TW200304188A - Semiconductor component and manufacturing method - Google Patents
Semiconductor component and manufacturing method Download PDFInfo
- Publication number
- TW200304188A TW200304188A TW092103250A TW92103250A TW200304188A TW 200304188 A TW200304188 A TW 200304188A TW 092103250 A TW092103250 A TW 092103250A TW 92103250 A TW92103250 A TW 92103250A TW 200304188 A TW200304188 A TW 200304188A
- Authority
- TW
- Taiwan
- Prior art keywords
- trench
- region
- manufacturing
- semiconductor
- scope
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 94
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 50
- 238000005468 ion implantation Methods 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 150000002500 ions Chemical class 0.000 claims abstract description 25
- 210000000746 body region Anatomy 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 14
- 229920002120 photoresistant polymer Polymers 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 230000005669 field effect Effects 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 5
- 239000007943 implant Substances 0.000 claims description 3
- 150000004820 halides Chemical class 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims 4
- 238000002360 preparation method Methods 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 239000002689 soil Substances 0.000 claims 1
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 229910052796 boron Inorganic materials 0.000 description 14
- 239000003990 capacitor Substances 0.000 description 13
- -1 boron ions Chemical class 0.000 description 11
- 238000001465 metallisation Methods 0.000 description 10
- 229910052785 arsenic Inorganic materials 0.000 description 8
- 238000002513 implantation Methods 0.000 description 7
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/668—Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/665—Vertical DMOS [VDMOS] FETs having edge termination structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/393—Body regions of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/13—Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
- H10D62/149—Source or drain regions of field-effect devices
- H10D62/151—Source or drain regions of field-effect devices of IGFETs
- H10D62/152—Source regions of DMOS transistors
- H10D62/155—Shapes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
- H10D64/516—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
200304188 五、發明說明(1) 本發明的内容包括兩種製造可經由場效應控制的半導體 組件的方法,以及具有申請專利範圍第丨6項之特徵的這種半 導體組件。 對於設計新一代的垂直式大功率半導體組件而言,縮小 比接通電阻具有很大的重要性。經由縮小比接通電阻一方面 可以使靜態損耗功率變小,另一方面還可以使大功率半導體 組件具有較大的電流密度。因此可以將體積及製造成本均小 很多的半導體組件用於相同總電流的情況。 縮 組件取 體組件 向的閘 寬度較 導體組 當高。 使用具 本體區 的内部 厚度遠 半部的 槽内上 下半部 構的半導體 結構的半導 設置於垂直 積上的通道 對大功率半 阻的比例相 響,最好是 上半部緊鄰 這些溝槽 内下半部的 在溝槽内下 電介質在溝 質在溝槽内 體基體絕 小比接通電阻R〇n的一種方法是以溝槽式結 代平面胞元結構的半導體組件。在溝槽式 中’溝槽係設置於半導體基體内,也就是 電極内。由於這種半導體組件每一單位面 大’因此可以使比接通電阻大幅降低。 件而言’漂移區造成的電阻佔整個接通電 為了降低漂移區對整個接通電阻造成的影 有較深的溝槽的半導體結構。這些溝槽的 及/或通道區,下半部則深入漂移區内部( 具有階梯狀的電介質,由於電介質在溝槽 大於在溝槽内上半部的厚度,因此閘電極 厚度自然會大於在溝槽内上半部的厚度。 半部形成通道控制用的閘極氧化物。電介 形成的埸氧化物的作用是使閘電極與半導200304188 V. Description of the invention (1) The content of the present invention includes two methods for manufacturing a semiconductor device that can be controlled by field effect, and such a semiconductor device having the characteristics of the scope of the patent application No.6. For designing a new generation of vertical high-power semiconductor components, reduction ratio on-resistance is of great importance. By reducing the on-resistance, the static loss power can be reduced on the one hand, and high-power semiconductor components can be made to have a larger current density. Therefore, much smaller semiconductor components can be used for the same total current. The width of the brake in the direction of the shrinking component and the body component is higher than that of the conductor group. The ratio of the channels on the vertical product of the semiconducting semiconductor structure with the upper and lower halves in the trench with the inner half of the inner thickness of the body area to the high power half resistance is proportional to the upper half. In the lower half of the trench, one method of lowering the dielectric in the trench and the quality of the substrate in the trench is smaller than the on-resistance Ron. The semiconductor device is a trench-type planar cell structure. In the trench type, the trench is disposed in the semiconductor substrate, that is, in the electrode. Since such a semiconductor device is large per unit area, the specific resistance can be greatly reduced. In terms of components, the resistance caused by the drift region occupies the entire turn-on current. In order to reduce the influence of the drift region on the entire on-resistance, the semiconductor structure has a deep trench. Of these trenches and / or channel regions, the lower half penetrates deeper into the drift region (with a stepped dielectric, because the dielectric in the trench is greater than the thickness in the upper half of the trench, the gate electrode thickness will naturally be greater than in the trench The thickness of the upper half of the groove. The half forms the gate oxide for channel control. The hafnium oxide formed by the dielectric is used to make the gate electrode and the semiconductor
第5頁 五、發明說明(2) 緣0 這種具有較深的溝槽、以及溝槽内具有階梯狀的閘電極 和氧化物的半導體組件係屬於已知的技#,例如在德國專利 DE 1 9935442 C1 中即有提及。在w〇 〇1/〇1484 這種半導體組件的方法。 ^ 、這種半導體組件均含有一個在每一次開關過程中都必須 被再充電的寄生輸入電容。由於這個再充電過程需要電流,、 因此會產生開關損耗,尤其是在使用低電壓半導體组件及 關次數頻繁的情況下的開關損耗會特別大。這個寄生電容= 由一個閘源電容cGS及一個閘汲電容Cgd所構成。在β •二疋 Baliga 所著的” power Semic〇nduct〇r Devices,,(功 組件),PWS Publishing Company,38卜-383 頁及圖式7 μ 中有關於金屬氧化物半導體結構的閘源電容。及閘· 的說明,、電容CGS是由一個介於閘極的多晶矽:C: 之間的重疊部分電容,以及一個由通道區及閘電極的二: 層形成的電容部分所構成。又稱為反饋電容或密勒:石 沒電容CGD主要是由閘極氧化物電容構成,而具有深从閑 t體組件的閑極氧化物電容是由問電極上半部較寬區=二t 在目前已知的製造這種半導體組件的方法中( 國專利DE 1 9935442 (:丨提出的製造方法),通常都是經由^ 200304188 五、發明說明(3) 過晶片正面 精確控制多 極將溝槽式 閘電極至少 能夠到達足 半部應深入 之間的梯級 過這樣做無 之上,造成 的離子注入 晶碎閘電極 半導體組件 要到達十分 夠的深度, 溝槽内部, 位於本體區 可避免的會 閘汲電容佔 來產生本體 的溝槽蝕刻 接通及切斷 接近漂移區 需要運用適 以便使介於 下方,也就 造成閘電極 總輸入電容 區及源極區 深度。為了 ,從晶片正 的深度。為 當的提前量 閘極氧化物 是被設置在 會重疊在一 很大比例的 。問題 能夠通 面伸入 了確保 。閘電 及場極 漂移區 部分的 結果。 是很難 過閘電 溝槽的 閘電極 極的上 氧化物 内。不 漂移區 因此本發明的目的在於提出一種具有較低之輸入電容的 這種半導體組件,以及製造這種半導體組件的方法。 、採用具有申請專利範圍第1及第3項之特徵的製造方法, 以及具有申請專利範圍第丨6項之特徵的半導體組 本發明的目的。 卞丨』運引 :本發明的製造方法中’還可另外經由溝槽的侧壁對本 2 ?區進行離子注入及必要的向外擴散作業。經由此 =式形成的本體區及源極區的通道輪廓可 2 =邊來自行校正(第一種情況),★是經由“不、二 赭11 (第一種情況)。帛一種情況是經由同-個邊(例如 個邊二的一個邊或是在溝槽内被向下蝕刻的場極氧化物的-個邊)將詩本體區及源極區的離子注人,然後再將用Page 5 V. Description of the invention (2) Edge 0 This semiconductor device with deep trenches and stepped gate electrodes and oxides in the trenches is a known technology #, for example, in German patent DE 1 9935442 C1 mentioned. This method of semiconductor components is at 〇〇〇1 / 〇1484. ^ This type of semiconductor component contains a parasitic input capacitor that must be recharged during each switching process. Because this recharging process requires current, switching losses will occur, especially when low-voltage semiconductor components are used and switching times are frequent. This parasitic capacitance = consists of a gate-source capacitor cGS and a gate-drain capacitor Cgd. Gate-source capacitors for metal-oxide-semiconductor structures in "Power Semiconductor Devices," (Power Modules), PWS Publishing Company, p. 38-383, and Figure 7 μ, by β • Erya Baliga The explanation of the gate is that the capacitor CGS is composed of an overlapped capacitor between the polycrystalline silicon: C: at the gate, and a capacitor formed by the two layers of the channel region and the gate electrode. It is also called It is a feedback capacitor or Miller: CGD capacitors are mainly composed of gate oxide capacitors, while idle oxide capacitors with deep passive body components are composed of a wide area in the upper half of the electrode = two t. At present In the known method for manufacturing such a semiconductor device (manufacturing method proposed in the national patent DE 1 9935442 (: 丨)), it is usually via ^ 200304188 V. Description of the invention (3) Precise control of the multi-pole groove type through the front of the wafer The gate electrode can reach at least the step between the half of the foot and the top. If this is done, the ion implantation of the gate electrode semiconductor component must reach a sufficient depth. The inside of the trench is located in the body area. The free gate-drain capacitor is used to generate the trench etching of the body to switch on and off the close to the drift region, which needs to be applied so that it is below, which also causes the depth of the total input capacitance region and source region of the gate electrode. Positive depth. When the advance amount of gate oxide is set to overlap a large proportion. The problem can be penetrated through to ensure. The result of the gate and field drift region. It is difficult to pass the gate In the upper oxide of the gate electrode of the electrical trench. The non-drift region is therefore an object of the present invention to propose a semiconductor device with a lower input capacitance and a method for manufacturing such a semiconductor device. The manufacturing method of the features of the scope 1 and 3, and the object of the present invention of the semiconductor group having the features of the scope of the patent application 丨 6 of the present invention. The side wall of the trench performs ion implantation and necessary outward diffusion operation on the 2? Region. The channel contour of the body region and the source region formed by this = formula can be 2 = Edges are self-correcting (the first case), ★ is via "No, two 赭 11 (the first case). 帛 One is through the same edge (for example, one of the two edges or in the groove) One side of the field oxide that is etched down) injects ions into the body and source regions of the poem, and then uses
第7頁 200304188Page 7 200304188
體區的離子擴散出來。第二種情況是先將用於源極區的離子 經由輔助層或場極氧化物的一個邊注入,然後在完成輔助層 或場極氧化物的向下蝕刻後,再將用於本體區的離子經由^ 個輔助層或場極氧化物注入。第二種情況最好是將源極—$ 極電容調整至最低,以及將通道長度調整至报小。 在德國專利DE 1 97202 1 5 A1的公開說明書中公開的製造 方法是通過一個溝槽的側壁將摻雜材料注入而製造出半導體 組件,以達到調整半導體組件的門限電壓的目的。由於這種 方法僅注入一次摻雜材料,因此只能形成源極區,而不能形 成本體區。 / 、美國專利US 6274437 B1提出的方法也只有通過溝槽侧 壁進行一次離子注入作業。因此,不論是美國專利us 6274437 B1或是德國專利DE 1 972〇215 A1提出的方法都不能 解決W面說明過的問題(也就是本發明所要解決的問題)。 在形成本體區後,最好是將設置在溝槽侧壁上的場極氧 化物略為向下蝕刻,以便使介於場極氧化物及閘極氧化物之 間的被向下蝕刻的梯級處於略低於出現在溝槽側壁上的位於 本體區及漂移區之間的pn結的位置。將場極氧化物向下蝕刻 屬於一種可以精確控制的技術,也就是說,可以非常精確的 定出梯級的位置。在能夠經由離子注入參數確定叩結緊靠在 溝槽侧壁上的位置後,就可以經由適當的向下蝕刻使介於場 第8頁 200304188 五、發明說明(5) 極氧化物及閘極氡化物之間的梯級位於叩結下方。這樣就。 以使閘電極和漂移區的重疊部分降至最低,達到 %堂^ 降至最低的目的。 冤谷 前面提到的梯級並不需要剛好是一個水平的梯級,The body ions diffuse out. In the second case, the ions for the source region are implanted through one side of the auxiliary layer or field oxide, and after the auxiliary layer or field oxide is etched down, the ions for the body region are implanted. Ions are implanted via ^ auxiliary layers or field oxides. In the second case, it is best to adjust the source-to-electrode capacitance to the minimum, and adjust the channel length to be small. The manufacturing method disclosed in the published specification of German Patent DE 1 97202 1 5 A1 is to manufacture a semiconductor device by injecting a dopant material through a side wall of a trench, so as to adjust the threshold voltage of the semiconductor device. Because this method implants the doping material only once, it can only form the source region, but not the body region. / The method proposed in the US patent US 6274437 B1 also only performs an ion implantation operation through the trench side wall. Therefore, neither the method proposed in US patent US 6274437 B1 or German patent DE 1 972 02 15 A1 can solve the problem described in the above (that is, the problem to be solved by the present invention). After the body region is formed, it is better to etch the field oxide disposed on the sidewall of the trench slightly downward, so that the etched down step between the field oxide and the gate oxide is at Slightly lower than the position of the pn junction between the body region and the drift region appearing on the sidewall of the trench. Etching the field oxide down is a technique that can be precisely controlled, that is, the position of the steps can be determined very accurately. After the position of the junction close to the trench sidewall can be determined through the ion implantation parameters, the field can be interposed by appropriate downward etching. Page 8 200304188 V. Description of the invention (5) Electrode oxide and gate The steps between the halides are below the ridges. That's it. In order to minimize the overlap between the gate electrode and the drift region, the purpose of minimizing %% ^ is achieved. Valley of Injustice The aforementioned step does not need to be exactly a horizontal step,
