200805036 w • 九、發明說明: 【發明所屬之技術領域】 本發明係涉及一種散熱裝置,尤係涉及一種用於 對電子元件散熱之散熱裝置。 【先前技術】200805036 w • IX. Description of the Invention: [Technical Field] The present invention relates to a heat dissipating device, and more particularly to a heat dissipating device for dissipating heat from an electronic component. [Prior Art]
者中央處理器(CPU )等電子元件功率之不斷 提高,散熱問題越來越受到人們的重視,在筆記本電 腦中更係如此。爲了在有限之空間内高效地帶走系統 所産生之熱量,目前業界主要採用由散熱鰭片組、熱 管及散熱風扇組合之方式進行散熱。該方式之熱傳導 路徑爲:CPU産生之熱量經熱管傳至散熱鰭片組,再 由散熱風扇産生之氣流將傳至散熱鰭片組之熱量帶 走,所以散熱風扇與散熱鰭片組之搭配對系統之散熱 性能有非常大之影響。The power of electronic components such as the central processing unit (CPU) continues to increase, and the problem of heat dissipation has received more and more attention from people, especially in notebook computers. In order to efficiently remove the heat generated by the system in a limited space, the industry currently uses a combination of heat sink fins, heat pipes and cooling fans to dissipate heat. The heat conduction path of the method is: the heat generated by the CPU is transmitted to the heat dissipation fin group through the heat pipe, and the air flow generated by the heat dissipation fan takes away the heat transferred to the heat dissipation fin group, so the heat dissipation fan and the heat dissipation fin group are matched with each other. The thermal performance of the system has a very large impact.
圖6所示爲習知技術中散熱裝置20之示意圖,該 散熱裝置20包括一散熱鰭片組24及一離心風扇22。該 散熱鰭片組24設置於離心風扇22之出風口 211處,其包 括與一發熱電子元件(圖未示)熱連接之複數散熱鳍 片242。該離心風扇22包括一殼體222、一定子(圖未 示)及一可繞該定子轉動之轉子223,該轉子223設置 於該殼體222内。當離心風扇22運行時,該轉子223繞 著定子逆時針轉動從而產生吹向散熱鰭片組24之氣 流,以將散熱鰭片組24由發熱電子元件吸收之熱量帶 走,從而達到散熱之目的。 6 200805036 ." 該散熱裝置20在工作時,該殼體222將氣流引向 離心風扇22之出風口 211,氣流由該出風口 211處離開 離心風扇22並吹向散熱鰭片組24。在散熱鰭片組24之 上侧246,氣流流向與該處之散熱鰭片242大致平行, 而在散熱鰭片組24之下侧244,氣流流向卻與該處之 散熱鰭片242形成一夾角,導致流向該處之氣流與該 處之散熱鰭片242發生碰撞,使氣流有一定之動能損 失,氣流流速就會大幅下降,這樣就降低了散熱鰭片 ® 組24與氣流之熱交換效率,導致散熱裝置20之散熱效 率無法得到有效提升,故需加以改進。 【發明内容】 有鑒於此,有必要提供一種降低氣流流阻以提升 散熱性能之散熱裝置。 一種散熱裝置,包括一離心風扇及一由複數散熱 鰭片組成之散熱鰭片組,該離心風扇具有一出風口, φ 該散熱鰭片組設於該出風口處,其包括一弧形部,該 弧形部每相鄰之兩散熱鰭片間形成一扇形之氣流通 道。 一種散熱裝置,包括一離心風扇及一由複數散熱 鰭片組成之散熱鰭片組,該離心風扇具有一出風口, 該散熱鰭片組設於該出風口處,該離心風扇産生之氣 流經由該出風口而吹向該散熱鰭片組,該散熱鰭片組 包括一弧形部及一矩形部,該矩形部設於氣流之上 游,而該弧形部設於該氣流之下游,該弧形部每相鄰 200805036 - 之兩散熱鰭片間形成一扇形之氣流通遘。 與傳統之散熱裝置相比,上述散熱裝置中之散熱 鰭片組包括一弧形部,可使流向散熱ϋ片組之氣流均 與該處之散熱鰭片大致平行,可減少氟流與散熱鰭片 碰撞而産生之能量損失,使氣流流速不至於大幅下 降,有利於氣流快速地流過散熱鰭片組之表面,可提 高散熱鰭片組與氣流之熱交換效率,從而提升散熱裝 置之散熱性能。 【實施方式】 圖1至圖3所示爲本發明散熱裝置1〇之第一實施 例,該散熱裝置10包括一散熱鰭片組12及一離心風扇 14。該散熱鰭片組12與兩發熱電子元件(圖未示)熱 連接以吸收該發熱電子元件産生之熱量,該離心風扇 14提供吹向該散熱鰭片組12之具有較高壓力之氣 流,以將該散熱鰭片組12吸收之熱量散發到周圍之空 _ 氣中。 該兩發熱電子元件沿橫向設置於散熱鰭片組12 一側,該散熱鰭片組12藉由兩根熱管16分別與該兩個 發熱電子元件熱連接。該兩根熱管16均呈扁平狀,每 一熱管16包括一蒸發端161及一冷凝端162,該蒸發端 161與相應之發熱電子元件相接觸以吸收其產生^熱 量,該冷凝端162呈弧形,其與散熱鳍片組12之形^ 相匹配並與該散熱鰭片組12熱連接,以使該散熱鮮 組12藉由該熱管16由發熱電子元件處吸收較多 200805036 * , · . 量。 該離心風扇14用於對該散熱鰭片組12散熱,其包 括一殼體141、一設於該殼體141上之蓋體142及一具 有複數扇葉144之轉子143。該蓋體142與該殼體141合 圍形成一容置空間,該轉子143設置於該容置空間 内。該蓋體142上設有進風口 145。該殼體141包括一 底板146及一渦形之侧壁147,該底板146垂直於該離 心風扇14之轉子143之軸線A。該側壁147與該底板146 ❿ 垂直,其上設有一弧形之開口以作爲與該離心風扇14 之出風口 148,該侧壁147於其内表面上靠近該出風口 148之位置還向内突設一大致呈三角形之舌口 151,使 該舌口 151較侧壁147之其他部分更靠近轉子143,這 樣可增加該離心風扇14産生之氣流之壓力,有利於氣 流快速地流過散熱鰭片組12之表面。該離心風扇14之 侧壁147與該轉子143之扇葉144之自由端之間形成一 空氣流道149,該空氣流道149自該舌口 151沿該離心 肇 風扇14運轉方向呈漸寬結構。 該散熱鰭片組12設置於該離心風扇14之出風口 148處,其包栝一上端面129及一下端面130,其中該 下端面130與該殼體141之底板146之下表面位於同一 平面内,該上端面129與該兩熱管16緊密接觸。該散 熱鰭片組12包括一弧形部121及沿該弧形部121 一端 之切線方向延伸之一矩形部122,該弧形部121與該矩 形部122分別由複數第一散熱鰭片及複數第二散 200805036 ^ λ • 熱鰭片124堆疊排列而成。每一第一散熱鰭片123包括 一主體部126及分別設於該主體部126頂端與底端之 折邊127,每一折邊127具有一第一端部136及與該第 一端部136相對之一第二端部137,該第一端部136之 寬度大於該第二端部137之寬度以使每一折邊127大 致呈扇形;每一第二散熱籍片124亦包括一主體部133 及分別設於該主體部133頂端與底端之折邊128,每一 折邊128具有一第一端部138及與該第一端部138相對 參 應之一第二端部139,該第一端部138與該第二端部 139之寬度相等以使每一折邊128大致呈矩形。該等散 熱鰭片123、124結合在一起時,該等折邊127或128抵 靠相鄰之散熱鰭片123或124,以將每相鄰之兩散熱鰭 片123或124間隔開,並於每相鄰之兩第一散熱鰭片 123間形成一扇形之氣流通道131,每相鄰之兩第二散 熱鰭片124間形成一矩形之氣流通道132,且該等散熱 φ 鰭片123、124之折邊127、128之第二端部137、139靠 近該離心風扇14之出風口 148處。 圖4所示爲散熱鰭片組12組裝至該離心風扇14之 殼體141之後之俯視圖及氣流流向圖,該離心風扇14 之轉子143順時鐘開始運轉時’其產生之氣流流經該 舌口 151時,藉由該舌口 151加壓後沿著該渦形之側壁 147之内表面流向出風口 148右側,其中位於上游之一 部分氣流以與散熱鰭片組12之矩形部122之第二散熱 鰭片124大致平行之方向流向該矩形部122之氣流通 200805036 -0 V 道132(如圖1所示)中。而位於下游之另外一部分氣 流,沿與散熱鰭片組12之弧形部121之第一散熱鰭片 123大致平行之方向流向該弧形部121之氣流通道 131(如圖1所示)中。上述散熱裝置10中,該散熱鰭片 組12之形狀爲弧形與矩形結合,這種結合方式可使流 向散熱鰭片組12之氣流均與該處之散熱鰭片123、124 大致平行,可減少氣流與散熱鰭片123、124碰撞而產 生之能量損失,使氣流流速不至於大幅下降,有利於 • 氣流快速地流過散熱鰭片組12之表面,可提高散熱鰭 片組12與氣流之熱交換效率,從而提升散熱裝置1〇之 散熱性能。該弧形部121之扇形之氣流通道131由於從 内向外形成漸擴狀,使得氣流在進入該扇形之氣流通 道131後所受之流阻降低,使得原本壓力與流速稍有 下降之下游氣流不致因流阻過大而再次降低壓力或 流速。另,由於該散熱鰭片組12部分爲弧形,可增加 肇 該散熱鰭片組12與呈弧形之熱管16之冷凝段162之接 觸面積,從而可進一步提高散熱裝置10之散熱效率。 當然,散熱鰭片組12之形狀不只拘於上述弧形與 矩形結合之形式’其可根據離心風扇14産生之氣流之 々》l向來没計’如可整體爲弧形。另,散熱鰭片組η之 第—散熱鰭片123之折邊127之形狀亦可變化,圖5所 示爲本發明第二實施例中之散熱鰭片組12a之立體 圖,在本實施例中,第一散熱鰭片123a之折邊12乃相 對之第一端部136a與第二端部137&寬度相等,該等第FIG. 6 is a schematic diagram of a heat sink 20 in the prior art. The heat sink 20 includes a heat sink fin set 24 and a centrifugal fan 22. The heat dissipation fin group 24 is disposed at the air outlet 211 of the centrifugal fan 22, and includes a plurality of heat dissipation fins 242 thermally connected to a heat generating electronic component (not shown). The centrifugal fan 22 includes a housing 222, a stator (not shown), and a rotor 223 rotatable about the stator. The rotor 223 is disposed within the housing 222. When the centrifugal fan 22 is in operation, the rotor 223 rotates counterclockwise around the stator to generate a flow of air that is blown toward the fin assembly 24, so as to remove the heat absorbed by the heat-dissipating fins 24 by the heat-generating electronic components, thereby achieving the purpose of heat dissipation. . 6 200805036 ." During operation of the heat sink 20, the housing 222 directs airflow to the air outlet 211 of the centrifugal fan 22, and the airflow exits the centrifugal fan 22 from the air outlet 211 and blows toward the heat sink fin set 24. On the upper side 246 of the heat dissipation fin group 24, the airflow flows substantially parallel to the heat dissipation fins 242, and on the lower side 244 of the heat dissipation fin group 24, the airflow direction forms an angle with the heat dissipation fins 242 at the heat dissipation fin group 24. The airflow flowing therethrough collides with the heat radiating fins 242 at the place, so that the airflow has a certain kinetic energy loss, and the airflow velocity is greatly reduced, thereby reducing the heat exchange efficiency between the heat sink fins group 24 and the airflow. As a result, the heat dissipation efficiency of the heat sink 20 cannot be effectively improved, so it needs to be improved. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a heat sink that reduces airflow resistance to improve heat dissipation performance. A heat dissipating device includes a centrifugal fan and a heat dissipating fin group composed of a plurality of heat dissipating fins, the centrifugal fan has an air outlet, and the heat dissipating fin is disposed at the air outlet, and includes an arc portion. The curved portion forms a fan-shaped air flow passage between each adjacent two heat radiating fins. A heat dissipating device includes a centrifugal fan and a heat dissipating fin group composed of a plurality of fins, the centrifugal fan having an air outlet, the heat dissipating fins being disposed at the air outlet, and the airflow generated by the centrifugal fan is An air outlet is blown toward the heat dissipation fin set, the heat dissipation fin set includes an arc portion and a rectangular portion, the rectangular portion is disposed upstream of the air flow, and the arc portion is disposed downstream of the air flow, the arc shape A fan-shaped airflow is formed between each of the two heat sink fins adjacent to 200805036. Compared with the conventional heat dissipating device, the heat dissipating fin set in the heat dissipating device includes an arc portion, so that the airflow flowing to the heat dissipating chip group is substantially parallel with the heat dissipating fins at the place, and the fluorine flow and the heat dissipating fin can be reduced. The energy loss caused by the collision of the piece causes the flow velocity of the airflow not to drop drastically, which is beneficial to the rapid flow of the airflow over the surface of the heat dissipation fin group, thereby improving the heat exchange efficiency between the heat dissipation fin group and the airflow, thereby improving the heat dissipation performance of the heat dissipation device. . [Embodiment] FIG. 1 to FIG. 3 show a first embodiment of a heat dissipating device 1 of the present invention. The heat dissipating device 10 includes a heat dissipating fin set 12 and a centrifugal fan 14. The heat dissipation fin set 12 is thermally coupled to two heat-generating electronic components (not shown) to absorb heat generated by the heat-generating electronic component, and the centrifugal fan 14 provides a high-pressure airflow to the heat dissipation fin set 12 to The heat absorbed by the heat dissipation fin group 12 is dissipated into the surrounding air. The two heat-generating electronic components are disposed laterally on one side of the heat-dissipating fin group 12, and the heat-dissipating fin group 12 is thermally connected to the two heat-generating electronic components by two heat pipes 16, respectively. The two heat pipes 16 are flat. Each heat pipe 16 includes an evaporation end 161 and a condensation end 162. The evaporation end 161 is in contact with a corresponding heat-generating electronic component to absorb heat generated. The condensation end 162 is arc-shaped. a shape that matches the shape of the heat dissipation fin group 12 and is thermally coupled to the heat dissipation fin group 12 such that the heat dissipation group 12 absorbs more heat from the heat generating electronic component by the heat pipe 16 . . The centrifugal fan 14 is configured to dissipate heat from the heat dissipation fin assembly 12, and includes a casing 141, a cover 142 disposed on the casing 141, and a rotor 143 having a plurality of blades 144. The cover 142 and the housing 141 define an accommodating space, and the rotor 143 is disposed in the accommodating space. The cover 142 is provided with an air inlet 145. The housing 141 includes a bottom plate 146 and a volute side wall 147 that is perpendicular to the axis A of the rotor 143 of the centrifugal fan 14. The side wall 147 is perpendicular to the bottom plate 146, and has an arc-shaped opening as an air outlet 148 with the centrifugal fan 14. The side wall 147 is also inwardly located on the inner surface thereof near the air outlet 148. A substantially triangular tongue 151 is provided so that the tongue 151 is closer to the rotor 143 than the other portions of the side wall 147, which increases the pressure of the airflow generated by the centrifugal fan 14, facilitating the rapid flow of air through the heat sink fins. The surface of group 12. An air flow passage 149 is formed between the side wall 147 of the centrifugal fan 14 and the free end of the fan blade 144 of the rotor 143. The air flow passage 149 is gradually widened from the tongue opening 151 along the running direction of the centrifugal fan 14 . The heat dissipation fin set 12 is disposed at the air outlet 148 of the centrifugal fan 14 and includes an upper end surface 129 and a lower end surface 130. The lower end surface 130 is in the same plane as the lower surface of the bottom plate 146 of the housing 141. The upper end surface 129 is in close contact with the two heat pipes 16. The heat dissipation fin group 12 includes an arc portion 121 and a rectangular portion 122 extending along a tangential direction of one end of the curved portion 121. The curved portion 121 and the rectangular portion 122 are respectively composed of a plurality of first heat dissipation fins and a plurality of Second dispersion 200805036 ^ λ • Heat fins 124 are stacked and arranged. Each of the first heat dissipation fins 123 includes a main body portion 126 and a flange 127 respectively disposed at a top end and a bottom end of the main body portion 126 . Each of the flanges 127 has a first end portion 136 and the first end portion 136 . The width of the first end portion 136 is greater than the width of the second end portion 137 such that each of the flanges 127 is substantially fan-shaped; each of the second heat dissipation sheets 124 also includes a main body portion. And a flange 128 disposed at a top end and a bottom end of the main body portion 133. Each of the flanges 128 has a first end portion 138 and a second end portion 139 opposite to the first end portion 138. The first end 138 is equal in width to the second end 139 such that each flange 128 is substantially rectangular. When the heat dissipation fins 123 and 124 are joined together, the flanges 127 or 128 abut against the adjacent heat dissipation fins 123 or 124 to space each adjacent two heat dissipation fins 123 or 124, and A fan-shaped air flow channel 131 is formed between each of the two adjacent first heat dissipation fins 123, and a rectangular air flow channel 132 is formed between each adjacent two second heat dissipation fins 124, and the heat dissipation φ fins 123 and 124 are formed. The second ends 137, 139 of the flanges 127, 128 are adjacent the air outlet 148 of the centrifugal fan 14. 4 is a plan view and an airflow direction diagram of the heat dissipating fin set 12 assembled to the housing 141 of the centrifugal fan 14. When the rotor 143 of the centrifugal fan 14 starts running clockwise, the generated airflow flows through the tongue. At 151, the tongue 151 is pressurized and flows along the inner surface of the side wall 147 of the scroll toward the right side of the air outlet 148, wherein a portion of the airflow in the upstream portion and the second portion of the rectangular portion 122 of the heat dissipation fin group 12 dissipate heat. The fins 124 flow in a substantially parallel direction to the airflow of the rectangular portion 122 through the 200805036-0V channel 132 (shown in Figure 1). The other portion of the downstream airflow flows in a direction substantially parallel to the first heat radiating fins 123 of the arcuate portion 121 of the heat radiating fin group 12 toward the air flow passage 131 (shown in Fig. 1) of the curved portion 121. In the heat dissipating device 10, the shape of the heat dissipating fin group 12 is a combination of a curved shape and a rectangular shape. The air flow to the heat dissipating fin group 12 is substantially parallel to the heat dissipating fins 123 and 124 at the heat dissipating fin group 12 The energy loss caused by the collision of the airflow with the heat dissipation fins 123, 124 is reduced, so that the airflow velocity is not greatly reduced, which facilitates the rapid flow of the airflow over the surface of the heat dissipation fin group 12, thereby improving the heat dissipation fin group 12 and the airflow. The heat exchange efficiency improves the heat dissipation performance of the heat sink. The fan-shaped air flow passage 131 of the curved portion 121 is formed in a divergent shape from the inner side to the outer side, so that the flow resistance of the air flow after entering the fan-shaped air flow passage 131 is reduced, so that the downstream airflow with a slight decrease in the original pressure and the flow rate is not caused. Reduce the pressure or flow rate again due to excessive flow resistance. In addition, since the heat dissipating fin group 12 is partially curved, the contact area between the heat dissipating fin group 12 and the condensing section 162 of the arc-shaped heat pipe 16 can be increased, thereby further improving the heat dissipating efficiency of the heat dissipating device 10. Of course, the shape of the fin group 12 is not limited to the above-described form of the combination of the arc and the rectangle, which can be made according to the flow of the air generated by the centrifugal fan 14 as it is entirely arcuate. In addition, the shape of the flange 127 of the heat dissipation fin group η can also be changed. FIG. 5 is a perspective view of the heat dissipation fin group 12a in the second embodiment of the present invention. The flange 12 of the first heat dissipation fin 123a is equal in width to the first end portion 136a and the second end portion 137&
11 200805036 一散熱鰭片123a之第二端部137a通過焊接結合在_ 起’而第一端部136a則相立間隔開,以形成散熱轉片 組12a之弧形部121a ,在製造過程中,無需分別爲第一 散熱鰭片123a及第二散熱鰭片124設計模具,可只使用 同一套模具即可完成整個散熱鰭片組12a之製造,有利 於降低生產成本。 綜上所述,本發明符合發明專利之要件,麦依法 提出專利申請。惟以上所述者僅為本發明之較佳實施 例,舉凡熟悉本案技藝之人士,在爰依本發明精神所 作之等效修飾或變化,皆應涵蓋於以下之申請專利範 圍内。 & 【圖式簡單說明】 圖1係本發明散熱裝置第一實施方式之立體分解 圖。 圖1係本發明散熱裝置第一實施例之立體分解 圖。 圖2係圖1所示散熱裝置之立體組裝圖。 圖3A係圖1所示散熱裝置中第一散熱鰭片之立體 圖。 圖3B係圖1所示散熱裝置中第二散熱鰭片之立體 圖。 圖4係圖1所示散熱裝置之氣流流向示意圖。 圖5係本發明散熱裝置第二實施例中之散熱鰭片 組之立體圖。 20080503611 200805036 A second end portion 137a of a heat dissipating fin 123a is joined to the first end portion 136a by welding to form an arc portion 121a of the heat dissipating fin group 12a during the manufacturing process. It is not necessary to separately design the molds for the first heat dissipation fins 123a and the second heat dissipation fins 124, and the entire heat dissipation fin group 12a can be manufactured by using only the same set of molds, which is advantageous for reducing the production cost. In summary, the present invention complies with the requirements of the invention patent, and the patent application is filed by Mai. The above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art of the present invention should be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective exploded view of a first embodiment of a heat sink according to the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective exploded view of a first embodiment of a heat sink according to the present invention. 2 is an assembled, isometric view of the heat sink shown in FIG. 1. 3A is a perspective view of the first heat sink fin in the heat sink shown in FIG. 1. Figure 3B is a perspective view of the second heat sink fin in the heat sink of Figure 1. 4 is a schematic view showing the flow direction of the airflow of the heat sink shown in FIG. 1. Figure 5 is a perspective view of a heat sink fin set in a second embodiment of the heat sink of the present invention. 200805036
圖6係習知技術中散熱裝置之氣流流向示意圖。 【主要元件符號說明】 〈本發明〉 散熱裝置 10 散熱鰭片組 12、12a 弧形部 121 、 121a 矩形部 122 第一散熱鰭片 123 、 123a 第二散熱鰭片 124 主體部 126、133 折邊 127、127a 、128 上端面 129 下端面 130 氣流通道 131 、 132 第一端部 136 、 136a 、138 第二端部 137、137a ^ 139 離心風扇 14 殼體 141 蓋體 142 轉子 143 扇葉 144 進風口 145 底板 146 側壁 147 出風口 148 空氣流道 149 舌口 151 轴線 A 熱管 16 蒸發端 161 冷凝端 162 〈習知〉 散熱裝置 20 出風口 211 離心風扇 22 殼體 222Figure 6 is a schematic illustration of the flow direction of a heat sink in a prior art. [Main component symbol description] <The present invention> Heat sink 10 Heat sink fin group 12, 12a Curved portion 121, 121a Rectangular portion 122 First heat sink fin 123, 123a Second heat sink fin 124 Main body portion 126, 133 Folding 127, 127a, 128 upper end surface 129 lower end surface 130 air flow passage 131, 132 first end portion 136, 136a, 138 second end portion 137, 137a ^ 139 centrifugal fan 14 housing 141 cover 142 rotor 143 fan blade 144 air inlet 145 Base plate 146 Side wall 147 Air outlet 148 Air flow path 149 Tongue 151 Axis A Heat pipe 16 Evaporation end 161 Condensing end 162 <General knowledge> Heat sink 20 Air outlet 211 Centrifugal fan 22 Housing 222
13 200805036 轉子 223 散熱鰭片組 24 散熱鰭片 242 下侧 244 上側 24613 200805036 Rotor 223 Heat sink fin set 24 Heat sink fin 242 Lower side 244 Upper side 246
1414