different from the memory elements illustrated in Figures i and 2. Select gate 142 is coupled to a gateless select line and select gates 112 and 166 are coupled to associated source select lines. NAND string #2 is arranged in a manner similar to NAND string #1 and includes a contact 130 (which is connected to a bit line on one of the NAND strings), while a contact 170 is connected to the common The source selects the gate voltage. In addition, the source side select electrode 166 is coupled to the associated source select line and the drain side select gate 142 is coupled to the associated drain select line. In NAND string #2, transistors 15A, 152, 154, and 156 each have a control gate and a floating gate. The transistor 15A has a control gate 150CG and a floating gate 150FG. The transistor 152 includes a control gate i52c^ and a floating gate 152FG. The transistor 154 includes a control gate 154CG and a floating 125538.doc • 11-200832403 gate 154FG. The transistor 156 includes a control gate 156CG and a floating gate 156FG. Control gates 150CG, 152CG, 154CG, and 156CG may be provided as part of word lines WL3, WL2, WL1, and WL0, respectively. These word lines differ from the word lines associated with NAND string #1. A select gate structure can be provided at one or both ends of a NAND string. A dual voltage selective gate structure is provided for use with a 'selective gate structure' that can be controlled by one of the different voltage coupling electrodes and a select gate. When operating the NAND string, the dual voltage select gate structure Several advantages are provided, as discussed further below. In a possible implementation, F denotes the word line, the width of the control gate and the floating gate of each memory element, and marks the interval between the memory elements; 3F indicates the source selection gate structure and The drain selects the width of the gate structure; and 3F or 5F indicates the width of the space between the selected gate structures of adjacent NAND strings, which is used to locate the contacts. Selecting the gate structure wider than the memory component design is useful for preventing current leakage by selecting the gate. ® Figure 3 shows a circuit diagram of three NAND strings. A typical architecture for a flash memory system using a NAND structure would include several NAND strings. By way of example, three NAND strings 320, 340, and 3 60 in a memory array having more NAND strings are illustrated. Each of the NAND strings includes, in addition to four storage elements, two select gate structures, each select gate structure having a respective select gate transistor and coupling element. Although four storage elements are illustrated for simplicity, modern NAND strings can have up to, for example, 32 or 64 storage elements. 125538.doc -12- 200832403 The reason is that each memory component can store one bit of data. A multi-state (also known as multi-level) flash memory device is implemented by identifying multiple distinct allowed/effectively programmed threshold voltage ranges. Each of the different power limiting ranges corresponds to a predetermined value for each set of data bits encoded in the memory device. For example, when the memory component is placed in a four-phase* charge band corresponding to the four-section (four) range, each memory element can store two bits of data. ... Eight places, a program voltage VPGM applied to the control gate during the clamp operation is applied as a series of pulses whose magnitude increases with time. In the practice of the factory item, the magnitude of the pulses is incremented by each successive pulse according to a predetermined step size, for example, '0·2 volts to 0.4 volts. The VPGM can be applied to the control gate of the flash memory component. The verification operation is performed during the period between the program pulses. Gp, between successive program pulses = reading the private level of each of the L bodies of 70 pieces of the group memory element being parallelized to determine whether the memory element is equal to or greater than eight The verification level applied to it while it is being programmed. For the avatar-type flash memory device array, a verification step is performed for each state of the memory component to determine whether the memory component has arrived at its data associated with the certificate. For example, an empire-like I-memory component capable of storing data in four states may have to perform verification operations on three comparison points. In addition, when staging a EEPROM or flash memory device (such as a nand flash memory device in a Nand string), typically -u 125538.doc 200832403 For example, NAND string 320 includes a select gate Structures 322 and 327 and storage elements 323-326; NAND string 340 includes select gate structures 342 and 347 and storage elements 343-346; NAND string 360 includes select gate structures 362 and 367 and storage elements 3 63-366. Each NAND string is connected to the source line by its select gate structure (e.g., select gate structure 327, 347, or 367). A select line SGS is used to control the source side select gate of the selected gate structure. The various NAND strings 320, 340, and 360 are connected to respective bit lines 321, 341, and 361 by selecting select transistors in gate structures 322, 342, 362, and the like. They chose the transistor to be controlled by a drain selection line SGD. In other embodiments, the select lines are not necessarily co-linear between the NAND strings; that is, different select lines can be provided for different NAND strings. Word line WL3 is coupled to the control gates of storage elements 323, 343, and 363. Word line WL2 is coupled to the control gates of storage elements 324, 344, and 364. Word line WL1 is coupled to the control gates of storage elements 325, 345, and 365. Word line WL0 is coupled to the control gates of storage elements 326, 346, and 366. As shown, each bit line and its respective NAND string form a bank of storage elements or a collection of storage elements. The word lines (WL3, WL2, WL1, and WL0) constitute a column of storage elements or a collection of storage elements. Each word line connects the control gate of each storage element in the column. Alternatively, the control gate can be provided by the word line itself. For example, word line WL2 provides control gates for storage elements 324, 344, and 364. In practice, there can be thousands of storage elements on a word line. In addition, the coupling electrode of each of the selected gate structures is adjacent to a storage element and a word line. For example, the gate-side coupling electrode of the gate structure 322 is selected 125538.doc • 13- 200832403 is engaged/stored in the storage element 323 and the machine 3, and the source-electrode (CES) of the gate structure 327 is selected. Adjacent to the faulty component seems to be (4). It will be explained in the next = step that the 1 electrode should be close to the storage element to affect the storage element through the grid. Every: storage components can store data. For example, when storing a single yuan, the possible threshold voltage of the storage component (the range is drawn: the wide range of logical data "i" and, 〇" ^: Recalling the body-item example, after the storage element is erased, the meaning is = logical = "r. The Vth after the stylization operation is positive and is defined as logical "〇". Camp V inflammation name ^ 1 When the test is read, the storage component will be turned on and the logic is being stored. When the % is positive and the f test read operation component will not be opened, it indicates the storage logic, 〇, .. storage element = also: to save The main memory is multi-level information. For example, the number of VTH values is divided into several levels of capital. The heart 2° 'If you store four levels of information', there will be Four segments

型記情體…: "〇1"及"〇〇"。在NAND =體之-項實例中,擦除操作之後的να為負且被定 ’ ’、、' 。正vTH值係用於狀態"1〇”、"〇1"及"〇〇"。介於程 =於儲存元件中之資料與儲存元件之臨限電壓範圍之間 的特=關係取決於對储存元件所採用的資料編碼方案。舉 Γ^s ’4國專利㈣6’222,762號及美國專射請公告案 ^ =摘255()9()號(該等案整份内容以引用方式併入本^ 中)描述用於多妝能Μ Μ式快閃儲存元件的各種資料編碼方 系0 125538.doc -14- 200832403 以下美國專利案/專射請案中提供型快閃記憶體 及其運作的相關實例:5,386,422、5,522,58〇、5,57〇,315、 5’774’397、6’046,935、6,456,528 及 6,522,580,所有該等 案均以引用方式併入本文中。 田私式化快閃儲存元件時,一程式電壓被施加至該儲 存兀件之控制閘極,並且相關聯於該健存元件之位元線被 接地來自通道的電子被注人至浮動閘極。當電子累積於 浮動閘極中時’浮動閘極變成荷載負電荷狀態,並且該儲 存元件的VTH上升。為了施加_程式電壓至正被程式化之 儲存兀件的控制閘極,在適當字線上施加該程式電壓。如 上文所述,該等NAND串之每—者中的—儲存元件共用同 字線舉例而言,當程式化圖3之儲存元件324時,程式 電壓亦被施加至儲存元件344與364的控制閘極。 仁疋 儲存元件中儲存之電荷中之偏移可發生於程式 化及碩取一既定儲存元件並且其它儲存元件在一定程度上 麵合於該既定儲存元件時’諸如共用同—字線或位元線的 儲存元件。具體而言,因為介於儲存元件之間的場耦合, :以使儲存之電荷位準中之偏移發生。歸因於積體電路製 k技術改良導致介於儲存元件之間的空間減小使問題加 劇。該問題最顯著發生於在不同時間已程式化之若干群組 相鄰儲存元件之間。一群組儲存元件被程式化以加入相對 應於一組資料的一電荷位準。在用一第二組資料程式化一 第二群組儲存元件之後,歸因於該第二群組儲存元件至該 第一群組儲存元件的電荷電容耦合,導致讀取自該第一群 125538.doc -15· 200832403 組儲存元件的電荷位準似乎不同於所程式化的電荷位準。 因此,耦合效應取決於儲存元件被程式化的順序,並且因 此取決於程式化期間行進通過之字線的順序。典型地(但 非必然),程式化一 NAND串係自源極側至沒極侧,其開始 於源極側字線,並且一次一個字線地前進至汲極側字線。 例如,一既定儲存元件上的電容耦合效應可起因於同一 字線且同一 NAND串中的其它儲存元件。舉例而言,儲存 元件344可係一第一群組儲存元件之部件,該第一群組儲 存元件包括沿字線WL2的其它交替之儲存元件,該第一群 組儲存元件儲存一頁資料。儲存元件324及364可係一第二 群組儲存元件之部件,該第二群組儲存元件儲存另一頁資 料。當在儲存元件344之後程式化該第二群組儲存元件 時,將有對儲存元件344的電容耦合。來自字線上直接相 鄰之儲存元件(儲存元件324與364)的耦合最強。 同樣地,若在儲存元件344之後程式化在同一 NAND串 340上的儲存元件,則會影響儲存元件344。對於儲存元件 344,來自NAND串上直接相鄰之儲存元件(儲存元件343與/ 或345)的耦合最強。舉例而言,如果程式化NAND串340中 的儲存元件之順序係346、345、344、343,則來自儲存元 件343的耦合可影響儲存元件344。一般而言,以相對於儲 存元件344對角線排列之儲存元件(即,儲存元件323、 3 63、325與365)可對儲存元件344提供約20%耦合,而在同 一字線或NAND串上直接相鄰之儲存元件324與364及343與 345提供約80%耦合。在一些情況中,耦合可足以使儲存 125538.doc -16- 200832403 元件之VTH偏移約〇·5伏,這足以造成讀取錯誤,並且使一 群組儲存元件的vTH分佈。 圖4a繪不具有雙電壓選擇閘極結構之NAND串的剖視 圖。圖中僅繪示NAND串之一部分且並且有各種簡單化。 實務上’以二維(例如,位元線方向與字線方向)方式橫跨 半導體基板形成類似的結構。圖中繪示類似的NAND串4〇〇 及450。往位元線或NAND串方向延伸,NAND串4〇〇包括 一選擇閘極結構410 (圖中用虛線框概括繪示)及若干儲存 兀件(諸如儲存元件440與460)。選擇閘極結構410包括一選 擇閘極,該選擇閘極係由一第一傳導部分42〇與一第二傳 V郤刀41 8所形成。選擇閘極結構4丨〇亦包括一轉合電極, 該耦合電極係由一第三傳導部分412所形成。ΝΑΝΕ)φ4〇〇 之第一傳導部分420電隔離於其它NAND串。相比之下,第 一傳導部分418與第三傳導部分412可往字線方向橫跨多個 NAND串延伸以作為控制線,例如,字線。在此方式中, 經施加第二傳導部分或第三傳導部分的一控制電壓被施加 至一組NAND串中的每一 NAND串。同樣地,儲存元件的 控制閘極部分可横跨多個NAND串延伸以作為字線。舉例 而言,在NAND串450中,一儲存元件452包括一控制閘極 區454(其橫跨多個NAND串延伸)及一浮動閘極區456(其隔 離於其它NAND串)。 在選擇閘極、耦合電極及儲存元件上提供保護障壁。舉 例而言,在選擇閘極之第二傳導部分418上提供保護障^ 416。在第二傳導部分412與第一傳導部分42〇之部件之間 125538.doc -17- 200832403 提供一介電層414。在一基板432 (其包括__n井區43〇及一 p 井區428)上形成NAND串。使用淺渠溝隔離技術,在一項 可行設計中,p井區428包括向上延伸部分,該等向上延伸 部分係藉由一填充物426(諸如Si〇2)分離。藉由填充物分離 之P井向上延伸部分的圖案係往字線予以重複。另外,的p 井區中提供在往位元線方向相隔開的n+源極/汲極摻雜區 (例如,源極/汲極區424)。具體而言,在選擇閘極結構41〇 之兩側及儲存元件440與460之兩側提供源極/汲極區。在 基板432之頂部上提供一絕緣層422。 圖仆繪示圖钻之财_串之儲存元件的剖視圖。此視圖 不=括選擇閘極結構’使得可更清楚看到儲存元件。舉例 而吕,可看到儲存元件440的組件包括保護障壁47〇、第二 傳導部分472、介電質474、第一傳導部分476及絕㈣ 478 〇 圖5至圖⑷會示用於製造具有雙電壓選擇閉極結構之 串的過程。請注意’本文描述之製造製程僅陳述一 項:仃1法。可使用不同製造製程來達成所要最終結構。 、月心,圖式非按比例繪製。此外,圖中僅繪示一 之—部分的製造。實務上,可以二維(例如,位元 構字線方向)方式橫跨半導體基板形成類似的結 構。亦可提供三維結構。 圖5、、g不未經圖案化之層狀半導體材料500(具有一其 絕緣層、一第一傳導層及一介電層)的剖面圖二 、不位辑方向…基板層51G包括—半導體材料(諸如 125538.doc • 18- 200832403 石夕)。在一項具體實施例中,於基板510中形成η井與p井(作 用)區。在基板510上形成一絕緣層520(其包括一絕緣材 料’諸如一絕緣氧化物)。在絕緣層520上形成一第一傳導 層530(其包括一傳導材料,諸如一複晶矽層)。在第一傳導 層53 0上形成一介電層54〇(其包括一介電材料)。舉例而 言’介電層540可使用一種複晶間介電(inter_p〇ly dielectric ; IPD),諸如一層氧化物-氮化物-氧化物(〇N〇) 層。 圖ό纷示在已沈積光阻之後的圖5之半導體材料,所得結 果係半導體材料600。具體而言,在一項可實行之做法 中,在介電層540上沈積一光阻層62〇,使用一遮罩使光阻 層選擇性曝光於紫外光,並且使用顯影劑移除光阻之經曝 光部分,藉此曝露出介電層54〇之一部分。實行蝕刻以移 除介電層540之曝露部分(未被光阻層62〇保護),所得結果 係圖7之半導體材料7〇〇。 圖7繪不在已移除介電層之一部分之後的圖6之半導體材 料,所得結果係圖7之半導體材料7〇〇。移除光阻層62q, 亚且在第一傳導層53〇之經曝光部分上及介電層54〇之剩餘 部分上沈積一第二傳導層810(其包括一傳導材料,諸如一 額外複晶矽層),所得結果係圖8之半導體材料800。具體 而§,圖8繪示在已加入第二傳導層8 10之後的圖7之半導 體材料。移除介電層54〇之一部分允許第一傳導層與第二 傳導層彼此電接觸。在另一做法中,可使用一遮罩在所要 位置中形成介電層,使第一傳導層之一部分被曝露,使得 125538.doc -19- 200832403 不需要後續移除介電層之一部分。 圖9繪示在已加入保護障壁之後的圖8之半導體材料,所 得結果係半導體材料900。可使用一遮罩91 〇,藉由將遮罩 910之圖案轉印至半導體材料,而形成若干保護障壁922、 923、924、925、926與927。在一項可實行之做法中,保 護障壁可係由一介電材料(諸如氮化石夕(SiN))所製成。再 次,請注意,圖中僅繪示出半導體材料之一部分。舉例而 . 言,額外保護障壁可沿隨後形成的一 NAND串向右延伸。 • 圖10繪示在已移除第二傳導層之部分之後的圖9之半導 體材料,所得結果係半導體材料1000。移除遮罩91〇,並 且實行一蝕刻製程以移除第二傳導層之未被保護障壁保護 的部分。結果,在蝕刻之後,第二傳導層部分1〇22、 1023、1024、1025、1026與1027繼續存在。此外,相鄰於 第二傳導層部分1022的第一傳導層之若干部分被曝露,以 及"於弟一傳導層部分1023與1024、1024與1025、1025盥 1026及1026與1027之間的介電層540之若干部分被曝露。 ^ 蝕刻移除第二傳導層之一部分(其係往位元線方向介於保 護障壁922與923之間),藉此形成一間隙1〇1〇並且曝露出 ‘ 第一傳導層53〇之一部分1〇2〇。間隙1010之寬度可為約1至 15F(請參閱圖1)並且可延伸於繼續存在的第二傳導層部分 1022與1〇23之間。蝕刻受到控制以抵達第一傳導層53〇, 且不移除間隙10 10中的所有第一傳導層53〇。 使用保護障壁922與923來界定一選擇閘極結構。在一項 做法中,對於一 NAND串的源極側及汲極側兩者,可使用 125538.doc -20· 200832403 類似的選擇閘極結構。替代做法 ^文去為,可在源極侧處提供一 :擇而㈣側處提供_習知選擇閘極電晶 側處提供一選擇閉極結構’而在源極側處 &供一白知選擇閘極電晶體。 在一項替代做法中,當實行-第-餘刻時,在介於第一 保護障壁922與第二保護障壁923之間的一區域上施用一遮 罩。然後’移除該遮罩’並且放置另-遮罩,豸另-遮罩Types of mind...: "〇1"&"〇〇". In the NAND = body-term example, να after the erase operation is negative and is set to ' ', '. The positive vTH value is used for the state "1〇,"〇1" and "〇〇". Between = the relationship between the data in the storage component and the threshold voltage range of the storage component It depends on the data encoding scheme used for the storage components. Γ^s '4 national patents (4) 6'222,762 and the US special shot please announce ^^ 255 () 9 () (the whole content of the case is cited The method is incorporated into this document.) Various data encoding methods for multi-component flash memory components are described. 0 125538.doc -14- 200832403 The following US patents/special shots provide flash memory And related examples of their operation: 5,386,422, 5,522,58,5,57, 315, 5'774'397, 6'046,935, 6,456,528 and 6,522,580, all of which are incorporated herein by reference. When the flash storage element is configured, a program voltage is applied to the control gate of the storage element, and the bit line associated with the memory element is grounded from the electrons of the channel to the floating gate. When the electrons accumulate in the floating gate, the floating gate becomes a negative load state. And the VTH of the storage element rises. To apply the _program voltage to the control gate of the memory element being programmed, the program voltage is applied to the appropriate word line. As described above, each of the NAND strings The storage element shares the same word line. For example, when the storage element 324 of FIG. 3 is programmed, the program voltage is also applied to the control gates of the storage elements 344 and 364. Shifting can occur when stylizing and retrieving a given storage element and other storage elements are bound to the predetermined storage element to some extent, such as storage elements that share the same word line or bit line. The field coupling between the storage elements: to cause an offset in the stored charge level to occur. The problem is exacerbated by the reduced space between the storage elements due to improvements in integrated circuit technology. Most notably occurs between several groups of adjacent storage elements that have been programmed at different times. A group of storage elements is programmed to join a level of charge corresponding to a set of data. After the two sets of data are programmed into a second group of storage elements, the charge-capacitance coupling due to the second group of storage elements to the first group of storage elements results in reading from the first group 125538.doc -15 · 200832403 The charge level of a group of storage elements appears to be different from the programmed charge level. Therefore, the coupling effect depends on the order in which the storage elements are programmed, and therefore depends on the order in which the word lines travel during stylization. Ground (but not necessarily), the stylized NAND string is from the source side to the immersed side, starting at the source side word line and advancing one word line at a time to the drain side word line. For example, the capacitive coupling effect on a given storage element can result from the same word line and other storage elements in the same NAND string. For example, storage component 344 can be a component of a first group of storage elements including other alternating storage elements along word line WL2 that store a page of material. Storage elements 324 and 364 can be part of a second group of storage elements that store another page of information. When the second group of storage elements are programmed after storage element 344, there will be capacitive coupling to storage element 344. The coupling from the directly adjacent storage elements (storage elements 324 and 364) on the word line is strongest. Similarly, storage elements 344 are affected if the storage elements on the same NAND string 340 are programmed after storage element 344. For storage element 344, the coupling from directly adjacent storage elements (storage elements 343 and/or 345) on the NAND string is strongest. For example, if the order of the storage elements in the stylized NAND string 340 is 346, 345, 344, 343, the coupling from the storage element 343 can affect the storage element 344. In general, storage elements (ie, storage elements 323, 3 63, 325, and 365) that are diagonally aligned relative to storage element 344 can provide about 20% coupling to storage element 344, while on the same word line or NAND string. Upper directly adjacent storage elements 324 and 364 and 343 and 345 provide about 80% coupling. In some cases, the coupling may be sufficient to offset the VTH of the stored 125538.doc -16 - 200832403 component by about 5 volts, which is sufficient to cause read errors and to distribute the vTH of a group of storage elements. Figure 4a depicts a cross-sectional view of a NAND string without a dual voltage selective gate structure. Only a portion of the NAND string is shown and there are various simplifications. In practice, a similar structure is formed across the semiconductor substrate in two dimensions (e.g., bit line direction and word line direction). Similar NAND strings 4 and 450 are shown. Extending in the direction of the bit line or NAND string, the NAND string 4A includes a select gate structure 410 (shown generally in phantom in the figure) and a number of memory elements (such as storage elements 440 and 460). The select gate structure 410 includes a select gate formed by a first conductive portion 42A and a second pass transistor 41. The select gate structure 4A also includes a turn-on electrode formed by a third conductive portion 412. The first conductive portion 420 of φ) φ4 电 is electrically isolated from other NAND strings. In contrast, the first conductive portion 418 and the third conductive portion 412 can extend across the plurality of NAND strings in the word line direction as control lines, such as word lines. In this manner, a control voltage applied to the second conductive portion or the third conductive portion is applied to each of the NAND strings in a group of NAND strings. Likewise, the control gate portion of the storage element can extend across multiple NAND strings as a word line. For example, in NAND string 450, a storage component 452 includes a control gate region 454 (which extends across a plurality of NAND strings) and a floating gate region 456 (which is isolated from other NAND strings). A protective barrier is provided on the selection gate, the coupling electrode and the storage element. For example, a protection barrier 416 is provided on the second conductive portion 418 of the select gate. A dielectric layer 414 is provided between the second conductive portion 412 and the first conductive portion 42's component. 125538.doc -17- 200832403. A NAND string is formed on a substrate 432 that includes a __n well region 43 and a p well region 428. Using shallow trench isolation techniques, in one possible design, p-well 428 includes an upwardly extending portion that is separated by a filler 426, such as Si〇2. The pattern of the upwardly extending portion of the P-well separated by the filler is repeated to the word line. Additionally, an n-source/drain-doped region (e.g., source/drain region 424) spaced apart in the direction of the bit line is provided in the p-well region. Specifically, source/drain regions are provided on both sides of the select gate structure 41A and on both sides of the storage elements 440 and 460. An insulating layer 422 is provided on top of the substrate 432. Figure servant shows the cross-sectional view of the storage component of the drill. This view does not include the selection of the gate structure so that the storage element can be seen more clearly. By way of example, it can be seen that the components of the storage element 440 include a protective barrier 47, a second conductive portion 472, a dielectric 474, a first conductive portion 476, and an absolute (four) 478. FIGS. 5 through (4) are shown for fabrication with The process of selecting a string of closed-pole structures with two voltages. Please note that the manufacturing process described in this article only states one: 仃1 method. Different manufacturing processes can be used to achieve the desired final structure. , moon heart, the drawing is not drawn to scale. Moreover, only one of the parts is shown in the drawings. In practice, a similar structure can be formed across the semiconductor substrate in two dimensions (e.g., bit line direction). A three-dimensional structure is also available. 5, a cross-sectional view of a non-patterned layered semiconductor material 500 (having an insulating layer, a first conductive layer, and a dielectric layer), a non-aligned direction... the substrate layer 51G includes a semiconductor Materials (such as 125538.doc • 18-200832403 Shi Xi). In one embodiment, the n-well and p-well (action) regions are formed in the substrate 510. An insulating layer 520 (which includes an insulating material such as an insulating oxide) is formed on the substrate 510. A first conductive layer 530 (which includes a conductive material such as a polysilicon layer) is formed over the insulating layer 520. A dielectric layer 54 (which includes a dielectric material) is formed on the first conductive layer 530. For example, the dielectric layer 540 can use an inter-polycrystalline (IPD), such as a layer of oxide-nitride-oxide (〇N〇). The semiconductor material of Fig. 5 after the photoresist has been deposited is shown in Fig. 5, and the result is a semiconductor material 600. Specifically, in a practicable practice, a photoresist layer 62 is deposited on the dielectric layer 540, a mask is used to selectively expose the photoresist layer to ultraviolet light, and the photoresist is removed using a developer. The exposed portion is thereby exposed to a portion of the dielectric layer 54. Etching is performed to remove the exposed portion of the dielectric layer 540 (not protected by the photoresist layer 62), and the result is the semiconductor material 7 of Figure 7. Figure 7 depicts the semiconductor material of Figure 6 after a portion of the dielectric layer has been removed, and the results obtained are the semiconductor material 7 of Figure 7. The photoresist layer 62q is removed, and a second conductive layer 810 (which includes a conductive material such as an additional polycrystal) is deposited on the exposed portion of the first conductive layer 53 and over the remaining portion of the dielectric layer 54.矽 layer), the results obtained are the semiconductor material 800 of FIG. Specifically, §, Figure 8 illustrates the semiconductor material of Figure 7 after the second conductive layer 810 has been added. Removing a portion of the dielectric layer 54 allows the first conductive layer and the second conductive layer to be in electrical contact with each other. In another approach, a mask can be used to form a dielectric layer in a desired location such that a portion of the first conductive layer is exposed such that 125538.doc -19-200832403 does not require subsequent removal of a portion of the dielectric layer. Figure 9 illustrates the semiconductor material of Figure 8 after the protective barrier has been added, and the result is a semiconductor material 900. A mask 91 〇 can be used to form a plurality of protective barriers 922, 923, 924, 925, 926 and 927 by transferring the pattern of the mask 910 to the semiconductor material. In a practicable approach, the protective barrier can be made of a dielectric material such as a nitride nitride (SiN). Again, please note that only one part of the semiconductor material is shown in the figure. For example, an additional protective barrier may extend to the right along a subsequently formed NAND string. • Figure 10 illustrates the semiconductor material of Figure 9 after the portion of the second conductive layer has been removed, resulting in a semiconductor material 1000. The mask 91 is removed and an etching process is performed to remove portions of the second conductive layer that are not protected by the barrier. As a result, the second conductive layer portions 1〇22, 1023, 1024, 1025, 1026, and 1027 continue to exist after the etching. In addition, portions of the first conductive layer adjacent to the second conductive layer portion 1022 are exposed, and " between the first conductive layer portion 1023 and 1024, 1024 and 1025, 1025 盥 1026, and 1026 and 1027 Portions of the electrical layer 540 are exposed. ^ etching removes a portion of the second conductive layer (which is between the protective barriers 922 and 923), thereby forming a gap 1〇1〇 and exposing a portion of the first conductive layer 53 1〇2〇. The gap 1010 can have a width of between about 1 and 15 F (see Figure 1) and can extend between the second conductive layer portions 1022 and 1 23 that are still present. The etch is controlled to reach the first conductive layer 53A and does not remove all of the first conductive layer 53A in the gap 1010. A protective barrier 922 and 923 are used to define a select gate structure. In one approach, for both the source side and the drain side of a NAND string, a gate selection structure similar to 125538.doc -20. 200832403 can be used. An alternative approach is to provide a source at the source side: (4) provided at the side of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Know the choice of gate transistor. In an alternative, a mask is applied over an area between the first protective barrier 922 and the second protective barrier 923 when the -first-remaining is performed. Then 'remove the mask' and place another-mask, 豸 another-mask