ί If ΐ個梯級可以是—個階段狀的結構,其位置係、介於閘L ^物及電介質(場極氧化物)之間。出於製造技術的者旦 這個梯級至少在角落處和稜邊處要製作成且,4 少有點傾斜。 四叫見或多或 接下來製造源極區及本體區的步驟是 2方式將殘留在溝槽内的辅助層去除。;;==注入 在溝槽上半部露"二Π; 為;材率極氧化物。= 及本體區的接觸區。/ * θ真滿,同時形成源極區 子,,要形成。型摻雜夺區則要:常成=:雜區通常是,入砷離 銻等亦可作為η型摻雜 疋/入硼離子。但是磷、硫、 的先決條件是(特別 i的離子(例如砷及硼離· 所注入的砷的摻雜劑量1古用同一個離子注入掩膜的時候) 大,因此硼會以比砷7 =於硼。由於硼的擴散係數比砷 夹很多的速度擴散至半導體基體内, 200304188 五、發明說明(6) . 形f 一個僅接雜有硼離子的摻雜層。雖然在源極區内也含有· 少Ϊ的’離子’但由於硼離子的濃度遠低於砷的濃度,故可 忽略之。 離子注入通常是在一個大於0的注入角度下進行,這個 /主入f度已經將為避免穿隧效應(ChanneHng —Effekten)所 需的則置角度計算進去。注入角度最好是45度(與第一個表 面的^角)。不過只要是介於30度至60度之間的注入角度均 為可行的’主入角度。如果是要在溝槽側壁區形成輪廓非常平 坦及(或非常深的本體區及源極區時,則介於15度至75度之 ^ 5 角度均為可行的注人角度。最好是使用-種所謂的 I ^上I it ^方式來進行斜向離子注入,以確保所有溝槽側 壁的上半部都有離子注入。 光刻ί二在ί:内的輔助層通常是由-層光刻膠構成。除了 構成之個以使用丨他適合作為離子注入掩膜的材料來 構個輔助層。例如可以用閘電極作為辅助層。 在本發明的一種有利的實 伸出’而是在沉積出閘電極材料:二電極並未自溝槽 電極就不會將源極區整個覆 1略為向下㈣。這樣閘 源電容的目的。 ’所以同樣可以達到縮小閘If a step can be a step-like structure, its position is between the gate and the dielectric (field oxide). For manufacturing technology, this step should be made at least at the corners and edges, and 4 is less inclined. Four steps are described below. The next step of manufacturing the source region and the body region is to remove the auxiliary layer remaining in the trench in two ways. ; == Injection Exposure in the upper half of the trench is "material oxide". = And the contact area of the body area. / * θ is really full and a source region is formed at the same time. The type doped doped regions are: Chang Cheng =: The hetero region is usually arsenic, antimony, etc. can also be used as n-type doped erbium / boron ions. However, the prerequisites for phosphorus, sulfur, and ions are (special i ions (such as arsenic and boron ion dopant implantation dose when the same ion implantation mask is used), so boron will be larger than arsenic 7 = Boron. Because the diffusion coefficient of boron diffuses into the semiconductor substrate at a much faster rate than arsenic, 200304188 V. Description of the invention (6). Form f A doped layer doped only with boron ions. Although in the source region It also contains less ions, but the concentration of boron ions is much lower than the concentration of arsenic, so it can be ignored. Ion implantation is usually performed at an implantation angle greater than 0, and this / main input f degree will already be The angle required to avoid the tunneling effect (ChanneHng —Effekten) is calculated. The injection angle is preferably 45 degrees (from the first surface). However, as long as it is between 30 degrees and 60 degrees, The angles are all feasible main angles. If it is to form a very flat contour in the sidewall region of the trench (or a very deep body region and source region, the angle between 15 degrees and 75 degrees is 5 Feasible attention angle. It is best to use-so-called I ^ on I ^ method to carry out oblique ion implantation to ensure that the upper half of all trench sidewalls have ion implantation. The auxiliary layer in the photolithography is usually composed of-layer photoresist In addition to constructing an auxiliary layer using a material suitable for use as an ion implantation mask. For example, a gate electrode can be used as an auxiliary layer. In an advantageous embodiment of the present invention, the gate electrode is deposited. Material: The two electrodes will not cover the entire source region slightly downwards from the trench electrode. In this way, the purpose of the gate-source capacitor is reduced.
溝槽的斷面形狀通常為四方形或梯形 但也可以採用UThe cross-sectional shape of the groove is usually square or trapezoidal, but U can also be used.
£、發明說明(7) 形或V形的斷面。溝槽係以 一個表面上,或是以正方▼狀或格閘狀的形狀設置在第 形狀設置在半導體基體内形、六角形、圓形、或是橢圓形的 從第一個表面伸入半導 本體區及/或源極區最好是經由 形成導電觸點接通。在二基體的本體接觸區及/或源接觸區 溝槽的方式將本體接觸^種有利的實施方式中,可以垂直於 製作成條帶狀、格閘狀°°置入半導體基體内,且其形狀亦可 製造方法能夠提供這種是矩形波狀。只有本發明提出的 侧壁離子注入形成的,這是因為經由對表面進行的 .m , 们原極區摻雜分布是门形(倒u形狀)的關 # °因此按照本發明的方式,本體區的接觸離子注入可以不 必對條帶狀的溝槽進行校正,而是可以將本體接觸區設置成 垂直於溝槽的方式’並保留半導體組件的整個有效面積。經 由放棄溝槽條帶對本體接觸離子注入之離子注入邊緣的前置 量可以使胞元閘變小很多。 另一種可行方式是可以在沒有掩膜遮蔽的情況下對本體 接觸區進行離子注入,在這種情況了,在溝槽上半部介於源 極區及閘電極之間的絕緣層必須被向下蝕刻至溝槽的位置。 在此處源極區的源極引線連接可經由溝槽侧壁來進行。 《 由於二氧化矽(Si 02)不但易於製造,而且生產成本又 低,故此處係以二氧化矽(Si02)作為製作絕緣層及/或電介質-的材料。£, invention description (7) or V-shaped section. The grooves are arranged on one surface or in a square ▼ -shaped or grid-like shape in the first shape. The shape is set in the semiconductor substrate, and a hexagon, a circle, or an ellipse extends from the first surface into a half. The conducting body region and / or the source region are preferably connected by forming a conductive contact. In one advantageous embodiment, the body contact region and / or the source contact region grooves of the two substrates are contacted into the semiconductor substrate. In one advantageous embodiment, the semiconductor substrate can be placed in a stripe shape and a grid shape at an angle perpendicular to the substrate body. The shape can also be produced by a manufacturing method that can be a rectangular wave shape. Only the side wall ion implantation proposed by the present invention is formed by performing .m on the surface. The doping distribution of the source region is gate-shaped (inverted u-shaped). Therefore, according to the method of the present invention, the body The contact ion implantation of the region can eliminate the need to correct the stripe-shaped trenches, but can set the body contact regions perpendicular to the trenches' and preserve the entire effective area of the semiconductor device. By abandoning the groove strip, the leading amount of the ion implantation edge of the body contact ion implantation can make the cell gate much smaller. Another possible way is to implant the body contact region without masking. In this case, the insulating layer between the source region and the gate electrode in the upper half of the trench must be directed toward the body. Etch down to the trench. Here, the source wiring of the source region can be made via the trench sidewall. << Because silicon dioxide (Si 02) is not only easy to manufacture, but also has low production costs, it is here that silicon dioxide (Si02) is used as the material for the insulating layer and / or the dielectric.
第11頁 200304188 五、發明說明(8)Page 11 200304188 V. Description of the invention (8)
理論上設置在溝槽内的電介質, ^T 腐氧化物層⑨了以〔氧化石夕作為材二及設置在表面上的4 緣材料或方式來製作,例如氮化1·外,也可以採用其他絕 化矽及氮化矽製成的薄膜,不過就:真空、或是二氧I 法製成的=氧化石夕作為閘,氧化•二ϋ二μ以經熱處理 建議以二氧化矽作為電介質及防腐氧化=層=果最佳,因此 數微米的場 到可以被忽 作用是將外 不同極性的 件中的不同 閉電極的半 穿電壓。在 側壁上設有 的絕緣層的 絕緣層的厚 極氧化物 略的程度 延層内的電|_ 載流子相互 電導類型的 導體組件 溝槽的上半 一層經過熱 、溝槽的下半部通常有一層厚度為 j確保該處的閘汲電容能夠保持在小 這個場極氧化物及被絕緣的閘電極的 t清除掉,而且可以用來使漂移區内 清除掉,就像在所謂的補償半導體組 ^雜層-樣。因此相較於沒有階梯狀 ^發明的半導體組件會具有較高的擊 =,尤其是在本體區内,最好在溝槽 厚度通常是 度則通常為 ^里的二氧化石夕。設置在溝槽下半部 2〇nm至2/zm,而設置在溝槽上半部的 數十nm至1 〇〇nm。 最好是以多晶矽作為製作閘電極的材料, 錢 2導電材枓來製作閘電極,如金屬 丨- 他類似材料,雖然這政材铒祙邀、生姑# ^金屬、或疋其 電特性箄方^ 一材科就裊造技術、物理特性、以及導 等方面而s均不如使用高摻雜的多晶矽 麵 第12頁 200304188 五、發明說明(9) 導體::有=I施方式係將半導體組件製作成垂直式的半 制作点:接 以將半導體組件製作成其他形狀,例如 ===上没式(UP-Drain)半導體組件。上汲式半 的同一邊妒成、觸^接ί極區、以及閘電極都是從半導體基體 是在漂移區下方則是;侧= 者垂直方向流動,但 於主有利的實施方式及進-步改良請參見從屬 字中申味專利乾圍的其他申請範圍及關於以下圖式的說明文 應電氧化物半導體場效 丰導辦其骑Mw 導 的部分斷面圖。第一圖中的 第-個ί 以是一個單晶的石夕晶片。半導體基體⑴的 面⑻被稱為曰=為晶片正面。半導體基體⑴的第二個表 面5被%為日日片背面。半導體基體( v -(2): : ί (:):常…外 本體區⑷緊接在漂移區⑸上,介⑸個及υ:二 第13頁 200304188 五、發明說明(ίο) 之間的交界面定義出一個邱結(21)。在晶片正面(2)及本體 區(5)還設有一個強η型摻雜的源極區(?)。 以溝槽技術製造的金屬氧化物半導體組件具有溝槽 (8)。溝槽(8)位於半導體基體(丨)内,其範圍起自晶片正面 (2),經過源極區(7)及本體區(6),並伸入漂移區(5)。另外 還設有自晶片正面(2)起垂直伸入溝槽(8)内的閘電極(9)。 閘電極(9)經由電介質(1 8,1 9)與溝槽側壁(丨〇)及溝槽底部 (11 )絕緣。 此處的溝槽(8)係德國專利DE 1 9935442 π所稱的深溝 槽,其範圍延伸至漂移區(5)。為了易於觀察及說明,故將 一個溝槽的斷面放大繪製於圖式(la)。由於溝槽(8)内的閘 電極(9)及電介質(18,19)具有一個梯級(15),使得位於溝 槽I半部(16)的電介質厚度遠大於位於溝槽上半部(17)的電 介質厚度。相反的,位於溝槽上半部(17)的閘電極(9)厚度 則遠大於位於溝槽下半部(16)的閘電極(9)厚度。 又 如果將閘電極(9)接上一個正閘極電位,在本體區(6)緊 郇溝槽(8)的部分會因為載流子的侵入而形成通道(2〇)。如 果在引出線(D,S)之間接上一個汲源電壓,就會產生一個從 源極區(9)流出,經過通道(20)、漂移區(5)、汲極區(4), 最後抵達汲極引出線(D)的電流。不過要產生這種情況需具 備的一個前提是,梯級(15)的位置需位於本體區(6)及漂移 200304188 五、發明說明(11) 區(5)之間的pn結(21)的下方、或是略高於pn結上方的位 置。 在本發明的半導體組件中,梯級(1 5 )的位置被校正至剛 好與pn結(21)位於同一個平面的位置,或是略低於pn結(2 1 ) 的位置。這個校正動作可以利用自動校正或是在製造本體區 (6)及/或源極區(7)時經由梯級(15)導出的場極氧化物(18) 的上緣所進行的校正來完成。 沒極區(4 )是經由設置在晶片背面(3 )上的大面積汲極金 屬化層(12)與汲極引出線(D)連接。在晶片正面(2)上有一個 源極金屬化層(1 3)。源極金屬化層3)經由一個分路與源極 區(7)及本體區(6)形成導電觸點接通。金屬化層(13)與閘電 極(9 )之間隔著將二者絕緣的防腐氧化物層(丨4 )。有多種材 料可用來製作防腐氧化物層(14),例如硼磷矽玻璃“以㈧。 源極金屬化層(13)在晶片正面(2)上與源極引出線(s)連接, 閘電極(9)則是與閘極引出線(G)連接。 在半導體基體(1)的配置方式中,閘電極(9)、本體區 (6)、以及源極區(7)覆蓋的區域是溝槽式金屬氧化物半導體 f效應電晶體(M0SFET)的由許多胞元構成的胞元場(ZF),而 第圖的斷面圖僅顯示兩個胞元。每一個胞元都含有一個單 電晶體:並聯的許多單電晶體的負載線路即形成金屬氧化物 半導體場效應電晶體(M0SFET)。除了胞元場(ZF)之外,第一Theoretically, the dielectric is placed in the trench. The ^ T rot oxide layer is made of [oxidized stone as the second material and four edge materials or methods provided on the surface, such as nitriding 1. ·, also can be used Other thin films made of silicon dioxide and silicon nitride, but in terms of: vacuum, or dioxin I method = oxide stone as the gate, oxidation and dioxin μ heat treatment, it is recommended to use silicon dioxide as the dielectric And anti-corrosion oxidation = layer = fruit is the best, so a field of several micrometers can be ignored is the half-piercing voltage of different closed electrodes in different polar parts. The thickness of the insulating layer of the insulating layer provided on the side wall is slightly thicker than that of the electric layer in the layer. There is usually a layer of thickness j to ensure that the gate-drain capacitance can be kept small. The field oxide and the insulated gate electrode t are removed, and it can be used to clear the drift region, just like in the so-called compensation. Semiconductor group ^ heterolayer-like. Therefore, compared with a semiconductor device without a stepped ^ invention, it will have a higher impact, especially in the body region, preferably in the thickness of the trench is usually the degree of the dioxide dioxide. It is set at 20nm to 2 / zm in the lower half of the trench, and tens of nm to 100nm in the upper half of the trench. It is best to use polycrystalline silicon as the material for the gate electrode. Qian 2 conductive material is used to make the gate electrode, such as metal 丨-other similar materials, although this political material is invited, Sheng Gu # ^ metal, or its electrical characteristics. Fang Yiyi Branch is not as good as using highly doped polycrystalline silicon in terms of fabrication technology, physical properties, and conductivity. Page 12 200304188 V. Description of the invention (9) Conductor: Yes = I The method is to semiconductor The device is made into a vertical semi-manufacturing point: the semiconductor device is then made into other shapes, such as === UP-Drain semiconductor device. On the same side of the top half, the polar region, the gate electrode, and the gate electrode are all from the semiconductor substrate below the drift region; the side = vertical flow, but the main advantageous embodiment and- For step improvement, please refer to the other application scopes of the patent application in the subordinate word and the description of the following drawings. Partial cross-sectional views of the Mw guide should be taken by the electric oxide semiconductor field effect guide. The first one in the first picture is a single crystal Shi Xi wafer. The surface of the semiconductor substrate ⑴ is called the wafer front side. The second surface 5 of the semiconductor substrate 被 is referred to as the back surface of the solar panel. Semiconductor substrate (v-(2):: ί (:): often ... the outer body region ⑷ is immediately adjacent to the drift region ,, and the two are described in the following: The interface defines a Qiu junction (21). A strongly n-doped source region (?) Is also provided on the front side of the wafer (2) and the body region (5). A metal oxide semiconductor manufactured by trench technology The component has a groove (8). The groove (8) is located in the semiconductor substrate (丨), and the range starts from the front side of the wafer (2), passes through the source region (7) and the body region (6), and extends into the drift region. (5). In addition, a gate electrode (9) extending vertically from the front side of the wafer (2) into the groove (8) is provided. The gate electrode (9) passes through the dielectric (18, 19) and the sidewall of the groove (丨 〇) and the bottom of the trench (11) are insulated. The trench (8) here is a deep trench called German patent DE 1 9935442 π, and its range extends to the drift region (5). For easy observation and explanation, The section of a trench is enlarged and drawn in the drawing (la). Since the gate electrode (9) and the dielectric (18, 19) in the trench (8) have a step (15), it is located at half of the trench I The thickness of the dielectric in the portion (16) is much larger than the thickness of the dielectric in the upper half (17) of the trench. In contrast, the thickness of the gate electrode (9) in the upper half (17) of the trench is much larger than that of the lower electrode (16) The thickness of the gate electrode (9). If the gate electrode (9) is connected to a positive gate potential, the portion of the body (6) that is tightly pressed against the groove (8) will be invaded by carriers. A channel (20) is formed. If a drain-source voltage is connected between the lead-out lines (D, S), an outflow from the source region (9) is generated, passing through the channel (20), the drift region (5), and the drain. Polar area (4), the current that finally reaches the drain lead (D). However, a prerequisite for this situation is that the position of the step (15) needs to be located in the body area (6) and drift 200304188 V. Invention Note that the position below the pn junction (21) between the regions (5) or slightly above the pn junction. In the semiconductor device of the present invention, the position of the step (1 5) is corrected to exactly The pn junction (21) is located on the same plane, or slightly lower than the pn junction (2 1). This corrective action can be taken from The dynamic correction is performed by the upper edge of the field oxide (18) derived from the step (15) when the body region (6) and / or the source region (7) are manufactured. ) Is connected to the drain lead (D) through a large-area drain metallization layer (12) provided on the back surface (3) of the wafer. There is a source metallization layer (1 3) on the front surface (2) of the wafer The source metallization layer 3) forms a conductive contact with the source region (7) and the body region (6) via a shunt. The metallization layer (13) and the gate electrode (9) are separated by an anticorrosive oxide layer (丨 4) which insulates the two. There are a variety of materials that can be used to make the anticorrosive oxide layer (14), for example, borophosphosilicate glass "to plutonium. The source metallization layer (13) is connected to the source lead (s) on the front side of the wafer (2), the gate electrode (9) is connected to the gate lead (G). In the arrangement of the semiconductor substrate (1), the area covered by the gate electrode (9), the body region (6), and the source region (7) is a trench. The trench metal oxide semiconductor f-effect transistor (MOSFET) has a cell field (ZF) composed of many cells, while the cross-section of the figure shows only two cells. Each cell contains a single cell Crystal: The load line of many single transistors in parallel forms a metal oxide semiconductor field effect transistor (MOSFET). In addition to the cell field (ZF), the first
第15頁 200304188 、-遷,、、、不 氧化物半導體場效應電晶體(M0SFET)的一部分 邊緣區(RB)。邊緣區(RB)内雖然也有溝槽,不過邊緣區(RB) 内的胞元對於總電流量並無任何貢獻。 以下以兩個實例說明本發明提出的製造第一圖之半導體 組件的兩種方法。 第一種製造方法(第二圖)·· 攻種製造方法包括以下的步驟,第二圖所使用的標號與 第一圖相同。 (a)首先準備一個η型摻雜的半導體基體(1)。接著自晶片 正面(2)起向下在半導體基體(〇内蝕刻出溝槽(8)。 (b )利用〉儿積方式在晶片正面(2 )的整個露空表面加上一層 場極氧化物(1 8 )。 (c) 利用〉儿積方式在溝槽(8 )内形成一個將溝槽(8)填滿的 輔助層(2 2 ),例如由光刻膠構成的輔助層。接著朝溝槽(8) 底部對輔助層向下蝕刻使其只剩下一段位於溝槽内的光刻膠 短柱(22)。 (d) 向下蝕刻場極氧化物(8),使場極氧化物(18)的上緣 (15)與光刻膠短柱(22)的頂部處於同一高度。 (e) 接著經由離子注入將硼離子及砷離子注入半導體基體 (1)。離子注入的步驟是以注入角度45度的斜向注入方式進 行進行離子注入時,設置在溝槽(8)内的光刻膠短柱(22) 及場極氧化物(18)係作為注入掩膜之用,因此砷子及/或硼Page 15 200304188 Part of the oxide semiconductor field effect transistor (MOSFET) fringe region (RB). Although there are grooves in the edge region (RB), the cells in the edge region (RB) do not contribute to the total current. The following two examples illustrate two methods for manufacturing the semiconductor device of the first figure proposed by the present invention. The first manufacturing method (second figure) ... The seed manufacturing method includes the following steps. The second figure uses the same reference numerals as the first figure. (a) First prepare an n-type doped semiconductor substrate (1). Then, the trench (8) is etched down from the front side (2) of the semiconductor substrate (0). (B) A layer of field oxide is added to the entire exposed surface of the front side (2) of the wafer by using a pedestal method. (1 8). (C) Forming an auxiliary layer (2 2), such as a photoresist, in the trench (8) in the trench (8) by using the> product method. The bottom of the trench (8) etches the auxiliary layer downward so that only a section of the photoresist pillar (22) is located in the trench. (D) The field oxide (8) is etched downward to oxidize the field electrode The upper edge (15) of the object (18) is at the same height as the top of the photoresist stub (22). (E) Boron ions and arsenic ions are then implanted into the semiconductor substrate (1) via ion implantation. The ion implantation step is When the ion implantation is performed by the oblique implantation method with an implantation angle of 45 degrees, the photoresist pillars (22) and the field oxides (18) provided in the trenches (8) are used as implantation masks. Arsenic and / or boron
Η 第16頁 200304188Η Page 16 200304188
由,二1 ί入二個表面(2)及溝槽(8)的侧壁(1 〇)。在本例 2、乡雜劑1約為5 X 10“ cm—2,硼的摻雜劑量約為J X cm。為了使溝槽側壁(1〇)能夠均勾的被注入離子,故 :、種所明的象限離子注入方式來進行離子注入工作。 離子人牛 ^子後接著進行—個擴散步驟,其目的是使蝴 擴政到半導體基體(1)内。這樣就形成緊接在表 、及溝槽侧壁(1 〇 )上的強η型摻雜的源極區(7 ),以及緊 ^在源極區(7)及溝槽側壁(1〇)上的弱ρ型摻雜的本體區 C6)。 §待離子注入步驟及擴散步驟完成後,去除留在溝槽(8 ) 内的光刻膠短柱(22)。接著向下蝕刻場極氧化物(18),直到 場極氧化物(18)的上緣(15)位置低於緊接在溝槽(8)上 結(21)為止。 (h )、屋由加熱氧化在溝槽(8 )内形成閘極氧化物,並以高) 的夕曰曰矽將溝槽(8 )填滿。接著利用蝕刻方式將溢出到晶片 =面(2)上的多晶矽去除,只留下位於溝槽(8)内作為 (9)的多晶矽。 电位 由於源極金屬化層(1 3)、汲極金屬化層(丨2 )、以及鈍化 θ (1 4)的製造方法均屬於已知的技術,因此無需在此 說明。 入 第二種製造方法(第三圖): 本發明提出的第二種製造方法有一部分的製造步驟與第Therefore, two 1 are inserted into two surfaces (2) and a side wall (10) of the groove (8). In this example, the native impurity agent 1 is about 5 X 10 "cm-2, and the doping dose of boron is about JX cm. In order to allow the sidewall sidewalls (10) to be uniformly implanted with ions, so: The quadrant ion implantation method is used to perform the ion implantation work. The ions are then subjected to a diffusion step, the purpose of which is to expand the butterfly into the semiconductor substrate (1). This will form the next to the surface, and Strong n-type doped source region (7) on trench sidewall (10), and weak p-type doped body tightly on source region (7) and trench sidewall (10) Area C6). § After the ion implantation step and the diffusion step are completed, the photoresist stubs (22) remaining in the trench (8) are removed. Then, the field oxide (18) is etched downward until the field oxide is oxidized. The position of the upper edge (15) of the object (18) is lower than the junction (21) immediately next to the trench (8). (H), the house is oxidized by heating to form a gate oxide in the trench (8), and The trench (8) is filled with silicon. Then, the polycrystalline silicon overflowing on the wafer = surface (2) is removed by etching, leaving only the (9) in the trench (8). many Since the manufacturing method of the source metallization layer (1 3), the drain metallization layer (丨 2), and the passivation θ (1 4) are known techniques, the potential need not be explained here. Manufacturing method (third picture): The second manufacturing method proposed by the present invention has a part of manufacturing steps and
第17頁 200304188 五、發明說明(14) 一種製造方法相同,也就是說這兩種方法一直到形成光刻膠 短柱(2 2 )及場極氧化物(1 8)的部分(相當於第一種方法的(a) --(b )部分)都是相同的。到這個步驟為止,在溝槽(8 )内形 成的光刻膠短柱(2 2 )與溝槽(8 )的側壁(1 〇 )及底部(11 )均隔 著具有絕緣作用的場極氧化物(1 8 )。以下是接下來的步驟。 (A)將摻雜劑量為5 X ΙΟ14 -_1χ1〇ΐδ cm-2的砷離子以適當的 注入角度(通常是45度)注入半導體基體(1),且最好是採用 象限離子注入方式。這樣就可以形成一個緊鄰表面(2 )及側 壁(10)的強η型摻雜的源極區(7)。 (Β )接著向下餘刻在接下來的場極氧化物餘刻步驟中作為掩 膜之用的光刻膠短柱(22)。待在接下來的離子注入步驟中作 為離子注入掩膜之用的場極氧化物(丨8 )被向下钱刻至與被向 下姑刻過的光刻膠短柱(2 2)相同的高度後,將摻雜劑量約為 1013 cnr2的硼離子以適當的注入角度(通常是45度)注入半導 體基體(1)。這樣就可以形成一個緊鄰源極區(7 )及溝槽(8) 的弱P型摻雜的本體區(6)。 曰 (C )接著將場極氧化物梯級(丨5)向下蝕刻至低於緊靠在溝槽 上的pn結(21)的邊緣的位置。由於這個向下姓刻的 2二進行的十分精確,因此一定能夠將場極氧化物⑽ 向下蝕刻至低於叩結(21)的位置。這樣就可以將 i)與ρη結(21)的邊緣之間所需的最小間距縮小至最低 的私度’達到減少閘没電容的目的。 一Page 17 200304188 V. Description of the invention (14) A manufacturing method is the same, that is to say, these two methods are all the way to the formation of the photoresist pillar (2 2) and the field oxide (1 8) (equivalent to the first (A)-(b)) of one method are all the same. Up to this step, the photoresist stubs (2 2) formed in the trenches (8) and the sidewalls (10) and the bottoms (11) of the trenches (8) are insulated by a field electrode with an insulating effect. (18). Here are the next steps. (A) Implanting arsenic ions with a doping dose of 5 X 1014-1 x 10 ΐ δ cm-2 into the semiconductor substrate (1) at an appropriate implantation angle (usually 45 degrees), and preferably using a quadrant ion implantation method. In this way, a strongly n-doped source region (7) can be formed next to the surface (2) and the sidewalls (10). (B) A photoresist stub (22) is then etched downward for masking in the subsequent field oxide etch step. The field oxide (丨 8) to be used as an ion implantation mask in the subsequent ion implantation step is etched down to the same length as the photoresist stub (2 2) etched down. After the height, boron ions with a doping dose of about 1013 cnr2 are implanted into the semiconductor substrate (1) at an appropriate implantation angle (usually 45 degrees). In this way, a weakly P-doped body region (6) immediately adjacent to the source region (7) and the trench (8) can be formed. (C) Next, the field oxide step (5) is etched down to a position lower than the edge of the pn junction (21) immediately above the trench. Due to the accuracy of the engraving of 22, the field oxide ⑽ must be etched down to a position below the 叩 junction (21). In this way, the minimum distance required between i) and the edge of the ρη junction (21) can be reduced to the lowest degree of privacy ', so as to reduce the gate-off capacitance. One
第18頁 200304188Page 18 200304188
步驟又與第一種製造方法相同,就是將光刻膠 (22)條溝槽(8)中去除、在溝槽(8)内設置閘極氧化物(19)、. 以及形成金屬化層(1 2,1 3 )。 為了使源極區(7)及本體區(6)能夠對源電極(1 3)形成觸 f接通,觸點接通區必須具有很高的摻雜濃度。通常的作法 是直接將高摻雜的接觸區設置在源極區(7)及本體區(6)上要· 形成觸點接通的區域。完成經由溝槽侧壁進行的斜向離子注 入後,源極區(7)及本體區(6)就會具有一個朝表面(2)的方、 向呈Π形(倒U形狀)的摻雜分布。將本體區(6)為形成觸點接_ 通所需的本體接觸區(23)設置在垂直於條帶狀配置的胞元及 /或溝槽(8)的方向上。在現有的半導體組件的製造方法中, 本體接觸區(23)都教育設置在對準胞元及/或溝槽(8)的方向 上’因此本體接觸區(8)與溝槽(8 )之間必須相隔一個最小間 距。 第四圖顯示在第一圖之半導體組件中本體區(6)的一種 有利的觸點接觸方式。為了形成本體接觸區(2 3 ),應在使用 一垂直於條帶狀溝槽(8 )的離子注入掩膜的情況下將摻雜濃 度很高的硼離子注入半導體基體(1)内,被注入半導體(1)内鲁 的硼離子會改變源極區(7)在該處從表面到本體區(6)之間的, 範圍内原有的摻雜分佈’但先決條件是,注入之硼離子的掺· 雜濃度在該處形成的的Ρ型摻雜需明顯大於該處原有之源極 區(7)的η型摻雜。源極區接片(24)處於含有本體接觸區(23)The steps are the same as the first manufacturing method, that is, removing the photoresist (22) grooves (8), setting gate oxide (19) in the grooves (8), and forming a metallization layer ( 1 2, 1 3). In order to enable the source region (7) and the body region (6) to contact the source electrode (13), the contact region must have a high doping concentration. A common method is to directly set a highly doped contact region on the source region (7) and the body region (6) to form a contact-connected region. After the oblique ion implantation through the sidewall of the trench is completed, the source region (7) and the body region (6) will have a doping direction (inverted U shape) toward the surface (2). distributed. The body region (6) is a body contact region (23) required for forming contact contacts, and is arranged in a direction perpendicular to the strip-shaped cells and / or grooves (8). In the existing method of manufacturing a semiconductor device, the body contact area (23) is educed to be aligned in the direction of the cell and / or the groove (8). Therefore, the body contact area (8) and the groove (8) There must be a minimum spacing between them. The fourth figure shows an advantageous way of contacting the body region (6) in the semiconductor device of the first figure. In order to form the body contact region (2 3), boron ions with a high doping concentration should be implanted into the semiconductor substrate (1) under the condition of using an ion implantation mask perpendicular to the stripe grooves (8), Boron ions implanted into the semiconductor (1) will change the original doping profile of the source region (7) from the surface to the body region (6), but the prerequisite is that the implanted boron ions The p-type doping formed at the dopant / dopant concentration at this site needs to be significantly larger than the n-type doping of the original source region (7) there. The source region tab (24) is located in the body contact region (23).
200304188200304188
範圍内通道(20)上方緊罪溝槽(8)的位置。這些源極區接The position of the tight groove (8) above the channel (20) within the range. These source regions are connected
(24)從側面經由被本體區的離子注入掩膜覆蓋住的源極區 彼此連接在一起 也可以在沒有掩膜遮蔽的情況下經由表面(2 )向源極區 (3)對本體接觸區(23)進行離子注入。為了形成源極區(7)的 觸點接觸,必須將位於溝槽(8)内的閘極氧化物(19)及閘電 極(9) 一直向下蝕刻,直到源極區(7)能夠從側面經由溝槽側 壁(1〇)形成觸點接通為止。不過這種實施方式並未在第四 中繪出。 本發明的製造方法的應用範圍並不限於第一圖—4顯示 的實施方式,而是可以透過導電型(11型及Ps)的互換/以及 改變摻雜濃度等方式,製造出其他多種不同的半導體组件。 雖然在前面說明的實施方式均屬於溝槽式金屬氧化物半導體 場效應電晶體(M0SFET)的半導體組件,但是本發明的製造方 法的應用範圍並不僅限於此種半導體組件的製造,而是也可 以應用於溝槽式IGBT的製造。 綜上所述可知,利用本發明的方法,也就是在以場極氧 化物作為遮蔽掩膜的情況下,以斜向離子注入方式將摻雜材 料經由溝槽側壁注入,即可十分簡單、但卻非常有效的將閘 電極梯級的位置控制在略低於本體區及漂移區之間的邱結的(24) Connected to each other from the side via the source region covered by the ion implantation mask of the body region. The body contact region can also be passed through the surface (2) to the source region (3) without masking. (23) Perform ion implantation. In order to form the contact of the source region (7), the gate oxide (19) and the gate electrode (9) located in the trench (8) must be etched down until the source region (7) can be removed from The contact is formed on the side through the groove sidewall (10). However, this embodiment is not drawn in the fourth. The application range of the manufacturing method of the present invention is not limited to the embodiment shown in the first figure-4, but can be produced through the exchange of conductive types (type 11 and Ps) / and changing the doping concentration, etc. Semiconductor components. Although the embodiments described above are all semiconductor devices of trench type metal oxide semiconductor field effect transistor (MOSFET), the application range of the manufacturing method of the present invention is not limited to the manufacturing of such semiconductor devices, but may be Used in the manufacture of trench IGBTs. In summary, it can be known that using the method of the present invention, that is, in the case of using a field oxide as a mask, injecting a dopant material through a trench sidewall by oblique ion implantation can be very simple, but But it is very effective to control the position of the gate electrode step to be slightly lower than Qiu Jie between the body area and the drift area.
200304188 五、發明說明(17) 以上所舉的實施方式僅是用來說明本發明的原理及實際 應用方式,但是專業人士只要略加變化即可大幅擴大本發明 的應方式及範圍。 iim 第21頁 200304188 圖式簡單說明 第一圖:係本發明之構成溝槽式金 電晶體(M0SFET)的半導體組件 =化物半導體場效應 T的邛分斷面圖。 第一圖U) ··係一個溝槽的部分放大圖(a)。 第二圖(a)至(h):係說明如何 製造第一圖之半導體組件之部份斷‘(a)的二心種製造方法 弟一圖(a )至(c ) ·係說明如何以太恭 製造第-圖之半導體組件之二二種製造方法 利的方法的部 第四圖·係製造本體——源極接觸的第一 分斷面圖。 植有 元件符號說明 1半導體組件 4 沒極區 7 源極區 1 0溝槽侧壁 1 3源極金屬化層 1 6溝槽下半部 1 9閘極氧化物 2 2光刻膠短柱 2晶片正面 5漂移區 8溝槽 11溝槽底部 14防腐氧化物層 1 7溝槽上半部 20通道 23本體接觸區 3晶片背面 6本體區 9閘電極 1 2没極金屬化層 1 5梯級 1 8場極氧化物 21pn 結 2 4源極區接片 第22頁 200304188 圖式簡單說明 D ί及極引出線 S 源極引出線 G 閘極引出線 ZF胞元場 RB邊緣區 Ιϋ· 第23頁200304188 V. Description of the invention (17) The above-mentioned embodiments are only used to explain the principle and practical application of the present invention, but only a few changes by professionals can greatly expand the application mode and scope of the present invention. iim Page 21 200304188 Brief description of the drawings The first picture: a semiconductor device constituting a trench type gold transistor (MOSFET) according to the present invention = a cross-sectional view of a semiconductor field effect T. First image U) ··· It is an enlarged view of a part of a groove (a). The second diagrams (a) to (h): how to manufacture the semiconductor device of the first diagram is partially broken. (A) The two-heart manufacturing method. (A) to (c) The fourth figure of the second method of manufacturing the semiconductor device of the second-figure manufacturing method is shown in the fourth figure. It is the first sectional view of the manufacturing body-source contact. Description of component symbols 1 semiconductor device 4 non-polar region 7 source region 1 0 trench sidewall 1 3 source metallization layer 1 6 lower half of the trench 1 9 gate oxide 2 2 photoresist stub 2 Front side of the wafer 5 Drift region 8 Trench 11 Trench bottom 14 Anticorrosive oxide layer 1 7 Upper half of the trench 20 channels 23 Body contact area 3 Back side of the wafer 6 Body area 9 Gate electrode 1 2 Non-polar metallization layer 1 5 Step 1 8 field polar oxide 21pn junction 2 4 source area connection page 22200304188 The diagram briefly illustrates D and pole lead S source lead G gate lead ZF cell field RB edge region Iϋ · page 23
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10210138A DE10210138B4 (en) | 2002-03-07 | 2002-03-07 | Field effect controllable vertical semiconductor device and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200304188A true TW200304188A (en) | 2003-09-16 |
TWI224372B TWI224372B (en) | 2004-11-21 |
Family
ID=27797599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW092103250A TWI224372B (en) | 2002-03-07 | 2003-02-17 | Field-effect-controllable semiconductor component and fabricating method thereof |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE10210138B4 (en) |
TW (1) | TWI224372B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113594043A (en) * | 2021-09-28 | 2021-11-02 | 杭州芯迈半导体技术有限公司 | Trench type MOSFET device and manufacturing method thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1536463A1 (en) * | 2003-11-28 | 2005-06-01 | STMicroelectronics S.r.l. | Method for manufacturing a power device with insulated trench-gate having controlled channel length and corresponding device |
DE102004024661B4 (en) * | 2004-05-18 | 2006-04-13 | Infineon Technologies Ag | Trench transistor manufacturing method, by back-forming layer in upper trench region, and semiconductor material on side walls of trench before forming new semiconductor material on side walls |
DE102004052643B4 (en) | 2004-10-29 | 2016-06-16 | Infineon Technologies Ag | Method for producing a lateral trench transistor |
AT504290A2 (en) | 2005-06-10 | 2008-04-15 | Fairchild Semiconductor | FIELD EFFECT TRANSISTOR WITH LOAD BALANCE |
TWI400757B (en) | 2005-06-29 | 2013-07-01 | Fairchild Semiconductor | Method for forming a shadow gate field effect transistor |
DE102006011283B3 (en) * | 2006-03-10 | 2007-09-27 | Infineon Technologies Austria Ag | Trench power transistor e.g. lamellar trench power transistor, manufacturing method, involves selecting implantation energy and dose so that principal part of dose is placed below source electrode, and pinch resistance of contact is reduced |
DE102007057728B4 (en) | 2007-11-30 | 2014-04-30 | Infineon Technologies Ag | Method for producing a semiconductor device with a short circuit structure |
US8796761B2 (en) | 2012-03-15 | 2014-08-05 | Infineon Technologies Austria Ag | Semiconductor device including charged structure and methods for manufacturing a semiconductor device |
US8823087B2 (en) | 2012-03-15 | 2014-09-02 | Infineon Technologies Austria Ag | Semiconductor device including auxiliary structure and methods for manufacturing a semiconductor device |
JP7056163B2 (en) * | 2018-01-17 | 2022-04-19 | 富士電機株式会社 | Semiconductor device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9512089D0 (en) * | 1995-06-14 | 1995-08-09 | Evans Jonathan L | Semiconductor device fabrication |
KR19980014820A (en) * | 1996-08-16 | 1998-05-25 | 김광호 | Tungsten-type MOS field effect transistor and manufacturing method thereof |
GB9917099D0 (en) * | 1999-07-22 | 1999-09-22 | Koninkl Philips Electronics Nv | Cellular trench-gate field-effect transistors |
JP5081358B2 (en) * | 2000-03-17 | 2012-11-28 | ゼネラル セミコンダクター,インク. | Double diffusion metal oxide semiconductor transistor having trench gate electrode and method for manufacturing the same |
-
2002
- 2002-03-07 DE DE10210138A patent/DE10210138B4/en not_active Expired - Fee Related
-
2003
- 2003-02-17 TW TW092103250A patent/TWI224372B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113594043A (en) * | 2021-09-28 | 2021-11-02 | 杭州芯迈半导体技术有限公司 | Trench type MOSFET device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
DE10210138B4 (en) | 2005-07-21 |
DE10210138A1 (en) | 2003-10-02 |
TWI224372B (en) | 2004-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10297677B2 (en) | LDMOS power semiconductor device and manufacturing method of the same | |
US8659076B2 (en) | Semiconductor device structures and related processes | |
US7928505B2 (en) | Semiconductor device with vertical trench and lightly doped region | |
CN101107718B (en) | Power metal oxide semiconductor assembly | |
US12057482B2 (en) | MOSFET with distributed doped P-shield zones under trenches | |
US9735254B2 (en) | Trench-gate RESURF semiconductor device and manufacturing method | |
US20230107611A1 (en) | Charge-balance power device, and process for manufacturing the charge-balance power device | |
US9484436B2 (en) | Power LDMOS semiconductor device with reduced on-resistance and manufacturing method thereof | |
US20020179950A1 (en) | Manufacture of trench-gate semiconductor devices | |
TW200304188A (en) | Semiconductor component and manufacturing method | |
US11652170B2 (en) | Trench field effect transistor structure free from contact hole | |
CN101385151B (en) | Lateral power transistor with self-biasing electrodes | |
CN102339851A (en) | Power semiconductor with groove bottom polysilicon structure and manufacturing method thereof | |
CN112103331A (en) | LDMOS transistor and manufacturing method thereof | |
US20240347585A1 (en) | Mosfet with distributed doped p-shield zones under trenches having different depths | |
KR20100067870A (en) | Mosfet and method for manufacturing the same | |
JP2023170928A (en) | Semiconductor device and its manufacturing method | |
TWI433311B (en) | Power device with self-aligned silicide contact and method of fabricating thereof | |
CN112349778A (en) | RESURF LDMOS device with HVBN structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |