TW200807018A - Imaging optical system, imaging lens device, and digital apparatus - Google Patents
Imaging optical system, imaging lens device, and digital apparatus Download PDFInfo
- Publication number
- TW200807018A TW200807018A TW096121594A TW96121594A TW200807018A TW 200807018 A TW200807018 A TW 200807018A TW 096121594 A TW096121594 A TW 096121594A TW 96121594 A TW96121594 A TW 96121594A TW 200807018 A TW200807018 A TW 200807018A
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- lens group
- optical system
- positive
- imaging
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/145—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
- G02B15/1451—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
- G02B15/145129—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+++
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
200807018 (1) 九、發明說明 【發明所屬之技術領域] 本發明係有關於,構成變倍透鏡系的攝像光學系,和 具備該攝像光學系的攝像透鏡裝置及搭載著該攝像透鏡裝 ^ 置的數位機器。 【先前技術】200807018 (1) EMBODIMENT OF THE INVENTION [Technical Fields of the Invention] The present invention relates to an imaging optical system that constitutes a variator lens system, and an imaging lens device including the imaging optical system, and the imaging lens device Digital machine. [Prior Art]
近年來’數位靜態相機、數位視訊攝影機、或者附帶 相機之行動電話機或攜帶資訊終端(PDA: Personal Digital Assistant)等之數位機器正日益普及,這些機器上所搭載 的攝像元件的高像素化、高機能化正急速地進步中。因 此’爲了使高像素化等的攝像元件之性能能充分展現,使 被攝體被成像在該攝像元件上的攝像光學系,也被要求高 光學性能。具體而言,單焦點式被要求變成自動對焦式, 又關於變倍機能也是被要求將數位變倍予以取代或是追加 光學式變倍。 另一方面,一般在數位機器上,爲了攜帶性良好而期 望精巧化。因此,攝像光學系也被要求精巧化。可是,若 爲了精巧化而試圖將攝像光學系予以輕量、小型化,則難 以保持良好的光學性能。於是,作爲可保持高光學性能又 謀求精巧化的方案,在其光路中插入具備一面反射面的稜 鏡以使光路曲折成略直角,以謀求光軸方向之厚度的小型 化(薄肉化)的攝像光學系正在普及中。 於此種曲折型攝像光學系中,在如下所例示的專利文 -4 - 200807018 (2)In recent years, digital cameras such as digital still cameras, digital video cameras, or camera-equipped mobile phones or personal digital assistants (PDAs) have become increasingly popular. The imaging elements mounted on these devices are highly pixelated and high. Functionalization is rapidly progressing. Therefore, in order to sufficiently exhibit the performance of an image pickup element such as high pixel, an imaging optical system in which a subject is imaged on the image pickup element is required to have high optical performance. Specifically, the single focus type is required to be an auto focus type, and the zoom function is also required to replace the digital zoom or to add an optical zoom. On the other hand, it is generally expected to be sophisticated on digital machines for good portability. Therefore, the imaging optical system is also required to be refined. However, if it is attempted to reduce the size and size of the imaging optical system for the sake of precision, it is difficult to maintain good optical performance. Therefore, as a solution for maintaining high optical performance and ingenuity, a crucible having a reflecting surface is inserted into the optical path to bend the optical path to a right angle, thereby miniaturizing the thickness in the optical axis direction (thin meat). The camera optical system is gaining popularity. In such a zigzag type of imaging optical system, Patent Document 4 - 200807018 (2)
獻中係揭露了變倍透鏡系的攝像光學系。日本特開 2003-202500號公報中係揭露了,在從物體側起依序配置 「正負正正」光學功率之透鏡群的4群變倍構成、及依序 配置「正負正正正」光學功率之透鏡群的5群變倍構成 中,在第1透鏡群中含有用來使光軸曲折成直角的稜鏡的 變倍透鏡系。在日本特開2004-34771 2號公報中亦揭露 了,在第1透鏡群中含有曲折稜鏡的「正負正正正」之5 群變倍構成。又,日本特開2005-33 8 1 43號公報中係揭露 了,在第1透鏡群中含有折射率1.9以上之曲折稜鏡的 「正負正正正」的5群變倍構成,且,變倍時,令第2、 第4、第5透鏡群移動的變倍透鏡系。 就一般所知,爲了達成變倍透鏡系的小型化,使構成 變倍透鏡系的各透鏡群的功率變強,是有效果的。可是, 當欲維持各透鏡群的變倍負擔比率不變,提高各透鏡群之 功率以縮小變倍透鏡系的全長時,隨著該縮小,變倍時的 像差變動會增大,要跨越變倍領域全域都獲得良好光學性 能,是有困難的。 又,在日本特開2003-202500號公報中所揭露之「正 負正正正」的4群變倍構成中,若意圖使各透鏡群所負擔 的變倍量加大,以謀求變倍透鏡系全長的小型化,則要將 變倍所帶來之像差變動加以補正,是有困難的。因此,變 倍透鏡系的小型化是有極限。相對於此,若爲上記3件專 利文獻中所揭露的「正負正正正」的5群變倍構成,則各 透鏡群的變倍負擔可較爲減輕,因此可抑制變倍所帶來的 -5- 200807018 (3) 像差變動。 可是在此同時,上記3件專利文獻中,用來抑制在謀 求任一變倍透鏡系全長的小型化之際所產生的像差變動之 增大所需之必要措施,並未具體記載。亦即,上記3件專 4 利文獻中所揭露的「正負正正正」的5群變倍透鏡系中, H 由於各透鏡群在變倍時的變倍負擔未被最佳化,因此當變 倍透鏡系全長縮短時,伴隨各透鏡群的功率增加,變倍時 φ 的像差變動會跟著變大。因此,無法橫跨整個變倍領域都 獲得良好的性能,其精巧化係有極限。 【發明內容】 本發明係有鑑於上記事情而硏發,其目的在於,提供 一種精巧且具有高光學性能的攝像光學系、攝像透鏡裝置 及搭載該攝像透鏡裝置的數位機器。The Department of Imaging revealed the imaging optics of the variable power lens system. Japanese Laid-Open Patent Publication No. 2003-202500 discloses a four-group zoom configuration of a lens group in which "positive and negative" optical power is sequentially arranged from the object side, and sequentially arranges "positive and negative positive" optical power. In the five-group variable magnification configuration of the lens group, the first lens group includes a variator lens system for bending the optical axis at a right angle. It is also disclosed in Japanese Laid-Open Patent Publication No. 2004-34771, that the first lens group includes a five-group variable magnification of "positive and negative positive" of the meandering 稜鏡. Japanese Patent Publication No. 2005-33 8 1 43 discloses that the first lens group includes five groups of times of "positive and negative positive" of a meandering yoke having a refractive index of 1.9 or more, and is changed. When the time is doubled, the variator lens that moves the second, fourth, and fifth lens groups is used. As is generally known, in order to achieve miniaturization of the variator lens system, it is effective to increase the power of each lens group constituting the variator lens system. However, when the ratio of the variable magnification of each lens group is to be maintained, and the power of each lens group is increased to reduce the total length of the variator lens system, the aberration variation at the time of zooming increases with the reduction. It is difficult to obtain good optical performance in the entire field of zooming. In the four-group zoom structure of "positive and negative positive" disclosed in Japanese Laid-Open Patent Publication No. 2003-202500, it is intended to increase the amount of magnification that each lens group is subjected to, thereby achieving a variable power lens system. In the miniaturization of the full length, it is difficult to correct the aberration variation caused by the magnification change. Therefore, the miniaturization of the variator lens system has a limit. On the other hand, if the five-group variable magnification configuration of "positive and negative positive" disclosed in the above three patent documents is reduced, the magnification load of each lens group can be reduced, so that the magnification change can be suppressed. -5- 200807018 (3) Aberration changes. However, in the above-mentioned three patent documents, it is not necessary to specifically describe the measures necessary for suppressing an increase in aberration variation caused by miniaturization of the entire length of any variator lens system. In other words, in the five-group variator lens system in which "three positive and negative positive" are disclosed in the above-mentioned three documents, H is not optimized due to the variable magnification of each lens group at the time of magnification change. When the total length of the variator lens is shortened, the power fluctuation of each lens group increases, and the aberration variation of φ at the time of magnification becomes larger. Therefore, it is impossible to obtain good performance across the entire zooming field, and its ingenuity has limits. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide an imaging optical system, an imaging lens device, and a digital device equipped with the imaging lens device which are compact and have high optical performance.
本發明之一局面所述之攝像光學系,係屬於由複數透 鏡群所成且藉由改變透鏡群間隔就可進行變倍的攝像光學 系,其特徵爲,從物體側起依序具備:第1透鏡群,其係 具有正光學功率,在變倍時爲固定,且含有將光軸曲折成 略直角的反射部件;和第2透鏡群,其係具有負光學功 率,可在光軸方向上移動;和第3透鏡群,其係具有正光 學功率;和第4透鏡群,其係具有正光學功率,可在光軸 方向上移動;和第5透鏡群’其係具有正光學功率’可在 光軸方向上移動;係滿足下記條件式(1)、(2)。 15< (TL*ft)/( | dl2t-dl2w | *fw)< 45 · · · (1) -6 - (2) 200807018 (4) 0.45< (β 5t*fw)/(/3 5w*ft)< 0.9 · · · 其中,fw:廣角端的攝像光學系整體之旁 ft:望遠端的攝像光學系整體之焦 dl2w:廣角端的從第1透鏡群內 ^ 爲像面側之面起算,至第2透鏡群內之透鏡的 Ί 之面爲止的在光軸上之距離 dl2t :望遠端的從第1透鏡群內 φ 爲像面側之面起算,至第2透鏡群內之透鏡的 之面爲止的在光軸上之距離 TL :攝像光學系的最爲物體側之 面爲止的,在光軸上之距離 /3 5w:被攝體距離爲無限遠時的 5透鏡群之成像倍率 /3 5t:被攝體距離爲無限遠時的 5透鏡群之成像倍率 本發明之另一局面所述之攝像透鏡裝置, ν 具備上sS之攝像光學系,和將光學像轉換成電 像元件;前記攝像光學系是被組裝成,可在前 的受光面上形成被攝體之光學像。 本發明之再另一局面所述之數位機器,其 備:上記攝像透鏡裝置;和控制部,令前記攝 上形成被攝體之靜止畫影像及動畫攝影之至少 被進行。 本發明的目的、特徵及優點,係可藉由以 I距 距 之透鏡的最 最爲物體側 之透鏡的最 最爲物體側 面起算至像 廣角端的第 望遠端的第 其特徵爲, 氣訊號的攝 記攝像元件 特徵爲,具 像透鏡裝置 一者之攝影 下詳細說明 200807018 (5) 和添附圖面,而更爲明白。 【實施方式】 以下,基於圖面,說明本發明之實施形態。此外,以 下的說明、圖表中所使用的用語,係定義如下。 (a) 折射率係爲對d線之波長(587.56nm)的折射率。An imaging optical system according to one aspect of the present invention is an imaging optical system which is formed by a plurality of lens groups and which can be multiplied by changing a lens group interval, and is characterized in that: a lens group having positive optical power, fixed at magnification, and including a reflecting member that bends an optical axis into a substantially right angle; and a second lens group having negative optical power in the optical axis direction Moving; and a third lens group having positive optical power; and a fourth lens group having positive optical power movable in the optical axis direction; and a fifth lens group 'having positive optical power' Moving in the direction of the optical axis; the conditional expressions (1) and (2) below are satisfied. 15< (TL*ft)/( | dl2t-dl2w | *fw)< 45 · · · (1) -6 - (2) 200807018 (4) 0.45< (β 5t*fw)/(/3 5w * ft) < 0.9 · · · where fw is the side of the entire imaging optical system at the wide-angle end: the focal length dl2w of the entire imaging optical system at the telephoto end: the wide-angle end is from the surface of the first lens group to the image surface side. The distance dl2t on the optical axis from the surface of the Ί of the lens in the second lens group: the surface of the lens at the telephoto end from the surface of the first lens group φ to the image surface side, to the surface of the lens in the second lens group The distance TL on the optical axis until the most object side of the imaging optical system, the distance on the optical axis / 3 5w: the imaging magnification of the 5-lens group when the subject distance is infinity / 3 5t: imaging magnification of the 5-lens group when the subject distance is infinity. The imaging lens device according to another aspect of the present invention, ν has an imaging optical system of the upper sS, and converts the optical image into an electrical image element; The imaging optical system is assembled so that an optical image of the subject can be formed on the front light receiving surface. According to still another aspect of the present invention, the digital camera includes: an upper imaging lens device; and a control unit that causes at least a still image and a moving image of the subject to be formed on the front surface. The object, the features and the advantages of the present invention are characterized by the fact that the most object side of the lens on the most object side of the lens of the I-distance lens is calculated from the most object side of the lens to the telephoto end of the wide-angle end. The characteristics of the imaging element are as follows, with the lens device being photographed in detail, the details of 200807018 (5) and the drawing surface are more clearly understood. [Embodiment] Hereinafter, embodiments of the present invention will be described based on the drawings. In addition, the following explanations and terms used in the chart are defined as follows. (a) The refractive index is a refractive index for the wavelength of the d line (587.56 nm).
(b) 阿貝數係爲,令對d線、F線(48 6.1 3nm)、C線 (656.28nm)的折射率分別爲nd、nF、nC,令阿貝數爲v d 時, v d = (nd-l)/(nF-nC) 相當於以該定義式所求出之阿貝數v d。 (c) 關於面形狀的表述,是基於近軸曲率來表述。 (d) 關於透鏡,當使用「凹」、「凸」或「新月形」這 種表述時,這些描述係視爲表示光軸附近(透鏡的中心附 近)上的透鏡形狀(基於近軸曲率的表述)。 <攝像光學系之構成的說明> 〔圖1〕本發明所述之攝像光學系10之構成例的光路 圖(廣角端之光路圖)。該攝像光學系1 0,係屬於將光路曲 折成略直角並且使被攝體之光學像形成在攝像元件1 5之 受光面(像面)的曲折光學系,從物體側起依序配置第1透 鏡群Grl〜第5透鏡群Gr5而爲「正負正正正」之5群變 200807018 (6) 倍構成的光學系。此外,第2透鏡群Gr2和第3透鏡群 Gr3之間係配置有光圈1 0 1,在像側係配置有將光學像轉 換成電氣訊號的攝像元件1 9,然後在第5透鏡群Gr5和 攝像元件1 9之間係配置有低通濾鏡1 8。此外,該圖1所 示的光學系之構成,係和後述的實施例1爲相同構成。(b) The Abbe number is such that the refractive indices of the d-line, the F-line (48 6.1 3 nm), and the C-line (656.28 nm) are nd, nF, and nC, respectively, and when the Abbe number is vd, vd = ( Nd-l)/(nF-nC) corresponds to the Abbe number vd obtained by the definition. (c) The expression of the surface shape is expressed based on the paraxial curvature. (d) Regarding the lens, when the expression "concave", "convex" or "crescent" is used, these descriptions are regarded as representing the shape of the lens near the optical axis (near the center of the lens) (based on paraxial curvature) Expression). <Description of Configuration of Imaging Optical System> [Fig. 1] An optical path diagram (optical path diagram at the wide-angle end) of a configuration example of the imaging optical system 10 according to the present invention. The imaging optical system 10 is a meandering optical system in which the optical path is bent at a substantially right angle and the optical image of the subject is formed on the light receiving surface (image surface) of the imaging element 15 , and the first arrangement is performed from the object side. The lens group Gr1 to the fifth lens group Gr5 are optical systems of the five groups of "positive and negative positive and positive" of 200807018 (6) times. Further, the aperture 1 0 is disposed between the second lens group Gr2 and the third lens group Gr3, and the imaging element 1 9 that converts the optical image into an electrical signal is disposed on the image side, and then the fifth lens group Gr5 and A low-pass filter 18 is disposed between the image pickup elements 19. Further, the configuration of the optical system shown in Fig. 1 has the same configuration as that of the first embodiment to be described later.
第1透鏡群Grl,係由被配置在最靠物體側且朝像側 凹下的負彎月形透鏡11、雙凸正透鏡12、被配置在這些 透鏡1 1、1 2之間的稜鏡1 1所成;整體而言是具有正的光 學功率,在變倍時係爲固定。以下,由1片雙凹負透鏡14 所成且在變倍時移動的第2透鏡群Gr2 ;由1片朝物體側 凸出之正彎月形透鏡15所成且變倍時固定的第3透鏡群 Gr3 ;由雙凸正透鏡161與雙凹負透鏡162的接合透鏡16 所成,整體而言是具有正的光學功率,在變倍時移動的第 4透鏡群Gr4;及由1片雙凸正透鏡所成且在變倍時移動 的第5透鏡群Gr5 ;是沿著光軸AX而從物體側依序排 列。又,該當攝像光學系1 0,係在從廣角端往望遠端變倍 時,第1透鏡群Grl和第2透鏡群Gr2之間隔會變寬,第 3透鏡群Gr3和第4透鏡群Gr4之間隔會變窄,反之第4 透鏡群Gr4和第5透鏡群Gr5的間隔會變寬,第5透鏡群 Gr5和攝像元件1 9之間隔會變窄地進行變倍動作之光學 系0 第1透鏡群Grl中所含之稜鏡13,係在其一面具有 使光線曲折成略直角的反射面1 3 c的直角稜鏡。因此,沿 著圖1中所示的光軸AX,從稜鏡1 3之入射面1 3 a入射的 -9- 200807018 (7) 被攝體光,係被反射面13c曲折成略直角,從出射面13b 出射,朝像側直線地被導引。然後,被攝體光係透過低通 濾鏡1 8而以適宜的變倍比被導入至攝像元件1 9的受光 面,藉由攝像元件1 9而將前記被攝體光的光學像加以攝 影。The first lens group Gr1 is a negative meniscus lens 11 that is disposed on the most object side and is recessed toward the image side, and a double convex positive lens 12, and is disposed between the lenses 1 1 and 1 2 . It is made of 1 1; it has positive optical power as a whole, and is fixed at the time of zooming. Hereinafter, the second lens group Gr2 which is formed by one double concave negative lens 14 and moves at the time of magnification change, and the third lens fixed by the positive meniscus lens 15 which is convex toward the object side and which is fixed at the time of magnification change The lens group Gr3 is formed by the cemented lens 16 of the double convex positive lens 161 and the double concave negative lens 162, and has a positive optical power as a whole, and a fourth lens group Gr4 that moves at the time of magnification change; The fifth lens group Gr5 which is formed by the convex positive lens and moves at the time of magnification change is sequentially arranged from the object side along the optical axis AX. In addition, when the imaging optical system 10 is zoomed from the wide-angle end to the telephoto end, the interval between the first lens group Gr1 and the second lens group Gr2 is widened, and the third lens group Gr3 and the fourth lens group Gr4 are The interval between the fourth lens group Gr4 and the fifth lens group Gr5 is widened, and the interval between the fifth lens group Gr5 and the imaging element 19 is narrowed. The crucible 13 contained in the group Grl has a right angle 稜鏡 on one side of the reflecting surface 1 3 c which bends the light into a slightly right angle. Therefore, along the optical axis AX shown in Fig. 1, the -9-200807018 (7) subject light incident from the incident surface 1 3 a of the 稜鏡1 3 is bent by the reflecting surface 13c to a slightly right angle, from The exit surface 13b is emitted and guided linearly toward the image side. Then, the subject light is transmitted through the low-pass filter 18 to the light receiving surface of the image sensor 19 at an appropriate zoom ratio, and the optical image of the subject light is photographed by the image sensor 19. .
所述之攝像光學系1 〇,係被收容在例如行動電話機或 數位相機之本體內(將根據圖2而於後述)。如此,藉由採 用在最靠物體側之第1透鏡群Gr 1中含有使光路曲折成略 直角之稜鏡1 3的攝像光學系1 〇,就有較先前鏡組內縮構 造之攝像光學系,光軸方向厚度能夠更加薄型化之優點。 此外,用來形成使光路往略直角曲折之反射面的部 件,係不限於圖1所示的內部反射型稜鏡1 3,亦可採用表 面反射稜鏡、內部反射平面鏡子、表面反射平面鏡子等。 可是,當採用內部反射稜鏡時,由於被攝體光是在稜鏡的 媒質中通過,因此通過稜鏡之際的面間隔,係隨著媒質的 折射率而變,是較通常之空氣間隔更短的換算面間隔。因 此,由於可用更精巧的空間來達成光學性等價之構成,因 此將內部反射稜鏡當成反射面形成部件採用,較爲理想。 又,亦可爲,令稜鏡13的入射面13a或出射面13b 之任一者,或是入射面13a和出射面13b的兩面上,帶有 光學功率。稜鏡13的入射面13a及/或出射面13b的面 係具備光學功率,就可以較少零件數來構成攝像光學系 本實施形態的攝像光學系1 〇,係爲如上述的從物體側 -10- 10° 200807018 (8) 起依序爲「正負正正正」之5群變倍構成的變倍透鏡系。 先前,作爲使光軸往略直角曲折的曲折變倍透鏡系’最靠 近物體側之透鏡群中含有稜鏡的「正負正正」之4群變倍 構成,已被提出許多。在「正負正正」之4群變倍構成的 ^ 情況下,在廣角端,第1透鏡群和第2透鏡群是具有強的 ★ 負合成功率,第3透鏡群和第4透鏡群是具有強的正合成 功率,整體來說,功率配置係爲反焦型。另一方面’在望 • 遠端狀態下,將第1透鏡群和第2透鏡群的間隔變寬以加 強第1透鏡群的收斂作用,且將第3透鏡群和第4透鏡群 的間隔變寬以減弱第2透鏡群至第4透鏡群的合成功率, 透鏡整體的功率配置係爲遠距拍攝型。若依據所述構成, 則在廣角端,可使通過第1透鏡群的軸外光束和光軸所夾 之角度縮小而謀求透鏡口徑的小型化’同時在望遠端可謀 求鏡頭全長的縮短化。 另一方面,在「正負正正」之4群變倍構成中,第2 透鏡群是唯一具有負功率的群,因此可使珀茲伐和成爲適 ^ 切的値,所以必須要使第2透鏡群具備較強的負光學功 率。又,在「正負正正」之4群變倍構成中,相鄰於第3 透鏡群數或第4透鏡群而配置有開口光圈,係爲一般。因 此,在變倍時,入射至第2透鏡群的軸外光束的入射高係 幾乎無變化,入射角度係大幅改變。因此,在「正負正 正」之4群變倍構成下,變倍時在第2透鏡群所發生的像 差變動係爲大。爲了良好地補正該像差變動,必須要使變 倍所帶來之第2透鏡群的移動量,成爲適切的値。 -11 - 200807018 ⑼The imaging optical system 1 is housed in, for example, a mobile phone or a digital camera (which will be described later with reference to Fig. 2). By using the imaging optical system 1 〇 which bends the optical path at a substantially right angle to the first lens group Gr 1 on the most object side, there is an imaging optical system which is more retracted than the previous lens group. The thickness in the optical axis direction can be made thinner. Further, the member for forming the reflecting surface which bends the optical path to a slightly right angle is not limited to the internal reflection type 稜鏡1 shown in FIG. 1, and may be a surface reflection 稜鏡, an internal reflection plane mirror, or a surface reflection plane mirror. Wait. However, when the internal reflection 采用 is used, since the subject light passes through the enamel medium, the interplanar spacing through the cymbal varies with the refractive index of the medium, which is a more common air separation. Shorter conversion surface spacing. Therefore, since a more compact space can be used to achieve an optically equivalent structure, it is preferable to use an internal reflection as a reflecting surface forming member. Further, either the incident surface 13a or the exit surface 13b of the crucible 13 or the both surfaces of the incident surface 13a and the exit surface 13b may be provided with optical power. The plane of the incident surface 13a and/or the exit surface 13b of the crucible 13 is optically powered, and the imaging optical system 1 of the present embodiment can be configured with a small number of components, as described above from the object side. 10- 10° 200807018 (8) A variable-magnification lens system consisting of five groups of magnifications of positive and negative positive and positive. In the past, a four-group zooming configuration in which the right and left sides of the lens group which is the closest to the object side of the zigzag variator lens that bends the optical axis to a slightly right angle has been proposed. In the case of the four-group magnification of "positive and negative", the first lens group and the second lens group have strong negative synthesis power at the wide-angle end, and the third lens group and the fourth lens group have Strong positive synthesis power, overall, the power configuration is reverse focus type. On the other hand, in the distal end state, the interval between the first lens group and the second lens group is widened to enhance the convergence of the first lens group, and the interval between the third lens group and the fourth lens group is widened. In order to weaken the combined power of the second lens group to the fourth lens group, the power arrangement of the entire lens is a telephoto type. According to this configuration, at the wide-angle end, the angle between the off-axis beam and the optical axis of the first lens group can be reduced, and the lens aperture can be reduced in size. At the telephoto end, the total length of the lens can be shortened. On the other hand, in the four-group zoom configuration of "positive and negative", the second lens group is the only group having negative power, so that the Petzval sum can be made suitable, so the second part must be made. The lens group has a strong negative optical power. Further, in the four-group variable magnification configuration of "positive and negative correction", an aperture aperture is disposed adjacent to the third lens group number or the fourth lens group. Therefore, at the time of zooming, the incident high angle of the off-axis light beam incident on the second lens group hardly changes, and the incident angle largely changes. Therefore, under the four-group zoom configuration of "positive and negative", the aberration variation occurring in the second lens group at the time of zooming is large. In order to correct the aberration variation well, it is necessary to make the amount of movement of the second lens group due to the magnification become an appropriate flaw. -11 - 200807018 (9)
順便一提,於變倍透鏡系中’作爲謀求其全長之精巧 化的手法,熟知的有,將各透鏡群的光學功率變大之方 法。於「正負正正」之4群變倍構成下’若將第2透鏡群 的移動量保持在適切値,同時將各透鏡群的光學功率增大 來謀求全長的小型化,則第4透鏡群所負擔的變倍量會變 大。起因於此,變倍所帶來的像差變動會增大。因此,橫 跨變倍領域全體要獲得良好之光學性能係爲困難,要一邊 維持良好光學性能,一邊達成全長的小型化’係有極限。 相對於此,在「正負正正正」之5群變倍構成下’具 有將「正負正正」之4群變倍構成之最靠像側的第4透鏡 群分割成2個正透鏡群之構成。而且,藉由在變倍時改變 被分割之2個正透鏡群(第4及第5透鏡群)之間所形成之 空氣間隔,就可進行變倍動作。亦即,在「正負正正正」 之5群變倍構成中,可一邊保持第2透鏡群的移動量在適 切的値,一邊以被分割之像側的2個透鏡群來分擔變倍負 擔。 由以上可知,若採用「正負正正正」之5群變倍構 成,則相較於「正負正正」之4群變倍構成,在爲了謀求 全長的精巧化而加大各透鏡群的功率時,變倍所帶來之像 差變動可被良好地抑制。因此,在使攝像光學系1 0全長 小型化上是有利的。 本發明係於如此構成的攝像光學系1 0中’採用滿足 以下條件式(1)、(2)之關係。 15< (TL*ft)/( | dl2t-dl2w | *fw)< 45 · · · (1) 200807018 (10) 0.45< (β' 5t*fw)/(/3 5w*ft)< 0.9 · · · (2) 其中,fw :廣角端的攝像光學系整體之焦距 ft:望遠端的攝像光學系整體之焦距 d 1 2 w ··廣角端的從第1透鏡群內之透鏡的最 爲像面側之面起算,至第2透鏡群內之透鏡的最爲物體側 之面爲止的在光軸上之距離Incidentally, in the variator lens system, a method of increasing the optical power of each lens group is known as a technique for purifying the full length thereof. In the four-group zooming configuration of "positive and negative", the fourth lens group is obtained by keeping the amount of movement of the second lens group in an appropriate state and increasing the optical power of each lens group to reduce the overall length. The amount of magnification that is burdened will become larger. As a result, the aberration variation caused by the magnification is increased. Therefore, it is difficult to obtain good optical performance for all of the cross-over zooming fields, and there is a limit to achieving full-length miniaturization while maintaining good optical performance. On the other hand, in the five-group zoom configuration of "positive and negative positive", the fourth lens group having the most image side of the four-group magnification of "positive and negative positive" is divided into two positive lens groups. Composition. Further, by changing the air gap formed between the two divided positive lens groups (fourth and fifth lens groups) at the time of zooming, the zooming operation can be performed. In other words, in the five-group zoom configuration of "positive and negative positive", it is possible to share the variable magnification burden with the two lens groups on the divided image side while keeping the amount of movement of the second lens group at an appropriate level. . From the above, it can be seen that when the five-group variable magnification configuration of "positive and negative positive" is used, the power of each lens group is increased in order to achieve the full-length compactness as compared with the four-group variable magnification configuration of "positive and negative positive". At the time, the aberration variation caused by the magnification can be well suppressed. Therefore, it is advantageous to miniaturize the entire length of the imaging optical system 10 . In the imaging optical system 10 configured as described above, the relationship between the following conditional expressions (1) and (2) is employed. 15<(TL*ft)/( | dl2t-dl2w | *fw)< 45 · · · (1) 200807018 (10) 0.45< (β' 5t*fw)/(/3 5w*ft)< 0.9 · · · (2) where fw : the focal length of the entire imaging optical system at the wide-angle end ft: the focal length of the entire imaging optical system at the telephoto end d 1 2 w · the most image of the lens from the first lens group at the wide-angle end The distance on the optical axis from the side of the most object side of the lens in the second lens group from the side of the side
dl2t :望遠端的從第1透鏡群內之透鏡的最 爲像面側之面起算,至第2透鏡群內之透鏡的最爲物體側 之面爲止的在光軸上之距離 TL :攝像光學系的最爲物體側之面起算至像 面爲止的,在光軸上之距離 /3 5w :被攝體距離爲無限遠時的廣角端的第 5透鏡群之成像倍率 /3 5t:被攝體距離爲無限遠時的望遠端的第5 透鏡群之成像倍率 此外,式中的^ 」係代表乘算。以下皆同。 又,藉由滿足條件式(1)及條件式(2),就可使構成攝 像光學系1〇的第1透鏡群Grl〜第5透鏡群Gr5的變倍 比負擔維持適切的値’可跨越變倍領域全域維持良好的性 能,同時達成更加小型化的攝像光學系1 0。 條件式(1)係爲,在透鏡位置狀態從廣角端狀態變化成 望遠端狀態時,規定第2透鏡群之移動距離。藉由滿足條 件式(1),就可將第2透鏡群Gr2的像差變動予以良好補 正。若超過條件式(1)的上限’則第2透鏡群Gr2的移動 200807018 (11) 距離太小,第2透鏡群Gr2的變倍負擔變少的傾向會變爲 顯著。於「正負正正正」之5群變倍構成中’由於第2透 鏡群Gr2是唯一的負透鏡群,因此第2透鏡群Gr2的移動 距離較小時,其他透鏡群的變倍負擔會變大。因此屬於移 動透鏡群的第4透鏡群Gr4、第5透鏡群Gr5的移動距離 會增大,要使全長精巧化是困難的。另一方面,若低於條 件式(1)的下限,則由於第2透鏡群Gr2的移動距離會變 大,因此攝像光學系10的全長變大之傾向會變爲顯著。 甚至,變倍所帶來之像差變動會變大,要藉其他透鏡群的 透鏡來補正像差變動的困難性會增大。因此’要跨越攝像 光學系1 0的變倍領域全體都獲得良好光學性能’是有困 難的。Dl2t : distance TL on the optical axis from the most image side surface of the lens in the first lens group to the most object side surface of the lens in the second lens group at the telephoto end: imaging optical system The distance from the most object side to the image plane, the distance on the optical axis / 3 5w : the imaging magnification of the 5th lens group at the wide-angle end when the subject distance is infinity / 3 5t: the subject distance The imaging magnification of the 5th lens group at the telephoto end in infinity, in addition, the ^" in the equation represents the multiplication. The following are the same. In addition, by satisfying the conditional expression (1) and the conditional expression (2), it is possible to cross the load ratio of the first lens group Gr1 to the fifth lens group Gr5 constituting the imaging optical system 1〇. The zooming field maintains good performance throughout the world while achieving a more compact imaging optics 10. The conditional expression (1) defines the moving distance of the second lens group when the lens position state changes from the wide-angle end state to the distal end state. By satisfying the conditional expression (1), the aberration variation of the second lens group Gr2 can be satisfactorily corrected. When the upper limit of the conditional expression (1) is exceeded, the movement of the second lens group Gr2 is 200807018. (11) The distance is too small, and the tendency to reduce the magnification of the second lens group Gr2 becomes remarkable. In the five-group zoom configuration of "positive and positive positive", the second lens group Gr2 is the only negative lens group. Therefore, when the moving distance of the second lens group Gr2 is small, the variable load of the other lens groups becomes different. Big. Therefore, the moving distances of the fourth lens group Gr4 and the fifth lens group Gr5 belonging to the moving lens group are increased, and it is difficult to make the full length fine. On the other hand, when the lower limit of the conditional expression (1) is exceeded, the moving distance of the second lens group Gr2 is increased. Therefore, the tendency of the entire length of the imaging optical system 10 to become large becomes remarkable. In addition, the variation of the aberration caused by the magnification change becomes large, and the difficulty of correcting the aberration variation by the lens of the other lens group increases. Therefore, it is difficult to achieve good optical performance in all of the zooming fields of the imaging optical system 10 .
條件式(2),係在條件式(1)所規定的範圍內’爲了使 其能橫跨整個變倍領域皆具備良好光學性能而加以規定的 條件。亦即,是使第4透鏡群Gr4和第5透鏡群Gr5所負 擔的變倍量之比例最佳化所設之條件,在「正負正正正」 之5群變倍構成中,積極地增加第5透鏡群Gr5所負擔的 變倍量,藉此以抑制在全長小型化時所產生的第4透鏡群 Gr4之像差變動的增大,使得變倍時的像差變動能夠良好 補正,而且還能同時達成全長小型化和高光學性能。若超 過條件式(2)的上限’則第5透鏡群Gr5負擔的變倍量變 大,因此第5透鏡群Gr5上的像差變動變大的傾向會變爲 顯著。又,在變倍時,軸外光束對像面的入射角變化會加 大,周邊光的減少會顯著化。另一方面,若低於條件式(2) -14-The conditional expression (2) is a condition that is specified in the range defined by the conditional expression (1) in order to have good optical performance across the entire zooming field. In other words, it is a condition that the ratio of the magnification of the fourth lens group Gr4 and the fifth lens group Gr5 is optimized, and the five-group magnification configuration of "positive and negative positive" is actively increased. By increasing the variation of the aberration of the fourth lens group Gr4 which is generated when the total length is reduced, the aberration variation of the fifth lens group Gr5 can be improved, and the aberration variation at the time of magnification can be well corrected. It also achieves full-length miniaturization and high optical performance. When the upper limit of the conditional expression (2) is exceeded, the amount of magnification of the fifth lens group Gr5 is increased. Therefore, the tendency of the aberration variation on the fifth lens group Gr5 to become large becomes remarkable. Further, at the time of zooming, the incident angle of the off-axis light beam on the image plane is increased, and the decrease in the peripheral light is remarkable. On the other hand, if it is lower than the conditional formula (2) -14-
200807018 (12) 的下限,則第5透鏡群Gr5負擔的變倍量會變小’ 充分補正第4透鏡群Gr4的變倍時之像差變動會有丨 此條件式(2)的意義,在更加詳細說明。於變倍 中,爲了良好地抑制從廣角端變倍成望遠端所帶來 像差之變動,在透鏡群從廣角端往望遠端移動之際 光束之通過高度會改變的透鏡片數的增加,係爲重 件式(2)所規定的領域中,在變倍時,第4透鏡群 第5透鏡群Gr5中,軸外光束通過的高度會有所變 體而言,在廣角端是以第4透鏡群Gr4來補正軸外 像差,而在望遠端係可以用第5透鏡群Gr5來補正 束。因此,即使因爲小型化,導致各透鏡群的折射 大、變倍所帶來的像差變動變大的情況下,也由於: 鏡群Gr4和第5透鏡群Gr5的像差補正機能是被分 以可良好地補正像差。 若低於條件式(2)的下限,則由於從廣角端往望 倍時,第5透鏡群Gr5的移動量會減少,因此軸外 過第5透鏡群Gr5的位置的變化會減小。因此,要 望遠端所發生的軸外像差是有困難,無法獲得良好 性能。另一方面,若超過條件式(2)的上限,則在從 往望遠端變倍時,軸外光束通過第4透鏡群Gr4的 變化會減小,要抑制在廣角端發生的軸外像差是有 無法獲得良好的光學性能。 又,在「正負正正正」之5群變倍構成中,如 示,光圈10 1 —般是相鄰於第3透鏡群Gr3而設置 因此要 ®難。 透鏡系 的軸外 ,軸外 要。條 Gr4及 化。具 光束的 軸外光 力會變 第4透 攤,所 遠端變 光束通 抑制在 的光學 廣角端 位置的 困難, 圖1所 ,或者 -15- 200807018 (13)When the lower limit of 200807018 (12) is smaller, the amount of magnification of the fifth lens group Gr5 is smaller, and the variation of the aberration when the magnification of the fourth lens group Gr4 is sufficiently corrected is affected by the conditional expression (2). More detailed instructions. In the magnification change, in order to satisfactorily suppress the variation of the aberration caused by the zooming from the wide-angle end to the telephoto end, the number of lenses whose beam passing height changes when the lens group moves from the wide-angle end to the telephoto end, In the field defined by the heavy-duty type (2), in the fifth lens group Gr5 of the fourth lens group, the height of the beam passing through the off-axis beam is changed, and the wide-angle end is The lens group Gr4 corrects the off-axis aberration, and at the telephoto end, the beam can be corrected by the fifth lens group Gr5. Therefore, even if the aberration of each lens group is large and the aberration variation due to the magnification is increased due to downsizing, the aberration correction function of the mirror group Gr4 and the fifth lens group Gr5 is divided. In order to correct the aberrations well. When the lower limit of the conditional expression (2) is exceeded, the amount of movement of the fifth lens group Gr5 is reduced when the magnification is increased from the wide-angle end. Therefore, the change in the position of the fifth lens group Gr5 outside the axis is reduced. Therefore, it is difficult to obtain the off-axis aberration occurring at the distal end, and good performance cannot be obtained. On the other hand, if the upper limit of the conditional expression (2) is exceeded, the change of the off-axis light beam through the fourth lens group Gr4 is reduced when the magnification is changed from the far end to the far end, and the off-axis aberration occurring at the wide angle end is suppressed. There is no good optical performance. Further, in the five-group zoom configuration of "positive and negative positive", as shown, the aperture 10 1 is generally adjacent to the third lens group Gr3 and is therefore difficult to set. The lens system is off-axis and off-axis. Article Gr4 and Hua. The off-axis light force with the beam will change to the fourth, and the far-end beam pass will be difficult to suppress at the optical wide-angle end position, Figure 1, or -15-200807018 (13)
相鄰於第4透鏡群Gr4而設置。因此,從廣角端往望遠端 變倍時,第4透鏡群Gr4係往物體側移動,射出瞳係往像 面側移動,軸外主光線入射至像面之際的入射角度會變 大。通常,被設置在像面的攝像元件1 9,若光線對像素的 入射角度越大,則入射至像素中之受光元件的光線會越 少,像面周邊部的照度會降低(周邊光降低)。藉由在從廣 角端往望遠端變倍時使第5透鏡群Gr5往像面側移動,就 可縮小軸外光束與光軸所夾之角度,因此可抑制變倍所帶 來的像面周邊部的照度降低。若滿足條件式(2),則變倍時 藉由第4透鏡群Gr4往物體側移動之際,第5透鏡群Gr5 係往像側移動,就可抑制入射角度對像素的變化,因此可 以防止變倍所帶來的像素周邊部上的照度降低。 站在攝像光學系1 0的更加精巧化的觀點來看,關於 上記條件式(1)的關係,是以滿足下記(1)’的條件式爲較 佳。 20< (TL*ft)/( | dl2t-dl2w | *fw)< 40 · · · (1), 尤其是,滿足下記(1 ),,之條件式則更爲理想。 25< (TL*ft)/( | dl2t-dl2w | *fw)< 40 · · · (1),, 同樣地,站在攝像光學系1 〇的更加精巧化的觀點來 看,關於上記條件式(2)的關係,是以滿足下記(2)’的條件 式爲較佳。 0.5< (/3 5t*fw)/(^ 5w*ft)< 0.8 * · · (2)5 尤其是,滿足下記(2)”之條件式則更爲理想。 0.6< (β 5t*fw)/(yS 5w*ft)< 0.75 · · · (2)’ • 16- 200807018 (14) 第2透鏡群Gr2,雖然亦可由複數片透鏡來構成,但 如圖1所例示,以1片負透鏡14來構成者爲較佳。此 時,負透鏡1 4的單面或雙面是非球面爲較佳。儘可能地 減少各透鏡群的透鏡片數,是直接牽連到攝像光學系1 〇 的全長縮短。藉由以1片構成第2透鏡群Gr2,可使攝像 光學系10精巧化。又,第2透鏡群Gr2是在變倍時會被 移動的透鏡,因此可減少驅動其的驅動部之負擔。順便一 提,在「正負正正正」之5群變倍構成中,爲了減少第2 透鏡群Gi:2的變倍負擔,即使以1片負透鏡14來構成第 2透鏡群Gr2的情況下,也能維持高光學性能。 關於上記第2透鏡群Gr2的1片負透鏡14,係滿足 下記條件式(3)、(4)爲較佳。 1.45 < Nd2 <1.8 ---(3) 45 < y 2 < 75 ---(4)It is provided adjacent to the fourth lens group Gr4. Therefore, when zooming from the wide-angle end to the telephoto end, the fourth lens group Gr4 moves toward the object side, and the exit pupil moves toward the image surface side, and the incident angle when the off-axis principal ray is incident on the image plane becomes large. Generally, when the incident angle of the light to the pixel is larger, the incident angle of the light incident on the pixel is smaller, and the illuminance at the peripheral portion of the image surface is lowered (the peripheral light is lowered). . By moving the fifth lens group Gr5 toward the image plane side when zooming from the wide-angle end to the telephoto end, the angle between the off-axis beam and the optical axis can be reduced, thereby suppressing the image surface periphery caused by the magnification change. The illumination of the department is reduced. When the conditional expression (2) is satisfied, when the fourth lens group Gr4 moves toward the object side when the fourth lens group Gr4 is moved, the movement of the fifth lens group Gr5 to the image side can suppress the change of the incident angle with respect to the pixel, thereby preventing the change. The illuminance on the peripheral portion of the pixel due to zooming is reduced. It is preferable that the relationship of the conditional expression (1) above is satisfied by the conditional expression of the following condition (1)' from the viewpoint of the more refined imaging optical system 10. 20<(TL*ft)/( | dl2t-dl2w | *fw)< 40 · · · (1) In particular, it is more desirable to satisfy the following condition (1). 25< (TL*ft)/( | dl2t-dl2w | *fw)< 40 · · · (1), Similarly, standing on the condition of the above-mentioned recording optical system 1 更加 more precise The relationship of the formula (2) is preferably a conditional expression satisfying the following (2)'. 0.5< (/3 5t*fw)/(^ 5w*ft)< 0.8 * · · (2)5 In particular, it is more desirable to satisfy the conditional expression of (2)" below. 0.6< (β 5t *fw)/(yS 5w*ft)<0.75 · · · (2)' • 16-200807018 (14) The second lens group Gr2 may be composed of a plurality of lenses, but as illustrated in Fig. 1, It is preferable that one negative lens 14 is formed. In this case, it is preferable that one surface or both surfaces of the negative lens 14 are aspherical surfaces. The number of lenses of each lens group is reduced as much as possible, which is directly involved in the imaging optical system. The total length of the cymbal is shortened. By forming the second lens group Gr2 in one piece, the imaging optical system 10 can be made fine. Further, the second lens group Gr2 is a lens that is moved when the magnification is changed, so that the driving can be reduced. By the way, in the five-group zoom structure of "positive and negative positive", in order to reduce the load of the second lens group Gi: 2, the second lens 14 is used to form the second one. In the case of the lens group Gr2, high optical performance can also be maintained. It is preferable that one negative lens 14 of the second lens group Gr2 is satisfied, and the conditional expressions (3) and (4) below are satisfied. 1.45 < Nd2 <1.8 ---(3) 45 < y 2 < 75 ---(4)
其中,Nd2 :負透鏡14的在d線上的折射率 ^ 2:負透鏡14的阿貝數 若超出條件式(3)的上限,則要使珀茲伐和保持成適切 的値係爲困難。該攝像光學系1〇中,由於第2透鏡群 Gr2是唯一具有負功率的群,因此若超過條件式(3)的上 限,則第2透鏡群Gr2的負的珀茲伐値會變小,要充分補 正其他透鏡群的正的珀茲伐値,係爲困難。因此,像面彎 曲係爲顯著,無法獲得良好的光學性能。又,若超過條件 式(4)的上限,則要補正色像差係爲困難。另一方面,若低 於條件式(3)、(4)的下限’則由於泛用性佳的模封透鏡材 -17- 200807018 (15) 料在現況下並不存在,因此負透鏡14的製造係爲困難。 關於上記條件式(3)、(4),站在要提高像面彎曲的抑 制效果,同時提升色像差的補正性能的觀點來看,則是滿 足下記條件式(3)’、(4)”爲較佳。 1 .5 < Nd2 < 1.75 · · · (3), 50 < y 2 < 60 · · · (4),Here, Nd2: refractive index of the negative lens 14 on the d line ^ 2: If the Abbe number of the negative lens 14 exceeds the upper limit of the conditional expression (3), it is difficult to keep the Petzval and the appropriate enthalpy. In the imaging optical system, the second lens group Gr2 is the only group having a negative power. Therefore, if the upper limit of the conditional expression (3) is exceeded, the negative Petz's edge of the second lens group Gr2 becomes small. It is difficult to fully correct the positive Petzval of other lens groups. Therefore, the image curvature is remarkable, and good optical performance cannot be obtained. Further, if the upper limit of the conditional expression (4) is exceeded, it is difficult to correct the chromatic aberration. On the other hand, if it is lower than the lower limit of the conditional expressions (3) and (4), the molded lens material -17-200807018 (15) which is excellent in general efficiencies does not exist under the current conditions, so the negative lens 14 Manufacturing is difficult. With regard to the conditional expressions (3) and (4) above, from the viewpoint of improving the suppression effect of the field curvature and improving the correction performance of the chromatic aberration, the conditional expressions (3)' and (4) below are satisfied. "It is better. 1. 5 < Nd2 < 1.75 · · · (3), 50 < y 2 < 60 · · · (4),
關於上記所說明的稜鏡1 3,則是滿足下記條件式(5) 爲較佳。Regarding 稜鏡1 3 described in the above, it is preferable to satisfy the conditional expression (5) below.
Nd > 1.85 · · · (5) 其中,Nd :棱鏡13的在d線上的折射率 藉由採用具有滿足條件式(5)之範圍的折射率的稜鏡 1 3,就可提高稜鏡1 3所帶來的,對攝像光學系1 0之精巧 化的期望度。若稜鏡13的折射率低於條件式(5)的範圍, 則不僅是對精巧化的期望度缺乏,尤其是在最短焦距狀態 下的主光線在稜鏡內的傾角變大,所以會近似全反射條 件,使得光量損失變大,並不理想。此外,再從謀求攝像 光學系1〇之精巧化的觀點來看,滿足下記條件式(5),的 Nd則更爲理想。Nd > 1.85 · (5) where Nd: the refractive index of the prism 13 on the d-line can be improved by using 稜鏡1 3 having a refractive index satisfying the range of the conditional expression (5). 3 brings the expectation of the precision of the imaging optical system 10 . If the refractive index of 稜鏡13 is lower than the range of conditional expression (5), not only is the lack of precision required, especially in the shortest focal length state, the inclination of the chief ray in the crucible becomes large, so it approximates The total reflection condition makes the light amount loss large, which is not preferable. In addition, from the viewpoint of the elaboration of the imaging optical system, it is more preferable to satisfy the conditional expression (5) below.
Nd > 1.9 · · · (5), 第3透鏡群Gr3,雖然亦可由複數片透鏡來構成,但 如圖1所例示,以1片正透鏡(正彎月形透鏡15)來構成爲 較佳。此時,滿足下記條件式(6)爲較佳。 N3d〉1.7 · · · (6) 其中,N3 d :正彎月形透鏡1 5的在d線上的折射率 -18- 200807018 (16) 藉由以1片構成第3透鏡群Gr3’可使攝像光學系10 精巧化。又,若低於條件式(6)的範圍,則由於正彎月形透 鏡15的曲率變強,因此變倍時的像差變動會變大。因此 想要跨越整個變倍領域都獲得良好光學性能’係爲困難。 * 此外,從使前記像差變動更爲縮小、光學性能更能提高的 - 觀點來看,滿足下記條件式(6) ’的N3 d則更爲理想。 N3 d > 1.75 · · · (6)9 ^ 於該當攝像光學系1 0中’再對焦之際會移動的透鏡 群,係爲第5透鏡群Gr5較佳。由於第5透鏡群Gr5係具 有正的功率,因此藉由往物體側送出’就可從無限遠往近 距離物體進行對焦。此時,在同樣被攝體距離下’在廣角 端是送出量較少,在望遠端則是送出量較多。於「正負正 正正」之5群變倍構成中,從廣角端往望遠端的變倍時’ 由於第4透鏡群Gr4與第5透鏡群Gr5的間隔是單調地增 加,因此於望遠端也是,可不使全長增加而進行對焦。 如圖1所示的攝像光學系1 〇,於第1透鏡群Gr 1中 、 在稜鏡13的像面側配置1片正透鏡(雙凸正透鏡12)爲較 佳。藉此,就可良好地補正透鏡1 1上所產生的色像差。 此時,在雙凸正透鏡12上係被形成爲,越往其周邊’正 的折射力越弱的非球面形狀’較爲理想。 又,如圖1所示的攝像光學系1 〇,令含有稜鏡1 3的 透鏡群(第1透鏡群Grl)爲固定’進行變倍動作的透鏡群 (第2、第3、第5透群Gr2、Gr3、Gr5),是被設在稜鏡 1 3與攝像元件1 9之間,較爲理想。若爲令含有稜鏡1 3的 -19- 200807018 (17) 透鏡群移動之構成,則除了其驅動系變得複雜,同時會有 發生光軸偏離之疑慮。又,一般而言變倍光學系雖然有透 鏡全長變長的傾向,但藉由適用本發明則具有可使全長縮 短的優點。Nd > 1.9 · (5) The third lens group Gr3 may be constituted by a plurality of lenses, but as illustrated in Fig. 1, one positive lens (positive meniscus lens 15) is configured as a comparison good. In this case, it is preferable to satisfy the conditional expression (6) below. N3d>1.7 · · · (6) where N3 d : refractive index of the positive meniscus lens 15 on the d line -18- 200807018 (16) The camera can be imaged by forming the third lens group Gr3' with one piece The optical system 10 is compact. When the range of the conditional expression (6) is lower than the range of the conditional expression (6), the curvature of the positive meniscus lens 15 is increased, so that the aberration variation at the time of magnification is increased. Therefore, it is difficult to obtain good optical performance across the entire zooming field. * In addition, it is more desirable to satisfy N3 d which satisfies conditional expression (6) ' below, from the viewpoint of further reducing the fluctuation of the preceding aberration and improving the optical performance. N3 d > 1.75 · · · (6) 9 ^ It is preferable that the lens group that moves when refocusing in the imaging optical system 10 is the fifth lens group Gr5. Since the fifth lens group Gr5 has a positive power, it can be focused from infinity to a close object by sending 'to the object side'. At this time, under the same subject distance, the amount of delivery at the wide-angle end is small, and at the telephoto end, the amount of delivery is large. In the five-group variable magnification configuration of "positive and positive positive", the distance between the fourth lens group Gr4 and the fifth lens group Gr5 increases monotonously from the wide-angle end to the telephoto end. Therefore, at the telephoto end, Focusing can be performed without increasing the overall length. In the imaging optical system 1A shown in Fig. 1, it is preferable that one positive lens (double convex positive lens 12) is disposed on the image surface side of the cymbal 13 in the first lens group Gr1. Thereby, the chromatic aberration generated on the lens 11 can be satisfactorily corrected. At this time, the double convex positive lens 12 is preferably formed such that the aspherical shape which is weaker toward the periphery of the positive refractive power is preferable. Further, in the imaging optical system 1A shown in FIG. 1, the lens group (the first lens group Gr1) including the 稜鏡1 3 is fixed as a lens group for performing the magnification change operation (the second, third, and fifth transmissions). The groups Gr2, Gr3, and Gr5) are preferably provided between the 稜鏡1 3 and the imaging element 119. In the case of a configuration in which the lens group of -19-200807018 (17) containing 稜鏡1 3 is moved, the drive system becomes complicated and the optical axis deviation occurs. Further, in general, the variable power optical system tends to have a longer overall length of the lens, but the application of the present invention has the advantage that the overall length can be shortened.
此外,於攝像光學系1 〇中,站在稜鏡1 3及其他透鏡 的製造容易性來看,稜鏡1 3的反射面1 3 c係用平面來構 成,攝像光學系1 0全體係爲共軸系構成,較爲理想。若 反射面13c爲曲面,則因爲全體會變成偏芯的光學系,因 此會發生非對稱的扭曲或像面彎曲,用來補正其而其他光 學面也變成必須要使用非對稱形狀的特殊面。因此,不只 提升製造難易度,對於組裝時的評估、調整而言也提升難 度,提高製造成本,並非理想。 又,攝像光學系1 〇,係亦可取代光學光圈1 〇 1,改成 配置具有對攝像元件1 9進行遮光機能的機械快門。所述 之機械快門,例如作爲攝像元件19是使用CCD(charge Coupled Device)方式時,可有效防止漏光。 作爲攝像光學系10中所具備的各透鏡群或光圈、快 門等之驅動的驅動源,係可使用先前公知的凸輪機構或步 進馬達。又,當移動量少或驅動群重量輕的情況下’若使 用超小型的壓電制動器,就可抑制驅動部的體積或消費電 力之增加,同時可獨立驅動各群^就可謀求含有攝像光學 系10之攝像透鏡裝置的更進一步精巧化。 如圖1所例示,在第5透鏡群Gr5和攝像元件19之 間,係有低通濾鏡1 8介於其中存在’較爲理想。低通濾 -20- 200807018 (18)Further, in the imaging optical system 1 ,, the reflection surface 1 3 c of the 稜鏡 13 is formed by a plane in view of the ease of manufacture of the 稜鏡 13 and other lenses, and the imaging optical system 10 is a whole system. Coaxial system configuration is ideal. If the reflecting surface 13c is a curved surface, since the whole becomes an eccentric optical system, asymmetric distortion or field curvature occurs, which is used to correct it, and other optical surfaces become special surfaces that must use an asymmetrical shape. Therefore, it is not ideal to improve the manufacturing difficulty, increase the difficulty in the evaluation and adjustment during assembly, and increase the manufacturing cost. Further, instead of the optical aperture 1 〇 1, the imaging optical system 1 改 can be replaced with a mechanical shutter having a function of shielding the imaging element 19. For example, when the CCD (charge coupled device) method is used as the image pickup element 19, the mechanical shutter can effectively prevent light leakage. A conventionally known cam mechanism or stepping motor can be used as a driving source for driving each lens group, diaphragm, shutter, or the like provided in the imaging optical system 10. In addition, when the amount of movement is small or the weight of the driving group is light, "If an ultra-small piezoelectric brake is used, the volume of the driving portion or the power consumption can be suppressed, and each group can be independently driven. The camera lens device of the system 10 is further refined. As illustrated in Fig. 1, between the fifth lens group Gr5 and the image sensor 19, a low-pass filter 18 is preferably present. Low-pass filter -20- 200807018 (18)
鏡1 8,係具有用來調整攝像光學系1 〇的空間頻率特性, 解決攝像元件1 9上所產生的色紊的截止頻率的平行平板 之光學零件。作爲該低通濾鏡1 8,係可適用例如結晶軸是 被調整成所定方向的雙折射材料或使偏光面改變的波長板 等加以層積而作成的雙折射型低通濾鏡,或藉由繞射效應 來實現必要之光學截止頻率特性的相位型低通濾鏡等。此 外,低通濾鏡1 8係並非一定要具備,亦可取而代之,改 用可降低攝像元件1 9之影像訊號中所含之雜訊的紅外線 截止濾鏡。甚至,在光學性低通濾鏡1 8的表面施加紅外 線反射覆層,就可將兩種濾鏡機能以一個濾鏡來實現。 攝像元件1 9,係隨著被攝像光學系1 0所成像之被攝 體的光像的光量,而進行光電轉換成R、G、Β各成份之 影像訊號,並往所定之影像處理電路進行輸出。例如作爲 攝像元件19,係可使用在CCD(Charge Coupled Device)是 配置成二維狀的面積感測器的各 CCD之表面上,將 R(紅)、G(綠)、B(藍)的彩色濾光片貼付成西洋棋盤模樣, 也就是構成了稱爲Bayer方式的單板式彩色面區感測器。 除了此種CCD影像感測器以外,亦可使用CMOS影像感 測器、VMIS影像感測器等。 接著,說明構成攝像光學系1〇的稜鏡及透鏡(光學部 件)的材質及製法。這些光學部件的材質並無特別限制, 只要是具備所定的透光率或折射率的光學部件即可,可使 用各種玻璃材料或樹脂(塑膠)材料。可是,若使用塑膠材 料,則較爲輕量,且藉由注射模封等就可大量生產,因此 -21 - 200807018 (19) 相較於以玻璃材料製作的情形,在抑制成本或攝像光學系 1 0的輕量化的層面上是有利的。The mirror 18 has an optical unit of a parallel flat plate for adjusting the spatial frequency characteristics of the imaging optical system 1 , and solving the cutoff frequency of the color turbulence generated on the imaging element 19. As the low-pass filter 18, for example, a birefringent type low-pass filter in which a crystal axis is a birefringent material adjusted in a predetermined direction or a wavelength plate in which a polarizing surface is changed can be applied, or A phase type low-pass filter or the like that realizes a necessary optical cutoff frequency characteristic by a diffraction effect. In addition, the low-pass filter 18 is not necessarily required, and instead, an infrared cut filter that reduces the noise contained in the image signal of the image sensor 19 can be used instead. Even if an infrared reflective coating is applied to the surface of the optical low-pass filter 18, the two filter functions can be realized with one filter. The imaging element 197 is optically converted into image signals of R, G, and 成份 components in accordance with the amount of light of the image of the subject imaged by the imaging optical system 10, and is subjected to image processing circuits of the predetermined image processing circuit. Output. For example, as the imaging element 19, R (red), G (green), and B (blue) can be used on the surface of each CCD in which a CCD (Charge Coupled Device) is a two-dimensional area sensor. The color filter is attached to the western checkerboard pattern, which constitutes a single-plate color area sensor called Bayer. In addition to such a CCD image sensor, a CMOS image sensor, a VMIS image sensor, or the like can be used. Next, the material and manufacturing method of the cymbal and the lens (optical member) constituting the imaging optical system 1A will be described. The material of these optical members is not particularly limited, and any glass material or resin (plastic) material can be used as long as it has an optical component having a predetermined light transmittance or refractive index. However, if a plastic material is used, it is lighter and can be mass-produced by injection molding, etc., therefore -21 - 200807018 (19) Compared with the case of glass material, the cost or imaging optical system is suppressed. The lightweight aspect of 10 is advantageous.
此處,若光學部件是以塑膠材料構成時,則作爲該塑 膠材料,可使用例如聚碳酸酯或PMMA等各種光學塑膠材 料。其中又以,選擇吸水率 〇 . 〇 1 %以下的塑膠材料爲較 佳。若塑膠材料具有和空氣中的水分結合的吸溼作用,而 發生如此吸溼時,則即使按照設計而製作出稜鏡等,也會 因爲吸溼而導致折射率等光學特性改變。因此,藉由使用 吸水率是0.01 %以下的塑膠材料,就可建構出不受吸濕影 響的攝像光學系1 0。作爲此種塑膠材料,例如可使用 ΖΕΟΝΈΧ(曰本ΖΕΟΝ株式會社商品名)。 順便一提,塑膠材料係溫度變化時的折射率變化較 大,因此若構成攝像光學系1 0的稜鏡及透鏡全部都是以 塑膠透鏡構成,則當周圍溫度變化之際,攝像光學系1〇 的像點位置會有變動之疑慮。於無法忽視此種像點位置變 動之規格的攝像單元中,藉由以玻璃材料形成之透鏡(例 如玻璃模封透鏡)和塑膠透鏡是混合存在,且複數個稜鏡 及透鏡間進行折射力分配使得溫度變化時的像點位置變動 能夠做某種程度的抵消,就可減輕溫度特性的問題。 或者,採用溫度變化時折射率變化小的塑膠復合部 件,來構成光學部件爲較佳。作爲此種塑膠復合部件,例 如聚丙烯酸酯等樹脂素材中分散了 3 0奈米以下的氧化鈮 (Nb205)的微粒子而成的復合部件,可使用此種在塑膠材 料中分散配合著無機微粒子所成的部件。藉此,就可如上 -22- 200807018 (20) 述地利用塑膠材料及無機微粒子的溫度依存性而使折射率 變化幾乎不會發生,可使攝像光學系10全系在溫度變化 時的像點位置變動抑制成很小。 此處,針對折射率的溫度變化,詳細說明。折射率的 溫度變化A,係基於勞倫茲.勞倫茲公式,將折射率η以溫 度t進行微分,就可表示成下記(7)式。Here, when the optical member is made of a plastic material, various optical plastic materials such as polycarbonate or PMMA can be used as the plastic material. Among them, it is preferable to select a plastic material having a water absorption rate of 〇 1 以下 or less. If the plastic material has a moisture absorption effect in combination with moisture in the air, and such moisture absorption occurs, even if a crucible or the like is formed according to the design, the optical characteristics such as the refractive index change due to moisture absorption. Therefore, by using a plastic material having a water absorption ratio of 0.01% or less, an imaging optical system 10 which is not affected by moisture absorption can be constructed. As such a plastic material, for example, ΖΕΟΝΈΧ (trade name of Sakamoto Co., Ltd.) can be used. By the way, the refractive index of the plastic material changes greatly when the temperature changes. Therefore, if the 稜鏡 and the lens constituting the imaging optical system 10 are all formed of plastic lenses, the imaging optical system 1 is changed when the ambient temperature changes. The position of the image point of the cockroach will have doubts about the change. In an image pickup unit in which the specification of the positional change of the image point cannot be ignored, a lens formed of a glass material (for example, a glass mold lens) and a plastic lens are mixed, and a plurality of ridges and a lens are subjected to refractive power distribution. The problem of temperature characteristics can be alleviated by making the image position change at the time of temperature change a certain degree of cancellation. Alternatively, it is preferable to constitute an optical member by using a plastic composite member having a small change in refractive index when the temperature changes. As such a plastic composite member, for example, a composite member in which fine particles of cerium oxide (Nb205) of 30 nm or less are dispersed in a resin material such as polyacrylate can be used by dispersing and mixing inorganic fine particles in a plastic material. Made into parts. Therefore, the refractive index change can hardly occur by using the temperature dependence of the plastic material and the inorganic fine particles as described above in -22-200807018 (20), and the imaging optical system 10 can be completely integrated with the image point when the temperature changes. The positional variation is suppressed to be small. Here, the temperature change of the refractive index will be described in detail. The temperature change A of the refractive index is expressed by the Lawrence Lorenz formula, and the refractive index η is differentiated by the temperature t, and can be expressed as the following formula (7).