具有在保護障壁922與923之間的。錢實行分開的 敍刻,以僅移除第二傳導層之位於保護障壁似與奶之間 的部分。最終結果係如圖10所示。此項做法涉及一額外步 驟’但是允許獨立於介於界定儲存元件之其它保護障壁之 間的蝕刻’來實行介於第一保護障壁922與第二保護障壁 923之間的蝕刻。 圖11繪示在沈積一保護層之後的圖1〇之半導體材料,所 得…果係半‘體材料11〇〇。可經由一遮罩丨12〇在間隙⑺ 的一區域中施用一保護層111〇 (其可係一介電材料,諸如 氮化矽)。保濩層1110可覆蓋第二傳導層部分1〇22與1〇23 之相對侧壁及第一傳導層之曝露部分1020 (圖10)。此外, 保漢層之部分1112與η 14可覆蓋保護障壁922與923之頂部 部件,以允許在施用保護層111〇中的一定程度未對齊。 圖12緣不在移除第一傳導層及介電層之部分之後的圖^ 之半導體材料’所得結果係半導體材料12〇〇。具體而言, 實打一進一步蝕刻製程,以移除第一傳導層之一部分(該 部分係相鄰於第二傳導層部分1〇22),以及移除介電層54〇 125538.doc • 21 - 200832403 (圖11)及第一傳導層530之若干部分(該等部分係往位元線 方向介於第二傳導層部分1023與1024、1024與1025、1025 與1〇26及1〇26與1〇27之間)。結果,除了界定第一傳導層 部分1230、1224、1225、1226與1227以外,還界定介電層 部分 1202、1204、1206、1208與 1210。保護層 1110防止蝕 刻於間隙1 0 10中。 往位元線或NAND串方向延伸,半導體材料12〇〇包括一 選擇閘極結構1260及示範性非揮發性儲存元件1265、Between the protective barriers 922 and 923. The money is subjected to a separate quotation to remove only the portion of the second conductive layer between the protective barrier and the milk. The final result is shown in Figure 10. This practice involves an additional step 'but allowing etching between the first protective barrier 922 and the second protective barrier 923 to be performed independently of the etch between the other protective barriers defining the storage element. Figure 11 is a diagram showing the semiconductor material of Figure 1 after depositing a protective layer, resulting in a half-body material 11 〇〇. A protective layer 111 (which may be a dielectric material such as tantalum nitride) may be applied via a mask 12 in a region of the gap (7). The protective layer 1110 may cover the opposite sidewalls of the second conductive layer portions 1〇22 and 1〇23 and the exposed portion 1020 of the first conductive layer (FIG. 10). In addition, the portions 1112 and η 14 of the Baohan layer may cover the top members of the protective barriers 922 and 923 to allow for some degree of misalignment in the application of the protective layer 111. The result of the semiconductor material of FIG. 12 after the removal of the portions of the first conductive layer and the dielectric layer is the semiconductor material 12A. Specifically, a further etching process is performed to remove a portion of the first conductive layer (which is adjacent to the second conductive layer portion 1 22) and remove the dielectric layer 54 〇 125538.doc • 21 - 200832403 (FIG. 11) and portions of the first conductive layer 530 (the portions are oriented in the bit line direction between the second conductive layer portions 1023 and 1024, 1024 and 1025, 1025 and 1〇26 and 1〇26) Between 1 and 27). As a result, dielectric layer portions 1202, 1204, 1206, 1208, and 1210 are defined in addition to first conductive layer portions 1230, 1224, 1225, 1226, and 1227. The protective layer 1110 is prevented from being etched into the gap 1 0 10 . Extending in the direction of the bit line or NAND string, the semiconductor material 12 includes a select gate structure 1260 and an exemplary non-volatile storage element 1265,

1270、1275與1280。可往垂直於頁面之方向(例如,字線 方向)及往位元線方向,橫跨半導體基板重複選擇閘極結 構及示範性非揮發性儲存元件。如所述,圖中僅繪示出一 NAND串之一部分。實務上,一 NAND串可在一連串非揮 發性儲存元件之任一側上包括若干選擇閘極。可在一 NAND串的源極側及/或汲極側提供所繪示之選擇閘極結構 1260。選擇閘極結構126()之寬度可為約,其中第二傳導 層部分1022與1023之寬度可為約相同,例如,F。在另一 為約3.5F,其中第二 及第二傳導層部分 選項中’選擇閘極結構1260之寬度可 傳導層部分1022之寬度可為約15F, 1023之寬度可為約F。在一項做法中,每一非揮發性儲存 凡件之寬度可為約F’並且非揮發性儲存元件在位元線方 向彼此相間隔開F (請參閱圖丨)。 在選擇閉極結構1260之任一側在基板川中形成源極/汲 ,區1250與1252。此外,在基板510之若干區域(彼等區域 係在位讀方向介於非揮發性儲存元件之間)中形成源極/ 125538.doc -22· 200832403 汲極區1254、1256與1258。選擇閘極結構1260包括一第一 傳導層部分1230,其往位元線方向延伸於源極/汲極區 125〇與1252之間。在選擇閘極結構126〇之一侧,第二傳導 層部分1022經形成於第一傳導層部分1230上且電耦合至第 一傳導層部分1230。藉此形成一選擇電晶體,其具有一藉 由第二傳導層部分1022與第一傳導層部分123〇所提供之選 擇閘極及源極/汲極區1250與1252。經施加至該選擇閘極 的一電壓控制一流動於源極/汲極區125〇與1252之間的電 流。 在該第一傳導層部分1230之部件上,形成介電層部分 1202以用於使第二傳導層部分1〇23電絕緣於第一傳導層部 分1230。第二傳導層部分1〇23係用作為一耦合電極,例 如用於在程式化期間減小程式化干擾。此外,在儲存元 件中,介電部分1204、1206、1208與1210分別使第一傳導 層部分1224、1225、1226與1227 (用作為浮動閘極)電絕緣 於第二傳導層部分1024、1025、1〇26與1〇27 (用作為控制 閘極)。 圖13繪不在形成側壁間隔物之後的圖12之半導體材料。 可提供間隔物以防止選擇閘極結構之底部及儲存元件之浮 動閘極底部因氧化而圓化。可藉由如下方式建立間隔物: 等向性沈積待用以形成間隔物的材料;並且接著各向異性 蝕除該材料,僅在預先存在之結構的側壁上留下自然錐形 間隔物。在一項具體實施例中,間隔物係由SiN製成;但 是’也可使用其他材料。具體而言,可沿著選擇閘極結構 125538.doc -23- 200832403 1260及儲存元件1265、1270、1275與1280之側提供間隔物 1304、1306、1308、1310、1312、1314、1316、1318、 1320與1322。間隔物的高度可不同。在所示之實例中,間 隔物從保護區922、923、924、925、926與927延伸至絕緣 層 520。 圖14繪示程式化圖13之半導體材料,其包括施加至選擇 閘極的電壓、選擇閘極結構的麵合電極及來自輕合電極之 電壓耦合。可形成控制線以允許將電壓獨立地施加至一選 擇閘極1430 (其係藉由第二傳導層部分1〇22與第一傳導層 部分1230所形成)及一耦合電極1440 (其係藉由第二傳導層 部分1023所形成)。經施加至該選擇閘極143〇的一充分高 電壓導致一反轉層1410,其開啟選擇閘極電晶體,而允許 電流流動於源極/汲極區1250與1252之間。另外,麵合電 極可於程式化過程期間提供若干優點。舉例而言,經施加 至耦合電極1440的一電壓可影響基板中流動的電流。 具體两言,GIDL(Gate Induced Drain Lowering ;閉極引 發汲極降低)程式化干擾已隨著進一步縮放nand技術而變 成愈來愈重要之議題。GIDL典型發生在介於源極/汲極區 1252與絕緣層520之間的接面之最大曲率點1420。此類型 程式化干擾尤其影響藉由字線0 (WL0)程式化的非揮發性 儲存元件,該字線相鄰於NAND串中的源極側選擇閘極。 舉例而言,如果選擇閘極結構1260係位於源極侧,則 WL0、WL1、WL2與WL3可延伸以分別作為控制閘極 1024、1025、1026與1027,其中WL0係相鄰於選擇閘極結 125538.doc -24- 200832403 構1260的末端字線。相鄰於nanD串中之汲極側選擇閘極 的子線所呈現的程式化干擾幅度較小。WL0程式化干擾大 多數發生於當抵達高程式電壓(VpGM)值且因接地WL發生 而使W間牙隨(band-to-band tunneling)加劇時程式化WL0 本身期間。為解決此議題,已提議增大介於末端字線與其 相對應選擇閘極之間的間隔。另一提議之做法係使用虛設 子線’並且使该等虛設字線上無資料或具有二進制資料。 另一做法涉及:對於藉由末端字線程式化的非揮發性儲存 兀件,儲存每儲存元件一或兩個位元,同時在其他非揮發 性儲存元件之每一者上儲存三個位元。 本文提供之選擇閘極結構126〇可透過適當控制選擇閘極 與耦合電極來有利地減小程式化干擾。可結合其它減小程 式化干擾之技術來使用該結構。具體而言,除了相鄰源極 /汲極區1252以外,經施加至耦合電極144〇的一電壓亦將 電容耦合至相鄰非揮發性儲存元件1265的控制閘極⑺以與 汁動閘極1224。此電壓將幫助減少在GmL發生的選擇閘 極結構下產生熱電子。具體而言,變更空乏條件,允許沿 自GIDL發生處(點H2G)行進至相關聯於末端字線的非揮發 性儲存元件之浮動閘極(你丨I .必& K 4 ^ Μ、,,_1270, 1275 and 1280. The gate structure and the exemplary non-volatile storage element can be repeatedly traversed across the semiconductor substrate in a direction perpendicular to the page (e.g., word line direction) and in the direction of the bit line. As mentioned, only one portion of a NAND string is shown. In practice, a NAND string can include a number of select gates on either side of a series of non-volatile storage elements. The illustrated select gate structure 1260 can be provided on the source side and/or the drain side of a NAND string. The width of the select gate structure 126() can be about, wherein the width of the second conductive layer portions 1022 and 1023 can be about the same, for example, F. In another of about 3.5 F, wherein the second and second conductive layer portion options, the width of the width of the selectable gate structure 1260 can be about 15F, and the width of 1023 can be about F. In one approach, each non-volatile storage member may have a width of about F' and the non-volatile storage elements are spaced apart from each other in the direction of the bit line (see Figure 丨). Source/汲, regions 1250 and 1252 are formed in the substrate in either side of the selective closed structure 1260. In addition, source/125538.doc-22.200832403 drain regions 1254, 1256, and 1258 are formed in regions of substrate 510 (the regions are between the non-volatile storage elements in the bit read direction). The select gate structure 1260 includes a first conductive layer portion 1230 that extends between the source/drain regions 125A and 1252 in the bit line direction. On one side of the select gate structure 126, a second conductive layer portion 1022 is formed over the first conductive layer portion 1230 and electrically coupled to the first conductive layer portion 1230. Thereby a selective transistor is formed having a selected gate and source/drain regions 1250 and 1252 provided by the second conductive layer portion 1022 and the first conductive layer portion 123A. A voltage applied to the select gate controls a current flowing between the source/drain regions 125A and 1252. On the features of the first conductive layer portion 1230, a dielectric layer portion 1202 is formed for electrically insulating the second conductive layer portion 1 〇 23 from the first conductive layer portion 1230. The second conductive layer portion 1 〇 23 is used as a coupling electrode, for example, to reduce stylized interference during stylization. Moreover, in the storage element, dielectric portions 1204, 1206, 1208, and 1210 electrically insulate first conductive layer portions 1224, 1225, 1226, and 1227 (used as floating gates) from second conductive layer portions 1024, 1025, 1〇26 and 1〇27 (used as control gates). Figure 13 depicts the semiconductor material of Figure 12 after the sidewall spacers are formed. A spacer may be provided to prevent the bottom of the selected gate structure and the bottom of the floating gate of the storage element from being rounded by oxidation. The spacer can be created by: isotropically depositing the material to be used to form the spacer; and then anisotropically etching away the material leaving only a natural tapered spacer on the sidewalls of the pre-existing structure. In a specific embodiment, the spacer is made of SiN; however, other materials may be used. In particular, spacers 1304, 1306, 1308, 1310, 1312, 1314, 1316, 1318 may be provided along the side of select gate structure 125538.doc -23- 200832403 1260 and storage elements 1265, 1270, 1275, and 1280, 1320 and 1322. The height of the spacers can vary. In the illustrated example, the spacers extend from the protective regions 922, 923, 924, 925, 926, and 927 to the insulating layer 520. Figure 14 depicts the semiconductor material of the studded Figure 13 including the voltage applied to the selected gate, the face electrode of the selected gate structure, and the voltage coupling from the light junction electrode. A control line can be formed to allow voltage to be applied independently to a select gate 1430 (which is formed by the second conductive layer portion 1 22 and the first conductive layer portion 1230) and a coupling electrode 1440 (by The second conductive layer portion 1023 is formed). A sufficiently high voltage applied to the select gate 143 turns an inversion layer 1410 that turns on the select gate transistor and allows current to flow between the source/drain regions 1250 and 1252. In addition, the face electrode provides several advantages during the stylization process. For example, a voltage applied to the coupling electrode 1440 can affect the current flowing in the substrate. In particular, the GIDL (Gate Induced Drain Lowering) stylized interference has become an increasingly important issue as the Nand technology is further scaled. GIDL typically occurs at a maximum curvature point 1420 of the junction between source/drain region 1252 and insulating layer 520. This type of stylized interference particularly affects the non-volatile storage elements programmed by word line 0 (WL0), which is adjacent to the source side select gate in the NAND string. For example, if the select gate structure 1260 is on the source side, WL0, WL1, WL2, and WL3 may be extended to function as control gates 1024, 1025, 1026, and 1027, respectively, where WL0 is adjacent to the select gate junction. 125538.doc -24- 200832403 The end word line of 1260. The sub-line adjacent to the drain-side selection gate in the nanD string exhibits a small amount of stylized interference. Most of the WL0 stylized interference occurs during the programming of WL0 itself when the high program voltage (VpGM) value is reached and the ground WL occurs and the band-to-band tunneling is exacerbated. To solve this problem, it has been proposed to increase the interval between the end word line and its corresponding selection gate. Another proposed approach is to use dummy sub-lines and to have no data or binary data on the dummy word lines. Another approach involves storing one or two bits per storage element for non-volatile storage elements threaded by end words while storing three bits on each of the other non-volatile storage elements. . The selective gate structure 126 provided herein advantageously reduces the stylized interference by appropriately controlling the selection of the gate and the coupling electrode. This structure can be used in conjunction with other techniques that reduce the amount of interference. Specifically, in addition to the adjacent source/drain regions 1252, a voltage applied to the coupling electrode 144A is also capacitively coupled to the control gate (7) of the adjacent non-volatile storage element 1265 to interact with the juice gate. 1224. This voltage will help reduce the generation of hot electrons under the selective gate structure that occurs in GmL. Specifically, the depletion condition is changed to allow a floating gate to travel from the occurrence of the GIDL (point H2G) to the non-volatile storage element associated with the end word line (you 丨I. & K 4 ^ Μ, ,_

因於源極/汲極區1252中的垂直場增加而增加 + ’電子表 而增加。The increase in the +' electronic table due to the increase in the vertical field in the source/drain region 1252 increases.

125538.doc ~25 - 200832403 1430 ’ VCES被施加至輕合電極144〇,一程式電壓VpGM被施 加至所選子線(在此實例中為WL〇) ’並且通電壓(pass voltage)VPASS被施加至其餘字線WL1-WL3。舉例而言,取 決於位於耦合電極1440下之介電層部分12〇2 (圖12)可耐受 的電壓位準,可將最多8伏或以上置於耦合電極144〇。另 外,於經由末端字線程式化非揮發性儲存元件期間,可施 加電Μ以驅動輕合電極144〇。此藉由產生較強累積層而建 立較強的電荷散射。可使更多電子偏向而朝向耦合電極 1440並且遠離相鄰之非揮發性儲存元件之浮動閘極。另 外,經施加至耦合電極144〇的高電壓可藉由耦合來自耦合 電極Η40的電壓至末端字線的非揮發性儲存元件,而減: 用以程式化相關聯於末端字線的非揮發性儲存元件所需的 最大程式電壓(vPGM),例如,自22伏至21伏。此所耦合之 電遷與VPGM—致作用。 :相關聯於其它非相鄰字線的非揮發性儲存元件被程式 宁可鈿加相同電壓至選擇閘極1430及耦合電極1糊, 例如,0伏。其它狀況亦可行。因此,在-項做法中,可 依據當前正被程式化之一或多個非揮發性館存元件在 NAND串中的位置’或—組字線巾當前被選擇待程式化之 字線的位置,來設U合電極1彻之電屢。在另—項 做法中,當使用相鄰之字線 、 、’ 仃耘式化時,允許耦合電極 1440上之電壓為浮動。即, 了猎由下列方式應付因選擇閘 極結構之增大大小所致的 97叙阿選擇閘極RC時間常數··使 耦合電極電壓成為浮動· 及/或使經施加至選擇閘極及相 125538.doc •26- 200832403 關聯耗合電極的電壓往相同極性方向同時斜變或以其它方 式轉變,使得其彼此耦合將增強其充電或放電。 一般而言,耦合電極電壓係依據各種準則(包括程式化 準則)予以控制,諸如所選字線之位置、溫度、程式脈衝 位準或數目、裝置循環數目及當使用多進程程式化時的程 式化進程次數。 圖1 5繪示具有替代性選擇閘極結構1560的替代性半導體 材料1500。在此做法中,介電層15〇2接連地延伸於第二傳 V層邓分1022與1023之間,使得在間隙1〇1〇中未曝露出第 一傳導層。藉由類似於圖1〗之保護層111〇方式,在介電層 1502之一部分上形成保護層151〇。此設計可藉由圖案化光 阻以使其進一步延伸至相對於圖6中所繪示之光阻62〇的左 方予以達成。另外,可在介電層丨502上形成第二傳導層部 分1022之部件以考慮到未對齊。 圖16緣示包括圖13之半導體材料的NAND串。非揮發性 儲存系統典型包括端對端且並排排列之若干NANd串。配 置1600繪示一端對端排列的完整nanD串1620及局部 NAND串1610與1630。具體而言,完整NANE^ 162〇包括 一源極側選擇閘極結構1622、一連串非揮發性儲存元件 1624及一汲極侧選擇閘極結構1626。在^^^^串1620之一 侧上,另一 NAND串1630之一部分包括一源極侧選擇閘極 結構1632及一示範性非揮發性儲存元件1634。在nand串 1620之另一側上,另一NANE^161〇之一部分包括一汲極 側選擇閘極結構1614及一示範性非揮發性儲存元件1612。 125538.doc -27- 200832403125538.doc ~25 - 200832403 1430 'VCES is applied to the light-closing electrode 144A, a program voltage VpGM is applied to the selected sub-line (WL 〇 in this example)' and the pass voltage VPASS is applied To the remaining word lines WL1-WL3. For example, up to 8 volts or more can be placed at the coupling electrode 144A depending on the voltage level at which the dielectric layer portion 12〇2 (Fig. 12) under the coupling electrode 1440 can withstand. Additionally, during the threading of the non-volatile storage element via the end word, an electric cymbal can be applied to drive the light-closing electrode 144A. This creates a strong charge scatter by creating a strong accumulation layer. More electrons can be biased toward the coupling electrode 1440 and away from the floating gate of the adjacent non-volatile storage element. Additionally, the high voltage applied to the coupling electrode 144A can be reduced by coupling the voltage from the coupling electrode 40 to the non-volatile storage element of the end word line: to programmatically correlate the non-volatile associated with the end word line The maximum program voltage (vPGM) required to store the component, for example, from 22 volts to 21 volts. This coupled electromigration is related to VPGM. : Non-volatile storage elements associated with other non-adjacent word lines are programmed to apply the same voltage to select gate 1430 and coupling electrode 1 paste, for example, 0 volts. Other conditions are OK. Therefore, in the - item approach, the position of the word line in the NAND string that is currently being programmed to be one or more of the non-volatile library elements or the position of the word line to be programmed is currently selected. , to set the U-electrode 1 to the electric repeatedly. In another approach, the voltage on the coupling electrode 1440 is allowed to float when adjacent word lines, ' 仃耘 are used. That is, the following method is used to cope with the increase in the size of the selected gate structure, and the voltage of the coupling electrode is made to float and/or to be applied to the selected gate and phase. 125538.doc •26- 200832403 The voltages associated with the dissipative electrodes are simultaneously ramped or otherwise transformed in the same polarity direction such that coupling them to each other will enhance their charging or discharging. In general, the coupling electrode voltage is controlled according to various criteria, including stylized criteria, such as the position of the selected word line, temperature, program pulse level or number, number of device cycles, and program when multi-process programming is used. The number of processes. FIG. 15 illustrates an alternative semiconductor material 1500 having an alternative select gate structure 1560. In this manner, the dielectric layer 15〇2 extends successively between the second V-layers 1022 and 1023 such that the first conductive layer is not exposed in the gap 1〇1〇. A protective layer 151 is formed on a portion of the dielectric layer 1502 by a protective layer 111 类似于 similar to that of FIG. This design can be achieved by patterning the photoresist to extend it further to the left of the photoresist 62 绘 as depicted in Figure 6. Additionally, the components of the second conductive layer portion 1022 can be formed on the dielectric layer 502 to account for misalignment. Figure 16 illustrates a NAND string including the semiconductor material of Figure 13. Non-volatile storage systems typically include a number of NANd strings arranged end to end and side by side. Configuration 1600 depicts a complete nanD string 1620 and local NAND strings 1610 and 1630 arranged end to end. Specifically, the complete NANE 162 includes a source side select gate structure 1622, a series of non-volatile storage elements 1624, and a drain side select gate structure 1626. On one side of the string 1620, a portion of the other NAND string 1630 includes a source side select gate structure 1632 and an exemplary non-volatile storage element 1634. On the other side of the nand string 1620, another portion of the NANE 161 includes a drain side select gate structure 1614 and an exemplary non-volatile storage element 1612. 125538.doc -27- 200832403

