[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

TW200538562A - Copper alloy and method for production thereof - Google Patents

Copper alloy and method for production thereof Download PDF

Info

Publication number
TW200538562A
TW200538562A TW094107552A TW94107552A TW200538562A TW 200538562 A TW200538562 A TW 200538562A TW 094107552 A TW094107552 A TW 094107552A TW 94107552 A TW94107552 A TW 94107552A TW 200538562 A TW200538562 A TW 200538562A
Authority
TW
Taiwan
Prior art keywords
precipitates
inclusions
particle size
alloy
copper
Prior art date
Application number
TW094107552A
Other languages
Chinese (zh)
Inventor
Yasuhiro Maehara
Mitsuharu Yonemura
Keiji Nakajima
Tsuneaki Nagamichi
Original Assignee
Sumitomo Metal Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004234891A external-priority patent/JP2005307334A/en
Priority claimed from JP2004234868A external-priority patent/JP2005290543A/en
Application filed by Sumitomo Metal Ind filed Critical Sumitomo Metal Ind
Publication of TW200538562A publication Critical patent/TW200538562A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

A copper alloy which has a specific chemical composition, the balance being Cu and impurities, wherein the total number of pieces of precipitates and inclusions having a particle diameter of 1 μm or more satisfies the relationship represented by the following formula (1): logN ≤ 0.4742 + 17.629 x exp(-0.1133 x X) --- (1) where N represents the total number of pieces of precipitates and inclusions per unit area (number of pieces/mm2), and X represents the particle diameter (μm) of precipitates and inclusions; and a method for producing the copper alloy, which comprises, subsequent to melting and casting, cooling the cast product at a cooling rate of 0.5 DEG C/s or more at least in a temperature region from the temperature of the cast product immediately after casting to 450 DEG C. It is desirable that, after the above cooling, the product is further subjected to a working treatment in a temperature region of 600 DEG C or lower and then to a heat treatment for 30 seconds or longer in a temperature region of 150 to 750 DEG C, and, more desirably, the working and heating treatments are carried out two or more times.

Description

2005385% 九、發明說明 【發明所屬之技術領域】 本發明係關於一種銅合金及製造方法,不必進行熔體 化處理而可廉價地製造,而且機械性質及電性傳導度均優 異。該銅合金的用途,可舉出爲電力電子零件、安全工具 電力電子零件方面,例如有下列零件。在電子領域 φ 中,可舉出例如··個人電腦用連接器、半導體插座、拾光 器、同軸連接器、1C檢查器銷等。而在通訊領域中,可 舉出例如:.行動電話零件(連接器、電池端子、天線零 件)、海底中繼器框體、交換機用連接器等。在汽車領 域’可舉出例如:各種開關、微型馬達、膜片、各種端子 類等之種種電裝零件。在航太領域,可舉出例如··飛機用 降落齒輪等。在醫療·分析機器儀器領域中,可舉出例 如:醫療用連接器、產業用連接器等。在家電領域中,可 Φ 舉出例如:空調等家電製品用電驛、遊戲機用拾光器、卡 片媒體連接器等。 安全工具方面,具有例如在彈藥庫或煤礦坑等由火花 點火而有爆炸之危險性的場所所使用的控掘棒或扳手、手 搖吊車、鎚子、螺絲起子、鉗子、剪鉗等之工具。 【先前技術】 先前技術上,作爲使用於上述之電力電子零件的銅合 金方面,習知是利用鈹(Be)之時効析出而強化作爲目的之 2005385^2005385% IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to a copper alloy and a manufacturing method, which can be manufactured inexpensively without performing a melt treatment, and has excellent mechanical properties and electrical conductivity. Examples of the use of the copper alloy include power electronic parts, safety tools, and power electronic parts. For example, the following parts can be used. Examples of the electronic field φ include personal computer connectors, semiconductor sockets, optical pickups, coaxial connectors, 1C inspector pins, and the like. In the field of communications, for example: mobile phone parts (connectors, battery terminals, antenna parts), subsea repeater housings, switch connectors, and the like. In the field of automobiles, various types of electrical components such as various switches, micromotors, diaphragms, and various terminals are mentioned. In the aerospace field, for example, ... landing gears for airplanes and the like. Examples of medical and analytical equipment include medical connectors and industrial connectors. In the field of home appliances, Φ includes, for example, electrical appliances for home appliances such as air conditioners, optical pickups for game machines, and card media connectors. In terms of safety tools, there are tools such as digging rods or wrenches, hand-operated cranes, hammers, screwdrivers, pliers, cutters, etc. used in places where there is a danger of explosion due to spark ignition, such as ammunition depots or coal mine pits. [Prior art] In the prior art, as a copper alloy used in the above-mentioned power electronic parts, it is conventionally used to strengthen the purpose of precipitation of beryllium (Be) 2005385 ^

Cu-Be合金’該合金中含有相當量的Be。該合金,在抗 拉強度及導電率雙方均很優異,因此廣泛地被使用作爲彈 簧用材料等。然而,Cu-Be合金的製造過程及將該合金加 工製成各種零件的過程中,會產生B e氧化物。Cu-Be alloy 'This alloy contains a considerable amount of Be. Since this alloy is excellent in both tensile strength and electrical conductivity, it is widely used as a material for springs and the like. However, during the manufacturing process of Cu-Be alloy and the processing of this alloy into various parts, Be oxide is generated.

Be是僅次於Pb5 Cd對環境有害的物質。尤其,在習 知的Cu-Be合金中含有相當量的Be,因此在銅合金的製 造、加工中,必須設置B e氧化物之處理過程,因而造成 φ 製造成本上昇、且造成電力電子零件的回收過程中之問 題。故,Cu-Be合金是突顯環境問題之有問題的材料。因 此,業界期望著:儘可能地降低B e等之對環境有害的元 素,並使抗拉強度及導電率兩方均優異的材料出現。 在特許文献1中,提案有被稱爲柯爾森(Colson)系之 可析出Ni2 Si的銅合金。該柯爾森系合金,其抗拉強度爲 750〜820MPa、導電率爲40%左右,在不含有Be等之對 環境有害之元素的合金之中,抗拉強度及導電率算是比較 φ 平衡者。 然而,該合金在其高強度化及高導電率化之任何一項 均有界限,如下面所示在製品變化上仍有問題。該合金爲 由於Ni2 S i之析出而具有時効硬化性者。然後,當降低Ni 及Si之含有量而提高導電率時,會使抗拉強度顯著地降 低。另一方面,即使爲了增加Ni2Si之析出量而將Ni及 Si增量之時,抗拉強度之上昇亦有界限,而且導電率亦 顯著地降低。因此,柯爾森系合金,在抗拉強度高的領域 及導電率高的領域之抗拉強度和導電率的平衡變差,進而 2005385¾^ 製品的變化範圍變成狹小。此乃由於下列原因所致。 合金的電阻(或者,其反數爲導電率)是由電子散亂所 決定者,視固熔於合金中的元素種類而有大的變動。固熔 於合金中的Ni,電阻値顯著地上昇(導電率顯著地降低), 因此在上述的科爾森系合金中,Ni增量時則導電率降 低。另一方面,銅合金的抗拉強度,是由時効硬化作用而 獲得者。析出物的量越多,並且析出物越微細地分散時, φ 抗拉強度就越提高。在科爾森系合金之情況,析出粒子僅 爲Ni2Si之故,因此無論在析出量之面,或分散狀態之 面,在高強度化上均有界限。 在特許文献2中,揭示有:包含Cr,Zr等之元素,且 規定表面硬度及表面粗度之線接合性良好的銅合金。如該 實施例中所記載者,該銅合金是以熱軋及熔體化處理爲前 提而被製造者。 但是,進行熱軋時,爲了防止熱裂或爲了除垢,需要 φ 表面加工,故良率降低。並且,在大氣中被加熱之情形很 多,因而使S i、M g、A1等之活性的添加元素容易氧化。 因此,產生的粗大之內部氧化物,會招致最終製品的特性 劣化等,問題很多。又,在熱軋及熔體化處理時,需要巨 大的能量。因而,在引用文献2中記載的銅合金,是以熱 軋及熔體化處理作爲前提,從製造成本的降低及省能源的 觀點有問題,且招來由粗大之內部氧化物的產生所引起的 製品特性(除了抗拉強度及導電率以外,尙有折曲加工或 疲勞特性等)劣化的問題。 2005385^ 另一方面’上述之安全工具用材料方面,被要求可與 工具鋼匹敵的機械性質,例如強度或耐磨耗性等,且不可 產生成爲爆炸原因之火花,即耐火花產生性必須優異。因 此’即使安全工具用材料,亦大多使用高熱傳導性的銅合 金’尤其是大多以鈹(Be)之時効析出強化爲目的之Cu-Be 合金。如上所述’雖然儘管Cu-Be合金是爲在環境上之問 題很多的材料,但是Cu-Be合金大多作爲安全工具用材料 φ 而使用,是有下列理由。 第 1圖是顯示銅合金的導電率[IACS(%)]與熱傳導率 [TC(W/m · K)]之關係。如第1圖所示,兩者大致爲1 : 1 的關係,提高導電率[IACS(%)]即是提高熱傳導率 [TC(W/m · K)] ’換言之,提高耐火花產生性並不影響其 它。在工具之使用時,由於打擊等而施加急激的力量時, 火花的產生是由於衝擊等產生的熱而使合金中之特定成分 燃燒所引起。如非特許文献1所記載者,鋼之熱傳導度爲 φ 低至銅之熱傳導度的1/5,因此容易發生局部的溫度上 昇。鋼含有C,因而引起「C + 〇2— C02」之反應,故產生 火花。事實上,在不含有C之純鐵中,不產生火花是爲周 知。其它容易產生火花的金屬,是爲Ti或Ti合金。這是 因爲:Ti之熱傳導度爲極低至銅之熱傳導度的1/20,而 且,會引起「丁丨+ 02—丁丨02」之反應。而,第1圖是整理 特許文献2所示之資料者。 但是,如上述,導電率[IACS(%)]與熱傳導率 [TC(W/m · K)]是平衡的關係,兩者同時提高極爲困難, 2005385^ 白知上如工具鋼之一方面具有局抗拉強度,一方面具備充 分咼的熱傳導率TC的銅合金方面,僅有上述的Cu-Be合 金而已。 特許文献1 :日本特許第2572042號公報 特許文献2 :日本特許第2 7 1 4 5 6 1號公報 非特許文献1 :工業加熱,ν〇1·36,Ν〇·3(1999)日本工 業爐協會發行,第59頁 φ 非特許文献1 :伸銅品資料手冊,日本平成9年8月 1日,日本伸銅協會發行,第328〜355頁 【發明內容】 本發明欲解決之課題 本發明之第1目的,在提供一種銅合金,其製品變化 豐富,延展性及加工性亦很優秀,並且安全工具材料上要 求的性能,即熱傳導度、耐磨耗性及耐火花產生性亦優 • 異。本發明之第2目的,在提供上述銅合金之製造方法。 所謂「製品變化豐富」,是指藉由將添加量及/或製 造條件進行微調整時,可將導電率及抗拉強度之平衡,調 整成:從與Cu-Be合金同等程度或其以上之高等級,到與 先前技術上周知的銅合金同樣程度的低等級之意。 而,所謂「將導電率及抗拉強度之平衡,調整成:從 與Cu-Be合金同等程度或其以上之高等級」,是指具體上 符合下記之(a)式的狀態之意。以下,將該狀態稱爲「導 電率及抗拉強度之平衡極爲良好的狀態」, -9- 2005385紛 TS2 648.06 + 985.48xexp(-0.0513xIACS)…(a) 其中,(a)式中之TS爲抗拉強度(MPa)之意,IACS是 導電率(%)之意。 折曲加工方面,亦與Cu-Be合金等之習知的合金同等 級以上較佳。具體上,在試驗片上以種種的曲率半徑實施 φ 9 0 °之折曲試驗,而測定不產生破裂的曲率半徑R,可由 其與板厚t之比値 B( = B/t)而評價折曲加工性。折曲加工 性之良好的範圍,是作成:使用抗拉強度TS爲800 MPa 以下之板材時可符合2·0者,而抗拉強度TS爲超過 8 00 MPa以上之板材,則作成可符合下記之(b)式者。 4 1.2686-39.4583xexp[-{(TS-61 5.675)/2358.08}2]··· (b) φ 在作爲安全工具之銅合金中,除了如上述般之抗拉強 度TS及導電率iACS之特性以外,亦被要求耐磨耗性。 從而,在安全工具用銅合金之情況,耐磨耗性上與工具鋼 爲同等之等級亦爲必要。具體上,在室溫下硬度作成維氏 硬度2 5 0以上時,耐磨耗性可變成優異。 解決課題之手段 本發明是以下記之(Α)〜(C)所示之銅合金及下記之(D) 所示之銅合金的製造方法作爲要旨。 -10- 2005385% (A) 從 Zn、Sn、Ag、Mn、Fe、Co、Al、Ni、Si、Be is second to Pb5 Cd harmful to the environment. In particular, the conventional Cu-Be alloy contains a considerable amount of Be. Therefore, in the manufacture and processing of copper alloys, a treatment process of Be oxide must be set up, which results in an increase in φ manufacturing cost and power electronics components. Problems during recycling. Therefore, Cu-Be alloys are problematic materials that highlight environmental issues. Therefore, the industry is expecting that materials that are harmful to the environment such as Be are reduced as much as possible, and materials that are excellent in both tensile strength and electrical conductivity appear. Patent Document 1 proposes a copper alloy capable of precipitating Ni2Si, which is called a Colson system. This Coulson-based alloy has a tensile strength of 750 to 820 MPa and a conductivity of about 40%. Among alloys that do not contain environmentally harmful elements such as Be, the tensile strength and electrical conductivity are considered to be relatively φ balanced. . However, this alloy has limitations in terms of both its high strength and high electrical conductivity, and there are still problems with product changes as shown below. This alloy is aging-hardenable due to the precipitation of Ni2S i. Then, when the content of Ni and Si is decreased to increase the electrical conductivity, the tensile strength is significantly reduced. On the other hand, even when Ni and Si are increased in order to increase the amount of Ni2Si deposited, there is a limit to the increase in tensile strength, and the conductivity is significantly reduced. Therefore, in the field of high tensile strength and high conductivity, the balance of the tensile strength and the conductivity of the Colson-based alloy becomes worse, and the variation range of 2005385¾ ^ products becomes narrow. This is due to the following reasons. The resistance of the alloy (or its inverse number is the conductivity) is determined by the scattering of electrons, which varies greatly depending on the type of element solid-melted in the alloy. As Ni solid-melted in the alloy, the resistance 値 increases significantly (conductivity decreases significantly), so in the above-mentioned Coulson-based alloys, the conductivity decreases when Ni increases. On the other hand, the tensile strength of copper alloys is obtained by aging hardening. The larger the amount of precipitates and the finer the precipitates are dispersed, the higher the φ tensile strength is. In the case of a Coulson-based alloy, the precipitated particles are only Ni2Si, so there is a limit in terms of high strength both in terms of the amount of precipitates and in the state of dispersion. Patent Document 2 discloses a copper alloy that contains elements such as Cr, Zr, and the like, and has good wire bonding properties with predetermined surface hardness and surface roughness. As described in this example, the copper alloy was manufactured on the premise of hot rolling and melt treatment. However, in hot rolling, to prevent hot cracking or descaling, φ surface processing is required, so the yield is reduced. In addition, there are many cases where it is heated in the atmosphere, so that active additive elements such as Si, Mg, and A1 are easily oxidized. Therefore, the generated coarse internal oxides may cause problems such as deterioration of the properties of the final product. In addition, a huge amount of energy is required during hot rolling and melt treatment. Therefore, the copper alloy described in Reference 2 is premised on hot rolling and melt treatment, which has problems from the viewpoint of reduction in manufacturing costs and energy saving, and invites the generation of coarse internal oxides. The product characteristics (in addition to tensile strength and electrical conductivity, there are problems such as bending processing or fatigue characteristics) are deteriorated. 2005385 ^ On the other hand, the above-mentioned materials for safety tools are required to be comparable to tool steel in mechanical properties, such as strength or abrasion resistance, and must not generate sparks that cause explosions, that is, they must have excellent spark resistance . Therefore, "even high-conductivity copper alloys are used even for safety tool materials", especially Cu-Be alloys for the purpose of aging precipitation strengthening of beryllium (Be). As described above, although the Cu-Be alloy is a material having many environmental problems, the Cu-Be alloy is mostly used as a safety tool material φ for the following reasons. Figure 1 shows the relationship between the electrical conductivity [IACS (%)] and the thermal conductivity [TC (W / m · K)] of a copper alloy. As shown in Figure 1, the relationship between the two is approximately 1: 1. Increasing the electrical conductivity [IACS (%)] means increasing the thermal conductivity [TC (W / m · K)] 'In other words, improving the spark resistance and Does not affect other. When a tool is used, when a sharp force is applied due to a shock or the like, sparks are generated due to the combustion of a specific component in the alloy due to the heat generated by the shock or the like. As described in Non-Patent Document 1, the thermal conductivity of steel is as low as / 5 as low as 1/5 of the thermal conductivity of copper, so local temperature rise is prone to occur. Steel contains C, which causes a reaction of "C + 〇2-C02", so sparks are generated. In fact, in pure iron that does not contain C, it is known that no spark is generated. Other metals that are prone to sparks are Ti or Ti alloys. This is because: the thermal conductivity of Ti is extremely low to 1/20 of the thermal conductivity of copper, and it will cause a reaction of "ding 丨 + 02—ding 丨 02". In addition, the first figure is a person who arranges the materials shown in Patent Document 2. However, as mentioned above, the electrical conductivity [IACS (%)] and the thermal conductivity [TC (W / m · K)] are in a balanced relationship, and it is extremely difficult to improve the two at the same time. 2005385 The local tensile strength is, on the one hand, a copper alloy having sufficient thermal conductivity TC on the one hand, and only the above-mentioned Cu-Be alloy. Patent Document 1: Japanese Patent No. 2572042 Patent Document 2: Japanese Patent No. 2 7 1 4 5 6 1 Non-Patent Document 1: Industrial Heating, ν〇 · 36, No. 3 (1999) Japanese Industrial Furnace Issued by the Association, p. 59 φ Non-licensed Document 1: Handbook of copper drawing products, Japan August 1, 2009, Japan Copper Drawing Association, pages 328 ~ 355 [Contents of the Invention] Problems to be Solved by the Invention The Invention The first objective is to provide a copper alloy with a wide variety of products, excellent ductility and processability, and the required properties of safety tool materials, namely thermal conductivity, wear resistance and spark resistance. • different. A second object of the present invention is to provide a method for producing the above-mentioned copper alloy. The so-called "rich product variation" means that the balance between conductivity and tensile strength can be adjusted by fine-adjusting the amount of addition and / or manufacturing conditions to: High grade means low grade to the same degree as the copper alloy known in the prior art. The term "adjust the balance between electrical conductivity and tensile strength to a level equal to or higher than that of Cu-Be alloy" means a state that specifically conforms to the formula (a) below. Hereinafter, this state is referred to as "a state in which the balance between the electrical conductivity and the tensile strength is extremely good." -9- 2005385 TS2 648.06 + 985.48xexp (-0.0513xIACS) ... (a) where TS in the formula (a) For the meaning of tensile strength (MPa), IACS means for electrical conductivity (%). In terms of bending, it is also preferred to be equivalent to or higher than a conventional alloy such as a Cu-Be alloy. Specifically, a bending test of φ 90 ° is performed on the test piece with various curvature radii, and the curvature radius R that does not cause cracking is measured. The folding can be evaluated by the ratio 値 B (= B / t) to the plate thickness t. Bend processability. The range of good bending workability is as follows: when using a plate with a tensile strength TS of 800 MPa or less, it can meet 2 · 0, and a plate with a tensile strength TS of more than 800 MPa, can be made to meet the following (B). 4 1.2686-39.4583xexp [-{(TS-61 5.675) /2358.08} 2] ... (b) φ In the copper alloy as a safety tool, except for the characteristics of tensile strength TS and conductivity iACS as described above In addition, abrasion resistance is also required. Therefore, in the case of a copper alloy for safety tools, it is necessary to have the same level of wear resistance as tool steel. Specifically, when the Vickers hardness is 250 or more at room temperature, the abrasion resistance can be excellent. MEANS TO SOLVE THE PROBLEM This invention is the summary of the manufacturing method of the copper alloy shown by following (A)-(C) and the copper alloy shown by (D) below. -10- 2005385% (A) From Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si,

Mo、V、Nb、Ta、W、Ge、Te及Se之中選擇的1種或2 種以上之合計〇·1〜2〇質量% ’其餘爲銅及雜質所形成’存 在於合金中的析出物及夾雜物中的粒徑爲1 # m以上者的 粒徑、及析出物及夾雜物之合計個數’是符合下列(1)式 所示之關係, • logNS 0.4742 + 17.629xexp(-0.1133xX)..-(l) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑m)。 (B) 以質量%表示,由含有:從Ti: 0·01〜5°/()、Zr: 0.01〜5%及Hf: 0.01〜5%之中選擇的任何1種、及從Zn、Mo, V, Nb, Ta, W, Ge, Te, and Se. One or two or more selected in total 0.1 to 20% by mass 'The rest is formed by copper and impurities' Precipitation existing in the alloy The particle size of the particles and inclusions is 1 # m or more, and the total number of precipitates and inclusions is in accordance with the relationship shown in the following formula (1), • logNS 0.4742 + 17.629xexp (-0.1133 xX) ..- (l) where N is the total number of precipitates and inclusions per unit area (pieces / mm2), and X is the particle size m of the precipitates and inclusions. (B) In terms of mass%, it contains any one selected from Ti: 0 · 01 to 5 ° / (), Zr: 0.01 to 5%, and Hf: 0.01 to 5%.

Sn、Ag、Μη、Fe、Co、Al、Ni、Si、Mo、V、Nb、Ta、 W、Ge、Te及Se之中選擇的1種或2種以上之合計 φ 0.01〜20 %,其餘爲銅及雜質,所形成,存在於合金中的析 出物及夾雜物中的粒徑爲1 A m以上者的粒徑、及析出物 及夾雜物之合計個數,是符合下列(1)式所示之關係’ logNS 0.4742 + 17.629xexp(-0.11 33xX)…(1) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑(从m)。 (C)以質量%表示時,由含有:C r : 0 · 0 1〜5 %、及從 -11 - 2005385#Sn, Ag, Mη, Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te, and Se. One or two selected in total φ 0.01 to 20%, the rest It is formed of copper and impurities, and the particle size of the precipitates and inclusions in the alloy with a particle size of 1 A m or more, and the total number of precipitates and inclusions are in accordance with the following formula (1) The relationship shown 'logNS 0.4742 + 17.629xexp (-0.11 33xX) ... (1) where N is the total number of precipitates and inclusions per unit area (pieces / mm2), and X is the precipitate and inclusions Particle size (from m). (C) When expressed in mass%, it contains: C r: 0 · 0 1 to 5%, and from -11-2005385 #

Zn、Sn、Ag、Μη、Fe、Co、Al、Ni、Si、Mo、V、Nb、Zn, Sn, Ag, Mη, Fe, Co, Al, Ni, Si, Mo, V, Nb,

Ta、W、Ge、Te及Se之中選擇的1種或2種以上之合計 0.0 1〜20%,其餘爲銅及雜質,所形成,存在於合金中的析 出物及夾雜物中的粒徑爲1 # m以上者的粒徑、及析出物 及夾雜物之合計個數,是符合下列(1)式所示之關係’ logN^ 0.4742 + 1 7.629xexp(-〇-l 133xX)··· (1) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑m)。 從上述之(A)到(C)之任一項所記載之銅合金’亦可含 有:又從Mg、Li、Ca及稀土類元素之中選擇的1種或2 種以上之合計0.001〜2質量%,及/或,又從P、B、Bi、One, two or more selected from Ta, W, Ge, Te, and Se total 0.0 1 to 20%, and the rest are copper and impurities. The particle size of precipitates and inclusions formed in the alloy. The particle size of 1 # m or more and the total number of precipitates and inclusions are in accordance with the relationship shown in the following formula (1) 'logN ^ 0.4742 + 1 7.629xexp (-〇-l 133xX) ... (1) Among them, N refers to the total number of precipitates and inclusions per unit area (pieces / mm2), and X refers to the particle size m of the precipitates and inclusions. The copper alloy described in any one of (A) to (C) above may also contain: one or two or more selected from Mg, Li, Ca, and rare earth elements in total 0.001 to 2 Mass%, and / or, from P, B, Bi,

Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po,

Sb、Au、Ga、S、Cd、As及Pb之中選擇的1種或2種以 φ 上之合計0.001〜3質量%,以取代一部分的銅。或者亦可 又含有0.1〜5質量%之Be。該等之合金,在至少1種的合 金元素之微小領域中,平均含有量之最大値與平均含有量 之最小値的比是爲1 · 5以上較佳。並且,該等之合金的結 晶粒徑是爲〇.〇1〜35 // m爲較佳。 (D)將具有上述(A)〜(C)之任何一項所記載之化學組成 的銅合金熔製、鑄造所獲得的鑄片,從至少剛鑄造後所獲 得的鑄片溫度到4 5 0 °C爲止之溫度域中,以〇 . 5。(: /秒以上 的冷卻速度冷卻,其中:銅合金是存在於合金中的析出物 -12- 2005385# 及夾雜物中的粒徑爲1 # m以上者的粒徑、及析出 雜物之合計個數,是符合下列(1)式所示之關係, logN^ 0.4742 + 17.629xexp(-〇.1133xX)··· (1) 其中,N是指析出物及夾雜物之每單位面積的 數(個/mm2),X是指析出物及夾雜物之粒徑(# m)。 於上述之冷卻後,在60(TC以下的溫度域中之 或者更在150〜750°C之溫度域中保持30秒以上的 爲較佳。在6 0 0 °C以下的溫度域中之加工,及在1 °C之溫度域中保持3 0秒以上的熱處理,亦可被進 次,在最後的熱處理之後,亦可在600°C以下的溫 進行加工。 本發明中之所謂析出物,是指金屬或銅及添加 化合物,或者添加元素之化合物,例如,Ti添加 % Cu4Ti析出,Zr添加材中爲Cu9Zr2析出,並且,右 加劑中爲金屬Cr析出。並且,所謂夾雜物,是指 化物、金屬碳化物、金屬氮化物等。 【實施方式】 以下,將說明本發明之實施形態。而’在以 中,各元素之含有量的「%」,是指「質量%」之】 本發明之銅合金方面 物及夾 合計個 加工, 熱處理 50〜750 行複數 度域中 元素的 材中爲 :Cr添 金屬氧 下說明 -13- 2005385% 化學組成方面 本發明之銅合金,具有:包含有從Zn、Sn、Ag、 Μη、Fe、Co、A1、Ni、Si、Mo、V、Nb、Ta、W、Ge、 Te及Se(以下,該等元素被稱爲「第1群元素」)之中選 擇的1種0.1〜20質量%,或者2種以上之合計0.1〜20質 量%,其餘爲銅及雜質所形成的化學組成。 該等之元素,任何一個是爲可維持強度及導電率的平 φ 衡,並且具有提高耐蝕性及耐熱性的効果。該効果,是在 該等之元素合計爲含有0.1 %以上之時可被發揮。但是, 當該等元素之含有量太多之情況時,會使導電率降低。從 而,當含有該等元素之情況時,必須作成1種或2種以上 之合計含有量爲0.1〜20 %之範圍。尤其,Ag及Sn藉由微 細析出而形成高強度化,因此最好積極地加以利用。而, 當含有下述之第2元素之情況,可由第2元素而確保強 度,因此可使第1元素的下限値下降到〇 · 〇 1 %。 φ 本發明的合金,可爲含有從 Ti : 0.01〜5%、Zr : 0·01〜5%及Hf: 0·01〜5%之中選擇的任何 1種,或含有 Cr: 0.01〜5%,以取代銅之一部分。以下,這些元素被稱 爲「第2群元素」。 從 Ti : 0·01 〜5%、Zr : 0.01 〜5% 及 Hf : 0.0^5% 之中 選擇的任何1種Ti、Zr或Hf ’任何一個均爲提高抗拉強 度之有効元素,因此本發明之銅合金可含有該等元素之任 何1種。強度提筒的効果’在該等兀素之含有量爲0.01% 以上之情況變成顯著。但是’該含有量超過5%之時,會 -14- 2005385¾ 使強度上昇者的導電性劣化。又’在鑄造時會招致Ti、 Zr或Hf之偏析,而難以獲得均質的鑄片,在其後之加工 時容易發生破裂或缺口。從而,含有Zr及Hf之任何1種 之情況的含有量,較佳爲作成〇 · 0 1〜5 · 0 %。爲了獲得極良 好的抗拉強度及導電率之平衡,使該等元素被含有〇 · 1 % 以上之時更佳。One or two of Sb, Au, Ga, S, Cd, As, and Pb are selected to replace a part of copper with a total of 0.001 to 3% by mass in φ. Alternatively, it may contain Be in an amount of 0.1 to 5% by mass. These alloys preferably have a ratio of the maximum average content to the minimum content of the minimum content of at least one type of alloy element in the micro area of at least one type of alloy element, which is preferably 1.5 or more. The crystal grain size of these alloys is preferably from 0.01 to 35 // m. (D) Smelt obtained by melting and casting a copper alloy having the chemical composition described in any one of (A) to (C) above, from at least the temperature of the slab obtained immediately after casting to 4 5 0 5。 In the temperature range up to ° C, 0.5. (: Cooling at a cooling rate of more than / s, where: copper alloy is precipitates present in the alloy-12- 2005385 # and the particle size of inclusions with a particle size of 1 # m or more, and the total of precipitated impurities The number is in accordance with the relationship shown in the following formula (1), logN ^ 0.4742 + 17.629xexp (-〇.1133xX) (1) where N is the number per unit area of precipitates and inclusions ( (Mm / mm2), X refers to the particle size (#m) of precipitates and inclusions. After the above cooling, keep in the temperature range of 60 (TC or below) or more in the temperature range of 150 ~ 750 ° C More than 30 seconds is preferred. Processing in a temperature range below 600 ° C, and heat treatment for more than 30 seconds in a temperature range of 1 ° C can also be performed after the final heat treatment It can also be processed at a temperature below 600 ° C. The so-called precipitates in the present invention refer to metals or copper and added compounds, or compounds of added elements, for example, Ti is added to Cu4Ti, and Zr is added to Cu9Zr2. Precipitation, and metal Cr in the right admixture. In addition, the so-called inclusions refer to compounds and metal carbon. Compounds, metal nitrides, etc. [Embodiments] Hereinafter, embodiments of the present invention will be described. "In" the content of each element "%" means "mass%"] The copper alloy of the present invention The material and the material are processed in a total amount of 50 to 750 rows of elements in the multiple-degree domain. Cr is added to the metal under oxygen. -13- 2005385% Chemical composition The copper alloy of the present invention includes: Select from Sn, Ag, Mn, Fe, Co, A1, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te, and Se (hereinafter, these elements are referred to as "group 1 elements") 0.1 to 20% by mass of one kind, or 0.1 to 20% by mass of two or more kinds in total, and the remainder is a chemical composition formed by copper and impurities. Any of these elements is a flat φ that can maintain strength and conductivity. It has the effect of improving the corrosion resistance and heat resistance. This effect can be exerted when the total content of these elements is 0.1% or more. However, when the content of these elements is too large, Reduce the conductivity. Therefore, when containing these elements In this case, the total content of one or two or more kinds must be in the range of 0.1 to 20%. In particular, Ag and Sn are formed by fine precipitation to increase strength, so it is best to use them actively. In the case of the second element described below, the strength can be ensured by the second element, so the lower limit 値 of the first element can be reduced to 0.001%. Φ The alloy of the present invention may contain Ti: 0.01 to 5% , Zr: 0. 01 to 5% and Hf: 0. 01 to 5%. Any one selected, or containing Cr: 0.01 to 5% to replace a part of copper. Hereinafter, these elements are referred to as "second group elements". Any one of Ti, Zr, or Hf 'selected from Ti: 0 · 01 to 5%, Zr: 0.01 to 5%, and Hf: 0.0 ^ 5% is an effective element for improving tensile strength. The copper alloy of the invention may contain any one of these elements. The effect of the strength raising cylinder becomes significant when the content of these elements is 0.01% or more. However, when the content exceeds 5%, -14-2005385¾ deteriorates the conductivity of the person with increased strength. In addition, segregation of Ti, Zr, or Hf is caused during casting, and it is difficult to obtain a homogeneous slab, and cracking or chipping is likely to occur during subsequent processing. Therefore, the content in the case where either one of Zr and Hf is contained is preferably 0. 0 1 to 5. 0%. In order to obtain a very good balance of tensile strength and electrical conductivity, it is better to make these elements more than 0.1%.

Cr : 0.0 1〜5 % φ Cr並非使電阻上昇,而是提高抗拉強度上有効的元 素。爲了獲得該効果,以含有〇.〇1 %以上較佳。尤其,爲 了獲得與Cu-Be合金同樣程度或其以上之抗拉強度及導電 率之平衡極爲良好的狀態,以含有〇·1°/◦以上較佳。另一 方面,Cr含有量超過5 %時,金屬Cr會粗大地析出,而 對折曲特性、疲勞特性等有壞的影響。從而,當含有Cr 之情況時,其含有量作成0.01〜5 %爲較佳。 本發明之銅合金,爲了提高其高溫強度爲目的,而含 φ 有從 Mg、Li、Ca及稀土類元素之中選擇的1種 0 · 0 0 1〜2 %,或2種以上之合計0 · 〇 〇 1〜2 %,以取代銅之一 部分時較佳。以下,將該等稱爲「第3群元素」。Cr: 0.0 1 to 5% φ Cr does not increase resistance but is an effective element in improving tensile strength. In order to obtain this effect, the content is preferably 0.01% or more. In particular, in order to obtain a state where the balance of tensile strength and electrical conductivity is the same as or higher than that of the Cu-Be alloy, it is preferable to contain 0.1 ° / ◦ or more. On the other hand, when the Cr content exceeds 5%, the metallic Cr is coarsely precipitated, which adversely affects the bending characteristics and fatigue characteristics. Therefore, when Cr is contained, its content is preferably 0.01 to 5%. In order to improve the high-temperature strength of the copper alloy of the present invention, the copper alloy contains φ, which is selected from Mg, Li, Ca, and rare-earth elements. 0 · 0 0 1 ~ 2%, or a total of 2 or more. · 〇1 ~ 2%, it is better to replace a part of copper. These are hereinafter referred to as "third group elements".

Mg、Li、Ca及稀土類元素,是與銅陣列中的氧原子 結合而產生微細的氧化物,因而提高其高溫強度的元素。 其効果,是在該等之元素的合計含有量爲0.001 %之時變 成顯著。但是,其含有量超過2%之時,有上述効果變成 飽和、而且導電率降低、折曲特性劣化等之問題。從而, 從Mg、Li、Ca及稀土類元素之中選擇的1種或2種以上 -15- 2005385¾ 之合計含有量較佳爲0.001〜2%。而,稀土類元素是 Y及鑭之意,可添加個別元素之單體,並且亦可 Nd。 本發明之銅合金,在以擴大合金澆鑄時之液相線 相線的寬幅(△ T)爲目的時,較佳爲含有從p、B、 Tl、Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、 Sb、Au、Ga、S、Cd、As及 Pb之中選擇的 1種分 φ 0.00 1〜3%,或2種以上之合計爲0.001〜3%,以取代 一部分。As、Pd及Cd是爲有害之元素,因此儘量避 用較佳。以下,將該等稱爲「第4群元素」。而,△ 急冷凝固之情況,雖然由於所謂過冷現象而變大,但 此是考慮熱平衡狀態之△ T作爲目標。 該等之元素,均有使固相線降低而擴大△ T之効 該△ T爲大之時,從澆鑄後到凝固爲止可確保一定時 因此使澆鑄成爲容易,△ T太寬之時,在低溫域的耐 φ 降低,因而在凝固末期會產生破裂,而產生所謂的銲 性。因此,△ T作成在50〜200 °c的範圍較佳。 C、N及Ο是通常作爲雜質而包含的元素。該等 素是與合金中的金屬元素形成碳化物、氮化物及氧化 該等析出物或夾雜物爲微細的話,則與後述之金屬或 添加物之化合物,或添加元素彼此之化合物等之析出 樣地有合金強化的作用,尤其是有將高溫強度提高 用,因此可積極地添加。例如,0具有形成氧化物而 高溫強度的効果。該効果,在含有容易作成Mg、Li 添加 與固 Bi、 P 〇、 別爲 銅之 免使 T在 是在 果。 間, 力會 錫脆 之元 物。 銅及 物同 的作 提局 、Ca 16- 2005385¾ 及稀土類元素、A1,S 1等之氧化物的合金中很容易獲得。 但是,該情況必須選定不殘留固熔氧爲條件。殘留固熔 氧,在氫氣環境下之熱處理時會形成Η2〇氣體’而引起 水蒸汽爆炸,而產生所謂氫症,產生氣泡等而有使製品之 品質劣化之事,因此要注意。 該等元素分別超過1 %之時,會變成粗大析出物或夾 雜物,而降低延展性。因而’須分別限制在1 %以下較 Φ 佳。更佳爲0.1 %以下。並且,Η在合金中作爲雜質而被 包含之時,Η2氣體會殘留於合金中,而成爲壓延瑕疵等 的原因,因此,最好其含有量儘可能地少。Mg, Li, Ca, and rare-earth elements are elements that combine with oxygen atoms in a copper array to generate fine oxides, thereby increasing their high temperature strength. This effect is significant when the total content of these elements is 0.001%. However, when the content exceeds 2%, there are problems that the above-mentioned effects become saturated, the conductivity is lowered, and the bending characteristics are deteriorated. Therefore, the total content of one or two or more selected from Mg, Li, Ca, and rare earth elements is preferably 0.001 to 2%. In addition, the rare earth element means Y and lanthanum, and a monomer of an individual element may be added, and Nd may also be added. When the copper alloy of the present invention is intended to enlarge the width (ΔT) of the liquidus phase line during alloy casting, it is preferred that the copper alloy contains p, B, Tl, Rb, Cs, Sr, Ba, Tc, One of Re, Os, Rh, In, Pd, Sb, Au, Ga, S, Cd, As, and Pb is φ 0.00 1 to 3%, or a total of two or more is 0.001 to 3%. Replace part. As, Pd, and Cd are harmful elements, so avoid them if possible. These are hereinafter referred to as "the fourth group element". On the other hand, in the case of Δ rapid condensation and solidification, although it becomes large due to the so-called supercooling phenomenon, ΔT in consideration of the thermal equilibrium state is taken as a target. These elements all have the effect of lowering the solid phase line and expanding △ T. When △ T is large, it is possible to ensure a certain time from casting to solidification. Therefore, casting is facilitated. When △ T is too wide, The resistance φ in the low-temperature region is reduced, so that cracking occurs at the end of solidification, and so-called weldability occurs. Therefore, it is preferable to make ΔT in the range of 50 to 200 ° C. C, N, and O are elements usually contained as impurities. These elements are carbides, nitrides, and oxides that form metal carbides in the alloy. If the precipitates or inclusions are fine, they are precipitated with compounds of metals or additives described below, or compounds of added elements. The ground has the effect of strengthening the alloy, especially for improving the high temperature strength, so it can be actively added. For example, 0 has the effect of forming an oxide and high temperature strength. This effect is effective when Mg, Li is added, and Bi, P 0, and copper are not added, so that T is effective. In the meantime, the force will be brittle. It is easy to obtain in the alloys of copper and the like, Ca 16-2005385¾ and rare earth elements, oxides of A1, S 1 and so on. However, in this case, it is necessary to select the condition that solid oxide does not remain. Residual solid-melt oxygen will form ’20 gas' during heat treatment in a hydrogen environment and cause water vapor explosion, which will cause so-called hydrogen disease, air bubbles, etc., which may degrade the quality of the product, so be careful. When these elements each exceed 1%, they will become coarse precipitates or inclusions, reducing ductility. Therefore, it is better to limit ’to 1% or less, respectively. It is more preferably 0.1% or less. In addition, when radon is contained as an impurity in the alloy, the radon 2 gas remains in the alloy and causes causes such as rolling defects. Therefore, it is desirable that the content be as small as possible.

Be是在不損及導電率下,對合金之析出強化有貢獻 的元素。爲了獲得其効果,較佳爲含有〇 · 1質量°/。以上。 但是,其含有量超過5 %時,不僅導電率降低,而且延展 性降低而使壓延、折曲加工等之加工性劣化。從而,當含 有Be之情況時,其含有量被作成在0.1〜5%爲較佳。 析出物及夾雜物之合計個數方面 在本發明之銅合金中,存在於合金中之析出物及夾雜 物之中粒徑爲1 μιη以上者的粒徑、及析出物及夾雜物之 合計個數,必須符合下記(1 )式所表示的關係。 logNS 0.4742 + 1 7.629xexp(-0.1133xX)··· (1) 其中,N是指析出物及夾雜物之每單位面積的合計個 -17- 2005385¾ 數(個/mm2),X是指析出物及夾雜物之粒徑(// m)。在(1) 式中,當析出物及夾雜物之粒徑的測定値爲1 · 〇 Mm以上 1 · 5 μ m以下之情況,將X = 1代入,當在「α - 0 · 5」// m以 上「α + 0.5」//m以下之情況,將Χ = α(α是爲2以上之整 數)代入的話即可。 在本發明之銅合金中,藉由將金屬或銅及添加物之化 合物,或添加元素彼此之化合物等之析出物微細地析出之 φ 時,不致降低導電率而可提高強度。此乃利用析出硬化而 提高強度。藉由固熔的Cr、Ti及Zr析出而減少時,可使 銅陣列的導電性接近純銅之導電性。 但是,該等之析出物及金屬氧化物、金屬碳化物、金 屬氮化物等之夾雜物的粒徑爲20 μιη以上粗大地析出之 時,會使延展性降低,例如在對連接器之加工時的折曲加 工或沖切時容易產生破裂或缺口。並且,在使用時對疲勞 特性或耐衝擊性有壞的影響。尤其,在凝固後之冷卻時產 φ 生粗大的Ti-Cr化合物時,在其後之加工過程中容易產生 破裂或缺口。並且,在時効處理過程中硬度過度地增加, 因此妨礙該等析出物等之微細析出,故無法使銅合金高強 度化。如此的問題,在存在於合金中之析出物及夾雜物之 中粒徑爲1 μιη以上者的粒徑、及析出物及夾雜物之合計 個數不符合上述(1)式所表示的關係之時變成顯著。 因此,在本發明中,規定必須將:存在於合金中之析 出物及夾雜物之中粒徑爲1 μιη以上者的粒徑、及析出物 及夾雜物之合計個數符合上述(1 )式所表示的關係,作爲 -18- 2005385¾ 必須條件。較佳之析出物及夾雜物之合計個數,是符合下 記(2)式所表示的關係之情形,更佳爲符合下記(3)式所表 示的關係之情形。而,該等之粒徑、析出物及夾雜物之合 計個數是由實施例中所表示的方法而求得。 logNg 〇.4742 + 7.9749xexp(-〇.1133xX)…(2) logN^ 0.4742 + 6.3579xexp(-〇.1133xX)··· (3) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑(// m)。 至少1種之合金元素的微小領域中平均含有量的最大 値與含有量的最小値之比方面 銅合金中合金元素之濃度相異的領域微細地混雜之組 織,即周期地產生濃度變化時,可抑制各元素之微擴散, 而抑制粒界移動,因此有容易獲得微細結晶粒組織之効 φ 果。其結果,依照所謂霍爾-佩吉(Hall-Petch)法則,可提 高銅合金之強度·延展性。所謂微小領域,是指由0.1〜1 Μ m徑所形成的領域而言,實質上是指對應於X光分析時之 照射面積的領域而言。 而,本發明中所謂合金元素濃度相異的領域,是爲以 下之2種類。 基本上雖然具有與銅相同的面中心立方(fee)構造,但 是爲合金元素濃度相異的狀態。因爲合金元素濃度不同, 一方面有相同的fee構造,一方面一般的格子常數不同, -19- 2005385^ 當然加工硬化的程度不同。 f C C母相中微細的析出物爲分散的狀態。因爲合金兀 素濃度不同,經過加工·熱處理後之析出物的分散狀況當 然不同。 所謂微小領域中的平均含有量,是指X光分析時定 焦於一定之1 // m以下之線束徑時之分析面積上的値,即 該領域中平均値之意。爲X光分析的話,較佳爲具有場 φ 發射型之電子槍的分析裝置。分析手段方面,較佳爲具有 濃度周期之1/5以下,更佳爲1/10之分解能的分析手 法。其理由爲,分析領域相對於濃度周期爲過大之時,全 體被平均化時難以表現濃度差之故。一般可使用探針徑爲 1 # m左右的X光分析法而測定。 決定材料特性者是爲母相中合金元素濃度及微細析出 物’本發明中是將含有微細析出物之微小領域的濃度差作 爲問題。從而,來自於1 // m以上之粗大析出物或粗大夾 # 雜物的信號是爲外亂要因。但是,欲從工業材料將粗大析 出物或粗大夾雜物完全除去是很困難,在分析時,必須將 來自上述的粗大析出物或粗大夾雜物的外亂要因除去。因 此,作成下列方式。 即,首先,雖然亦與材料有關,但是使用探針徑爲1 左右的X光分析裝置而進行分析,而把握濃度的周期 構造。如上所述,使探針徑成爲濃度周期之1 /5以下般地 而決定分析手法。其次,決定:使周期出現3次程度以上 之充分長度的線分析長度。在該條件下進行m次(較佳爲 -20- 2005385% 1 〇次以上)之X光分析,根據個別X光分析結果而決定濃 度之最大値及最小値。 雖然最大値及最小値之數量爲m,但是從個別値之大 者去除2成而平均化。根據以上方式,可將上述粗大析出 物·夾雜物的外亂要因除去。 藉由上述之除去外亂要因的最大値及最小値之比,而 求出濃度比。而,濃度比只要求出具有1 # m程度以上的 φ 周期之濃度變化的合金元素即可,不考慮局部亞穩分解 (spino dal decomposition)或如微細析出物之 1 Onm程度以 下的原子等級的濃度變化。 將對藉由合金元素微細地分佈而提高延展性之理由稍 作詳細說明。產生合金元素的濃度變化時,在高濃度部分 及低濃度部分中材料的固熔硬化之程度,或如上述析出物 之分散狀況不同,因此兩部分中的機械性質有差異。在如 此的材料變形中,首先,相對地軟之低濃度部分被加工硬 • 化,其次相對地硬之高濃度部分的變形開始。換言之,材 料全體中產生複數次之加工硬化,因此例如當拉伸變形之 情況變成顯示高的伸長,而出現另外之延展性提高的効 果。如此,在產生合金元素之周期的濃度變化之合金中, 可一方面保持導電率與抗拉強度的平衡,一方面可發揮折 曲加工時等有利的高延展性。 而,電阻(導電率之反數),主要是電子移動對應於由 固熔元素之散亂所引起的降低現象,對如結晶粒界之宏觀 缺陷幾乎沒有影響,因此不致由於上述細粒組織而使導電 -21 - 2005385% 率降低。 該等之効果,在母相中至少1種合金元素之微小領域 中平均含有量之最大値及最小値的比(以下只稱爲「濃度 比」)爲1 · 5以上之情形時變成顯著。濃度比雖然上限並 未特別訂定,但是濃度比過大時,除了恐無法保持Cu合 金所具有的f c c構造以外,電氣化學特性的差過大,而有 出現容易引起局部腐蝕等的弊害之可能性。從而,濃度比 φ 較佳爲作成20以下,更佳爲作成1 〇以下。 (d)結晶粒徑方面 將銅合金之結晶粒徑作成微細之時,在高強度化方面 有利,且延展性亦提高,折曲加工性等亦提高。但是,結 晶粒徑降低到0.01 μηι時,高溫強度變成易降低,當超過 3 5 μιη時,延展性降低。從而,結晶粒徑爲〇.〇1〜3 5 μπι時 較佳。更佳之粒徑爲〇·〇5〜30μπι。最佳爲0.1〜25μιη。 φ 本發明之銅合金的製造方法方面 在本發明之銅合金中,妨礙金屬或銅及添加元素的化 合物,或者添加元素之化合物等的微細析出之金屬氧化 物、金屬碳化物、金屬氮化物等之夾雜物,在鑄片之剛凝 固後的時點容易產生。此種夾雜物,假如在鑄造後實施熔 體化處理,即使提高該熔體化溫度時亦難以固熔化。使用 高溫的熔體化處理,只會招致夾雜物的凝集、粗大化。 因而,本發明之銅合金的製造方法中,是藉由將具有 上述化學組成的銅合金熔製、鑄造所獲得的鑄片,從至少 -22- 2〇〇5385秘 剛鑄造後所獲得的鑄片溫度到45 0 °C爲止之溫度域中,以 〇 · 5 °c /秒以上的冷卻速度冷卻時’存在於合金中的析出物 及夾雜物中的粒徑爲1 // m以上者的粒徑、及析出物及夾 雜物之合計個數,是符合下列(1)式所示之關係’ logN^ 0.4742 + 17.629xexp(-〇.1133xX)··· (1) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑m)。 在該冷卻後,在600°C以下的溫度域中加工’或者更 可使在1 5 0〜7 5 0 °C之溫度域中實施保持3 0秒以上的熱處 理,被進行複數次。並且,最後的熱處理之後’亦可在 600 °C以下的溫度域中進行加工。 至少從剛鑄造後的鑄片溫度到45 0 °C爲止之溫度域中 的冷卻速度:〇.5°C /秒以上 金屬或銅及添加元素的化合物,或者添加元素之化合 物等之析出物,是在2 8 0 °C以上的溫度域中產生。尤其’ 當剛鑄造後的鑄片溫度到45 0 °C爲止之溫度域中的冷卻速 度爲慢之時,金屬氧化物、金屬碳化物、金屬氮化物等之 夾雜物粗大地產生,其粒徑爲20 μπι以上,更有達到數百 μιη者。並且,上述之析出物亦被粗大化到20 μιη以上。 在產生如此粗大的析出物及夾雜物的狀態中,不僅其後之 加工時恐有產生破裂或折斷之虞,而且會損及在時効過程 中上述之析出物的析出硬化作用,使合金無法高強度化。 -23- 2005385¾ 從而,至少在該溫度域中,必須以0.5 t /秒以上的冷卻速 度將鑄片冷卻。冷卻速度越大越好,較佳爲2。(: /秒以上, 更佳爲l〇°C /秒以上。 冷卻後之加工溫度:60(TC以下的溫度域 本發明之銅合金的製造方法中,鑄造所得的鑄片,在 既定的條件下冷卻之後,並不經過熱軋或熔體化處理等之 φ 熱間過程,而僅藉由加工及時効熱處理之組合而製成最終 製品。 壓延、抽線等之加工,可爲600 °C以下。例如,當採 用連續鑄造的情況,可在凝固後之冷卻過程中進行該等加 工。在超過600 °C之溫度域中進行加工之時,加工時金屬 或銅及添加元素的化合物,或者添加元素之化合物等之析 出物,會粗大地析出,而使最終製品的延展性、耐衝擊 性、疲勞特性降低。並且,該等析出物,在加工時粗大地 φ 析出之時,使時効處理中微細地析出變成不可能,因而使 銅合金的高強度化變成不充足。 加工溫度越低時,加工時之錯位(dislocation)密度越 上昇,因此接著進行時効處理時,可使金屬或銅及添加元 素的化合物,或者添加元素之化合物等之析出物,更微細 地析出。因此,可賦予銅合金更高的強度。從而,較佳的 加工溫度爲45(TC以下,更佳爲250 °C以下。最佳爲200 °C以下。亦可爲2 5 °C以下。 而,在上述溫度域中的加工,較佳爲其加工率(剖面 -24- 2005385¾ 減少率)爲20%以上而進行。更佳爲50%以上。在如此 加工率進行加工的話,因而導入的錯位在時効處理時變 析出核,因此造成析出物的微細化,並且,可使析出所 時間縮短,並可早期地實現對導電性有害的固熔元素之 低。 (c)時効處理條件:在 150〜75 0 °C之溫度域中保持 秒以上 φ 時効處理,是將金屬或銅及添加元素的化合物,或 添加元素之化合物等之析出物析出,而使銅合金高強 化,一倂地使對導電性有害的固熔元素(Cr,Ti等)降低 因而在提高導電率上有効。但是,當其處理溫度爲未 1 5 (TC之情況,析出元素之擴散需要長的時間,因而生 性降低。另一方面,當處理溫度超過750°C時,析出物 成過度地粗大,由於析出硬化作用而無法高強度化,或 延展性、耐衝擊性、疲勞特性降低。因此,較佳爲使時 φ 處理在150〜750 °C之溫度域中進行。較佳的時効處理溫 爲200〜700°C,更佳爲25 0〜65 0°C。最佳爲280〜5 5 0°C 當時効處理時間未滿3 0秒之情況時,即使時効處 溫度設定爲高之時,亦無法確保析出量,當超過72小 之時,會使處理費用變成龐大。從而,在150〜750°C之 度域中進行時効處理時間3 0秒以上較佳。該處理時間 5分鐘以上較佳,更佳爲10分鐘以上。最佳爲15分鐘 上。雖然處理時間的上限並無特別規定,但是從處理費 的觀點,以作成72小時以下較佳。而,當時効處理溫 的 成 需 降 30 者 度 滿 產 變 使 効 度 理 時 溫 在 以 用 度 -25- 2005385¾ 爲高之時,可縮短時効處理時間。 而,時効處理,爲了防止由於表面氧化而產生污垢, 可在還原性環境中、惰性氣體環境中或20Pa以下的真空 中進行。藉由在如此的環境下之處理可確保優異的鍍層。 上述的加工及時効處理,可因應於需要而反覆地進 行。反覆地進行的話,比進行1次之處理(加工及時効處 理)更可在短時間獲得所要的析出量,並且可使金屬或銅 φ 及添加元素的化合物,或者添加元素之化合物等之析出物 更微細地析出。此時,例如,當反覆地進行處理2次之 時,第2次之時効處理溫度,可作成比第1次之時効處理 溫度更低若干。進行如此的熱處理,第2次之時効處理溫 度爲高之情況,是因爲第1次之時効處理之際產生的析出 物粗大化之故。即使在第3次以後之時効處理中,亦與上 述同樣地,作成比其前面已進行的時効處理溫度更低時較 佳。並且,在最後的熱處理之後,可在600°C以下的溫度 φ 域中進行加工。 其它 本發明之銅合金的製造方法中,雖然上述製造條件以 外的條件,例如熔解、鑄造等之條件方面並未特別限定, 但是例如可如以下的方式進行。 熔解可在非氧化性或還原性的環境下進行。此乃在熔 銅中之固熔氧氣爲多之時,在後過程產生水蒸汽,而產生 氣泡,而引起所謂氫症之故。並且,容易氧化的固熔元 -26- 2005385¾ 素,例如Ti,Cr等產生粗大之氧化物,該等殘留到最終製 品之時,會使延展性或疲勞特性顯著地降低。 獲得鑄片的方法,雖然從生產性或凝固速度之點,以 連續鑄造較佳,但是只要可符合上述之條件的方法的話, 其它的方法,例如鑄錠法亦無妨。並且,較佳的澆鑄溫度 是爲1 2 5 0 °C以上。更佳爲1 3 5 0 °C以上。只要是該溫度的 話,可使Cr,Ti及Zr充分地熔解,並且不會產生金屬氧 φ 化物、金屬碳化物、金屬氮化物等之夾雜物、金屬或銅及 添加元素的化合物、或者添加元素之化合物等的析出物。 當利用連續鑄造而獲得鑄片之情況,使用在銅合金中 通常進行的石墨模具的方法,從潤滑性的觀點値得推薦。 模具材質方面,可使用與主要的合金元素之Cr,Ti及Zr 難以反應的耐火物,例如氧化鍩。 實施例1 將具有表1〜3所表示的化學組成之銅合金,在高頻熔 解爐中進行真空熔製,澆鑄到氧化鉻製之鑄模中,而獲得 厚度爲12MM之鑄片。稀土類元素是添加各元素之單體或 Nd 〇 -27- 2005385¾Be is an element that contributes to the precipitation strengthening of the alloy without compromising conductivity. In order to obtain the effect, it is preferable to contain 0.1 mass ° /. the above. However, when the content exceeds 5%, not only the conductivity decreases, but also the ductility decreases, which deteriorates workability such as rolling and bending. Therefore, when Be is contained, its content is preferably set to 0.1 to 5%. Regarding the total number of precipitates and inclusions In the copper alloy of the present invention, the particle size of the precipitates and inclusions present in the alloy with a particle diameter of 1 μm or more, and the total number of precipitates and inclusions The number must conform to the relationship expressed by the following formula (1). logNS 0.4742 + 1 7.629xexp (-0.1133xX) (1) where N is the total number of -17-2005385¾ (units / mm2) per unit area of precipitates and inclusions, and X is the precipitate And the particle size of the inclusions (// m). In the formula (1), when the measurement of the particle size of the precipitates and inclusions is greater than or equal to 1 · 0Mm and less than or equal to 1 · 5 μm, X = 1 is substituted, and when "α-0 · 5" / In the case of "α + 0.5" // m or more, it is sufficient to substitute X = α (α is an integer of 2 or more). In the copper alloy of the present invention, when finely precipitating φ of a metal, a compound of copper and additives, or a compound of additive elements, etc., the strength can be improved without lowering the conductivity. This is to increase the strength by precipitation hardening. When it is reduced by precipitation of solid-state Cr, Ti, and Zr, the conductivity of the copper array can be made close to that of pure copper. However, when the particle size of such precipitates and inclusions such as metal oxides, metal carbides, and metal nitrides is coarsely precipitated at 20 μm or more, the ductility is reduced, for example, when processing connectors. It is easy to be cracked or chipped during bending or punching. In addition, it adversely affects fatigue characteristics or impact resistance during use. In particular, when a coarse Ti-Cr compound is produced during cooling after solidification, cracks or nicks are likely to occur during subsequent processing. In addition, the hardness is excessively increased during the aging treatment, which prevents the fine precipitation of such precipitates and the like, so that the copper alloy cannot be made high-strength. In such a problem, among the precipitates and inclusions existing in the alloy, the particle size of one having a particle size of 1 μm or more, and the total number of precipitates and inclusions do not meet the relationship represented by the above formula (1) Becomes significant. Therefore, in the present invention, it is stipulated that the particle size of the precipitates and inclusions existing in the alloy with a particle diameter of 1 μm or more, and the total number of precipitates and inclusions must conform to the above formula (1) The relationship indicated is a necessary condition of -18-2005385¾. The preferred total number of precipitates and inclusions corresponds to the relationship represented by the following formula (2), and more preferably corresponds to the relationship represented by the following formula (3). It should be noted that the particle size, the total number of precipitates, and the total number of inclusions were determined by the methods shown in the examples. logNg 〇4742 + 7.9749xexp (-〇.1133xX) ... (2) logN ^ 0.4742 + 6.3579xexp (-〇.1133xX) ... (3) where N is the per unit area of precipitates and inclusions. The total number (number / mm2), X refers to the particle size (// m) of precipitates and inclusions. At least one type of alloy element in a micro-field has a ratio of the maximum average content to the minimum content of the minimum content of the alloy element in a copper alloy having a micro-mixed structure in which the concentration of the alloy element is different, that is, when the concentration changes periodically, Since the micro-diffusion of each element can be suppressed and the grain boundary movement can be suppressed, the effect of easily obtaining a fine crystal grain structure is obtained. As a result, according to the so-called Hall-Petch rule, the strength and ductility of the copper alloy can be improved. The micro-field refers to a field formed by a diameter of 0.1 to 1 μm, and basically means a field corresponding to an irradiation area during X-ray analysis. The fields in the present invention where the alloy element concentrations differ are the following two types. Although it basically has the same face-centered cubic structure as copper, it is in a state where the alloy element concentrations are different. Because of different alloy element concentrations, on the one hand, they have the same fee structure, and on the other hand, the general lattice constants are different. -19- 2005385 ^ Of course, the degree of work hardening is different. The fine precipitates in the f C C mother phase are in a dispersed state. Because of different alloy element concentrations, the dispersion of precipitates after processing and heat treatment is different. The so-called average content in the micro-field refers to the 上 in the analysis area when the X-ray analysis is focused on a certain beam diameter below 1 // m, which means the average 値 in the field. For X-ray analysis, an analysis device having a field φ emission type electron gun is preferred. In terms of analysis means, an analysis method having a decomposition energy of 1/5 or less, more preferably 1/10 of the concentration cycle is preferred. The reason is that when the analysis area is too large compared to the concentration period, it is difficult to express a difference in concentration when the whole is averaged. Generally, it can be measured by X-ray analysis with a probe diameter of about 1 # m. The material characteristics are determined by the alloy element concentration and the fine precipitates in the mother phase. In the present invention, the difference in the concentration of the fine domain containing the fine precipitates is a problem. Therefore, the signal from coarse precipitates or coarse clips # 1 above 1 // m is the cause of external disturbance. However, it is very difficult to completely remove coarse precipitates or coarse inclusions from industrial materials. During analysis, it is necessary to remove the external disturbance factors from the coarse precipitates or coarse inclusions described above. Therefore, the following method is adopted. That is, first, although it also depends on the material, it is analyzed using an X-ray analyzer with a probe diameter of about 1 to grasp the periodic structure of the concentration. As described above, the analysis method is determined so that the probe diameter becomes 1/5 or less of the concentration cycle. Next, determine: a line analysis length of a sufficient length so that the cycle appears more than three times. Under this condition, X-ray analysis is performed m times (preferably -20-2005385% 10 times or more), and the maximum and minimum values of the concentration are determined according to the individual X-ray analysis results. Although the number of maximum and minimum 値 is m, 20% is removed from the larger of individual 値 and averaged. According to the above aspect, the above-mentioned coarse precipitates and inclusions can be removed from external disturbance factors. The concentration ratio is determined by the ratio of the maximum 値 and the minimum 除去 which eliminates the cause of the disturbance described above. However, the concentration ratio only requires alloying elements with a φ period concentration change of about 1 # m or more, and does not consider local spino dal decomposition or atomic levels below 1 Onm such as fine precipitates. Concentration changes. The reason why the ductility is improved by the fine distribution of the alloy elements will be described in detail. When the concentration of alloying elements changes, the degree of solidification hardening of the material in the high-concentration part and the low-concentration part, or the dispersion state of the precipitates as described above are different, so the mechanical properties of the two parts are different. In this material deformation, first, the relatively soft low-concentration part is processed and hardened, and second, the relatively hard high-concentration part begins to deform. In other words, a plurality of work hardenings occur in the entire material, so that, for example, when the tensile deformation is caused to show a high elongation, another effect of improving the ductility occurs. In this way, in alloys that undergo a change in the concentration of the alloy element over a period of time, it is possible to maintain a balance between electrical conductivity and tensile strength, and at the same time, to exhibit advantageous high ductility such as during bending. However, the resistance (the inverse of the conductivity) is mainly due to the decrease in the movement of electrons caused by the dispersal of solid-solution elements, which has little effect on macro defects such as crystal grain boundaries, so it is not caused by the above-mentioned fine-grained structure. Reduce the conductivity of -21-2005385%. These effects become significant when the ratio of the maximum 値 to the minimum 平均 (hereinafter referred to simply as the "concentration ratio") of the average content in a small area of at least one alloy element in the parent phase is 1.5 or more. Although the upper limit of the concentration ratio is not specifically set, when the concentration ratio is too large, in addition to the failure to maintain the f c c structure of the Cu alloy, the difference in the electrochemical characteristics is too large, and there is a possibility of causing disadvantages such as local corrosion. Therefore, the concentration ratio φ is preferably 20 or less, and more preferably 10 or less. (d) In terms of crystal grain size When the crystal grain size of the copper alloy is made fine, it is advantageous in terms of high strength, and the ductility is improved, and the bendability and the like are also improved. However, when the crystal grain size is reduced to 0.01 μm, the high-temperature strength tends to decrease, and when it exceeds 3 5 μm, the ductility decreases. Therefore, it is preferable that the crystal grain size is 0.01 to 3 5 μm. A more preferable particle size is from 0.05 to 30 μm. The optimum is 0.1 to 25 μm. φ In the method for producing a copper alloy according to the present invention, in the copper alloy according to the present invention, metal oxides, metal carbides, metal nitrides, and the like, which prevent fine precipitation of metals, copper, compounds of added elements, or compounds of added elements, etc. Inclusions are likely to occur immediately after the slab is solidified. If such inclusions are subjected to a melt treatment after casting, even if the melt temperature is increased, it is difficult to solidify the inclusions. The use of high-temperature melt treatment will only cause the aggregation and coarsening of inclusions. Therefore, in the method for producing a copper alloy of the present invention, a slab obtained by melting and casting a copper alloy having the above-mentioned chemical composition is obtained from at least -22-200,385 In the temperature range from the sheet temperature to 45 0 ° C, when cooling at a cooling rate of 0.5 ° C / sec or more, the particle size of the precipitates and inclusions present in the alloy is 1 // m or more The particle size and the total number of precipitates and inclusions are in accordance with the relationship shown in the following formula (1) 'logN ^ 0.4742 + 17.629xexp (-〇.1133xX) ... (1) where N means precipitation The total number of particles and inclusions per unit area (pieces / mm2), X refers to the particle size m of the precipitates and inclusions. After this cooling, processing in a temperature range of 600 ° C or lower 'or more can be performed in a temperature range of 150 to 75 ° C for 30 seconds or more, and a plurality of times are performed. In addition, after the final heat treatment, it can be processed in a temperature range below 600 ° C. The cooling rate in the temperature range from at least the temperature of the slab immediately after casting to 45 0 ° C: 0.5 ° C / second or more Metal or copper and compounds of added elements, or precipitates of compounds of added elements, etc. It is produced in the temperature range above 2 0 0 ° C. In particular, when the cooling rate in the temperature range from the temperature of the slab immediately after casting to 45 0 ° C is slow, the inclusions of metal oxides, metal carbides, metal nitrides, etc. are coarsely formed, and their particle sizes It is more than 20 μm, and more than several hundred μm. In addition, the above-mentioned precipitates were coarsened to 20 μm or more. In the state where such coarse precipitates and inclusions are generated, not only may there be a risk of cracking or breaking during subsequent processing, but also the precipitation hardening effect of the above-mentioned precipitates during aging may be impaired, making the alloy unable to be high. Intensified. -23- 2005385¾ Therefore, at least in this temperature range, the slab must be cooled at a cooling rate of 0.5 t / sec or more. The larger the cooling rate, the better, and 2 is preferred. (: Or more, more preferably 10 ° C / s or more. Processing temperature after cooling: 60 (TC or lower temperature range) In the method for producing a copper alloy according to the present invention, the cast slab obtained is cast under predetermined conditions. After cooling, it does not undergo the φ thermal process such as hot rolling or melt treatment, but only the combination of processing and aging heat treatment is used to make the final product. The processing of calendering, drawing line, etc. can be 600 ° C The following. For example, when continuous casting is used, such processing can be performed during the cooling process after solidification. When processing in a temperature range exceeding 600 ° C, metal or copper and added compounds during processing, or Precipitates such as compounds of added elements are coarsely precipitated, which reduces the ductility, impact resistance, and fatigue characteristics of the final product. In addition, when these precipitates are coarsely precipitated during processing, aging treatment is performed. It is impossible to precipitate finely in the medium, so that the high strength of the copper alloy becomes insufficient. The lower the processing temperature, the higher the dislocation density during processing. During the treatment, the precipitates of metals, copper, compounds of added elements, or compounds of added elements can be precipitated more finely. Therefore, higher strength can be given to the copper alloy. Therefore, the preferred processing temperature is 45 ( Below TC, more preferably below 250 ° C. Most preferably below 200 ° C. It can also be below 25 ° C. However, the processing rate in the above temperature range is preferably its processing rate (section-24-2005385¾ The reduction rate is 20% or more. More preferably, it is 50% or more. If the processing is performed at such a processing rate, the introduced dislocations will change to precipitate nuclei during the aging treatment, resulting in the miniaturization of precipitates and the precipitation. The time is shortened, and the solid solution elements that are detrimental to conductivity can be achieved early. (C) Aging treatment conditions: The aging treatment is held in the temperature range of 150 ~ 75 0 ° C for more than seconds φ aging treatment, which is to metal or copper And precipitates of compounds of added elements, or compounds of added elements, which strengthen copper alloys and reduce solid-solution elements (Cr, Ti, etc.) which are harmful to conductivity at a time, and are therefore effective in improving conductivity However, when the processing temperature is less than 15 ° C, the diffusion of precipitated elements takes a long time, so the properties are reduced. On the other hand, when the processing temperature exceeds 750 ° C, the precipitates become excessively coarse. Precipitation hardening cannot increase strength, or reduce ductility, impact resistance, and fatigue characteristics. Therefore, it is preferable to perform the φ treatment in a temperature range of 150 to 750 ° C. The preferred aging treatment temperature is 200 ~ 700 ° C, more preferably 25 0 ~ 65 0 ° C. The best is 280 ~ 5 50 ° C. When the aging treatment time is less than 30 seconds, even when the aging temperature is set to high, The amount of precipitation cannot be ensured, and when it exceeds 72 hours, the processing cost becomes huge. Therefore, it is preferable to perform the aging treatment in a temperature range of 150 to 750 ° C for 30 seconds or more. The treatment time is preferably 5 minutes or more, and more preferably 10 minutes or more. The best time is 15 minutes. Although the upper limit of the processing time is not particularly limited, it is preferable that the processing time is 72 hours or less from the viewpoint of processing costs. In addition, when the aging treatment temperature needs to be reduced by 30 degrees, the full production change makes the efficiency time temperature higher when the application temperature is -25- 2005385¾, which can shorten the aging treatment time. The aging treatment can be performed in a reducing environment, an inert gas environment, or a vacuum of 20 Pa or less in order to prevent the generation of dirt due to surface oxidation. By processing in such an environment, excellent plating can be ensured. The above-mentioned processing and aging treatment can be repeated iteratively as needed. Repeatedly, the desired amount of precipitation can be obtained in a short time than a single treatment (processing and aging treatment), and the metal or copper φ and the compound of the added element, or the precipitate of the compound of the added element can be obtained Precipitate more finely. At this time, for example, when the treatment is repeated twice, the second aging treatment temperature can be made slightly lower than the first aging treatment temperature. When such heat treatment is performed, the temperature of the second aging treatment is high because the precipitates produced during the first aging treatment are coarsened. Even in the aging treatment from the third time onward, it is better to prepare the aging treatment at a lower temperature than the aging treatment which has been performed before. In addition, after the final heat treatment, it can be processed in a temperature φ range of 600 ° C or lower. Other In the method for producing a copper alloy of the present invention, although conditions other than the above-mentioned production conditions, such as conditions for melting, casting, and the like, are not particularly limited, they can be performed, for example, as follows. Melting can be performed in a non-oxidizing or reducing environment. This is because when there is a large amount of solid oxygen in the molten copper, water vapor is generated in the later process, and bubbles are generated, which causes the so-called hydrogen disease. In addition, solid oxide elements such as Ti, Cr, etc., which are easily oxidized, produce coarse oxides. When these remain in the final product, the ductility or fatigue characteristics are significantly reduced. Although the method of obtaining a cast piece is preferably continuous casting from the viewpoint of productivity or solidification rate, other methods such as an ingot method may be used as long as the method meets the above conditions. In addition, a preferable casting temperature is 1 250 ° C or more. More preferably, it is above 1 350 ° C. As long as it is at this temperature, Cr, Ti, and Zr can be sufficiently melted, and no inclusions such as metal oxides, metal carbides, metal nitrides, metals, copper, compounds of added elements, or added elements can be generated. Precipitates of compounds and the like. When a slab is obtained by continuous casting, a method using a graphite mold usually performed in a copper alloy is recommended from the viewpoint of lubricity. In terms of mold materials, refractory materials that are difficult to react with Cr, Ti, and Zr, such as hafnium oxide, can be used. Example 1 A copper alloy having the chemical composition shown in Tables 1 to 3 was vacuum-melted in a high-frequency melting furnace and cast into a mold made of chromium oxide to obtain a cast sheet having a thickness of 12 mm. Rare earth elements are monomers or Nd with the addition of each element 〇 -27- 2005385¾

I« 纈 m 錙 _ i 缓 Wi Q> P9; Mill I 1 :) 1: h 1 1 1: .1 l l i i i !-i M :i i i 1IMQ ! H ^ B ' 〇 r4 •tH 卜丨· HL 丨 1 口 :S§5 1 ! •o Issg-i 1 g〇*S| TH Θ 〇 m IR i K S 〇· 1 1 ^ 1 1 m 5« 1 § 1 c>; 〇 音 .¾ ο ^SMI :g含s :占铃 g gs § 0.2Sb O. tlji, Ο,δΡί, 0.lGa 11¾¾[ ill -*G3 6). w〇 S is k ^ 〇" 1 |IS 〇 Ills E5'; φ cp -C> iiua <D 11111 |3〖3| I 3!丨 1 1丨.3碧丨. IL 账 雜: : 撕; i § |( 1 § M 4 111 6 O _rr ft |1 O-JlLa, O.OICa ο·ιϊλ, aolMg, o.cmLi o.om. l ·|>Ι s §s i ί I1 IS M 33 lojcs: d a m a j i i ! i; 1 1 ί 1 j r: i i I i …㈣ |22l1 n III) \ Μ M ( ('III 3lS M ! P t Ml S 濉 M j i r ( i 1 iiS3 Si1 1 1 "ί 1 ! 1 l 1 1 i U mis | I M 1. i* i i i \ i i \ I \\ 丨丨|〗3 !ί»π <π m.n |SSS2 31¾围 汹3 m IS 雔 v*h ;c3: n 0',iH' (« ho fill Hill Mi ifill ω fflil llfil Hill ·· · ···« · · ·« r-(· r-ί C2> Ci· 1^1 3 ! 1 Ί !s!p !«li Mill :cJ :C3: c5 S ¢4 ;1 & 1 Jl i.il sll^l 1 u »-j CS( CO ^ 1β ^ 00 OS g S S3 S ?! S S&5S^ -28- 2005385¾I «Valm 锱 _ i Slow Wi Q >P9; Mill I 1 :) 1: h 1 1 1: .1 lliii! -I M: iii 1IMQ! H ^ B '〇r4 • tH BU 丨 · HL 丨 1口: S§5 1! O o Issg-i 1 g〇 * S | TH Θ 〇m IR i KS 〇 · 1 1 ^ 1 1 m 5 «1 § 1 c >; 〇 sound. ¾ ο ^ SMI: g Contains s: Astrology g gs § 0.2Sb O. tlji, Ο, δΡί, 0.lGa 11¾¾ [ill-* G3 6). W〇S is k ^ 〇 " 1 | IS 〇Ills E5 '; φ cp- C > iiua < D 11111 | 3 〖3 | I 3! 丨 1 1 丨 .3 碧 丨. IL Miscellaneous: : Tear; i § | (1 § M 4 111 6 O _rr ft | 1 O-JlLa, O.OICa ο · ιϊλ, aolMg, o.cmLi o.om. l · | > Ι s §si ί I1 IS M 33 lojcs: damajii! I; 1 1 ί 1 jr: ii I i… ㈣ | 22l1 n III) \ Μ M (('III 3lS M! P t Ml S 濉 M jir (i 1 iiS3 Si1 1 1 " ί 1! 1 l 1 1 i U mis | IM 1. i * iii \ ii \ I \ \ 丨 丨 |〗 3! Ί »π < π mn | SSS2 31¾ 3 m IS 雔 v * h; c3: n 0 ', iH' (« ho fill Hill Mi ifill ω fflil llfil Hill ·· · · ·· «· · ·« r- (· r-ί C2 > Ci · 1 ^ 1 3! 1 Ί! S! P! «Li Mill: cJ: C3 c5 S ¢ 4; 1 & 1 Jl i.il sll ^ l 1 u »-j CS (CO ^ 1β ^ 00 OS g S S3 S S S &?! 5S ^ -28- 2005385¾

$ & W 1 1 Μ Γ )III! ii(! I ί 1 ί M Mil ί 1 ϋΐϊπ <π 1 1:11¾ d d 05 I i rH% d 〇 〇 ^ _i Q.QQ9 〇5 <Ni. §: 1 d Ml ; o.ii i 1 第4群元素 a q i i 1 2 心·Η :”4 S : Q i〇 d o d aoois Q..010Sj Ο^Θ^Βι- D.01P .1? 3P:Qi. 2;:〇ΐ?ιϊΐ· 0 ·〇 11 · 1 1 i 〇 o 0.5Sb, IJBa, l.OBi iMhi lWd ΡΜ2Ψ k)J_ S i i i ^ φ 魯 :P u Si σ........ ο Jilin Q:Q1 0:.01 M* 0.04. 0.11 an 0.01 a:Q6 — Q;06:I :X4t 0JQ6 丨_ — 第3群元素 aoiMg O.GIMg 1.5¾. l.QLa. ! 1 i !I: 11.^1 If 1 Ci <¥?· 0fQXLi QMQd 0.01Ca, 0; lSc % li] ί! 1 S | i;,: ii1 1 II -<ά· dq; 1 1 i丨 •a: i 1 :( M l [ 1 ( i Mil •-ί' 1,.42 1,4B 1.85 ί :l :t Γ J W.ia: IH:S M. :i n ilil 1 :\ r ί; i i jl ί .M I- Si — i i i :!. i| i LU IM IM im 1^2 1 1 1 { 1 1 i .1·= :1 \ 丨1丨丨! 'm3 %5Z 19» 1 1 1. 1 Ί Mill μ ί :i i j Μ ί H liiin <Π m : QM\ om m 23.2, 0.95 獅 膽 ϋΜ. m ' m e.71. 2.6 MO* 丨 第1群元素 tomb 0.99 Gb mme i%mi B.m, aeNb 0.95C〇. L00施 0.9Me Q.mc〇 a麗 一 i tA t; III! mil liil illi! Hill Sill ll:_ 'W. 41 iS-§;§:S| -29- 2005385¾$ & W 1 1 Μ) III! ii (! I ί 1 ί M Mil ί 1 ϋΐϊπ < π 1 1: 11¾ dd 05 I i rH% d 〇〇 ^ _i Q.QQ9 〇5 < Ni. §: 1 d Ml; o.ii i 1 group 4 element aqii 1 2 heart · Η: "4 S: Q i〇dod aoois Q..010Sj Ο ^ Θ ^ Βι- D.01P .1? 3P: Qi 2 ;: 〇ΐ? Ιϊΐ · 0 · 〇11 · 1 1 i 〇o 0.5Sb, IJBa, l.OBi iMhi lWd PM2Ψ k) J_ S iii ^ Lu: P u Si σ ....... ο Jilin Q: Q1 0: .01 M * 0.04. 0.11 an 0.01 a: Q6 — Q; 06: I: X4t 0JQ6 丨 _ — Group 3 element aoiMg O.GIMg 1.5¾. l.QLa.! 1 i ! I: 11. ^ 1 If 1 Ci < ¥? · 0fQXLi QMQd 0.01Ca, 0; lSc% li] ί! 1 S | i;,: ii1 1 II-< ά · dq; 1 1 i 丨 • a: i 1: (M l [1 (i Mil • -ί '1, .42 1,4B 1.85 ί: l: t Γ J W.ia: IH: S M.: in ilil 1: \ r ί; ii jl ί .M I- Si — iii:!. i | i LU IM IM im 1 ^ 2 1 1 1 {1 1 i .1 · =: 1 \ 丨 1 丨 丨! 'm3% 5Z 19 »1 1 1. 1 Ί Mill μ ί: iij Μ ί H liiin < Π m: QM \ om m 23.2, 0.95 Lion gall ϋΜ. M 'm e.71. 2.6 MO * 丨 Group 1素 tomb 0.99 Gb mme i% mi Bm, aeNb 0.95C〇. L00, 0.9Me Q.mc〇a Liyi i tA t; III! Mil liil illi! Hill Sill ll: _ 'W. 41 iS-§; § : S | -29- 2005385¾

i 蓀 ft u 雜 褰 φ PQ i 1 IM i llll! τί» r-i ua. co d :csi C5: PQ o CO OD CD. ρΰ CD c4 <N O ci iN 合計 0.2 0.Q0X :0;0! :ΐ):.ιί 0.15 an 0.11 :an 0,251 0.5 0,111 0.6 1 第4群元素 0.1&^〇,1〇9 _ΐβ Ο,ΟΐΒί 0;IBa,0.010s O.liP^O.OSBi Q.dl!P4·; O.lRe b.OjiP, o;as •S s Φ o' 1 1 1 f 自8 d «Ν; 〇.:5Sb 0.01P, 0JB, O.OQlGa 0.3B, aiEe, a.2Rh 合計 3Ι:Φ « Sg ! g μ r"雲 S S i i 〇· ;第3群元素 i0.i;Ce, 0,01La. !d:0iMg= 0;00:3!Li :0. iSc> O.lCa 4(5興❶惠a 0..2(¾. 0.6Mg, 0..lGd 0娜d !〇;iY, 0.5SC •O.lOa Q>l.Gd m :1H & W a 1 Μ 1: i: Mill M 1 i I 1" :M: S :M 1 t i 1111 1 1 t t t " 1 l t 1 il; HIM: 2:50 i〇0 h i j ί :i: I1賴 u ii. t I i. IBM . 娜 1.50.. Mill -rrr 0.5# i 0.20 : 細 π < !— · ια in US IM 1;24 MAt. Ϊ3 3 ^ § ¢5¾ CD r-ί. CD to ifq; ;C?· rH :.??? .C? 第1群元素 1 :fe «s 1 1 CO | | _l囊 τΗ OQ rH *iH hD· 3 1 iiiil in ii c5 d 〇 d cS ;I 1 111 I ii£U ci. tH <N C3 i-i <D: 1 崔1 till Q ·〇. <S)· Q: MMi c4 c> d d c> ϋ〇 S S i〇 tg cq co ^ ud CD CD CO CD CO § S S S ? -30- 2005385¾ 將所獲得的鑄片,從剛鑄造後的溫度(從鑄模中剛取 出後的溫度)之9 5 (TC到4 5 0 °C的溫度域中,藉由噴霧冷卻 以既定的冷卻速度而冷卻。藉由埋入鑄模中的熱電偶而計 測預定場所的溫度變化,以接觸式溫度計數點計測鑄片從 鑄模取出後之表面溫度。藉由該等結果與傳熱解析倂用而 算出到4 5 (TC之鑄片表面的平均冷卻速度。凝固開始點, 是準備個別成分之熔融液0.2g,使用預定的速度藉由連續 φ 冷卻中之熱分析而求得。 由所獲得的鑄片,藉由切斷及切削而作成厚度l〇mm X寬度8 Ommx長度150mm之壓延素材。爲了比較,使一部 分之壓延素材在950°C進行熔體化處理。該等之壓延素材 在室溫下實施壓下率爲80 %的壓延(第1次壓延),而作成 厚度2mm之板材,在預定條件下實施時効處理(第1次時 効),而作成供試料。更將一部分供試料在室溫下實施壓 下率爲95 %的壓延(第2次壓延),而作成厚度0.1mm之板 φ 材,在預定條件下實施時効處理(第2次時効)。該等之製 造條件被顯示於表4〜7中。 如此製作的供試料,利用下列手法,而求出析出物及 夾雜物之粒徑及每單位面積之合計個數、抗拉強度、導電 率及折曲加工性。將該等之結果並記於表4〜7中。 <析出物及夾雜物之合計個數> 將垂直於各供試料之壓延面,且與壓延方向平行之剖 面作鏡面硏磨’保持於該狀態下,或者使用氨水溶液腐蝕 -31 - 2005385¾ 後,利用光學顯微鏡以100倍的倍率觀察mm 野。其後,將測定析出物及夾雜物的長徑(在途中粒 相接觸的條件下在粒內被拉成最長的直線)所得的値 爲粒徑。在(1)式中,當析出物及夾雜物之粒徑的測 爲Ι.Ομηι以上未滿1·5μπι之情況,將X=1代入, 「α-0.5」//m以上「α + 0·5」//m以下之情況,將2 是爲2以上之整數)代入的話即可。又,將在每個粒 lmmx 1mm的視野之框線交叉者作爲1/2個,在框線 作爲1個而算出合計個數η!,將任意選定的1 0個視 之個數>^( = 1^+112+…+ ηιο)之平均値(Ν/10),定義爲該 之各個粒徑之析出物及夾雜物的合計個數。 <濃度比> 將合金的剖面硏磨,使用0.5 μηι之線束徑,在 倍的視野下利用X光分析5 0 μπι長,而自然地進行: • 線分析,而求出個別的線分析中各合金元素之含有量 大値及最小値。分別將最大値及最小値的較大之2個 去’而求出剩下8次分的最大値及最小値之平均値, 其比値而作爲濃度比。 <抗拉強度> 從上述之供試料,使抗拉方向與壓延方向平行般 取依Π S Ζ 2 2 0 1所規定的1 3 Β號試驗片,根據Π S Ζ 所規定的方法,而求出室溫(25 t )時之抗拉 的視 界不 定義 定値 當在 =α (α 徑上 內者 野中 試料 2000 〇次 的最 値除 算出 地採 224 1 強度 -32- 2005385¾ TS(MPa)。 <導電率> 從上述之供試料,使抗拉方向與壓延方向平行般地採 取寬度l〇mmx長度60mm之試驗片,使電流在試驗片的長 度方向上流動’而測定試驗片之兩端的電位差,利用4端 子法求出電阻。接著,從使用測微計計測後的試驗片之體 φ 積,算出每單位體積之電阻(電阻率),從與將多結晶純銅 退火後之標準試料的電阻率1.72μΩ·οιη之比,而求出導電 率[IACS(%)]。 <折曲加工性> 從上述之供試料,使抗拉方向與壓延方向平行般地採 取寬度l〇mmx長度60mm之複數個試驗片,將折曲部的曲 率半徑變更,,而實施90°折曲試驗。使用光學顯微鏡,從 φ 外徑側觀察試驗後的試驗片之折曲部。然後,使不產生破 裂的最小之曲率半徑爲R,而求出與試驗片之厚度t的比 B( = R/t)。 -33- 2005385¾ ii 荪 ft u Miscellaneous φ PQ i 1 IM i llll! τί »ri ua. co d: csi C5: PQ o CO OD CD. ρΰ CD c4 < NO ci iN Total 0.2 0.Q0X: 0; 0 !: ΐ): .ιί 0.15 an 0.11: an 0,251 0.5 0,111 0.6 1 Group 4 element 0.1 & ^ 〇, 1〇9 _ΐβ Ο, ΟΐΒί 0; IBa, 0.010s O.liP ^ O.OSBi Q.dl! P4 ·; O.lRe b.OjiP, o; as • S s Φ o '1 1 1 f from 8 d «N; 〇 .: 5Sb 0.01P, 0JB, O.OQlGa 0.3B, aiEe, a.2Rh total 3Ι : Φ «Sg! G μ r " Cloud SS ii 〇 ·; Group 3 element i0.i; Ce, 0,01La.! D: 0iMg = 0; 00: 3! Li: 0. iSc > O.lCa 4 (5 兴 ❶ 惠 a 0..2 (¾. 0.6Mg, 0..lGd 0na d! 〇; iY, 0.5SC • 0.1Aa Q > l.Gd m: 1H & W a 1 Μ 1: i: Mill M 1 i I 1 ": M: S: M 1 ti 1111 1 1 ttt " 1 lt 1 il; HIM: 2:50 i〇0 hij ί: i: I11u ii. t I i. IBM. Na 1.50 .. Mill -rrr 0.5 # i 0.20: Fine π <! — · Ια in US IM 1; 24 MAt. Ϊ3 3 ^ § ¢ 5¾ CD r-ί. CD to ifq;; C? · RH :. ??? .C? Group 1 element 1: fe «s 1 1 CO | | _l capsule τΗ OQ rH * iH hD · 3 1 iiiil in ii c5 d 〇d cS; I 1 111 I ii £ U ci. tH < N C3 ii < D: 1 Cui 1 till Q · 〇. < S) · Q: MMi c4 c > dd c > ϋ〇SS i〇tg cq co ^ ud CD CD CO CD CO § SSS? -30- 2005385¾ Take the obtained slab from the temperature immediately after casting (temperature immediately after taking out from the mold) of 9 5 (TC to 4 5 In the temperature range of 0 ° C, cooling is performed at a predetermined cooling rate by spray cooling. The temperature change in a predetermined place was measured by a thermocouple embedded in the mold, and the surface temperature of the slab after being taken out of the mold was measured with a contact temperature counting point. Based on these results and the analysis of heat transfer, the average cooling rate on the surface of the slab of 4 5 ° C. was calculated. The starting point of solidification was to prepare 0.2 g of molten liquid with individual components, and use a predetermined rate of cooling with continuous φ. It can be obtained by thermal analysis. From the obtained slab, a rolled material having a thickness of 10 mm X a width of 8 Omm and a length of 150 mm was prepared by cutting and cutting. For comparison, a part of the rolled material was performed at 950 ° C. Melt treatment. These rolled materials are rolled at room temperature with a reduction ratio of 80% (the first rolling), and a sheet with a thickness of 2 mm is made and subjected to aging treatment under the predetermined conditions (first aging). A sample was prepared. A part of the sample was rolled at room temperature with a reduction ratio of 95% (second rolling), and a plate φ material with a thickness of 0.1 mm was prepared and subjected to aging treatment under predetermined conditions (the 2 times aging). These manufacturing conditions are shown in Tables 4 to 7. The thus-produced samples were obtained by the following methods to determine the particle size of precipitates and inclusions, the total number of particles per unit area, and the resistance. Tensile strength, electrical conductivity and folding Workability. The results are shown in Tables 4 to 7. < Total number of precipitates and inclusions > A cross section perpendicular to the rolling surface of each sample and parallel to the rolling direction is used as a mirror surface. The mill was kept in this state, or after being corroded with an ammonia solution -31-2005385¾, the mm field was observed at a magnification of 100 times with an optical microscope. Thereafter, the major diameters of the precipitates and inclusions were measured (the particles were in contact with each other on the way) Under the condition of being drawn into the longest straight line in the grain), the 値 obtained is the particle size. In the formula (1), when the particle size of the precipitates and inclusions is measured from 1.0 μm to 1.5 μm If X = 1, substitute "α-0.5" // m or more and "α + 0 · 5" // m or less, substitute 2 as an integer of 2 or more). In addition, the number of frame-line intersections in a field of view of 1 mm × 1 mm per grain is taken as 1/2, and the total number of frames is calculated as 1 in the frame, and the number of arbitrarily selected 10 views is calculated. ≫ ^ (= 1 ^ + 112 + ... + ηιο) The average 値 (N / 10) is defined as the total number of precipitates and inclusions of each particle size. < Concentration ratio > Honing the cross-section of the alloy, using a beam diameter of 0.5 μm, and analyzing the length of 50 μm with X-rays in a multiple field of view, and naturally performed: • Line analysis to find individual line analysis The content of each alloy element in the alloy is large and minimum. The larger two of the largest 値 and the smallest 値 are respectively removed to obtain the average 値 of the largest 値 and the smallest 値 for the remaining 8 times, and the ratio 値 is used as the concentration ratio. < Tensile strength > From the above-mentioned sample, the tensile direction is parallel to the rolling direction. The test piece No. 1 3 Β specified by Π S ZO 2 2 0 1 is taken, and according to the method specified by Π S ZZ, The field of view of the tensile strength at room temperature (25 t) is not defined. When the maximum division of the sample in the field is 20000 times, it is calculated as 224 1 strength -32- 2005385¾ TS (MPa ). ≪ Conductivity > From the above test sample, a test piece having a width of 10 mm x a length of 60 mm was taken so that the tensile direction was parallel to the rolling direction, and a current was caused to flow in the longitudinal direction of the test piece. The potential difference between the two ends was used to determine the resistance using the 4-terminal method. Then, the resistance (resistivity) per unit volume was calculated from the volume φ product of the test piece measured with a micrometer, and the temperature was measured after annealing with polycrystalline pure copper. The ratio of the resistivity of the standard sample was 1.72 μΩ · οιη, and the conductivity [IACS (%)] was obtained. ≪ Bendability > From the above sample, the width was taken so that the tensile direction was parallel to the rolling direction. l0mmx multiple test pieces with a length of 60mm The curvature radius was changed and a 90 ° bending test was performed. Using an optical microscope, the bent portion of the test piece after the test was observed from the outer diameter side of φ. Then, the minimum radius of curvature that did not cause cracking was R and determined. Ratio B (= R / t) to thickness t of the test piece. -33- 2005385¾ i

i a Η □ i 擊: ,5¾ :〇〇0ΟΘ .· 0φ<5Ό.Ό iQ :Q: 0 0 0 〇 〇 0 0 o. ό ο ού ο 通.1 φ cq c^; :ab id' cq <Ν· ^ idb ίό :6vJ C<! <Λ : ί〇 1Λ r^f -m· -M :.cq. .csi :·〇3 〇!;:·.€?? #:Μίϊ· 導電率 tm Μή·Ά^^ liO 1/3 r-i :9¾ N 卜* rH 必 ίύ ιώ* ό· :Gi. CNl, IQ.: ID ^ CD:· 引張 速度 fmm 105:; wm: 1 _Ί 1301 1409 mm im mm :1_ 麵 .1172 1293 1439 es;ES:i 05 00 cpi 1000 1230 1209 :12&& 1405 結晶 粒徑 &»Tj) g 闵 S; .c〇 θ «? iS. :s s M m CO. c〇 Cm tH: 芻袞热.S3: Tm,Mm 寒纖 11幅 iliss :·.斑: ττΗ 1 &s賺 1 i名繊i咖 1 li碱t§齡 1.8鋪 划讎 丨縣画 _輸._沙 i論ώ 1J翻: 111¾ ㈣顯 :€〇, ¢0 :.:id· • mmm 省藝屬擎.¢: 4 ($ ^ψφ :㈣零_ m m m CN 派 酲 •-£3 jS: -jjb ..'cl: :uEj s辑笤弩i S#|:IS ^Xt * *ΓνΠ M id: Μ J3· J3; m;& S' :S S· •.r^· rri' it*: id*' jEi · jd· ^ΰ.: J3t Si i暮笤 昼_ _ 1! illliil ·〇0 c〇· c〇 :·Λ〇: c<y. Hill ::GO CD; 09 ·:〇0: CQ: ί :; fe·: @ S :@·. S ;ps :w eg. m to S S S § 8 :<r〇 CO CO C〇 CO Ο Ο Ο Ο 〇 VO 1〇 |〇 1〇 LO 〇5 CQ P0 <» CQ m CN 搬 厚度 麵._ i:imi -H·: r^i - t^: <Φ P σ 〇 〇· -rri: T?r+ -,τ^ί TT?t 0 c5 XD C> τΗ· :rri: .·λΗ:. tH o' ¢5 q o d ,·»—t rH tift. rHi ο ο d οΛ c> 11 _韻.镩縿t _键键治器 to l〇 L〇 IQ H3 •cs^i :.C4; C3: ::eq' 03 蜮 m 衫 m 酲 iMM jri Ja .:jrt: M\ ,L转摩 •^^5 ^jh ^^2 «.C· 肉窃窃筠贫 •瞬 !mw' .l^y *〇** O **©:i 〇 i,.〇 緣_薄导:¾ gf s;g« :£Sj '2S· :2S" 2!* :*^T! ^5· '^nT*. ^T1· lilll mi寒 Hill m m 衫 m :fe>·· ::Gk '〇 χΘ: 蚀:说·’成fei ..〇« (^:<3;ea: q: :·5ίί rr·; ti>5l:: 6SI: :<?Λ: 的 4 β d —· ο 〇 q q ow <Μ C<1 <?<l «s| o q q o tM oq 4N c<t csf Si 蕊综掇综爨 助·_ιώ.你·: tnr lo. _ oq cq (NJ 冷卻 速度 i嫌 办s:g誶旮 nmm s s s ^ ·ι-*( t-t to* o 〇· ㈣ rr+ .*H* tH 神: s S S d 和-;傚::.的..4 1» .e·成:命·_ 3 5$3 5SS:& 势屬镑1筠 驾缚n.驾爲 Ιπ3φ rH::^,d5: ·# Ιί>; -cs· :m ai S mmm mm-MWia □ □ i hit:, 5¾: 〇〇0ΟΘ. · 0φ < 5Ό.Ό iQ: Q: 0 0 0 〇〇0 0 o. ό ο ού ο 通 .1 φ cq c ^;: ab id 'cq < N · ^ idb ίό: 6vJ C <! < Λ: ί〇1Λ r ^ f -m · -M: .cq. .Csi: · 〇3 〇!;: ·. € ?? #: Μίϊ · conductive率 tm Mή · Ά ^^ liO 1/3 ri: 9¾ N bu * rH 必 ίύ PLUS **: Gi. CNl, IQ .: ID ^ CD: · Speed of fmm 105 :; wm: 1 _Ί 1301 1409 mm im mm: 1_ face. 1172 1293 1439 es; ES: i 05 00 cpi 1000 1230 1209: 12 & & 1405 crystal grain size & »Tj) g Min S; .c〇θ«? iS .: ss M m CO.c〇Cm tH: Hot ruminant fever. S3: Tm, Mm Cold fiber 11 pieces of iliss: ·. Spot: ττΗ 1 & s earn 1 i name i i 1 coffee 1 li alkali t§ age 1.8 shop 雠 County Painting_Loss._Sand on the 1J translation: 111¾ ㈣Display: € 〇, ¢ 0:.: Id · • mmm Provincial art gen ..: 4 ($ ^ ψφ: ㈣ 零 _ mmm CN 派 酲 •- £ 3 jS: -jjb .. 'cl:: uEj s series i S # |: IS ^ Xt * * ΓνΠ M id: Μ J3 · J3; m; & S': SS · • .r ^ · rri 'it *: id *' jEi · jd · ^ ΰ .: J3t Si i twilight笤 日 _ _ 1! Illliil · 〇0 c〇 · c〇: · Λ〇: c < y. Hill :: GO CD; 09 ·: 〇0: CQ: ί :; fe ·: @ S: @ ·. S; ps: w eg. M to SSS § 8: < r〇CO CO C〇CO Ο Ο Ο Ο 〇VO 1〇 | 〇1〇LO 〇5 CQ P0 < »CQ m CN i: imi -H ·: r ^ i-t ^: < Φ P σ 〇〇 · -rri: T? r +-, τ ^ ί TT? t 0 c5 XD C > τΗ ·: rri:. · λΗ: tH o '¢ 5 qod, · »—t rH tift. rHi ο ο d οΛ c > 11 _ 韵. 镩 縿 t _key bonder to l0L〇IQ H3 • cs ^ i: .C4; C3 :: eq '03 蜮 m shirt m 酲 iMM jri Ja.: Jrt: M \, L Zhuanmo • ^^ 5 ^ jh ^^ 2 «.C · Meat theft, poverty, and poverty! Instant! Mw' .l ^ y * 〇 ** O ** ©: i 〇i, .〇 edge_thin guide: ¾ gf s; g «: £ Sj '2S ·: 2S " 2! *: * ^ T! ^ 5 ·' ^ nT * ^ T1 · lilll mi cold Hill mm shirt m: fe > ·· :: Gk '〇χΘ: Eclipse: said ·' 成 fei ..〇 «(^: <3; ea: q :: · 5ίίrr · Ti > 5l :: 6SI:: <? Λ: 4 β d — · ο 〇qq ow < Μ C < 1 <? ≪ l «s | oqqo tM oq 4N c < t csf Si Comprehensive assistance · _ιώ. You ·: tnr lo. _ Oq cq (NJ cooling speed i: s 谇 旮 g 谇 旮 nmm sss ^ · ι-* (tt to * o 〇 · ㈣ rr +. * H * tH God: s SS d and-; Effect :: ... 4 1 ».e · 成: Ming · _ 3 5 $ 3 5SS: & Potentially belongs to pound 1 筠 driving n. Driving is Ιπ3φ rH :: ^ , d5: · # Ιί >; -cs ·: m ai S mmm mm-MW

DS^wi^M^lfcw(q)4n^«「〇」^e&s「SHsffifc」*1R«fgrE^3i。*-?「(?酿以_挪舶Za}-K«^_fr<rtl£i 願藜」蝈0 舾?^(0««8,^(Ι$6ϋ8φ「◎」«「〇」,「〇」N0舾-Νφ 七«「H」W「SS:SJ -34- 2005385¾ * 阔 4H H 运 & & Q ·©- 0 〇· 〇! BQODa 0Q::©Q:i〇. Ο O 0: Q G) Ο O Q Ο φ 0§ :<st ·〇0; <NI -CO·: CO m C4 rri i-l rH —1 iST :〇CT C4 CO rH. ^ ΐΟ 啸 iO cq ri. i導電率 1 w ,_補 輿#蔡i疼 % k ro o eft n L? CNJ ^ ;rH :00¾,锊嘩 1¾¾¾ 一· ^Tt< Cj rinnSg Mm \ mm\ mm: m Mm 麵 綱: :800 SIB ί雜 %.n%M :〇P·改:S: :¾ , 1320 1030 862 810 13ί〇 1456 1325 ::1485 ;im, 丨祕 結晶 粒徑 pj .._<N;UN: :N:: S · §: .¾ ΓΗ ;S:_ iitti ao«— 2.Qm \ :3,:5 獅 &戚滅工总祕: itifi Hill lilli M S:: ία灘 miM mm 氬念細 •Θ kl:: <3 @ ^ © <1: ® @ @ #: 0 0^©·#' m 圈 m 銳 1 ___ Μ iM: :ja |S lit 资邊g疰爸 與 M ㈣...¾ :iH: Η: —4W rrrl #:|_·戀鑫老 CO 搬 |g €笤笤il .'•5s:· ot: m: cd m 1馨種ii feirgi. jCTS rn tsp to: 舜货ϋ翠 illll Μ 豳 OJ 脒 a •SS3-3 3 tH -.tH! :^ri -.1-¾' 以 d 6 c5 it-H :tM: .tH riH* ;f^ :·ϊΗί* τΗ[ -irH·· .r^i p* :o:: :© · p o ^.: ^ :ί^ ο 〇· ώ> ;:d5· il 锻铹凝箨織 lib -·ιό ib·. ιό ί£ϊ[·: 的:菊瑪··料料 雜 a m m 衫 m 1 M4.M ^ ^ 黢 尋 sllil 〇 〇 ^ ·φ :〇 piiii §…容.§ .·绿·奪 夺..1寸.·謀,·羅 u m 杉 S itj «ώ σ> ο ο 〇 c4 τΗ C<f ci οί Ο σ> p 〇 :cs .讨4 N .滅 S3 <Ξ» - G>l Ό -m: ci ©4 :^Ϊ: :eq m !:〇 ;:〇: :〇:: C25: ;〇; ^ρί csi: :οί eii: ;cfi: CD: ::·©. Q :<m •psi; .:0¾. ;cj * ca; :;e<i _ •踩综織胬織 锊鞔 ϊΐ& υό >£5:: ua: UQ. m丨対 1繾 ^nmnv 辑_.拍执:贫:ώ· mmtw 铎穿s 'S355SS s s S S S :·£〇.· CQ : C〇· C〇 ;:CQ 燊i缭 =**Nwi^w^i£1ie<n:&i«「〇」*NMhas「#!Ha?®fe」 »1R«®y_gio*^「a}vf/«^_fr如/|3>4<«^_卿如)feinil顧s®」«0 «^拭(〇赵拭0, w(i)<nfesfiIK»农「◎」«「〇」,「〇」N0 s^s七《「q」w「gE#A」 -35- 2005385^gDS ^ wi ^ M ^ lfcw (q) 4n ^ «「 〇 」^ e & s「 SHsffifc 」* 1R« fgrE ^ 3i. *-? "(? Stuffed with _ 摩 舶 Za} -K« ^ _ fr < rtl £ i willing quinoa "蝈 0 舾? ^ (0« «8, ^ (Ι $ 6ϋ8φ「 ◎ 」« 「〇」, 「 〇 」N0 舾 -Νφ Seven« 「H」 W 「SS: SJ -34- 2005385¾ * Width 4H H && Q · ©-0 〇 · 〇! BQODa 0Q :: © Q: i〇. 〇 O 0: QG) 〇 OQ Ο φ 0§: < st · 〇0; < NI -CO ·: CO m C4 rri il rH —1 iST: 〇CT C4 CO rH. ^ 〇 iiO cq ri. I conductive Rate 1 w, _ 补 央 # 蔡 i 痛% k ro o eft n L? CNJ ^; rH: 00¾, 锊 1 1¾¾¾ a ^ Tt < Cj rinnSg Mm \ mm \ mm: m Mm Dimension: 800 SIB Miscellaneous% .n% M: 〇P · Change: S:: ¾, 1320 1030 862 810 13ί〇1456 1325 :: 1485; im, 丨 secret crystal particle size pj .._ <N; UN:: N :: S · §: .¾ ΓΗ; S: _ iitti ao «— 2.Qm \: 3,: 5 General Secretary of Lion & Qi Migong: itifi Hill lilli MS :: ίαtan miM mm Argon reading • Θ kl: : ≪ 3 @ ^ © < 1: ® @ @ # : 0 0 ^ © · # 'm circle m sharp 1 ___ Μ iM: : ja | S lit asset edge g daddy and M ㈣ ... ¾: iH: Η: —4W rrrl #: | _ · Lianxin old CO move | g € 笤 笤 il. '• 5s: · ot: m: cd m 1 馨 种 ii feirgi. JCTS rn tsp to: shun goods illll Μ J OJ 脒 a • SS3-3 3 tH -.tH !: ^ ri -.1-¾ 'with d 6 c5 it-H: tM: .tH riH *; f ^: · ϊΗί * τΗ [-irH ·· .r ^ ip * : o :: : © · po ^ .: ^: ί ^ ο 〇 & Royalty >;: d5 · il箨 woven lib-· ιό ib ·. Ιό [·: of: Juma ·· 料 杂 杂 amm shirt m 1 M4.M ^ ^ 黢 寻 sllil 〇〇 ^ · φ: 〇piiii § ... 容 .§ . · Green · Capture..1 inch. · Mou, · Luo um Shan S itj «ώ σ > ο ο ο οc4 τΗ C < f ci οί Ο σ > p 〇: cs. Discuss 4 N. S3 < Ξ »-G > Ό -m: ci © 4: ^ Ϊ :: eq m!: 〇;: 〇 :: 〇 :: C25:; 〇; ^ ρί cii :: οί eii:; cfi: CD :: : · ©. Q : < m • psi;.: 0¾.; Cj * ca; : ; e < i _ • Step on the weaving 胬 胬 胬 & υό > £ 5 :: ua: UQ. M 丨対 1 缱 ^ nmnv Series_. Filming: Poor: Free · mmtw Duo wear s' S355SS ss SSS: · £ 〇. · CQ: C〇 · C〇 ;: CQ 燊 i 缭 = ** Nwi ^ w ^ i £ 1ie < n: & i «「 〇 」* NMhas「 #! Ha? fe ”» 1R «®y_gio * ^「 a} vf / «^ _ fr 如 / | 3 > 4 <« ^ _ 卿 如) feinilGus® '' «0« ^ 擦 (〇 赵 擦 0, w (i) < nfesfiIK »Farm" ◎ "« 「〇」, 「〇」 N0 s ^ s VII "q" w "gE # A" -35- 2005385 ^ g

9* iH 折曲加工性1 擊 ..& O 0000 oodfeo Θ&0ΘΟ _ ^3- CSi trH :.K)·· e: :^! m m ms· ^ :j . ^ ^ r1: ^ H; • _H. th 餘 1 1 tf豸 1 ;.. .........:.j •川...』J............*·" ····;. rH· C4: 0© .051 C!〇: (jcj. (Nl.. Θ H 引張. 強度 fiVOPa) 戀.g g丨變g 3 00 s δ 3 1審§« f I xm 纖 ;iae© 姻0 Him :1_ 1150; 0.5 14 i 0.01 0,05 15 m ί§ :¾ Mi:棼 m lisii iim O f II8IB •均續::咬::呀:w 成廢·ϋί?α 2.3(T〇 3‘_ 3·0(Τί) 2-7..(15) mm IS Si Η -Φ: _Θ ◎ @ @ © @ ◎ 〇〇 0 ® @ ◎萄參 _屬 #: . m m i m m 搬 f Η Μ '1 1::丨··丨丨.違 il 1: 1 Ml i\ 'Μ :Η :丨“ 1 »iiii ό o' 袅毖 m m <m m .itmI 财1 fii i i :i n ί" l! 1 g —:..汗·—; ri H. :#;^.^:o 〇 rH T-t d o 11 jr i i i ij « ί t ! I ¢11 m m s. 撕 •g j 邊邊邊邊戔 1纖 1.5h 1細 i:6h: liml ^ 13L· [IHi lg 35D 350 350 350 350 350 35Q 3β〇 3Β0 450 〇 〇 〇 〇 〇 S i2 !S i2 ifS o o 等每 m CN 濉 厚度 (ππη) :*··ί r-J: Γι-i -i—»· rrl: o# c5 o dl d r-Ι .·τ-Η · .r-if .:τΗ 〇:· C) O' C5 Ο τΗ o o o o o y d d d d o o t4 *-i M13 頦b IO IQ U3 4D 16 妁约妁如cq 必的k〇 ΙΟ (Μ :叫::0¾ 奴: 4A n> ΰα C<| (M k〇 ΙΩ fM GS| w n m 衫 ft :g 1 贫窃岗韵1 :腿.: 丨Λ tX5h a i |g 11111 8 i I § i is S 1 J 〇 QD 1 * B 1 · 域 m 衫 m ».J ο ο ο ο ο .c4 ¢5.,. e<i 〇 .:.〇· φ: φ. :〇: «ί -csi.: :©q csi: m. ο q ο 〇 〇 CO 0D CO Ό5 0(5 CO ::jC〇·: Ιώ ud to i〇. eg: w csi ea 笤芻笤锊§ SI til o 〇_ 〇 xo XD G4 冷卻 速度 Cc/s) o o o o o >—f rH ttH rH 1H Ο ο 〇 Ο Ο :r-S r-f .y-i ΊτΗ* 2 2S3S 領6 <Snz ::0SI- CO i〇 Wi CD ¢0 Φ ¢0 «D φ综S :c〇 c〇 :co._ 寸却 <R bi r-ί (jq pa. i〇 IA UD i〇 Φ b- φ Φ Qj ίο m ιο us to g 结 ssg tD ^ ς〇 QD 0s*N^sa^w®^Ke$i^「〇」*NIIIIl(is「#iH-g«fe」 贼l^«fsewffir«^「sM/«^_fr^/i}¥«^_^釦)felDi}騷«J«e «^W6¥WS,MI)如 φϊκφ「©」^「〇」,「〇」ΝΘ SNia七蛔「M」^「®ia」 -36- 2005385關9 * iH Bending processability 1 hit .. & O 0000 oodfeo Θ & 0ΘΟ _ ^ 3- CSi trH: .K) · e:: ^! Mm ms · ^: j. ^ ^ R1: ^ H; • _H. Th remaining 1 1 tf 豸 1; ...........:. J • 川 ... 』J ............ * · " ·· ·· ;. rH · C4: 0 © .051 C! 〇: (jcj. (Nl .. Θ H introduction. Intensity fiVOPa) .gg 丨 change g 3 00 s δ 3 1 review § «f I xm fiber; iae © Marriage 0 Him: 1_ 1150; 0.5 14 i 0.01 0,05 15 m ί§: ¾ Mi: 棼 m lisii iim O f II8IB • Continuous :: bite :: 呀: w 成 Waste · ϋί? α 2.3 ( T〇3'_ 3 · 0 (Τί) 2-7 .. (15) mm IS Si Η -Φ: _Θ ◎ @ @ © @ ◎ 〇〇0 ® @ ◎ Grassen_gen #:. Mmimm ff Η Μ '1 1 :: 丨 ·· 丨 丨. Viol 1: 1 Ml i \' Μ: Η: 丨 "1» iiii ό o '袅 毖 mm < mm .itmI 财 1 fii ii: in ί " l ! 1 g —: .. Khan · —; ri H. : #; ^. ^: O 〇rH Tt do 11 jr iii ij «ί t! I ¢ 11 mm s. 1.5h 1 fine i: 6h: liml ^ 13L · [IHi lg 35D 350 350 350 350 350 350 35Q 3β〇3Β0 450 〇〇〇〇〇S i2! S i2 ifS oo etc. m CN 濉 Thickness (ππη): * ·· ί rJ: Γι-i -i— »· rrl: o # c5 o dl d r-I. · τ-Η · .r-if.: τΗ 〇: · C ) O 'C5 Ο τΗ oooooyddddoo t4 * -i M13 颏 b IO IQ U3 4D 16 妁 Approximately as kq must be k〇ΙΟ (M: name :: 0¾ slave: 4A n > ΰα C < | (M k〇ΙΩ fM GS | wnm shirt ft: g 1 gangster rhyme 1: leg .: 丨 Λ tX5h ai | g 11111 8 i I § i is S 1 J 〇QD 1 * B 1 · domain m shirt m ».J ο ο ο ο ο .c4 ¢ 5.,. e < i 〇 .: .〇 · φ: φ.: 〇: «ί -csi .:: © q csi: m. ο q ο 〇〇CO 0D CO Ό5 0 ( 5 CO :: jC〇 · : Ιώ ud to i〇. Eg: w csi ea 笤 笤 锊 笤 锊 SI til o 〇_ 〇xo XD G4 cooling rate Cc / s) ooooo > —f rH ttH rH 1H Ο ο ο 〇〇 〇: rS rf .yi ΊτΗ * 2 2S3S collar 6 < Snz :: 0SI- CO i〇Wi CD ¢ 0 Φ ¢ 0 «D φcomposite S: c〇c〇: co._ inch but < R bi r-ί (jq pa. i〇IA UD i〇Φ b- φ Φ Qj ίο m ιο us to g 结 ssg tD ^ ς〇QD 0s * N ^ sa ^ w® ^ Ke $ i ^ 「〇」 * NIIIIl (is 「# iH-g« fe 」Thief l ^« fsewffir «^「 sM / « ^ _fr ^ / i} ¥ «^ _ ^ 扣) felDi} Sao« J «e« ^ W6 ¥ WS, MI) such as φϊκφ 「©」 ^ 「〇」, 「〇」 ΝΘ SNia 七 蛔 「M」 ^ 「 ®ia '' -36- 2005385

m .溶體化 :處理 1: L_ h': t r f fr: 1 ί; ί 擗 ί: •蚺1丨丨:聛 U 1;: 1 折曲加工性 擊 & ::1:. .1 l x X ]k X ί X x X X X X X X f: 位| 1. \ li ^ — \A ιό. 1 id tib ^ ίο- ❿1 :书 ;1 ;1 tf .麥 iCL !κ hi [秘绍 g I S 〇〇 |〇 >Λ csj § <S1 1 __ ί * »|g | 1310 720 320 "if 10; ^ 690: 1 1210 820 873 692 o § 1 <Wi Έ mm # 1! :ϊ !^ 的寸1結.抑: 2 1 鍾 ί ί! ί ΐΐ M ι:.111 f :杳 議"r 3 S "丨§ #: ® M ..:*............: :錢丨 丨 1: il 1 X x X X 丨 SC x :χ· x Μ 矣I #: m m 第2次熱處理 :··酲] IS丨 1 1 §鸯 «is 1自营畜自 S i 制# 5|C: K i菌i 绽铝1緻涝 mil 霧丨丨 m 廳 CN 搬 feil lit· 1 1 :l rH rfH i—i rH t—j Q 〇 C> ί—1 τΗ τ-Η τΗ ιΗ dl c5 c5 c> ο S 1 «慈 si鉍 I !:丨芻终 脔1 第1次熱處理 J ^ <启蟲 资1 sS 1 1 1 II 〇 ο 〇 ο ο .G2) ·«〇. ¢5 ¢3. -SD· .7J^k · *2$: £Β »J^S· . τι»· Tyi* . .\J ·.· 11111 •o , ? 1 第1次壓延 fes:fi' o : q (¾ 〇i o 〇s} cq t-4 vh c4 ο :·ο; m. ο: &: ρ5 :;d· 〇4 ¢^: Φ ο :θ. m ::〇 ο Ό: life· .辍胬i織 1場赞|f:f 费锊鞔 it 冷卻 速度 to^ 条笤翁 __ g| :Q: es m 的丨 ^1¾¾¾ 0D M3 § :sH外聰嘴:.Cffi_ =.<#:· fesr :ΰΰ:: icrs· :S S SS 3¾ 五鎰寒’ cs^^i^wa?^Kq)4n:&i«「.x^M}&s「fflHaiiete」 *1K«sewffii。*忉「(倾}七«^_^如/1}+<«忉_擗釦£1鼷®」岷 e *忉味}鼷奧—Mi>sw^!tw(eYa)<nfe伥«「x」^0 «^#0七岷「^恂「酲篮」 -37- 2005385©) 折曲加工性之欄的「評價」,在抗拉強度 TS爲 8 0 0MPa以下之板材中符合BS2.0者,在抗拉強度TS爲 超過800MPa之板材中符合下記之(b)式之情況爲「〇」, 未符合的情況記爲「X」。 41.2686-39.4583xexp[-{(TS-6 1 5.675)/2358.08}2]- (b) φ 第2圖是顯示各實施例之抗拉強度與導電率的關係之 圖。如表4〜7及第2圖所示,本發明例1〜67中,化學組 成、濃度比及析出物及夾雜物的合計個數,是在本發明所 規定的範圍內,因此抗拉強度及導電率符合於上述之(a) 式。從而,該等之合金,導電率及抗拉強度之平衡可說是 位於與B e添加銅合金爲同程度或其以上之高等級者。依 此方式,可了解,本發明之銅合金在導電率及抗拉強度之 變化很豐富。並且,本發明例1、6、1 1、16、3 4、3 6、 φ 37、39、41、64、65及66,是使用同一成分系而將添加 量及/或製造條件進行微調整之例。該等合金具有如第2 圖中以「Δ」所表示的抗拉強度與導電率之關係,因此可 說是具有先前技術所習知之銅合金的特性之銅合金。折曲 特性亦爲良好。 另一方面,比較例1〜4、6、10、12〜14、16及 1 7 ’任何一個之含有量均在本發明所規定的範圍之外,折 曲加工性差,導電率低,比較例1〜3及1 7,在第2次壓 延時有嚴重的邊裂,無法採取試料,因而未到特性評價的 -38- 2005385¾ 地步。 並且,實施9 5 0°C熔體化處理之比較例5、9、1 1及 1 5,抗拉強度差,且折曲加工性亦差。 實施例2 對安全工具的適用必須評價,使用以下的方法製作試 料,而評價磨耗性(維氏硬度)及耐火花產生性。 將具有表8所示的化學組成之合金,在大氣中熔解於 高頻熔爐中,利用度維鑄造法(durville casting process) 而模鑄。即,將模具1保持於如第3 (a)圖所示的狀態’一 方面使用木炭粉末確保還原之環境,一方面將1300 °C之 熔融水澆鑄於模具1之後,將其如第3 (b)圖所示之模樣而 傾轉,在第3(c)圖之狀態被凝固而製作出鑄片。模具1爲 厚度50mm之鑄鐵製,其內部設有冷卻用孔,可實施空氣 冷卻般地進行配管。爲了澆鑄容易起見’鑄片被作成楔 形,下剖面被作成30x300,上剖面爲50x4〇Omm,高度爲 7 00mm ° 採取從所獲得的鑄片之下端到3 0 0mm之部分’經表 面硏磨後,實施冷軋(30— 10mm)->熱處理(3 7 5 °Cxl6h), 而獲得厚度10mm之板。使用這些板’藉由上述的方法而 調查析出物及夾雜物之合計個數、抗拉強度、導電率及折 曲加工性,更利用下記的方法而調查耐磨耗性、熱傳導度 及耐火花產生性。將其結果表示於表8中。 39· 2005385¾¾ <耐磨耗性> 從供試料採取寬度1 Ommx長度1 〇mm之試驗片,將垂 直於壓延面,且與壓延方向平行之剖面作鏡面硏磨,利用 JIS Z 2 2 4 4所規定的方法而測定在2 5 °C、負荷9.8 N時之 維氏硬度。 <熱傳導度> | 熱傳導度[TC(W/m· K)],是將上述導電率[IACS(%)] 代入第1圖中所記載的式「TC= 1 4.804 + 3.8 1 72xIACS」而 求得。 <耐火花產生性>m .Solution: treatment 1: L_ h ': trf fr: 1 ί; 擗 擗 ί: • 蚺 1 丨 丨: 聛 U 1 ;: 1 bending processability & :: 1 :. .1 lx X] k X ί X x XXXXXX f: bit | 1. \ li ^ — \ A ιό. 1 id tib ^ ίο- ❿1: book; 1; 1 tf. 麦 iCL! Κ hi [秘 绍 g IS 〇〇 | 〇 > Λ csj § < S1 1 __ ί * »| g | 1310 720 320 " if 10; ^ 690: 1 1210 820 873 692 o § 1 < Wi Έ mm # 1! 1 结. 抑: 2 1 钟 ί ί! Ί ΐΐ M ι: .111 f: 杳 议 " r 3 S " 丨 § #: ® M ..: * ........... .:: Money 丨 丨 1: il 1 X x XX 丨 SC x: χ · x Μ 矣 I #: mm Second heat treatment: ·· 酲] IS 丨 1 1 § 鸯 «is 1 System # 5 | C: K i bacteria i bloom aluminum 1 caused waterlog mil mist 丨 丨 m Hall CN moved feil lit · 1 1: l rH rfH i—i rH t—j Q 〇C > ί-1 τΗ τ-Η τΗ ιΗ dl c5 c5 c > ο S 1 «Ci bismuth I!: 丨 end of 脔 脔 1 first heat treatment J ^ < starter 1 sS 1 1 1 II 〇ο 〇ο ο .G2) ·« 〇 . ¢ 5 ¢ 3. -SD · .7J ^ k · * 2 $: £ Β »J ^ S ·. Τι» · Tyi *.. \ J · . · 11111 • o,? 1 First rolling fes: fi 'o: q (¾ 〇io 〇s) cq t-4 vh c4 ο: · ο; m. Ο: & ρ: ρ5 :; d · 〇 4 ¢ ^: Φ ο: θ. M: 〇ο Ό: life ·. 胬 胬 i weaving 1 field like | f: f 锊 鞔 锊 鞔 it cooling rate to ^ bar 笤 __ g |: Q: es m丨 ^ 1¾¾¾ 0D M3 §: sH Wai Congzui: .Cffi_ =. ≪#: · fesr: ΰΰ :: icrs ·: SS SS 3¾ Wu 镒 han 'cs ^^ i ^ wa? ^ Kq) 4n: & i «「. x ^ M} & s 「fflHaiiete」 * 1K «sewffii. * 忉 「(倾 倾 七« ^^^ 如 / 1) + < «忉 _ 擗 扣 £ 1 鼷 ®」 岷 e * 忉 味} 鼷 奥 —Mi > sw ^! Tw (eYa) < nfe 伥«「 X 」^ 0« ^ # 0 岷 岷 ^^ 「酲 Basket」 -37- 2005385 ©) The "Evaluation" of the column of bending workability conforms to a plate having a tensile strength TS of 80 MPa or less In the case of BS2.0, when the tensile strength TS exceeds 800 MPa, if the formula (b) below is satisfied, it is "0", and if it is not, it is recorded as "X". 41.2686-39.4583xexp [-{(TS-6 1 5.675) /2358.08} 2]-(b) φ Figure 2 is a graph showing the relationship between the tensile strength and the electrical conductivity of each example. As shown in Tables 4 to 7 and Figure 2, in Examples 1 to 67 of the present invention, the chemical composition, concentration ratio, and total number of precipitates and inclusions are within the range specified by the present invention, so the tensile strength And the conductivity is in accordance with the above formula (a). Therefore, the balance of electrical conductivity and tensile strength of these alloys can be said to be at the same level as or higher than that of Be-added copper alloys. In this way, it can be understood that the copper alloy of the present invention is rich in changes in electrical conductivity and tensile strength. In addition, in the present invention examples 1, 6, 11, 1, 16, 3, 4, 6, 6, 37, 39, 41, 64, 65, and 66, the addition amount and / or manufacturing conditions were fine-tuned using the same component system Example. These alloys have a relationship between tensile strength and electrical conductivity as indicated by “Δ” in FIG. 2, and thus can be said to be copper alloys having the characteristics of copper alloys known in the prior art. The bending characteristics are also good. On the other hand, the contents of any of Comparative Examples 1 to 4, 6, 10, 12 to 14, 16, and 1 7 'were outside the range specified in the present invention, and the bending workability was poor, and the conductivity was low. Comparative Examples 1 ~ 3 and 17 have severe edge cracks during the second compression delay, and the sample cannot be taken, so it has not reached the level of -38- 2005385¾ for characteristic evaluation. In addition, Comparative Examples 5, 9, 11 and 15 which were melt-treated at 95 ° C were inferior in tensile strength and inferior in bending workability. Example 2 The application to a safety tool must be evaluated. Samples were prepared using the following methods, and the abrasion resistance (Vickers hardness) and spark resistance were evaluated. The alloy having the chemical composition shown in Table 8 was melted in a high-frequency furnace in the atmosphere and die-cast using a durville casting process. That is, the mold 1 is maintained in a state as shown in FIG. 3 (a). 'On the one hand, charcoal powder is used to ensure a reduced environment. On the other hand, 1300 ° C molten water is cast into the mold 1, and the mold 1 is as shown in FIG. 3 ( b) It is tilted as shown in the figure, and is solidified in the state shown in Figure 3 (c) to produce a cast piece. The mold 1 is made of cast iron having a thickness of 50 mm, and cooling holes are provided in the mold 1 to allow piping to be performed by air cooling. For the sake of easy casting, the slab is made wedge-shaped, the lower section is made 30x300, the upper section is 50x400mm, and the height is 7000mm. The part from the lower end of the obtained slab to 300mm is taken for surface honing. Then, cold rolling (30-10 mm)-> heat treatment (3 7 5 ° Cx16h) was performed to obtain a plate having a thickness of 10 mm. Using these plates, the total number of precipitates and inclusions, tensile strength, electrical conductivity, and bending workability were investigated by the methods described above, and the abrasion resistance, thermal conductivity, and spark resistance were also investigated by the following methods Productive. The results are shown in Table 8. 39 · 2005385¾¾ < Abrasion resistance > A test piece with a width of 10 mm and a length of 10 mm was taken from the sample, and the cross section perpendicular to the rolling surface and parallel to the rolling direction was mirror-honed, using JIS Z 2 2 4 The Vickers hardness at 25 ° C and a load of 9.8 N was measured by the method specified in 4. < Thermal conductivity > | The thermal conductivity [TC (W / m · K)] is obtained by substituting the above-mentioned conductivity [IACS (%)] into the formula "TC = 1 4.804 + 3.8 1 72xIACS" And find it. < Spark Resistance >

使用轉數爲120〇〇rpm的桌上型硏磨機,根據jIS G 0 5 66所規定的方法進行火花試驗,以目視確認火花產生 之有無。 φ 而,從下剖面算起100mm位置之鑄模內壁面下5mm 之位置上插入熱電偶,而進行測溫,根據從熱傳計算獲 得的液相線而求得的到4 5 0 °C之平均冷卻速度,是爲1 〇 〇C /s。 -40- 2005385¾¾Using a table type honing machine with a rotation speed of 120,000 rpm, a spark test was performed according to the method specified in jIS G 0 5 66 to visually confirm the presence or absence of sparks. φ In addition, a thermocouple was inserted at a position of 5 mm below the inner wall surface of the mold at a position of 100 mm from the lower section, and the temperature was measured. The average value of 4 5 0 ° C was obtained based on the liquidus line obtained from the heat transfer calculation. The cooling rate was 100 C / s. -40- 2005385¾¾

$ 火花產生 之有無 .rn, m, ΓΠ- ㈣ 熱傳 導度 .: :: :fc S 遂: ::f3' rH :: ;: ]m m : 1 耐摩 耒毛1生 :¾¾ N t-.o :^Φ cSl :;»H ip〇 φ::^ : ;·.....: I.T "! II |Τ· ::折曲加工性] 評價 丨:: ,. όρφ x Μ L.愛. fM # m 1 導電率 1讎 ;.cp ;€SI :〇p rH. _r^ 引張 強度 ®EPaj lg:fe mm :_s 結晶 粒徑 i:Pl 一 M m _•.機 羰 Μ w( 铤 ss m Μ ; aoi am 0.01 0.1 α祕 0Λ S.. •ί 抑:讀饵; ::C3:·. ·(£>·· τ4 為; :P:" i .·1 .Ρ it 1 "m m f I 〇| 區分 ss 本發明 比較例 e*^<n:6^«「x」^ias^s^we<nft«「〇」s15fc^「iH、Haiieii」 α®^^ΒΪ®1^ί}*Νκ®^1τ?δΛΙ)<π&ι«「χ」Μ^ΜΟ<π:6®「©」^Θ _.H, f ··- -r. i?: .«n: . -•.•ilf:··':!"»!J /t>n.vsk Μ 1 :/ττ; —i 2005385¾¾ 如表8所示,在本發明例6 8〜7 0中,耐磨耗性爲良 好,熱傳導度亦大,且未觀察到火花。另一方面,比較例 1 8及1 9之任何一個均未符合本發明所規定的化學組成及 (1 )式所規定的關係,因此,熱傳導度小,且觀察到火 花。 產業上利用之可行性 根據本發明的話,可提供一種··製品變化很豐富,並 且局溫強度及加工性優秀,並且安全工具材料上要求的性 能,即熱傳導度、耐磨耗性及耐火花產生性亦優異的銅合 金及其製造方法。 【圖式簡單說明】 第1圖是顯示銅合金的導電率與熱傳導率之關係之 圖。 第2圖是顯示各實施例之抗拉強度與導電率的關係之 圖。 第 3圖是顯示利用度維鑄造方法(Durville casting process)的模式圖。 【主要元件符號說明】 1 :模具 -42-$ The presence or absence of sparks. Rn, m, ΓΠ- ㈣ Thermal conductivity .:::: fc S: :: f3 'rH::;:] mm : 1 anti-frizz hair: ¾¾ N t-.o: ^ Φ cSl:; »H ip〇φ :: ^:; · .....: IT "! II | Τ · :: Bending processability] Evaluation 丨 ::,. Όρφ x Μ L. Love. fM # m 1 Electrical conductivity 1 雠; .cp; € SI: 〇p rH. _r ^ Tensile strength® EPaj lg: fe mm: _s Crystal grain size i: Pl-M m _ •. machine carbonyl M w (铤 ss m Μ; aoi am 0.01 0.1 α 秘 0Λ S .. • ί :: reading bait; :: C3: ··· (£ > ·· τ4 is;: P: " i. · 1 .Ρit 1 " mmf I 〇 | distinguish ss comparative example of the present invention e * ^ < n: 6 ^ «「 x 」^ ias ^ s ^ we < nft« 「〇」 s15fc ^ 「iH, Haiieii」 α® ^^ ΒΪ®1 ^ ί} * Νκ® ^ 1τ? δΛΙ) < π & ι «「 χ 」Μ ^ ΜΟ < π: 6®「 © 」^ Θ _.H, f ··--r. i ?:.« n :.-•. • ilf: ·· ':! &Quot; »! J / t &n; vsk Μ 1: / ττ; —i 2005385¾¾ As shown in Table 8, in Examples 6-8 to 70 of the present invention, The abrasion resistance is good, the thermal conductivity is large, and no sparks are observed. Any of Comparative Examples 18 and 19 did not meet the chemical composition prescribed by the present invention and the relationship prescribed by formula (1), and therefore, the thermal conductivity was small and sparks were observed. Feasibility of Industrial Use According to the present invention Can provide a copper alloy with rich product variations, excellent local temperature strength and processability, and properties required for safety tool materials, that is, thermal conductivity, abrasion resistance, and spark resistance. Manufacturing method [Simplified illustration of the drawing] Fig. 1 is a graph showing the relationship between the electrical conductivity and thermal conductivity of the copper alloy. Fig. 2 is a graph showing the relationship between the tensile strength and the electrical conductivity of each embodiment. Fig. 3 It is a schematic diagram showing the use of the Durville casting process. [Description of Symbols of Main Components] 1: Mold-42-

Claims (1)

200538562 (1) 十、申請專利範圍 1. 一種銅合金,其特徵爲:由包含有:從Zn、 Ag、Μη、Fe、Co、Al、Ni、Si、Mo、V、Nb、Ta、 Ge、Te及Se之中選擇的1種或2種以上之合計0< 質量%,其餘爲銅及雜質所形成,存在於合金中的析 及夾雜物中的粒徑爲1 // m以上者的粒徑、及析出物 雜物之合計個數,是符合下列(1)式所示之關係’ W > 1〜20 出物 及夾200538562 (1) X. Application for patent scope 1. A copper alloy, characterized by: containing: from Zn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, Ge, Te and Se selected from one or two types in total 0%; mass%, the rest are formed by copper and impurities, and the particle size of the precipitates and inclusions present in the alloy is 1 // m or more The diameter and the total number of precipitates are in accordance with the relationship shown in the following formula (1): 'W > 1 ~ 20 logN^ 0.4742 + 1 7.629xexp(-〇. 1 1 33xX)··· (1) 其中,N是指析出物及夾雜物之每單位面積的合 數(個/mm2),X是指析出物及夾雜物之粒徑«0。 2·—種銅合金,其特徵爲··以質量%表示,由含 從 Ti : 0.0 1 〜5%、Zr : 0.0 1 〜5%及 Hf : 0.0 1 〜5% 之中 的任何 1 種、及從 Zn、Sn、Ag、Mn、Fe、Co、A1、 Si、Mo、V、Nb、Ta、W、Ge、Te 及 Se 之中選擇的 或2種以上之合計0.01〜20%,其餘爲銅及雜質, 成,存在於合金中的析出物及夾雜物中的粒徑爲1 // 上者的粒徑、及析出物及夾雜物之合計個數,是符合 (1)式所示之關係, logN^ 0.4742 + 1 7.629xexp(-〇.1133xX)··· (l) 其中,N是指析出物及夾雜物之每單位面積的合 計個 有: 選擇 Ni、 1種 所形 m以 下列 計個 •43- 200538562 (2) 數(個/mm2),X是指析出物及夾雜物之粒徑(# m)。 3. —種銅合金,其特徵爲:以質量%表示時,由含 有·· Cr : 0.01 〜5°/。、及從 Zn、Sn、Ag、Mn、Fe、Co、 Al、Ni、Si、Mo、V、Nb、Ta、W、Ge、Te 及 Se 之中選 擇的1種或2種以上之合計0.01〜20%,其餘爲銅及雜 質,所形成,存在於合金中的析出物及夾雜物中的粒徑爲 1 // m以上者的粒徑、及析出物及夾雜物之合計個數’是 符合下列(1)式所示之關係, logN^ 0.4742 + 17.629xexp(-〇.1133xX)··· (1) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑(V m)。 4. 一種銅合金,其特徵爲:由包含有:從Zn、Sn、 Ag、Μη、Fe、Co、Al、Ni、Si、Mo、V、Nb、Ta、W、 Ge、Te及 Se之中選擇的1種或 2種以上之合計 0.1〜20%、及從Mg、Li、Ca及稀土類元素之中選擇的1 種或2種以上之合計0.001〜2質量% ’其餘爲銅及雜質, 所形成,存在於合金中的析出物及夾雜物中的粒徑爲1 // m以上者的粒徑、及析出物及夾雜物之合計個數’是符合 下列(1)式所示之關係, logNg 0.4742 + 1 7.629xexp(-0.1 133χΧ)“·(1) -44- 200538562 (3) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑(μ m)。 5. —種銅合金,其特徵爲:以質量%表示,由含有: 從 Ti: 0.01 〜5%、Zr: 0·01〜5°/。及 Hf: 0.01 〜5 % 之中選擇 的任何 1 種,從 Zn、Sn、Ag、Μη、Fe、Co、Al、Ni、 Si、Mo、V、Nb、Ta、W、Ge、Te 及 Se 之中選擇的 1 種 或2種以上之合計〇·〇1〜20%、及從Mg、Li、Ca及稀土類 元素之中選擇的1種或2種以上之合計〇·001〜2質量%, 1 其餘爲銅及雜質,所形成,存在於合金中的析出物及夾雜 物中的粒徑爲1 # m以上者的粒徑、及析出物及夾雜物之 合計個數,是符合下列(1)式所示之關係’ logN^ 〇.4742 + 17.629xexp(-0.1133xX)*·· (1) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑(# m)。 6. —種銅合金,其特徵爲:以質量%表示時’由含 有:Cr : 0.01 〜5%、從 Zn、Sn、Ag、Mn、Fe、Co、A1、 Ni、Si、Mo、V、Nb、Ta、W、Ge、Te 及 Se 之中選擇的 1種或2種以上之合計〇·01〜20%、及從Mg、Ll、Ca及稀 土類元素之中選擇的1種或2種以上之合5十〇·001〜2質里 %,其餘爲銅及雜質,所形成’存在於合金中的析出物及 夾雜物中的粒徑爲1 // m以上者的粒徑、及析出物及夾雜 物之合計個數,是符合下列⑴式所示之關係’ -45- 200538562 (4) lo gNS 0.4742 + 17.629xexp(-0.1133xX)··· (1) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑(// m)。 7. —種銅合金,其特徵爲:由包含有:從Zn、Sn、 Ag、Μη、Fe、Co、A1、Ni、Si、Mo、V、Nb、Ta、W、 Ge、Te及 Se之中選擇的 1種或 2種以上之合計 0· 1 〜20%、及從 P、B、Bi、Tl、Rb、Cs、Sr、Ba、Tc、 Re、Os、Rh、In、Pd、Po、Sb、Au、Ga、S、Cd、As 及 Pb之中選擇的1種或2種以上之合計0.001〜3質量°/〇 ’其 餘爲銅及雜質,所形成’存在於合金中的析出物及夾雜物 中的粒徑爲1 V πι以上者的粒徑、及析出物及夾雜物之合 計個數,是符合下列(1)式所示之關係’ logN^ 0.4742 + 17.629xexp(-0.1133xX)··· (1) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑m) ° 8. —種銅合金,其特徵爲··以質量%表示’由含有: 從 Ti: 0.01 〜5 %、ΖΓ: 0.01 〜5°/。及 Hf: 0.01 〜5 % 之中選擇 的任何 1 種、從 Zn、Sn、Ag、Mn、Fe、Co、Al、Ni、 8卜1^〇、乂、1^1)、丁&、冒、〇6、丁6及36之中選擇的1種 或2種以上之合計〇·〇1〜20%、及從P、B、Bi、T1、、 -46- 200538562 (5) Cs、Sr、Ba、Tc、Re、O s、Rh、In、P d、Po、Sb、Au、 Ga、S、Cd、As及Pb之中選擇的1種或2種以上之合計 0.001〜3質量%,其餘爲銅及雜質,所形成,存在於合金 中的析出物及夾雜物中的粒徑爲1 # πι以上者的粒徑、及 析出物及夾雜物之合計個數,是符合下列(1)式所示之關 係, logN^ 0.4742 + 1 7.629xexp(-〇.1133xX)··· (1) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑(# πι)。 9. 一種銅合金,其特徵爲:以質量%表示時,是由含 有:Cr: 0.01 〜5 %、從 Zn、Sn、Ag、Μη、Fe、Co、Al、 Ni、Si、Mo、V、Nb、Ta、W、Ge、Te 及 Se 之中選擇的 1種或2種以上之合計〇·〇1〜20%、及從P、B、Bi、ΤΙ、 Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、Po、Sb、 Au、Ga、S、Cd、As及Pb之中選擇的1種或2種以上之 合計0.0 0 1〜3質量%,其餘爲銅及雜質’所形成,存在於 合金中的析出物及夾雜物中的粒徑爲1 # m以上者的粒 徑、及析出物及夾雜物之合計個數’是符合下列(1)式所 示之關係, logNS 0.4742 + 17.629xexp(-0.1133xX)··· (1) -47- 200538562 (6) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑m) ° 10. —種銅合金,其特徵爲:由包含有:從Zn、Sn、 Ag、Mn、Fe、Co、Al、Ni、Si、Mo、V、Nb、Ta、W、 Ge、Te及Se之中選擇的1種或2種以上之合計〇· 1〜20 質量%、從Mg、Li、Ca及稀土類元素之中選擇的1種或 2種以上之合計0.001〜2質量%、及從P、B、Bi、ΊΊ、 • Rb、Cs、Sr、Ba、Tc、Re、Os、Rh、In、Pd、P〇、Sb、 Au、Ga、S、Cd、As及Pb之中選擇的1種或2種以上之 合計0.001〜3質量%,其餘爲銅及雜質,所形成’存在於 合金中的析出物及夾雜物中的粒徑爲1 # m以上者的粒 徑、及析出物及夾雜物之合計個數,是符合下列(1 )式所 示之關係, logNS 0.4742 + 1 7.629xexp(-0.1133xX).·· (1) 其中,N是指析出物及夾雜物之每單位面積的合計個1 數(個/mm2),X是指析出物及夾雜物之粒徑(# πι) ° 11. 一種銅合金,其特徵爲:以質量%表示’是由含 有:從 Ti: 0.01 〜5%、Zr: 0.01 〜5% 及 Hf: 0.01 〜5% 之中 選擇的任何 1 種、從 Zn、Sn、Ag、Mn、Fe、Co、A1、 Ni、Si、Mo、V、Nb、Ta、W、Ge、Te 及 Se 之中選擇的 1種或2種以上之合計〇·〇1〜20%、從Mg、Li、Ca及稀土 類元素之中選擇的1種或2種以上之合計〇·001〜2質量 -48- 200538562 (7) % 、及從 p 、 B 、 Bi 、 ΤΙ 、 Rb 、 Cs 、 Sr 、 Ba 、 Tc 、 Re 、 Os、Rh、In、Pd、P〇、Sb、An、Ga、S、Cd、As 及 Pb 之 中選擇的l種或2種以上之合計〇·001〜3質量% ’其餘爲 銅及雜質,所形成,存在於合金中的析出物及夾雜物中的 粒徑爲1 // m以上者的粒徑、及析出物及夾雜物之合計個 數,是符合下列(1)式所示之關係’ • logN‘〇.4742 + 17.629xexp(-0.1133xX)···。) 其中,N是指析出物及夾雜物之每單位面積的合計個 ' 數(個/mm2),X是指析出物及夾雜物之粒徑m)。 12.—種銅合金,其特徵爲:以質量%表示時’是由含 有:Cr: 0.01 〜5 %、從 Zn、Sn、Ag、Μη、Fe、Co、Al、 Ni、Si、Mo、V、Nb、Ta、W、Ge、Te 及 Se 之中選擇的 1種或2種以上之合計0.01〜20%、從Mg、Li、Ca及稀土 ^ 類元素之中選擇的1種或2種以上之合計0.001〜2質量 %、及從 P、 B、 Bi、 Tl、 Rb、 Cs、 Sr、 Ba、 Tc、 Re、 0 s、Rh、In、P d、P o、Sb、Au、Ga、S、Cd、As 及 Pb 之 中選擇的1種或2種以上之合計0.001〜3質量%,其餘爲 銅及雜質,所形成,存在於合金中的析出物及夾雜物中的 粒徑爲1 // m以上者的粒徑、及析出物及夾雜物之合計個 數,是符合下列(1)式所示之關係, logN^ 〇.4742 + 17.629xexp(-0.1133xX)··· (1) -49- 200538562 (8) 其中,N是指析出物及夾雜物之每單位面積的合計個 數(個/mm2),X是指析出物及夾雜物之粒徑(μ m) ° 1 3 ·如申請專利範圍第1至1 2項中任何一項所記載之 銅合金,其中更包含有0.1〜5質量%之Be,以取代銅之一 部分。 1 4 .如申請專利範圍第1至1 2項中任何一項所記載之 銅合金,其中至少1種的合金元素之微小領域中’平均含 有量之最大値與平均含有量之最小値的比是爲1 ·5以上° 1 5 .如申請專利範圍第1 3項所記載之銅合金’其中至 少1種的合金元素之微小領域中,平均含有量之最大値與 平均含有量之最小値的比是爲1 .5以上。 1 6 .如申請專利範圍第1至1 2項中任何一項所記載之 銅合金,其中結晶粒徑是爲0.0 1〜3 5 // m。 1 7 ·如申請專利範圍第1 3項所記載之銅合金,其中結 晶粒徑是爲0.01〜35 // m。 1 8 ·如申請專利範圍第1 4項所記載之銅合金,其中結 晶粒徑是爲0.01〜35 // m。 1 9 ·如申請專利範圍第1 5項所記載之銅合金,其中結 晶粒徑是爲〇·〇1〜35 // m。 20· —種銅合金之製造方法,其特徵爲:其是將具有 申請專利範圍第1至1 3項之任何一項所記載之化學組成 的銅合金熔製、鑄造所獲得的鑄片,從至少剛鑄造後所獲 得的鑄片溫度到450°C爲止之溫度域中,以0.5°C/秒以上 -50- 200538562 (9) 的冷卻速度冷卻,其中:銅合金是存在於合金 及夾雜物中的粒徑爲1 # m以上者的粒徑、及 雜物之合計個數,是符合下列(1)式所不之關傾 logN^ 0.4742 + 1 7.629xexp(-〇.1133xX)· 其中,N是指析出物及夾雜物之每單位面 φ 數(個/mm2),X是指析出物及夾雜物之粒徑(# 21.—種銅合金之製造方法’其特徵爲: 申請專利範圍第1至1 3項之任何一項所記載 的銅合金熔製、鑄造所獲得的鑄片,從至少剛 得的鑄片溫度到4 5 0 °C爲止之溫度域中,以〇 的冷卻速度冷卻,且於600 °C以下的溫度域 中:銅合金是存在於合金中的析出物及夾雜物 1 μ m以上者的粒徑、及析出物及夾雜物之合 φ 符合下列(1 )式所示之關係, logN^ 0.4742 + 17.629xexp(-0.1133xX)· 其中,N是指每單位面積的析出物及夾雜 數(個/mm2),X是指析出物及夾雜物之粒徑(// 22· —種銅合金之製造方法,其特徵爲: 申請專利範圍第1至1 3項之任何一項所記載 的銅合金熔製、鑄造所獲得的鑄片,從至少剛 中的析出物 析出物及夾 ••⑴ 積的合計個 m) 〇 其是將具有 之化學組成 鑄造後所獲 .5°C /秒以上 中加工,其 中的粒徑爲 計個數,是 .(1) 物之合計個 m) 〇 其是將具有 之化學組成 鑄造後所獲 -51 - 200538562 (10) 得的鑄片溫度到4 5 0 C爲止之溫度域中,以〇 · 5 /秒以上 的冷卻速度冷卻,且於6 0 0 °C以下的溫度域中加工之後, 以提供在1 5 0〜7 5 0 C之温度域中提供保持3 0秒以上的熱 處理,其中··銅合金是存在於合金中的析出物及夾雜物中 的粒徑爲1 # m以上者的粒徑、及析出物及夾雜物之合計 個數,是符合下列(1)式所不之關係, φ logN^O.4742 + 17.629xexp(-0.1133xX)-*-(l) 其中,N是指每單位面積的析出物及夾雜物之合計個 數(個/mm2),X是指析出物及夾雜物之粒徑(// m)。 23.如申請專利範圍第22項所記載之銅合金之製造方 法,其中,在600°C以下的溫度域中之加工及在150〜750 °C之溫度域中保持3 0秒以上的熱處理,是被進行複數 次。 φ 24.如申請專利範圍第22或23項所記載之銅合金之製 造方法,其中,在最後的熱處理之後,是在6 0 0 °C以下的 溫度域中進行加工。 -52-logN ^ 0.4742 + 1 7.629xexp (-〇. 1 1 33xX) (1) where N is the total number (unit / mm2) of precipitates and inclusions per unit area, and X is the precipitate and Inclusion size «0. 2 · —a copper alloy, characterized in that it is expressed in terms of mass% and consists of any one of Ti: 0.0 1 to 5%, Zr: 0.0 1 to 5%, and Hf: 0.0 1 to 5%, And Zn, Sn, Ag, Mn, Fe, Co, A1, Si, Mo, V, Nb, Ta, W, Ge, Te, and Se, or a total of 0.01 to 20%, and the rest is Copper and impurities, the particle size of precipitates and inclusions in the alloy is 1 // The particle size of the former, and the total number of precipitates and inclusions, is in accordance with the formula (1) Relationship, logN ^ 0.4742 + 1 7.629xexp (-〇.1133xX) ... (l) where N refers to the total number of precipitates and inclusions per unit area are: select Ni, 1 type m is as follows Count 43-200538562 (2) number (piece / mm2), X refers to the particle size (# m) of precipitates and inclusions. 3. A type of copper alloy, characterized in that when expressed in mass%, it contains Cr: 0.01 to 5 ° /. And one or more selected from Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te, and Se 0.01 ~ 20%, the rest are copper and impurities. The particle size of the precipitates and inclusions in the alloy is 1 // m or more, and the total number of precipitates and inclusions is in accordance with The relationship shown in the following formula (1), logN ^ 0.4742 + 17.629xexp (-〇.1133xX) (1) where N is the total number of precipitates and inclusions per unit area (units / mm2 ), X is the particle size (V m) of precipitates and inclusions. 4. A copper alloy, comprising: from among Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te, and Se 0.1 to 20% of one or two or more selected, and 0.001 to 2% by mass of one or two or more selected from Mg, Li, Ca, and rare earth elements' The rest are copper and impurities, The particle size of the precipitates and inclusions formed in the alloy is 1 // m or more, and the total number of precipitates and inclusions is in accordance with the relationship shown in the following formula (1) , LogNg 0.4742 + 1 7.629xexp (-0.1 133χχ) "· (1) -44- 200538562 (3) Where N is the total number of precipitates and inclusions per unit area (units / mm2), X is Refers to the particle size (μm) of precipitates and inclusions. 5. —A copper alloy characterized by being expressed in mass% and containing: from Ti: 0.01 to 5%, Zr: 0 · 01 to 5 ° / And Hf: any one of 0.01 to 5%, from Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te, and Se Choose from 1 or 2 or more 0.001 to 20% in total, and one or two or more selected from Mg, Li, Ca, and rare earth elements in a total of 0.001 to 2% by mass, 1 the remainder is formed by copper and impurities, The particle size of the precipitates and inclusions present in the alloy is 1 # m or more, and the total number of precipitates and inclusions is in accordance with the relationship shown in the following formula (1): log N ^ 〇 .4742 + 17.629xexp (-0.1133xX) * (1) where N is the total number of precipitates and inclusions per unit area (pieces / mm2), X is the grains of precipitates and inclusions Diameter (# m). 6. A copper alloy characterized by the following: when expressed in mass%, it contains: Cr: 0.01 to 5%, from Zn, Sn, Ag, Mn, Fe, Co, A1, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te, and Se. One or two or more selected in total. 0.01 to 20%, and selected from Mg, Ll, Ca, and rare earth elements 1 or 2 of the total is 50 · 001 ~ 2% by mass, the rest are copper and impurities, and the size of the precipitates and inclusions present in the alloy is 1 // m or more Particle size, precipitates and inclusions The total number of objects conforms to the relationship shown in the following formula: -45- 200538562 (4) lo gNS 0.4742 + 17.629xexp (-0.1133xX) ... (1) where N refers to precipitates and inclusions The total number per unit area (pieces / mm2), X refers to the particle size (// m) of precipitates and inclusions. 7. A copper alloy, characterized in that it contains: from Zn, Sn, Ag, Mn, Fe, Co, A1, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te, and Se One or two or more selected from the total of 0.1 to 20%, and from P, B, Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Au, Ga, S, Cd, As, and Pb selected from one or two types in total 0.001 ~ 3 mass ° / 0 'The rest are copper and impurities, and the precipitates formed in the alloy and The particle diameter of the inclusions is 1 V π or more, and the total number of precipitates and inclusions is in accordance with the relationship shown in the following formula (1) 'logN ^ 0.4742 + 17.629xexp (-0.1133xX) (1) Among them, N refers to the total number of precipitates and inclusions per unit area (units / mm2), and X refers to the particle size of the precipitates and inclusions m) ° 8.-a copper alloy It is characterized in that it is expressed in terms of mass%. 'Contains: from Ti: 0.01 to 5%, ZΓ: 0.01 to 5 ° /. And Hf: any one selected from 0.01 to 5%, from Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, 8b 1 ^ 〇, 乂, 1 ^ 1), Ding & , 〇6, Ding 6 and 36 selected from one or two or more of the total 〇1 ~ 20%, and from P, B, Bi, T1 ,, -46- 200538562 (5) Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Au, Ga, S, Cd, As, and Pb are selected from a total of 0.001 to 3% by mass, and the rest It is formed of copper and impurities, and the particle size of the precipitates and inclusions in the alloy is 1 # π or more, and the total number of precipitates and inclusions is in accordance with the following formula (1) The relationship shown is logN ^ 0.4742 + 1 7.629xexp (-〇.1133xX) (1) where N is the total number of precipitates and inclusions per unit area (pieces / mm2), and X is Refers to the particle size of precipitates and inclusions (# πι). 9. A copper alloy, characterized in that when expressed in mass%, it contains: Cr: 0.01 to 5%, from Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V, One or two or more selected from Nb, Ta, W, Ge, Te, and Se. 〇1 ~ 20%, and from P, B, Bi, Ti, Rb, Cs, Sr, Ba, Tc , Re, Os, Rh, In, Pd, Po, Sb, Au, Ga, S, Cd, As, and Pb, a total of one or two selected from 0.0 0 1 to 3 mass%, the rest are copper and The particle size of the precipitates and inclusions formed in the alloy with a particle size of 1 # m or more and the total number of precipitates and inclusions formed by the impurities are in accordance with the following formula (1) Relationship, logNS 0.4742 + 17.629xexp (-0.1133xX) (1) -47- 200538562 (6) where N is the total number of precipitates and inclusions per unit area (units / mm2), X Refers to the particle size of precipitates and inclusions m) ° 10. —A copper alloy characterized by: from Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V , Nb, Ta, W, Ge, Te, and Se A total of 0.1 to 20% by mass, a total of 0.001 to 2% by mass of one or two selected from Mg, Li, Ca, and rare earth elements, and P, B, Bi, scandium, and • Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, P0, Sb, Au, Ga, S, Cd, As, and Pb.A total of 0.001 ~ 3% by mass, the rest are copper and impurities. The particle size of the precipitates and inclusions in the alloy that are 1 # m or more, and the total number of precipitates and inclusions are in accordance with The relationship represented by the following formula (1), logNS 0.4742 + 1 7.629xexp (-0.1133xX). (1) where N is the total number of 1 per unit area of the precipitates and inclusions (pieces / mm2 ), X refers to the particle size of precipitates and inclusions (# πι) ° 11. A copper alloy characterized by: expressed in mass% 'is composed of: from Ti: 0.01 to 5%, Zr: 0.01 to 5 % And Hf: Any one selected from 0.01 to 5%, from Zn, Sn, Ag, Mn, Fe, Co, A1, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te, and Se Choose one or more of them 〇1 ~ 20%, a total of one or two or more selected from Mg, Li, Ca, and rare earth elements. 0.001 ~ 2 mass -48- 200538562 (7)%, and from p, One or two selected from B, Bi, Ti, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, P0, Sb, An, Ga, S, Cd, As, and Pb Total of more than 0.001 to 3% by mass' The remainder is copper and impurities, formed, and the particle size of the precipitates and inclusions present in the alloy is 1 // m or more, and the precipitates and The total number of inclusions conforms to the relationship shown in the following formula (1) '• logN' 0.04742 + 17.629xexp (-0.1133xX) ... ) Among them, N refers to the total number (units / mm2) of the precipitates and inclusions per unit area, and X refers to the particle size m of the precipitates and inclusions). 12. A copper alloy, characterized in that when expressed in mass%, it is composed of: Cr: 0.01 to 5%, from Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V , Nb, Ta, W, Ge, Te, and Se. One or two selected from a total of 0.01 to 20%. One or two selected from Mg, Li, Ca, and rare earth ^ elements. Total 0.001 to 2% by mass, and from P, B, Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, 0 s, Rh, In, P d, P o, Sb, Au, Ga, S , Cd, As, and Pb selected from one or two or more of a total of 0.001 to 3% by mass, and the rest are copper and impurities. The particle size of precipitates and inclusions formed in the alloy is 1 / / m or more, and the total number of precipitates and inclusions is in accordance with the relationship shown in the following formula (1), logN ^ 〇.4742 + 17.629xexp (-0.1133xX) ... (1) -49- 200538562 (8) where N is the total number of precipitates and inclusions per unit area (pieces / mm2), and X is the particle size of the precipitates and inclusions (μ m) ° 1 3 · If any one of the patent application scope items 1 to 12 The carrier copper alloy, which further contains 0.1~5% by mass of Be, to replace one part of the copper. 14. The ratio of the "maximum content of average content" to the minimum content of average content in a small area of at least one alloy element in the copper alloy as described in any one of claims 1 to 12 in the scope of the patent application. It is equal to or greater than 1 · 5 ° 1. According to the copper alloy described in item 13 of the scope of the patent application, at least one of the alloy elements has a maximum average content and a minimum average content. The ratio is 1.5 or more. 16. The copper alloy according to any one of claims 1 to 12 in the scope of the patent application, wherein the crystal grain size is 0.0 1 to 3 5 // m. 17 · The copper alloy as described in item 13 of the scope of patent application, wherein the grain size is 0.01 ~ 35 // m. 18 · The copper alloy as described in item 14 of the scope of patent application, wherein the grain size is 0.01 to 35 // m. 19 · The copper alloy described in item 15 of the scope of patent application, wherein the crystal grain size is 〇1 ~ 35 // m. 20 · A method for manufacturing a copper alloy, characterized in that it is a slab obtained by melting and casting a copper alloy having the chemical composition described in any one of the claims 1 to 13 of the scope of application for a patent, from At least the temperature of the slab obtained immediately after casting is in the temperature range up to 450 ° C, and cooled at a cooling rate of 0.5 ° C / s or more -50- 200538562 (9), wherein: copper alloy is present in the alloy and inclusions The particle size in the case where the particle size is 1 # m or more, and the total number of impurities are in accordance with the following equation (1) logN ^ 0.4742 + 1 7.629xexp (-〇.1133xX) · Among them, N refers to the number of φ (units / mm2) of precipitates and inclusions per unit surface, and X refers to the particle size of precipitates and inclusions (# 21.—Method of Manufacturing Copper Alloys', which is characterized by the scope of patent application The slab obtained by melting and casting the copper alloy according to any one of items 1 to 13 has a cooling rate of 0 from a temperature range of at least the slab just obtained to a temperature of 450 ° C. Cool and in the temperature range below 600 ° C: Copper alloys are precipitates and inclusions in the alloy1 The particle size of m or more and the sum of the precipitates and inclusions φ are in accordance with the relationship shown in the following formula (1), logN ^ 0.4742 + 17.629xexp (-0.1133xX) ·, where N is the precipitate per unit area And the number of inclusions (pieces / mm2), X refers to the particle size of the precipitates and inclusions (// 22 · — a method of manufacturing copper alloys, which is characterized by: any one of the scope of patent applications 1 to 13 The slabs obtained by melting and casting the copper alloys mentioned above have at least a total of m and o deposits from the precipitates and inclusions in the steel, which are obtained by casting the chemical composition that they have. 5 ° C / sec or above, where the particle size is counted, is. (1) Total number of materials m) 〇 It is -51-200538562 (10) obtained by casting the chemical composition with In the temperature range up to 4 5 0 C, it is cooled at a cooling rate of 0.5 / sec or more, and after processing in a temperature range of 6 0 ° C or less, it is provided in a range of 1 500 to 7 5 0 C. In the temperature range, heat treatment for more than 30 seconds is provided. Copper alloys are precipitates and inclusions in the alloy. The particle size of the particles is 1 # m or more, and the total number of precipitates and inclusions is in accordance with the relationship not shown in the following formula (1), φ logN ^ O.4742 + 17.629xexp (-0.1133 xX)-*-(l) where N is the total number of precipitates and inclusions per unit area (pieces / mm2), and X is the particle size of the precipitates and inclusions (// m). 23. The method for manufacturing a copper alloy as described in item 22 of the scope of patent application, wherein the processing is performed in a temperature range of 600 ° C or lower and the heat treatment is maintained for 30 seconds or more in a temperature range of 150 to 750 ° C It is performed a plurality of times. φ 24. The method for manufacturing a copper alloy as described in item 22 or 23 of the scope of patent application, wherein after the final heat treatment, processing is performed in a temperature range below 600 ° C. -52-
TW094107552A 2004-03-12 2005-03-11 Copper alloy and method for production thereof TW200538562A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004071571 2004-03-12
JP2004093661 2004-03-26
JP2004234891A JP2005307334A (en) 2004-03-26 2004-08-11 Copper alloy and manufacturing method therefor
JP2004234868A JP2005290543A (en) 2004-03-12 2004-08-11 Copper alloy and its production method

Publications (1)

Publication Number Publication Date
TW200538562A true TW200538562A (en) 2005-12-01

Family

ID=34975596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094107552A TW200538562A (en) 2004-03-12 2005-03-11 Copper alloy and method for production thereof

Country Status (6)

Country Link
US (1) US20070062619A1 (en)
EP (1) EP1731624A4 (en)
KR (1) KR20060120276A (en)
CA (1) CA2559103A1 (en)
TW (1) TW200538562A (en)
WO (1) WO2005087957A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400342B (en) * 2008-12-01 2013-07-01 Jx Nippon Mining & Metals Corp Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
CN112877565A (en) * 2021-01-12 2021-06-01 鞍钢股份有限公司 Copper-steel solid-liquid bimetal composite material and preparation method thereof
CN115786764A (en) * 2022-11-22 2023-03-14 广州番禺职业技术学院 Copper mirror material and preparation method thereof
CN116555620A (en) * 2023-04-24 2023-08-08 扬州地标金属制品有限公司 Multielement alloy material and preparation method thereof

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306591B2 (en) * 2005-12-07 2013-10-02 古河電気工業株式会社 Wire conductor for wiring, wire for wiring, and manufacturing method thereof
KR100883335B1 (en) * 2008-07-09 2009-02-12 (주)태성알로이 High corrosion resistant copper alloy for accessories
US20100226815A1 (en) * 2009-03-09 2010-09-09 Lazarus Norman M Lead-Free Brass Alloy
US20100303667A1 (en) * 2009-03-09 2010-12-02 Lazarus Norman M Novel lead-free brass alloy
KR100946721B1 (en) * 2009-03-26 2010-03-12 주식회사 씨제이씨 High strength copper alloy and casting thereof
CN102725430A (en) * 2009-11-10 2012-10-10 Gbc金属有限责任公司 Antitarnish, antimicrobial copper alloys and surfaces made from such alloys
JP4677505B1 (en) * 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5441876B2 (en) * 2010-12-13 2014-03-12 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
WO2012099595A1 (en) * 2011-01-21 2012-07-26 Morrow Lana Electrode for attention training techniques
KR101285700B1 (en) * 2011-03-07 2013-07-12 윤태병 Copper alloy of gold color and method of manufacturing the same
JP5451674B2 (en) * 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP4799701B1 (en) * 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
MX370072B (en) 2012-10-26 2019-11-29 Sloan Valve Co White antimicrobial copper alloy.
PL224928B1 (en) * 2012-12-19 2017-02-28 SYSTEM Spółka Akcyjna Method for the deposition of the metal layer on the metal member
RU2525876C1 (en) * 2013-02-26 2014-08-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Copper-based alloy
RU2507287C1 (en) * 2013-04-17 2014-02-20 Юлия Алексеевна Щепочкина Copper-based alloy
CN103397223A (en) * 2013-07-01 2013-11-20 安徽三联泵业股份有限公司 Refrigerator mould copper alloy and preparation method thereof
CN103397221A (en) * 2013-07-01 2013-11-20 安徽三联泵业股份有限公司 Copper alloy for drawing mould and preparation method thereof
CN103397222A (en) * 2013-07-01 2013-11-20 安徽三联泵业股份有限公司 Stainless steel drawing mould copper alloy and preparation method thereof
CN103421978B (en) * 2013-08-23 2015-05-27 苏州长盛机电有限公司 Copper-magnesium alloy material
DE102013014501A1 (en) * 2013-09-02 2015-03-05 Kme Germany Gmbh & Co. Kg copper alloy
US20160235073A1 (en) * 2013-10-07 2016-08-18 Sloan Valve Company White antimicrobial copper alloy
CN103757473B (en) * 2014-01-10 2016-01-20 滁州学院 A kind of environment-protective free-cutting nickel silver alloy material and preparation method thereof
CN103757480B (en) * 2014-01-10 2016-05-11 滁州学院 Complicated cupronickel alloy material of a kind of seawater corrosion resistance and preparation method thereof
CN104032181A (en) * 2014-05-12 2014-09-10 蚌埠市宏威滤清器有限公司 High-strength high-conductivity free-cutting copper alloy material and preparation method thereof
CN104032174A (en) * 2014-05-12 2014-09-10 蚌埠市宏威滤清器有限公司 Leadless free-cutting zinc-copper-nickel alloy material and preparation method thereof
CN104032182A (en) * 2014-05-12 2014-09-10 蚌埠市宏威滤清器有限公司 High-electric-conductivity free-cutting cupronickel alloy material and preparation method thereof
RU2587112C9 (en) * 2014-09-22 2016-08-10 Дмитрий Андреевич Михайлов COPPER ALLOY, TelT DOPED WITH TELLURIUM FOR COLLECTORS OF ELECTRIC MACHINES
RU2587113C2 (en) * 2014-09-22 2016-06-10 Дмитрий Андреевич Михайлов Copper alloy doped with tellurium, for collectors of electric machines
RU2587110C9 (en) * 2014-09-22 2016-08-10 Дмитрий Андреевич Михайлов COPPER ALLOY, TelO DOPED WITH TELLURIUM, FOR COLLECTORS OF ELECTRIC MACHINES
RU2587108C9 (en) * 2014-09-22 2016-08-10 Дмитрий Андреевич Михайлов COPPER ALLOY, TelM DOPED WITH TELLURIUM, FOR COLLECTORS OF ELECTRIC MACHINES
CN104630546A (en) * 2015-03-05 2015-05-20 苏州市凯业金属制品有限公司 High-strength heat-resistant copper alloy metal tube
DE102015013201B4 (en) 2015-10-09 2018-03-29 Diehl Metall Stiftung & Co. Kg Use of a nickel-free white CuZn alloy
CN105624454B (en) * 2016-02-02 2017-11-24 亳州沃野知识产权服务有限公司 A kind of preparation method of high intensity high filtration flux alloy components
RU2622194C1 (en) * 2016-10-10 2017-06-13 Юлия Алексеевна Щепочкина Copper-based alloy
CN107690485A (en) * 2016-10-25 2018-02-13 广东伟强铜业科技有限公司 A kind of brass alloys and its manufacture method
KR101941163B1 (en) * 2017-07-31 2019-01-23 한국생산기술연구원 Copper alloy and manufacturing method thereof
RU2667259C1 (en) * 2017-08-24 2018-09-18 Юлия Алексеевна Щепочкина Copper-based sintered alloy
CN111748712B (en) * 2020-06-18 2021-08-06 云南新铜人实业有限公司 Copper-silver alloy strip and production process thereof
KR20210157552A (en) * 2020-06-22 2021-12-29 현대자동차주식회사 Copper alloy for valve seat
CN112281018A (en) * 2020-10-12 2021-01-29 中铁建电气化局集团康远新材料有限公司 High-strength high-conductivity copper-tin alloy contact wire and preparation process thereof
CN113564579B (en) * 2021-07-06 2022-10-28 燕山大学 Method for preparing copper-based amorphous composite coating by laser cladding
CN113774250B (en) * 2021-09-24 2024-05-10 佛山市顺德区精艺万希铜业有限公司 High-strength high-heat-conductivity high-corrosion-resistance copper alloy and preparation method thereof
CN115305383B (en) * 2022-07-30 2023-05-12 江西省科学院应用物理研究所 High-strength and high-conductivity Cu-Co alloy material containing mixed rare earth and preparation method thereof
CN115404375A (en) * 2022-09-08 2022-11-29 南京公诚节能新材料研究院有限公司 Copper-based alloy material and preparation method thereof
CN115710654A (en) * 2022-11-15 2023-02-24 浙江中达精密部件股份有限公司 Copper-nickel-tin alloy and preparation method thereof
CN117512385B (en) * 2023-10-31 2024-05-14 江苏康耐特精密机械有限公司 High-precision structural member material with multi-energy-field composite surface post-treatment and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU515818A1 (en) * 1971-07-20 1976-05-30 Государственный Научно-Исследовательский И Проектный Институт Сплавов И Обработки Цветных Металлов Copper based alloy
US4243437A (en) * 1978-11-20 1981-01-06 Marion Bronze Company Process for forming articles from leaded bronzes
US4594221A (en) * 1985-04-26 1986-06-10 Olin Corporation Multipurpose copper alloys with moderate conductivity and high strength
US4822560A (en) * 1985-10-10 1989-04-18 The Furukawa Electric Co., Ltd. Copper alloy and method of manufacturing the same
EP0485627B1 (en) * 1990-05-31 2004-10-20 Kabushiki Kaisha Toshiba Lead frame and semiconductor package using it
JP3296709B2 (en) * 1995-07-10 2002-07-02 古河電気工業株式会社 Thin copper alloy for electronic equipment and method for producing the same
US5882442A (en) * 1995-10-20 1999-03-16 Olin Corporation Iron modified phosphor-bronze
EP1264905A3 (en) * 1997-09-05 2002-12-18 The Miller Company Copper based alloy featuring precipitation hardening and solid-solution hardening
JP3306585B2 (en) * 1997-12-09 2002-07-24 三菱マテリアル株式会社 Cu alloy rolled sheet with fine crystals and precipitates and low distribution ratio
JP4159757B2 (en) * 2001-03-27 2008-10-01 株式会社神戸製鋼所 Copper alloy with excellent strength stability and heat resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI400342B (en) * 2008-12-01 2013-07-01 Jx Nippon Mining & Metals Corp Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
CN112877565A (en) * 2021-01-12 2021-06-01 鞍钢股份有限公司 Copper-steel solid-liquid bimetal composite material and preparation method thereof
CN112877565B (en) * 2021-01-12 2022-05-20 鞍钢股份有限公司 Copper-steel solid-liquid bimetal composite material and preparation method thereof
CN115786764A (en) * 2022-11-22 2023-03-14 广州番禺职业技术学院 Copper mirror material and preparation method thereof
CN115786764B (en) * 2022-11-22 2023-12-22 广州番禺职业技术学院 Copper mirror material and preparation method thereof
CN116555620A (en) * 2023-04-24 2023-08-08 扬州地标金属制品有限公司 Multielement alloy material and preparation method thereof
CN116555620B (en) * 2023-04-24 2024-04-30 扬州地标金属制品有限公司 Multielement alloy material and preparation method thereof

Also Published As

Publication number Publication date
US20070062619A1 (en) 2007-03-22
EP1731624A4 (en) 2007-06-13
CA2559103A1 (en) 2005-09-22
EP1731624A1 (en) 2006-12-13
WO2005087957A1 (en) 2005-09-22
KR20060120276A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
TW200538562A (en) Copper alloy and method for production thereof
Wu et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile
US10106870B2 (en) Copper alloy and process for producing the same
JP4134279B1 (en) Cu alloy material
WO2006109801A1 (en) Copper alloy and process for producing the same
WO2006104152A1 (en) Copper alloy and process for producing the same
JP2014185370A (en) Cu-Ti-BASED COPPER ALLOY PLATE, MANUFACTURING METHOD THEREFOR AND ELECTRIC CONDUCTION PARTS
CN105189798A (en) High strength steel plate with excellent delayed destruction resistance characteristics and low temperature toughness, and high strength member manufactured using same
CN101535511A (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
CN102639732A (en) Copper alloy sheet
WO2004070070A1 (en) Cu ALLOY AND METHOD FOR PRODUCTION THEREOF
EP3814543B1 (en) Copper-based hardfacing alloy
CN101384742A (en) High-strength steel excellent in weldability and process for production thereof
Ning et al. Effects of cooling rate on the mechanical properties and precipitation behavior of carbides in H13 steel during quenching process
Song et al. Effect of Rare‐Earth Cerium on Impurity Tin‐Induced Hot Ductility Deterioration of SA508‐III Reactor Pressure Vessel Steel
Lu et al. Enhanced strength-ductility synergy of a partially recrystallized Al6Cr25Fe34Ni35 multi-principal element alloy
CHENG et al. Crack propagation behavior of inhomogeneous laminated Ti− Nb metal− metal composite
JP2004219323A (en) Method of evaluating iron base material
US20110247735A1 (en) Copper alloy material for electric/electronic parts and method of producing the same
Zulhishamuddin et al. An overview of high thermal conductive hot press forming die material development
Ding et al. Effect of Nb on microstructure and wear property of laser cladding CoCrFeNiTiNbx high-entropy alloys coatings
US20230151471A1 (en) Fe-BASED ALLOY FOR MELT-SOLIDIFICATION-SHAPING AND METAL POWDER
Adabavazeh et al. Fabrication and performance assessment of CuFeNiMnTi high entropy alloy through mechanical alloying and spark plasma sintering
TWI296659B (en)
Anderson et al. Aluminum Forging Alloy