(«2+2)(«2-1) 6» (-3α)+(«2+2)(«2-1) 6» (-3α)+
其中,α :線膨脹係數,[R]:分子折射 樹脂素材的情況下,一般而言對上記(7)式中的第2項 的貢獻是小於第1項,幾乎可以忽視。例如,若爲PMMA 樹脂的情況下,則線膨脹係數α爲7xl(T5,若代入上記式 子,則爲Α = -1·2χ1(Γ4〔 /°C〕,和實測値大略一致。 具 體而言,先前係將-1·2χ1(Γ4〔厂C〕左右的折射率之溫度變 化A,壓低在絕對値是未滿8xl(T5〔 /°C〕,較爲理想;尤 其是絕對値未滿6x1 (Γ5〔 /°C〕則更爲理想。 本實施形態所可能適用的塑膠材料的折射率之溫度變 化A(= dn/dT),示於表1。 〔表1〕 塑膠材料 A(近似値)〖1 〇-5/t ] 聚烯烴系 -11 聚碳酸酯系 -14 又’本實施形態所可能適用的無機材料的折射率之溫 -23- 200807018 (21) 度變化A(==dn/dT),係和塑膠材料的符號相反。將其示於 表2 〇 〔表2〕 ___ 無機材料 _ Α(近似値)n(T5/°C ] -- 1.4 ALON 一一一一 1.2 __ 1 0 _ 鑽石 1.0 碳酸鈣 0.7 磷酸鈦鉀 1.2 鋁酸鎂 0.9 - 氧化鎂 1 .9 石英 1.2 氧化碲 0.9 氧化ί乙 0.8 ___ 氧化錫 4.9Among them, α: linear expansion coefficient, and [R]: molecular refractive resin material, generally the contribution to the second term in the above formula (7) is smaller than the first term, and can be almost ignored. For example, in the case of a PMMA resin, the coefficient of linear expansion α is 7xl (T5, and if it is substituted into the above formula, it is Α = -1·2χ1 (Γ4[ /°C], which is roughly the same as the measured 値. In other words, the temperature change A of the refractive index of -1·2χ1 (Γ4[厂C] is lower, and the absolute pressure is less than 8xl (T5[ /°C], which is ideal; especially the absolute 値 is not full 6x1 (Γ5 [ / ° C] is more desirable. The temperature change A (= dn / dT) of the refractive index of the plastic material which may be applied in this embodiment is shown in Table 1. [Table 1] Plastic material A (approximate値) 〖1 〇-5/t ] Polyolefin -11 Polycarbonate-14 - 'The temperature of the refractive index of the inorganic material that may be applied in this embodiment -23- 200807018 (21) Degree change A (== Dn/dT), the symbol of the plastic material is opposite. Show it in Table 2 〇 [Table 2] ___ Inorganic material _ Α (approximate 値) n (T5 / ° C ] -- 1.4 ALON 11.11 __ 1 0 _ Diamond 1.0 Calcium Carbonate 0.7 Potassium Titanium Phosphate 1.2 Magnesium Aluminate 0.9 - Magnesium Oxide 1. 9 Quartz 1.2 Cerium Oxide 0.9 Oxidation 乙 B 0.8 ___ Tin Oxide 4.9
<組裝有攝像光學系的數位機器之說明> 其次’說明組裝有以上所說明之攝像光學系1 0的數 位機器。圖2係本發明所述之數位機器之一實施形態,是 數位相機2 0的外觀構成圖。此外,本發明中,作爲數位 機器,除了前記數位相機以外,還包含:附帶相機之行動 電話機、視訊攝影機、數位視訊單元、攜帶資訊終端 (PDA: Personal Digital Assistant)、個人電腦、攜帶型電 腦、或這些的周邊機器(滑鼠、掃描器、印表機等)。 圖2(a)係圖示了數位相機20的正面圖,圖2(b)係背 面圖,圖2(c)係上面圖。數位相機20係呈薄型的長方形 -24- 200807018 (22)<Description of Digital Apparatus in which an Imaging Optical System Is Mounted> Next, a digital apparatus in which the imaging optical system 10 described above is incorporated will be described. Fig. 2 is a view showing an embodiment of a digital camera according to the present invention, which is an external configuration of a digital camera 20. In addition, in the present invention, the digital device includes, in addition to the pre-recorded digital camera, a mobile phone with a camera, a video camera, a digital video unit, a personal digital assistant (PDA), a personal computer, a portable computer, Or peripheral machines (mouse, scanner, printer, etc.). Fig. 2(a) is a front view of the digital camera 20, Fig. 2(b) is a rear view, and Fig. 2(c) is a top view. Digital camera 20 series is thin rectangular -24- 200807018 (22)
狀,其上面配置有主開關21、用來切換靜止畫攝影或動畫 攝影等動作模式的模式切換開關22、及用來開始或停止攝 像動作的快門鈕23 ;在正面側配置有閃光燈24及作爲被 攝體光取入窗的透鏡窓25 ;在背面側則具有含有十字鍵的 各種操作鈕26、進行變倍動作的變倍條27及液晶監視器 (LCD)等所成之顯示部28。變倍條27上,印刷有表示望 遠的「T」字,和表示廣角的「w」字,藉由按下各印字 位置,就可指示各個變倍動作。 然後,數位相機2 0的本體內部,係內裝有如圖1所 示之曲折變倍透鏡系亦即攝像光學系1 〇所構成的攝像透 鏡裝置29及攝像元件19。亦即,攝像透鏡裝置29,係被 縱型組裝成’透鏡窓2 5、與圖1所示的稜鏡1 3的入射面 1 3 a —致。該攝像透鏡裝置2 9,係在變倍或對焦驅動時, 其長度不會改變,亦即不會從本體往外部突出的鏡筒,其 像面側係有攝像元件1 9被一體組裝。藉由具備此種光路 曲折型的攝像透鏡裝置2 9,就可達成數位相機2 0的薄型 化。 圖3係上記數位相機2 0的電氣機能構成的簡略圖示 之機能方塊圖。該數位相機2 0,係具備:攝像部3 0、影 像生成部3 1、影像資料緩衝區3 2、影像處理部3 3、驅動 部3 4、控制部3 5、記憶部3 6、及介面部3 7所構成。 攝像部3 0 ’係具備攝像透鏡裝置2 9和攝像元件1 9而 構成。來自被攝體的光線,係藉由攝像光學系1 〇而被成 像在攝像元件19的受光面上,成爲被攝體η的光學像。 -25- 200807018 (23) 攝像元件19,係將被攝像光學系10成像的被攝體之光學 像,轉換成R(紅)、G(綠)、B(藍)之色成份的電氣訊號(影 像訊號),以R、G、B各色的影像訊號之方式,輸出至影 像生成部3 1。攝像元件1 9,係藉由控制部3 5之控制,而 控制著靜止畫或動畫之任一方的攝像,或攝像元件19中 的各像素之輸出訊號的讀出(水平同步、垂直同步、傳送) 等之攝像動作。The main switch 21 is provided with a mode switch 22 for switching an operation mode such as still picture shooting or movie shooting, and a shutter button 23 for starting or stopping the image capturing operation. The flash unit 24 is disposed on the front side. The subject light is taken into the lens 窓 25 of the window; on the back side, various operation buttons 26 including a cross key, a variable magnification bar 27 for performing a magnification change operation, and a display unit 28 formed by a liquid crystal monitor (LCD) are provided. On the variable magnification bar 27, a "T" character indicating a far distance and a "w" character indicating a wide angle are printed, and each zoom operation can be instructed by pressing each print position. Then, inside the main body of the digital camera 20, an imaging lens device 29 and an imaging element 19 which are constituted by a zigzag variator lens system as shown in Fig. 1 are mounted. That is, the image pickup lens unit 29 is vertically assembled into the 'lens 窓 25 and coincides with the incident surface 1 3 a of the 稜鏡 13 shown in Fig. 1 . The image pickup lens unit 209 is integrally assembled when the length of the image pickup lens unit 9 is not changed, that is, the lens barrel that does not protrude from the main body, and the image pickup element 19 is integrally formed on the image side. The thinning of the digital camera 20 can be achieved by the image pickup lens unit 2 9 having such an optical path zigzag type. Fig. 3 is a block diagram showing the function of the electrical function of the digital camera 20. The digital camera 20 includes an imaging unit 30, a video generation unit 31, a video data buffer 3, a video processing unit 33, a drive unit 34, a control unit 35, a memory unit 36, and an interface. Department 3 consists of. The imaging unit 30' is provided with an imaging lens device 29 and an imaging element 19. The light from the subject is imaged on the light receiving surface of the image sensor 19 by the imaging optical system 1 and becomes an optical image of the subject η. -25- 200807018 (23) The imaging element 19 is an electrical signal that converts the optical image of the subject imaged by the imaging optical system 10 into color components of R (red), G (green), and B (blue). The image signal is output to the image generating unit 31 in the form of image signals of R, G, and B colors. The imaging element 197 controls the imaging of either the still picture or the animation or the reading of the output signals of the pixels in the imaging element 19 (horizontal synchronization, vertical synchronization, transmission) under the control of the control unit 35. ) The camera action.
影像生成部3 1,係除了對來自攝像元件1 9的類比輸 出訊號,進行增幅處理、數位轉換處理等,還對影像全體 進行適合的黑位準之決定、r補正、白平衡調整(WB調 整)、輪廓補正及色斑補正等周知的影像處理,從影像訊 號生成各像素之影像資料。在影像生成部31所生成的影 像資料,係被輸出至影像資料緩衝區3 2。 影像資料緩衝區3 2,係除了暫時記憶影像資料,還被 當成對該影像資料藉由影像處理部3 3進行後述處理所需 之作耒頁域而使用的記憶體,例如’是由R A M (R a n d 〇 m Access Memory)等所構成。影像處理部33,係對影像資料 緩衝區3 2的影像資料,進行解析度轉換等之影像處理的 電路。又,因應需要,亦可在影像處理部33中,將攝像 光學系1 0上所無法補正的像差予以補正。驅動部3 4,係 藉由從控制部3 5所輸出之控制訊號,使其進行所望之變 倍及對焦’來驅動攝像光學系1 〇的複數透鏡群。 控制部3 5,係例如具備微處理器等而構成,控制著攝 像部3 0、影像生成部3 1、影像資料緩衝區3 2、影像處理 -26— 200807018 (24) 部3 3、記億部3 6及介面部3 7之各部的動作。亦即,藉由 該控制部3 5,就可控制成,被攝體之靜止畫攝影及動畫攝 影之至少一方的攝影,是由攝像部3 0來執行。 δ己憶部3 6 ’係爲用來疋憶被攝體之靜止畫攝影或動書 攝影所生成之影像資料的記憶電路,例如,具H ROM(Read Only Memory)或RAM而構成。亦即,記憶部 3 6,係具有作爲靜止畫用及動畫用之記憶體的機能。介面 部3 7,’係和外部機器收發影像資料的介面,例如,是依據 USB或IEEE 1 3 94等規格的介面。The image generating unit 3 1 performs an amplification process, a digital conversion process, and the like on the analog output signal from the image sensor 19, and also performs appropriate black level determination, r correction, and white balance adjustment (WB adjustment) for the entire image. ), image correction such as contour correction and stain correction, and image data of each pixel is generated from the image signal. The image data generated by the image generating unit 31 is output to the video data buffer 32. The video data buffer 32 is used as a memory for the video data to be described later by the video processing unit 33, for example, by RAM ( R and 〇m Access Memory). The image processing unit 33 is a circuit for performing image processing such as resolution conversion on the image data of the image data buffer 32. Further, the image processing unit 33 may correct the aberration that cannot be corrected on the imaging optical system 10 as needed. The drive unit 34 drives the complex lens group of the imaging optical system 1 by the control signal output from the control unit 35 to perform the desired zoom and focus ’. The control unit 35 is configured by, for example, a microprocessor, and controls the imaging unit 30, the video generation unit 31, and the video data buffer 3, and the image processing -26 - 200807018 (24) part 3 3 The operation of each part of the portion 36 and the face portion 37. In other words, the control unit 35 can control the imaging of at least one of the still picture shooting and the moving picture of the subject, which is executed by the imaging unit 30. The δ 忆 部 3 6 ′ is a memory circuit for recalling image data generated by still picture photography or moving book photography of a subject, and is configured by, for example, H ROM (Read Only Memory) or RAM. That is, the memory unit 3 6 has a function as a memory for still painting and animation. The interface between the interface unit 3, 7' and the external device for transmitting and receiving video data is, for example, an interface based on specifications such as USB or IEEE 1 3 94.
說明如以上所構成之數位相機2 0的攝像動作。當拍 攝靜止畫時,首先,選擇模式切換開關22而令靜止畫攝 影模式啓動。若啓動靜止畫攝影模式,則控制部3 5係控 制成用攝像部3 0來進行靜止畫之攝影。藉此,光學像是 週期性地在攝像元件1 9的受光面上重複成像,並被轉換 成R、G、B色成份之影像訊號後,輸出至影像生成部 3 1。該影像訊號,係被暫時地記憶在影像資料緩衝區3 2 中,在藉由影像處理部3 3進行過影像處理後,被傳送至 顯示用記憶體(圖略),在顯示部28上會即時顯示被攝體 像。在此狀態下按下快門鈕23,就可獲得靜止影像。亦 即,影像資料是被儲存至作爲靜止影像之記憶體的記憶部 3 6中。 又,在進行動畫攝影時,係選擇模式切換開關22而 令動畫攝影模式啓動。藉此,控制部3 5,係控制著攝像部 30進行動畫之攝影。此時也是在顯示部28上即時顯示出 -27- 200807018 (25) 被攝體像,藉由按下快門鈕23,就開始動畫攝影。被拍攝 的動畫的畫格影像訊號,係被暫時地記憶在影像資料緩衝 區3 2中,在藉由影像處理部3 3進行過影像處理後,被傳 送至顯示用記憶體,導入至顯示部28。此處,藉由再次按 ^ 下快門鈕23,便結束動畫攝影。被攝得的動畫像,係被導 * 入作爲動畫用記憶體的記憶部3 6而儲存。 φ <攝像光學系之更具體的實施形態之說明> 以下,將圖1所示的攝像光學系1 〇,亦即構成圖2所 示之數位相機20中所搭載的攝像透鏡裝置29的攝像光學 系1 〇的具體構成,參照圖面來加以說明。 〔實施例1〕The imaging operation of the digital camera 20 configured as described above will be described. When taking a still picture, first, the mode switching switch 22 is selected to activate the still picture mode. When the still picture shooting mode is activated, the control unit 35 controls the shooting of the still picture by the imaging unit 30. Thereby, the optical image is periodically imaged on the light receiving surface of the image sensor 19 and converted into image signals of R, G, and B color components, and then output to the image generating unit 31. The image signal is temporarily stored in the image data buffer 32, and is subjected to image processing by the image processing unit 33, and then transmitted to the display memory (not shown), and displayed on the display unit 28. Instantly display the subject image. When the shutter button 23 is pressed in this state, a still image can be obtained. That is, the image data is stored in the memory portion 36 as a memory of the still image. Further, when the movie shooting is performed, the mode switching switch 22 is selected to activate the movie shooting mode. Thereby, the control unit 35 controls the imaging unit 30 to perform imaging of the animation. At this time, the -27-200807018 (25) subject image is immediately displayed on the display unit 28, and the shutter image is started by pressing the shutter button 23. The frame image signal of the captured animation is temporarily stored in the image data buffer 32, and is subjected to image processing by the image processing unit 33, and then transmitted to the display memory and imported to the display unit. 28. Here, the animation photography ends by pressing the shutter button 23 again. The captured moving image is stored in the memory unit 36 as the memory for animation. φ <Description of a more specific embodiment of the imaging optical system> Hereinafter, the imaging optical system 1 shown in Fig. 1 is formed, that is, the imaging lens device 29 mounted on the digital camera 20 shown in Fig. 2 The specific configuration of the imaging optical system 1 〇 will be described with reference to the drawings. [Example 1]
圖4係圖示了實施例1的攝像光學系10A之構成,是 將光軸(AX)縱剖之剖面圖(廣角端的光路圖)。該圖4(及圖 5〜圖9)中也槪略圖示了從物體側入射的光的行進路徑(光 路),該光路的中心線係爲光軸(AX)。又,圖5係將圖4 中的稜鏡(PR),置換成和該當稜鏡具有略等價機能的透鏡 (LP)而成的攝像光學系10A之構成。此外,以下實施例2 〜5,僅圖示和此圖5相當的直線光路圖,省略了曲折光 路圖的揭不。 實施例1的攝像光學系1 0 A,係在光路上從物體側起 依序地,具有:由朝像側凹下的負彎月形透鏡所成之第1 透鏡(L1)、稜鏡(PR/LP)、由雙凸正透鏡所成之第2透鏡 -28- 200807018 (26) (L2)所構成且全體具有正光學功率的第1透鏡群(Grl)、由 雙凹負透鏡所成之第3透鏡(L3)l片所構成的第2透鏡群 (Gr2)、光圏(ST)、由朝物體側凸出之正彎月形透鏡所成之 第4透鏡(L4)l片所構成的第3透鏡群(Gir3)、由雙凸正透 鏡所成之第5透鏡(L5)和雙凹負透鏡所成之第6透鏡(L6) 的接合透鏡所成且整體具有正光學功率的第4透鏡群 (Gr4)、及由雙凸正透鏡所成之第7透鏡(L7)l片所構成的 第5透鏡群(Gr5)而被構成。然後,在第5透鏡群(Gi:5)的 像側,係隔著平行平面板(PL)而配置有攝像元件(SR) °此 外.,平行平面板(PL),係相當於光學性低通濾鏡、紅外截 止濾鏡、攝像元件的覆蓋玻璃等。 該攝像光學系i〇A,入射光係在棱鏡(PR)中被曲折成 略90度,導入至攝像元件(sR)。此外,圖中標不箭頭A 的方向,係在圖2所示之數位相機20的厚度方向(正面、 背面方向)。Fig. 4 is a cross-sectional view (an optical path diagram at the wide-angle end) in which the optical axis (AX) is longitudinally sectioned, showing the configuration of the imaging optical system 10A of the first embodiment. In Fig. 4 (and Figs. 5 to 9), the traveling path (optical path) of light incident from the object side is also schematically illustrated, and the center line of the optical path is the optical axis (AX). Further, Fig. 5 is a configuration in which the 稜鏡 (PR) in Fig. 4 is replaced with an imaging optical system 10A in which a lens (LP) having a slightly equivalent function is used. Further, in the following embodiments 2 to 5, only the linear light path diagram corresponding to this Fig. 5 is shown, and the twisted optical path diagram is omitted. The imaging optical system 10A of the first embodiment has a first lens (L1) and a cymbal formed by a negative meniscus lens recessed toward the image side in order from the object side on the optical path. PR/LP), a second lens group 280-200807018 (26) (L2) made of a double convex positive lens, and a first lens group (Grl) having positive optical power as a whole, which is formed by a double concave negative lens The second lens group (Gr2) composed of the third lens (L3), the aperture (ST), and the fourth lens (L4) formed by the positive meniscus lens protruding toward the object side a third lens group (Gir3), a fifth lens (L5) made of a biconvex positive lens, and a cemented lens of a sixth lens (L6) formed by a double concave negative lens, and having a positive optical power as a whole The fourth lens group (Gr4) and the fifth lens group (Gr5) including the seventh lens (L7) formed of the double convex positive lens are configured. Then, on the image side of the fifth lens group (Gi: 5), the imaging element (SR) is disposed via the parallel plane plate (PL). The parallel plane plate (PL) corresponds to low optical efficiency. Through-filter, infrared cut-off filter, cover glass of camera elements, etc. In the imaging optical system i〇A, the incident light is bent into a prism (PR) to be slightly 90 degrees, and is introduced into the imaging element (sR). Further, the direction in which the arrow A is not shown in the drawing is in the thickness direction (front surface and rear direction) of the digital camera 20 shown in FIG. 2.
此處,第1透鏡群(Grl)及第3透鏡群(Gr3)係被固 定,第2透鏡群(Gr2)、第4透鏡群(Gr4)及第5透鏡群 (Gr5),則是在變倍時會在圖4的箭頭B方向上移動。這 些透鏡群的從廣角端(W)往望遠端(T)變倍時的移動狀態' ’ 係如圖5中箭頭ml〜m5所示。箭頭ml〜m5中,虛線箭 頭係表示固定,實線箭頭係表示移動。 第1透鏡群(Grl)及第3透鏡群(Gr3) ’係如虛線箭頭 ml、m3所示,在變倍時是固定的。第2透鏡群(Gr2)係如 實線箭頭m2所示會往靠近像側方向移動;第4透鏡群 -29- 200807018 (27)Here, the first lens group (Grl) and the third lens group (Gr3) are fixed, and the second lens group (Gr2), the fourth lens group (Gr4), and the fifth lens group (Gr5) are changing. When it is doubled, it will move in the direction of arrow B of FIG. The moving state '' of these lens groups when zooming from the wide-angle end (W) to the telephoto end (T) is as shown by arrows ml to m5 in Fig. 5 . In the arrows ml to m5, the dotted arrow indicates fixation, and the solid arrow indicates movement. The first lens group (Grl) and the third lens group (Gr3)' are fixed as indicated by the dotted arrows ml and m3, and are fixed at the time of magnification change. The second lens group (Gr2) moves toward the image side as indicated by the solid arrow m2; the fourth lens group -29-200807018 (27)
(Gr4)係如實線箭頭m4所示會往靠近物體側方向直線性地 移動;第5透鏡群(Gr 5 )係如實線箭頭m 5所示會往靠近像 側方向移動。但是,以下的實施例也包含在內,這些透鏡 群的移動方向或移動量等,係依存於該當透鏡群的光學功 率或透鏡構成等而改變。其結果爲,攝像光學系1 0 A,係 在從廣角端(W)往望遠端(T)變倍時,第1透鏡群(Grl)和第 1透鏡群(Grl)之間隔會變寬,第3透鏡群(Gr3)和第4透 鏡群(Gr4)之間隔會變窄,反之第4透鏡群(Gr4)和第5透 鏡群(Gr5)的間隔會變寬,第5透鏡群(Gr5)和攝像元件19 之間隔會變窄地進行變倍動作。 又,圖5所示的號碼ri(i=i,2,3,· · ·),係爲 從物體側數來時的第i個透鏡面,ri後標有*者係表示該 面爲非球面。此外,構成第4透鏡群(Gr4)的接合透鏡上 的透鏡面,係不是只把接合透鏡的兩面視爲透鏡面,而是 將其接合面也視爲1面。 在如此構成下,從圖4的物體側(被攝體光)所入射的 光線,係經由第1透鏡(L1)而入射至稜鏡(PR)的入射面, 在反射面被曲折成略9 0度而被反射後,從出射面射出。 然後,依序通過第2透鏡(L2)、第3透鏡(L3)、光學光圏 (ST)、第4透鏡(L4)〜第7透鏡(L7),通過了平行平面板 (PL)後,在攝像元件(SR)的受光面形成光學像。 然後’於攝像元件(SR)中,前記光學像會被轉換成電 氣訊號。該電氣訊號,係因應需要而實施所定之數位影像 處理或影像壓縮處理等,成爲數位映像訊號而被記錄在如 -30- 200807018 (28) 圖2的數位相機20的記憶部3 6中, 被傳送至其他的數位機器。 實施例1的攝像光學系10A中, 示於表3、表4。又,將上述條件式( - 例1所述之攝像光學系10A時的各個 • 15 ° 或藉由有線或無線而 各透鏡的結構數據係 1)〜(6),套用在實施 數値,示於後揭的表(Gr4) linearly moves toward the object side as indicated by the solid arrow m4, and the fifth lens group (Gr 5) moves toward the image side as indicated by the solid arrow m5. However, the following embodiments are also included, and the moving direction or amount of movement of these lens groups changes depending on the optical power of the lens group, the lens configuration, and the like. As a result, when the imaging optical system 10 A is zoomed from the wide-angle end (W) to the telephoto end (T), the interval between the first lens group (Grl) and the first lens group (Grl) is widened. The interval between the third lens group (Gr3) and the fourth lens group (Gr4) is narrowed, and the interval between the fourth lens group (Gr4) and the fifth lens group (Gr5) is widened, and the fifth lens group (Gr5) The zooming operation is performed in a narrower interval from the image pickup device 19. Further, the number ri (i=i, 2, 3, · · ·) shown in Fig. 5 is the i-th lens surface when the number is from the object side, and the ri is marked with * to indicate that the surface is non- Spherical. Further, the lens surface on the cemented lens constituting the fourth lens group (Gr4) is not only the two surfaces of the cemented lens as the lens surface but also the joint surface as one surface. With this configuration, the light incident from the object side (subject light) of FIG. 4 is incident on the incident surface of the 稜鏡 (PR) via the first lens (L1), and is curved at the reflection surface to be slightly 9 After being reflected at 0 degrees, it is emitted from the exit surface. Then, the second lens (L2), the third lens (L3), the optical stop (ST), and the fourth lens (L4) to the seventh lens (L7) are sequentially passed through the parallel plane plate (PL). An optical image is formed on the light receiving surface of the image sensor (SR). Then, in the imaging element (SR), the pre-recorded optical image is converted into an electrical signal. The electrical signal is subjected to digital image processing or image compression processing as required, and is digitally imaged and recorded in the memory unit 36 of the digital camera 20 of FIG. 2, for example, -30-200807018 (28) Transfer to other digital machines. The imaging optical system 10A of the first embodiment is shown in Tables 3 and 4. Further, the conditional expressions of the above-described conditional expressions (1 to 15° of the imaging optical system 10A described in Example 1 or the structural data lines 1) to (6) of the respective lenses by wire or wireless are applied to the number of executions, Post-release table
-31 - 200807018 (29) 〔表3〕-31 - 200807018 (29) [Table 3]
透鏡面 曲率半徑 1 軸上面間隔(mm) 折射率 阿貝數 (mm) W M T r1 * OO 0.600 1.8467 23,82 r2 7.000 r3 CO 1.093 - r4 OO 4-744 1.9229 16.83 0.200 r5 * 3.983 1.579 1.7170 52.93 • r6 -39.658 0.35 K91 2.48 γ7 * -11.844 0.600 1.6184 57.79 r8 2.730 2· 73 1.17 0.60 γ9 (光圈) OO 0. 200 ΓΙΟ 5.413 0.766 1.8467 23.82 γ11 15.968 4.45 2.52 1.50 r!2* 4.485 1.884 1.7545 51.57 • r13 -5; 063 0.600 1.7741 24.77 r14 5.103 0.60 3.39 6.73 r15* 12.212 1/823 1-5305 55.72 r16* -6.322 3.78 2.92 0.60 rlT OO 0. 500 1-5187 64.00 r18 OO 0.500 r19(像面) OO -32 - 200807018 (30) 〔表4〕 透鏡 面 圓錐係數 非球面係數 A Β C D Μ 0 9-263E-04 -4.306Ε-05 U151E-06 -L006E-08 r5 0 -2.108E-03 -4,966Ε-05 -2.607Ε-06 - 2·Π5Ε-07 r7 0 4.S59E-03 -2.926Ε-04 -5.340Ε-05 1.136Ε-05 r12 0 -2.005E-03 9.60ΖΕ-05 -2.214Ε-05 1.406Ε-06 r15 0 5·733E-04 Κ580Ε-04 -2.441Ε-05 1.681Ε-06 r16 0 2.067Ε-03 2.770Ε-04 -4,847Ε-05 2.969Ε-06Lens surface curvature radius 1 axis upper space (mm) refractive index Abbe number (mm) WMT r1 * OO 0.600 1.8467 23,82 r2 7.000 r3 CO 1.093 - r4 OO 4-744 1.9229 16.83 0.200 r5 * 3.983 1.579 1.7170 52.93 • r6 -39.658 0.35 K91 2.48 γ7 * -11.844 0.600 1.6184 57.79 r8 2.730 2· 73 1.17 0.60 γ9 (aperture) OO 0. 200 ΓΙΟ 5.413 0.766 1.8467 23.82 γ11 15.968 4.45 2.52 1.50 r!2* 4.485 1.884 1.7545 51.57 • r13 -5; 063 0.600 1.7741 24.77 r14 5.103 0.60 3.39 6.73 r15* 12.212 1/823 1-5305 55.72 r16* -6.322 3.78 2.92 0.60 rlT OO 0. 500 1-5187 64.00 r18 OO 0.500 r19 (image surface) OO -32 - 200807018 (30 [Table 4] Lens surface conic coefficient aspheric coefficient A Β CD Μ 0 9-263E-04 -4.306Ε-05 U151E-06 -L006E-08 r5 0 -2.108E-03 -4,966Ε-05 -2.607Ε- 06 - 2·Π5Ε-07 r7 0 4.S59E-03 -2.926Ε-04 -5.340Ε-05 1.136Ε-05 r12 0 -2.005E-03 9.60ΖΕ-05 -2.214Ε-05 1.406Ε-06 r15 0 5·733E-04 Κ580Ε-04 -2.441Ε-05 1.681Ε-06 r 16 0 2.067Ε-03 2.770Ε-04 -4,847Ε-05 2.969Ε-06
表3所示,係從左起依序爲各透鏡面的編號、各透鏡 面的曲率半徑(單位爲mm)、廣角端(W)、中間點(M)及望 遠端(T)的無限遠合焦狀態下的光軸上之各透鏡面的間隔 (軸上面間隔)(單位爲mm)、各透鏡的折射率、以及阿貝 數。軸上面間隔Μ、T之空欄,係表示和左邊W攔相同之 値。此處,各透鏡面的編號r i (i = 1,2,3,· · ·),係 如圖5所示,是從物體側起算的第i個透鏡面,ri後有標 示*的面係表示非球面(非球面形狀的折射光學面或具有 和非球面等價之折射作用的面)。此外,光學光圈(ST)及平 行平面板(PL)的兩面,還有攝像元件(SR)的受光面之各面 因爲係爲平面,所以這些面的曲率半徑係爲00。此種看 待,在後述的其他實施例中的光路圖(圖6〜圖9)也是同樣 如此,圖中符號的意思,基本上和圖5相同。只不過’並 非完全是同一者的意思,例如,如各圖所示’最靠近物體 側的透鏡面雖然都是被標示相同符號“ 1 )’但這並不意味 著它們的曲率等是跨越實施形態而爲同一。 光學面的非球面形狀,係使用以面頂點爲原點,從物 -33· 200807018 (31) 體往攝像元件方向設爲z軸的正方向的區域性的直角座標 系(X,y,z),定義如下記(8)式。 _ch^_ 1+SQRT(卜(1+涵 +Ah4 +Bh6 +Ch8 +Dh10 +Eh12 +Fh14 +Gh16 +Hh18+Jh20 · ••⑻As shown in Table 3, the number of each lens surface from the left, the radius of curvature of each lens surface (unit: mm), the wide-angle end (W), the intermediate point (M), and the telephoto end (T) are infinity. The interval between the lens faces on the optical axis in the in-focus state (the space above the axis) (in mm), the refractive index of each lens, and the Abbe number. The space above the axis and the empty space of T indicate the same as the left W block. Here, the number ri (i = 1, 2, 3, · · ·) of each lens surface is the i-th lens surface from the object side as shown in Fig. 5, and the surface number marked with * after ri It represents an aspherical surface (a refractive optical surface of an aspherical shape or a surface having an equivalent refractive effect to an aspherical surface). Further, on both sides of the optical aperture (ST) and the parallel plane plate (PL), and the respective faces of the light receiving surface of the image pickup element (SR) are flat, the radius of curvature of these faces is 00. In this way, the same is true for the optical path diagram (Figs. 6 to 9) in the other embodiments to be described later, and the meaning of the symbols in the drawings is basically the same as that of Fig. 5. It's just that 'not exactly the same thing. For example, as shown in the figures, the lens faces closest to the object side are all labeled with the same symbol "1"' but this does not mean that their curvature etc. are implemented across The aspherical shape of the optical surface is a rectangular coordinate system in which the surface vertex is the origin, and the direction from the object-33·200807018 (31) to the imaging element direction is the positive direction of the z-axis. X, y, z), defined as follows (8). _ch^_ 1+SQRT (Bu (1+ 涵+Ah4 +Bh6 +Ch8 +Dh10 +Eh12 +Fh14 +Gh16 +Hh18+Jh20 · ••(8)
其中,z:高度h之位置上,z軸方向的位移量(面頂 點基準) h :對z軸而言,垂直方向的高度(h2= x2+ y2) c :近軸曲率(=1 /曲率半徑) A,B,C,D,E,F,G,H,J:分別爲 4, 6,8,10,12,14,16,18,20次的非球面係數 k :圓錐係數 由上記(8)式可知,對表3所示的非球面透鏡的曲率半徑, 係呈現透鏡之面頂點附近的値。 以上之透鏡配置、構成爲基礎的實施例1中的攝像光 學系 10A 的無限遠合焦狀態下的球面像差 (LONGITUDINAL SPHERICAL ABERRATION)、非點像差 (ASTIGMATISM)、以及歪曲像差(DISTORTION),是從 圖10的左側起依序圖示。於該圖中,上段係表示廣角端 (W),中段係表示中間點(M)、下段係表示望遠端(T)的各 像差。又,球面像差和非點像差的橫軸係將焦點位置的偏 離以mm單位來表示,歪曲像差的橫軸係將歪量以對全體 -34- 200807018 (32) 的比率(%)來表示。雖然球面像差的縱軸,係以入射高而 規格化的値來表示,但非點像差和歪曲像差的縱軸係以像 的高度(像高、單位mm)來表示。Where z: the position of the height h, the displacement in the z-axis direction (surface vertex reference) h : the height in the vertical direction for the z-axis (h2 = x2+ y2) c : the paraxial curvature (=1 / radius of curvature A, B, C, D, E, F, G, H, J: 4, 6, 8, 10, 12, 14, 16, 18, 20 aspheric coefficients k: cone coefficient from above ( As can be seen from the equation 8), the radius of curvature of the aspherical lens shown in Table 3 is 値 near the apex of the face of the lens. The above-described lens arrangement and configuration of the imaging optical system 10A according to the first embodiment are spherical aberration (LONGITUDINAL SPHERICAL ABERRATION), astigmatism (ASTIGMATISM), and distortion (DISTORTION) in an infinity focus state. , is shown in order from the left side of FIG. In the figure, the upper section indicates the wide-angle end (W), the middle section indicates the intermediate point (M), and the lower section indicates the aberration of the telephoto end (T). Further, the horizontal axis of the spherical aberration and the astigmatism represents the deviation of the focus position in mm units, and the horizontal axis of the distortion aberration is the ratio of the total amount to the total -34-200807018 (32) (%) To represent. Although the vertical axis of the spherical aberration is represented by 値 which is normalized and incident, the vertical axis of astigmatism and distortion is expressed by the height (image height, unit mm) of the image.
再者球面像差的圖中,以一點鎖線來表示紅色(波長 656.27nm)、以實線來表示黃色(亦即 d 線;波長 5 8 7.5 6nm)、然後以虛線來表示藍色(波長43 5.8 3 nm),使 用波長互異之3種光實的像差。又,非點像差之圖中,虛 線(T)係將正切(經向)像面以從近軸像面起算的光軸(AX)方 向之偏移量(橫軸,單位mm)來表示;實線(S)係將徑向 (radial)像面以從近軸像面起算的光軸(AX)方向之偏移量 (橫軸,單位mm)來表示。再者,非點像差及歪曲像差的 圖,係爲使用上記黃線(d線)時的結果。 從此圖10可知,本實施例1的攝像光學系10A,係 無論在廣角端(W)、中間點(M)及望遠端(T)之何者,其球 面像差、非點像差及歪曲像差都受到充分抑制,呈現優良 的光學特性。又,該實施例1中的廣角端(W)、中間點(M) 及望遠端(T)時的焦距f(mm)及F値,分別示於後揭的表 13及表14。由這些表可知,本發明中,可實現明亮的光 學系。 〔實施例2〕 圖6係圖示了實施例2所述之攝像光學系10B的構 成,是將光軸(AX)縱剖之剖面圖。本實施例2的攝像光學 系1 0B,係在光路上從物體側起依序地,具有:由朝像側 -35- 200807018 (33) 凹下的負彎月形透鏡所成之第1透鏡(L1)、稜鏡(LP)、由 雙凸正透鏡所成之第2透鏡(L2)所構成且全體具有正光學 功率的第1透鏡群(Grl)、由雙凹負透鏡所成之第3透鏡 (L3)l片所構成的第2透鏡群(Gr2)、光圏(ST)、由朝物體 ^ 側凸出之正彎月形透鏡所成之第4透鏡(L4)l片所構成的 ♦ 第3透鏡群(Gr3)、由雙凸正透鏡所成之第5透鏡(L5)和雙 凹負透鏡所成之第6透鏡(L6)的接合透鏡所成且整體具有 正光學功率的第4透鏡群(Gr4)、及由雙凸正透鏡所成之 第7透鏡(L 7 ) 1片所構成的第5透鏡群(G r 5 )而被構成。然 後,在第5透鏡群(Gr 5)的像側,係隔著平行平面板(PL)而 配置有攝像元件(SR)。透鏡群的構成’係和之前的實施例 1實質上相同,從廣角端(W)往望遠端(T)變倍時的各透鏡 群的移動狀態(圖6中箭號m 1〜m 5所示)’也是和實施例 1相同。In the figure of spherical aberration, red (wavelength 656.27 nm) is indicated by a slight lock line, yellow (ie, d line; wavelength 5 8 7.5 6 nm) is indicated by a solid line, and then blue is indicated by a broken line (wavelength 43). 5.8 3 nm), using three kinds of photo-differences with different wavelengths. Further, in the astigmatism diagram, the broken line (T) indicates that the tangential (warp) image plane is shifted by the optical axis (AX) direction from the paraxial image plane (horizontal axis, unit mm). The solid line (S) expresses the radial image plane by the amount of shift (horizontal axis, unit: mm) in the optical axis (AX) direction from the paraxial image plane. Further, the graph of astigmatism and distortion is a result when the upper yellow line (d line) is used. As can be seen from FIG. 10, the imaging optical system 10A of the first embodiment is a spherical aberration, an astigmatism, and a distortion image regardless of the wide-angle end (W), the intermediate point (M), and the telephoto end (T). The difference is sufficiently suppressed to exhibit excellent optical characteristics. Further, the focal lengths f (mm) and F 时 at the wide-angle end (W), the intermediate point (M), and the telephoto end (T) in the first embodiment are shown in Tables 13 and 14 which will be disclosed later. As is apparent from these tables, in the present invention, a bright optical system can be realized. [Embodiment 2] Fig. 6 is a cross-sectional view showing the configuration of the imaging optical system 10B according to the second embodiment, which is a longitudinal section of the optical axis (AX). The imaging optical system 10B of the second embodiment has a first lens formed by a negative meniscus lens recessed toward the image side -35-200807018 (33) in order from the object side on the optical path. (L1), 稜鏡 (LP), a second lens group (L2) composed of a double convex positive lens and having a positive optical power, a first lens group (Grl), and a double concave negative lens 3 lens (L3) consisting of a second lens group (Gr2), a stop (ST), and a fourth lens (L4) formed by a positive meniscus lens protruding toward the object side. ♦ The third lens group (Gr3), the fifth lens (L5) formed by the double convex positive lens, and the cemented lens of the sixth lens (L6) formed by the double concave negative lens, and having positive optical power as a whole The fourth lens group (Gr4) and the fifth lens group (G r 5 ) composed of one piece of the seventh lens (L 7 ) formed by the double convex positive lens are configured. Then, on the image side of the fifth lens group (Gr 5), an imaging element (SR) is disposed via a parallel plane plate (PL). The configuration of the lens group is substantially the same as that of the first embodiment, and the movement state of each lens group when the width is changed from the wide-angle end (W) to the telephoto end (T) (arrows m 1 to m 5 in Fig. 6) Also shown is the same as in the first embodiment.
實施例2的攝像光學系1 〇B中,各透鏡的結構數據係 示於表5、表6。 -36- 200807018 (34) 〔表5〕 透鏡面 曲率半徑 軸上面間隔(mm) 折射率 阿貝數 (mm) W M T rl * CO 0.600 1.8070 25.95 r2 6.640 1.113 r3 OO 4.737 2.1400 24.00 γ4 oo 0.200 γ5 * 3.894 1.827 1.6299 58.10 r6 -15.515 0.31 1,94 2,58 γ7本 -10:429 0.600 1.5891 SI.24 r8 2.675 2.88 1.24 0.60 γ9 (光圈) <x> 0.000 ΠΟ 4. 570 0.600 2.1400 24,00 rll 7.456 3· 71 2.19 1.50 r12 * 3· 584 1.889 L 7433 43.84 r13 -4·321 Ο.δΟΟ 1.7847 19.47 r14 3.806 0.71 2· 28 5-63 rl5本 14.945 2.022 1.5305 55.72 rl6 * -4.919 3.31 2,66 0.60 rl7 oo 0.500 1.5187 64.00 r18 oo 0.500 r19(像面) oo -37- 200807018 (35) 〔表6〕 透鏡 面 圓錐係數 非球面孫數 A B C D Γ1 0 9J52E-04 -6.157E-05 2.185E-06 -3.587E-08 r5 0 -2.649E-03 -5.426E-05 -3.213E-06 -3. 207E-07 r7 0 5.71SE-03 -3.461E-04 -7.386E-05 1.507E-05 Π2 0 -3.342E-03 1.262E-04 -3.307E-05 1.581E-06 rl5 0 7.539E-04 1.700E-07 -1.16ΪΕ-05 4.981E-07 r16 0 3.134E-03 2.961E-05 -1.968E-05 8.892E-07 〔實施例3〕In the imaging optical system 1 〇B of the second embodiment, the structural data of each lens is shown in Tables 5 and 6. -36- 200807018 (34) [Table 5] Lens surface curvature radius Axis spacing (mm) Refractive index Abbe number (mm) WMT rl * CO 0.600 1.8070 25.95 r2 6.640 1.113 r3 OO 4.737 2.1400 24.00 γ4 oo 0.200 γ5 * 3.894 1.827 1.6299 58.10 r6 -15.515 0.31 1,94 2,58 γ7 Ben-10:429 0.600 1.5891 SI.24 r8 2.675 2.88 1.24 0.60 γ9 (aperture) <x> 0.000 ΠΟ 4. 570 0.600 2.1400 24,00 rll 7.456 3 · 71 2.19 1.50 r12 * 3· 584 1.889 L 7433 43.84 r13 -4·321 Ο.δΟΟ 1.7847 19.47 r14 3.806 0.71 2· 28 5-63 rl5 this 14.945 2.022 1.5305 55.72 rl6 * -4.919 3.31 2,66 0.60 rl7 oo 0.500 1.5187 64.00 r18 oo 0.500 r19 (image surface) oo -37- 200807018 (35) [Table 6] Lens surface conic coefficient aspherical number of grandchildren ABCD Γ1 0 9J52E-04 -6.157E-05 2.185E-06 -3.587E-08 R5 0 -2.649E-03 -5.426E-05 -3.213E-06 -3. 207E-07 r7 0 5.71SE-03 -3.461E-04 -7.386E-05 1.507E-05 Π2 0 -3.342E-03 1.262E-04 -3.307E-05 1.581E-06 rl5 0 7.539E-04 1.700E-07 -1.16ΪΕ-05 4.981E-07 r16 0 3.13 4E-03 2.961E-05 -1.968E-05 8.892E-07 [Embodiment 3]
圖7係圖示了實施例3所述之攝像光學系10C的構 成,是將光軸(AX)縱剖之剖面圖。本實施例3的攝像光學 系1 0 C,係在光路上從物體側起依序地’具有:由朝像側 凹下的負彎月形透鏡所成之第1透鏡(L1)、稜鏡(LP)、由 雙凸正透鏡所成之第2透鏡(L2)所構成且全體具有正光學 功率的第1透鏡群(Grl)、由雙凹負透鏡所成之第3透鏡 (L3 ) 1片所構成的第2透鏡群(Gr2)、光圏(ST)、由朝物體 側凸出之正彎月形透鏡所成之第4透鏡(L4)1片所構成的 第3透鏡群(Gr3)、由雙凸正透鏡所成之第5透鏡(L5)和雙 凹負透鏡所成之第6透鏡(L6)的接合透鏡所成且整體具有 正光學功率的第4透鏡群(Gr4)、及由雙凸正透鏡所成之 第7透鏡(L7)l片所構成的第5透鏡群(Gr5)而被構成。然 後,在第5透鏡群(Gr5)的像側,係隔著平行平面板(PL)而 配置有攝像元件(SR)。透鏡群的構成,係和之前的實施例 1實質上相同,從廣角端(W)往望遠端(T)變倍時的各透鏡 群的移動狀態'(圖7中箭號m 1〜m 5所示),也是和實施例 1相同 -38- (36) 200807018 實施例3的攝像光學系10C中,各透鏡的結構數據係 示於表7、表8。 〔表7〕Fig. 7 is a cross-sectional view showing the configuration of the imaging optical system 10C according to the third embodiment, which is a longitudinal section of the optical axis (AX). The imaging optical system 10 C of the third embodiment sequentially has a first lens (L1) and a cymbal formed by a negative meniscus lens recessed toward the image side from the object side on the optical path. (LP), a first lens group (Grl) composed of a second lens (L2) made of a biconvex positive lens and having positive optical power as a whole, and a third lens (L3) formed by a double concave negative lens 1 A third lens group (Gr2) composed of a sheet, a stop (ST), and a third lens group (Gr3) composed of a fourth lens (L4) formed by a positive meniscus lens protruding toward the object side (Gr3) a fourth lens group (Gr4) formed of a fifth lens (L5) formed by a double convex positive lens and a sixth lens (L6) formed by a double concave negative lens and having a positive optical power as a whole, And a fifth lens group (Gr5) composed of a seventh lens (L7) formed of a double convex positive lens. Then, on the image side of the fifth lens group (Gr5), an imaging element (SR) is disposed via a parallel plane plate (PL). The configuration of the lens group is substantially the same as that of the first embodiment, and the movement state of each lens group when the magnification is changed from the wide-angle end (W) to the telephoto end (T) (arrows m 1 to m 5 in Fig. 7) In the imaging optical system 10C of the third embodiment, the structural data of each lens is shown in Tables 7 and 8. [Table 7]
透鏡面 曲率半徑 軸上面間隔(mm) 折射率 阿貝數 (mm) W M T rl ♦ OO 0.600 1.8467 23.82 r2 6.996 1.267 γ3 OO 5.271 1.9229 16.83 γ4 OO 0.200 r5 * 6.217 1.804 1.7583 50.91 r6 -19.687 0.32 3.26 4.12 γ7* -11.559 0-600 1.4875 70.44 γ8 3.268 4· 40 ]·46 0.60 r9 (光圈) OO 0.000 r10 4,612 0.600 1.8467 23.82 γΙΙ 8,772 3· 62 1,81 1.20 γ12* 3.315 1.661 1.7554 51·42 Π3 -6.152 0.600 1.8241 24.09 Γ14 3· 147 0.82 3.24 5· 27 r15 * 8.357 2.109 1.5305 55.72 γ!6* -5.994 2.63 2.01 0,60 γ17 OO 0.500 1.5187 64. 00 Π8 OO 0. 500 Π9(像面) OO -39- (37) 200807018 〔表8〕 透鏡 面 圓錐係數 非球面係數 A Β C D rl 0 2.694E-04 -1.673Ε-05 6·003Ε-07 -9, 349Ε-09 r5 0 -S.982E-04 -1.6Ι6Ε-06 -4.825Ε-07 5.267Ε-09 r7 0 3·624Ε - 03 -3.716Ε-04 3.395Ε-05 -1.452Ε-06 Π2 0 -2-956Ε-03 5· 778Ε-05 -2.499Ε-05 Κ138Ε-07 Π5 0 -2·2 卯 Ε- 04 2.481Ε-04 - 3·292Ε-05 1.841Ε-06 Π6 0 2.700Ε-03 2.879Ε-04 -5.662Ε-05 3.182Ε-06Lens surface curvature radius Axis spacing (mm) Refractive index Abbe number (mm) WMT rl ♦ OO 0.600 1.8467 23.82 r2 6.996 1.267 γ3 OO 5.271 1.9229 16.83 γ4 OO 0.200 r5 * 6.217 1.804 1.7583 50.91 r6 -19.687 0.32 3.26 4.12 γ7* -11.559 0-600 1.4875 70.44 γ8 3.268 4· 40 ]·46 0.60 r9 (aperture) OO 0.000 r10 4,612 0.600 1.8467 23.82 γΙΙ 8,772 3· 62 1,81 1.20 γ12* 3.315 1.661 1.7554 51·42 Π3 -6.152 0.600 1.8241 24.09 Γ 3 3 3 3 3 3 3 3 3 3 3 3 3 200807018 [Table 8] Lens surface conic coefficient aspheric coefficient A Β CD rl 0 2.694E-04 -1.673Ε-05 6·003Ε-07 -9, 349Ε-09 r5 0 -S.982E-04 -1.6Ι6Ε-06 -4.825Ε-07 5.267Ε-09 r7 0 3·624Ε - 03 -3.716Ε-04 3.395Ε-05 -1.452Ε-06 Π2 0 -2-956Ε-03 5· 778Ε-05 -2.499Ε-05 Κ138Ε- 07 Π5 0 -2·2 卯Ε- 04 2.481Ε-04 - 3·292Ε-05 1.841Ε-06 Π6 0 2.700 Ε-03 2.879Ε-04 -5.662Ε-05 3.182Ε-06
〔實施例4〕 圖8係圖示了實施例4所述之攝像光學系10D的構 成,是將光軸(AX)縱剖之剖面圖。本實施例· 4的攝像光學 系1 0D,係在光路上從物體側起依序地,具有:由朝像側 凹下的負彎月形透鏡所成之第1透鏡(L1)、稜鏡(LP)、由 雙凸正透鏡所成之第2透鏡(L2)所構成且全體具有正光學 功率的第1透鏡群(Grl)、由雙凹負透鏡所成之第3透鏡 (L3)l片所構成的第2透鏡群(Gr2)、光圈(ST)、由朝物體 側凸出之正彎月形透鏡所成之第4透鏡(L4)1片所構成的 第3透鏡群(Gr3)、由雙凸正透鏡所成之第5透鏡(L5)和雙 凹負透鏡所成之第6透鏡(L6)的接合透鏡所成且整體具有 正光學功率的第4透鏡群(Gr4)、及由雙凸正透鏡所成之 第7透鏡(L7)l片所構成的第5透鏡群(Gr5)而被構成。然 後,在第5透鏡群(Gr5)的像側’係隔著平行平面板(PL)而 配置有攝像元件(sR)。透鏡群的構成’係和之卽的實施例 1實質上相同,從廣角端(W)往望遠端(T)變倍時的各透鏡 群的移動狀態(圖8中箭號ml〜m5所示)’也是和貫施例 -40- 200807018 (38) 1相同。 實施例4的攝像光學系1 0D中,各透鏡的結構數據係 示於表9、表1 0。[Embodiment 4] Fig. 8 is a cross-sectional view showing the configuration of the imaging optical system 10D according to the fourth embodiment, which is a longitudinal section of the optical axis (AX). The imaging optical system 10D of the fourth embodiment has a first lens (L1) and a cymbal formed by a negative meniscus lens recessed toward the image side in order from the object side on the optical path. (LP), a first lens group (Grl) composed of a second lens (L2) made of a biconvex positive lens and having positive optical power as a whole, and a third lens (L3) 1 made of a double concave negative lens The third lens group (Gr2) composed of a sheet, the aperture (ST), and the third lens group (Gr3) formed of one sheet of the fourth lens (L4) formed by the positive meniscus lens protruding toward the object side a fourth lens group (Gr4) formed of a fifth lens (L5) formed by a double convex positive lens and a sixth lens (L6) formed by a double concave negative lens, and having a positive optical power as a whole, and The fifth lens group (Gr5) composed of a seventh lens (L7) formed of a double convex positive lens is configured. Then, an image sensor (sR) is disposed on the image side of the fifth lens group (Gr5) via a parallel plane plate (PL). The configuration of the lens group is substantially the same as that of the first embodiment, and the movement state of each lens group when the width is changed from the wide-angle end (W) to the telephoto end (T) (the arrows ml to m5 in Fig. 8 are shown). ) ' is also the same as the example-40-200807018 (38) 1. In the imaging optical system 10D of the fourth embodiment, the structural data of each lens is shown in Table 9 and Table 10.
-41 - 200807018 (39) 〔表9〕 透鏡面 曲率半徑 軸上面間隔(mm) 折射率 阿貝數 (mm) W M T rl * oo 0.600 1.84666 23.82 r2 5.926 .备 r3 oo 1.305 4.829 1.9229 16.83 γ4 oo 0. 200 r5丰 4.340 1.572 1.7572 51.11 • r6 -26.516 0.30 2.10 2.95 rT * -21.293 0.600 1.7492 51.75 r& 2.840 2.95 1,15 0.30 r9(光圈) oo 0.000 rlO 5· 133 0.400 1.8467 23.82 rll 14·103 6.06 3.36 1·50 rI2* 4.676 2.358 1.7S45 51.57 • rV3 -5.726 0· 600 1.8467 23.82 r14 fi.936 0.70 3· 58 8.39 r!5 * 13.754 1.843 1.5305 55.72 r16* 一6.192 3.97 3.79 0.84 r17 00 0.500 1.5187 64. GO r18 oo 0.517 rl9(像面) oo -42- 200807018 (40) 〔表 10〕 透鏡 面 非球面係數 圓錐係數 A B C D Π 0 1.192E-03 _6,217E-05 2.250Ε-06 - 3.34SE-08 r5 0 -1.873E-03 -2.668E-05 -2.410Ε-06 -3· 75 旺-08 r7 0 3.567E-03 Η·381Ε-04 -M30E-05 1.593E-05 Π2 0 -1.590E-03 5.122Ε-05 -7. 212卜0S 2.215E-07 Π5 0 -9,臟-04 -4J47E - 05 -2. 054E-06 -5.764E-07 r16 0 1.127E-03 -8.472Ε-07 -9.863E-06 -6.386E-08 〔實施例5〕-41 - 200807018 (39) [Table 9] Lens surface curvature radius Axis spacing (mm) Refractive index Abbe number (mm) WMT rl * oo 0.600 1.84666 23.82 r2 5.926 . Prepare r3 oo 1.305 4.829 1.9229 16.83 γ4 oo 0. 200 r5丰4.340 1.572 1.7572 51.11 • r6 -26.516 0.30 2.10 2.95 rT * -21.293 0.600 1.7492 51.75 r& 2.840 2.95 1,15 0.30 r9 (aperture) oo 0.000 rlO 5· 133 0.400 1.8467 23.82 rll 14·103 6.06 3.36 1· 50 rI2* 4.676 2.358 1.7S45 51.57 • rV3 -5.726 0· 600 1.8467 23.82 r14 fi.936 0.70 3· 58 8.39 r!5 * 13.754 1.843 1.5305 55.72 r16* A 6.192 3.97 3.79 0.84 r17 00 0.500 1.5187 64. GO r18 oo 0.517 rl9 (image surface) oo -42- 200807018 (40) [Table 10] Lens surface aspheric coefficient conic coefficient ABCD Π 0 1.192E-03 _6,217E-05 2.250Ε-06 - 3.34SE-08 r5 0 -1.873 E-03 -2.668E-05 -2.410Ε-06 -3· 75 旺-08 r7 0 3.567E-03 Η·381Ε-04 -M30E-05 1.593E-05 Π2 0 -1.590E-03 5.122Ε-05 -7. 212卜0S 2.215E-07 Π5 0 - 9, dirty -04 -4J47E - 05 -2. 054E-06 -5.764E-07 r16 0 1.127E-03 -8.472Ε-07 -9.863E-06 -6.386E-08 [Example 5]
圖9係圖示了實施例5所述之攝像光學系10E的構 成,是將光軸(AX)縱剖之剖面圖。本實施例4的攝像光學 系1 0 E,係在光路上從物體側起依序地,具有:由朝像側 凹下的負彎月形透鏡所成之第1透鏡(L1)、稜鏡(LP)、由 雙凸正透鏡所成之第2透鏡(L2)所構成且全體具有正光學 功率的第1透鏡群(Grl)、由雙凹負透鏡所成之第3透鏡 (L3)l片所構成的第2透鏡群(Gr2)、光圏(ST)、由朝物體 側凸出之正彎月形透鏡所成之第4透鏡(L4)1片所構成的 第3透鏡群(Gr3)、由雙凸正透鏡所成之第5透鏡(L5)和雙 凹負透鏡所成之第6透鏡(L6)的接合透鏡所成且整體具有 正光學功率的第4透鏡群(Gr4)、及由雙凸正透鏡所成之 第7透鏡(L7)l片所構成的第5透鏡群(Gr5)而被構成。然 後,在第5透鏡群(Gr5)的像側,係隔著平行平面板(PL)而 配置有攝像元件(SR)。透鏡群的構成,係和之前的實施例 i實質上相同,從廣角端(W)往望遠端(T)變倍時的各透鏡 群的移動狀態(圖9中箭號ηι 1〜m 5所示),也是和實施例 1相同。 -43- 200807018 (41) 實施例5的攝像光學系1 0E中,各透鏡的結構數據係 示於表1 1、表12。 〔表 11〕 透鏡面 曲率半徑 軸上面間隔(mm) 折射率 阿貝數 (mm) W M T r1 * oo * η 7.222 0.600 1,8467 23.82 L368 r3 CO 5.634 1.9229 16.83 r4 oo 0.200 • r5本 7.772 1.891 1.7859 46· 78 r6 -19.736 0.30 3· 51 5.10 r7 * -15.464 0.600 1.4875 70.44 r8 3.845 5· 40 2.19 0.60 r9(光圈) oo 0.000 rlO 4.595 0.600 1.9229 16.83 rll 7· 995 2.66 0.30 • r!2* 3.652 1.650 K7765 48.08 - Π3 -2.884 0.600 1.7560 25.13 r14 2· 883 1.47 3· 15 5,35 r15本 8.661 2.007 1.5305 55,72 r16 * -6.134 2.12 1.90 0.60 r17 oo 0.500 1.5187 64.00 r18 oo 0,517 rl9(像面) oo -44 - 200807018 (42) 〔表 12〕 透鏡 面 圓錐係數 非球面係數 A B C D Π 0 1. 602E-05 -7.964E-06 2.6.83E-07 -2.S77E-09 r5 0 -3.142E-04 -4.955E-07 -1.581E-07 1.108E-09 r7 0 2.303E-03 -L 990E - 04 1.879E-05 -9. 596E - 07 Π2 0 -3.270E-03 2·279E-04 -9.133E-05 8.26TE-06 r!5 0 -U005E-03 2.945E-04 -2.807E-05 1.456E-06 r16 0 2.437E-03 1.495E-04 -2.900E-05 L 829E-06Fig. 9 is a cross-sectional view showing the configuration of the imaging optical system 10E according to the fifth embodiment, which is a longitudinal section of the optical axis (AX). The imaging optical system 10 E of the fourth embodiment has a first lens (L1) and a cymbal formed by a negative meniscus lens recessed toward the image side in order from the object side on the optical path. (LP), a first lens group (Grl) composed of a second lens (L2) made of a biconvex positive lens and having positive optical power as a whole, and a third lens (L3) 1 made of a double concave negative lens A third lens group (Gr2) composed of a sheet, a stop (ST), and a third lens group (Gr3) composed of a fourth lens (L4) formed by a positive meniscus lens protruding toward the object side (Gr3) a fourth lens group (Gr4) formed of a fifth lens (L5) formed by a double convex positive lens and a sixth lens (L6) formed by a double concave negative lens and having a positive optical power as a whole, And a fifth lens group (Gr5) composed of a seventh lens (L7) formed of a double convex positive lens. Then, on the image side of the fifth lens group (Gr5), an imaging element (SR) is disposed via a parallel plane plate (PL). The configuration of the lens group is substantially the same as that of the previous embodiment i, and the movement state of each lens group when zooming from the wide-angle end (W) to the telephoto end (T) (arrows ηι 1 to m 5 in Fig. 9) Also shown is the same as in the first embodiment. -43-200807018 (41) In the imaging optical system 10E of the fifth embodiment, the structural data of each lens is shown in Tables 1 and 12. [Table 11] Lens surface curvature radius Axis spacing (mm) Refractive index Abbe number (mm) WMT r1 * oo * η 7.222 0.600 1,8467 23.82 L368 r3 CO 5.634 1.9229 16.83 r4 oo 0.200 • r5 this 7.772 1.891 1.7859 46 · 78 r6 -19.736 0.30 3· 51 5.10 r7 * -15.464 0.600 1.4875 70.44 r8 3.845 5· 40 2.19 0.60 r9 (aperture) oo 0.000 rlO 4.595 0.600 1.9229 16.83 rll 7· 995 2.66 0.30 • r!2* 3.652 1.650 K7765 48.08 - Π3 -2.884 0.600 1.7560 25.13 r14 2· 883 1.47 3· 15 5,35 r15 this 8.661 2.007 1.5305 55,72 r16 * -6.134 2.12 1.90 0.60 r17 oo 0.500 1.5187 64.00 r18 oo 0,517 rl9 (image surface) oo -44 - 200807018 (42) [Table 12] Lens surface aspheric coefficient aspheric coefficient ABCD Π 0 1. 602E-05 -7.964E-06 2.6.83E-07 -2.S77E-09 r5 0 -3.142E-04 -4.955E- 07 -1.581E-07 1.108E-09 r7 0 2.303E-03 -L 990E - 04 1.879E-05 -9. 596E - 07 Π2 0 -3.270E-03 2·279E-04 -9.133E-05 8.26TE -06 r!5 0 -U005E-03 2.945E-04 -2.807E-05 1.456E-06 r 16 0 2.437E-03 1.495E-04 -2.900E-05 L 829E-06
以上之透鏡配置、構成爲基礎的本實施例2〜5的攝 像光學系1 0B〜1 0E的球面像差、非點像差及歪曲像差’ 是從圖1 1〜圖1 4的左側起依序圖示。這些攝像光學系 10B〜10E也是,無論在廣角端(W)、中間點(M)及望遠端 (T)之何者,其球面像差、非點像差及歪曲像差都受到充 分抑制,呈現優良的光學特性。 又,關於該實施例2〜5的曲折光學系10B〜10E的廣 角端(W)、中間點(M)及望遠端(T)時的焦距(單位mm)及F 値,分別示於表1 3及表1 4。由這些表可知’和實施例1 同樣地,可實現明亮的光學系。 〔表 13〕 焦距f (mm) W Μ Τ 實施例1 4. 30 7‘ 70 11. 83 實施例2 4. 30 7. 74 11· 83 實施例3 3. 80 7. 60 10.64 實施例4 3. 60 7. 20 13. 50 實施例5 3. 60 6. 48 9. 90 -45- 200807018 % (43) 〔表 14〕 確 W Μ Τ 實麵!11 4. 00 4. 54 5. 83 實施例2 4. 00 4. 47 5. 62 實施例3 4. 00 4. 47 5. 25 實施例4 4, 00 4, 66 6, 66 爱酬5 4, 00 4. 34 5. 08The spherical aberration, astigmatism, and distortion aberration of the imaging optical systems 10B to 10E of the second to fifth embodiments based on the above-described lens arrangement and configuration are from the left side of FIGS. 11 to 14. In order. These imaging optical systems 10B to 10E are also substantially suppressed in terms of spherical aberration, astigmatism, and distortion at any of the wide-angle end (W), the intermediate point (M), and the telephoto end (T). Excellent optical properties. Further, the focal lengths (units mm) and F 时 at the wide-angle end (W), the intermediate point (M), and the telephoto end (T) of the zigzag optical systems 10B to 10E of the second to fifth embodiments are shown in Table 1, respectively. 3 and Table 1 4. As is apparent from these tables, a bright optical system can be realized in the same manner as in the first embodiment. [Table 13] Focal length f (mm) W Μ 实施 Example 1 4. 30 7' 70 11. 83 Example 2 4. 30 7. 74 11· 83 Example 3 3. 80 7. 60 10.64 Example 4 3 60 7. 20 13. 50 Example 5 3. 60 6. 48 9. 90 -45- 200807018 % (43) [Table 14] Confirm W Μ 实 Real! 11 4. 00 4. 54 5. 83 Example 2 4. 00 4. 47 5. 62 Example 3 4. 00 4. 47 5. 25 Example 4 4, 00 4, 66 6, 66 Love 5 4 , 00 4. 34 5. 08
再者,上記條件式(1)〜(6),套用在實施例2〜5所述 之攝像光學系10B〜10E時的各個數値,示於表15。In addition, the conditional expressions (1) to (6) above are shown in Table 15 when the imaging optical systems 10B to 10E described in the second to fifth embodiments are applied.
〔表 15〕 實施例1 實施例2 實施例3 實施柄4 實施例5 條件式(1) 34. 87 31, 64 20. 26 41. 46 m ίο 條件式⑵ 0. 74 0. 72 0. 61 0. 53 0. 52 條件式⑶ 1. 61 1. 58 1· 49 1·75 1. 59 條件式⑷ 57. 79 61· 24 70. 44 51. 70 59. 70 條件式(5) 1. 92 2. 14 1. 92 1. 92 1. 92 條件式⑹ 1. 85 2. 14 1. 85 1. 85 1. 92 變倍倍率 2. 75 2. 75 2. 80 3. 75 2. 75 然後,關於條件式(2),將上記實施例1〜5,和前揭 的專利文獻1〜3中所記載的實施例比較的結果,示於表 1 6。表1 6中,望遠比係定義爲〔全長〕/〔廣角端的焦距 〕。該望遠比越小,就可說是越精巧的攝像光學系。專利 文獻1〜3的攝像光學系,皆超出條件式(2)的範圍外,可 知望遠比都較大。亦即,不能滿足條件式(2)者,該光學系 就較大型。 -46- 200807018 (44) 〔表 16〕 條件式/適切範 圍=0.45 〜0.9 望遠比 實施例1 0. 74 6· 3 實施例2 0· 72 6. 1 實施例3 0· 61 7.2 實施例4 0. 53 8· 1 實施例5 0. 52 r 7· 8 蓴利文獻1的實施例3 0, 40 10. 1 專利文獻2的實施例1 0. 26 13. 8 Γ專利文獻2的實施例6 0· 19 16. 1 專利文獻2的實施例7 0. 14 19. 9 專利文獻2的實施例8 0. 13 21, 2 文獻3的實施例4 0· 40 9. 8[Table 15] Example 1 Example 2 Example 3 Implementation of handle 4 Example 5 Conditional formula (1) 34. 87 31, 64 20. 26 41. 46 m ίο Conditional formula (2) 0. 74 0. 72 0. 61 0. 53 0. 52 Conditional formula (3) 1. 61 1. 58 1· 49 1·75 1. 59 Conditional formula (4) 57. 79 61· 24 70. 44 51. 70 59. 70 Conditional formula (5) 1. 92 2. 14 1. 92 1. 92 1. 92 Conditional formula (6) 1. 85 2. 14 1. 85 1. 85 1. 92 Zoom ratio 2. 75 2. 75 2. 80 3. 75 2. 75 Then, With respect to the conditional expression (2), the results of the above-described Examples 1 to 5 and the examples described in the above-mentioned Patent Documents 1 to 3 are shown in Table 16. In Table 1, the telephoto ratio is defined as [full length] / [focal length at the wide-angle end]. The smaller the telescope ratio, the more elaborate the camera optics. The imaging optical systems of Patent Documents 1 to 3 are outside the range of the conditional expression (2), and it is known that the telephoto ratio is large. That is, if the conditional expression (2) cannot be satisfied, the optical system is larger. -46- 200807018 (44) [Table 16] Conditional Formula/Approximate Range = 0.45 to 0.9 Telemetry Ratio Example 1 0. 74 6· 3 Example 2 0·72 6. 1 Example 3 0·61 7.2 Example 4 0. 53 8· 1 Example 5 0. 52 r 7· 8 Example 3 of Patent Document 1 0, 40 10. 1 Example 1 of Patent Document 2 0. 26 13. 8 实施 Example of Patent Document 2 6 0· 19 16. 1 Example 7 of Patent Document 2 0. 14 19. 9 Example 8 of Patent Document 2 0. 13 21, 2 Example 4 of Document 3 0·40 9. 8
如以上所說明,上記實施例1〜5的攝像光學系i〇A 〜1 0E,係在從物體側起依序爲「正負正正正」之5群變 倍構成中’滿足上記條件式(1)〜(6 ),因此除了全長更爲 精巧,而且還是具有優秀光學性能。 此外,上述具體實施形態中係主要含有具有以下構成 之發明。 本發明之一局面所述之攝像光學系,係屬於由複數透 鏡群所成且藉由改變透鏡群間隔就可進行變倍的攝像光學 系,其特徵爲,從物體側起依序具備:第1透鏡群,其係 具有正光學功率,在變倍時爲固定,且含有將光軸曲折成 略直角的反射部件;和第2透鏡群’其係具有負光學功 率,可在光軸方向上移動;和第3透鏡群’其係具有正先 學功率;和第4透鏡群,其係具有正光學功率’可在光軸 方向上移動;和第5透鏡群,其係具有正光學功率’可在 -47- 200807018 (45) 光軸方向上移動;係滿足下記條件式(1)、(2)。 15< (TL*ft)/( | dl2t-dl2w | *fw)< 45 · · · (1) 〇.45< (β 5t*fw)/(/3 5w*ft)< 0.9 ---(2)As described above, the imaging optical systems i〇A to 1E of the above-described first to fifth embodiments are in the five-group variable magnification configuration in which the positive and negative positive and positive are sequentially from the object side. 1) ~ (6), so in addition to the full length is more compact, but also has excellent optical performance. Further, in the above specific embodiment, the invention mainly comprises the following constitution. An imaging optical system according to one aspect of the present invention is an imaging optical system which is formed by a plurality of lens groups and which can be multiplied by changing a lens group interval, and is characterized in that: a lens group having positive optical power, fixed at magnification, and including a reflecting member that bends an optical axis into a slightly right angle; and a second lens group having negative optical power in the optical axis direction Moving; and the third lens group 'having positive power; and the fourth lens group having positive optical power 'movable in the optical axis direction; and the fifth lens group having positive optical power' It can be moved in the direction of -47-200807018 (45) optical axis; it satisfies the following conditional formulas (1) and (2). 15< (TL*ft)/( | dl2t-dl2w | *fw)< 45 · · · (1) 〇.45< (β 5t*fw)/(/3 5w*ft)< 0.9 --- (2)
其中’ fw:廣角端的攝像光學系整體之焦距 ft :望遠端的攝像光學系整體之焦距 dl2w :廣角端的從第1透鏡群內之透鏡的最 爲像面側之面起算,至第2透鏡群內之透鏡的最爲物體側 之面爲止的在光軸上之距離 dl2t :望遠端的從第1透鏡群內之透鏡的最 爲像面側之面起算,至第2透鏡群內之透鏡的最爲物體側 之面爲止的在光軸上之距離 TL :攝像光學系的最爲物體側之面起算至像 面爲止的,在光軸上之距離 yS5w:被攝體距離爲無限遠時的廣角端的第 5透鏡群之成像倍率 /3 5t:被攝體距離爲無限遠時的望遠端的第 5透鏡群之成像倍率 若依據此構成,則作爲變倍透鏡系的攝像光學系,是 由從物體側起依序爲「正負正正正」的5個透鏡群所構 成。雖然後面會詳述,但「正負正正正」5群構成的變倍 透鏡系,相較於「正負正正」之4群形式’即使在爲了謀 求全長的精巧化而加大各透鏡群的功率時’變倍所帶來之 像差變動仍可被良好地抑制。因此’在使攝像光學系全長 小型化上是有利的。 -48 - 200807018 (46) 又,藉由滿足條件式(1)及條件式(2),就可使構成變 倍透鏡系的各透鏡群的變倍比負擔維持適切的値’可跨越 變倍領域全域維持良好的性能,同時達成小型化。Wherein 'fw: the focal length of the entire imaging optical system at the wide-angle end ft: the focal length dl2w of the entire imaging optical system at the telephoto end: the wide-angle end from the most image-facing side of the lens in the first lens group, to the second lens group The distance dl2t on the optical axis from the most object side surface of the lens: from the most image side surface of the lens in the first lens group at the telephoto end, to the lens in the second lens group The distance TL on the optical axis from the surface on the object side: the distance from the most object side of the imaging optical system to the image plane, the distance yS5w on the optical axis: the wide-angle end when the subject distance is infinity Imaging magnification of the fifth lens group / 3 5t: The imaging magnification of the fifth lens group at the telephoto end when the subject distance is infinity is based on this configuration, and the imaging optical system as the variator lens system is from the object side. It consists of five lens groups that are "positive and positive". As will be described in detail later, the "magnification of positive and negative" five-group variator lens system is larger than the four-group form of "positive and negative", even in order to improve the overall length of the lens group. The aberration variation caused by the 'variation of power' can still be well suppressed. Therefore, it is advantageous in miniaturizing the entire length of the imaging optical system. -48 - 200807018 (46) By satisfying conditional expression (1) and conditional expression (2), it is possible to maintain a variable magnification ratio of each lens group constituting the variator lens system. The entire domain maintains good performance while achieving miniaturization.
條件式(1)係爲,在透鏡位置狀態從廣角端狀態變化成 望遠端狀態時,規定第2透鏡群之移動距離’藉由滿足該 當條件式(1 ),就可良好地補正第2透鏡群的像差變動。若 超過條件式(1)的上限,則第2透鏡群的移動距離太小’第 2透鏡群的變倍負擔變少的傾向會變爲顯著。於「正負正 正正」之5群變倍構成中,由於第2透鏡群是唯一的負透 鏡群,因此第2透鏡群的移動距離較小時,其他透鏡群的 變倍負擔會變大。因此屬於移動透鏡群的第4透鏡群、第 5透鏡群的移動距離會增大,要使全長精巧化是困難的° 另一方面,若低於條件式(1)的下限,則由於第2透鏡群的 移動距離會變大,因此攝像光學系1 0的全長變大之傾向 會變爲顯著。甚至,變倍所帶來之像差變動會變大’要藉 其他透鏡群的透鏡來補正像差變動的困難性會增大。因此 想要跨越整個變倍領域都獲得良好光學性能,係爲困難° 條件式(2),係在條件式(1)所規定的範圍內,爲了使 其能橫跨整個變倍領域皆具備良好光學性能而加以規定@ 條件。目前爲止所提出的「正負正正正」之5群變倍構成 中,第4透鏡群和第5透鏡群所分擔的變倍量比率係未被 最佳化。因此,在謀求全長的精巧化而加大各透鏡群的功 率之際,在第4透鏡群上的像差變動會增大,無法充分進 行補正,造成全長的精巧化無法達成所預期之目的之問 -49- 200807018 (47) 題。In the conditional expression (1), when the lens position state is changed from the wide-angle end state to the telephoto end state, the second lens group can be satisfactorily corrected by satisfying the conditional expression (1) by satisfying the conditional expression (1). The aberration of the group changes. When the upper limit of the conditional expression (1) is exceeded, the moving distance of the second lens group is too small, and the tendency to reduce the magnification of the second lens group becomes remarkable. In the five-group zoom configuration of "positive and negative positive", since the second lens group is the only negative lens group, when the moving distance of the second lens group is small, the magnification load of the other lens groups is increased. Therefore, the moving distance between the fourth lens group and the fifth lens group belonging to the moving lens group is increased, and it is difficult to make the full length fine. On the other hand, if the lower limit of the conditional expression (1) is exceeded, the second Since the moving distance of the lens group is increased, the tendency of the total length of the imaging optical system 10 to become large becomes remarkable. In addition, the variation of the aberration caused by the magnification change becomes large. The difficulty in correcting the aberration variation by the lens of the other lens group increases. Therefore, it is difficult to obtain good optical performance across the entire zooming field. Conditional formula (2) is within the range specified by conditional formula (1), so that it can be well spanned across the entire zooming field. The optical condition is specified by @condition. In the five-group variable magnification configuration of "positive and negative positive" proposed so far, the ratio of the magnification ratio shared by the fourth lens group and the fifth lens group is not optimized. Therefore, when the power of each lens group is increased and the power of each lens group is increased, the aberration variation on the fourth lens group is increased, and the correction cannot be sufficiently performed, so that the full length is not refined and the intended purpose cannot be achieved. Question -49- 200807018 (47) Question.
於是,本發明中,係在「正負正正正」之5群變倍構 成中,積極地增加第5透鏡群所負擔的變倍量,藉此以抑 制在全長小型化時所產生的第4透鏡群之像差變動的增 大,使得變倍時的像差變動能夠良好補正,而且還能同時 達成全長小型化和高光學性能。若超過條件式(2)的上限, 則第5透鏡群負擔的變倍量變大,因此第5透鏡群上的像 差變動變大的傾向會變爲顯著。又,在變倍時,軸外光束 對像面的入射角變化會加大,周邊光的減少會顯著化。另 一方面,若低於條件式(2)的下限,則第5透鏡群負擔的變 倍量會變小,因此要充分補正第4透鏡群的變倍時之像差 變動會有困難。 站在攝像光學系1 〇的更加精巧化的觀點來看,關於 上記條件式(1)的關係,是以滿足下記(1)’的條件式爲較 佳。 20< (TL*ft)/( | dl2t-dl2w | *fw)< 40 · · ·⑴, 尤其是,滿足下記(1)”之條件式則更爲理想。 25< (TL*ft)/( 1 dl2t-dl2w | *fw)< 40 · · ·⑴” 同樣地,站在攝像光學系的更加精巧化的觀點來看, 關於上記條件式(2)的關係,是以滿足下記(2)’的條件式爲 較佳。 0.5< (/3 5t*fw)/(yS 5w*ft)< 0.8 · · · (2)’ 尤其是,滿足下記(2)”之條件式則更爲理想。 0.6< (β 5t*fw)/(/3 5w*ft)< 0.75 · · · (2)” -50- 200807018 (48) 於上記構成中,前記第2透鏡群是由1片負^ 1¾所 成,前記負透鏡係至少具有1面非球面,且滿足下記條件 式(3)、(4)爲較佳。 1.45 < Nd2 < 1.8 · · ·(” 4 5< v 2 < 15 · · · (4) 其中,N d 2 :上記負透鏡的在d線上的折射率 v 2:上記負透鏡的阿貝數In the present invention, the variable magnification of the fifth lens group is actively increased in the five-group variable magnification configuration of "positive and negative positive", thereby suppressing the fourth generation of the entire length of the miniaturization. The increase in the aberration variation of the lens group makes it possible to correct the aberration variation at the time of magnification change, and at the same time, it is possible to simultaneously achieve full-length miniaturization and high optical performance. When the upper limit of the conditional expression (2) is exceeded, the amount of magnification of the fifth lens group is increased. Therefore, the tendency of the aberration variation on the fifth lens group to become large becomes remarkable. Further, at the time of zooming, the incident angle of the off-axis beam to the image plane changes, and the reduction of the peripheral light is remarkable. On the other hand, when the lower limit of the conditional expression (2) is exceeded, the amount of magnification of the fifth lens group is reduced. Therefore, it is difficult to sufficiently correct the variation of the aberration when the fourth lens group is zoomed. In the more precise viewpoint of the imaging optical system 1 ,, the relationship of the conditional expression (1) above is preferable to satisfy the conditional expression of the following (1)'. 20<(TL*ft)/( | dl2t-dl2w | *fw)< 40 · · · (1), in particular, it is more desirable to satisfy the conditional expression of (1) below. 25< (TL*ft)/ (1 dl2t-dl2w | *fw) < 40 · · · (1) In the same way, the relationship of the above conditional expression (2) is satisfied by the viewpoint of the more precise imaging optical system. The conditional formula of ' is preferred. 0.5< (/3 5t*fw)/(yS 5w*ft)< 0.8 · · · (2)' In particular, it is more desirable to satisfy the conditional expression of (2) below. 0.6< (β 5t *fw)/(/3 5w*ft)<0.75 · · · (2)" -50- 200807018 (48) In the above composition, the second lens group is formed by one negative ^ 13⁄4, The lens system has at least one aspherical surface, and it is preferable to satisfy the following conditional expressions (3) and (4). 1.45 < Nd2 < 1.8 · · · (4 5 < v 2 < 15 · · · · (4) where N d 2 : the refractive index of the negative lens on the d line v 2 : the negative lens Number of shells
儘可能地減少各透鏡群的透鏡片數’是直接牽連到攝 像光學系的全長縮短。藉由以1片構成第2透鏡群,可使 攝像光學系精巧化。又可減少在變倍時驅動桌2 群之 驅動部的負擔。順便一提,在「正負正正正」之5群變倍 構成中,爲了減少第2透鏡群的變倍負擔,即使以1片負 透鏡來構成第2透鏡群的情況下,也能維持高光學性能。 若超出條件式(3)的上限,則要使珀茲伐和保持成適切 的値係爲困難。順便一提,本發明所述之攝像光學系中’ 由於第2透鏡群是唯一具有負功率的群,因此若超過條件 式(3)的上限,則第2透鏡群的負的珀茲伐値會變小,要充 分補正其他透鏡群的正的珀茲伐値,係爲困難。因此,像 面彎曲係爲顯著,無法獲得良好的光學性能。又,若超過 條件式(4)的上限,則要補正色像差係爲困難。另一方面, 若低於條件式(3)、(4)的下限,則由於泛用性佳的模封透 鏡材料在現況下並不存在,因此其製造係爲困難。 關於上記條件式(3)、(4),站在要提高像面彎曲的抑 制效果,同時提升色像差的補正性能的觀點來看,則是滿 -51 - 200807018 (49) 足下記條件式(3)’、(4)”爲較佳。 1.5< Nd2< 1.75 · · · (3)9 50<〉2<60 · · · (4)9 於上記構成中,前記反射部件是由稜鏡所成,該稜鏡 係滿足下記條件式(5 )爲較佳。Reducing the number of lenses of each lens group as much as possible is a direct shortening of the total length of the optical system. By forming the second lens group in one piece, the imaging optical system can be made compact. It also reduces the burden of driving the drive unit of the table 2 group at the time of zooming. By the way, in the five-group zoom configuration of "positive and positive positive", in order to reduce the magnification load of the second lens group, even when the second lens group is constituted by one negative lens, the height can be maintained high. Optical performance. If the upper limit of the conditional expression (3) is exceeded, it is difficult to keep the Petzval and the appropriate lanthanum. By the way, in the imaging optical system according to the present invention, the second lens group is the only group having a negative power. Therefore, if the upper limit of the conditional expression (3) is exceeded, the negative lens of the second lens group is negative. It will become smaller, and it is difficult to fully correct the positive Petz Law of other lens groups. Therefore, the image curvature is remarkable, and good optical performance cannot be obtained. Further, when the upper limit of the conditional expression (4) is exceeded, it is difficult to correct the chromatic aberration. On the other hand, if the lower limit of the conditional expressions (3) and (4) is exceeded, the molded lens material which is excellent in general efficiencies does not exist under the current conditions, so that it is difficult to manufacture. With regard to the conditional expressions (3) and (4) above, the viewpoint of improving the suppression of field curvature and improving the correction performance of chromatic aberration is full-51 - 200807018 (49) (3) ', (4)' is preferred. 1.5 <Nd2< 1.75 · · · (3)9 50<〉2<60 · · · (4)9 In the above composition, the pre-reflective part is made of rib It is preferable that the enthalpy is satisfied by the following conditional expression (5).
Nd > 1.85 .--(5) 其中,N d :上記稜鏡的在d線上的折射率Nd > 1.85 .--(5) where N d : the refractive index of the 稜鏡 on the d line
藉由採用具有滿足條件式(5)之範圍的折射率的稜鏡’ 就可提高該當稜鏡所帶來的,對攝像光學系之精巧化的期 望度。若稜鏡的折射率低於條件式(5 )的範圍,則不僅是對 精巧化的期望度缺乏,尤其是在最短焦距狀態下的主光線 在稜鏡內的傾角變大,所以會近似全反射條件,使得光量 損失變大,並不理想。 此外,再從謀求攝像光學系1 0之精巧化.的觀點來 看,滿足下記條件式(5)’的Nd則更爲理想。By using 稜鏡' having a refractive index satisfying the range of the conditional expression (5), it is possible to improve the expectation of the compaction of the imaging optical system by the enamel. If the refractive index of ruthenium is lower than the range of conditional expression (5), not only is the lack of expectation of precision, especially in the shortest focal length state, the inclination of the chief ray in the crucible becomes large, so it will approximate The reflection condition makes the light amount loss large, which is not preferable. In addition, from the viewpoint of improving the precision of the imaging optical system 10, it is more preferable to satisfy the Nd of the conditional expression (5)' below.
Nd > 1.9 · · · (5)5 於上記構成中,前記第3透鏡群是由1片正透鏡所 成,且滿足下記條件式(6)爲較佳。 N3d> 1.7 ---(6) 其中,N3 d :上記正透鏡的在d線上的折射率 藉由以1片構成第3透鏡群,可使攝像光學系精巧 化。又,若低於條件式(6)的範圍,則由於構成第3透鏡群 的正透鏡的曲率變強,因此變倍時的像差變動會變大。因 此想要跨越整個變倍領域都獲得良好性能,係爲困難。 -52- 200807018 (50) 此外,從使前記像差變動更爲縮小、光學性能更能提 高的觀點來看,滿足下記條件式(6)’的N 3 d則更爲理想。 N3d> 1.75 · · · (6), 於上記構成中,含有樹脂素材所成之光學部件,前記 光學部件係爲使用在樹脂材料中分散了最大長3 〇奈米以 下之無機粒子所成之樹脂素材而形成之光學部件,較爲理Nd > 1.9 · · · (5)5 In the above configuration, the third lens group is composed of one positive lens, and the conditional expression (6) below is preferable. N3d> 1.7 --- (6) where N3 d : the refractive index on the d line of the positive lens is obtained by constituting the third lens group in one piece, whereby the imaging optical system can be made fine. When the range of the conditional expression (6) is less than the range of the conditional expression (6), the curvature of the positive lens constituting the third lens group is increased, so that the aberration variation at the time of magnification is increased. Therefore, it is difficult to achieve good performance across the entire zoom field. In addition, from the viewpoint of further reducing the fluctuation of the preceding aberration and improving the optical performance, it is more preferable to satisfy N 3 d of the conditional expression (6)' below. N3d> 1.75 · (6) In the above description, the optical component is made of a resin material, and the optical component is a resin obtained by dispersing inorganic particles having a maximum length of 3 Å or less in a resin material. The optical component formed by the material is more reasonable
一方而言若在透明的樹脂材料中混合入微粒子,則會 發生光散亂而降低穿透率,因此要當成光學材料使用是有 困難的。可是,藉由使微粒子的大小是小於穿透光束的波 長,就可使散亂在實質上不會發生。樹脂材料雖然會隨著 溫度上升而降低折射率,但無機微粒子係一旦溫度上升則 折射率會上升。於是,藉由利用它們的溫度依存性而使其 彼此抵消之作用,就可使折射率變化幾乎不會發生變化。 具體而言,藉由在作爲母材的樹脂材料中分散最大長3 0 奈米以下的無機粒子,就可作出折射率之溫度依存性極低 的樹脂素材。例如藉由在丙烯酸酯中分散了氧化鈮(Nb20 5) 之微粒子,就可使溫度變化所致之折射率變化變小。因 此,作爲本發明所使用之光學部件(構成各透鏡群的透鏡 或棱鏡),是使用此種分散有無機粒子的樹脂素材,就可 使本發明所述之攝像光學系之全系統的隨環境溫度變化所 帶來之像點位置變動,抑制成很小。 於上記構成中,前記第5透鏡群,係在對焦之際被移 動,較爲理想。 -53- 200807018 (51) 由於第5透鏡群係具有正的功率,因此藉由往物體側 送出,就可從無限遠往近距離物體進行對焦。此時,在同 樣被攝體距離下,在廣角端是送出量較少’在望遠端則是 送出量較多。本發明所述之「正負正正正」之5群變倍構 成中,從廣角端往望遠端的變倍時,由於第4透鏡群與第 5透鏡群的間隔是單調地增加,因此於望遠端也是,可不 使全長增加而進行對焦。On the other hand, if fine particles are mixed in a transparent resin material, light scattering occurs and the transmittance is lowered. Therefore, it is difficult to use it as an optical material. However, by making the size of the microparticles smaller than the wavelength of the penetrating beam, the scattering does not substantially occur. Although the resin material lowers the refractive index as the temperature rises, the inorganic fine particles increase in refractive index as the temperature rises. Thus, the refractive index change hardly changes by utilizing their temperature dependence to cancel each other out. Specifically, by dispersing inorganic particles having a maximum length of 30 nm or less in a resin material as a base material, a resin material having an extremely low temperature dependence of the refractive index can be obtained. For example, by dispersing fine particles of cerium oxide (Nb20 5) in the acrylate, the change in refractive index due to temperature change can be made small. Therefore, as the optical member (the lens or the prism constituting each lens group) used in the present invention, the resin material in which the inorganic particles are dispersed is used, and the entire system of the imaging optical system according to the present invention can be used in the environment. The change in the position of the image point caused by the temperature change is suppressed to be small. In the above description, it is preferable that the fifth lens group is moved while focusing. -53- 200807018 (51) Since the 5th lens group has positive power, it can be focused from infinity to close objects by sending it to the object side. At this time, under the same subject distance, the amount of delivery is small at the wide-angle end. At the telephoto end, the amount of delivery is large. In the five-group variable magnification configuration of "positive and negative positive" according to the present invention, when the magnification is changed from the wide-angle end to the telephoto end, since the interval between the fourth lens group and the fifth lens group is monotonously increased, it is at the telephoto end. Also, focus can be performed without increasing the overall length.
本發明之另一局面所述之攝像透鏡裝置,其特徵爲, 具備上記之攝像光學系,和將光學像轉換成電氣訊號的攝 像元件;前記攝像光學系是被組裝成,可在前記攝像元件 的受光面上形成被攝體之光學像。若依據此構成’則可提 供例如,可搭載於小型數位相機或行動資訊終端等的精巧 且具有優秀光學性能的攝像透鏡裝置。 本發明之再另一局面所述之數位機器,其特徵爲,具 備:上記攝像透鏡裝置;和控制部,令前記攝像透鏡裝置 上形成被攝體之靜止畫影像及動畫攝影之至少一者之攝影 被進行。若依據此構成,則可實現精巧且高精細的小型數 位相機或行動資訊終端等之數位機器。 若藉由具備如以上構成的本發明,則在爲了謀求全長 的精巧化而加大各透鏡群的功率時,也可採用能夠良好地 抑制變倍所帶來之像差變動的「正負正正正」之5群變倍 構成。再者,其係被構成爲,各透鏡群的變倍比負擔比率 是被取爲適切的値。因此,可提供達成全長精巧化,且具 備跨越整個變倍領域都具備具備良好光學性能的攝像光學 -54 - (52) 200807018 系、攝像透鏡裝置及搭載該攝像透鏡裝置的數位機器。 【圖式簡單說明】 〔圖1〕本發明之實施形態所述之攝像光學系之構成 的模式性圖示。An imaging lens device according to another aspect of the present invention includes the imaging optical system described above and an imaging element that converts an optical image into an electrical signal; and the pre-recording optical system is assembled so that the imaging element can be pre-recorded An optical image of the subject is formed on the light receiving surface. According to this configuration, for example, an image pickup lens device that can be mounted on a compact digital camera or a mobile information terminal and has excellent optical performance can be provided. According to still another aspect of the present invention, a digital device includes: an image pickup lens device; and a control unit configured to form at least one of a still image and an animation image of a subject on the front image pickup lens device Photography was carried out. According to this configuration, it is possible to realize a compact and high-definition digital camera such as a compact digital camera or a mobile information terminal. According to the present invention having the above configuration, when the power of each lens group is increased in order to improve the overall length, it is also possible to adopt a positive or negative correction capable of suppressing the aberration variation caused by the magnification change. The five groups of positive change constitutes. Further, it is configured such that the ratio of the magnification ratio of each lens group is taken to be appropriate. Therefore, it is possible to provide an optical lens that achieves excellent optical performance and has excellent optical performance across the entire zooming field. -54 - (52) 200807018 Series, an imaging lens device, and a digital device equipped with the imaging lens device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the configuration of an imaging optical system according to an embodiment of the present invention.
〔圖2〕表示本發明所述之數位機器之一實施形態的 數位相機的外觀構成圖,(a)係數位相機的正面圖,(b)係 背面圖,(c)係上面圖。 〔圖3〕數位相機之電氣機能構成的簡略圖示之機能 方塊圖。 〔圖4〕圖示實施例1的攝像光學系之構成,是將光 軸縱剖之剖面圖。 〔圖5〕實施例1的攝像光學系之構成,將稜鏡部分 展開成直線的直線光路圖。 〔圖6〕實施例2的攝像光學系之構成,將稜鏡部分 展開成直線的直線光路圖。 〔圖7〕實施例3的攝像光學系之構成,將稜鏡部分 展開成直線的直線光路圖。 〔圖8〕實施例4的攝像光學系之構成’將稜鏡部分 展開成直線的直線光路圖。 〔圖9〕實施例5的攝像光學系之構成’將稜鏡部分 展開成直線的直線光路圖。 〔圖1 〇〕實施例1的攝像光學系之球面像差、非點像 差及歪曲像差的像差圖。 -55- 200807018 (53) 〔圖u〕實施例2的攝像光學系之球面像差、非點像 差及歪曲像差的像差圖。 〔圖1 2〕實施例3的攝像光學系之球面像差、非點像 差及歪曲像差的像差圖。 ^ 〔圖1 3〕實施例4的攝像光學系之球面像差、非點像 ^ 差及歪曲像差的像差圖。 〔圖1 4〕實施例5的攝像光學系之球面像差、非點像 赢 差及歪曲像差的像差圖。 【主要元件符號說明】Fig. 2 is a view showing the external configuration of a digital camera according to an embodiment of the digital device according to the present invention, wherein (a) is a front view of a coefficient camera, (b) is a rear view, and (c) is a top view. [Fig. 3] A schematic diagram of the function of the electrical function of the digital camera. Fig. 4 is a cross-sectional view showing the configuration of the imaging optical system of the first embodiment, which is a longitudinal section of the optical axis. Fig. 5 is a view showing a configuration of an imaging optical system of the first embodiment, in which a 稜鏡 portion is developed into a straight line optical path diagram. Fig. 6 is a view showing the configuration of the imaging optical system of the second embodiment, in which a 稜鏡 portion is developed into a straight line optical path diagram. Fig. 7 is a view showing the configuration of the imaging optical system of the third embodiment, in which a 稜鏡 portion is developed into a straight line optical path diagram. Fig. 8 is a view showing a configuration of an imaging optical system of a fourth embodiment. A straight line optical path diagram in which a 稜鏡 portion is developed into a straight line. Fig. 9 is a view showing a configuration of an imaging optical system of a fifth embodiment. A straight line optical path diagram in which a 稜鏡 portion is developed into a straight line. Fig. 1 is a diagram showing aberrations of spherical aberration, astigmatism, and distortion of the imaging optical system of the first embodiment. -55-200807018 (53) Fig. u is a diagram showing aberrations of spherical aberration, astigmatism, and distortion of the imaging optical system of the second embodiment. Fig. 1 is an aberration diagram of spherical aberration, astigmatism, and distortion of the imaging optical system of the third embodiment. [Fig. 13] Aberration diagram of spherical aberration, non-point image difference, and distortion of the imaging optical system of the fourth embodiment. Fig. 14 is a diagram showing aberrations of spherical aberration, non-point image winning, and distortion of the imaging optical system of the fifth embodiment. [Main component symbol description]
1 〇 :攝像光學系' 1 1 ·•負彎月形透鏡、1 2 ·•雙凸正透 鏡、13 :稜鏡、1 3 a :入射面、1 3 b ··出射面、13 C :反射 面、14 :雙凹負透鏡、15 :正彎月形透鏡、16 :接合透 鏡、161:雙凸正透鏡、162:雙凹負透鏡、17:雙凸正透 鏡、1 8 :低通濾鏡、1 9 :攝像元件、1 01 :光圈、20 :數 位相機、21 :主開關、22 :模式切換開關、23 :快門鈕、 24 :閃光燈、25 :取景窗、26 :各種操作鈕、27 :變倍 條、2 8 :顯示部、2 9 ··攝像透鏡裝置、3 0 ··攝像部、3 1 : 影像生成部、32 :影像資料緩衝區、33 :影像處理部、 34 :驅動部、35 :控制部、36 :記憶部、37 :介面部、 Grl :第1透鏡群' Gr2 :第2透鏡群、Gr3 :第3透鏡 群、Gr4 :第4透鏡群、Gr5 :第5透鏡群、L1〜L7 :第1 透鏡〜第7透鏡、PR :稜鏡、PL :平行平面板、AX :光 軸、ST :光圈、SR :攝像元件。 -56-1 〇: Camera optical system ' 1 1 ·• Negative meniscus lens, 1 2 ·•Doubly convex positive lens, 13 :稜鏡, 1 3 a : Incidence surface, 1 3 b ··Outflow surface, 13 C :Reflection Face, 14: double concave negative lens, 15: positive meniscus lens, 16: bonding lens, 161: double convex positive lens, 162: double concave negative lens, 17: double convex positive lens, 18: low pass filter , 1 9 : camera unit, 01: aperture, 20: digital camera, 21: main switch, 22: mode switch, 23: shutter button, 24: flash, 25: viewfinder, 26: various operation buttons, 27: Zoom bar, 2 8 : display unit, 2 9 · image pickup lens device, 30 · image pickup unit, 3 1 : image generation unit, 32: image data buffer, 33: image processing unit, 34: drive unit, 35: control unit, 36: memory unit, 37: dielectric surface, Grl: first lens group ' Gr2 : second lens group, Gr3 : third lens group, Gr4 : fourth lens group, Gr5 : fifth lens group, L1 to L7: 1st lens to 7th lens, PR: 稜鏡, PL: parallel plane plate, AX: optical axis, ST: aperture, SR: imaging element. -56-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006164148 | 2006-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200807018A true TW200807018A (en) | 2008-02-01 |
Family
ID=38831709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096121594A TW200807018A (en) | 2006-06-14 | 2007-06-14 | Imaging optical system, imaging lens device, and digital apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5062173B2 (en) |
TW (1) | TW200807018A (en) |
WO (1) | WO2007145194A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI395463B (en) * | 2009-09-09 | 2013-05-01 | Asia Optical Co Inc | Scanner lens |
US10067320B2 (en) | 2015-11-10 | 2018-09-04 | Himax Technologies Limited | Lens module |
TWI769465B (en) * | 2019-08-14 | 2022-07-01 | 大陸商廣州立景創新科技有限公司 | Optical imaging apparatus with adjustable focal length |
TWI815418B (en) * | 2021-06-02 | 2023-09-11 | 大立光電股份有限公司 | Optical imaging lens assembly, image capturing unit and electronic device |
CN117075324A (en) * | 2023-10-13 | 2023-11-17 | 昆明明汇光学有限公司 | Telescope optical system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011090235A (en) * | 2009-10-26 | 2011-05-06 | Olympus Corp | Achromatic lens |
US9223118B2 (en) | 2013-10-31 | 2015-12-29 | Apple Inc. | Small form factor telephoto camera |
US9557627B2 (en) * | 2014-03-07 | 2017-01-31 | Apple Inc. | Folded camera lens systems |
TWI663419B (en) * | 2016-05-16 | 2019-06-21 | 大陸商信泰光學(深圳)有限公司 | Lens assembly |
CN107390347B (en) * | 2016-05-16 | 2019-12-27 | 信泰光学(深圳)有限公司 | Imaging lens |
CN106526788B (en) * | 2016-08-25 | 2020-05-01 | 玉晶光电(厦门)有限公司 | Optical imaging lens |
CN109407279B (en) * | 2018-12-12 | 2021-09-14 | 江西联创电子有限公司 | Wide-angle lens and imaging apparatus |
US11668902B2 (en) | 2019-09-27 | 2023-06-06 | Sintai Optical (Shenzhen) Co., Ltd. | Lens assembly |
TWI704387B (en) * | 2020-03-05 | 2020-09-11 | 信泰光學(深圳)有限公司 | Lens assembly |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005266173A (en) * | 2004-03-17 | 2005-09-29 | Sony Corp | Zoom lens and imaging device |
JP2005338143A (en) * | 2004-05-24 | 2005-12-08 | Konica Minolta Photo Imaging Inc | Imaging lens device |
JP2006145651A (en) * | 2004-11-17 | 2006-06-08 | Konica Minolta Opto Inc | Projection optical system and projection type image display device |
JP2007093980A (en) * | 2005-09-28 | 2007-04-12 | Nikon Corp | Zoom lens |
JP2007248952A (en) * | 2006-03-17 | 2007-09-27 | Olympus Imaging Corp | Bending variable power optical system |
-
2007
- 2007-06-12 JP JP2008521203A patent/JP5062173B2/en not_active Expired - Fee Related
- 2007-06-12 WO PCT/JP2007/061783 patent/WO2007145194A1/en active Search and Examination
- 2007-06-14 TW TW096121594A patent/TW200807018A/en unknown
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI395463B (en) * | 2009-09-09 | 2013-05-01 | Asia Optical Co Inc | Scanner lens |
US10067320B2 (en) | 2015-11-10 | 2018-09-04 | Himax Technologies Limited | Lens module |
TWI769465B (en) * | 2019-08-14 | 2022-07-01 | 大陸商廣州立景創新科技有限公司 | Optical imaging apparatus with adjustable focal length |
TWI815418B (en) * | 2021-06-02 | 2023-09-11 | 大立光電股份有限公司 | Optical imaging lens assembly, image capturing unit and electronic device |
CN117075324A (en) * | 2023-10-13 | 2023-11-17 | 昆明明汇光学有限公司 | Telescope optical system |
CN117075324B (en) * | 2023-10-13 | 2023-12-15 | 昆明明汇光学有限公司 | Telescope optical system |
Also Published As
Publication number | Publication date |
---|---|
WO2007145194A1 (en) | 2007-12-21 |
JP5062173B2 (en) | 2012-10-31 |
JPWO2007145194A1 (en) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200807018A (en) | Imaging optical system, imaging lens device, and digital apparatus | |
JP5364965B2 (en) | Imaging optical system, imaging lens device, and digital device | |
TWI344013B (en) | ||
JP5083219B2 (en) | Variable-magnification optical system, imaging device, and digital device | |
TWI317045B (en) | ||
US6515805B2 (en) | Taking lens device | |
JP4853764B2 (en) | Zoom lens | |
US7859764B2 (en) | Variable-power optical system, image pickup device, and digital apparatus | |
JP2005338143A (en) | Imaging lens device | |
JP2004037924A (en) | Imaging apparatus | |
JP2006154702A (en) | Variable power optical system, imaging lens device and digital apparatus | |
JPWO2008072466A1 (en) | Variable-magnification optical system, imaging device, and digital device | |
JP2011022191A (en) | Zoom lens and imaging apparatus | |
TW201104284A (en) | Imaging lens system | |
TW200921144A (en) | Zoom lens and image-capture device | |
US8873157B2 (en) | Inner-focus zoom lens system | |
TW201350956A (en) | Image capture lens assembly and image capture device thereof | |
JP2007094136A (en) | Zoom lens and image pickup device | |
JP2007164157A (en) | Zoom lens system, imaging device, and camera | |
US7265912B2 (en) | Variable power optical system, imaging apparatus, and digital apparatus | |
JP2005283648A (en) | Zoom optical system, image input device, and portable information terminal device | |
JP2013050650A (en) | Zoom lens and imaging apparatus | |
JP2007025123A (en) | Variable power optical system | |
JP2012053222A (en) | Zoom lens, optical device and method for manufacturing zoom lens | |
JP2006317478A (en) | Variable magnification optical system |