圖17a繪示用於製造具有選擇閘極結構之半導體材料的 過程概要。所示之過程僅係作為實務上可使用之各種過程 的實例。亦請參考圖5至14,在步驟1700,在一基板(例 如’基板510)的一絕緣層(例如,層52〇)上形成一第一傳導 部分(例如,部分1230)。在步驟17〇5,在該第一傳導部分 之一第一部件上形成一第二傳導部分(例如,部分丨〇22)。 在步驟1710,在該第一傳導部分之一第二部件上形成一介 電部分(例如,部分12〇2)。在步驟1715,在該介電部分上 形成一第三傳導部分(例如,部分1〇23),該第三傳導部分 與该第二傳導部分相隔開。在步驟1720,在該第一傳導部 分(1230)之任一侧上在該基板中形成第一與第二源極/汲極 區(例如,區1250與1252)。彼等者係用於選擇閘極(143〇) 的源極/沒極區。 _圖用於製造圖13之半導體材料的詳細過程。所 示之過程僅係作為實務上可使用之各種過程的實例。在步 驟1725,在一基板的一絕緣層上形成一第一傳導層(例 如,、請參閱圖5)。在步驟1730,在該第一傳導層之部件上 形成一介電層(例如 眚 逆罜枯… 月參閱圖5)。如所述,可使用適當的 =二在該第一傳導層之一所要區域上形成該介電 5 r層可被形成在所有該第 選擇性移除,以曝露出該第一傳導:::且予以 驟咖,將^ 要^。在步 步驟⑽,將該介 電層(例如,請參閱圖6)。在 層(例如,請參閱圖7 =干部分向下㈣至該第一傳導 Θ 著,在步驟1 745,移除該光阻。 l2553S.doc •28- 200832403Figure 17a illustrates an overview of a process for fabricating a semiconductor material having a selected gate structure. The process shown is merely an example of the various processes that can be used in practice. Referring also to Figures 5 through 14, at step 1700, a first conductive portion (e.g., portion 1230) is formed on an insulating layer (e.g., layer 52A) of a substrate (e.g., 'substrate 510). In step 17〇5, a second conductive portion (e.g., partial turns 22) is formed on the first member of the first conductive portion. At step 1710, a dielectric portion (e.g., portion 12A2) is formed on the second member of one of the first conductive portions. At step 1715, a third conductive portion (e.g., portion 1 〇 23) is formed on the dielectric portion, the third conductive portion being spaced apart from the second conductive portion. At step 1720, first and second source/drain regions (e.g., regions 1250 and 1252) are formed in the substrate on either side of the first conductive portion (1230). They are used to select the source/nopole region of the gate (143〇). The figure is a detailed process for fabricating the semiconductor material of Figure 13. The process shown is merely an example of the various processes that can be used in practice. In step 1725, a first conductive layer is formed on an insulating layer of a substrate (see, for example, Figure 5). At step 1730, a dielectric layer is formed over the features of the first conductive layer (e.g., 罜 罜 ...... month see Figure 5). As described, the dielectric layer 5 r may be formed on a desired region of one of the first conductive layers using an appropriate = two to be selectively removed at all of the first to expose the first conduction::: And give a sudden coffee, will ^ ^ ^. In step (10), the dielectric layer (see, for example, Figure 6). In the layer (for example, see Figure 7 = dry part down (four) to the first conduction ,, in step 1 745, remove the photoresist. l2553S.doc •28- 200832403

在乂驟⑽’在該第-傳導層之該曝露部分上及該介電声 之剩餘部分上形成該第二傳導層(例如,請參閱叫在二 驟1乃5’使用—遮罩而施用保護障壁(例如,請參閱圖/ 在步驟mo,將該第二傳導層之該等曝露部分向下餘刻至 該介電層或該第-傳導層(例如,請參閱圖1G)。在步驟 ㈣’在介於選擇閘極結構之第—保護障壁與第二保護障 壁之間的間隙外部提供一遮罩(例如’請參閱圖11}。在步 驟1770 ’在該選擇閘極結構之該間隙中施用一保護層(例 如’請參閱圖η)。在步驟1775,將該介電層之曝露部分 及該第-傳導層之相對應部分向下蝕刻至該絕緣層(例 如,請參閱圖12)。在步驟178〇,相鄰於該選擇閘極結構 及該等非揮發性儲存元件,在該基板中形成源極/沒極區 (例如,請參閱圖丨2Ρ最後,在步驟1785,在該選擇閘極 結構及該等非揮發性儲存元件上形成侧壁(例如,請參閱 圖 13) 〇 圖18a至I8i係關於具有雙電壓選擇閘極結構之nand串 的另一具體實施例。具體而言,圖18a繪示具有雙電壓選 擇閘極結構之NAND串的另一具體實施例。在此具體實施 例中,一選擇閘極結構1809包括形成於一絕緣部分1816上 的一第一傳導部分1815及形成於該第一傳導部分上的一第 一傳導部分1814。每一 NAND串的該等第一傳導部分往字 線方向相隔開。另外,該第二傳導部分1814往字線方向接 連地延伸橫跨多個NAND串,而該第一傳導部分被隔離於 NAND串之間(例如,NAND串1800與1830)之間。一第三傳 125538.doc -29- 200832403 導部分1810被形成於一介電質1812上並且亦往字線方向接 連地延伸橫跨多個NAND串。在該第三傳導部分181〇上提 供一保護障壁1808。一填充物1820 (諸如Si〇2)延伸於每一 NAND串的第一傳導部分之間。 示範性儲存元件1802包括一控制閘極/字線18〇4及一浮 、 動閘極1806(其包括第一傳導部分1809及第二傳導部分 1807)。在一基板1826 (其包括一 p井區1822及一 η井區 ^ 1824)上形成NAND串1800與1830。亦繪示出示範性源極/ >及極區1 8 18。 圖18b繪示圖18a之NAND串之儲存元件的剖視圖。此視 圖不包括選擇閘極結構,使得可更清楚看到儲存元件。舉 例而吕’可看到儲存元件1 8 3 1的組件包括保護障壁18 3 2、 第三傳導部分1834、介電質1836、第二傳導部分1838、第 一傳導部分1839及絕緣物1840。此處,該等第二傳導部分 往字線方向相隔開,而非如同選擇閘極結構一樣為接連 的0 圖18c繪不選擇閘極結構相對於NAND串及字線之配置。 ,· 圖中繪示字線WL0-WL3及NAND串(包括示範性NAND串 / 1850)。一區1841指示提供選擇閘極結構之處。圖18d至18f 分別繪示沿NAND串1850、選擇閘極結構區1841及臀£〇之 剖視圖。 圖18d繪示沿圖18c之配置之NAND串的剖面圖。示範性 NAND串1850包括一選擇閘極結構1851及儲存元件1852、 1853、1854與1855。選擇閘極結構1851包括經形成在一基 125538.doc -30 - 200832403 板1885的一絕緣層1878上 -傳導部八…- 傳導部分1861。在該第 、n 供* 一傳導部分1860。該第一傳導邱八 1861與該第二傳導部分186〇— 邛刀 八*加v 趣組成一選擇閘極1857。一 "電部分1849使該第一傳導部八 第-值道如、 寻¥^刀與该第二傳導部分絕緣於 弟二傳導部分1859,其提供_輕合電 導部分购上提供—保護部分1858。 ^弟二傳 :儲存7L件包括-浮動閘極,該浮動閘極係由該第一 傳¥ 4分與該第二傳導部分 刀π I成。例如,如圖所示··分 別用於儲存元件购的第一傳導部们865與第二傳導部分 1864’·分別用於儲存元件1853的第—傳導部分1869與第二 傳導部分! 8 6 8 ;分利於料元件i 8 5 4的第_傳導部分 助與第二傳導部分1872 ;及分別用於儲存元件1855的第 一傳導部分i877與第:傳導部分聰。每—儲存元件進一 v包括一控制閘極/字線部分,控制閘極/字線部分係藉由 T各自介電部分而絕緣於各自浮動閘極。例如,如圖所 不.分別用於儲存元件1852、18„、丨以斗與“55的控制閘 極/子線部分1863、1867、1871與1875。亦為儲存元件 1852、1853、1854與 1855 分別提供保護區 1862、1866、 1870與1874。另外,在該基板1885中形成源極/汲極區 1880 、 1881 、 1882 、 1883與1884 。 操作中,當充分高之電壓vSGS被施加至該選擇閘極1857 日守在該基板18 8 5中形成一反轉層1 8 7 9,而允許電流流 動。另外,經施加至耦合電極1856的一電壓〜⑶以皮耦合至 儲存元件1852的控制閘極1863與浮動閘極(部分1864與 125538.doc -31 · 200832403 1865),以及施加至源極/汲極區1881,如配合圖i4所論 述。如所述,選擇閘極結構1851可提供諸如減小gIDL之 利孤。具體而a,介於耦合電極1856與儲存元件1852的浮 動閘極之間的耦合(例如,邊際)可允許在程式化期間在 WL0上使用較低值之vP(}M。The second conductive layer is formed on the exposed portion of the first conductive layer and the remaining portion of the dielectric sound in step (10) (for example, please refer to the use of the mask in the second step 1 5) Protecting the barrier (for example, see figure / at step mo, the exposed portions of the second conductive layer are left down to the dielectric layer or the first conductive layer (see, for example, Figure 1G). (d) providing a mask outside the gap between the protective barrier and the second protective barrier (eg, see 'Figure 11}. In step 1770 'the gap in the selected gate structure Applying a protective layer (eg, 'see FIG. η). In step 1775, the exposed portion of the dielectric layer and the corresponding portion of the first conductive layer are etched down to the insulating layer (eg, see FIG. 12) In step 178, adjacent to the select gate structure and the non-volatile storage elements, a source/no-polar region is formed in the substrate (for example, see FIG. 2, finally, at step 1785, at Forming the gate structure and forming sidewalls on the non-volatile storage elements (eg, Referring to Figure 13) Figures 18a through I8i are another embodiment of a nand string having a dual voltage selective gate structure. In particular, Figure 18a illustrates another specific embodiment of a NAND string having a dual voltage selective gate structure. Embodiments In this embodiment, a select gate structure 1809 includes a first conductive portion 1815 formed on an insulating portion 1816 and a first conductive portion 1814 formed on the first conductive portion. The first conductive portions of the NAND string are spaced apart from each other in the word line direction. In addition, the second conductive portion 1814 extends successively across the plurality of NAND strings in the word line direction, and the first conductive portion is isolated from the NAND string. Between (for example, NAND strings 1800 and 1830). A third pass 125538.doc -29-200832403 lead portion 1810 is formed on a dielectric 1812 and also extends across the plurality of NAND in the direction of the word line. A protective barrier 1808 is provided on the third conductive portion 181. A filler 1820 (such as Si〇2) extends between the first conductive portions of each NAND string. The exemplary storage element 1802 includes a control gate. Pole/word line 18〇4 and Floating gates 1806 (which include a first conductive portion 1809 and a second conductive portion 1807). NAND strings 1800 and 1830 are formed on a substrate 1826 that includes a p-well region 1822 and a n-well region 1824. Also shown is an exemplary source/gt; and a polar region 1818. Figure 18b is a cross-sectional view of the storage element of the NAND string of Figure 18a. This view does not include a select gate structure so that the storage element can be more clearly seen For example, the assembly of the storage element 1 8 3 1 includes a protective barrier 18 3 2, a third conductive portion 1834, a dielectric 1836, a second conductive portion 1838, a first conductive portion 1839, and an insulator 1840. Here, the second conductive portions are spaced apart from each other in the direction of the word line, instead of being connected to each other as if the gate structure is selected. Fig. 18c depicts the configuration of the gate structure with respect to the NAND string and the word line. Word lines WL0-WL3 and NAND strings (including exemplary NAND strings / 1850) are shown. A zone 1841 indicates where the gate structure is selected. Figures 18d through 18f illustrate cross-sectional views along NAND string 1850, select gate structure regions 1841, and hips, respectively. Figure 18d shows a cross-sectional view of the NAND string along the configuration of Figure 18c. The exemplary NAND string 1850 includes a select gate structure 1851 and storage elements 1852, 1853, 1854, and 1855. The select gate structure 1851 includes an insulating layer 1878 formed on a substrate 12538.doc -30 - 200832403 plate 1885 - a conductive portion VIII - a conductive portion 1861. At the first, n, a conductive portion 1860 is provided. The first conduction Qiu 8 1861 and the second conductive portion 186 〇 邛 * * * * 组成 组成 组成 选择 选择 选择 选择 选择 选择 选择 选择 857 857 857 857 857 857 857. An "electrical portion 1849 insulates the first conductive portion eight-valued path, such as the seeker, and the second conductive portion from the second conductive portion 1859, which provides a light-conducting conductive portion to provide a protective portion 1858. ^二二传: The storage 7L piece includes a floating gate which is formed by the first transfer portion 4 and the second conductive portion knife π I. For example, as shown, the first conductive portion 865 and the second conductive portion 1864' for storage element purchase are respectively used for the first conductive portion 1869 and the second conductive portion of the storage element 1853! 8 6 8 ; the first conductive portion of the material element i 8 5 4 and the second conductive portion 1872; and the first conductive portion i877 and the conductive portion for the storage element 1855, respectively. Each of the storage elements further includes a control gate/word line portion, and the control gate/word line portions are insulated from the respective floating gates by respective dielectric portions of T. For example, as shown in the figure, the storage elements 1852, 18, and the control gate/sub-wire portions 1863, 1867, 1871, and 1875 are respectively used for the storage unit. Protected areas 1862, 1866, 1870 and 1874 are also provided for storage elements 1852, 1853, 1854 and 1855, respectively. Further, source/drain regions 1880, 1881, 1882, 1883, and 1884 are formed in the substrate 1885. In operation, a sufficiently high voltage vSGS is applied to the select gate 1857 to form an inversion layer 1 8 7 9 in the substrate 18 8 to allow current to flow. In addition, a voltage ~(3) applied to the coupling electrode 1856 is coupled to the control gate 1863 of the storage element 1852 and the floating gate (portions 1864 and 125538.doc -31 · 200832403 1865), and to the source/汲Polar region 1881, as discussed in conjunction with Figure i4. As described, the select gate structure 1851 can provide a benefit such as reducing gIDL. Specifically, a, the coupling (e.g., margin) between the coupling electrode 1856 and the floating gate of the storage element 1852 may allow a lower value of vP(}M to be used on WL0 during stylization.

另外,於頃取/驗證過程期間,耦合電極1856可與儲存 το件1852的浮動閘極互相作用。舉例而言,請考量與耦合 電極1856相間隔的儲存元件1854。當讀取儲存元件18二 時,-在約0伏至4伏範圍内之感^電壓被施加至控制閘極 1871,而一在約5伏至6伏範圍内之讀取電壓被施加至 NAND串中其它儲存元件的控制閘極丨^、i8_i875。 該讀取電壓正好足以開啟儲存元件1852、1853與1855。另 外,儲存το件1854的浮動閘極(傳導部分“”與“乃)將接 收來自鄰近控制閉極1867與1875的耦合效應❶但是,當讀 取-末端儲存元件時’僅有來自—個儲存元件的習知輕 合,所以可使設定的該感測電壓較高。相比之下,運用具 有如本文所提供之麵合電極的選擇閘極結構,末端儲存元 件1852再次接收來自兩侧之輕合。舉例而言,可施加約4 伏至8伏至耦合電極1856,並且可相應地補償該感測電 圖18 e繪示沿圖18 C之配置之選擇閘極結構的剖面圖。·該 選擇閘極結構包括一第三傳導部分(其提供一耗合電極)、 :介電層及第二傳導部分,其往字線方向接連地延伸。為 每-NAND串提供-第―傳導部分及絕緣部分,並且藉由 125538.doc -32 - 200832403 一填充物(諸如SiOJ往字線方向隔離。第三傳導部分提供 用於多個NAND串的一共同耦合電極,而第二傳導部分連 同第一傳導部分一起提供用於各個NAND串的一選擇閘 極。第一傳導部分及第二傳導部分可提供為兩個分開沈積 的複晶矽層。在一項做法中,沈積第一傳導部分,接著實 行淺渠溝隔離(STI)㈣,其中將第一傳導部分餘刻成為: 狀物,該等條狀物沿NAND串延伸。接著,沈積第二傳導 部分並且亦往位元線方向予以蝕刻。接著,沈積介電層及 第三傳導部分,並且往字線方向蝕刻第一傳導部分、第二 傳V部分、第三傳導部分及介電層,以提供分開之部分, 該等部分形成儲存元件之浮動閘極的各自部件。用於往位 元線方向蝕刻第二傳導部分的遮罩應經設計,使得該遮罩 使第二傳導部分保留為在選擇閘極結構之一區域中往字線 方向的接連層。 ' 圖輯示沿圖18c之配置之字線的剖面圖。此處,個別 浮動閘極係由各個NAND串中的第—傳導部分與第二傳導 部分所構成,第-傳導部分與第:傳導部分已在字線方向 /、位70線方向予以分離,如所論述。帛三導電層 WL0 〇 圖18g繪示選擇閘極結構1886相對於nand串及字線之 排列’圖中繪示出分流區1887與接點1888。可用不同 將選擇閘極電壓、_合至選擇閘極。在—項做法中^ 成-为流區之方式為餘刻穿過第三傳導部分及選擇閉极级 構區中的介電質,藉此曝露出第二傳導部分之部件。分: 125538.doc -33- 200832403 區可係>t .又儲存7〇件陣列區。亦請參閱圖⑽,圖中緣 7F々圖18g之配置之選擇閑極結構的剖面圖。接著,一接 點1888可形成在第二傳導層之曝露部件上並且連接至_提 供VSGS之控制線。 圖18i緣示用於製造具有選擇閘極結構之半導體材料之 替代具體實施例的過程概要。步驟189()包括在一基板的一 絕緣層上形成一第一傳導部分。步驟1891包括實行淺渠溝 隔離蝕刻,其往位元線(例如,NAND串)方向蝕刻第一傳 導層。步驟1892包括形成一第二傳導部分。步驟1893包括 往位元線蝕刻第二傳導部分,以在現有的第一傳導部分條 狀物上提供第二傳導部分條狀物。步驟丨894包括在現有結 構上形成一介電部分,步驟1895包括在現有結構上形成一 第二傳導部分。步驟1896包括往字線方向蝕刻第一傳導部 分、第二傳導部分、第三傳導部分及介電層。步驟1897包 括餘刻選擇閘極結構之一區域中的第三傳導部分,以提供 一分流區。步驟1898包括在該分流區中提供一接至第二傳 導部分之接點。步驟1899包括於基板中形成源極/汲極 區。 考慮到下文,可瞭解如上文所述之具有選擇閘極結構之 N AND串之操作。 圖19繪示NAND儲存元件(諸如圖1至圖3中所示之儲存元 件)陣列1900之實例。沿每一行,一位元線19〇6耦合至用 於NAND串1950的汲極選擇閘極之汲極終端1926。沿每一 列NAND串,一源極線1904可連接至所有該等NAND串的 125538.doc -34- 200832403 源極選擇閘極之源極終端丨928。如需作為記憶體系統之部 件的NAND架構陣列及其運作之實例,請參閱美國專利案 第 5,570,315號;第 5,774,397號;及第 6,〇46,935號。 儲存元件陣列㈣分成大量儲存元件區塊。如同快閃 EEPROM系統,區塊係擦除單位。即,每一區塊包含可一 起抹除的最少數目之儲存元件。每一區塊典型被劃分成若 干頁、。一頁係一程式化單位。在一項具體實施例中,個別 頁可被劃分成若干節段(segment),纟且節段可包含作為一 基本程式化操作而一次寫入的最少數目之儲存元件。一或 多頁資料典型被儲存於一列儲存元件中。一頁可儲存一或 多個區段(sector)。一區段包括使用者資料及附加項 (rhead)貝料。附加項資料典型包括—已從該區段之使 用者資料所計算的錯誤修正碼(ECC)。控制器之—部分(在 下文描述)在將資料程式化至陣列中時計算該歌,並且當 自陣列讀取資料時亦檢查該咖。替代做法為,將ΕΚ及/ :其他附加項資料儲存在不同於使用者資料所屬的頁(或 甚至不同區塊)中。 斑之使用者資料典型係512個位元組,其相對應於 =機中之:磁區(一)的大小。附加項資料典型係額外 20個位凡組。大量頁形成一區塊,舉例而言,其為 攸8頁至最多32、64 或更夕頁。在一些具體實施例 中’一列NAND串包括—區塊。 、Λ她例中,擦除記憶體储存元件之方式為:使 ρ 擦除電壓(例如,20伏)達-段充分時間週期, 125538.doc -35 - 200832403 並且使所選區塊的字線接地,同時源極線及位^線係處於 浮動狀態。由於電容耦合,導致非所選字線、位元線、選 擇線及共同源極線也上升至該擦除電壓之顯著分率。因 此,施加強電場至所選儲存元件之随穿氧化物層,並且由 於浮動間極的電子被發射至基板侧,導致所選儲存元件的 資料被払除,典型係藉由F〇wler_N〇rdheim随穿機制。隨 著電子從浮動閘極轉移至p井區,所選儲存元件的臨限電Additionally, during the acquisition/verification process, the coupling electrode 1856 can interact with the floating gate of the storage member 1852. For example, consider storage element 1854 spaced from coupling electrode 1856. When the storage element 18 is read, a voltage in the range of about 0 volts to 4 volts is applied to the control gate 1871, and a read voltage in the range of about 5 volts to 6 volts is applied to the NAND. The control gates 其它^, i8_i875 of other storage elements in the string. The read voltage is just sufficient to turn on storage elements 1852, 1853, and 1855. In addition, the floating gates (conducting portions "" and "is" of the storage device 1854 will receive coupling effects from the adjacent control closures 1867 and 1875. However, when reading-end storage elements, only "from" The conventional components of the components are lightly coupled so that the set sensing voltage can be set higher. In contrast, with a selective gate structure having a face electrode as provided herein, the end storage element 1852 receives again from both sides. For example, about 4 volts to 8 volts can be applied to the coupling electrode 1856, and the sensing circuit 18e can be compensated accordingly to illustrate a cross-sectional view of the selected gate structure along the configuration of FIG. 18C. The select gate structure includes a third conductive portion (which provides a consuming electrode), a dielectric layer and a second conductive portion that extend in succession in the word line direction. The -th conductive portion is provided for each -NAND string And an insulating portion, and by a filler of 125538.doc -32 - 200832403 (such as SiOJ is isolated in the direction of the word line. The third conductive portion provides a common coupling electrode for the plurality of NAND strings, and the second conductive portion together with the a conducting part A select gate for each NAND string is provided together. The first conductive portion and the second conductive portion may be provided as two separately deposited polysilicon layers. In one approach, the first conductive portion is deposited, followed by shallow Channel isolation (STI) (4), wherein the first conductive portion is left as: and the strips extend along the NAND string. Then, the second conductive portion is deposited and also etched in the direction of the bit line. Depositing a dielectric layer and a third conductive portion, and etching the first conductive portion, the second pass V portion, the third conductive portion, and the dielectric layer toward the word line to provide separate portions that form a floating of the storage element The respective components of the gate. The mask used to etch the second conductive portion toward the bit line should be designed such that the mask retains the second conductive portion in the direction of the word line in a region of the selected gate structure Connected layers. The figure shows a cross-sectional view of the word line along the configuration of Figure 18c. Here, the individual floating gates are composed of the first conductive portion and the second conductive portion of each NAND string, and the first conductive portion is First The conductive portion has been separated in the word line direction /, bit 70 line direction, as discussed. The third conductive layer WL0 〇 Figure 18g shows the arrangement of the selected gate structure 1886 relative to the nand string and the word line. The shunting area 1887 and the contact point 1888. The gate voltage can be selected differently, and the gate is connected to the selected gate. In the method of the method, the method is the flow region, and the remaining portion passes through the third conducting portion and selects the closed pole level. The dielectric in the constituting region, thereby exposing the components of the second conducting portion. Points: 125538.doc -33- 200832403 Zone can be >t. Store 7 阵列 array area. See also Figure (10), Figure A cross-sectional view of the selected idler structure of the configuration of the middle edge 7F 々 Figure 18g. Next, a contact 1888 can be formed on the exposed features of the second conductive layer and connected to the control line that provides the VSGS. Figure 18i illustrates an overview of a process for fabricating an alternative embodiment of a semiconductor material having a selected gate structure. Step 189() includes forming a first conductive portion on an insulating layer of the substrate. Step 1891 includes performing a shallow trench isolation etch that etches the first conductive layer toward the bit line (e.g., NAND string). Step 1892 includes forming a second conductive portion. Step 1893 includes etching the second conductive portion toward the bit line to provide a second conductive portion strip on the existing first conductive portion strip. Step 丨894 includes forming a dielectric portion on the existing structure, and step 1895 includes forming a second conductive portion on the existing structure. Step 1896 includes etching the first conductive portion, the second conductive portion, the third conductive portion, and the dielectric layer toward the word line. Step 1897 includes optionally selecting a third conductive portion in a region of the gate structure to provide a shunt region. Step 1898 includes providing a contact in the shunt area to the second conducting portion. Step 1899 includes forming a source/drain region in the substrate. In view of the following, the operation of the N AND string having the selected gate structure as described above can be understood. Figure 19 illustrates an example of an array 1900 of NAND storage elements, such as the storage elements shown in Figures 1-3. Along each row, a bit line 19〇6 is coupled to a drain terminal 1926 for the drain select gate of NAND string 1950. Along each column of NAND strings, a source line 1904 can be connected to the source terminal 928 of the source select gate of 125538.doc -34-200832403 of all of the NAND strings. For examples of NAND architecture arrays and their operation as part of a memory system, see U.S. Patent Nos. 5,570,315; 5,774,397; and 6, 〇46,935. The array of storage elements (4) is divided into a plurality of storage element blocks. Like the flash EEPROM system, the block is the erase unit. That is, each block contains a minimum number of storage elements that can be erased together. Each block is typically divided into several pages. One page is a stylized unit. In a specific embodiment, individual pages can be divided into segments, and the segments can include a minimum number of storage elements that are written at a time as a basic stylized operation. One or more pages of data are typically stored in a list of storage elements. One page can store one or more sectors. One section includes user data and additional items (rhead). The additional item data typically includes an error correction code (ECC) that has been calculated from the user profile for that section. The controller-part (described below) calculates the song as it is programmed into the array, and also checks the coffee when it is read from the array. An alternative is to store / and / : other additional items in a different page than the user's profile (or even a different block). The user data of the spot is typically 512 bytes, which corresponds to the size of the magnetic zone (one). The additional item data is typically an additional 20 groups. A large number of pages form a block, for example, from 8 pages to a maximum of 32, 64 or even more. In some embodiments, a column of NAND strings includes a block. In her case, the memory storage component is erased by making the ρ erase voltage (eg, 20 volts) for a sufficient period of time, 125538.doc -35 - 200832403 and grounding the word line of the selected block. At the same time, the source line and the bit line are in a floating state. Due to capacitive coupling, the unselected word lines, bit lines, select lines, and common source lines also rise to a significant fraction of the erase voltage. Therefore, a strong electric field is applied to the traversing oxide layer of the selected storage element, and since the electrons of the floating interpole are emitted to the substrate side, the data of the selected storage element is removed, typically by F〇wler_N〇rdheim Follow the mechanism. As the electrons move from the floating gate to the p-well, the selected storage component is limited

麼被降低。可對整個記憶體陣列、分開的區塊或其他儲存 元件單位來執行擦除。 圖20繪示使用單個列/行解碼器及讀取/寫入電路之非揮 發性記憶體系統的方塊圖。根據本發明—項具體實施例, 記憶體裝置2G96具有料平行讀取及料化—胃儲存元件 之讀取/寫入電路。記憶體裝置2096可包括一或多個記憶 體晶粒2098。記憶體晶粒2〇98包括一個二維儲存元件陣列 1900、控制電路2〇1〇及讀取/寫入電路⑼“。在一些具體 實施例中,儲存元件陣列可能係三維。記憶體陣列19〇〇係 ϋ、、、由列解碼器203〇藉由字線與經由一行解碼器2〇6〇藉 由位疋線予以定址。讀取/寫入電路2065包括多個感測組 塊2000,並且允許並行地讀取或程式化一頁儲存元件。典 型地,在相同於一或多個記憶體晶粒2098的記憶體裝置 (例如’可卸除式儲存卡)中包括一控制器2050。命令 與資料係經由線路2020以在主機與控制器2〇5〇之間傳送並 、、良路2018以在该控制器與一或多個記憶體晶粒2098 之間傳送。 125538.doc * 36 - 200832403 控制電路201 0與讀取/寫入電路2〇65協作以執行關於記 憶體陣列1900的記憶體操作。控制電路2〇1〇包括一狀態機 2012、一晶片上位址解碼器2014及一功率控制模組2016。 狀悲機2012提供記憶體操作之晶片層級控制。晶片上位址 解碼器2014提供一介於主機或一記憶體控制器使用之硬體 位址與解碼器2030及2060使用之硬體位址之間的位址介 面。功率控制模組2016控制在記憶體操作期間供應至字線 與位元線的功率與電壓。 在些實施方案中,可組合一些組件。在各種設計中, 除儲存元件陣列19〇〇外的一或多個組件(單獨式或組合式) 可視為一官理電路。舉例而言,一或多個管理電路可包括 如下中任一項或其組合··控制電路2010 ;狀態機2012 ;解 碼器2014、2030與2060;功率控制模組2〇16;感測組塊 2000 ’項取/寫入電路2〇65 ;控制器2〇5〇等等。 ® 21繪示使用雙列/行解碼器及讀取/寫入電路之非揮發 己L體系統的方塊圖。提供圖2〇所示之記憶體裝置別96 的另配置。此處,藉由各種周邊電路對記憶體陣列! 9〇〇 之2取係在該陣列之相對立側處以對稱方式予以實施,使 得母侧之存取線路與電路之密度減少一倍。因此,列解 碼器被分割成列解碼器2030八與2〇3〇6,並且行解碼器被 分割成行解碼器2060A與2〇6〇b。同樣地,讀取/寫入電路 被分割成讀取/寫入電路2〇65A(其從陣列19〇〇底端連接至 位元線)與讀取/寫入電路2〇65B(其從陣列頂端連接至位元 線)以此方式,使讀取/寫入模組之密度實質上減小一倍。 125538.doc •37- 200832403 圖21之裝置亦包括一控制器,如同如上文關於圖20之裝置 所描述。 圖22繪示個別感測組塊2000之方塊圖,該感測組塊被分 成一核心部分(稱為感測模組2080)與一共同部分2090。在 一項具體實施例中,對於每一位元線有一個分開之感測模 - 組2080,並且對於一組多個感測模組2080有一個共同部分 . 2090。在一項實例中,一感測組塊將包括一個共同部分 ^ 2090及八個感測模組2080。一群組中的每一感測模組將經 ® 由一資料匯流排2072以與相關聯之共同部分通信。如需進 一步細節,請參閱2006年6月29日公告之美國專利申請案 第 2006/0140007 號題為"Non-Volatile Memory & Method with Shared Processing for an Aggregate of Sense Amplifiers”,該案整份内容以引用方式併入本文中。 感測模組2080包括感測電路2070,該感測電路判定一經 連接之位元線中的一傳導電流是否高於或低於一預先決定 臨限位準。感測模組2080亦包括一位元線鎖存器2082,該 ® 位元線鎖存器係用於設定該經連接之位元線上的電壓條 / 件。舉例而言,鎖存於位元線鎖存器2082中的一預先決定 • 狀態將導致該經連接之位元線被拉至一指定程式化禁止之 狀態(例如,VDD)。 共同部分2090包括一處理器2092、一組資料鎖存器2094 及一耦合於該組資料鎖存器2094與資料匯流排2020之間的 一 I/O介面2096。處理器2092執行運算。舉例而言,處理 器之功能之一係判定經感測之儲存元件中所儲存的資料, 125538.doc -38 - 200832403 並且將S亥經判疋之資料儲存於該組資料鎖存器中。該組資 料鎖存盗2094係用於儲存在讀取操作期間處理器2〇92所判 定的資料位元。該組資料鎖存器亦用於儲存在程式化操作 期間自資料匯流排2020匯入的資料位元。經匯入之資料位 元表示意欲程式化於記憶體中的寫入資料。1/〇介面2〇96 提供一介於資料鎖存器2094與資料匯流排2〇2〇之間的介 面。 於項取或感測期間,系統之運作係在狀態機2〇12之控制 下,狀態機控制不同控制閘極電壓至經定址儲存元件之供 應。隨著逐步通過相對應於記憶體所支援之各種記憶體狀 恶的各種預先定義之控制閘極電壓,感測模組2〇8〇可感測 到彼等電壓之一者,並且將經由匯流排2〇72自感測模組 2080提供一輸出至處理器2〇92。此時,處理器汕%藉由考 量感測模組之感測事件及關於經由輸入線路2〇93來自狀態 機之經施加控制閘極的資訊來判定所得記憶體狀態。接 著,處理器運算該記憶體狀態之二進位編碼,並且將所得 資料位元儲存於資料鎖存器2〇94中。在核心部分之另一具 體實施例中,位元線鎖存器2082有雙重用途,其作為用於 鎖存感測杈組2080之輸出的鎖存器且亦作為如上文所述之 位元線鎖存器。 預期一些實施方案將包括多個處理器2〇92。在一項具體 實施例中,每一處理器2〇92將包括一輸出線(圖19中未繪 示),使得每一輸出線被或邏輯連接(wired_〇R)在一起。在 一些具體實施例中,該等輸出線在被連接至該或邏輯連接 125538.doc -39- 200832403 線之如先被反轉。此 P ^ ^ 、、,怨Λ現在程式化驗證過程期間迅 連判疋已元成程式化過程 ^ 的狀悲機可判定所有正 連接 破転式化的位元已達到所要位準。 舉例而言,當每一位开p、本, ^ ^ 已達到其所要位準時,該位元的一 邏輯”〇”將被發送至 , 该或邏輯連接線(或一資料"1”被反 轉)。當所有位元輸出一資 一 貝科〇 (或一貧料” 1 ”被反轉)時, 狀態機知道終止程式化過 ^ 、私因為母一處理器與八個感測It was lowered. Erasing can be performed on the entire memory array, separate blocks, or other storage element units. Figure 20 is a block diagram showing a non-volatile memory system using a single column/row decoder and read/write circuits. In accordance with an embodiment of the present invention, the memory device 2G96 has read/write circuits for parallel reading and materialization of the gastric storage element. Memory device 2096 can include one or more memory dies 2098. Memory die 2〇98 includes a two-dimensional array of storage elements 1900, control circuitry 2〇1〇, and read/write circuitry (9). In some embodiments, the array of storage elements may be three-dimensional. Memory array 19 The system is addressed by a column decoder 203 by a word line and via a row of decoders 2 〇 6 〇 by a bit line. The read/write circuit 2065 includes a plurality of sensing blocks 2000, And allowing one page of storage elements to be read or programmed in parallel. Typically, a controller 2050 is included in a memory device (eg, a 'removable memory card) that is identical to one or more memory dies 2098. Commands and data are transmitted between the host and controller 2〇5〇 via line 2020, and a good path 2018 is transmitted between the controller and one or more memory dies 2098. 125538.doc * 36 - 200832403 The control circuit 201 0 cooperates with the read/write circuit 2〇65 to perform a memory operation with respect to the memory array 1900. The control circuit 2〇1 includes a state machine 2012, an on-chip address decoder 2014 and a Power Control Module 2016. Wafer level control of memory operations. The on-wafer address decoder 2014 provides an address interface between the hardware address used by the host or a memory controller and the hardware address used by the decoders 2030 and 2060. Power Control Mode Group 2016 controls the power and voltage supplied to the word lines and bit lines during memory operation. In some embodiments, some components may be combined. In various designs, one or more of the storage element arrays 19 The components (individual or combined) may be considered as a single official circuit. For example, one or more of the management circuits may include any one or a combination of the following: control circuit 2010; state machine 2012; decoder 2014, 2030 And 2060; power control module 2〇16; sensing block 2000' item fetch/write circuit 2〇65; controller 2〇5〇, etc. ® 21 shows use of double column/row decoder and read Block diagram of the non-volatile L-body system of the write circuit. Another configuration of the memory device 96 shown in Fig. 2A is provided. Here, the memory array is obtained by various peripheral circuits! Symmetrical at the opposite sides of the array The implementation is such that the density of the access line and circuitry on the female side is reduced by a factor of 2. Thus, the column decoder is split into column decoders 2030 and 2〇3〇6, and the row decoder is split into row decoders 2060A and 2〇6〇b. Similarly, the read/write circuit is divided into a read/write circuit 2〇65A (which is connected from the bottom end of the array 19 to the bit line) and the read/write circuit 2 〇 65B (which is connected from the top of the array to the bit line) in this way substantially reduces the density of the read/write module by a factor of two. 125538.doc •37- 200832403 The device of Figure 21 also includes a controller As described above with respect to the apparatus of Figure 20. 22 is a block diagram of an individual sensing block 2000 that is divided into a core portion (referred to as sensing module 2080) and a common portion 2090. In one embodiment, there is a separate sensing mode group 2080 for each bit line and a common portion for a group of multiple sensing modules 2080. 2090. In one example, a sensing block will include a common portion ^ 2090 and eight sensing modules 2080. Each sensing module in a group will pass through a data bus 2072 to communicate with the associated common portion. For further details, please refer to US Patent Application No. 2006/0140007, entitled "Non-Volatile Memory & Method with Shared Processing for an Aggregate of Sense Amplifiers", published on June 29, 2006. The content is incorporated herein by reference. The sensing module 2080 includes a sensing circuit 2070 that determines whether a conduction current in a connected bit line is above or below a predetermined threshold level. The sensing module 2080 also includes a one-bit line latch 2082 for setting a voltage strip/piece on the connected bit line. For example, latching in a bit element A predetermined state in line latch 2082 will cause the connected bit line to be pulled to a specified stabilizing state (e.g., VDD). Common portion 2090 includes a processor 2092, a set of data locks The memory 2094 and an I/O interface 2096 coupled between the set of data latches 2094 and the data bus 2020. The processor 2092 performs an operation. For example, one of the functions of the processor is to determine the sensed Storage component The stored data, 125538.doc -38 - 200832403, and store the data of the S-thinking in the set of data latches. The set of data latches 2094 is used to store the processor 2 during the read operation. The data bit determined by 〇92. The data latch is also used to store data bits imported from the data bus 2020 during the stylization operation. The data bits indicated are intended to be programmed into the memory. The data is written in. 1/〇 interface 2〇96 provides an interface between the data latch 2094 and the data bus 2〇2〇. During the item capture or sensing, the system operates in the state machine 2 Under the control of 〇12, the state machine controls the supply of different control gate voltages to the addressed storage element. With the gradual adoption of various predefined control gate voltages corresponding to the various memory modalities supported by the memory, sense The test module 2〇8〇 can sense one of the voltages, and will provide an output from the sensing module 2080 to the processor 2〇92 via the bus bar 2〇72. At this time, the processor 汕% borrows Considering the sensing events of the sensing module and The input line 2〇93 derives information from the state machine via the control gate to determine the resulting memory state. The processor then computes the binary encoding of the memory state and stores the resulting data bit in the data latch 2 In another embodiment of the core portion, bit line latch 2082 has a dual purpose as a latch for latching the output of sense group 2080 and also as described above. The bit line latch. It is contemplated that some embodiments will include multiple processors 2〇92. In one embodiment, each processor 2 〇 92 will include an output line (not shown in Figure 19) such that each output line is or wired (wired_〇R) together. In some embodiments, the output lines are inverted as before being connected to the or logical connection 125538.doc -39-200832403. This P ^ ^ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , For example, when each bit opens p, this, ^ ^ has reached its desired level, a logical "〇" of the bit will be sent to, or the logical connection line (or a data "1" is Reverse). When all the bits output one quintile (or one poor) 1 ” is reversed, the state machine knows to terminate the stylized ^, private because of the mother one processor and eight senses

模組通信’所讀態機必須讀取或邏輯連接線人次,或將 用以累加相關聯之位元線之結果的邏輯加入至處理器 L使得狀態機僅需要讀取或邏輯連接線—次。同樣 地’糟由正確選擇邏輯位準,全域性狀態機可彳貞測何時第 位元變更其狀悲且據此變更演算法。 在程式化或驗證期間,來自資料匯流排2020的待程式化 之資料被儲存在該組資料鎖存器2094中。在狀態機之控制 下,程式化操作包括施加至經定址儲存元件之控制閘極的 一連串程式化電壓踩衝。在每一程式脈衝之後進行一讀回 (驗證),以判定儲存元件是否已被程式化至所要之記憶體 狀態。處理器2092相對於所要之記憶體狀態來監視讀回之 否己fe體狀悲。當该兩種§己憶體狀態一致時,處理器2 q 9 2設 定位元線鎖存器2082,致使位元線拉至一指定程式化禁止 之狀態。此禁止進一步程式化經耦合至該位元線的儲存元 件’即使該儲存元件之控制閘極上有程式脈衝出現。在其 它具體實施例中,在驗證過程期間,處理器在初始時載入 位元線鎖存器2082,並且感測電路將其設定為一禁止值。 125538.doc -40· 200832403 資料鎖存器堆疊2094包含相對應於感測模組的一堆疊資 料鎖存器。在一項具體實施例中’每感測模組2 0 8 0有三個 資料鎖存器。在一些實施方案中(但非必須),資料鎖存器 被實施為一移位暫存器,使得儲存於其中的並列資料被轉 換成用於資料匯流排2020的串列資料,反之亦然。在較佳 具體實施例中,相對應於m個儲存元件之讀取/寫入組塊的 所有資料鎖存器可被鏈接在一起,以形成一區塊移位暫存 器,使得可藉由串列傳送來輸入或輸出一區塊資料。具體 而言,含r個讀取/寫入模組之庫組(bank)經調適,使得其 該組資料鎖存器之每一者將資料循序移入或移出資料匯流 排,猶如其係屬於一用於整個讀取/寫入組塊之移位暫存 器的部件。 如需關於非揮發性儲存裝置之各項具體實施例的結構及/ 或操作的額外資訊,請參閱:(1) 2004年3月25日公告之美 國專利申請公開案第2004/0057287號題為"Non-Volatile Memory And Method With Reduced Source Line Bias Errors" ; (2) 2004年6月10曰公告之美國專利申請公開案第 2004/0109357 號題為 ”Non_Volatile Memory And Method with Improved Sensing” ;(3)於 2 004 年 12 月 16 曰申請之美國 專利申請案第 11/015,199 號題為"Improved Memory Sensing Circuit And Method For Low Voltage Operation” ;(4)於 2005年4月5日申請之美國專利申請案第11/099,133號題為 ”Compensating for Coupling During Read Operations ofThe module communication 'reader must read or logically connect the line, or add logic to accumulate the result of the associated bit line to processor L so that the state machine only needs to read or logically connect the line-time . Similarly, the correct logic level is chosen by the global state machine to determine when the bit changes its behavior and changes the algorithm accordingly. During stylization or verification, the data to be programmed from the data bus 2020 is stored in the set of data latches 2094. Under the control of the state machine, the stylization operation includes a series of stylized voltage stampings applied to the control gates of the addressed storage elements. A read back (verification) is performed after each program pulse to determine if the storage element has been programmed to the desired memory state. The processor 2092 monitors whether the read back is erroneous with respect to the desired memory state. When the two § memories are in the same state, the processor 2 q 9 2 sets the locating element line latch 2082, causing the bit line to be pulled to a specified stylized inhibit state. This prohibits further programming of the storage element coupled to the bit line even if a program pulse is present on the control gate of the storage element. In other embodiments, during the verification process, the processor initially loads the bit line latch 2082 and the sensing circuit sets it to a disable value. 125538.doc -40· 200832403 The data latch stack 2094 contains a stack of data latches corresponding to the sense modules. In one embodiment, there are three data latches per sensing module 2800. In some embodiments, but not necessarily, the data latch is implemented as a shift register such that the parallel data stored therein is converted to serial data for data bus 2020 and vice versa. In a preferred embodiment, all of the data latches corresponding to the read/write blocks of the m storage elements can be linked together to form a block shift register so that Serial transmission to input or output a block of data. Specifically, the bank containing r read/write modules is adapted such that each of the group of data latches sequentially moves data into or out of the data bus as if it belonged to a bank. A component of the shift register for the entire read/write block. For additional information on the structure and/or operation of the specific embodiments of the non-volatile storage device, see: (1) U.S. Patent Application Publication No. 2004/0057287, filed on March 25, 2004, entitled "Non-Volatile Memory And Method with Improved Sensing; (2) US Patent Application Publication No. 2004/0109357, issued June 10, 2004, entitled "Non_Volatile Memory And Method with Improved Sensing"; 3) U.S. Patent Application Serial No. 11/015,199, filed on December 16, 2004, entitled "Improved Memory Sensing Circuit And Method For Low Voltage Operation; (4) United States, filed on April 5, 2005 Patent Application No. 11/099, No. 133 entitled "Compensating for Coupling During Read Operations of

Non-Volatile Memory";以及(5)於 2005年 12 月 28 曰申請之 125538.doc -41 · 200832403 美國專利申請公開案第11/321,953號題為,,Reference SenseNon-Volatile Memory"; and (5) December 28, 2005 曰 Application 125538.doc -41 · 200832403 US Patent Application Publication No. 11/321,953 entitled, Reference Sense

Amplifier For Non-Volatile Memory”。以上列出之五份專 利文件整份内容均以引用方式併入本文中。 圖23繪示對於所有位元線記憶體架構或對於奇偶記憶體 架構而將§己憶體陣列組織成區塊之實例。描述健存元件陣 / 列1900之示範性結構。作為一項實例,描述一種被分割成 1,024個區塊的NAND快閃EEPROM。可以同時擦除每一區 塊中儲存的資料。在一項具體實施例中,區塊係被同時擦 籲 &之儲存元件的最小單位。在此實例中,每-區塊中有相 對應於位元線BL0、BL1、…、BL8511的8,512行。在一項 稱為全位元線(ABL)架構(架構23 10)之具體實施例中,於 讀取及程式化操作期間,可同時選擇一區塊的所有位元 線。沿一共同字線且連接至任何位元線的儲存元件可被同 時程式化。 在所提供之實例中,串聯連接四個儲存元件以形成一 _ NAND串。雖然圖中繪示每一 NAND串中包括四個儲存元 件,但是可以使用四個以上或以下儲存元件(例如,Μ、 32、64或其他數目)。NAND串的一終端係經由一汲極選擇 / 閘極(其連接至SGD及CED)而連接至一相對應之位元線, 並且另一終端係經由一源極選擇閘極(其連接至sgs及 CES)而連接至共同源極線。 在另一具體實施例中’稱為奇偶架構(架構2300),位元 線被劃分成偶數位元線(BLe)及奇數位元線(BL〇)。在奇數/ 偶數位元線架構中,對沿一共同字線且連接至奇數位元線 125538.doc -42- 200832403 的儲存元件進行一次程式化,並且對沿一共同字線且連接 至偶數位元線的儲存元件進行另一次程式化。可同時地將 ί料私式化至不同區塊中及自不同區塊讀取資料。在此實 例中,在每一區塊中有8,512行,其被劃分成偶數行及奇 數行。在此實例中,圖中繪示串聯連接四個儲存元件以形 成一 NAND串。雖然圖中繪示每一 NAND串中包括四個儲 存元件’但是可以使用多於或少於四個儲存元件。 於讀取及程式化操作之一組態期間,同時選擇4,256個 儲存疋件。該等所選儲存元件具有相同的字線及同一種位 元線(例如,偶數位元線或奇數位元線)。因此,可同時讀 取或程式化的532個位元組資料(其形成一邏輯頁),並且一 個區塊可儲存至少八個邏輯頁(四個字線,每一字線具有 可數頁及偶數頁)。對於多狀態式儲存元件,當每一儲存 疋件儲存兩個位元的資料時,其中該兩個位元之每一者被 儲存在一不同頁中,一個區塊儲存16個邏輯頁。也可使用 其他大小之區塊及頁。 對於全位兀線(ABL)架構或奇偶架構,擦除儲存元件之 方式為:使Ρ井上升至一擦除電壓(例如,20伏),並且使一 所選區塊的字線接地。源極線及位域係處於浮動狀態。 可對整個記憶體陣列、分開的區塊或其他儲存元件單位 (其係記憶體裝置之一部分)來執行擦除。電子從儲存元件 的浮動閘極轉移至ρ井區,並且儲存元件的Vth變成負。 在讀取與驗證操作中,選擇閘極(SGD與SGS)被連接至 在2.5伏至4.5伏範圍内之—電壓,並且使非所選字線(例 125538.doc -43· 200832403 如,當WL2係所選字線時,WLO、WL1和WL3係非所選字 線)上升至一讀取傳送電壓VpASs(典型在4·5伏至6伏範圍 内)’以使電晶體運作為傳送閘極。所選字線WL2被連接 至一電壓,對於每一讀取與驗證操作來指定該電壓的位 準,以判定所涉及的儲存元件的Vth是否高於或低於該位 / 準。舉例而言,在對於一種兩位準式儲存元件的讀取操作 : 中,所選字線WL2被接地,致使得以偵測其Vth是否高於〇 伏。在對於一種兩位準式儲存元件的驗證操作中,所選字 籲、線WL2被連接至(例如)〇.8伏,纟使得以驗證其v四是否已 到達至少0.8伏。源極及p井係在〇伏。所選位元線(假定係 偶數位元線)被預充電至(例如)〇7伏之位準。如果字線上 的VTH高於讀取或驗證位準,則關聯於涉及之儲存元件的 位元線(BLe)之電位位準因非傳導狀態儲存元件而維持高 位準。3方面,如果Vth低於讀取或驗證位準,則涉及 之位元線(BLe)的電位位準減小至低位準(例如,小於^ • 伏)’原因係傳導狀態之儲存元件使位元線放電。藉此, ,#由連μ位元線的電壓比較器感測放大器來·m存元 上文所述之擦除、讀取與驗 知的技術予以實行。因此, 熟 證操作係根據此項技術中 #悉此項技術者可改變所解說 :〜即。亦可使用此項技術熟知的 驗證技術。 τ項取興 圖2 4繪不當母一儲存元件儲存兩個位元之資料 件陣列的示範性庐限雷^ 、 、·存兀 限電壓分佈。對於經擦除之儲存元件提 125538.doc •44- 200832403 供一第一臨限電壓分佈£。亦 j ^繪出用於經程式化之儲存 元件的三種臨限電壓分佈A、 13和C。在一項具體實施例 中,E分佈中的臨限電壓係g 電壓係正值。 糸負值’A、^C分佈中的臨限 每-相異臨限電壓範圍對應於一用於各組資料位元的預 先決定值。介於程式化於儲存㈣中之資料與儲存元件之 臨限電壓位準之間的特定關係取決於對儲存元件所採用的 資料編碼方案。舉例而言,4國專利案第MUM號及 2004年12月16日公告之美國專利申請公主案第 2004/025 5090號(該等案整份内容以引用方式併入:文'幻 描述用於多狀態式快_存元件的各種f料編碼方案。在 -項具體實施例中’使用一種格雷碼(Gray —指派,將 資料值指派給該等臨限電壓範圍,使得如果一浮動閘極的 臨限電壓錯誤地偏移至其鄰近物理狀態,則僅一個位元將 文到影響。一項實例指派"u "給臨限電壓範圍e (狀態E); 指派"10"給臨限電壓範圍A (狀態A);指派"〇〇"給臨限電壓 範圍B (狀態B);及指派"01"給臨限電壓範圍c (狀態c)。 但是,在其它具體實施例中,不使用格雷碼。雖然圖中繪 示四種狀態,但是亦可配合其他多狀態結構(包括具有四 種以上或以上狀態之多狀態結構)運用本發明。 亦提供緣示用於從儲存元件讀取資料的三個讀取參考電 壓Vra、Vrb與Vix。藉由測試一既定儲存元件的臨限電壓 是否高於或低於Vra、Vrb與Vrc,系統可判定該儲存元件 所處之狀態。 125538.doc -45- 200832403 另外,提供三個驗證參考電壓Vva、Vv^Vvc。當將儲 存元件程式化至狀態_,系統將測試儲存元件是否具有 大臨限電壓。當將儲存元件程式化至狀態 B時’系統將測試儲存元件是否具有大於或等於Μ之臨 限電壓。當將料元件程式化至狀態c時,系統將判定儲 存元件疋否具有大於或等於Vvc之臨限電壓。 在-項具體實施例中,名為全序列程式化,可將儲存元 件從經擦除狀態E直接程式化至該等經程式化狀態a、B或 C中之任一狀態。舉例而言,待程式化的一群體儲存元件 可先予以擦除,使得該群體中的所有儲存元件皆處於經擦 除狀恶E。接著,使用一連串程式脈衝(諸如圖3〇之控制閘 極電壓序列所示),以將儲存元件直接程式化至狀態A、B 或C。當一些儲存元件正被從狀態e程式化至狀態a時,其 他儲存元件正被從狀態E程式化至狀態b及/或從狀態E程式 化至狀態C。由於與在WLn上從狀態E程式化至狀態A或從 狀態E程式化至狀態b時在WLn下的浮動閘極上之電壓變化 相比,當在WLn上從狀態E程式化至狀態c時在WLn下的浮 動閘極上之電荷變化量最大,所以至在WLn-1下的相鄰浮 動閘極之寄生耦合量最大。從狀態E程式化至狀態B時,至 相鄰浮動閘極之耦合量減小,但仍然顯著。從狀態E程式 化至狀態A時,至相鄰浮動閘極之耦合量甚至進一步減 小。據此,後續讀取WLn-1之每一狀態所需的校正量將視 WLn上之相鄰儲存元件的狀態而異。 圖25繪示一種程式化多狀態式儲存元件之兩次進程 125538.doc -46- 200832403 (tw〇-Pass)技術之實例,該多狀態式儲存元件儲存兩個不 同頁(一下部頁與—上部頁)的資料。圖中繪示四種狀態: 狀態E (11)、狀態A (10)、狀態B (〇〇)及狀態c㈧)。對於 狀態E,彼兩頁儲存q"。對於狀態a,下部頁儲存τ且上 邛頁儲存"1"。對於狀態B,彼兩頁儲存"〇"。對於狀態C, 下部頁儲存"1"且上部頁儲存"0"。請注意,雖然、特定位元 型樣(bit pattern)已被指I給每一狀態,但是可指派不同的 位元型樣。 在第一次程式化進程中,按照待程式化至下部邏輯頁中 的位元來設定儲存元件的臨限電壓位準。 . 邏輯-,則由於己在早先予以擦除而處於適當:二 以未使臨限電壓變化。但是’如果待程式化之位元係一邏 輯則儲存元件之臨限電壓位準被增大至狀態A,如箭 頭2500所示。這使第一程式化進程終止。 在第二次程式化進程中,按照正被程式化至上部邏輯頁 中的位元來設定儲存元件的臨限電壓位準。如果該上部邏 輯頁位it係储存邏輯’則由於該儲存元件係處於狀駐 或A (取決於該下部頁位元之程式化),彼兩種狀態皆^有 上部頁位元"Γ,’所以未發生程式化。如果該上部頁位元 係邏輯"0" ’則使臨限電壓偏移。如果第一進程導致該 存元件維持在經擦除狀態E,則在第二階段中,該儲存元 件被程式化,使得臨限電壓被增大至狀態C範圍内,如箭 頭2520所示。如果第一程式化進程導致該儲存元件已被二 式化為狀態A ’則在第二進程中進一步程式化該儲存元 125538.doc •47· 200832403 件,使得臨限電壓被增大至狀態B範圍内,如箭頭25ι〇戶 不。第三進程的結果係將儲#元件帛式化為經指定用以: 上部頁儲存邏輯"〇"之狀態,而且未變更下部頁之資料。 在圖24與圖25中,至相鄰位元線上之浮動閘極的輕合 決於最終狀態。Amplifier For Non-Volatile Memory. The entire contents of the five patent documents listed above are incorporated herein by reference. Figure 23 illustrates the § for all bit line memory architectures or for parity memory architectures. An example of a memory array organized into blocks. An exemplary structure of the load cell array/column 1900 is described. As an example, a NAND flash EEPROM that is divided into 1,024 blocks is described. The data stored in a block. In one embodiment, the block is simultaneously the smallest unit of the storage element. In this example, there is a corresponding bit line BL0 in each block. , BL1, ..., 8,851 rows of BL8511. In a specific embodiment called the All-Band Line (ABL) architecture (Architecture 23 10), a block can be selected simultaneously during read and program operations. All bit lines. The storage elements along a common word line and connected to any bit line can be simultaneously programmed. In the example provided, four storage elements are connected in series to form a _ NAND string. Included in each NAND string Storage elements, but four or more storage elements (eg, Μ, 32, 64, or other number) can be used. One terminal of the NAND string is via a drain select/gate (which is connected to SGD and CED) Connected to a corresponding bit line, and the other terminal is connected to a common source line via a source select gate (which is connected to sgs and CES). In another embodiment, 'the parity structure is' (Architecture 2300), the bit lines are divided into even bit lines (BLe) and odd bit lines (BL〇). In the odd/even bit line architecture, pairs are along a common word line and connected to odd bits. The storage elements of line 125538.doc -42- 200832403 are programmed once and another stylization is performed on the storage elements along a common word line and connected to the even bit lines. The material can be privately different at the same time. The data is read in and from the different blocks. In this example, there are 8,512 rows in each block, which are divided into even rows and odd rows. In this example, the figure shows four connections in series. Storing components to form a NAND string, although depicted in the figure Four storage elements are included in each NAND string 'but more or less than four storage elements can be used. During configuration of one of the read and program operations, 4,256 storage elements are simultaneously selected. The selected storage The elements have the same word line and the same bit line (for example, even bit lines or odd bit lines). Therefore, 532 bytes of data (which form a logical page) can be simultaneously read or programmed. And a block can store at least eight logical pages (four word lines, each word line has a countable page and an even number of pages). For a multi-state storage element, when each storage element stores two bits of data At the time, each of the two bits is stored in a different page, and one block stores 16 logical pages. Blocks and pages of other sizes can also be used. For an all-bit squall (ABL) architecture or an odd-even architecture, the storage element is erased by raising the well to an erase voltage (e.g., 20 volts) and grounding the word line of a selected block. The source line and the bit field are in a floating state. Erasing can be performed on the entire memory array, separate blocks, or other storage element units that are part of the memory device. Electrons are transferred from the floating gate of the storage element to the ρ well region, and the Vth of the storage element becomes negative. In the read and verify operations, the select gates (SGD and SGS) are connected to a voltage in the range of 2.5 volts to 4.5 volts, and the non-selected word lines are made (eg, 125538.doc -43.200832403, eg, when When WL2 is the selected word line, WLO, WL1, and WL3 are non-selected word lines) rise to a read transfer voltage VpASs (typically in the range of 4·5 volts to 6 volts) to enable the transistor to operate as a transfer gate. pole. The selected word line WL2 is coupled to a voltage that is specified for each read and verify operation to determine if the Vth of the associated storage element is above or below the bit/quasi. For example, in a read operation for a two-bit quasi-storage element: the selected word line WL2 is grounded such that it is detected whether its Vth is above zero. In a verify operation for a two-bit storage element, the selected word, line WL2 is connected to, for example, 88 volts, to verify that its v four has reached at least 0.8 volts. The source and p wells are in the dormant. The selected bit line (assuming an even bit line) is precharged to, for example, a level of 〇7 volts. If the VTH on the word line is above the read or verify level, the potential level associated with the bit line (BLe) associated with the storage element is maintained at a high level due to the non-conducting state storage element. On the 3rd, if the Vth is lower than the read or verify level, the potential level of the bit line (BLe) involved is reduced to a low level (for example, less than ^• volts). Yuan line discharge. Thereby, # is connected by the voltage comparator sense amplifier of the μ bit line. The technique of erasing, reading and detecting as described above is carried out. Therefore, the familiarity operation system can be changed according to the technology in this technology. Verification techniques well known in the art can also be used. τ item selection Figure 2 4 shows the exemplary limit of the data array of the two-element data storage array. For a erased storage component, 125538.doc •44- 200832403 provides a first threshold voltage distribution of £. Also, draw three threshold voltage distributions A, 13, and C for the stylized storage component. In a specific embodiment, the threshold voltage g voltage in the E distribution is positive. The threshold in the distribution of the negative values 'A, ^C' Each of the distinct threshold voltage ranges corresponds to a predetermined value for each set of data bits. The specific relationship between the data programmed in storage (4) and the threshold voltage level of the storage element depends on the data encoding scheme used for the storage element. For example, U.S. Patent No. MUM No. 4 and U.S. Patent Application Serial No. 2004/025 5090, issued Dec. 16, 2004, the entire contents of which are hereby incorporated by reference: Various f-coded schemes for multi-state fast-storage elements. In a specific embodiment, 'using a Gray code (Gray-assignment, assigning data values to the threshold voltage ranges such that if a floating gate is The threshold voltage is erroneously offset to its neighboring physical state, then only one bit will affect the text. An instance assigns "u " to the threshold voltage range e (state E); assigns "10" to Limit voltage range A (state A); assign "〇〇" to the threshold voltage range B (state B); and assign "01" to the threshold voltage range c (state c). However, in other implementations In the example, the Gray code is not used. Although four states are illustrated, the present invention can also be applied in conjunction with other multi-state structures (including multi-state structures having four or more states). Three read reference voltages Vr for reading data from the storage component a, Vrb and Vix. By testing whether the threshold voltage of a given storage element is higher or lower than Vra, Vrb and Vrc, the system can determine the state of the storage element. 125538.doc -45- 200832403 In addition, provide Three verification reference voltages Vva, Vv^Vvc. When the storage element is programmed to state_, the system will test whether the storage element has a large threshold voltage. When the storage element is programmed to state B, the system will test whether the storage element is Has a threshold voltage greater than or equal to Μ. When the material element is programmed to state c, the system will determine whether the storage element has a threshold voltage greater than or equal to Vvc. In the specific embodiment, the full sequence is named Stylized, the storage element can be directly programmed from the erased state E to any of the programmed states a, B or C. For example, a group of storage elements to be programmed can be wiped first. In addition, all the storage elements in the group are erased E. Then, a series of program pulses (such as the control gate voltage sequence shown in Figure 3) are used to directly program the storage elements. To state A, B or C. When some storage elements are being programmed from state e to state a, the other storage elements are being programmed from state E to state b and/or from state E to state C. Compared to the voltage change on the floating gate under WLn when staging from state E to state A or from state E to state b on WLn, when morphing from state E to state c on WLn at WLn The amount of charge change on the lower floating gate is the largest, so the parasitic coupling amount to the adjacent floating gate under WLn-1 is the largest. When the state E is programmed to the state B, the coupling amount to the adjacent floating gate is reduced. Small but still significant. When the state E is programmed to the state A, the coupling amount to the adjacent floating gate is further reduced. Accordingly, the amount of correction required to subsequently read each state of WLn-1 will vary depending on the state of the adjacent storage elements on WLn. 25 illustrates an example of a two-stage process 125538.doc-46-200832403 (tw〇-Pass) technique for a stylized multi-state storage element that stores two different pages (the next page with - The information on the upper page). The figure shows four states: state E (11), state A (10), state B (〇〇), and state c (eight). For state E, the two pages store q". For state a, the lower page stores τ and the upper page stores "1". For state B, the two pages store "〇". For state C, the lower page stores "1" and the upper page stores "0". Note that although a particular bit pattern has been assigned to each state by I, different bit patterns can be assigned. In the first stylization process, the threshold voltage level of the storage element is set according to the bit to be programmed into the lower logical page. Logic-, because it has been erased earlier, is appropriate: Second, the threshold voltage is not changed. However, if the bit to be programmed is a logic, the threshold voltage level of the storage element is increased to state A, as indicated by arrow 2500. This causes the first stylization process to terminate. In the second stylization process, the threshold voltage level of the storage element is set according to the bit being programmed into the upper logical page. If the upper logical page bit is storing logic ', then since the storage element is in the state or A (depending on the stylization of the lower page bit), both states have the upper page bit " 'So there is no stylization. If the upper page bit system logic "0" ', the threshold voltage is shifted. If the first process causes the memory element to remain in the erased state E, then in the second phase, the memory element is programmed such that the threshold voltage is increased to the state C range, as indicated by arrow 2520. If the first stylization process causes the storage element to be binarized to state A', then the storage element 125538.doc •47·200832403 is further programmed in the second process, causing the threshold voltage to be increased to state B Within the scope, such as the arrow 25 〇 〇 do not. The result of the third process is to normalize the storage component to the state specified for: the upper page stores the logic "〇", and does not change the information on the lower page. In Figs. 24 and 25, the light junction to the floating gate on the adjacent bit line is in the final state.

在一項具體實施例中’可設定一系統用以如果寫入足以 填滿-整頁的資料,則實行全序列寫入。如果資料不足以 寫入一全頁,則程式化過程可用所接收之資料來程式化下 部頁。當接收後續資料時,系統將接著程式化上部頁。在 另-項具體實施例中,系統可在程式化下部頁之模式中開 始進行寫入,並且如果後續接收到足夠的資料,則轉換: 全序列程式化模式,以填滿―整個(或大多數)字線的儲存 兀件。如需此具體實施例之更多細節,請參閱2嶋年6月 15日公告之美國專利中請公告案第2嶋m26则號題為 "Pipelined Pr〇g麵ming Gf NQn_VGlatile 仏则如。㈣ Early Data",該案整份内容以引用方式併入本文中。 圖26a至26c揭示另一種用於程式化非揮發性記憶體之過 耘其藉由下列方式減小浮動閘極至浮動閘極耦合之效 j :對於任何特定儲存元件,繼寫人至相鄰儲存元件的先 則頁之後,寫入至該特定儲存元件的一特定頁。在一示範 性實施方案中’該等非揮發性儲存元件中之每一者使用四 種貧料狀態來儲存兩個位元之資料。舉例而言,假設狀態 E係經擦除狀態’及狀態A、係經程式化狀態。狀態e 儲存資料11。狀悲A儲存資料〇 1。狀態B儲存資料丨〇。狀 125538.doc -48· 200832403 態C儲存資料〇〇。這是—項非格雷碼之實例,原因係該兩 個位元係在相鄰狀態之間變更。亦可使用其他的資 料至物理資料狀態編竭法。每—儲存元件儲存兩頁資料。 為了筝照用途,彼等頁資料將稱為上部頁及下部頁;但 是,亦可給定其他稱號。關於狀態A,上部頁儲存位元^ 下部頁儲#位元i。關於狀態B,i部頁儲存位元工且下部 頁儲存位元0。關於狀態c,彼兩頁皆儲存位元資料〇。In a specific embodiment, a system can be set up to perform a full sequence of writes if sufficient data is written to fill the full page. If the data is not sufficient to write a full page, the stylization process can program the next page with the received data. When receiving subsequent data, the system will then program the upper page. In another embodiment, the system can begin writing in the pattern of the programmed lower page, and if sufficient data is subsequently received, the conversion: full sequence stylized mode to fill the entire (or large Most) storage of word lines. For more details on this specific example, please refer to the US Patent No. 2嶋m26 in the US Patent Announcement on June 15th, 2nd. The title is "Pipelined Pr〇g face ming Gf NQn_VGlatile 仏如如. (iv) Early Data", the entire contents of which are incorporated herein by reference. Figures 26a through 26c illustrate another effect for staging a non-volatile memory that reduces the floating gate to floating gate coupling by: for any particular storage element, the writer is adjacent to After storing the first page of the component, it is written to a particular page of the particular storage component. In an exemplary embodiment, each of the non-volatile storage elements uses four lean states to store two bits of data. For example, assume that state E is in an erased state' and state A is a stylized state. State e stores data 11. Sorrow A storage data 〇 1. Status B stores data丨〇. Shape 125538.doc -48· 200832403 State C storage data〇〇. This is an example of a non-Gray code because the two bits are changed between adjacent states. Other materials can also be used to revise the physical data status. Each storage element stores two pages of data. For the purpose of kites, their pages will be referred to as the upper and lower pages; however, other titles may be given. Regarding state A, the upper page stores the bit ^ the lower page stores #bit i. Regarding state B, the i page stores the bit and the lower page stores bit 0. Regarding state c, both pages store bit data 〇.

、程式化過程係一種兩步驟式過程。在第一步驟,下部頁 被私式化。如果下部頁係維持資料!,則儲存元件狀態維 持在狀HE。如果資料待被程式化為〇,則使儲存元件的臨 限電壓上升’使得該儲存元件被程式化至狀態B,。因此, 圖26A缘示將儲存元件從狀㈣程式化至狀態&。狀態&係 過渡狀態B ;因此,驗證點被描繪為Vvb,,其低於。 &在-項具體實施例中,將儲存元件從狀gE程式化為狀 恶B之後’接著’在NAND串中之鄰近儲存元件(机η+ι) 之下部頁將被程式化。舉例而言’請重新參閱圖3,在程 ^化儲存元件346的下部頁後,將程式化儲存元件345的下 邛頁。在程式化儲存元件345之後,如果儲存元件345的臨 限電壓從狀態E上升至狀態b,,則浮動閘極至浮動間極耗 合效應將使儲存元件346之表觀臨限電壓上升。這將具有 使狀態B,之臨限電壓分佈加寬至如圖26B描繪之臨限電壓 刀佈2650的效應。當程式化上部頁時,將補救臨限電壓分 佈之表觀加寬。 。如果儲存元件係處於 圖26C描繪程式化上部頁之過程 125538.doc -49- 200832403The stylization process is a two-step process. In the first step, the lower page is privateized. If the lower page is to maintain the data! , the storage component status is maintained in the shape HE. If the data is to be stylized as 〇, then the threshold voltage of the storage element is raised' so that the storage element is programmed to state B. Thus, Figure 26A illustrates the staging of the storage element from state (4) to state & State & Transition state B; therefore, the verification point is depicted as Vvb, which is lower than. & In the specific embodiment, the storage element is stylized from the gE to the B and then the next page of the adjacent storage element (machine η+ι) in the NAND string will be programmed. For example, please refer back to Figure 3. After the lower page of the storage element 346 is programmed, the lower page of the storage element 345 will be programmed. After staging the storage element 345, if the threshold voltage of the storage element 345 rises from state E to state b, the floating gate to floating terminal consuming effect will cause the apparent threshold voltage of the storage element 346 to rise. This will have the effect of widening the threshold voltage distribution of state B to the threshold voltage knife 2650 as depicted in Figure 26B. When the upper page is programmed, the apparent widening of the threshold voltage distribution will be remedied. . If the storage component is in the process of depicting the stylized upper page in Figure 26C, 125538.doc -49- 200832403

_除狀態E且上部頁係維持在^,則該健存元件將維持在 狀態E。如果儲存㈣係、處㈣態E且上部頁待被程式化至 〇,則4儲存元件的臨限電麼將上升,使得該储存元件處 於^ A如果儲存元件係處於中間臨限㈣分佈2㈣且 P頁係4持在1 ’則該儲存元件將被程式化至最終狀態 B。广果儲存兀件係處於中間臨限電壓分佈2㈣且上部頁 待I:成資料G,則該儲存元件的臨限電遷將上升,使得該 儲存元件處於狀態c。圖26A_26C所描繪之過程減小浮動 閘極至浮動閘極搞合效應,原因係、僅鄰近儲存元件之上部 頁耘式化將影響既定儲存元件的表觀臨限電壓。一項替代 狀態編碼之實例係··當上部頁資料係“夺,則從分佈2㈣ 移動至狀恶C,及當上部頁資料係Q時,則移動至狀態b。 雖然圖26A-26C提供一項關於四種資料狀態及兩頁資料 貝例仁疋4授之觀念可適用於運用多於或少於四種資 料狀態及不同於兩頁之實施方案。 圖27繪示用以描述程式化非揮發性記憶體過程之各種具 體實施例的時序圖。水平軸係關於以微秒為單位之時間。 所繪示之時間週期表示一程式脈衝被施加至一所選字線的 一週期。波形2700描繪NAND串之位元線電壓vBL ;波形 2705描繪通電壓vPASS,其被施加至非所選字線,例如, 非當前用於程式化之字線;波形2710描繪程式化電壓 Vpgm ’ 其被施加至用於程式化之所選字線;波形2715描繪 存在於NAND串之通道中的電壓電位;波形2720描緣當所 選字線係源極側末端字線時施加至選擇閘極結構的電壓; 125538.doc -50- 200832403 及波形2725描繪當所選字線不是源極側末端字線時施加至 選擇閘極結構的電壓。 首先,在3微秒處,一源電壓VsRC(圖中未繪示)自〇伏上 升至諸如2.5伏之位準。請參閱波形27〇〇,在5微秒處,用 於非所選NAND串之VBL自0伏上升至VcD ,ίν林1丄 τ〜bl㈡υ π工吖王VsRC,以禁止在相關 聯之非揮發性儲存元件中進行程式化。在此實例中,在程 式化期間,用於所選NAND串之Vbl維持在〇伏。替代做法In addition to state E and the upper page is maintained at ^, the health element will remain in state E. If the (4) system, the (4) state E, and the upper page are to be programmed to 〇, then the threshold of the 4 storage element will rise, so that the storage element is at ^ A if the storage element is in the middle threshold (4) distribution 2 (four) and The P page 4 is held at 1 'and the storage element will be programmed to the final state B. The mass storage element is in the middle threshold voltage distribution 2 (four) and the upper page is I: into the data G, then the threshold current of the storage element will rise, so that the storage element is in state c. The process depicted in Figures 26A-26C reduces the floating gate to floating gate engagement effect because, only adjacent to the upper portion of the storage element, the page will affect the apparent threshold voltage of a given storage element. An example of an alternative state code is when the upper page data is "received, then moved from distribution 2 (four) to sinus C, and when the upper page data is Q, then moved to state b. Although Figures 26A-26C provide a The concept of four data states and two pages of information can be applied to the application of more or less than four data states and different from the two pages. Figure 27 is a diagram depicting stylized non- A timing diagram of various embodiments of a volatile memory process. The horizontal axis is for time in microseconds. The illustrated time period represents a period during which a program pulse is applied to a selected word line. The bit line voltage vBL of the NAND string is depicted; the waveform 2705 depicts the pass voltage vPASS, which is applied to the unselected word line, eg, the word line that is not currently used for programming; the waveform 2710 depicts the programmed voltage Vpgm 'which is applied To the selected word line for stylization; waveform 2715 depicts the voltage potential present in the channel of the NAND string; waveform 2720 depicts the voltage applied to the selected gate structure when the source line end word line of the selected word line is selected ; 125538.doc -50- 200832403 and waveform 2725 depict the voltage applied to the selected gate structure when the selected word line is not the source side end word line. First, at 3 microseconds, a source voltage VsRC (not shown) is from The squat rises to a level such as 2.5 volts. See Waveform 27〇〇, at 5 microseconds, the VBL for non-selected NAND strings rises from 0 volts to VcD, ίν林1丄τ~bl(b)υππ King VsRC, to prohibit stylization in associated non-volatile storage elements. In this example, the Vbl for the selected NAND string is maintained at idle during stylization.

為’用於所選NAND串之VBL之值可介於〇伏與Vsrc之間以 減小程式化速度而不需完全禁止程式化,諸如在粗略/精 細程式化技術的精細程式化模式中。 波形2705描繪經施加至非所選字線的電壓vUWl。 被設定至通電壓VPASS,並且對應於經連接至非所選字線 之儲存元件之控制閘極上的電壓。VpASdf、用於使基板之 通道中電壓增壓的增壓電壓。具體而言,Vuwl在5微秒處 上升至VSRC以允許預充電,並且接著在10微秒處上升至約 9伏’以使相關聯於非所選位元線的nAND串增壓。vThe value of VBL for the selected NAND string can be between the ramp and Vsrc to reduce the stylization speed without completely disabling stylization, such as in the fine stylized mode of coarse/fine stylization techniques. Waveform 2705 depicts voltage vUW1 applied to a non-selected word line. It is set to the pass voltage VPASS and corresponds to the voltage across the control gate of the storage element connected to the non-selected word line. VpASdf, a boost voltage for boosting the voltage in the channel of the substrate. Specifically, Vuwl rises to VSRC at 5 microseconds to allow pre-charging, and then rises to about 9 volts at 10 microseconds to boost the nAND string associated with the non-selected bit line. v

PASS 維持在非所選字線上直到約35微秒。 波形2710描繪在所選字線上的電壓vSWL,其在5微秒處 上升至VSRC以允許預充電。介於15微秒與3 5微秒之間,施 加程式脈衝VPGM。在一項實例中,程式脈衝之範圍可係i 2 伏至21伏。 波形2715描繪NAND串通道中的電壓(VNAND),例如,在 基板之作用區中。在非所選NAND串中,VNAND先轉變至 預充電位準並且接著增壓至約7.5伏,以禁止程式化非所 125538.doc -51- 200832403 選儲存元件,同時在所選膽D串中的V_=0,以允許 程式化所選館存元件。 波形2720除了分別描敎極側選擇閘極電塵ν⑽及箱合 電極電Μ⑽(彼等電遷被施加至汲極側選擇閘極結構)以 外,亦分別描繪源極侧選擇閉極電廢Vsd麵合電極電麼 VCES(彼等電M被施加至源極側選擇閘極結構)。在此情況 中,所選字線係源極侧末端字線,知如,乳〇。如上文所 述,可依據_串中當前正被程式化之非揮發性儲存元 件的位置,或-組多個字線中相對應所選字線的位置,來 =定經施加至輕合電極之電麼。在一項做法中,當前所選 子線係源極侧末鳊子線(即’相鄰於源極侧選擇閘極結構 之子線)時’ vCES被設定至高於Vsgs之升高位準,諸如8伏 或於程式化期間相關聯之介電可耐受之其他電壓位準。相 關聯之介電可耐受之電壓位準可依據若干因素,諸如介電 材料、介電厚纟、老化程度及所歷經之程式化循環數目。 例如,可從實驗獲得一值。 當則所選字線係除源極側末端字線外之字線時,將Vc£s 认疋至升回之位準亦可行。Vsgs被設定至諸如〇伏之位 準以使源極側選擇閘極維持關斷。在一簡短預充電至諸 如較高5伏之位準之後,VSGD被設定至諸如2·5伏之位準, 以使汲極侧選擇閘極維持開通。Vced可被設定至恆定〇伏 或可追循vSGD。另外,協調地控制%印與Vsgd (包括使 VcED與VSGD_起斜升或斜降,往相同極性方向,如圖2?所 不),提供使得將增強其充電或放電之彼此耦合。一般而 125538.doc -52- 200832403 言’可使施加至源極侧選擇閑極結構或沒極侧選擇閉極結 構之選擇閘極與輕合電極的電壓同時斜升或斜降,使得其 彼此麵合將增強其充電或放電。在另—㈣代方案中^ 將v⑽設定至相對高位準(諸如比得上v⑽之位準),原因 係此可辅助通道增壓,繼而辅助程式化。 波形2 7 2 5描繪當所選字線不是源極侧末端字線時的PASS is maintained on the unselected word line until approximately 35 microseconds. Waveform 2710 depicts the voltage vSWL on the selected word line, which rises to VSRC at 5 microseconds to allow for pre-charging. Between 15 microseconds and 35 microseconds, the program pulse VPGM is applied. In one example, the program pulse can range from i2 volts to 21 volts. Waveform 2715 depicts the voltage (VNAND) in the NAND string channel, for example, in the active area of the substrate. In a non-selected NAND string, VNAND first transitions to a pre-charge level and then boosts to approximately 7.5 volts to disable programming of the 125538.doc -51-200832403 selected storage elements while in the selected string D string V_=0 to allow for stylized selected library components. Waveform 2720, in addition to depicting the pole side selection gate electric dust ν (10) and the box electrode current (10) respectively (these electromigration is applied to the drain side selection gate structure), respectively, also describes the source side selection closed pole electric waste Vsd. The face electrode is electrically VCES (the other power M is applied to the source side selection gate structure). In this case, the selected word line is the source side end word line, known as the chyle. As described above, depending on the position of the non-volatile storage element currently being programmed in the _string, or the position of the corresponding selected word line in the plurality of word lines, the stencil is applied to the light-closing electrode. What about electricity? In one approach, the current selected sub-line is the source side end of the sub-line (ie, 'the sub-line adjacent to the source-side select gate structure'). vCES is set to an elevated level above Vsgs, such as 8 Volts or other voltage levels that the associated dielectric can withstand during stylization. The voltage level at which the associated dielectric can withstand can be based on a number of factors, such as dielectric material, dielectric thickness, age, and number of programmed cycles. For example, a value can be obtained from an experiment. When the selected word line is other than the word line outside the source side end word line, it is also possible to recognize Vc£s to the level of the rising back. Vsgs is set to a level such as a sag to keep the source side select gate off. After a brief precharge to a level such as a higher 5 volts, VSGD is set to a level such as 2.5 volts to maintain the drain side select gate open. Vced can be set to a constant stagnation or can follow vSGD. In addition, coordinated control of %print and Vsgd (including ramping or ramping VcED and VSGD_ towards the same polarity direction, as shown in Figure 2) provides coupling to each other such that their charging or discharging will be enhanced. In general, 125538.doc -52- 200832403 says that the voltage of the selected gate and the light-closing electrode applied to the source-side selective idler structure or the non-polar-side selective closed-pole structure can be ramped up or down at the same time, so that they are mutually inclined The face will enhance its charging or discharging. In the other-(four) generation scheme, set v(10) to a relatively high level (such as the level of v(10)), which is why it assists channel boosting and then assists in stylization. Waveform 2 7 2 5 depicts when the selected word line is not the source side end word line

Vsgs、VcES、VsgA VcED。在此情$兄中,VCES被設定至減 小之位準’如0伏,'51* 46你Λ7Vsgs, VcES, VsgA VcED. In this case, VCES is set to the level of reduction, such as 0 volts, '51* 46, you Λ7

/、了追循VSGS。如同前文情況(波形 2720)中之指示來設定Vsgd與I。-般而言,當所選字 線:是源極側末端字線時,可使在源極侧輕合電極上提供 升高之電壓的利益削弱’在此情況中,VCES具有被動角 色。 1注思’ §使用具有選擇閘極與麵合電極的沒極侧選擇 閘極結構時,其控制方式可類似於配合波形2720與2725之 論述。具體而言,當所選字線驗極侧末端字線時可使 V⑽升高’並且在其它情況中予以減小以追循VSGD。且體 而言,當所選字線係沒極側末端字線時,可按波形助之 指示來設定乂⑽與Vces,但是其中交換VCED與vCES。 如所述,當經由相鄰於字線程式化非揮發性儲存元件期 間,對於耦合電極使用升高之電壓可減小GIDL。此改良 程f化效率並且可允許使用減小之最大VPGM。另外,當所 選字線非直接相鄰於選擇閘極時,可能亦希望使用升高 VCES及/或VcED。亦可依據所選字線的位準來改變VcEs及/ 或vCED之位準。另一選項係:當所選字線相鄰於選擇閘極 125538.doc •53- 200832403 時,允許vCES&/或VcED成為浮動狀態。 圖28繪示用以描述讀取非揮發性記憶體過程之各種具體 實施例的時序圖。水平軸係關於以微秒為單位之時間。所 繪示之時間週期表示一執行讀取操作的一週期,例如,驗 證儲存元件是否已完成程式化,或自先前程式化之儲存元 件讀取資料。 波形2800描繪用於兩個讀取選項(稱為選項A與…的 NAND串之位元線電壓Vbl,·波形28〇5描繪讀取電壓 VREAD,其被施加至非所選字線,例如,相關聯於非當前 被讀取之儲存元件之字線;及波形281〇描繪讀取控制閘極 電壓VCGR,其被施加至所選字線(例如,相關聯於當前被 讀取之一或多個儲存元件的字線)之儲存元件的控制閘 極。波形2815描繪存在於非所選NAND串(例如,相關聯於 非當前被讀取之儲存元件的NAND串)之通道中的電壓電 位;及波形2820描繪存在於所選NAND串(例如,相關聯於 當前被讀取之儲存元件的NAND串)之通道中的電壓,其用 於兩個讀取選項。波形2825描繪用於兩個讀取選項的 VsGD、VCED、VsGS 與 VCES。 在波形2805中,所選取之Vread的位準充分高於儲存元 件的臨限電壓,以確保非所選儲存元件係處於傳導或開通 狀態。舉例而言,用於狀態E、A、8與c的臨限電壓可分 別係-2伏、0伏、2伏與4伏,並且Vread可係6伏。 在一項讀取選項(選項A)中,例如,在t=22微秒時,藉 由使乂808上升而使源極側選擇閘極開通,如波形“乃所 125538.doc -54- 200832403 示。此提供一消耗位元線上電荷的路徑。亦可使vCES隨著 VSGS上升或使VCES固定在穩態位準,例如,〇伏。VSGD在 t=〇微秒處開始上升,所以使汲極侧選擇閘極開通。亦可 使vCED隨著vSGD上升或使vCED固定在穩態位準。如果經選 擇用於讀取的儲存元件之臨限電壓大於vcgr(施加至所選 字線的讀取位準),則將使所選儲存元件未開通且位元線 未放電,如波形2800所示(,,VBL未放電")。舉例而言,對於 4取操作’可將VCGR設定至Vra、Vrb或Vrc,對於驗證操 作’可將VCGR設定至Vva、Vvb或Vvc (圖26C)。在此情況 中,所選NAND串的VNAND未消散,如波形2820所示。如 果經選擇用於讀取的儲存元件之臨限電壓低於Vcgr,則將 使所選儲存元件開通(導通)且位元線將放電,亦如波形 2800所示(”Vbl放電")。在此情況中,所選nand串的 vNAND將消散,如波形2820所示。在介於22微秒與4〇微秒 之間的某時間點(依特定實施方案予以判定),感測放大器 將藉由測量升高之BL電壓來決定位元線是否已消耗足夠 量。在t=4〇微秒,Vsgs、VcES、%仙與Vc£d被降低至穩態 位準(或用於待命或復原的另一值)。 對於第二讀取選項(選項B),感測電路及儲存元件陣列 依感測放大器中一專用電容器的充電速率來測量儲存元件 之傳導電流。例如,在t=5微秒時,藉由使VsGs上升而使 源極側選擇閘極開通,如波形2825所示。VSGD亦在t=5微 秒處開始上升,所以使沒極側選擇閘極開通。可使v㈤隨 著乂阳5上升或使VcEs固定在穩態位準’並且可使印隨著 125538.doc -55- 200832403 ▽⑽上升或使v⑽固定在穩態位準。感測放大器使位元線 電壓保持不變,而不顧慮NAND串進行中的操作,使得感 測放大器在位元線”钳位,,在該電壓的情況下測量流動中的 電流。在t=5微秒之後與t=4〇微秒前的某時間點(依特定實 ,方案予以判定),感測放大器將蚊感測放大器中的電 容器是否已消耗足夠量。在t=40微秒,Vsgs、 與乂^0被降低至穩態值(或用於待命或復原的另一值)。請 注意,在其它具體實施例中,可變更一些波形的時序。 圖29繪示用以描述程式化非揮發性記憶體方法之具體實 施例的流程圖。在-實施方案中,在程式化之前先擦除健 存元件(以區塊為單位或其他單位)。在步驟29〇〇,一,,資料 載入’’命令係由控制器予以發出且由控制電路2〇1〇 (圖2㈨ 接收輸入。在步驟2905 ,從控制器或主機將指定頁位址的 位址資料輸入至解碼器2014。在步驟2910,所定址之頁的 一頁程式化資料被輸入至資料緩衝器以進行程式化。該資 料被鎖存在適當組之鎖存器中。在步驟2915,一”程式化,, 命令係由控制器予以發出至狀態機2〇丨2。 藉由π程式”命令之觸發,使用圖3〇所示之施加至適當字 線的步進式脈衝3010、3020、3030、3040、3050、…,由 狀態機2012控制以將在步驟2910中鎖存的資料程式化至所 選儲存元件中。在步驟292〇,程式化電壓心⑽被初始化為 開始脈衝(例如,12伏或其他值),並且狀態機2〇12所維護 的一私式化计數器PC被初始化為〇。在步驟2925,第一 VPGM脈衝被施加至所選字線,以開始程式化相關聯於該所 125538.doc -56- 200832403 選子線的儲存元件,並且適當電壓被施加至非所選字線、 源極側選擇閘極與耦合電極以及汲極側選擇閘極與耦合電 極。舉例而言,如步驟2926所示,用於源極側耦合電極之 電壓及/或用於汲極側耦合電極之電壓可依據各種程式化 準則予以設定’諸如所選字線之位置、溫度、程式脈衝位 準或數目、裝置循環數目及當使用多進程程式化時的程式 化進私次數,如配合圖31&至31〇之進一步解說所述。也可 使用不同準則之組合。用於源極侧耦合電極之電壓及/或 用於汲極側耦合電極之電壓亦可依據其它準則予以設定, 諸如相關於讀取過程或驗證過程的準準則。 如果儲存在一特定資料鎖存器中邏輯”〇”指示出應程式 化相對應之儲存元件,則相對應之位元線被接地。另一方 面,如果儲存在-特定鎖存器中的邏輯,,丨"指示出相對應 之儲存元件應維持其現有資料狀態,則相對應之位元線被 連接至VDD以禁止程式化。/, followed by VSGS. Set Vsgd and I as indicated in the previous case (waveform 2720). In general, when the selected word line: is the source side end word line, the benefit of providing an elevated voltage on the source side light combining electrode can be weakened. In this case, the VCES has a passive role. 1 Note § When using a gateless gate with selective gate and junction electrodes, the control can be similar to the waveforms 2720 and 2725. In particular, V(10) can be raised 'up' when the word line on the test side of the word line is selected and is reduced in other cases to follow VSGD. In other words, when the selected word line is not at the end of the word line, 乂(10) and Vces can be set according to the waveform help indication, but VCED and vCES are exchanged. As noted, when the non-volatile storage element is threaded adjacent to the word, the elevated voltage can be used for the coupling electrode to reduce the GIDL. This improved efficiency and allows for the use of a reduced maximum VPGM. In addition, it may be desirable to use elevated VCES and/or VcED when the selected word line is not directly adjacent to the select gate. The level of VcEs and / or vCED can also be changed depending on the level of the selected word line. Another option is to allow vCES&/ or VcED to be floating when the selected word line is adjacent to the select gate 125538.doc •53-200832403. Figure 28 is a timing diagram depicting various specific embodiments of the process of reading a non-volatile memory. The horizontal axis is about the time in microseconds. The time period illustrated represents a cycle in which a read operation is performed, for example, verifying whether the storage element has been programmed or reading data from a previously stylized storage element. Waveform 2800 depicts bit line voltages Vbl for two read options (referred to as NAND strings of options A and ..., waveform 28〇5 depicts read voltage VREAD, which is applied to non-selected word lines, eg, a word line associated with a storage element that is not currently being read; and a waveform 281 〇 depicting a read control gate voltage VCGR that is applied to the selected word line (eg, associated with one or more of the currently read The control gate of the storage element of the word line of the storage element. Waveform 2815 depicts the voltage potential present in the channel of the non-selected NAND string (eg, a NAND string associated with a storage element that is not currently being read); And waveform 2820 depicts the voltage present in the channel of the selected NAND string (eg, the NAND string associated with the currently being stored storage element) for two read options. Waveform 2825 is depicted for two reads. The options of VsGD, VCED, VsGS, and VCES are taken. In waveform 2805, the selected Vread level is sufficiently higher than the threshold voltage of the storage element to ensure that the non-selected storage element is in conduction or turn-on state. For state E, A, The threshold voltages of 8 and c can be -2 volts, 0 volts, 2 volts, and 4 volts, respectively, and Vread can be 6 volts. In a read option (option A), for example, at t = 22 microseconds When the 乂808 is raised, the source side selection gate is turned on, as shown in the waveform “Is it 125538.doc-54-200832403. This provides a path for consuming the charge on the bit line. It can also make vCES along with VSGS. Rise or fix the VCES at a steady state level, for example, crouching. VSGD starts to rise at t = 〇 microseconds, so the gate selection gate is turned on. It can also cause vCED to rise with vSGD or fix vCED at Steady-state level. If the threshold voltage of the storage element selected for reading is greater than vcgr (the read level applied to the selected word line), the selected storage element will be unturned and the bit line will not be discharged. As shown in waveform 2800 (,, VBL is not discharged "). For example, for 4 fetch operations 'VCGR can be set to Vra, Vrb or Vrc, for verify operation' VCGR can be set to Vva, Vvb or Vvc (Fig. 26C). In this case, the VNAND of the selected NAND string is not dissipated, as shown by waveform 2820. If selected for reading If the threshold voltage of the storage component is lower than Vcgr, the selected storage component will be turned on (on) and the bit line will be discharged, as shown by waveform 2800 ("Vbl discharge"). In this case, the selected nand The string of vNANDs will dissipate as shown by waveform 2820. At some point between 22 microseconds and 4 microseconds (as determined by the particular implementation), the sense amplifier will measure the elevated BL voltage To determine if the bit line has consumed enough. At t = 4 〇 microseconds, Vsgs, VcES, % sen and Vc £d are lowered to a steady state level (or another value for standby or recovery). For the second read option (option B), the sense circuit and the array of storage elements measure the conduction current of the storage element based on the rate of charge of a dedicated capacitor in the sense amplifier. For example, at t = 5 microseconds, the source side selection gate is turned on by raising VsGs as shown by waveform 2825. VSGD also starts to rise at t = 5 microseconds, so the gate is selected to be turned on. It is possible to raise v(f) as the yang 5 rises or fix the VcEs at the steady state level and can cause the mark to rise with 125538.doc -55-200832403 ▽(10) or fix v(10) at the steady state level. The sense amplifier keeps the bit line voltage constant, regardless of the ongoing operation of the NAND string, so that the sense amplifier is clamped at the bit line, and the current in the flow is measured at this voltage. At t= After 5 microseconds and a certain time point before t=4〇 microseconds (determined according to the specific scheme), the sense amplifier will consume enough capacitors in the mosquito sense amplifier. At t=40 microseconds, Vsgs, and 乂^0 are reduced to a steady state value (or another value for standby or recovery). Note that in other embodiments, the timing of some waveforms can be changed. Figure 29 depicts the program A flowchart of a specific embodiment of a non-volatile memory method. In an embodiment, the health-storing component (in blocks or other units) is erased prior to stylization. In step 29, one, The data loading '' command is issued by the controller and is received by the control circuit 2〇1〇 (Fig. 2(9). In step 2905, the address data of the specified page address is input from the controller or the host to the decoder 2014 At step 2910, one of the pages addressed The page stylized data is input to the data buffer for programmaticization. The data is latched in the appropriate set of latches. In step 2915, a "stylized" command is issued by the controller to the state machine 2丨2. By the triggering of the π program" command, the stepping pulses 3010, 3020, 3030, 3040, 3050, ... applied to the appropriate word lines as shown in FIG. 3A are controlled by the state machine 2012 to be in the step The data latched in 2910 is programmed into the selected storage element. At step 292, the programmed voltage core (10) is initialized to a start pulse (eg, 12 volts or other value), and the state machine 2 〇 12 maintains one The privateization counter PC is initialized to 〇. At step 2925, a first VPGM pulse is applied to the selected word line to begin stylizing the storage elements associated with the 125538.doc - 56 - 200832403 selected sub-line And a suitable voltage is applied to the non-selected word line, the source side select gate and the coupling electrode, and the drain side select gate and the coupled electrode. For example, as shown in step 2926, for the source side coupled electrode Voltage and / or for bungee The voltage of the coupling electrode can be set according to various programming criteria, such as the position of the selected word line, the temperature, the program pulse level or number, the number of device cycles, and the number of programmed smuggling times when using multi-process programming. 31 & to 31. Further combinations of different criteria may be used. The voltage for the source side coupling electrode and/or the voltage for the drain side coupling electrode may also be set according to other criteria, such as A quasi-criteria related to the reading process or the verification process. If the logic "〇" stored in a particular data latch indicates that the corresponding storage element should be programmed, then the corresponding bit line is grounded. If the logic stored in the -specific latch, 丨" indicates that the corresponding storage element should maintain its existing data state, then the corresponding bit line is connected to VDD to disable stylization.

125538.doc 所選儲存元件。在步驟2935, 姿型機制)知道已 判定是否所有資 -57- 200832403 PASS狀態 料鎖存器正儲存邏輯”"。若是,因為所有所選儲存元件 皆已予以程式化且已予以驗證經程式化至其目標狀態,所 以程式化過程完成且成功,並且在步驟_中報告"通過" 在步驟2935 ’如果判定非所有資料鎖存器正儲存邏輯 "1",則程式化處理程序繼續進行。在步驟2945,比對一 程式化限制值PCmax來檢查該程式化計數器pc。一項實例125538.doc Selected storage component. At step 2935, the pose mechanism knows that it has been determined whether all of the resources are stored in the logic "". If so, because all of the selected storage elements have been programmed and verified To the target state, so the stylization process is completed and successful, and in step _ report "pass" in step 2935 'If it is determined that not all data latches are storing logic "1", the stylized handler Continuing. At step 2945, the stylized counter PC is checked against a stylized limit value PCmax. An example

之程式化限制值為20;但是,亦可使用其他數值。如果程 式化計數器PC不小於PCmax,則程式化過程已失敗且 驟2950報告"失敗"(FAIL)狀態。w該程式計數器%小於 PCmax,則按步進大小來增大VpGM位準,並且在步驟Μ” 遞增該程式特器心在步驟2955,料迴圈回到步驟 2925,以施加下一 vPGM脈衝。 圖30繪示-電壓波形3_ ’其包括—連串程式脈衝 30H)、3020、3030、3040、3050、·_·,其被施加至經選擇 用以程式化的字線。在一項具體實施例中,程式脈衝之電 壓Vpgm開始於12伏,並且對於每一相繼程式脈衝依增量 (例如,0.5伏)遞增,直到抵達最大值21伏。介於程式脈衝 之間係一組驗證脈衝3012、3022、3032、3042、 3 052、…。在一些具體實施例中,對於正在將資料程式化 於其中之每一狀態可能有一驗證脈衝。在其它具體實施例 中’可月b有更多或更少之驗證脈衝。例如,每組驗證脈衝 中的驗證脈衝之振幅可為Vva、Vvb與Vvc(圖25)。 在一項具體實施例中,資料係沿一共同字線程式化至儲 125538.doc -58- 200832403 存兀件。因此,在施加程式脈衝之前,先選擇用於程式化 的字線之-。此字線稱為所選字線。一區塊中的其餘字線 稱為非所選字線。該料字線可具有—個或兩個鄰近字 線。如果該所選字線具有兩個鄰近字線,則位於沒極侧之 鄰近字線稱m侧㈣纟線,並騎於源㈣彳之鄰近字 線稱為源極侧鄰近字線。舉例而言,如果圖3之字線WL2 係所選字線,則㈣係源極側鄰近字線且wl3係汲㈣鄰 近字線。 每一儲存元件區塊各包括形成行之—組位元線與形成列 之^组字線。在-項具體實施例中,位元線被劃分成偶數 位兀線及奇數位元線。如配合圖23之論述,對沿一共同字 線且連接至奇數位元線的儲存元件進行—次程式化,而對 沿-共同字線且連接至偶數位元線的儲存元件進行另一次 程式化奇數/偶數㈣化")。在另—具體實施例中,對於 區塊中的所有位元線’沿一字線程式化儲存元件(”所有位 元線程式化”)。在JL它且體眚始如山 )隹,、匕,、體貝知例中,可將位元線或區塊 細分成其他群組(例如,左與右、兩個以上群組等等)。 圖31a繪示介於耦合電極電屋與所選字線位置之間的關 係。在所示之圖表中,水平軸標示對於32字線式_串 的字線號碼(其係自源極側(例如,鳩)延#至沒極側⑽ 如,WL3D)’以及垂直軸標示電壓位準。在此實例中,對 於位於源極側之一或多個所選字線,提供升高位準之 VCES(以實騎*) ’並且#較高字線係所選字線時使is 下降。同樣地’對於位於没極側之一或多個所選字線,提 125538.doc -59- 200832403 供升高位準之vCED(以虛線繪示),並且當較低字線係所選 字線時使VCED下降。 ' 圖31b繪示介於臨限電壓與溫度之間及介於耦合電極電 壓與溫度之間的關係。在所示之圖表中,水平軸標示溫 度’以及垂直軸標示電-。具體而言,已觀察到,非揮發 性儲存元件的臨限電壓(Vth)隨溫度增大而減低。電壓變 化相對於溫度變化係以溫度係數(α)表達,其典型係約 mV/°C。舉例而言,運用_4代至+8代之操作範圍,臨限 電磨之變化可為約(85-(_40))x(_2)=25〇 mV。溫度係數取決 於各種記憶體裝置特性,諸如摻雜、佈局等等。據此,在 一項做法中,耦合電極電壓可隨溫度增大而增大,以提供 進一步辅助增大儲存元件的vTH。 圖3 1C繪不介於耦合電極電壓與記憶體裝置循環數目之 間的關係。由於記憶體裝置隨時間歷經多次程式化與擦除 循環所以儲存元件一般變成較易於程式化並且可用較少 的程式脈衝使儲存元件抵達其目標程式化狀態。據此,在 員做法中可藉由減少耦合電極電壓,使耦合電極所提 供的輔助隨著循環數目增大而減小。為此目的,可使用由 記憶體裝置所維護的一循環數目之計數。 圖31 d繪不;丨於輛合電極電壓與程式脈衝數目或電壓之 間的關係。於&式化期間’隨著具有較高振幅之相繼程式 脈衝被施加至所選字線(請參閱圖30),可藉由增大耦合電 極電壓之位準’使耦合電極所提供的輔助量增大。因此, 可依據程式脈衝數目(例如,第-、第二、第三等等),及/ 125538.doc -60- 200832403 或類似地依據VPGM之位準(例如,10伏、11伏等等),來調 整耦合電極電壓。 圖3 1 e繪示對於多進程程式化技術之介於耦合電極電壓 與程式化進程數目之間的關係。對於多進程程式化技術 (諸如圖25至26c所示之多進程程式化技術),依據正在發生 ' 的程式化進程來調整耦合電極電壓可係有利的。在一項做 * 法中’第一程式化進程導致經程式化儲存元件之Vth的增 加大於第二程式化進程導致經程式化儲存元件之的增 藝加。在此情況中,在第一進程中,需要來自耦合電極的更 多辅助,所以在第一進程中增大耦合電極電壓。 基於圖解及說明的目,前文已提出本發明的實施方式。 其非思欲詳盡說明本發明或使本發明限定於揭示的確切形 式。可按照前面的講授進行許多修改及變化。選取的具體 實施例係為了最佳地解說本發明的原理及其實務應用,使 熟悉此項技術者以各種具體實施例最佳地運用本發明,並 ⑩且各種修改皆適用於所考量的特定用途。本發明範疇擬藉 由隨附的申請專利範圍予以定義。 / 【圖式簡單說明】 / 圖1緣示具有選擇閘極結構之兩個相鄰NAND串的俯視 圖。 圖2緣示圖1之N AND串的同等電路圖。 圖3繪示具有選擇閘極結構之三個n AND串的電路圖。 圖4a緣示具有雙電壓選擇閘極結構之NAND串的剖視 圖。 125538.doc -61- 200832403 圖4b繪示圖4a之NAND串之儲存元件的剖視圖。 圖5至圖14繪示用於製造具有雙電壓選擇閘極結構之 NAND串的過程。 圖5繪示未經圖案化之層狀半導體材料的剖面圖。 圖6繪示在已沈積光阻之後的圖5之半導體材料。 圖7繪示在已移除介電層之一部分之後的圖6之半導體材 料。 圖8繪示在已加入第二傳導層之後的圖7之半導體材料。 圖9繪示在已加入保護障壁之後的圖8之半導體材料。 圖1 0繪示在已移除第二傳導層之若干部分之後的圖9之 半導體材料。 圖11繪示在沈積一保護層之後的圖丨〇之半導體材料。 圖12繪示在移除第一傳導層及介電層之部分並且形成源 極/汲極區之後的圖11之半導體材料。 圖13繪示在形成侧壁間隔物之後的圖12之半導體材料。 圖14繪示程式化圖13之半導體材料,其包括施加至選擇 閘極的電壓、選擇閘極結構的耦合電極及來自耦合電極之 電壓耦合。 圖15繪示替代性半導體材料。 圖16繪示包括圖13之半導體材料的NAND串。 圖1 7a繪不用於製造具有選擇閘極結構之半導體材料的 過程概要。 圖171)繪不用於製造圖13之半導體材料的詳細過程。 圖18a至181係關於具有雙電壓選擇閘極結構之nAND串 125538.doc -62 - 200832403 的另一具體實施例。 圖18a繪不具有雙電壓選擇閘極結構之1^八]^]〇串的另一具 體實施例。 圖18b繪示圖18a之NAND串之儲存元件的剖視圖。 圖18c繪示選擇閘極結構相對於NAND串及字線之配置。 圖18d繪示沿圖18c之配置之NAND串的剖面圖。 圖18e繪示沿圖18c之配置之選擇閘極結構的剖面圖。 圖18f繪示沿圖18c之配置之字線的剖面圖。 圖1 8g示選擇閘極結構相對於nand串及字線之排 列,圖中繪示出分流區與接點。 圖18h繪示沿圖l8g之配置之選擇閘極結構的剖面圖。 圖18i繪示用於製造具有選擇閘極結構之半導體材料之 替代具體實施例的過程概要。 圖1 9繪示NAND快閃儲存元件陣列的方塊圖。 圖20繪示使用單個列/行解碼器及讀取/寫入電路之非揮 發性記憶體系統的方塊圖。 圖21繪示使用雙列/行解碼器及讀取/寫入電路之非揮發 性記憶體系統的方塊圖。 圖22繪示感測組塊之具體實施例的方塊圖。 圖23繪示對於所有位元線記憶體架構或對於奇偶記憶體 架構而將記憶體陣列組織成區塊之實例。 圖24繪示一組示範性臨限電壓分佈。 圖25繪示一組示範性臨限電壓分佈。 圖26a-c繪示各種臨限電壓分佈且描述用於程式化非揮 125538.doc -63 - 200832403 發性記憶體之過程。 圖27繪示用以描述程式化非揮發性記憶體過程之各種具 體實施例的時序圖。 圖28繪示用以描述讀取非揮發性記憶體過程之各種具體 實施例的時序圖。 • 圖2 9緣示用以描述程式化非揮發性記憶體過程之具體實 施例的流程圖。 * 圖30繪示於程式化期間施加至非揮發性儲存元件之控制 ® 閘極之示範性波形。 圖3 la繪示介於耦合電極電壓與所選字線位置之間的關 係。 圖3 lb繪示介於臨限電壓與溫度之間及介於耦合電極電 壓與溫度之間的關係。 圖3 1 c繪示介於耦合電極電壓與記憶體裝置循環數目之 間的關係。 圖3 Id繪示介於耦合電極電壓與程式脈衝數或電壓之間 •的關係。 • · 圖3 1 e繪示對於多進程程式化技術之介於耦合電極電壓 • 與程式化進程數目之間的關係。 【主要元件符號說明】 100,102,104,106,150,電晶體 152, 154, 156 100CG,102CG,104CG,控制閘極 106CG,150CG,152CG, 125538.doc -64 - 200832403The stylized limit is 20; however, other values can be used. If the program counter PC is not less than PCmax, the stylization process has failed and the 2950 reports a "Failure" (FAIL) status. w If the program counter % is less than PCmax, the VpGM level is increased by the step size, and the program is incremented in step 2955, and the loop returns to step 2925 to apply the next vPGM pulse. Figure 30 illustrates a voltage waveform 3_' including a series of program pulses 30H), 3020, 3030, 3040, 3050, ..., which are applied to word lines selected for programming. In the example, the program pulse voltage Vpgm starts at 12 volts and is incremented by increments (eg, 0.5 volts) for each successive program pulse until a maximum of 21 volts is reached. A set of verify pulses 3012 is interposed between the program pulses. , 3022, 3032, 3042, 3 052, .... In some embodiments, there may be a verify pulse for each state in which the data is being programmed. In other embodiments, 'there may be more or more Fewer verification pulses. For example, the amplitude of the verify pulses in each set of verify pulses can be Vva, Vvb, and Vvc (Fig. 25). In one embodiment, the data is threaded along a common word to store 125538. .doc -58- 200832403 Archives Therefore, before the program pulse is applied, the word line for the stylization is selected. This word line is called the selected word line. The remaining word lines in a block are called non-selected word lines. There may be one or two adjacent word lines. If the selected word line has two adjacent word lines, the adjacent word line on the non-polar side is called the m side (four) 纟 line, and rides on the adjacent word line of the source (four) 彳Referring to the source side adjacent word line. For example, if the word line WL2 of FIG. 3 is the selected word line, then (4) the source side is adjacent to the word line and the wl3 system is (4) adjacent to the word line. Each includes a row-group bit line and a column word line forming a column. In the specific embodiment, the bit line is divided into an even bit line and an odd bit line. As discussed in conjunction with FIG. Performing a stylization of the storage elements along a common word line and connected to the odd bit lines, and performing another stylized odd/even (four)ization on the storage elements along the common word line and connected to the even bit lines ;). In another embodiment, all bytes along the block are threaded along a word. Save the component ("all bits are threaded"). In JL, it is the beginning of the process, 匕, 匕, 体, 体, in the case of the shell, you can subdivide the bit line or block into other groups (for example, Left and right, more than two groups, etc.) Figure 31a shows the relationship between the coupled electrode house and the selected word line position. In the chart shown, the horizontal axis is labeled for 32 word lines. The word line number of the string (which is from the source side (eg, 鸠) extension # to the immersion side (10), eg WL3D)' and the vertical axis indicates the voltage level. In this example, for one of the sources side or Multiple selected word lines, providing elevated levels of VCES (with real ride *) 'and # higher word lines are selected when the selected word line is lowered. Similarly, for one or more selected word lines on the non-polar side, 125538.doc -59-200832403 is provided for the raised level vCED (shown in dashed lines), and when the lower word line is the selected word line Decrease VCED. Figure 31b shows the relationship between the threshold voltage and temperature and between the coupled electrode voltage and temperature. In the chart shown, the horizontal axis indicates temperature 'and the vertical axis indicates electricity-. Specifically, it has been observed that the threshold voltage (Vth) of the non-volatile storage element decreases as the temperature increases. The change in voltage with respect to temperature is expressed as a temperature coefficient (α), which is typically about mV/°C. For example, with a range of operations from _4 to +8, the variation of the threshold electric grinder can be about (85-(_40))x(_2)=25〇 mV. The temperature coefficient depends on various memory device characteristics such as doping, layout, and the like. Accordingly, in one approach, the coupling electrode voltage can increase with increasing temperature to provide further assistance in increasing the vTH of the storage element. Figure 3C depicts the relationship between the coupling electrode voltage and the number of cycles of the memory device. Since the memory device has undergone multiple stylization and erase cycles over time, the storage elements generally become easier to program and can use fewer program pulses to bring the storage elements to their target stylized state. Accordingly, in the practitioner's practice, by reducing the coupling electrode voltage, the assistance provided by the coupling electrode is reduced as the number of cycles increases. For this purpose, a count of the number of cycles maintained by the memory device can be used. Figure 31 d shows the relationship between the voltage of the combined electrode and the number of pulses or voltage of the program. During the & characterization period, as successive program pulses with higher amplitudes are applied to the selected word line (see Figure 30), the coupling electrode can be assisted by increasing the level of the coupling electrode voltage. The amount increases. Therefore, depending on the number of program pulses (eg, -, second, third, etc.), and / 125538.doc -60 - 200832403 or similarly depending on the level of VPGM (eg, 10 volts, 11 volts, etc.) To adjust the coupling electrode voltage. Figure 3 1e shows the relationship between the coupled electrode voltage and the number of stylized processes for multi-process stylization techniques. For multi-process stylization techniques (such as the multi-process stylization techniques shown in Figures 25 through 26c), it may be advantageous to adjust the coupling electrode voltage in accordance with the stylizing process that is occurring. In a method of 'being', the first stylization process causes the Vth of the stylized storage element to increase more than the second stylization process, resulting in augmentation of the stylized storage element. In this case, in the first process, more assistance from the coupling electrode is required, so the coupling electrode voltage is increased in the first process. Embodiments of the present invention have been presented above for the purposes of illustration and description. The invention is not intended to be exhaustive or to limit the invention. Many modifications and variations are possible in light of the above teachings. The specific embodiments are chosen to best explain the principles of the invention and the application of the invention, use. The scope of the invention is intended to be defined by the scope of the appended claims. / [Simple diagram of the diagram] / Figure 1 shows a top view of two adjacent NAND strings with a selected gate structure. Figure 2 is an equivalent circuit diagram of the N AND string of Figure 1. 3 is a circuit diagram of three n AND strings with select gate structures. Figure 4a shows a cross-sectional view of a NAND string having a dual voltage select gate structure. 125538.doc -61- 200832403 Figure 4b is a cross-sectional view of the storage element of the NAND string of Figure 4a. 5 through 14 illustrate a process for fabricating a NAND string having a dual voltage select gate structure. Figure 5 illustrates a cross-sectional view of an unpatterned layered semiconductor material. Figure 6 illustrates the semiconductor material of Figure 5 after the photoresist has been deposited. Figure 7 illustrates the semiconductor material of Figure 6 after a portion of the dielectric layer has been removed. Figure 8 illustrates the semiconductor material of Figure 7 after the second conductive layer has been added. Figure 9 illustrates the semiconductor material of Figure 8 after the protective barrier has been added. Figure 10 illustrates the semiconductor material of Figure 9 after portions of the second conductive layer have been removed. Figure 11 illustrates the semiconductor material of the Figure after deposition of a protective layer. Figure 12 illustrates the semiconductor material of Figure 11 after removing portions of the first conductive layer and dielectric layer and forming source/drain regions. Figure 13 illustrates the semiconductor material of Figure 12 after sidewall spacers are formed. Figure 14 depicts the semiconductor material of the studded Figure 13 including the voltage applied to the select gate, the coupled electrode of the select gate structure, and the voltage coupling from the coupled electrode. Figure 15 depicts an alternative semiconductor material. Figure 16 depicts a NAND string including the semiconductor material of Figure 13. Figure 1 7a depicts an overview of the process used to fabricate semiconductor materials having a selected gate structure. Figure 171) depicts a detailed process that is not used to fabricate the semiconductor material of Figure 13. Figures 18a through 181 relate to another embodiment of an nAND string 125538.doc-62 - 200832403 having a dual voltage selective gate structure. Figure 18a depicts another embodiment of a string having no dual voltage selective gate structure. Figure 18b is a cross-sectional view of the storage element of the NAND string of Figure 18a. Figure 18c illustrates the configuration of the select gate structure relative to the NAND string and word line. Figure 18d shows a cross-sectional view of the NAND string along the configuration of Figure 18c. Figure 18e is a cross-sectional view of the selective gate structure along the configuration of Figure 18c. Figure 18f is a cross-sectional view of the word line along the configuration of Figure 18c. Figure 1 8g shows the arrangement of the select gate structure relative to the nand string and the word line, with the shunt area and junction being depicted. Figure 18h is a cross-sectional view of the selected gate structure along the configuration of Figure 18g. Figure 18i illustrates a process summary for an alternate embodiment for fabricating a semiconductor material having a selected gate structure. FIG. 9 is a block diagram showing an array of NAND flash storage elements. Figure 20 is a block diagram showing a non-volatile memory system using a single column/row decoder and read/write circuits. Figure 21 is a block diagram showing a non-volatile memory system using a dual column/row decoder and a read/write circuit. 22 is a block diagram of a particular embodiment of a sensing block. Figure 23 illustrates an example of organizing memory arrays into blocks for all bit line memory architectures or for parity memory architectures. Figure 24 depicts an exemplary set of threshold voltage distributions. Figure 25 depicts an exemplary set of threshold voltage distributions. Figures 26a-c illustrate various threshold voltage distributions and describe the process for stylizing non-volatile 125538.doc -63 - 200832403 hair memory. Figure 27 is a timing diagram showing various specific embodiments for describing a programmed non-volatile memory process. Figure 28 is a timing diagram depicting various specific embodiments of the process of reading a non-volatile memory. • Figure 29 shows a flow chart depicting a specific embodiment of a stylized non-volatile memory process. * Figure 30 illustrates an exemplary waveform of the control ® gate applied to a non-volatile storage element during stylization. Figure 3la illustrates the relationship between the coupled electrode voltage and the selected word line position. Figure 3 lb shows the relationship between the threshold voltage and temperature and the voltage between the coupled electrode and the temperature. Figure 3 1c illustrates the relationship between the voltage of the coupled electrode and the number of cycles of the memory device. Figure 3 Id shows the relationship between the coupling electrode voltage and the number of pulses or voltage. • Figure 3 1e shows the relationship between the coupled electrode voltage and the number of stylized processes for multi-process stylization techniques. [Description of main component symbols] 100, 102, 104, 106, 150, transistor 152, 154, 156 100CG, 102CG, 104CG, control gate 106CG, 150CG, 152CG, 125538.doc -64 - 200832403

342, 347, 3 62, 選擇閘極結構 154CG,156CG 100FG,102FG,104FG, 106FG,150FG, 152FG, 154FG,156FG 108 110 120 130 112 140 142 146 160 162 166 170 320, 340, 360, 400, 450 321, 341, 361 322, 327, 367, 410 323-326, 343-346, 363-366, 440, 452, 460 412 414 浮動閘極 源極側耦合電極(CES) 源極側選擇閘極結構 源極線接點 位元線接點 源極側選擇閘極(SGS) 源極側選擇閘極結構 汲極側選擇閘極(SGD) 汲極側耦合電極(CED) 源極側選擇閘極結構 源極側耦合電極(CES) 源極側選擇閘極(SGS) 源極線接點 NAND 串 位元線 儲存元件 第三傳導部分 介電層 125538.doc -65 - 200832403342, 347, 3 62, Select gate structure 154CG, 156CG 100FG, 102FG, 104FG, 106FG, 150FG, 152FG, 154FG, 156FG 108 110 120 130 112 140 142 146 160 162 166 170 320, 340, 360, 400, 450 321, 341, 361 322, 327, 367, 410 323-326, 343-346, 363-366, 440, 452, 460 412 414 Floating Gate Source Side Coupling Electrode (CES) Source Side Select Gate Structure Source Polar contact bit line contact source side select gate (SGS) Source side select gate structure drain side select gate (SGD) drain side coupled electrode (CED) source side select gate structure source Polar side coupling electrode (CES) source side selection gate (SGS) source line contact NAND string bit line storage element third conduction part dielectric layer 125538.doc -65 - 200832403

416 418 420 422 424 426 428 430 432 454 456 470 472 474 476 478 500 510 520 530 540 600, 700, 800, 900,1000, 1100, 1200 620 保護障壁 第二傳導部分 第一傳導部分 絕緣層 源極/ >及極區 填充物 p井區 η井區 基板 控制閘極區(控制閘極/字線) 浮動閘極區 保護障壁 第二傳導部分 介電質 第一傳導部分 絕緣物 層狀半導體材料 基板層 絕緣層 第一傳導層 介電層 半導體材料 光阻層 125538.doc 66- 200832403 810 910 922, 923, 924, 925, 926, 927 1010 1020 1022, 1023, 1024, 1025, 1026, 1027 1110 1112, 1114 1120 1202, 1204, 1206, 1208, 1210 1224, 1225, 1226, 1227, 1230 1250, 1252, 1254, 1256, 1258 1260 1265, 1270, 1275, 1280 1304, 1306, 1308, 1310, 1312, 1314, 1316, 1318, 1320, 1322 1410 第二傳導層 遮罩 保護障壁(保護區) 間隙 第一傳導層之一部分 第二傳導層部分(控制閘極) 保護層 保護層之部分 遮罩 介電部分 第一傳導層部分 源極/沒極區 選擇閘極結構 儲存元件 間隔物 反轉層 最大曲率點 125538.doc -67- 1420 200832403 1430 選擇閘極 1440 耦合電極 1500 替代性半導體材料 1502 介電層 1510 保護層 1560 替代性選擇閘極結構 1600 配置 1610, 1620, 1630 NAND 串 1612 非揮發性儲存元件 1614 汲極側選擇閘極結構 1622 源極側選擇閘極結構 1624 一連串非揮發性儲存元件 1626 汲極侧選擇閘極結構 1632 源極側選擇閘極結構 1634 非揮發性儲存元件 1800, 1830 NAND 串 1802 儲存元件 1804 控制閘極/字線 1807 第二傳導部分 1808 保護障壁 1809 選擇閘極結構 1809 第一傳導部分 1810 第三傳導部分 1812 介電質 125538.doc -68-416 418 420 422 424 426 428 430 454 454 456 470 472 474 476 478 500 510 520 530 540 600, 700, 800, 900, 1000, 1100, 1200 620 Protection barrier second conducting part first conducting part insulating layer source / > and polar region filler p well region η well region substrate control gate region (control gate / word line) floating gate region protection barrier second conduction portion dielectric first conductive portion insulator layered semiconductor material substrate Layer insulating layer first conductive layer dielectric layer semiconductor material photoresist layer 125538.doc 66- 200832403 810 910 922, 923, 924, 925, 926, 927 1010 1020 1022, 1023, 1024, 1025, 1026, 1027 1110 1112, 1114 1120 1202, 1204, 1206, 1208, 1210 1224, 1225, 1226, 1227, 1230 1250, 1252, 1254, 1256, 1258 1260 1265, 1270, 1275, 1280 1304, 1306, 1308, 1310, 1312, 1314, 1316 , 1318, 1320, 1322 1410 second conductive layer mask protection barrier (protection zone) gap one of the first conductive layer part of the second conductive layer part (control gate) protective layer protective layer part of the mask dielectric part first conduction Layer part source/potential region selection gate junction Storage element spacer inversion layer maximum curvature point 125538.doc -67- 1420 200832403 1430 selection gate 1440 coupling electrode 1500 alternative semiconductor material 1502 dielectric layer 1510 protective layer 1560 alternative selection gate structure 1600 configuration 1610, 1620, 1630 NAND string 1612 non-volatile storage element 1614 drain side select gate structure 1622 source side select gate structure 1624 a series of non-volatile storage elements 1626 drain side select gate structure 1632 source side select gate structure 1634 Volatile storage element 1800, 1830 NAND string 1802 storage element 1804 control gate/word line 1807 second conductive portion 1808 protection barrier 1809 selective gate structure 1809 first conductive portion 1810 third conductive portion 1812 dielectric 125538.doc - 68-

200832403 1814 1815 1816 1818 1820 1822 1824 1826 1831 1832 1834 1836 1838 1839 1840 1841 1849 1850 1851 1852, 1853, 1854, 1855 1856 1857 1858 1859 125538.doc -69- 第二傳導部分 第一傳導部分 絕緣部分 源極/ >及極區 填充物 p井區 η井區 基板 儲存元件 保護障壁 第三傳導部分 介電質 第二傳導部分 第一傳導部分 絕緣物 選擇閘極結構區 介電部分 NAND 串 選擇閘極結構 儲存元件 耦合電極 選擇閘極 保護部分 第三傳導部分200832403 1814 1815 1816 1818 1820 1822 1824 1826 1831 1832 1834 1836 1838 1839 1840 1841 1849 1850 1851 1852, 1853, 1854, 1855 1856 1857 1858 1859 125538.doc -69- Second conducting part first conducting part insulating part source / > and polar region filler p well region η well region substrate storage element protection barrier third conduction portion dielectric second conduction portion first conduction portion insulator selection gate structure region dielectric portion NAND string selection gate structure storage Component coupling electrode selection gate protection portion third conduction portion

200832403 1860 1861 1862, 1866, 1870, 1874 1863, 1867, 1871, 1875 1864 1865 1868 1869 1872 1873 1876 1877 1885 1878 1879 1880, 1881, 1882, 1883, 1884 1886 1887 1888 1900 1904 1906 1926 第二傳導部分 第一傳導部分 保護區 控制閘極/字線部分 第二傳導部分 第一傳導部分 第二傳導部分 第一傳導部分 第二傳導部分 第一傳導部分 第二傳導部分 第一傳導部分 基板 絕緣層 反轉層 源極/汲極區 選擇閘極結構 分流區 接點 儲存元件陣列 源極線 位元線 沒極終端 125538.doc -70- 200832403200832403 1860 1861 1862, 1866, 1870, 1874 1863, 1867, 1871, 1875 1864 1865 1868 1869 1872 1873 1876 1877 1885 1878 1879 1880, 1881, 1882, 1883, 1884 1886 1887 1888 1900 1904 1906 1926 Second conducting part first Conducting portion protection region control gate/word line portion second conducting portion first conducting portion second conducting portion first conducting portion second conducting portion first conducting portion second conducting portion first conducting portion substrate insulating layer inversion layer source Pole/drain region selection gate structure shunt area contact storage element array source line bit line no-pole terminal 125538.doc -70- 200832403

1928 源極終端 1950 NAND 串 2096 記憶體裝置 2098 記憶體晶粒 1900 儲存元件陣列(記憶體陣列) 2010 控制電路 2012 狀態機 2014 晶片上位址解碼器 2016 功率控制模組 2018 線路 2020 貢料匯流排(線路) 2030, 2030A,2030B 列解碼器 2050 控制器 2060, 2060A, 2060B 行解碼器 2065, 2065A, 2065B 讀取/寫入電路 2070 感測電路 2072 資料匯流排 2080 感測模組 2082 位元線鎖存器 2090 共同部分 2092 處理器 3093 輸入線路 2094 資料鎖存器(資料鎖存器堆 疊) 125538.doc -71 - 2008324031928 Source Terminal 1950 NAND String 2096 Memory Device 2098 Memory Chip 1900 Storage Element Array (Memory Array) 2010 Control Circuit 2012 State Machine 2014 On-Chip Address Decoder 2016 Power Control Module 2018 Line 2020 Garbage Bus ( Line) 2030, 2030A, 2030B Column Decoder 2050 Controller 2060, 2060A, 2060B Line Decoder 2065, 2065A, 2065B Read/Write Circuit 2070 Sensing Circuit 2072 Data Bus 2080 Sensing Module 2082 Bit Line Lock Memory 2090 Common Section 2092 Processor 3093 Input Line 2094 Data Latch (Data Latch Stack) 125538.doc -71 - 200832403

2096 2000 2300 2310 2500 2520 2510 2650 3 000 3010, 3020, 3030, 3040, 3050,… 3012, 3022, 3032, 3042, 3052,… A,B,C B* E BLO, BL1,…BL8511 F PC I/O介面 感測組塊 奇偶架構2096 2000 2300 2310 2500 2520 2510 2650 3 000 3010, 3020, 3030, 3040, 3050,... 3012, 3022, 3032, 3042, 3052,... A, B, CB* E BLO, BL1,...BL8511 F PC I/O Interface sensing block parity structure

全位元線(ABL)架構 儲存元件之臨限電壓位準被 增大至狀態A 臨限電壓被增大至狀態C範 圍内 臨限電壓被增大至狀態B範 圍内 臨限電壓分佈 電壓波形 程式脈衝 驗證脈衝 臨限電壓分佈(經程式化狀 態)The threshold voltage level of the all-bit line (ABL) architecture storage element is increased to state A. The threshold voltage is increased to the state C range. The threshold voltage is increased to the threshold voltage distribution in the state B range. Program pulse verification pulse threshold voltage distribution (stylized state)

過渡狀態B 第一臨限電壓分佈(經擦除狀 態) 位元線 寬度 程式化計數器 125538.doc 72- 200832403 PCmax 程式化限制值 SGD 汲極選擇線(汲極選擇閘極) SGS 選擇線(源極選擇線)(源極選 擇閘極) VBL 位元線電壓 VCES 耦合電極電壓 VCGR 讀取控制閘極電壓 VNAND NAND串通道中的電壓 VPASS 通電壓(讀取傳送電壓) VPGM 程式電壓 VREAD 讀取電壓 VSGS (源極側)選擇閘極電壓 VSWL 所選字線上的電壓 VUWL 施加至非所選字線的電壓 Vra,Vrb,Vrc 讀取參考電壓 Vva, Vvb,Vvc 驗證參考電壓 Vvb, 驗證點 WL3, WL2, WLl,WL0 字線 125538.doc 73-Transition state B First threshold voltage distribution (erased state) Bit line width stylized counter 125538.doc 72- 200832403 PCmax Stylized limit value SGD drain select line (drain selection gate) SGS select line (source Pole selection line) (source selection gate) VBL bit line voltage VCES Coupling electrode voltage VCGR Read control gate voltage VNAND NAND string channel voltage VPASS pass voltage (read transfer voltage) VPGM program voltage VREAD read voltage VSGS (source side) selects the gate voltage VSWL. The voltage on the selected word line VUWL is applied to the voltage of the unselected word line Vra, Vrb, Vrc read the reference voltage Vva, Vvb, Vvc verify the reference voltage Vvb, verify point WL3, WL2, WLl, WL0 word line 125538.doc 73-

Claims (1)

200832403 十、申請專利範圍: 1· 一種用於一非揮發性儲存系統之選擇閘極結構,其包 括: ' 一第一傳導部分,其係藉由一基板予以承載; 一第二傳導部分,其形成在該第一傳導部分之一第一 ’ 部件上且電耦合至該第一傳導部分之該第一部件; ”電。P刀,其形成在該第一傳導部分之一第二部件 . 上;及 _ 一第三傳導部分,其形成在該介電部分上,該第三傳 導部分係藉由該介電部分而電隔離於該第一傳導部分並 且相間隔於該第二傳導部分。 2·如請求項1之選擇閘極結構,其中: 該第一傳導部分與該第二傳導部分提供一選擇閘極;及 該第三導電部分提供一耦合電極。 3 ·如請求項2之選擇閘極結構,其中: 該選擇閘極及耦合電極係可獨立驅動。 Φ 4·如請求項1之選擇閘極結構,其中·· 該第二傳導部分與該第三傳導部分延伸於一字線方 向0 * 5·如請求項1之選擇閘極結構,其中: 該第三傳導部分係往一位元.線方向相間隔於該第二傳 導部分。 6·如請求項1之選擇閘極結構,其中·· 該第一傳導部分往一位元線方向接連地延伸於該基板 125538.doc 200832403200832403 X. Patent Application Range: 1. A selective gate structure for a non-volatile storage system, comprising: 'a first conducting portion carried by a substrate; a second conducting portion, Forming on the first 'component of the first conductive portion and electrically coupled to the first component of the first conductive portion;" an electric P knife formed on one of the first conductive portions and the second member. And a third conductive portion formed on the dielectric portion, the third conductive portion being electrically isolated from the first conductive portion by the dielectric portion and spaced apart from the second conductive portion. The selective gate structure of claim 1, wherein: the first conductive portion and the second conductive portion provide a select gate; and the third conductive portion provides a coupling electrode. 3. The gate of claim 2 a pole structure, wherein: the selected gate and the coupled electrode system are independently driven. Φ 4. The selective gate structure of claim 1, wherein the second conductive portion and the third conductive portion extend in a word line direction 0 *5. The selective gate structure of claim 1, wherein: the third conductive portion is spaced apart from the one-dimensional line by the second conductive portion. 6. The selective gate structure of claim 1 · The first conductive portion extends successively to the substrate in a direction of a bit line 125538.doc 200832403 的第一與第二源極/汲極區之間。 如請求項1之選擇閘極結構,其中 ,·及 一複晶碎 該第一傳導部分係由-第一複晶石夕層所形成 該第二傳導部分與該第三傳導部分係由-第 層所形成。 8.如請求項1之選擇閘極結構,其中: 該第-傳導部分係形成於該基板上之一絕緣層上。 9· -種用於操作非揮發性儲存裝置之方法,其包括: 件=?:組非揮發性儲存元件,該等非揮發性儲存元 狀一%相關聯於-選㈣極結構,該選擇間極結構包 括-選擇閘極及耦合電極’該選擇閉極之一部分延伸於 該耦合電極與一基板之間;及 、 ;於該程式化期間,用第一與第二電壓分別獨立地驅動 該選擇閘極與該耦合電極。 1 0 ·如請求項9之方法,其中:Between the first and second source/drain regions. The gate structure of claim 1, wherein the first conductive portion is formed by the first polysilicon layer and the second conductive portion is formed by the first conductive portion The layer is formed. 8. The selective gate structure of claim 1, wherein: the first conductive portion is formed on an insulating layer on the substrate. 9. A method for operating a non-volatile storage device, comprising: a component =?: a group of non-volatile storage elements, the non-volatile storage elements being associated with a -selective (four) pole structure, the selection The interpole structure includes a selection gate and a coupling electrode. The one of the selective closed electrodes extends between the coupling electrode and a substrate; and, during the stylization, independently driving the first and second voltages The gate is selected and the coupling electrode is selected. 1 0. The method of claim 9, wherein: 該第二電壓高於該第一電 11·如請求項9之方法,其中: 壓 Λ位準提供该第二電壓,用於減小相鄰於該選擇閘 和、°構之該基板的一源極/汲極區中的閘極引發汲極洩 漏0 12 ·如請求項9之方法,其中·· 按照一介電材料可耐受的一電壓來設定該第二電壓, 該;1電材料係提供於該耦合電極與延伸於該耦合電極與 該基板之間的該選擇閘極之該部分之間。 125538.doc 200832403 13·如請求項9之方法,其中 複數個子線相關聯於該複數個非揮發性儲存元件;以及 該方法進-步包括:當經由該複數個字線中之至少一 者將-程式電壓施加至該複數個非揮發性健存元件之至 施加該第二電壓至該粞合電極,依據該複數 子、'之m者在該複數個字線 一位準提供該第二電壓。 14·如請求項13之方法,其中: 锋播2數個子線中之該至少—者係相鄰於該選擇閘極 =日、施加至該耦合電極的一電壓高於當該複數個字線 :該至少一者非相鄰於該選擇開極結構時施加至該耦 a電極的一電壓。 15·如請求項9之方法,其中: 〜該第-電產與該第二電壓係下列中之至少一纟··⑷至 刀地同時斜升;及⑻至少部分地同時斜降。 16·如請求項9之方法,其中·· 依據溫度,以一位準提供該第二電壓。 17·如請求項9之方法,其中·· 壓 依據記憶體裝置循環數目,以一位準提供該第二電 18·如請求項9之方法,其中·· 以一位準 依據程式脈衝循環數目及/或程式脈衝電塵 k供該第二電壓。 19.如請求項9之方法,其中· 125538.doc 200832403 當使用一多進程程式化技術時,依據程式化進程次 數,以一仅準提供該第二電壓。 20·如請求項9之方法,其中: 該、、且非揮發性儲存元件係提供於至少一财勘串中。 21 ·如凊求項2 〇之方法,其中: NAND串的—源極側處提供該選擇閉極妹 構。 、、口The second voltage is higher than the method of claim 9, wherein: the pressure level provides the second voltage for reducing one of the substrates adjacent to the selection gate The gate in the source/drain region induces a drain leakage 0 12. The method of claim 9, wherein the second voltage is set according to a voltage that a dielectric material can withstand; Provided between the coupling electrode and the portion of the select gate extending between the coupling electrode and the substrate. The method of claim 9, wherein a plurality of sub-lines are associated with the plurality of non-volatile storage elements; and the method further comprises: when passing through at least one of the plurality of word lines a program voltage is applied to the plurality of non-volatile memory components until the second voltage is applied to the bonding electrode, and the second voltage is provided in the plurality of word lines according to the plurality of bits . 14. The method of claim 13, wherein: the at least one of the plurality of sub-lines is adjacent to the selected gate = day, a voltage applied to the coupling electrode is higher than when the plurality of word lines The at least one is non-adjacent to a voltage applied to the coupled a-electrode when the open-ended structure is selected. 15. The method of claim 9, wherein: - the first electrical product and the second voltage system are at least one of the following: (4) ramping up simultaneously with the knife ground; and (8) at least partially simultaneously ramping down. 16. The method of claim 9, wherein the second voltage is provided in one bit depending on the temperature. 17. The method of claim 9, wherein the pressure is based on the number of cycles of the memory device, and the second power is provided as a bit. The method of claim 9 wherein: And/or a program pulsed electric dust k for the second voltage. 19. The method of claim 9, wherein: 125538.doc 200832403 When a multi-process programming technique is used, the second voltage is only available in accordance with the number of stylized processes. 20. The method of claim 9, wherein: the non-volatile storage element is provided in at least one of the financial records. 21. The method of claim 2, wherein: the selective closed-pole configuration is provided at the source side of the NAND string. ,,mouth 125538.doc125538.doc
TW96138527A 2006-10-17 2007-10-15 Non-volatile memory with dual voltage select gate TWI356416B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/550,382 US7586157B2 (en) 2006-10-17 2006-10-17 Non-volatile memory with dual voltage select gate structure
US11/550,383 US7616490B2 (en) 2006-10-17 2006-10-17 Programming non-volatile memory with dual voltage select gate structure

Publications (2)

Publication Number Publication Date
TW200832403A true TW200832403A (en) 2008-08-01
TWI356416B TWI356416B (en) 2012-01-11

Family

ID=44818894

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96138527A TWI356416B (en) 2006-10-17 2007-10-15 Non-volatile memory with dual voltage select gate

Country Status (1)

Country Link
TW (1) TWI356416B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562150B (en) * 2013-03-01 2016-12-11 Toshiba Kk
CN109192230A (en) * 2013-01-11 2019-01-11 三星电子株式会社 Three-dimensional semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192230A (en) * 2013-01-11 2019-01-11 三星电子株式会社 Three-dimensional semiconductor device and its manufacturing method
TWI562150B (en) * 2013-03-01 2016-12-11 Toshiba Kk

Also Published As

Publication number Publication date
TWI356416B (en) 2012-01-11

Similar Documents

Publication Publication Date Title
US10157680B2 (en) Sub-block mode for non-volatile memory
TWI606577B (en) Memory device
US7586157B2 (en) Non-volatile memory with dual voltage select gate structure
US7463531B2 (en) Systems for programming non-volatile memory with reduced program disturb by using different pre-charge enable voltages
EP2467854B1 (en) Selective memory cell program and erase
US7616490B2 (en) Programming non-volatile memory with dual voltage select gate structure
US7916533B2 (en) Forecasting program disturb in memory by detecting natural threshold voltage distribution
US7468918B2 (en) Systems for programming non-volatile memory with reduced program disturb by removing pre-charge dependency on word line data
US9672916B2 (en) Operation modes for an inverted NAND architecture
KR101662760B1 (en) Reduced programming pulse width for enhanced channel boosting in non-volatile storage
US7691710B2 (en) Fabricating non-volatile memory with dual voltage select gate structure
CN105960679B (en) Compensating source side resistance with respect to word line
US20080159002A1 (en) Programming non-volatile memory with reduced program disturb by removing pre-charge dependency on word line data
US8189378B2 (en) Reducing program disturb in non-volatile storage
EP2022060B1 (en) Verify operation for non-volatile storage using different voltages
TW201324513A (en) Substrate bias during program of non-volatile storage
WO2008083137A1 (en) Reading of a nonvolatile memory cell by taking account of the stored state of a neighboring memory cell
US20220254382A1 (en) Buried source line structure for boosting read scheme
US8908432B2 (en) Bit line resistance compensation
WO2014055460A2 (en) Support lines to prevent line collapse in arrays
US8184478B2 (en) Apparatus with reduced program disturb in non-volatile storage
TW200832403A (en) Non-volatile memory with dual voltage select gate structure and method for operating the same
WO2008048812A1 (en) Fabricating non-volatile memory with dual voltage select gate structure
WO2008063970A2 (en) Operation nand non-volatile memory with boost electrodes
TW200834825A (en) Providing local boosting control implant for non-volatile memory

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees